TWI431145B - 有用於化學氣相沉積及原子層沉積金屬薄膜之銻及鍺複合物 - Google Patents

有用於化學氣相沉積及原子層沉積金屬薄膜之銻及鍺複合物 Download PDF

Info

Publication number
TWI431145B
TWI431145B TW096108425A TW96108425A TWI431145B TW I431145 B TWI431145 B TW I431145B TW 096108425 A TW096108425 A TW 096108425A TW 96108425 A TW96108425 A TW 96108425A TW I431145 B TWI431145 B TW I431145B
Authority
TW
Taiwan
Prior art keywords
group
ruthenium
alkyl
independently selected
precursor
Prior art date
Application number
TW096108425A
Other languages
English (en)
Other versions
TW200821403A (en
Inventor
Hunks William
Chen Tianniu
Chongying Xu
F Roeder Jeffrey
H Baum Thomas
A Petruska Melissa
Stender Mattias
S H Chen Philip
T Stauf Gregory
C Hendrix Bryan
Original Assignee
Advanced Tech Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Tech Materials filed Critical Advanced Tech Materials
Publication of TW200821403A publication Critical patent/TW200821403A/zh
Application granted granted Critical
Publication of TWI431145B publication Critical patent/TWI431145B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/30Germanium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/04Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C251/06Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of a saturated carbon skeleton
    • C07C251/08Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of a saturated carbon skeleton being acyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/90Antimony compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/90Antimony compounds
    • C07F9/902Compounds without antimony-carbon linkages
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/023Formation of switching materials, e.g. deposition of layers by chemical vapor deposition, e.g. MOCVD, ALD
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/066Shaping switching materials by filling of openings, e.g. damascene method
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)
  • Semiconductor Memories (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

