JP4988159B2 - 金属アミジナートを用いる原子層の析出 - Google Patents

金属アミジナートを用いる原子層の析出 Download PDF

Info

Publication number
JP4988159B2
JP4988159B2 JP2004570408A JP2004570408A JP4988159B2 JP 4988159 B2 JP4988159 B2 JP 4988159B2 JP 2004570408 A JP2004570408 A JP 2004570408A JP 2004570408 A JP2004570408 A JP 2004570408A JP 4988159 B2 JP4988159 B2 JP 4988159B2
Authority
JP
Japan
Prior art keywords
metal
vapor
amidinate
precursor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004570408A
Other languages
English (en)
Other versions
JP2006511716A (ja
Inventor
ジー. ゴードン,ロイ
エス. リム,ボーヨン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harvard College
Original Assignee
Harvard College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32329139&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4988159(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Harvard College filed Critical Harvard College
Publication of JP2006511716A publication Critical patent/JP2006511716A/ja
Application granted granted Critical
Publication of JP4988159B2 publication Critical patent/JP4988159B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/404Oxides of alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C257/00Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines
    • C07C257/10Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines
    • C07C257/14Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines having carbon atoms of amidino groups bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/406Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Description

本発明は、固体基板上への金属を含有する相似薄膜の析出材料及び析出方法に関し、更に詳細には、銅、コバルト及び鉄の金属又はそれらの酸化物あるいは窒化物を含む薄膜に関する。本発明は、マイクロエレクトロニクス装置の製作に適用される。
半導体マイクロエレクトロニクス装置の速度と機能が改良されるにつれて、新規な材料が必要となる。例えば、より高導電率をもつ材料が、集積回路におけるトランジスター間の配線をなすために必要となる。銅は、アルミニウムよりも一層高い導電率と、エレクトロマイグレーションに対する一層良好な安定性とを有する。したがって、シリコン半導体では、銅が、より一般的なものとして使われるようになってきている。この傾向は、インターネット上のhttp://public.itrs.net/Files/2001ITRS/Home.htmで公表される「International Technology Roadmap for Semiconductors(半導体のための国際技術ロードマップ)」に記載されている。
また、銅の連結には、狭い細孔のような構造においても共形的に配置されなければならず、そして得られる薄膜は、高度に均一な厚さを有していなければならない。仮に、厚さに変化があると、トレンチや通路における銅の導電率は、当該銅の粗面からの電子の散乱が増すために低下してしまう。よって、高品質なバリア/接着層は、極めて平滑な表面を有していることが望ましい。
平滑で、共形的な層となすために好適な一つの方法は、「原子層の析出」、即ちALD(原子層エピタキシとしても知られている)である。当該ALD法では、二種以上の異なる蒸気相の先駆物質を用いて、固体材料の薄膜層を析出させる。薄膜が析出される基板表面は、第一の先駆物質からの一回分の蒸気に曝される。次いで、その先駆物質からの過剰な未反応蒸気が、ポンプで吸い出される。次に、第二の先駆物質の一回分の蒸気が当該表面にもたらされて、反応が進む。この工程の作業周期が繰り返されて、より厚い薄膜が形成される。この工程の特に重要な側面の一つでは、ある最大の厚さは各作業周期内でのみ形成でき、その後は、たとえ過剰な反応体が利用可能な状態にあるとしても、更なる析出はその作業周期時に全く起こらないという点で、当該ALD反応が自己制御的であることである。この自己制御的特性のため、ALD反応では、極めて均一な厚さをもつ皮膜が形成される。ALD薄膜の厚さの均一性は、平らな基板表面に亘るばかりでなく、狭い細孔やトレンチにも及んでいる。この共形的な薄膜を形成するという能力は、「良好なステップカバレッジ」と呼ばれている。
銅のALDは、Journal of the Electrochemical Society、第145巻、2926〜2931頁(1998年)において、P. Martensson 及び J.O. Carlsson による、銅先駆物質のCu(II)−2,2,6,6−テトラメチル−3,5−ヘプタンジオナートから実証されてきた。都合の悪いことに、このALD法から得られる銅は、単に、先在する白金表面上でしか生長せず、正に自己制御的なALD工程にある温度範囲(<200℃)では、多くの他の表面に核形成し、あるいは付着することがない。銅のALDに関して他の反応が示唆されてきたが、その提案された表面反応が実際に自己制御的であるということを立証するようなデータは、今までのところ全く公表されていない。したがって、白金以外の表面に核形成して付着する銅のALD法があれば、非常に好都合なことであろう。
米国特