有用於化學氣相沉積及原子層沉積金屬薄膜之銻及鍺複合物
本發明係關於有用於金屬薄膜之CVD/ALD之銻及鍺複合物,包含此等複合物之組成物及使用此等複合物及組成物將金屬薄膜沉積於基板上之方法。
銻化物被利用於紅外偵測器、高速數位電路、量子井結構中,且近來與鍺(Ge)及碲(Te)一起成為在利用鍺-銻-碲(Ge2 Sb2 Te5 )薄膜之相變硫屬化物不變性記憶體技術中的關鍵成分。
基於Ge-Sb-Te(GST)薄膜的相變隨機存取記憶體(PRAM)元件利用與薄膜材料之電阻率變化相關聯之自結晶態至非晶態的可逆轉變。基於高速商業製造及性能的理由,期望薄膜材料之本身係使用諸如化學氣相沉積(CVD)及原子層沉積(ALD)的技術形成。
儘管其有希望,但在低溫下利用CVD及原子層沉積ALD成長可再現的高品質銻化物、Sb2 Te3 及GST薄膜的努力仍面臨實質的挑戰。此等挑戰包括下列各項:(1)目前僅可取得相當有限數量的銻CVD/ALD前驅體,其大多係基於烷基的化合物諸如Me3 Sb、Et3 Sb、(iPr)3 Sb及Ph3 Sb或基於氫化物的化合物諸如SbH3 ,且此等前驅體會有包括低熱安定性、低揮發性、合成困難及高傳遞溫度的各種缺失;(2)並不確定此等目前可取得之銻前驅體與鍺或碲前驅體就其可再現地成長微電子元件品質GST薄膜之能力而言的相容性,且銻化物薄膜之成長具有相關的製程困難,包括對V/III比及分解溫度的敏感性;及(3)由此等前驅體形成之經沉積金屬薄膜易受到源自前驅體之碳或雜原子的污染,其會導致低成長速率、不良的形態及薄膜的組成物變化。
在用於沉積GST薄膜之合適鍺前驅體的可供用性及選擇上,及在用於形成磊晶成長應變矽薄膜(例如,SiGe薄膜)之鍺前驅體的使用中會遭遇到類似的問題。
習知使用鍺烷(GeH4 )於形成鍺薄膜,但其需要高於500℃的沉積溫度以及嚴格的安全控制及設備。其他可資利用的Ge前驅體需要高於350℃之溫度於沉積Ge薄膜,否則其無法展現足夠的蒸氣壓供傳遞用或會產生低的薄膜成長速率。理想上,鍺前驅體可在300℃及以下左右的低溫下使用於CVD/ALD製程中,以在高沉積速率下形成GST合金薄膜,且於所得之薄膜中具有低碳雜質含量。
因此,技藝中持續尋求用於利用CVD及ALD技術沉積相關金屬及金屬合金薄膜之新穎的銻及鍺前驅體。
本發明係關於有用於相關含金屬薄膜之CVD/ALD的銻及鍺前驅體,包含此等前驅體之組成物,此等前驅體之製造方法,及使用此等前驅體製得之薄膜及微電子元件產物,以及相關的製造方法。
在一態樣中,本發明係關於一種選自化學式(A)、(B)、(C)、(D)及(E)(I)-(E)(XVI)之複合物的金屬複合物:Sb(NR1 R2 )(R3 N(CR5 R6 )m NR4 ) (A)其中:R1 、R2 、R3 、及R4 可彼此相同或不同,且係獨立地選自C1 -C6 烷基、C3 -C6 環烷基、C2 -C6 烯基(例如,乙烯基、烯丙基等等)、C3 -C6 烷基矽烷基、C6 -C10 芳基,R5 及R6 各可彼此相同或不同,且係獨立地選自氫、C1 -C6 烷基、C3 -C6 環烷基、C2 -C6 烯基(例如,乙烯基、烯丙基等等)、C3 -C6 烷基矽烷基、及C6 -C10 芳基;及m係1至4之整數(包括1及4);Sb(R1 )(R2 N(CR4 R5 )m NR3 ) (B)其中:R1 、R2 、及R3 可彼此相同或不同,且係獨立地選自C1 -C6 烷基、C3 -C6 環烷基、C2 -C6 烯基(例如,乙烯基、烯丙基等等)、C3 -C6 烷基矽烷基、及C6 -C10 芳基;R4 及R5 各可彼此相同或不同,且係獨立地選自氫、C1 -C6 烷基、C3 -C6 環烷基、C2 -C6 烯基(例如,乙烯基、烯丙基等等)、C3 -C6 烷基矽烷基、及C6 -C10 芳基;及m係1至4之整數(包括1及4);Sb(R1 )3-n (NR2 R3 )n (C)其中:R1 、R2 及R3 可彼此相同或不同,且係獨立地選自氫、C1 -C6 烷基、C3 -C6 環烷基、C2 -C6 烯基(例如,乙烯基、烯丙基等等)、矽烷基、C3 -C6 烷基矽烷基、C6 -C10 芳基及-NR4 R5 ,其中R4 及R5 各係選自H及C1 -C4 ;及n係0至3之整數(包括0及3);(R4 )n Sb(E(R1 R2 R3 ))3-n (D)其中:R1 、R2 、R3 、及R4 可彼此相同或不同,且係獨立地選自C1 -C6 烷基、C3 -C6 環烷基、C3 -C6 烷基矽烷基、C6 -C10 芳基、及化學式-NR5 R6 之烷胺基,其中R5 及R6 各係獨立地選自H及C1 -C4 烷基;E係矽(Si)或鍺(Ge);及n係0至3之整數(包括0及3);(E)以下化學式I-XVI之鍺前驅體: 其中:R1 及R2 可彼此相同或不同,且係獨立地選自H、C1 -C6 烷基、C2 -C5 烯基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基; 其中:R及R’可彼此相同或不同,且各R及R’係獨立地選自H、C1 -C6 烷基、C2 -C5 烯基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基; 其中:R、R’、R1 及R2 可彼此相同或不同,且各係獨立地選自H、C1 -C6 烷基、C2 -C5 烯基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基;(R) 4-n Ge(NR 1 R 2 ) n IV其中:R、R1 及R2 可彼此相同或不同,且各係獨立地選自H、C1 -C6 烷基、C2 -C5 烯基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基;及n係0至4之整數(包括0及4); 其中:R1 、R2 、R3 、R4 、R5 及R6 可彼此相同或不同,且各係獨立地選自H、C1 -C6 烷基、C2 -C5 烯基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基; 其中:R係選自H、C1 -C6 烷基、及C6 -C10 芳基;及x為0、1或2; 其中:R1 、R2 、R3 及R4 可彼此相同或不同,且各係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基; 其中:R1 、R2 、R3 、R4 、及R5 可彼此相同或不同,且各係獨立地選自H、C1 -C6 烷基、矽烷基、-Si(R’)3 、C6 -C10 環烷基、C6 -C10 芳基、-(CH2 )x NR’R”、及-(CH2 )x OR’”,其中x=1、2或3,及R’、R”及R’”可彼此相同或不同,且各係獨立地選自C1 -C6 烷基; 其中:R’及R”可彼此相同或不同,且係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基;及各X係獨立地選自C1 -C6 烷基、C1 -C6 烷氧基、-NR1 R2 、及-C(R3 )3 ,其中R1 、R2 及R3 各係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R4 )3 ,其中各R4 係獨立地選自C1 -C6 烷基; 其中:R1 、R2 、R3 及R4 可彼此相同或不同,且係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基; 其中:R1 、R2 、R3 及R4 可彼此相同或不同,且係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基; 其中:R1 、R2 、R3 及R4 可彼此相同或不同,且係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基;R 1 TeR 2 XIII 其中:R1 及R2 可彼此相同或不同,且係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基;R 1 Te(NR 2 R 3 ) XIV 其中:R1 、R2 及R3 可彼此相同或不同,且係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基;R 1 Te-TeR 2 XV 其中:R1 及R2 可彼此相同或不同,且係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基;及R 1 R 2 R 3 R 4 Ge XVI 其中:R1 、R2 、R3 及R4 可彼此相同或不同,且係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基。
在另一態樣中,本發明係關於一種前述金屬複合物之蒸氣。
在另一態樣中,本發明係關於一種包含鍺前驅體、銻前驅體及碲前驅體之前驅體混合物,其中鍺前驅體及銻前驅體之至少一者包括選自以上化學式(A)、(B)、(C)、(D)及(E)(I)-(XVI)之金屬複合物的前驅體。
在再一態樣中,本發明係關於包含存於溶劑介質中之本發明之金屬複合物的前驅體組成物。
本發明之再一態樣係關於將金屬沉積於基板上之方法,其包括使基板與包含本發明之金屬複合物之蒸氣的前驅體蒸氣接觸。
本發明之其他態樣係關於製造本發明之前驅體的方法。
本發明之再一態樣係關於Sb(NMeEt)3 、Sb(CH=CMe2 )3 及Sb(CH2 CH=CH2 )3
在另一態樣中,本發明係關於一種經封裝之前驅體供給系統,其包括含有本發明之金屬複合物之包裝。
本發明之又另一態樣係關於一種鍺複合物,其之結構及性質更完整論述於後文。
在另一態樣中,本發明係關於一種將鍺沉積於基板上之方法,其包括使基板與包含選自下列之鍺(II)複合物之蒸氣的前驅體蒸氣接觸:
本發明之另一態樣係關於一種將鍺沉積於基板上之方法,其包括使基板與包含二烷胺基三異丙基鍺烷之蒸氣的前驅體蒸氣接觸。
本發明於本發明之另一態樣中亦涵蓋一種包含二烷胺基三異丙基鍺烷之蒸氣的前驅體蒸氣。
本發明之一態樣係關於一種將鍺沉積於基板上之方法,其包括使基板與包含具有選自烯丙基、苄基、第三丁基、環戊二烯基、氫化物、苯基、烷基、雙牙團胺及N,N-二烷基乙二胺之配位體之鍺複合物之蒸氣的前驅體蒸氣接觸。
本發明之另一態樣係關於在一基板上形成GST薄膜,其包括使基板與包含本發明之鍺複合物之蒸氣、銻複合物之蒸氣、及碲複合物之蒸氣的前驅體蒸氣接觸。
本發明之另一態樣係關於一種二烷胺基三異丙基鍺烷複合物,例如,二乙胺基三異丙基鍺烷及乙基甲胺基三異丙基鍺烷。
本發明之又再一態樣係關於一種在一基板上形成含鍺薄膜之方法,其包括使基板與包含二乙胺基三異丙基鍺烷或乙基甲胺基三異丙基鍺烷之蒸氣的前驅體蒸氣接觸。
本發明之又再一態樣係關於一種製造微電子元件之方法,其包括自包含至少一種如文中所述之前驅體之蒸氣的前驅體蒸氣將含金屬薄膜化學氣相沉積或原子層沉積於基板上。
當在說明相應之化學基團中於文中提供一碳數範圍時,應明瞭在本發明中涵蓋各中間的碳數及在該所述範圍內之任何其他所述或中間的碳數值,例如,應明瞭C1 -C6 烷基包括甲基(C1 )、乙基(C2 )、丙基(C3 )、丁基(C4 )、戊基(C5 )及己基(C6 ),且該化學基團可為任何構形,例如,直鏈或分支鏈,進一步應明瞭在本發明之範疇內,在指定碳數範圍內之碳數的子範圍可獨立地以較小的碳數範圍包含,且本發明中包括明確排除一或多個碳數的碳數範圍,且本發明中亦包括排除指定範圍之碳數界限之任一或兩者的子範圍。
此處所使用之術語「薄膜」係指具有低於1000微米厚度(例如,自此值低至原子單層厚度值)之一層沉積材料。在各種具體例中,在本發明實行中之經沉積材料層之薄膜厚度可視相關之特定而應用,例如,低於100、10、或1微米,或在各種薄膜體系中,低於200、100、或50奈米。
應注意除非文中清楚地另作指示,否則於文中及於隨附申請專利範圍中所使用之單數形式「一」、「一個」、及「此」包括複數的指示物。
本發明之其他態樣、特徵及具體例將可由隨後之揭示內容及隨附之申請專利範圍而更完整明瞭。
本發明係關於有用於相關含金屬薄膜之CVD/ALD的銻及鍺前驅體,包含此等前驅體之組成物,製造此等前驅體之方法,及使用此等前驅體製得之薄膜及微電子元件產物,以及相關的製造方法。
本發明之一態樣係關於以下化學式(A)、(B)及(C)之新穎類別的銻前驅體:Sb(NR 1 R 2 )(R 3 N(CR 5 R 6 ) m NR 4 ) (A) 其中:R1 、R2 、R3 、及R4 可彼此相同或不同,且係獨立地選自C1 -C6 烷基、C3 -C6 環烷基、C2 -C6 烯基(例如,乙烯基、烯丙基等等)、C3 -C6 烷基矽烷基、C6 -C10 芳基,R5 及R6 各可彼此相同或不同,且係獨立地選自氫、C1 -C6 烷基、C3 -C6 環烷基、C2 -C6 烯基(例如,乙烯基、烯丙基等等)、C3 -C6 烷基矽烷基、及C6 -C10 芳基;及m係1至4之整數(包括1及4);Sb(R 1 )(R 2 N(CR 4 R 5 ) m NR 3 ) (B) 其中:R1 、R2 、及R3 可彼此相同或不同,且係獨立地選自C1 -C6 烷基、C3 -C6 環烷基、C2 -C6 烯基(例如,乙烯基、烯丙基等等)、C3 -C6 烷基矽烷基、及C6 -C10 芳基;R4 及R5 各可彼此相同或不同,且係獨立地選自氫、C1 -C6 烷基、C3 -C6 環烷基、C2 -C6 烯基(例如,乙烯基、烯丙基等等)、C3 -C6 烷基矽烷基、及C6 -C10 芳基;及m係1至4之整數(包括1及4);Sb(R 1 ) 3-n (NR 2 R 3 )n (C) 其中:R1 、R2 及R3 可彼此相同或不同,且係獨立地選自氫、C1 -C6 烷基、C3 -C6 環烷基、C2 -C6 烯基(例如,乙烯基、烯丙基等等)、矽烷基、C3 -C6 烷基矽烷基、C6 -C10 芳基及-NR4 R5 ,其中R4 及R5 各係選自H及C1 -C4 ;及n係0至3之整數(包括0及3)。
本發明之另一態樣係關於化學式(D)之鍺烷基及矽烷基銻前驅體:(R 4 ) n Sb(E(R 1 R 2 R 3 )) 3-n (D) 其中:R1 、R2 、R3 、及R4 可彼此相同或不同,且係獨立地選自C1 -C6 烷基、C3 -C6 環烷基、C3 -C6 烷基矽烷基、C6 -C10 芳基、及化學式-NR5 R6 之烷胺基,其中R5 及R6 各係獨立地選自H及C1 -C4 烷基;E係矽(Si)或鍺(Ge);及n係0至3之整數(包括0及3);前述前驅體可有效用於Sb、Sb/Ge、Sb/Te及GST薄膜之CVD及ALD。
此等前驅體亦可用於利用諸如氫、氫電漿、胺、亞胺、肼、矽烷、矽烷基硫屬化物(例如,(Me3 Si)2 Te)、鍺烷(例如,GeH4 )、氨、烷類、烯類及炔類之還原共反應物的低溫沉積應用。
當特定前驅體係呈液態時,其可以純液態用於液體傳遞。
或者,當此等前驅體係呈液態或固態時,其可於適當溶劑中作為前驅體之溶液或懸浮液使用。在特定應用中,供此用途用之適當溶劑包括烷類(例如,己烷、庚烷、辛烷及戊烷)、芳基溶劑(例如,苯、甲苯)、胺(例如,三乙胺、第三丁胺)、亞胺、肼及醚。
用於特定銻前驅體或用於特定銻前驅體與其他鍺及碲前驅體之組合之特定溶劑組成物的選擇可基於文中之揭示內容於技藝技能內容易地決定,以對相關之特定前驅體成分的液體傳遞蒸發及輸送選擇適當的單一成分或多成分溶劑介質。
在各種具體例中,當銻前驅體係呈固態時,可利用固體傳遞系統於傳遞銻前驅體,其諸如,比方說,可購自ATMI,Inc.(Danbury,Connecticut,USA)之ProE-Vap固體傳遞及蒸發器系統。
本發明之銻前驅體可藉由於上文所述的寬廣化學式內選擇合適取代基「微調」,而提供熱安定性、揮發性及與多成分前驅體系統中之其他輔試劑或成分之相容性的期望特性。
本發明之銻前驅體可藉由包括以下所述的合成途徑而容易地合成得。
通式(A)之銻前驅體: 可例如根據以下的反應流程(A)合成得: 且通式(B)之銻前驅體: 可根據以下的反應流程(B): 或由以下的反應流程(C)合成得: 通式(C)之銻前驅體可經由以相關的方式合成而形成。具有以下結構之通式(D)之銻前驅體:
可例如根據以下的反應流程(D)(當n為零時)或(E)(當n為2時)合成得: 其中X為鹵基(氟、溴、氯、碘)。
在前述的合成實例中,可使用RMgX及RLi作為另類的合成試劑。
合成及定性前驅體Sb(NMeEt)3 、Sb(CH=CMe2 )3 、Sb(CH2 CH=CH2 )3 及Sb(NMe2 )3 作為說明本發明之前驅體的明確實例。經測定前驅體Sb(NMe2 )3 及Sb(NMeEt)3 呈現感光性,因此其需儲存於受到保護防止光暴露的容器中或其他耐光包裝中,以避免其之光所引發的分解。類似的考量適用於Sb(CH=CMe2 )3 及Sb(CH2 CH=CH2 )3
圖1顯示Sb(NMeEt)3 之核磁共振光譜及圖2顯示Sb(NMe2 )3 之核磁共振光譜。
圖3係此兩前驅體-Sb(NMeEt)3 及Sb(NMe2 )3 -之同時熱分析(STA)圖,其中將熱重分析(TG)之百分比成溫度(℃)之函數作圖。
本發明之另一態樣係關於以下化學式I-XVI之有用於鍺薄膜於基板上之CVD及ALD沉積的鍺前驅體: 其中:R1 及R2 可彼此相同或不同,且係獨立地選自H、C1 -C6 烷基、C2 -C5 烯基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基; 其中:R及R’可彼此相同或不同,且各R及R’係獨立地選自H、C1 -C6 烷基、C2 -C5 烯基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基; 其中:R、R’、R1 及R2 可彼此相同或不同,且各係獨立地選自H、C1 -C6 烷基、C2 -C5 烯基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基;(R) 4-n Ge(NR 1 R 2 ) n IV 其中:R、R1 及R2 可彼此相同或不同,且各係獨立地選自H、C1 -C6 烷基、C2 -C5 烯基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基;及n係0至4之整數(包括0及4); 其中:R1 、R2 、R3 、R4 、R5 及R6 可彼此相同或不同,且各係獨立地選自H、C1 -C6 烷基、C2 -C5 烯基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基; 其中:R係選自H、C1 -C6 烷基、及C6 -C10 芳基;及x為0、1或2; 其中:R1 、R2 、R3 及R4 可彼此相同或不同,且各係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基; 其中:R1 、R2 、R3 、R4 、及R5 可彼此相同或不同,且各係獨立地選自H、C1 -C6 烷基、矽烷基、-Si(R’)3 、C6 -C10 環烷基、C6 -C10 芳基、-(CH2 )x NR’R”、及-(CH2 )x OR’”,其中x=1、2或3,及R’、R”及R’”可彼此相同或不同,且各係獨立地選自C1 -C6 烷基; 其中:R’及R”可彼此相同或不同,且係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基;及各X係獨立地選自C1 -C6 烷基、C1 -C6 烷氧基、-NR1 R2 、及-C(R3 )3 ,其中R1 、R2 及R3 各係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R4 )3 ,其中各R4 係獨立地選自C1 -C6 烷基; 其中:R1 、R2 、R3 及R4 可彼此相同或不同,且係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基; 其中:R1 、R2 、R3 及R4 可彼此相同或不同,且係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基; 其中:R1 、R2 、R3 及R4 可彼此相同或不同,且係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基;R 1 TeR 2 XIII 其中:R1 及R2 可彼此相同或不同,且係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基;R 1 Te(NR 2 R 3 ) XIV 其中:R1 、R2 及R3 可彼此相同或不同,且係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基;R 1 Te-TeR 2 XV 其中:R1 及R2 可彼此相同或不同,且係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基;及R 1 R 2 R 3 R 4 Ge XVI 其中:R1 、R2 、R3 及R4 可彼此相同或不同,且係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基。
前述鍺前驅體之合成可利用以不同方式顯示於下的合成製備類型以即用的方式以不同方式進行。在各情況中,可使用RMgCl、RMgBr、RMgI、RLi、及RNa作為另類的試劑。此外,可使用GeBr4 替代GeCl4 ;可以NaNR2 或KNR2 替代LiNR2 ;且可使用Na(C5 R5 )作為K(C5 R5 )之替代。此外,可使用多步驟合成方法於經由氧化加成至Ge(II)複合物以產生Ge(IV)前驅體而產生混合烷基物種,如下所示: 其中:R、R’、及R”可彼此相同或不同,且各係獨立地選自H、C1 -C6 烷基、C2 -C6 烯基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基,且M為Li、Na、MgCl、MgBr、或MgI。
用於GST薄膜之鍺(IV)前驅體 R=Me、Et、iPr、t-Bu或組合 且相應地,四烯丙基鍺複合物 可使用相應的烯丙基格任亞(Grignard)試劑R*MgCl(其中R*為烯丙基)自此四氯鍺起始物料形成
用於GST薄膜之Ge前驅體
可有效用於含鍺薄膜之CVD或ALD之說明性的Ge(II)化合物包括下列:
在本發明之各種具體例中,使用二烷胺基異丙基鍺烷前驅體於GST薄膜之CVD/ALD形成。此等前驅體可藉由諸如以下所示的反應流程合成:
以形成諸如以下的鍺複合物:
前述的鍺前驅體有用於CVD及ALD應用,以於基板上沉積含鍺薄膜。有用於此等應用且易於利用經加熱之發泡器輸送的肆醯胺基鍺烷及三異丙基胺包括,例如,Ge(NMe2 )4 、Ge(NEtMe)4 、Ge(NEt2 )4 、iPr3 GeCl、iPr3 GeNMe2 、iPr3 GeNEtMe、及iPr3 GeNEt2 。本發明之鍺前驅體的揮發性可利用STA熱重分析技術(例如,經由於氬氣中在大氣壓力下測定材料輸送)及GC分析容易地測量。
在含有烷基取代基之本發明之鍺前驅體的特定具體例中,異丙基取代基在許多情況中較甲基為佳,因異丙基取代基可經歷β-氫脫除反應,因而有利於鍺前驅體的低溫分解加工,而不會產生顯著的碳殘留物。
本發明之含氮鍺前驅體本質有利於促成一些氮加入於最終薄膜中的許多應用。在此方面,摻雜Si及N之GST材料具有較低的復歸電流(reset current),因而可發生較低溫的相變。
一額外的優點為本發明之各種鍺烷前驅體可經由以下反應經歷加氫鍺解(hydrogermolysis)偶合反應形成Ge-Ge鍵:R3 GeNR’2 +R3 GeH → R3 Ge-GeR3 ,而產生可相對於單鍺烷前驅體達成高度有效率之含鍺薄膜沉積的雙鍺烷CVD前驅體。
本發明之鍺前驅體可包含種類寬廣的配位體物種作為其之基團。此等配位體可例如包括,但不限於,烯丙基、苄基、第三丁基、環戊二烯基、氫化物、苯基、及烷基。亦可使用雙牙團胺(例如,N,N-二烷基乙二胺)。
鍺前驅體可以液體傳遞技術,使用合適的溶劑介質於溶液或懸浮液中傳遞,或可藉由固體傳遞技術(例如,如前文關於本發明之銻前驅體所述)傳遞以氣相沉積含鍺薄膜。
在使用作為CVD/ALD前驅體時,Ge前驅體可個別沉積或與其他前驅體(例如,與Sb及Te複合物諸如iPr3 Sb、Sb(NR2 )3 、iPr2 Te及Te(NR2 )2 )結合以形成GST薄膜。
本發明之一說明性的鍺前驅體為Ge(三異丙基)(甲基乙基醯胺),其在後文有時稱為GePNEM。可使用此前驅體於在基板上在適當的沉積製程條件下,例如,在300℃至450℃範圍內之沉積溫度,及在自低於大氣壓至超過大氣壓範圍內之壓力下(例如,在自約0.5托爾(torr)至15大氣壓或以上之範圍內)沉積鍺。下表I中記述在不同溫度及壓力條件下,自於每分鐘200標準立方公分之氫氣遞送氣體流量中傳遞至基板之GePNEM前驅體將鍺沉積於基板上之薄膜沉積速率(單位埃每分鐘)的列表。
利用200 SCCM H2 沉積GePNEM在另一經由自GePNEM前驅體沉積所達成之鍺薄膜厚度的測定中,進行16分鐘期間的沉積得到以下結果:(i)溫度=400℃,壓力=800毫托爾,反應物氣體H2 薄膜厚度=57埃;(ii)溫度=400℃,壓力=800毫托爾,反應物氣體NH3 薄膜厚度=94埃;及(iii)溫度=400℃,壓力=8000毫托爾,反應物氣體H2 薄膜厚度=36埃。此等結果證實GePNEM對於利用氣相沉積技術在基板上形成鍺或含鍺薄膜的適用性。
在各種特定具體例中,本發明涵蓋一種包含鍺前驅體、銻前驅體及碲前驅體之前驅體混合物,其中鍺前驅體及銻前驅體之至少一者包括選自前文所述化學式(A)、(B)、(C)、(D)及(E)(I)-(XVI)之金屬複合物的前驅體。
在另一態樣中,本發明涵蓋其他種類的銻前驅體。此等銻前驅體適用於結合使用合適的鍺及碲前驅體而形成GST薄膜。
此等其他種類的銻前驅體包括如以下所定義之化學式(F)、(G)、(H)、(I)、(J)、(K)、(L)及(M)之前驅體:(F)以下化學式之脒鹽、胍鹽及異脲鹽:R7 n Sb[R1 NC(X)NR2 ]3-n 其中:各R1 及R2 係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基;各X係獨立地選自C1 -C6 烷氧基、-NR4 R5 、及-C(R6 )3 ,其中各R4 、R5 及R6 係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基;各R7 係獨立地選自C1 -C6 烷氧基、-NR8 R9 、及-C(R10 )3 ,其中各R8 、R9 及R10 係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、-Si(R3 )3 、及-Ge(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基;及n係0至3之整數;(G)以下化學式之四烷基胍鹽:R5 n Sb[(R1 R2 )NC(NR3 R4 )N]3-n 其中:各R1 及R2 係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R9 )3 ,其中各R9 係獨立地選自C1 -C6 烷基;各R3 及R4 係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R9 )3 ,其中各R9 係獨立地選自C1 -C6 烷基;各R5 係獨立地選自C1 -C6 烷氧基、-NR6 R7 、及-C(R8 )3 ,其中各R6 、R7 及R8 係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、-Si(R9 )3 、及-Ge(R9 )3 ,其中各R9 係獨立地選自C1 -C6 烷基;及n係0至3之整數。
(H)以下化學式之胺基甲酸鹽及硫基胺基甲酸鹽:R4 n Sb[EC(X)E]3-n 其中:各X係獨立地選自C1 -C6 烷氧基、-NR1 R2 、及-C(R3 )3 ,其中各R1 、R2 及R3 係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R5 )3 ,其中各R5 係獨立地選自C1 -C6 烷基;各R4 係獨立地選自C1 -C6 烷氧基、-NR1 R2 、及-C(R3 )3 ,其中各R1 、R2 及R3 係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R5 )3 、-Ge(R5 )3 ,其中各R5 係獨立地選自C1 -C6 烷基;E為O或S;及n係0至3之整數;(I)以下化學式之β-二酮鹽、二酮基亞胺鹽(diketoiminates)、及二烯酮亞胺鹽(diketiiminates):[OC(R3 )C(X)C(R2 )O]3-n Sb(R5 )n [OC(R3 )C(X)C(R2 )N(R1 )]3-n Sb(R5 )n [R4 NC(R3 )C(X)C(R2 )N(R1 )]3-n Sb(R5 )n [(R3 )OC(=O)C(X)C(R2 )S]3-n Sb(R5 )n 其中R1 、R2 、R3 及R4 各係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R6 )3 ,其中各R6 係獨立地選自C1 -C6 烷基;各X係獨立地選自C1 -C6 烷氧基、-NR6 R7 、及-C(R8 )3 ,其中各R6 、R7 及R8 係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R6 )3 ,其中各R6 係獨立地選自C1 -C6 烷基;各R5 係獨立地選自胍根、脒根、異脲根、烯丙基、C1 -C6 烷氧基、-NR9 R10 、及-C(R11 )3 ,其中各R9 、R10 及R11 係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、-Si(R6 )3 、及-Ge(R6 )3 ,其中各R6 係獨立地選自C1 -C6 烷基;及n係0至3之整數。
(J)以下化學式之烯丙基:(i):R4 n Sb[R1 NC(X)C(R2 R3 )]3-n (ii):R4 n Sb[(R1 O)NC(X)C(R2 R3 )]3-n (iii):R4 n Sb[(R1 R5 )NC(X)C(R2 R3 )]3-n (iv):R4 Sb[(ONC(X)C(R2 R3 ))]其中各R1 、R2 、R3 及R5 係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R6 )3 ,其中各R6 係獨立地選自C1 -C6 烷基;各X係獨立地選自C1 -C6 烷氧基、-NR1 R2 、及-C(R3 )3 ,其中各R1 、R2 及R3 係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R6 )3 ,其中各R6 係獨立地選自C1 -C6 烷基;各R4 係獨立地選自胍根、脒根、異脲根、β-二酮根、二酮基亞胺根、二烯酮亞胺根、C1 -C6 烷氧基、-NR7 R8 、及-C(R9 )3 ,其中各R7 、R8 及R9 係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、-Si(R6 )3 、及-Ge(R6 )3 ,其中各R6 係獨立地選自C1 -C6 烷基;及n係0至3之整數。
(L)環戊二烯基(Cp)銻化合物,其中Cp基團係為以下化學式:
其中各R1 、R2 、R3 、R4 及R5 可彼此相同或不同,且各係獨立地選自氫、C1 -C12 烷基、C1 -C12 烷胺基、C6 -C10 芳基、C1 -C12 烷氧基、C3 -C6 烷基矽烷基、C2 -C12 烯基、R1 R2 NNR3 ,其中R1 、R2 及R3 可彼此相同或不同,且各係獨立地選自C1 -C6 烷基,及具有以下化學式之包括提供進一步配位至銻中心原子之官能基,且係選自胺烷基、烷氧烷基、芳氧烷基、亞胺烷基、及乙醯烷基的側配位體: 其中:亞甲基(-CH2 -)基團可替代為另一二價烴基團;各R1 -R4 係彼此相同或不同,且各係獨立地選自氫、C1 -C6 烷基及C6 -C10 芳基;各R5 及R6 係彼此相同或不同,且各係獨立地選自C1 -C6 烷基;n及m各係經獨立地選擇為具有0至4之值,其限制條件為m及n不可同時為0,且x係選自1至5; 其中各R1 -R4 係彼此相同或不同,且各係獨立地選自氫、C1 -C6 烷基、及C6 -C10 芳基;R5 係選自C1 -C6 烷基、及C6 -C10 芳基;及n及m係經獨立地選擇為具有0至4之值,其限制條件為m及n不可同時為0; 其中各R1 、R2 、R3 、R4 、R5 係彼此相同或不同,且各係獨立地選自氫、C1 -C6 烷基、及C6 -C10 芳基;各R1 ’、R2 ’係彼此相同或不同,且各係獨立地選自C1 -C6 烷基、及C6 -C10 芳基;及n及m係獨立地選自0至4,其限制條件為m及n不可同時為0; 其中各R1 -R4 係彼此相同或不同,且各係獨立地選自氫、C1 -C6 烷基、及C6 -C10 芳基;R5 係選自C1 -C6 烷基、C6 -C10 芳基、及C1 -C5 烷氧基;及n及m係獨立地選自0至4,其限制條件為m及n不可同時為0;其中銻Cp化合物之非-Cp配位體可視情況包括選自由胍根、脒根、異脲根、烯丙基、β-二酮根、二酮基亞胺根、及二烯酮亞胺根所組成之群之配位體;及(M)以下化學式之具有側配位體之烷基、烷氧化物及矽烷基:(i):R5 n Sb[(R1 R2 )N(CH2 )m C(R1 R2 )]3-n (ii):R5 n Sb[(R1 R2 )N(CH2 )m Si(R 1 R2 )]3-n (iii):R5 n Sb[(R1 R2 )N(CH2 )m O]3-n 其中各R1 及R2 係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C10 芳基、及-Si(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基;各R5 係獨立地選自胍根、脒根、異脲根、β-二酮根、二酮基亞胺根、二烯酮亞胺根、C1 -C6 烷氧基、-NR6 R7 、及-C(R8 )3 ,其中各R6 、R7 及R8 係獨立地選自H、C1 -C6 烷基、C5 -C10 環烷基、C6 -C1o 芳基、-Si(R3 )3 、及-Ge(R3 )3 ,其中各R3 係獨立地選自C1 -C6 烷基;n係0至3之整數;m係0至4之整數。
在前述類別(F)-(M)內之一般類型的銻前驅體包括具有以下結構的前驅體,其中此等結構中之各種「R」基團並不一定係完全對應於以上化學式中之取代基編號而編號,然而其係以一般方式反映經取代位置,當參照以上在相關分子之各個位置之取代基的定義時當可明白。
包括以下的說明性複合物: 以下化學式之醯胺銻 以下化學式之烷基/胺基銻(III)前驅體: 及以下化學式之具有鍺陰離子之三烷基銻:
類別(F)-(M)之銻前驅體可有效用於在低溫下利用還原共反應物(例如,諸如氫、H2 /電漿、胺、亞胺、肼、矽烷、矽烷基硫屬化物諸如(Me3 Si)2 Te、鍺烷諸如GeH4 、氨、烷類、烯類、及炔類之反應物)沉積銻。
銻前驅體可經由液體傳遞技術傳遞以進行此沉積,其中為液體的前驅體可以純液態使用,及為固體或液體之前驅體可與諸如下列之適當溶劑結合而於溶液或懸浮液中傳遞:烷溶劑(例如,己烷、庚烷、辛烷、及戊烷)、芳基溶劑(例如,苯或甲苯)、胺(例如,三乙胺、第三丁胺)、亞胺及肼。用於特定銻前驅體之特定溶劑組成物的效用可容易地經實驗測定,以對所使用之特定銻前驅體的液體傳遞蒸發及輸送選擇適當的單一成分或多成分溶劑介質。
在本發明之另一態樣中,可採用固體傳遞技術,其中使固體前驅體揮發,以形成前驅體蒸氣,其經傳遞至沉積室而於基板上形成銻或含銻薄膜。固體前驅體可包裝於適當特性之儲存及配送包裝(諸如可購自ATMI,Inc.(Danbury,CT,USA)之ProE-Vap固體傳遞及蒸發器單元)中供此種用途用。
本發明亦涵蓋個別使用本發明之銻、鍺及碲前驅體於分別沉積含銻薄膜、含鍺薄膜、及含碲薄膜。因此,可使用本發明之銻前驅體於沉積含銻薄膜。在另一具體例中,可使用本發明之鍺前驅體於形成含鍺薄膜。在另一具體例中,可使用本發明之碲前驅體於形成含碲薄膜。在又另一具體例中,可利用本發明之銻前驅體及本發明之鍺前驅體於形成銻/鍺薄膜。在又另一具體例中,可利用本發明之銻前驅體與碲前驅體結合,以形成銻/碲薄膜。本發明之另一具體例涉及使用本發明之鍺前驅體與碲前驅體結合,以形成鍺/碲薄膜。
可在相變記憶體元件之製造中使用本發明之銻及/或鍺前驅體於在適當的微電子元件基板上沉積Ge2 Sb2 Te5 薄膜。
此等GST薄膜可使用連續CVD或ALD技術使用適當的鍺、銻及碲前驅體製造,其中鍺及銻前驅體之至少一者包含本發明之金屬複合物。前驅體可以適當比例供應,以產生期望特性的GST薄膜。舉例來說,ALD可藉由使前驅體(Ge、Sb、Te)以控制所得薄膜之組成物的方式脈衝而進行,例如,重複地進行包括依Te-Ge-Te-Sb-Te-Ge-Te-Sb-Te之順序連續引入前驅體物種的脈衝循環,直至達到期望的薄膜厚度為止。
關於可有利地用於利用本發明之前驅體形成含銻及/或鍺之薄膜之沉積技術的另一變形,可在沉積操作中加入其他的共反應物種,以修改所得薄膜之組成。其實例包括使用共反應物於在組成上修改薄膜的氧及/或氮加入,例如,利用極小量的N2 O、O2 及NO。
在其他具體例中,可採用原子層沉積(ALD)及快速氣相沉積(RVD)技術於利用本發明之前驅體沉積含銻及/或鍺之薄膜。舉例來說,可使用ALD採用快速表面催化氣相沉積,其中使第一前驅體蒸氣與基板接觸以形成前驅體之飽和表面層,隨後暴露至第二前驅體蒸氣,且其後再暴露至第三前驅體蒸氣,其中在各別的前驅體蒸氣接觸步驟之間進行惰性氣體淨洗,其中第一、第二及第三前驅體中之至少一者包含本發明之銻及/或鍺前驅體,且其中重複進行前驅體接觸及插入的淨洗步驟,直至達到預定的沉積薄膜材料厚度為止。
更一般而言,本發明涵蓋相當多樣之可利用於形成相應之含Sb及Ge薄膜的銻及鍺複合物。因此,本發明之前驅體複合物及組成物可於特定用途中改變,且其可包括特定的金屬源試劑、或此等特定試劑與其他前驅體物種,由其所組成,或基本上由其所組成。此外,在某些應用中可能希望使用本發明之多種前驅體物種與彼此及/或與其他前驅體物種結合。
本發明亦涵蓋在特定具體例中之前驅體複合物的特定結構定義及/或明確說明,且排除在特定具體例中之特定基團、配位體及元素物種。舉一說明實例,在本發明之均配型(homoleptic)參(二烷醯胺基)銻複合物及肆(二烷醯胺基)鍺複合物中,烷基取代基可排除甲基。作為另一實例,在本發明之特定具體例中可排除肆二烷醯胺基鍺烷。作為再一實例,在本發明之鍺烷基及矽烷基銻複合物中,可例如排除三甲鍺烷基及三甲矽烷基物種。因此,當明瞭本發明在本發明之各種特定具體例中容許有限的複合物及組成特徵,以確認對於本發明於特定應用中之實行為較佳的前驅體複合物及其類別。
現說明乙基甲胺基三異丙基鍺烷之合成,以顯示製造本發明之說明性鍺前驅體的細節。
實例1. 乙基甲胺基三異丙基鍺烷之合成
將nBuLi(2M之己烷溶液,26.34毫升,42.14毫莫耳)之溶液緩慢添加至乙基甲基胺(3.98毫升,46.35毫莫耳)於乙醚(100毫升)中之經冰冷卻的溶液中。將所得之白色混合物攪拌2小時。逐滴添加三異丙基氯鍺烷(9.16毫升,42.14毫莫耳),且使反應混合物緩慢升溫至室溫。將混合物攪拌隔夜,使溶劑於真空中蒸發,且以戊烷(100毫升)洗滌殘留物。將混合物於氮氣中過濾通過介質玻料,且於真空中蒸發溶劑而得10.7克、98%之無色液體。經由分餾(40℃,75毫托爾)純化產物。1 H NMR(C6 D6 ):δ 2.87(q,2H,3 J=6.9Hz,NCH2 CH3 ),2.62(s,3H,NCH3 ),1.36(m,CH(CH3 )2 ),1.18(d,18H,3 J=7.2Hz,CH(CH3 )2 ),1.11(t,3H,3 J=6.9Hz,NCH2 CH3 )。13 C NMR(C6 D6 ):δ 48.42,38.22(NCH2 CH3 ,NCH3 ),20.19(CH(CH3 )2 ),16.20,15.79(NCH2 CH3 ,CH(CH3 )2 )。
圖4(a)係此乙基甲胺基三異丙基鍺烷產物之氣相層析(GC)光譜,及圖4(b)係此GC光譜之峰值數據的相關列表。圖4(c)係乙基甲胺基三異丙基鍺烷產物之質譜。圖4(d)顯示乙基甲胺基三異丙基鍺烷產物之核磁共振光譜。
圖5係乙基甲胺基三異丙基鍺烷產物之STA光譜,其顯示示差掃描量熱(DSC)數據及熱重分析(TG)數據成溫度之函數。
本發明之另一態樣係關於具有β-二烯酮亞胺根配位體之碲複合物,其克服在沉積應用中所使用之許多碲前驅體對氧及光相當敏感,且具有令人不悅之氣味的問題。藉由β-二烯酮亞胺根配位體之鹼穩定化作用,獲得具改良處理及儲存壽命特性、降低氣味、及對於沉積應用之足夠揮發性之高度穩定特性的碲前驅體。
本發明之二烯酮亞胺碲複合物可用於CVD/ALD以形成Te或含Te薄膜。此等化合物可與Ge及/或Sb化合物結合使用,以產生不同組成物的Te-Ge-、Te-Sb-或Ge-Sb-Te薄膜。文獻中已說明合成二烯酮亞胺根配位體的一般程序,但此程序由於需要位於配位氮原子上之相當龐大的芳基取代基而不利。
相對地,吾人發現可有利地使用較小的烷基配位體如異丙基、正丁基、第三丁基或經胺取代之烷基,例如伸乙基-二甲胺,於製造供CVD/ALD應用之用的優良二烯酮亞胺碲前驅體。氮供體原子上之較小的取代基提供足夠的揮發性,而可於低溫下形成良好的薄膜。
配位體L可以鋰鹽或游離亞胺形態使用,而合成期望的Te複合物。配位體之鋰鹽可與TeX4 (其中X=Cl、Br、I)反應而藉由鹽脫去作用產生LTeX3 ,其隨後可與鋰或格任亞試劑反應而產生LTeR3 (其中R=烷基、芳基、醯胺、矽烷基)。
或者,配位體L之游離亞胺形式可與諸如TeMe4 之碲有機化合物反應,以藉由甲烷脫去作用而產生期望的Te物種LTeMe3 。二烯酮亞胺配位體提供反應性金屬中心碲之相當有效的鹼穩定化作用。因此,本發明提供一新穎類別的Te複合物,其提供較大的穩定性及儲存壽命,同時仍維持足夠的揮發性,以經由CVD/ALD在低溫下形成優良的Te薄膜。
本發明之碲複合物具有化學式(I)及(II): 其中R1 、R2 及R3 可彼此相可或不同,且各係獨立地選自C1 -C6 烷基、C6 -C10 芳基、矽烷基及C1 -C12 烷基胺(其包括單烷基胺以及二烷基胺兩者);及 其中R1 、R2 及R3 可彼此相同或不同,且各係獨立地選自C1 -C6 烷基、C6 -C10 芳基、矽烷基及C1 -C12 烷基胺(其包括單烷基胺以及二烷基胺兩者)。
β-二烯酮亞胺根配位體可例如藉由以下的程序合成得: 碲複合物隨後可藉由以下的反應合成得:
R1 、R2 、R3 、R4 =烷基、芳基、矽烷基、烷基胺或者,藉由以下的合成反應: 或者,藉由以下的合成反應: 、烷基胺
本發明之碲複合物可有效用作供沉積含碲薄膜用之CVD/ALD前驅體,例如,經由液體注射純前驅體材料,或溶於有機溶劑中或藉由直接蒸發。
本發明之另一態樣係關於鍺複合物及其於CVD/ALD中用於形成含鍺薄膜(例如,GST薄膜)之用途,其中該鍺複合物係選自: 其中第二化學式中之R基團可彼此相同或不同,且各係獨立地選自H、C1 -C6 烷基、C6 -C10 芳基、C3 -C8 環烷基、雜原子基、及其他有機基團。
本發明之另一態樣係關於用於含鍺薄膜之CVD/ALD的二鍺烷及應變環鍺前驅體。先前所使用之用於形成相變記憶體元件用之GST(鍺-銻-碲)薄膜的鍺前驅體諸如鍺烷需要相當高溫的沉積條件。此依序使得Ge2 Sb2 Te5 純相材料的形成困難。本發明基於提供在環境條件下具高蒸氣壓的前驅體(其適用於在低於300℃之溫度下沉積含鍺薄膜)而克服此缺失。
鍺-鍺鍵天性弱(~188仟焦耳/莫耳),且其會由於拉電子取代基諸如氯或NMe2 而變得較不穩定。此等鍵會在UV光解作用或熱解作用下,或藉由使用過氧化物、臭氧、氧或電漿之化學氧化作用而容易地解離形成R3 Ge自由基。市售的二鍺烷包括需要高溫進行分解的氫化物、甲基、苯基、或乙基,且所得之薄膜通常會受到碳殘留物的污染。
吾人經由提供使用異丙基、異丁基、苄基、烯丙基、烷胺基、腈、或異腈作為配位體之鍺複合物於獲致可在低溫下沉積純鍺金屬薄膜的複合物,而克服此缺失。此外,本發明涵蓋可經歷熱開環作用以產生可輕易解離成伸鍺烷基片段之雙自由基中間體的應變環鍺複合物(例如,鍺環丁烷)。應變Ge-C鍵的鍵解離能(63仟卡/莫耳)顯著低於Ge-CH3 (83仟卡/莫耳),因而可較利用前述之習知鍺前驅體所可達成者獲致更低溫的鍺薄膜沉積。
本發明之鍺複合物包括以下的化學式(I)-(III):(I)以下化學式之烷基二鍺烷 其中各R可彼此相同或不同,且各係獨立地選自異丙基、異丁基、苄基、烯丙基、烷胺基、腈、及異腈;(II)以下化學式之烷基(二烷胺基)鍺烷x (R2 R1 N)R3-x Ge-GeR’3-y (NR1 R2 )y 其中各R可彼此相同或不同,且各係獨立地選自異丙基、異丁基、苄基、烯丙基、烷胺基、腈、及異腈;及(III)以下化學式之應變環鍺烷複合物: 其中R1 、R2 、R3 及R4 各可彼此相同或不同,且各係獨立地選自H、C1 -C6 烷基、C6 -C10 芳基、C3 -C8 環烷基、或雜原子基。
複合物(I)可(例如)根據以下的合成程序合成得: 或藉由以下的合成: 或藉由諸如以下的合成: 或諸如以下的合成程序:
化學式(II)之鍺複合物可藉由以下的說明程序形成:
可用於形成化學式(III)之鍺複合物之說明性的合成程序包括下列:
應變環烷基鍺烷可有效用作用於涉及諸如說明顯示於下之反應而在基板上形成含鍺薄膜之CVD/ALD前驅體。
作為金屬薄膜之CVD/ALD前驅體的應變環烷基鍺烷
本發明之另一態樣係關於一種有用於形成GST薄膜之鍺及碲的單一源前驅體。此種碲化鍺前驅體之單一源可與銻前驅體及視需要與為提供用於指定應用之適當化學計量之薄膜所可能需要之共反應物結合使用而用於GST薄膜形成。
本發明之一態樣之碲化鍺複合物包括二烷基鍺烷碲酮。適當的二烷基鍺烷碲酮可藉由二烷基鍺(II)與元素碲粉末於諸如四氫呋喃(THF)之溶劑介質中的氧化加成反應而合成得。因此,在一些情況中,可能需要視產物鍺-碲複合物之感光性而在不存在光之下進行反應。一說明性的合成程序記述於下:
本發明之單一源Ge-Te前驅體可有利地用於促進較低溫的沉積製程,或在特定應用中提高GST薄膜成長速率。
在另一具體例中,本發明之碲化鍺可藉由以下的合成程序形成:碲化鍺ALD/CVD前驅體
其他的碲化鍺複合物可藉由以下的合成程序形成: 或藉由以下的一般化反應: 其中E為碲;M為Li、Na、或K,X為氯、溴或碘;及R及R’基可彼此相同或不同,且各係獨立地選自H、C1 -C6 烷基、C6 -C10 芳基、C3 -C8 環烷基、雜原子基、及其他有機基團。
本發明之一Ge-Te複合物為: 其中各R取代基可彼此相同或不同,且係獨立地選自H、C1 -C6 烷基、C6 -C10 芳基、C3 -C8 環烷基、雜原子基、及其他有機基團。
本發明之另一態樣係關於以醯胺配位體為主之高度不對稱的鍺複合物,其有用於利用CVD或ALD製程之鍺-銻-碲(Ge2 Sb2 Te5 )薄膜的低溫(低於300℃)沉積。此等複合物係選自化學式(I)及(II)之複合物: 其中R1 、R2 、R3 、R4 、R5 、R6 及R7 可彼此相同或不同,且各係獨立地選自由C1 -C6 烷基、C6 -C10 芳基、矽烷基、烷基矽烷基(例如,三甲矽烷基)、氫及鹵素所組成之群,或其中在-NR5 R6 中,配位至鍺中心原子之取代基係替代地選自由C1 -C6 烷基、C3 -C8 環烷基、C6 -C13 芳基、或鹵化物所組成之群。
化學式(I)及(II)之前驅體可藉由液體傳遞技術傳遞至CVD或ALD室,其中將前驅體溶解或懸浮於適當的溶劑介質中。可使用於廣泛實行本發明之溶劑介質的說明例係選自烷類(例如,己烷、庚烷、辛烷及戊烷)、芳族溶劑(例如,苯或甲苯)、或胺(例如,三乙胺或第三丁胺)之溶劑。前驅體亦可以純液體傳遞,或者藉由固體傳遞技術,利用供揮發及配送用之適當的包裝。一較佳的固體傳遞包裝為購自ATMI,Inc.(Danbury,Connecticut,USA)之ProE-VapTM 固體傳遞及蒸發器單元。
在說明具體例中,化學式(I)及(II)之鍺複合物可根據以下的合成流程合成得。
本發明之另一態樣係關於其中之碲中心原子配位至氮原子構成Te-N配位複合物的碲複合物。
此等Te-N配位複合物之說明例係以下的碲複合物:
其中R1 、R2 、R3 、R4 、R5 、R6 及Z可彼此相同或不同,且各係獨立地選自由C1 -C6 烷基、C3 -C8 環烷基、C6 -C10 芳基、矽烷基、烷基矽烷基(例如,三甲矽烷基)、氫及鹵素所組成之群,且其中x係具有1至3之值的整數。
在另一態樣中,本發明係關於以硫屬化物材料為主之有用於相變記憶體元件製造的鍺前驅體,其當加熱時經歷相變化且基於其之電阻率而讀出為「0」或「1」,其無論記憶格中之相變材料係為結晶或非晶態皆會改變。硫屬化物材料包含許多金屬及類金屬之大量的二元、三元、及四元合金,例如,GeSbTe、GeSbInTe等等。
相變記憶體元件需要具有經良好控制組成物之相當純的合金。目前的製程係利用物理氣相沉積於沉積此等材料之薄膜。CVD及ALD方法由於其具有可放大至大面積晶圓及供組成物控制用之特性而為期望的方法。現有技術中的主要缺失為現有烷基(例如,Me3 Sb、Me2 Te)或鹵化物源所需之高沉積溫度,其典型上大大超過300℃且可能高至500℃,其超過元件整合所可容許的熱預算(thermal budget),且會導致硫屬化物材料的蒸發。
本發明之另一態樣係關於實現硫屬化物合金之低溫沉積的各種材料及方法。
在一化學方法中,使用經丁基及丙基(尤其係第三丁基及異丙基)取代之烷基氫化物作為前驅體複合物,例如,化學式iPrx MHy-x 之複合物,其中:x>1;y=金屬(M)中心之氧化態;且y-x可=0。
在另一化學方法中,使用經丁基及丙基(尤其係第三丁基及異丙基)取代之烷基鹵化物作為前驅體複合物,例如,化學式iPrx MXy-x 之複合物,其中:X=F、Cl、Br;x>1;y=金屬(M)中心之氧化態;且y-x可=0。
此等前驅體可經由β氫脫除作用而增進在較低溫度下的沉積。
在另一具體例中,使用二鍺烷於降低鍺的加入溫度。在此方面的有用化合物包括Ge2 H6 、Ge2 Me6 、或Ge2 Et6 、Ge2 iPr6 及Ge2 tBu6 、以及Ge2 (SiMe3 )6 及Ge2 Ph6 ,其中Me=甲基,Et=乙基,iPr=異丙基,tBu=第三丁基,及Ph=苯基。
更一般而言,可使用化學式Ge2 R6 之化合物,其中各R可彼此相同或不同,且各係獨立地選自H、C1 -C8 烷基、C1 -C8 氟烷基、C6 -C12 芳基、C6 -C12 氟芳基、C3 -C8 環烷基、C3 -C8 環氟烷基。此外,包括Ge2 Ph4 之Ge2 R4 化合物可有效地供此種用途用,其中各R基團可如以上所定義。可利用包括在環中具有Ge之5員環複合物的其他複合物。Ge(II)複合物亦潛在有用於特定應用,諸如化學式Ge(CpR5 )2 之環戊二烯基化合物,其中Cp為環戊二烯基且各R可彼此相同或不同且各係獨立地選擇如上。可有效用於相變記憶體應用之另一鍺化合物為Ge(CH(SiMe3 ))2
在另一態樣中,GST薄膜之銻成分可自諸如三苯基銻之前驅體供應,其具有廉價及感光的特性,且有用於光/UV活化的沉積製程。
用於前驅體傳遞以實現硫屬化物合金之低溫沉積的傳遞方法包括對相變記憶體薄膜之各前驅體使用個別的發泡器,作為管理數種前驅體之不同揮發度特性之方法之前驅體混合物的液體注入以實現在期望組成物下之精確體積流量的傳遞,及使用純液體或前驅體/溶劑組成物之混合物作為可有用於特定應用的各別技術。
用於硫屬化物合金之低溫沉積的薄膜沉積方法包括:使用熱模式的連續CVD,視需要利用諸如氫的還原氣體;使用脈衝或原子層沉積以自諸如氫電漿之共反應物中分離劑量步驟;使用對前驅體作「調節」的活化技術諸如UV或其他光源,其中光對前驅體之計量連續,或係分開計量以避免氣相反應;及使用有利地自低於大氣壓之傳遞系統(諸如購自ATMI,Inc.(Danbury,Connecticut,USA)之SAGE配送包裝)配送之另類的還原性共反應物諸如鍺烷(GeH4 ),以增進安全性及降低沉積源氣體的擁有成本。
本發明之再一態樣係關於使用以脒鹽為主之前驅體的低溫氮化鍺沉積製程,經發現其對於在低溫下形成氮化鍺有效。圖6係對數沉積速率(單位埃/分鐘)成1/T之函數的阿瑞尼士(Arrhenius)圖,其顯示對於甲基脒鍺(GeMAMDN)利用氨共反應物之Ge沉積的改良。
利用氫共反應物,前驅體在280℃下利用約2埃/分鐘之沉積速率產生非晶形Ge薄膜。當將共反應物轉變為氨時,沉積速率大大地提高。在大約240℃下觀察到100倍的沉積速率,及在200℃下達到75埃/分鐘之沉積速率。再者,利用氨共反應物的沉積薄膜變為透明,顯示形成氮化鍺。圖7顯示氨共反應物對沉積速率的主宰作用。
本發明之再一態樣係關於用於在低溫下沉積鍺金屬薄膜的N、S、O-雜環鍺CVD/ALD前驅體。此等前驅體的說明例為[{MeC(iPrN)2 }2 Ge]、[{Me2 N(iPrN)2 }2 Ge]、[{nBuC(iPrN)2 }2 Ge]、及[{MeC(NCy)2 }2 Ge]。在一特定具體例中,前驅體[{MeC(iPrN)2 }2 Ge]可提供於甲苯之溶液中作為鍺金屬薄膜之CVD前驅體。
在GST薄膜之形成中,需要在400-500埃/分鐘之GST合金及100埃/分鐘之Ge的高沉積速率,連同薄膜中之低碳及雜原子雜質含量。需要高度揮發性的前驅體。液態前驅體為較佳,然而,亦可配合經加熱的發泡器系統(~50℃)使用低熔點及揮發性的固體。可接受低於10%之雜原子雜質(Si、O、N)。
本發明之此方面涵蓋使用具有以下配位體的Ge(II)及Ge(IV)前驅體:脒根、胍根、異脲根、二酮根、二酮基亞胺根、二烯酮亞胺根、胺基甲酸根、硫胺基甲酸根、矽烷基、胺基妥普尼亞胺根(aminotroponiminate)。亦包括具有以上配位體之組合,或與烷基、二烷胺基、氫基、或鹵基組合的混合配位前驅體。
鍺前驅體可單獨使用,以藉熱沉積金屬鍺薄膜,或與共反應物或iPr2 Te或其他適當的碲前驅體共同使用,以沉積GeTe層。同樣地,可使用適當的銻前驅體以形成三元GST合金。可與此等前驅體共同有效使用之共反應物氣體/液體包括氫、氨、電漿、烷基胺、矽烷、及鍺烷。
本發明之鍺前驅體包括:(1)以下化學式之Ge(IV)脒鹽、胍鹽、及異脲鹽: 其中各R基團係獨立地選自H、C1 -C6 烷基、C3 -C10 環烷基、C6 -C13 芳基、及-Si(R’)3 ,其中各R’係獨立地選自C1 -C6 烷基;及各Z係獨立地選自C1 -C6 烷氧基、-NR1 R2 、H、C1 -C6 烷基、C3 -C10 環烷基、C6 -C13 芳基、及-Si(R4 )3 ,其中各R4 係獨立地選自C1 -C6 烷基;各Y基係獨立地選自C1 -C6 烷氧基、-NR1 R2 、及C1 -C6 烷基、Si(R4 )3 、及鹵化物(Cl、Br、I),且其中x係0至4之整數;(2)以下化學式之Ge β-二酮鹽、二酮基亞胺鹽、二烯酮亞胺鹽: 其中各R基團係獨立地選自H、C1 -C6 烷基、C3 -C10 環烷基、C6 -C13 芳基、及-Si(R’)3 ;各Y基係獨立地選自C1 -C6 烷基、C6 -C13 芳基、C1 -C6 烷氧基、NR1 R2 、Si(R4 )3 、及鹵化物(Cl、Br、I),x係0至4之整數,Z原子係相同或不同,其選自O、S、及NR;R係選自C1 -C6 烷基、C3 -C10 環烷基、C6 -C13 芳基、Si(R’)3 ,R’係C1 -C6 烷基、C6 -C13 芳基;(3)以下化學式之Ge胺基甲酸鹽、硫胺基甲酸鹽: 其中各Z係獨立地選自H、C1 -C6 烷基、C3 -C10 環烷基、C1 -C6 烷氧基、NR1 R2 、C6 -C13 芳基、及-Si(R4 )3 ,其中各R4 係獨立地選自C1 -C6 烷基或芳基;各Y基係獨立地選自C1 -C6 烷基、C1 -C6 烷氧基、NR1 R2 、C3 -C10 環烷基、C6 -C13 芳基、Si(R4 )3 、及鹵化物(Cl、Br、I),X係0至4之整數,及E係O或S;(4)以下化學式之矽烷基鍺烷: 其中TMS為Si(R”)3 ;各R基係獨立地選自H、C1 -C6 烷基、C3 -C10 環烷基、C6 -C12 芳基,及x係0至4之整數;(5)以下化學式之混合環戊二烯基鍺烷:R4-x GeCpx RGeCp (RR’N)4-x GeCpx RR’NGeCp CpGe(脒根) CpGe(胍根)CpGe(β-二烯酮亞胺根)CpGe(β-二酮根)CpGe(異脲根)其中各R基係獨立地選自H、C1 -C6 烷基、C3 -C10 環烷基、C6 -C13 芳基、及-Si(R’)3 ,其中各R’係獨立地選自C1 -C6 烷基;且各Y基係獨立地選自C1 -C6 烷基、C1 -C6 烷氧基、NR1 R2 、C3 -C10 環烷基、C6 -C13 芳基、Si(R4 )3 、及鹵化物(Cl、Br、I),x係具有0至4之值的整數,且Cp配位體亦可包括: (6)以下化學式之Ge(II)胺基-烷氧化物: 其中各R基係獨立地選自H、C1 -C6 烷基、C3 -C10 環烷基、C6 -C13 芳基、及-Si(R’)3 ,其中各R’係獨立地選自C1 -C6 烷基,及n係具有2至6之值的整數;(7)以下化學式之其他N-雜環伸鍺烷基: 其中各R基係獨立地選自H、C1 -C6 烷基、C3 -C10 環烷基、C6 -C13 芳基、及-Si(R’)3 ,其中各R’係獨立地選自C1 -C6 烷基;且各Y基係獨立地選自C1 -C6 烷氧基、NR1 R2 、H、C1 -C6 烷基、C3 -C10 環烷基、C6 -C13 芳基、Si(R4 )3 、或鹵化物(Cl、Br、I);(8)以下化學式之氧化物、二硫唑鹽、硫基碳酸鹽: 其中各R、R’係獨立地選自C1 -C6 烷基、C3 -C10 環烷基、C1 -C6 烷氧基、NR1 R2 、C6 -C13 芳基、及-Si(R4 )3 ,其中各R4 係獨立地選自C1 -C6 烷基或芳基、及鹵化物(Cl、Br、I),且E為O或S。
前述的ALD/CVD前驅體(1)-(8)可使用適當溶劑諸如烷類(例如,己烷、庚烷、辛烷、及戊烷)、芳族溶劑(例如,苯或甲苯)、或胺(例如,三乙胺、第三丁胺)製備成液體傳遞配方。前驅體亦可使用適當的固體傳遞及蒸發器單元(諸如可購自ATMI,Inc.(Danbury,CT,USA)之ProE-VapTM 固體傳遞及蒸發器單元)以純液體或以固體傳遞。
以下記述本發明之各種特定鍺前驅體的識別。
Ge CVD/ALD前驅體
本發明之再一態樣涵蓋有用於薄膜之CVD及ALD沉積的各種金屬矽烷基醯胺。
本發明之此態樣涵蓋具有二矽烷基-吖環烷基配位體之類別之金屬前驅體(R5nM{N[(R1 R2 )Si(CH2 )mSi(R3 R4 )]}ox-n)的合成及表徵;尤其於矽烷醯胺基配位體中具有不對稱元素之金屬矽烷基醯胺,R5nM{R4N[Si(R1R2R3)]}ox-n;與該等矽烷基醯胺之碳二醯亞胺基插入反應以產生相應的胍鹽複合物,其亦可用作CVD/ALD前驅體。
具有相同實驗式之以上論述單體之「寡聚物」包括[R5nM{N[(R1R2)Si(CH2)mSi(R3R4)]}ox-n]x或[R5nM{R4N[Si(R1R2R3)]}ox-n]x,其中x係具有2、3等等之值的整數。
本發明亦涵蓋具有開放結構矽氮烷配位體之前驅體,其中至少一個R具有諸如醯胺基、烷氧基、矽氧烷基及噻吩基之官能基:R5nM{(R4R5R6)SiN[Si(R1R2R3)]}ox-n,及其之相應的胍鹽。
具有相同實驗式之以上論述單體之「寡聚物」包括[R5nM{(R4R5R6)SiN[Si(R1R2R3)]}ox-n]x,其中x係具有2、3等等之值的整數。
相關化學式中之各R1、R2、R3、R4、R5及R6係獨立地選自H、C1-C6烷基、C3-C10環烷基、C6-C10芳基、-Si(R8)3及-Ge(R8)3,其中各R8係獨立地選自C1-C6烷基;及-Si(R9)3,其中各R9係獨立地選自C1-C6烷基;當適當時,連接至上述R1、R2、R3、R4、R5及R6之側配位體包括提供進一步配位至金屬中心之官能基,諸如,比方說,胺烷基、烷氧烷基、芳氧烷基、亞胺烷基、及乙醯烷基,其中此等類別中之合適基團包括以下化學式之基團: 其中各R1-R4係彼此相同或不同,且各係獨立地選自氫及C1-C6烷基;各R5及R6係彼此相同或不同,且各係獨立地選自C1-C6烷基;n及m各係獨立地選自0至4,其限制條件為m及n不可同時為0,且x係選自1至5; 其中各R1-R4係彼此相同或不同,且各係獨立地選自氫、C1-C6烷基、及C6-C10芳基;R5係選自C1-C6烷基、及C6-C10芳基;及n及m係獨立地選自0至4,其限制條件為m及n不可同時為0。
在金屬前驅體中,各R5可獨立地選自H、C1-C6烷基、C3-C6環烷基、C1-C6烷氧基、-NR1R2、及-C(R3)3、-Si(R8)3及-Ge(R8)3,其中各R3係獨立地選自C1-C6烷基;且各R8及R8係獨立地選自H、C1-C6烷基、C5-C10環烷基、C6-C10芳基、及-Si(R9)3,其中各R4係獨立地選自C1-C6烷基。
在此等金屬前驅體中,M可為以上所提及的任何金屬(Ta、V、Ti、Nb、Pb、Ni、W、Ca、Ba、In、Y、La、Zr、Hf、Ir、Ru、Pt、Cr、Mo、Ge;Al、Si、Ga、Sc、V、Cr、Fe、Sb、鑭系金屬、Mn、Co、Ni、Zn、Cd、Te、Hg、Au、Cu、Ag、Sr、Ru),但並不僅限於此;OX係金屬M的容許氧化態;n係具有自0至ox之值的整數;及X係鹵素。
前述的前驅體材料可使用作為利用諸如氫、H2/電漿、胺、亞胺、肼、矽烷、矽烷基硫屬化物諸如(Me3Si)2Te、鍺烷諸如GeH4、氨、烷類、烯類、脒、胍、硼烷及其之衍生物/加成物及炔類之還原共反應物的低溫沉積前驅體。前驅體可以液體傳遞配方使用,且為液體的前驅體可以純液體形態使用,其中液體或固體前驅體係視需要於包括烷溶劑(例如,己烷、庚烷、辛烷、及戊烷)、芳基溶劑(例如,苯或甲苯)、胺(例如,三乙胺、第三丁胺)、亞胺、胍、脒及醚的合適溶劑中使用。
特定溶劑組成物對於特定前驅體之效用可經實驗容易地判定,以對液體傳遞蒸發選擇適當的單一成分或多成分溶劑介質。可使用先前說明於文中之類型的固體傳遞系統。
前述前驅體以不同方式顯示於下。
本發明之再一態樣係關於有用作為CVD及ALD前驅體之四烷基胍鹽及烯酮亞胺鹽複合物,其包括具有四烷基胍配位體之類別的金屬前驅體,例如,呈配位模式(R5)nM{N=C[(NR1R2)(NR3R4)]}ox-n及半不穩配位模式。在特殊情況下,理論上兩種配位模式可共同存在。
所有此等複合物皆可自相應的鹼金屬鹽與金屬鹵化物或烷基金屬或混合鹵化物/烷基/醯胺合成得,或在諸如NEt3之HX吸收劑之存在下自四烷基胍與金屬鹵化物之間的直接反應合成得。
具有相同實驗式之此種單體之「寡聚物」包括[(R5)nM{N=C[(NR1R2)(NR3R4)]}ox-n]x,其中x係具有2、3等等之值的整數。
已合成及定性四種說明性的Ge(IV)前驅體。其皆顯現具有潛力的熱行為,且TMG2Ge(NMe2)2在室溫下為黏性液體。
本發明亦涵蓋相應的胍鹽複合物R5nM{R6NC{N=C[(NR1R2)(NR3R4)]}NR7}ox-n。具有相同實驗式之此種單體之「寡聚物」包括[R5nM{R6NC{N=C[(NR1R2)(NR3R4)]}NR7}ox-n]x,其中x係具有2、3等等之值的整數。
本發明進一步涵蓋與金屬醯胺之四烷基胍插入反應以產生相應的胍鹽複合物,其亦可使用作為CVD/ALD前驅體,以及化學式(R5)nM{N=C[(R1R2)]}ox-n之烯酮亞胺鹽及化學式R5nM{R6NC[N=C(R1R2)]NR7}ox-n之其相應之胍鹽複合物。具有相同實驗式之此種單體之「寡聚物」包括[R5nM{R6NC[N=C(R1R2)NR7}ox-n]x,其中x係具有2、3等等之值的整數。
在前述之金屬複合物中,各R1、R2、R3、R4、R6及R7係獨立地選自H、C1-C6烷基、C3-C10環烷基、C6-C10芳基、-Si(R8)3及-Ge(R8)3,其中各R8係獨立地選自C1-C6烷基;及-Si(R9)3,其中各R9係獨立地選自C1-C6烷基;當適當時,連接至上述R1、R2、R3、R4、R6及R7之側配位體包括提供進一步配位至金屬中心之官能基,諸如,比方說,胺烷基、烷氧烷基、芳氧烷基、亞胺烷基、及乙醯烷基,其中此等類別中之合適基團包括以下化學式之基團: 其中各R1-R4係彼此相同或不同,且各係獨立地選自氫及C1-C6烷基;各R5及R6係彼此相同或不同,且各係獨立地選自C1-C6烷基;n及m各係獨立地選自0至4,其限制條件為m及n不可同時為0,且x係選自1至5; 其中各R1-R4係彼此相同或不同,且各係獨立地選自氫、C1-C6烷基、及C6-C10芳基;R5係選自C1-C6烷基、及C6-C10芳基;及n及m係獨立地選自0至4,其限制條件為m及n不可同時為0。
在金屬前驅體中,各R5可獨立地選自H、C1-C6烷基、C3-C6環烷基、C1-C6烷氧基、-NR1R2、及-C(R3)3、-Si(R8)3及-Ge(R8)3,其中各R3係獨立地選自C1-C6烷基;且各R8及R8係獨立地選自H、C1-C6烷基、C5-C10環烷基、C6-C10芳基、及-Si(R9)3,其中各R4係獨立地選自C1-C6烷基。
在此等金屬前驅體中,M可為以上所提及的任何金屬(Ta、V、Ti、Nb、Pb、Ni、W、Ca、Ba、In、Y、La、Zr、Hf、Ir、Ru、Pt、Cr、Mo、Ge;Al、Si、Ga、Sc、V、Cr、Fe、Sb、鑭系金屬、Mn、Co、Ni、Zn、Cd、Te、Hg、Au、Cu、Ag、Sr、Ru),但並不僅限於此;OX係金屬M的容許氧化態;n係具有自0至ox之值的整數;及X係鹵素。
前述的前驅體材料可使用作為利用諸如氫、H2/電漿、胺、亞胺、肼、矽烷、矽烷基硫屬化物諸如(Me3Si)2Te、鍺烷諸如GeH4、氨、烷類、烯類、脒、胍、硼烷及其之衍生物/加成物及炔類之還原共反應物的低溫沉積前驅體。前驅體可以液體傳遞配方使用,且為液體的前驅體可以純液體形態使用,其中液體或固體前驅體係視需要於包括烷溶劑(例如,己烷、庚烷、辛烷、及戊烷)、芳基溶劑(例如,苯或甲苯)、胺(例如,三乙胺、第三丁胺)、亞胺、胍、脒及肼的合適溶劑中使用。
特定溶劑組成物對於特定前驅體之效用可經實驗容易地判定,以對液體傳遞蒸發選擇適當的單一成分或多成分溶劑介質。可使用先前說明於文中之類型的固體傳遞系統。
前述前驅體以不同方式顯示於下。
對先前提及為經定性之四種經說明前驅體,將熱及元素分析記述於下表。
前述前驅體以不同方式顯示於下。
本發明之再一態樣係關於有用於CVD及ALD之二陰離子鉗合胍根配位體,且其包括具有化學式(R4)nM{(R1)N=C[(NR2)(NR3)]}(ox-n)/2之二陰離子鉗合胍根配位體之類別的金屬前驅體。
所有此等複合物皆可自相應的鹼金屬鹽與金屬鹵化物或烷基金屬或混合鹵化物/烷基合成得,或在諸如NEt3之HX吸收劑之存在下自胍與金屬鹵化物之間的直接反應合成得。胍根配位體之合成可自相應的碳二醯亞胺及第一胺進行。
具有相同實驗式之以上主張單體之「寡聚物」包括[(R4)nM{(R1)N=C[(NR2)(NR3)]}(ox-n)/2]x,其中x係具有2、3等等之值的整數,其中各R1、R2、R3、R4係獨立地選自H、C1-C6烷基、C3-C10環烷基、C6-C10芳基、-Si(R5)3及-Ge(R5)3,其中各R8係獨立地選自C1-C6烷基;及-Si(R6)3,其中各R9係獨立地選自C1-C6烷基;且當適當時,連接至上述R1、R2、R3、R4之側配位體包括提供進一步配位至金屬中心之官能基,諸如,比方說,胺烷基、烷氧烷基、芳氧烷基、亞胺烷基、及乙醯烷基,其中此等類別中之合適基團包括以下化學式之基團: 其中各R1-R4係彼此相同或不同,且各係獨立地選自氫及C1-C6烷基;各R5及R6係彼此相同或不同,且各係獨立地選自C1-C6烷基;n及m各係獨立地選自0至4,其限制條件為m及n不可同時為0,且x係選自1至5; 其中各R1-R4係彼此相同或不同,且各係獨立地選自氫、C1-C6烷基、及C6-C10芳基;R5係選自C1-C6烷基、及C6-C10芳基;及n及m係獨立地選自0至4,其限制條件為m及n不可同時為0。
在金屬前驅體中,各R5可獨立地選自H、C1-C6烷基、C3-C6環烷基、C1-C6烷氧基、-NR1R2、及-C(R3)3、-Si(R8)3及-Ge(R8)3,其中各R3係獨立地選自C1-C6烷基;且各R8及R8係獨立地選自H、C1-C6烷基、C5-C10環烷基、C6-C10芳基、及-Si(R9)3,其中各R4係獨立地選自C1-C6烷基。
在此等金屬前驅體中,M可為以上所提及的任何金屬(Ta、V、Ti、Nb、Pb、Ni、W、Ca、Ba、In、Y、La、Zr、Hf、Ir、Ru、Pt、Cr、Mo、Ge;Al、Si、Ga、Sc、V、Cr、Fe、Sb、鑭系金屬、Mn、Co、Ni、Zn、Cd、Te、Hg、Au、Cu、Ag、Sr、Ru),但並不僅限於此;OX係金屬M的容許氧化態;n係具有自0至ox之值的整數;及X係鹵素。
前述的前驅體材料可使用作為利用諸如氫、H2/電漿、胺、亞胺、肼、矽烷、矽烷基硫屬化物諸如(Me3Si)2Te、鍺烷諸如GeH4、氨、烷類、烯類、脒、胍、硼烷及其之衍生物/加成物及炔類之還原共反應物的低溫沉積前驅體。前驅體可以液體傳遞配方使用,且為液體的前驅體可以純液體形態使用,其中液體或固體前驅體係視需要於包括烷溶劑(例如,己烷、庚烷、辛烷、及戊烷)、芳基溶劑(例如,苯或甲苯)、胺(例如,三乙胺、第三丁胺)、亞胺、胍、脒及肼的合適溶劑中使用。
特定溶劑組成物對於特定前驅體之效用可經實驗容易地判定,以對液體傳遞蒸發選擇適當的單一成分或多成分溶劑介質。可使用先前說明於文中之類型的固體傳遞系統。
前述前驅體以不同方式顯示於下。
A係鹼金屬,X係鹵素及ox係M的容許氧化態。
如下合成及定性一範例的配位體PriN=C(PriNH)2。
實施例
在0℃下於經裝入12.6克PriNCNPri(0.1莫耳)及100毫升甲苯之250毫升燒瓶中緩慢加入5.9克PriNH2(0.1莫耳)。然後使所得混合物在100℃下回流隔夜。於處理後,獲得11.5克固體PriN=C(PriNH)2。(62%產率)C10H23N3之分析計算值:C:64.81 %;H:12.51 %;N:22.68 %。實測值:C:64.73 %;H:12.39 %;N:22.48 %。
本發明之再一態樣係關於一種高度選擇性的鍺沉積方法。雖然此處主要係參照鍺作論述,但此方法亦可應用於其他其中之薄膜沉積製程係仰賴晶核生成程序的薄膜沉積應用,例如,釕沉積。
相變記憶體(PCM)基於其有減小尺寸數代的潛力,因而目前被視為係不變性記憶體的主要競爭者。以整合GST為主之PCM元件係以具有「插塞」電極之大平面層的形式製得。金屬有機化學氣相沉積(MOCVD)方法經發展用於製造此等薄膜,由於當元件幾何形體縮小時,當然需要以3D的幾何形體進行沉積。在未來世代中,將需要將此操作的規模減小,以使整個相變硫屬化物將一插塞切割於諸如氧化矽、氮化矽或低k介電質之絕緣材料的通道內。
其之一實例可見於圖8,其係GST元件結構之示意圖,其顯示GST插塞、頂部電極、底部電極、層間介電質及元件的相關層。由於此材料之蝕刻及CMP皆未充分確立,由於需要相當厚的層以容許以電阻率變化之形式儲存資訊的整體相變化,因而使得此一插塞並非無用。將希望僅於通道中以「由下而上」的方式成長材料,而不塗布其餘的結構。為產生此結果,沉積製程必需具高度選擇性,於期望表面上快速地成長而於其他表面上緩慢成長或完全不成長。
亦可能希望使PCM材料與通道之側壁具有不良接觸,以降低相鄰晶格之間的熱接觸及串擾。因此,可能希望於不同表面上具有不同的黏著係數及晶核生成可能性。
亦需要發展在300℃或以下之溫度下製造此等薄膜的低溫MOCVD製程,由於一些成分具足夠的揮發性,以致在高於此溫度下的化學計量控制變得困難。
在吾人對PCM之Ge前驅體的研究中,經發現醯胺基前驅體基於其於其上成長之基板的表面狀態而具有相當強的選擇性。此前驅體-Ge(NMe2)4-在僅10-15℃之極端狹窄的溫度範圍內即經歷接近1000倍的沉積速率變化。此實質上係獨特的行為,且吾人尚不知曉有其他化合物具有此行為。
關於此一強烈作用的發生,其似乎有可能係由於沉積表面之變化及某種自催化作用所致。此等薄膜係沉積於TiN上,該TiN係於超過一年前購得且分裂成片以供此等實驗用。Ti及TiN自暴露至大氣起即快速生成氧化物,且無疑地插入至反應器中之晶核生成表面係一些形式的Ti氧化物或氧化物氮化物混合物。Ti於各種次氧化物諸如TiO2與Ti2O3之間輕易地改變,然而,因此其有可能在還原條件諸如在於基板上加熱時流經反應器之生成氣體,或甚至於其中發生沉積的氫氣下,表面在特定的過渡溫度下以相當突然的方式改變。在所有實驗中自室溫加熱皆係固定為4分鐘。此可說明以上觀察得的行為,其中沉積速率在10-15℃之範圍內自數埃/分鐘增加至1000埃/分鐘,且此範圍之位置可基於反應物氣體及存在氣體之分壓而移動數十度。
為測試此理論,於SiO2基板上,及在於10分鐘過程中冷卻至沉積溫度之前先於8T氫氣中加熱至400℃之一片TiN上進行沉積。結果包括在280℃下約3埃/分鐘之沉積在先經暴露至空氣隨後再置於晶座上之TiN上的沉積速率。於SiO2基板上之沉積速率接近0.3埃/分鐘,其低一個數量級。同時,於先經預熱至400℃隨後再於反應器中於還原大氣中冷卻之基板上在280℃下的沉積速率接近600埃/分鐘,且速率在低溫下實質上較高。經預熱基板係最接近標準製程的模擬,其中TiN或類似電極將沉積於集束型設備(cluster tool)的一部分中,之後將基板轉移至CVD沉積模組而沒有任何空氣暴露。在於經預熱TiN與SiO2上之沉積速率間之200:1的比率足以於似此之表面的任何組合上獲得相當高的選擇性。預期對於清潔、「原位」沉積的TiN及SiO2,此比率將進一步提高。
此前驅體之獨特行為之最直接的潛在效益係由下而上地填補通道,以製造硫屬化物相變記憶體材料之插塞。可使用Ge起始層作為完整前驅體組合之更為有利的成長部位,以幫助防止插塞中之「接縫」或空隙。
若須要,亦可具有對側壁之接觸不良之PCM材料的插塞,而於相鄰PCM晶格之間提供較佳的熱隔離及較低的串擾。緩慢的沉積及不良的晶核生成會產生於靠近表面處具有孔隙之黏著不良的層。
一更間接的效益係對其他晶核生成敏感性材料產生半導體相容的晶核生成表面。舉例來說,熟知Ru金屬很難於純還原大氣中成長;其有對於大多數之CVD前驅體於其附近需要一些氧的傾向。此外,很難將其均勻地沉積於SiO2表面上。可使用此Ge前驅體於在溝渠或通道之底部於Si上形成一晶核生成層,以致由於Ge不會如Si般強烈地鍵結至氧,而可使用輕度氧化製程,或可使用更易沉積於清潔金屬上之還原製程。此方法可擴展至沉積除Ru外之材料,其限制條件為其具有一些可被利用的表面化學敏感度。
在一更為複雜的方法中,表面、金屬、氮化物及/或Ge之表面化學可藉由反應物氣體改變(例如自氧化物至金屬),以對於自此前驅體之沉積作開關。此依序可使可能具有經暴露為具有不同表面之多種材料的晶片表面視層材料及共反應物相對於Ge沉積而開關。Ge隨後可使用作為保護層供進一步化學改質用,例如,作為硬光罩、犧牲層等等。當尋找具有此對表面及沉積溫度之強烈敏感度的適當前驅體時,此原理可擴展至除Ge外之元素。
其他可能展現此行為的化學物質及化學族包括N-配位鍺醯胺、脒鹽、胍鹽、及N-雜環伸鍺烷基。所述之方法亦適用於包含選自下列之金屬的金屬有機CVD或ALD前驅體:Ge、Sb、Te、Be、Mg、Ti、V、Cr、Mn、Fe、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、Hg、La、Hf、Ta、W、Re、Os、Ir、Pt、Au、Sn、Pb、As、P、Bi、Al、Ga、In、Tl、及Si,其中有至少一個選自下列的弱配位配位體與其鍵結:鹵素、B-二烯酮亞胺根、腈、異腈、胺基妥普尼亞胺根、羰基、磷基、亞胺基、胺、吡啶、脒根、胍根、亞硝醯基、矽烷基、三烷基銻(R3Sb)、硫化物、及環戊二烯基。
在一寬廣態樣中,本發明涵蓋化學式MAy Bx 之金屬前驅體,其中M係選自Ge、Sb及Te之金屬,及A係選自由文中揭示之所有配位體所組成的配位體,且y+x等於金屬M上之氧化態。
雖然本發明已參照本發明之特定態樣、特徵及說明具體例說明於文中,但當明瞭本發明之效用並不因此受限,而係可延伸至涵蓋如由熟悉本發明領域人士基於文中之揭示內容所可明白之許多其他的變化、修改及另類具體例。相應地,如於後文提出專利申請之本發明係應廣義地解釋及詮釋為包括在其精神及範疇內的所有此等變化、修改及另類具體例。
圖1顯示Sb(NMeEt)3 之核磁共振光譜。
圖2顯示Sb(NMe2 )3 之核磁共振光譜。
圖3係Sb(NMeEt)3 及Sb(NMe2 )3 之同時熱分析(STA)圖,其中將熱重分析(TG)之百分比成溫度(℃)之函數作圖。
圖4(a)係此乙基甲胺基三異丙基鍺烷產物之氣相層析(GC)光譜,及圖4(b)係此GC光譜之峰值數據的相關列表。圖4(c)係乙基甲胺基三異丙基鍺烷產物之質譜。圖4(d)顯示iPr3 GeNEtMe之核磁共振光譜。
圖5係乙基甲胺基三異丙基鍺烷產物之STA光譜,其顯示示差掃描量熱(DSC)數據及熱重分析(TG)數據成溫度之函數。
圖6係沉積速率(單位埃/分鐘)成凱氏溫度倒數之函數的阿瑞尼士圖,其顯示利用氨共反應物之Ge沉積的改良。
圖7係沉積速率(單位埃/分鐘)成於沉積操作中引入之氨之體積百分比之函數的圖。
圖8係GST元件結構之概略圖式。

Claims (28)

  1. 一種於一基板上形成一含鍺薄膜之方法,該方法包括使該基板與一前驅體接觸,該前驅體選自由各具有以下配位體之至少一者之Ge(II)及Ge(IV)前驅體所組成之群組:脒根、胍根、異脲根、二酮根、二酮基亞胺根、二烯酮亞胺根、胺基甲酸根、硫胺基甲酸根、矽烷基及胺基妥普尼亞胺根(aminotroponiminate)。
  2. 如申請專利範圍第1項所述之方法,其中該前驅體亦包括至少一額外配位體,該額外配位體選自由烷基、二烷胺基、氫基及鹵基所組成之群組。
  3. 一種於一基板上形成一含鍺及碲薄膜的方法,該方法包括在一共反應物的存在下,使該基板與一鍺前驅體及一碲前驅體接觸,該共反應物選自由氫、氨、電漿、烷基胺、矽烷及鍺烷所組成之群組。
  4. 如申請專利範圍第3項所述之方法,該方法係在低於300℃之溫度下進行。
  5. 一種鍺前驅體組成物,包含雙(正丁基,N,N-二異丙基脒)鍺,
  6. 如申請專利範圍第5項所述之鍺前驅體組成物,進一步包含一溶劑介質。
  7. 如申請專利範圍第6項所述之鍺前驅體組成物,其中該溶劑介質包含至少一種選自由下列所組成之群組的溶劑物種:烷類溶劑、己烷、庚烷、辛烷、戊烷、醚類、芳基溶劑、四氫呋喃、苯、甲苯、胺類、三乙胺、第三丁胺、亞胺、胍、脒及肼。
  8. 如申請專利範圍第6項所述之鍺前驅體組成物,其中該溶劑介質包含至少一種選自由烷類溶劑所組成之群組的溶劑物種。
  9. 如申請專利範圍第6項所述之鍺前驅體組成物,其中該溶劑介質包含己烷。
  10. 如申請專利範圍第6項所述之鍺前驅體組成物,其中該溶劑介質包含辛烷。
  11. 如申請專利範圍第6項所述之鍺前驅體組成物,其中該溶劑介質包含甲苯。
  12. 如申請專利範圍第6項所述之鍺前驅體組成物,其中該溶劑介質包含醚。
  13. 如申請專利範圍第6項所述之鍺前驅體組成物,其中該溶劑介質包含四氫呋喃。
  14. 如申請專利範圍第5項所述之鍺前驅體組成物,該鍺前驅體組成物為蒸汽狀態。
  15. 如申請專利範圍第5項所述之鍺前驅體組成物,進一步包含至少一種額外前驅體,該額外前驅體選自由碲前驅體及銻前驅體所組成之群組。
  16. 如申請專利範圍第15項所述之鍺前驅體組成物,包含二-第三丁基碲。
  17. 如申請專利範圍第15項所述之鍺前驅體組成物,包含參(二甲基醯胺基)銻。
  18. 一種於一基板上沉積鍺之方法,該方法包含使該基板在氣相沉積條件下與脒鍺化合物之蒸氣接觸。
  19. 如申請專利範圍第18項所述之方法,進一步包含沉積銻及碲之至少一者於該基板上。
  20. 如申請專利範圍第18項所述之方法,該方法於一相變記憶體元件之製造中執行。
  21. 如申請專利範圍第18項所述之方法,包含發泡器傳遞。
  22. 如申請專利範圍第18項所述之方法,包含固體傳遞。
  23. 如申請專利範圍第18項所述之方法,包含液體傳遞。
  24. 如申請專利範圍第18項所述之方法,其中該接觸步驟在氨存在下進行。
  25. 如申請專利範圍第18項所述之方法,其中該脒鍺化合物包含雙(正丁基,N,N-二異丙基脒)鍺,
  26. 如申請專利範圍第18項所述之方法,其中該基板於300至450℃之溫度範圍下與該蒸氣接觸。
  27. 如申請專利範圍第18項所述之方法,其中該基板於低於300℃之溫度下與該蒸氣接觸。
  28. 一種前驅體儲存及配送包裝,包含一含有雙(正丁基,N,N-二異丙基脒)鍺之一包裝,
TW096108425A 2006-11-02 2007-03-12 有用於化學氣相沉積及原子層沉積金屬薄膜之銻及鍺複合物 TWI431145B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US86407306P 2006-11-02 2006-11-02
US88724907P 2007-01-30 2007-01-30

Publications (2)

Publication Number Publication Date
TW200821403A TW200821403A (en) 2008-05-16
TWI431145B true TWI431145B (zh) 2014-03-21

Family

ID=39365153

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096108425A TWI431145B (zh) 2006-11-02 2007-03-12 有用於化學氣相沉積及原子層沉積金屬薄膜之銻及鍺複合物

Country Status (8)

Country Link
US (5) US7838329B2 (zh)
EP (2) EP2511280A1 (zh)
JP (2) JP5320295B2 (zh)
KR (3) KR20120118060A (zh)
CN (2) CN102352488B (zh)
SG (1) SG176449A1 (zh)
TW (1) TWI431145B (zh)
WO (1) WO2008057616A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI679208B (zh) * 2014-09-26 2019-12-11 馬堡菲利普大學 至少一種二元15族元素化合物之用途、13/15半導體層及二元15族元素化合物

Families Citing this family (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714422B2 (ja) * 2003-04-05 2011-06-29 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. ゲルマニウムを含有するフィルムを堆積させる方法、及び蒸気送達装置
EP2302094A1 (en) 2006-05-12 2011-03-30 Advanced Technology Materials, Inc. Low temperature deposition of phase change memory materials
KR100757415B1 (ko) * 2006-07-13 2007-09-10 삼성전자주식회사 게르마늄 화합물 및 그 제조 방법, 상기 게르마늄 화합물을이용한 상변화 메모리 장치 및 그 형성 방법
WO2008057616A2 (en) 2006-11-02 2008-05-15 Advanced Technology Materials, Inc. Antimony and germanium complexes useful for cvd/ald of metal thin films
KR100871692B1 (ko) * 2006-11-07 2008-12-08 삼성전자주식회사 저온 증착용 금속 전구체, 그를 사용한 금속 박막 형성방법 및 상변화 메모리 소자 제조 방법
KR101275799B1 (ko) * 2006-11-21 2013-06-18 삼성전자주식회사 저온 증착이 가능한 게르마늄 전구체를 이용한 상변화층형성방법 및 이 방법을 이용한 상변화 메모리 소자의 제조방법
US8524931B2 (en) 2007-01-17 2013-09-03 Advanced Technology Materials, Inc. Precursor compositions for ALD/CVD of group II ruthenate thin films
US8377341B2 (en) * 2007-04-24 2013-02-19 Air Products And Chemicals, Inc. Tellurium (Te) precursors for making phase change memory materials
KR100888617B1 (ko) * 2007-06-15 2009-03-17 삼성전자주식회사 상변화 메모리 장치 및 그 형성 방법
WO2009006272A1 (en) * 2007-06-28 2009-01-08 Advanced Technology Materials, Inc. Precursors for silicon dioxide gap fill
US8142847B2 (en) * 2007-07-13 2012-03-27 Rohm And Haas Electronic Materials Llc Precursor compositions and methods
JP4595125B2 (ja) 2007-08-31 2010-12-08 独立行政法人産業技術総合研究所 固体メモリ
JP4621897B2 (ja) 2007-08-31 2011-01-26 独立行政法人産業技術総合研究所 固体メモリ
US8454928B2 (en) 2007-09-17 2013-06-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Tellurium precursors for GST deposition
US20090087561A1 (en) * 2007-09-28 2009-04-02 Advanced Technology Materials, Inc. Metal and metalloid silylamides, ketimates, tetraalkylguanidinates and dianionic guanidinates useful for cvd/ald of thin films
KR101458953B1 (ko) * 2007-10-11 2014-11-07 삼성전자주식회사 Ge(Ⅱ)소오스를 사용한 상변화 물질막 형성 방법 및상변화 메모리 소자 제조 방법
US8834968B2 (en) 2007-10-11 2014-09-16 Samsung Electronics Co., Ltd. Method of forming phase change material layer using Ge(II) source, and method of fabricating phase change memory device
SG178736A1 (en) * 2007-10-31 2012-03-29 Advanced Tech Materials Amorphous ge/te deposition process
WO2009059237A2 (en) * 2007-10-31 2009-05-07 Advanced Technology Materials, Inc. Novel bismuth precursors for cvd/ald of thin films
US7960205B2 (en) * 2007-11-27 2011-06-14 Air Products And Chemicals, Inc. Tellurium precursors for GST films in an ALD or CVD process
US20090162973A1 (en) * 2007-12-21 2009-06-25 Julien Gatineau Germanium precursors for gst film deposition
US8318252B2 (en) * 2008-01-28 2012-11-27 Air Products And Chemicals, Inc. Antimony precursors for GST films in ALD/CVD processes
US20130210217A1 (en) * 2008-01-28 2013-08-15 Air Products And Chemicals, Inc. Precursors for GST Films in ALD/CVD Processes
US20090215225A1 (en) 2008-02-24 2009-08-27 Advanced Technology Materials, Inc. Tellurium compounds useful for deposition of tellurium containing materials
US20100078601A1 (en) * 2008-03-31 2010-04-01 American Air Liquide, Inc. Preparation of Lanthanide-Containing Precursors and Deposition of Lanthanide-Containing Films
US8193388B2 (en) 2008-04-15 2012-06-05 American Air Liquide, Inc. Compounds for depositing tellurium-containing films
US20090263934A1 (en) * 2008-04-22 2009-10-22 Samsung Electronics Co., Ltd. Methods of forming chalcogenide films and methods of manufacturing memory devices using the same
US9175390B2 (en) * 2008-04-25 2015-11-03 Asm International N.V. Synthesis and use of precursors for ALD of tellurium and selenium thin films
US8674127B2 (en) * 2008-05-02 2014-03-18 Advanced Technology Materials, Inc. Antimony compounds useful for deposition of antimony-containing materials
US8765223B2 (en) * 2008-05-08 2014-07-01 Air Products And Chemicals, Inc. Binary and ternary metal chalcogenide materials and method of making and using same
US8507040B2 (en) * 2008-05-08 2013-08-13 Air Products And Chemicals, Inc. Binary and ternary metal chalcogenide materials and method of making and using same
WO2010055423A2 (en) * 2008-05-29 2010-05-20 L'air Liquide - Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude Tellurium precursors for film deposition
US8802194B2 (en) 2008-05-29 2014-08-12 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Tellurium precursors for film deposition
US20110180905A1 (en) * 2008-06-10 2011-07-28 Advanced Technology Materials, Inc. GeSbTe MATERIAL INCLUDING SUPERFLOW LAYER(S), AND USE OF Ge TO PREVENT INTERACTION OF Te FROM SbXTeY AND GeXTeY RESULTING IN HIGH Te CONTENT AND FILM CRYSTALLINITY
US8636845B2 (en) 2008-06-25 2014-01-28 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Metal heterocyclic compounds for deposition of thin films
US8168811B2 (en) 2008-07-22 2012-05-01 Advanced Technology Materials, Inc. Precursors for CVD/ALD of metal-containing films
US8236381B2 (en) * 2008-08-08 2012-08-07 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Metal piperidinate and metal pyridinate precursors for thin film deposition
KR101445333B1 (ko) * 2008-08-29 2014-10-01 삼성전자주식회사 가변저항 메모리 장치의 형성방법
US7834342B2 (en) 2008-09-04 2010-11-16 Micron Technology, Inc. Phase change material and methods of forming the phase change material
US8163341B2 (en) 2008-11-19 2012-04-24 Micron Technology, Inc. Methods of forming metal-containing structures, and methods of forming germanium-containing structures
US8330136B2 (en) 2008-12-05 2012-12-11 Advanced Technology Materials, Inc. High concentration nitrogen-containing germanium telluride based memory devices and processes of making
KR101002282B1 (ko) * 2008-12-15 2010-12-20 엘지전자 주식회사 태양 전지 및 그 제조 방법
KR101120065B1 (ko) 2009-01-08 2012-03-23 솔브레인 주식회사 신규의 아미딘 유도체를 가지는 게르마늄 화합물 및 이의 제조 방법
JP2010171196A (ja) * 2009-01-22 2010-08-05 Elpida Memory Inc 固体メモリ及び半導体装置
US8663735B2 (en) 2009-02-13 2014-03-04 Advanced Technology Materials, Inc. In situ generation of RuO4 for ALD of Ru and Ru related materials
US8003521B2 (en) * 2009-04-07 2011-08-23 Micron Technology, Inc. Semiconductor processing
US8148580B2 (en) 2009-04-15 2012-04-03 Micron Technology, Inc. Methods of forming a tellurium alkoxide and methods of forming a mixed halide-alkoxide of tellurium
US8697486B2 (en) 2009-04-15 2014-04-15 Micro Technology, Inc. Methods of forming phase change materials and methods of forming phase change memory circuitry
KR20120106888A (ko) 2009-05-22 2012-09-26 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 저온 gst 방법
WO2011002705A2 (en) * 2009-07-02 2011-01-06 Advanced Technology Materials, Inc. Hollow gst structure with dielectric fill
KR101805211B1 (ko) 2009-09-02 2017-12-05 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 게르마늄 함유 막 침착을 위한 디할라이드 게르마늄(ⅱ) 전구체
KR101829380B1 (ko) 2009-10-26 2018-02-19 에이에스엠 인터내셔널 엔.브이. 5a족 원소 함유 박막의 원자 층 증착용 전구체의 합성 및 용도
US20110108792A1 (en) * 2009-11-11 2011-05-12 International Business Machines Corporation Single Crystal Phase Change Material
US20110124182A1 (en) * 2009-11-20 2011-05-26 Advanced Techology Materials, Inc. System for the delivery of germanium-based precursor
US8017432B2 (en) * 2010-01-08 2011-09-13 International Business Machines Corporation Deposition of amorphous phase change material
KR20120123126A (ko) 2010-02-03 2012-11-07 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 박막 증착용 칼코게나이드-함유 전구체, 그의 제조 방법 및 사용 방법
US9012876B2 (en) 2010-03-26 2015-04-21 Entegris, Inc. Germanium antimony telluride materials and devices incorporating same
US8796483B2 (en) 2010-04-01 2014-08-05 President And Fellows Of Harvard College Cyclic metal amides and vapor deposition using them
WO2011146913A2 (en) 2010-05-21 2011-11-24 Advanced Technology Materials, Inc. Germanium antimony telluride materials and devices incorporating same
US8124445B2 (en) * 2010-07-26 2012-02-28 Micron Technology, Inc. Confined resistance variable memory cell structures and methods
US8148197B2 (en) 2010-07-27 2012-04-03 Micron Technology, Inc. Methods of forming germanium-antimony-tellurium materials and a method of forming a semiconductor device structure including the same
EP2444404A1 (en) 2010-10-07 2012-04-25 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Metal compounds for deposition of chalcogenide films at low temperature
EP2444405A1 (en) 2010-10-07 2012-04-25 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Metal compounds for deposition of chalcogenide films at low temperature
EP2444406A1 (en) 2010-10-07 2012-04-25 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Metal compounds for deposition of chalcogenide films at low temperature
EP2444407A1 (en) 2010-10-07 2012-04-25 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Metal compounds for deposition of chalcogenide films at low temperature
KR101284664B1 (ko) * 2010-12-31 2013-07-11 삼성전자주식회사 실릴아민 리간드가 포함된 유기금속화합물, 및 이를 전구체로 이용한 금속 산화물 또는 금속-규소 산화물의 박막 증착 방법
TWI452167B (zh) * 2011-06-09 2014-09-11 Air Prod & Chem 二元及三元金屬硫族化合物材料及其製造與使用方法
KR20140063684A (ko) * 2011-08-19 2014-05-27 도쿄엘렉트론가부시키가이샤 Ge - Sb - Te막의 성막 방법, Ge - Te막의 성막 방법, Sb - Te막의 성막 방법 및 프로그램
US8932900B2 (en) * 2011-08-24 2015-01-13 Taiwan Semiconductor Manufacturing Company, Ltd. Phase change memory and method of fabricating same
KR20140085461A (ko) 2011-09-27 2014-07-07 레르 리키드 쏘시에떼 아노님 뿌르 레?드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 니켈 비스 디아자부타디엔 전구체, 그들의 합성, 및 니켈 함유 필름 침착을 위한 그들의 용도
JP6202798B2 (ja) 2011-10-12 2017-09-27 エーエスエム インターナショナル エヌ.ヴェー.Asm International N.V. 酸化アンチモン膜の原子層堆積
KR101907972B1 (ko) * 2011-10-31 2018-10-17 주식회사 원익아이피에스 기판처리장치 및 방법
CN102583502A (zh) * 2012-02-25 2012-07-18 复旦大学 基于化学气相沉积法制备形貌可控的纳米铜硫化合物的方法
KR102117124B1 (ko) 2012-04-30 2020-05-29 엔테그리스, 아이엔씨. 유전체 물질로 중심-충전된 상 변화 합금을 포함하는 상 변화 메모리 구조체
WO2014015241A1 (en) 2012-07-20 2014-01-23 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Organosilane precursors for ald/cvd silicon-containing film applications
US8859045B2 (en) 2012-07-23 2014-10-14 Applied Materials, Inc. Method for producing nickel-containing films
US8741688B2 (en) 2012-07-24 2014-06-03 Micron Technology, Inc. Methods of forming a metal chalcogenide material
US9194040B2 (en) 2012-07-25 2015-11-24 Applied Materials, Inc. Methods for producing nickel-containing films
JP5905858B2 (ja) * 2012-08-13 2016-04-20 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Ald/cvdプロセスにおけるgst膜のための前駆体
US9171715B2 (en) 2012-09-05 2015-10-27 Asm Ip Holding B.V. Atomic layer deposition of GeO2
US9640757B2 (en) 2012-10-30 2017-05-02 Entegris, Inc. Double self-aligned phase change memory device structure
KR101472472B1 (ko) * 2012-11-28 2014-12-12 한국화학연구원 게르마늄 전구체, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
JP5957375B2 (ja) * 2012-11-30 2016-07-27 株式会社日立製作所 相変化メモリ
KR102022409B1 (ko) 2013-03-13 2019-09-18 삼성전자주식회사 박막 형성 방법 및 이를 이용한 상변화 메모리 소자의 제조 방법
US9214630B2 (en) * 2013-04-11 2015-12-15 Air Products And Chemicals, Inc. Method of making a multicomponent film
CN103172653A (zh) * 2013-04-16 2013-06-26 上海宏锐新材料科技有限公司 三(二甲胺基)硅烷的制备方法
TW201509799A (zh) 2013-07-19 2015-03-16 Air Liquide 用於ald/cvd含矽薄膜應用之六配位含矽前驅物
KR20160036661A (ko) * 2013-07-26 2016-04-04 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 환식 아민의 금속 아미드
KR102077641B1 (ko) * 2013-08-06 2020-02-14 삼성전자주식회사 상변화 물질막, 이의 형성 방법
WO2015047914A1 (en) 2013-09-27 2015-04-02 Antonio Sanchez Amine substituted trisilylamine and tridisilylamine compounds
CN103474572A (zh) * 2013-09-28 2013-12-25 复旦大学 一种基于柔性衬底的具有crs行为的阻变存储器及其制备方法
US9218963B2 (en) * 2013-12-19 2015-12-22 Asm Ip Holding B.V. Cyclical deposition of germanium
KR101659610B1 (ko) * 2014-03-18 2016-09-23 주식회사 유진테크 머티리얼즈 유기 게르마늄 아민 화합물 및 이를 이용한 박막 증착 방법
CN104086589B (zh) * 2014-07-17 2017-02-01 江南大学 易制备的可用做微电子材料的吡唑基Ge(Ⅱ)化合物
EP3172356B1 (en) * 2014-07-24 2018-09-19 Basf Se Process for the generation of thin inorganic films
FR3029918B1 (fr) * 2014-12-12 2018-01-26 Universite Claude Bernard Lyon 1 Agent de transfert pour la preparation d'une polyolefine fonctionnelle ou telechelique
WO2016094711A2 (en) 2014-12-13 2016-06-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Organosilane precursors for ald/cvd silicon-containing film applications and methods of using the same
US9543144B2 (en) 2014-12-31 2017-01-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Vapor deposition of chalcogenide-containing films
US11124876B2 (en) 2015-03-30 2021-09-21 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Si-containing film forming precursors and methods of using the same
US9777025B2 (en) 2015-03-30 2017-10-03 L'Air Liquide, Société pour l'Etude et l'Exploitation des Procédés Georges Claude Si-containing film forming precursors and methods of using the same
WO2017030346A1 (ko) * 2015-08-17 2017-02-23 주식회사 유피케미칼 Ge(Ⅱ)-함유 전구체 조성물 및 상기 전구체 조성물을 이용하는 게르마늄-함유 막의 형성 방법
US9607842B1 (en) 2015-10-02 2017-03-28 Asm Ip Holding B.V. Methods of forming metal silicides
WO2017111870A1 (en) * 2015-12-24 2017-06-29 Intel Corporation Selective hard mask processing based on low-valency group iv heterocyclic precursors
KR101952729B1 (ko) * 2016-04-29 2019-02-27 세종대학교산학협력단 원자층 증착을 이용한 칼코겐-함유 막의 제조 방법
US9929006B2 (en) * 2016-07-20 2018-03-27 Micron Technology, Inc. Silicon chalcogenate precursors, methods of forming the silicon chalcogenate precursors, and related methods of forming silicon nitride and semiconductor structures
CN106854224B (zh) * 2016-11-11 2019-03-12 苏州大学 一种含过渡金属配离子的汞碲化合物及其肼辅助制备方法
US10192734B2 (en) 2016-12-11 2019-01-29 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploration des Procédés Georges Claude Short inorganic trisilylamine-based polysilazanes for thin film deposition
JP6321252B1 (ja) * 2017-03-24 2018-05-09 田中貴金属工業株式会社 イリジウム錯体からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法
US10263640B2 (en) 2017-04-04 2019-04-16 Seagate Technology Llc Low density parity check (LDPC) decoder with pre-saturation compensation
US10174423B2 (en) * 2017-06-28 2019-01-08 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Niobium-containing film forming compositions and vapor deposition of Niobium-containing films
US10171110B1 (en) 2017-07-03 2019-01-01 Seagate Technology Llc Sequential power transitioning of multiple data decoders
US11008353B2 (en) 2017-07-14 2021-05-18 The Board Of Trustees Of The University Of Illinois Metal complexes for depositing films and method of making and using the same
US11253846B2 (en) 2017-07-14 2022-02-22 The Board Of Trustees Of The University Of Illinois Metal complexes for depositing films and method of making and using the same
JP6616365B2 (ja) * 2017-09-11 2019-12-04 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、プログラムおよび記録媒体
US10283704B2 (en) 2017-09-26 2019-05-07 International Business Machines Corporation Resistive memory device
US10141503B1 (en) 2017-11-03 2018-11-27 International Business Machines Corporation Selective phase change material growth in high aspect ratio dielectric pores for semiconductor device fabrication
KR102103346B1 (ko) * 2017-11-15 2020-04-22 에스케이트리켐 주식회사 박막 증착용 전구체 용액 및 이를 이용한 박막 형성 방법.
KR102451404B1 (ko) * 2017-12-08 2022-10-05 엘지디스플레이 주식회사 상전이 광 이성질체 화합물, 투명 전계발광 표시장치 및 그 제조 방법
TWI799494B (zh) * 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 沈積方法
EP3821057A1 (en) 2018-07-12 2021-05-19 Basf Se Process for the generation of metal- or semimetal-containing films
US10892777B2 (en) 2019-02-06 2021-01-12 Seagate Technology Llc Fast error recovery with error correction code (ECC) syndrome weight assist
CN111785792B (zh) * 2019-04-04 2022-07-01 上海新微技术研发中心有限公司 一种锗铅合金材料的制备方法
CN110148668B (zh) * 2019-05-31 2022-05-17 中国科学院上海微系统与信息技术研究所 Al-Sc-Sb-Te相变材料、相变存储器单元及其制备方法
JP7194645B2 (ja) * 2019-05-31 2022-12-22 株式会社Screenホールディングス 基板処理方法および基板処理装置
US20220235455A1 (en) * 2019-06-17 2022-07-28 Tanaka Kikinzoku Kogyo K.K. Starting material for chemical vapor deposition composed of organomanganese compound, and chemical vapor deposition method using said starting material for chemical vapor deposition
GB2587401A (en) 2019-09-27 2021-03-31 Univ Bath Atomic layer deposition method of metal (II), (0), or (IV) containing film layer
TW202136561A (zh) * 2020-02-20 2021-10-01 美商應用材料股份有限公司 含碲薄膜之沉積
KR102444272B1 (ko) * 2020-05-18 2022-09-16 서울대학교산학협력단 원자층 증착 공정을 이용한 칼코게나이드계 박막의 형성 방법, 이를 이용한 스위칭 소자의 형성 방법 및 메모리 소자의 제조 방법
KR102444266B1 (ko) * 2020-05-18 2022-09-16 서울대학교산학협력단 원자층 증착 공정을 이용한 칼코게나이드계 박막의 형성 방법, 이를 적용한 상변화 물질층의 형성 방법 및 상변화 메모리 소자의 제조 방법
US20220106333A1 (en) * 2020-10-06 2022-04-07 American Air Liquide, Inc. Indium precursors for vapor depositions
US12031209B2 (en) 2021-02-16 2024-07-09 Applied Materials, Inc. Reducing agents for atomic layer deposition
CN116355019A (zh) * 2021-12-28 2023-06-30 Dnf有限公司 含锑薄膜蒸镀用组合物、含锑薄膜的制造方法和锑化合物
KR20230100613A (ko) 2021-12-28 2023-07-05 (주)디엔에프 안티모니 함유 박막 증착용 조성물 및 이를 이용하는 안티모니 함유 박막의 제조방법
WO2024076218A1 (ko) 2022-10-07 2024-04-11 솔브레인 주식회사 칼코게나이드계 박막 개질제, 이를 사용하여 제조된 반도체 기판 및 반도체 소자
KR20240049771A (ko) 2022-10-07 2024-04-17 솔브레인 주식회사 유전막 활성화제, 이를 사용하여 제조된 반도체 기판 및 반도체 소자

Family Cites Families (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU768457A1 (ru) 1976-01-04 1980-10-07 Всесоюзный научно-исследовательский и проектно-конструкторский институт добычи угля гидравлическим способом Катализатор дл очистки выхлопных газов от окислов азота
JPS5838296A (ja) 1981-08-31 1983-03-05 Ichiro Kijima 新規アンチモン化合物
US4948623A (en) 1987-06-30 1990-08-14 International Business Machines Corporation Method of chemical vapor deposition of copper, silver, and gold using a cyclopentadienyl/metal complex
US4962214A (en) * 1988-05-11 1990-10-09 Massachusettes Institute Of Technology Catalytic enantioselective addition of hydrocarbon equivalents to alpha, beta-unsaturated carbonyl compounds
US4927670A (en) 1988-06-22 1990-05-22 Georgia Tech Research Corporation Chemical vapor deposition of mixed metal oxide coatings
US4960916A (en) * 1989-09-29 1990-10-02 United States Of America As Represented By The Secretary Of The Navy Organometallic antimony compounds useful in chemical vapor deposition processes
US5453494A (en) * 1990-07-06 1995-09-26 Advanced Technology Materials, Inc. Metal complex source reagents for MOCVD
US5296716A (en) 1991-01-18 1994-03-22 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5596522A (en) 1991-01-18 1997-01-21 Energy Conversion Devices, Inc. Homogeneous compositions of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5312983A (en) 1991-02-15 1994-05-17 Advanced Technology Materials, Inc. Organometallic tellurium compounds useful in chemical vapor deposition processes
JP3336034B2 (ja) 1992-05-12 2002-10-21 同和鉱業株式会社 スパッタリング・ターゲットの製造方法
US5997642A (en) 1996-05-21 1999-12-07 Symetrix Corporation Method and apparatus for misted deposition of integrated circuit quality thin films
US5972743A (en) 1996-12-03 1999-10-26 Advanced Technology Materials, Inc. Precursor compositions for ion implantation of antimony and ion implantation process utilizing same
AU724629B2 (en) * 1997-04-16 2000-09-28 Asahi Kasei Kabushiki Kaisha Process for producing optical information recording medium and optical information recording medium produced by the process
US6005127A (en) * 1997-11-24 1999-12-21 Advanced Technology Materials, Inc. Antimony/Lewis base adducts for Sb-ion implantation and formation of antimonide films
US6146608A (en) * 1997-11-24 2000-11-14 Advanced Technology Materials, Inc. Stable hydride source compositions for manufacture of semiconductor devices and structures
US6787186B1 (en) * 1997-12-18 2004-09-07 Advanced Technology Materials, Inc. Method of controlled chemical vapor deposition of a metal oxide ceramic layer
US7098163B2 (en) * 1998-08-27 2006-08-29 Cabot Corporation Method of producing membrane electrode assemblies for use in proton exchange membrane and direct methanol fuel cells
US6123993A (en) 1998-09-21 2000-09-26 Advanced Technology Materials, Inc. Method and apparatus for forming low dielectric constant polymeric films
US6086779A (en) 1999-03-01 2000-07-11 Mcgean-Rohco, Inc. Copper etching compositions and method for etching copper
US6750079B2 (en) 1999-03-25 2004-06-15 Ovonyx, Inc. Method for making programmable resistance memory element
US6281022B1 (en) * 1999-04-28 2001-08-28 Sharp Laboratories Of America, Inc. Multi-phase lead germanate film deposition method
JP2001067720A (ja) 1999-08-31 2001-03-16 Toray Ind Inc 光記録媒体
US6269979B1 (en) 1999-10-05 2001-08-07 Charles Dumont Multi-compartmented mixing dispenser
GB0004852D0 (en) * 2000-02-29 2000-04-19 Unilever Plc Ligand and complex for catalytically bleaching a substrate
US20020013487A1 (en) * 2000-04-03 2002-01-31 Norman John Anthony Thomas Volatile precursors for deposition of metals and metal-containing films
US6984591B1 (en) * 2000-04-20 2006-01-10 International Business Machines Corporation Precursor source mixtures
JP4621333B2 (ja) * 2000-06-01 2011-01-26 ホーチキ株式会社 薄膜形成方法
US20020090815A1 (en) * 2000-10-31 2002-07-11 Atsushi Koike Method for forming a deposited film by plasma chemical vapor deposition
US7087482B2 (en) 2001-01-19 2006-08-08 Samsung Electronics Co., Ltd. Method of forming material using atomic layer deposition and method of forming capacitor of semiconductor device using the same
JP2002220658A (ja) 2001-01-26 2002-08-09 Ricoh Co Ltd 光ディスク用スパッタリングターゲットとその製造法
AU2002306436A1 (en) 2001-02-12 2002-10-15 Asm America, Inc. Improved process for deposition of semiconductor films
US7005392B2 (en) 2001-03-30 2006-02-28 Advanced Technology Materials, Inc. Source reagent compositions for CVD formation of gate dielectric thin films using amide precursors and method of using same
US8618595B2 (en) 2001-07-02 2013-12-31 Merck Patent Gmbh Applications of light-emitting nanoparticles
US6507061B1 (en) * 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
ATE340800T1 (de) 2001-10-26 2006-10-15 Epichem Ltd Vorlaeuferverbindungen für chemische dampfphasenabscheidung
US6972430B2 (en) 2002-02-20 2005-12-06 Stmicroelectronics S.R.L. Sublithographic contact structure, phase change memory cell with optimized heater shape, and manufacturing method thereof
US6872963B2 (en) * 2002-08-08 2005-03-29 Ovonyx, Inc. Programmable resistance memory element with layered memory material
TW200422424A (en) 2002-08-18 2004-11-01 Asml Us Inc Low temperature deposition of silicon oxides and oxynitrides
JP4988159B2 (ja) 2002-11-15 2012-08-01 プレジデント アンド フェロウズ オブ ハーバード カレッジ 金属アミジナートを用いる原子層の析出
US6861559B2 (en) 2002-12-10 2005-03-01 Board Of Trustees Of Michigan State University Iminoamines and preparation thereof
US7115927B2 (en) * 2003-02-24 2006-10-03 Samsung Electronics Co., Ltd. Phase changeable memory devices
US7425735B2 (en) * 2003-02-24 2008-09-16 Samsung Electronics Co., Ltd. Multi-layer phase-changeable memory devices
US7402851B2 (en) * 2003-02-24 2008-07-22 Samsung Electronics Co., Ltd. Phase changeable memory devices including nitrogen and/or silicon and methods for fabricating the same
JP4714422B2 (ja) * 2003-04-05 2011-06-29 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. ゲルマニウムを含有するフィルムを堆積させる方法、及び蒸気送達装置
US20040215030A1 (en) * 2003-04-22 2004-10-28 Norman John Anthony Thomas Precursors for metal containing films
US7029978B2 (en) * 2003-08-04 2006-04-18 Intel Corporation Controlling the location of conduction breakdown in phase change memories
US7893419B2 (en) 2003-08-04 2011-02-22 Intel Corporation Processing phase change material to improve programming speed
US20050082624A1 (en) * 2003-10-20 2005-04-21 Evgeni Gousev Germanate gate dielectrics for semiconductor devices
KR100577909B1 (ko) 2003-11-20 2006-05-10 주식회사 에버테크 유니버설 박막증착장치
US7329593B2 (en) * 2004-02-27 2008-02-12 Asm America, Inc. Germanium deposition
US7005665B2 (en) * 2004-03-18 2006-02-28 International Business Machines Corporation Phase change memory cell on silicon-on insulator substrate
US7312165B2 (en) * 2004-05-05 2007-12-25 Jursich Gregory M Codeposition of hafnium-germanium oxides on substrates used in or for semiconductor devices
KR100581993B1 (ko) * 2004-06-09 2006-05-22 삼성전자주식회사 원자층 증착법을 이용한 물질 형성방법
US7166732B2 (en) * 2004-06-16 2007-01-23 Advanced Technology Materials, Inc. Copper (I) compounds useful as deposition precursors of copper thin films
WO2006012052A2 (en) * 2004-06-25 2006-02-02 Arkema, Inc. Amidinate ligand containing chemical vapor deposition precursors
US20050287747A1 (en) * 2004-06-29 2005-12-29 International Business Machines Corporation Doped nitride film, doped oxide film and other doped films
KR100639206B1 (ko) 2004-06-30 2006-10-30 주식회사 하이닉스반도체 상변환 기억 소자 및 그 제조방법
KR100642635B1 (ko) * 2004-07-06 2006-11-10 삼성전자주식회사 하이브리드 유전체막을 갖는 반도체 집적회로 소자들 및그 제조방법들
KR100632948B1 (ko) * 2004-08-06 2006-10-11 삼성전자주식회사 칼코겐화합물 스퍼터링 형성 방법 및 이를 이용한 상변화 기억 소자 형성 방법
US7300873B2 (en) 2004-08-13 2007-11-27 Micron Technology, Inc. Systems and methods for forming metal-containing layers using vapor deposition processes
US7250367B2 (en) 2004-09-01 2007-07-31 Micron Technology, Inc. Deposition methods using heteroleptic precursors
KR100652378B1 (ko) 2004-09-08 2006-12-01 삼성전자주식회사 안티몬 프리커서 및 이를 이용한 상변화 메모리 소자의 제조방법
US7390360B2 (en) * 2004-10-05 2008-06-24 Rohm And Haas Electronic Materials Llc Organometallic compounds
JP2006124262A (ja) * 2004-11-01 2006-05-18 Dainippon Printing Co Ltd InSbナノ粒子
JP2006156886A (ja) 2004-12-01 2006-06-15 Renesas Technology Corp 半導体集積回路装置およびその製造方法
KR100618879B1 (ko) 2004-12-27 2006-09-01 삼성전자주식회사 게르마늄 전구체, 이를 이용하여 형성된 gst 박막,상기 박막의 제조 방법 및 상변화 메모리 소자
KR100640620B1 (ko) * 2004-12-27 2006-11-02 삼성전자주식회사 트윈비트 셀 구조의 nor형 플래쉬 메모리 소자 및 그제조 방법
US20060172067A1 (en) 2005-01-28 2006-08-03 Energy Conversion Devices, Inc Chemical vapor deposition of chalcogenide materials
US20080286446A1 (en) 2005-01-28 2008-11-20 Smuruthi Kamepalli Seed-Assisted MOCVD Growth of Threshold Switching and Phase-Change Materials
KR100585175B1 (ko) * 2005-01-31 2006-05-30 삼성전자주식회사 화학 기상 증착법에 의한 GeSbTe 박막의 제조방법
KR100688532B1 (ko) 2005-02-14 2007-03-02 삼성전자주식회사 텔루르 전구체, 이를 이용하여 제조된 Te-함유 칼코게나이드(chalcogenide) 박막, 상기 박막의 제조방법 및 상변화 메모리 소자
US7399666B2 (en) 2005-02-15 2008-07-15 Micron Technology, Inc. Atomic layer deposition of Zr3N4/ZrO2 films as gate dielectrics
US7488967B2 (en) 2005-04-06 2009-02-10 International Business Machines Corporation Structure for confining the switching current in phase memory (PCM) cells
EP1710324B1 (en) 2005-04-08 2008-12-03 STMicroelectronics S.r.l. PVD process and chamber for the pulsed deposition of a chalcogenide material layer of a phase change memory device
JP2007019305A (ja) 2005-07-08 2007-01-25 Elpida Memory Inc 半導体記憶装置
KR100681266B1 (ko) 2005-07-25 2007-02-09 삼성전자주식회사 가변 저항 구조물의 제조 방법 및 이를 이용한 상변화메모리 장치의 제조 방법
US7525117B2 (en) 2005-08-09 2009-04-28 Ovonyx, Inc. Chalcogenide devices and materials having reduced germanium or telluruim content
KR100962623B1 (ko) 2005-09-03 2010-06-11 삼성전자주식회사 상변화 물질층 형성 방법, 이를 이용한 상변화 메모리 유닛및 상변화 메모리 장치의 제조 방법
US7397060B2 (en) 2005-11-14 2008-07-08 Macronix International Co., Ltd. Pipe shaped phase change memory
KR100675289B1 (ko) 2005-11-14 2007-01-29 삼성전자주식회사 상변화 기억 셀 어레이 영역 및 그 제조방법들
US7459717B2 (en) 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
WO2007067604A2 (en) 2005-12-06 2007-06-14 Structured Materials Inc. Method of making undoped, alloyed and doped chalcogenide films by mocvd processes
JP5520484B2 (ja) 2005-12-12 2014-06-11 オヴォニクス,インコーポレイテッド ゲルマニウムまたはテルル含有量の少ないカルコゲナイドデバイス及びカルコゲナイド材料
US20070154637A1 (en) * 2005-12-19 2007-07-05 Rohm And Haas Electronic Materials Llc Organometallic composition
KR100695168B1 (ko) * 2006-01-10 2007-03-14 삼성전자주식회사 상변화 물질 박막의 형성방법, 이를 이용한 상변화 메모리소자의 제조방법
US7812334B2 (en) 2006-04-04 2010-10-12 Micron Technology, Inc. Phase change memory elements using self-aligned phase change material layers and methods of making and using same
US7514705B2 (en) 2006-04-25 2009-04-07 International Business Machines Corporation Phase change memory cell with limited switchable volume
EP2302094A1 (en) 2006-05-12 2011-03-30 Advanced Technology Materials, Inc. Low temperature deposition of phase change memory materials
WO2007138703A1 (ja) 2006-05-31 2007-12-06 Renesas Technology Corp. 半導体装置
EP2029790A1 (en) 2006-06-02 2009-03-04 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of forming high-k dielectric films based on novel titanium, zirconium, and hafnium precursors and their use for semiconductor manufacturing
JP5555872B2 (ja) 2006-06-28 2014-07-23 プレジデント アンド フェローズ オブ ハーバード カレッジ 金属(iv)テトラ−アミジネート化合物ならびに蒸着においての使用
US7638645B2 (en) 2006-06-28 2009-12-29 President And Fellows Of Harvard University Metal (IV) tetra-amidinate compounds and their use in vapor deposition
KR100757415B1 (ko) 2006-07-13 2007-09-10 삼성전자주식회사 게르마늄 화합물 및 그 제조 방법, 상기 게르마늄 화합물을이용한 상변화 메모리 장치 및 그 형성 방법
KR100780865B1 (ko) 2006-07-19 2007-11-30 삼성전자주식회사 상변화막을 포함하는 반도체 소자의 형성 방법
KR100791477B1 (ko) 2006-08-08 2008-01-03 삼성전자주식회사 상변화 메모리 유닛, 이의 제조 방법, 이를 포함하는상변화 메모리 장치 및 그 제조 방법
TWI305678B (en) 2006-08-14 2009-01-21 Ind Tech Res Inst Phase-change memory and fabricating method thereof
KR100766504B1 (ko) 2006-09-29 2007-10-15 삼성전자주식회사 반도체 소자 및 그 제조 방법
US20080090400A1 (en) 2006-10-17 2008-04-17 Cheek Roger W Self-aligned in-contact phase change memory device
KR101263822B1 (ko) 2006-10-20 2013-05-13 삼성전자주식회사 상변화 메모리 소자의 제조 방법 및 이에 적용된상변화층의 형성방법
US8106376B2 (en) 2006-10-24 2012-01-31 Macronix International Co., Ltd. Method for manufacturing a resistor random access memory with a self-aligned air gap insulator
WO2008057616A2 (en) 2006-11-02 2008-05-15 Advanced Technology Materials, Inc. Antimony and germanium complexes useful for cvd/ald of metal thin films
KR101275799B1 (ko) 2006-11-21 2013-06-18 삼성전자주식회사 저온 증착이 가능한 게르마늄 전구체를 이용한 상변화층형성방법 및 이 방법을 이용한 상변화 메모리 소자의 제조방법
US7976634B2 (en) 2006-11-21 2011-07-12 Applied Materials, Inc. Independent radiant gas preheating for precursor disassociation control and gas reaction kinetics in low temperature CVD systems
WO2008069821A1 (en) 2006-12-05 2008-06-12 Advanced Technology Materials, Inc. Metal aminotroponiminates, bis-oxazolinates and guanidinates
KR100932904B1 (ko) 2006-12-05 2009-12-21 한국전자통신연구원 모뎀 성능 분석 장치 및 방법과, 모뎀 성능 분석장치의기능 검사방법
KR20080055508A (ko) 2006-12-15 2008-06-19 삼성전자주식회사 한 층에서 다른 결정 격자 구조를 갖는 상변화층 및 그형성 방법과 Ti 확산 방지 수단을 구비하는 상변화메모리 소자 및 그 제조 방법
US7750173B2 (en) 2007-01-18 2010-07-06 Advanced Technology Materials, Inc. Tantalum amido-complexes with chelate ligands useful for CVD and ALD of TaN and Ta205 thin films
KR100896180B1 (ko) 2007-01-23 2009-05-12 삼성전자주식회사 선택적으로 성장된 상변화층을 구비하는 상변화 메모리소자 및 그 제조방법
FR2913523B1 (fr) 2007-03-09 2009-06-05 Commissariat Energie Atomique Disposistif de memorisation de donnees multi-niveaux a materiau a changement de phase
JP5571547B2 (ja) * 2007-04-09 2014-08-13 プレジデント アンド フェローズ オブ ハーバード カレッジ 銅の相互接続体のための窒化コバルト層及びそれらを形成する方法
US20080254218A1 (en) 2007-04-16 2008-10-16 Air Products And Chemicals, Inc. Metal Precursor Solutions For Chemical Vapor Deposition
US8377341B2 (en) 2007-04-24 2013-02-19 Air Products And Chemicals, Inc. Tellurium (Te) precursors for making phase change memory materials
US20080272355A1 (en) 2007-05-04 2008-11-06 Samsung Electronics Co., Ltd. Phase change memory device and method for forming the same
TW200847399A (en) 2007-05-21 2008-12-01 Ind Tech Res Inst Phase change memory device and method of fabricating the same
KR100888617B1 (ko) 2007-06-15 2009-03-17 삼성전자주식회사 상변화 메모리 장치 및 그 형성 방법
KR100905278B1 (ko) 2007-07-19 2009-06-29 주식회사 아이피에스 박막증착장치, 박막증착방법 및 반도체 소자의 갭-필 방법
US7863593B2 (en) 2007-07-20 2011-01-04 Qimonda Ag Integrated circuit including force-filled resistivity changing material
KR20090013419A (ko) 2007-08-01 2009-02-05 삼성전자주식회사 상변화 기억 소자 및 그 형성 방법
KR101370275B1 (ko) 2007-08-21 2014-03-05 삼성전자주식회사 상변화 메모리 소자 및 그 제조 방법
KR20120068967A (ko) 2007-09-13 2012-06-27 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 소결체의 제조 방법, 소결체, 당해 소결체로 이루어지는 스퍼터링 타겟 및 스퍼터링 타겟-백킹 플레이트 조립체
US8454928B2 (en) 2007-09-17 2013-06-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Tellurium precursors for GST deposition
KR20090029488A (ko) 2007-09-18 2009-03-23 삼성전자주식회사 Te 함유 칼코게나이드막 형성 방법 및 상변화 메모리소자 제조 방법
US20090087561A1 (en) 2007-09-28 2009-04-02 Advanced Technology Materials, Inc. Metal and metalloid silylamides, ketimates, tetraalkylguanidinates and dianionic guanidinates useful for cvd/ald of thin films
KR20090036771A (ko) 2007-10-10 2009-04-15 삼성전자주식회사 도핑된 상변화 물질막을 구비하는 상변화 기억 소자의 제조방법
KR101458953B1 (ko) 2007-10-11 2014-11-07 삼성전자주식회사 Ge(Ⅱ)소오스를 사용한 상변화 물질막 형성 방법 및상변화 메모리 소자 제조 방법
SG178736A1 (en) 2007-10-31 2012-03-29 Advanced Tech Materials Amorphous ge/te deposition process
US7960205B2 (en) 2007-11-27 2011-06-14 Air Products And Chemicals, Inc. Tellurium precursors for GST films in an ALD or CVD process
US20090162973A1 (en) 2007-12-21 2009-06-25 Julien Gatineau Germanium precursors for gst film deposition
US8318252B2 (en) 2008-01-28 2012-11-27 Air Products And Chemicals, Inc. Antimony precursors for GST films in ALD/CVD processes
US20090215225A1 (en) * 2008-02-24 2009-08-27 Advanced Technology Materials, Inc. Tellurium compounds useful for deposition of tellurium containing materials
US7935564B2 (en) 2008-02-25 2011-05-03 International Business Machines Corporation Self-converging bottom electrode ring
US7709325B2 (en) 2008-03-06 2010-05-04 International Business Machines Corporation Method of forming ring electrode
US20090275164A1 (en) 2008-05-02 2009-11-05 Advanced Technology Materials, Inc. Bicyclic guanidinates and bridging diamides as cvd/ald precursors
US8674127B2 (en) 2008-05-02 2014-03-18 Advanced Technology Materials, Inc. Antimony compounds useful for deposition of antimony-containing materials
US8765223B2 (en) 2008-05-08 2014-07-01 Air Products And Chemicals, Inc. Binary and ternary metal chalcogenide materials and method of making and using same
WO2010055423A2 (en) 2008-05-29 2010-05-20 L'air Liquide - Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude Tellurium precursors for film deposition
US20110180905A1 (en) 2008-06-10 2011-07-28 Advanced Technology Materials, Inc. GeSbTe MATERIAL INCLUDING SUPERFLOW LAYER(S), AND USE OF Ge TO PREVENT INTERACTION OF Te FROM SbXTeY AND GeXTeY RESULTING IN HIGH Te CONTENT AND FILM CRYSTALLINITY
US8636845B2 (en) 2008-06-25 2014-01-28 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Metal heterocyclic compounds for deposition of thin films
US8168811B2 (en) 2008-07-22 2012-05-01 Advanced Technology Materials, Inc. Precursors for CVD/ALD of metal-containing films
US8124950B2 (en) 2008-08-26 2012-02-28 International Business Machines Corporation Concentric phase change memory element
US8330136B2 (en) 2008-12-05 2012-12-11 Advanced Technology Materials, Inc. High concentration nitrogen-containing germanium telluride based memory devices and processes of making
JP2010258249A (ja) 2009-04-27 2010-11-11 Toshiba Corp 相変化メモリ装置
KR20120106888A (ko) 2009-05-22 2012-09-26 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 저온 gst 방법
WO2011002705A2 (en) 2009-07-02 2011-01-06 Advanced Technology Materials, Inc. Hollow gst structure with dielectric fill
JP2011066135A (ja) 2009-09-16 2011-03-31 Elpida Memory Inc 相変化メモリ装置の製造方法
US20110124182A1 (en) 2009-11-20 2011-05-26 Advanced Techology Materials, Inc. System for the delivery of germanium-based precursor
US8017433B2 (en) 2010-02-09 2011-09-13 International Business Machines Corporation Post deposition method for regrowth of crystalline phase change material
US9012876B2 (en) 2010-03-26 2015-04-21 Entegris, Inc. Germanium antimony telluride materials and devices incorporating same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI679208B (zh) * 2014-09-26 2019-12-11 馬堡菲利普大學 至少一種二元15族元素化合物之用途、13/15半導體層及二元15族元素化合物

Also Published As

Publication number Publication date
US7838329B2 (en) 2010-11-23
KR20110116254A (ko) 2011-10-25
US20130029456A1 (en) 2013-01-31
KR20090091107A (ko) 2009-08-26
US20090305458A1 (en) 2009-12-10
TW200821403A (en) 2008-05-16
KR20120118060A (ko) 2012-10-25
US8268665B2 (en) 2012-09-18
US9219232B2 (en) 2015-12-22
KR101279925B1 (ko) 2013-07-08
EP2078102B1 (en) 2012-11-14
JP5750131B2 (ja) 2015-07-15
WO2008057616A8 (en) 2010-03-18
US20110263100A1 (en) 2011-10-27
US8709863B2 (en) 2014-04-29
US20100317150A1 (en) 2010-12-16
SG176449A1 (en) 2011-12-29
JP2013144851A (ja) 2013-07-25
KR101097112B1 (ko) 2011-12-22
CN101495672B (zh) 2011-12-07
WO2008057616A2 (en) 2008-05-15
US20140220733A1 (en) 2014-08-07
WO2008057616A3 (en) 2009-04-09
EP2078102A4 (en) 2010-11-24
EP2511280A1 (en) 2012-10-17
JP2010514918A (ja) 2010-05-06
EP2078102A2 (en) 2009-07-15
CN102352488A (zh) 2012-02-15
CN101495672A (zh) 2009-07-29
US8008117B2 (en) 2011-08-30
JP5320295B2 (ja) 2013-10-23
CN102352488B (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
TWI431145B (zh) 有用於化學氣相沉積及原子層沉積金屬薄膜之銻及鍺複合物
US8877549B2 (en) Low temperature deposition of phase change memory materials
JP5650880B2 (ja) 非晶質Ge/Te蒸着方法
TWI490227B (zh) 適於沉積含銻材料之銻化合物
US9240319B2 (en) Chalcogenide-containing precursors, methods of making, and methods of using the same for thin film deposition
CN108431295A (zh) 形成含钴膜的组合物、其合成、以及在膜沉积中的用途
TW201406984A (zh) 用於ald/cvd方法的gst膜前驅物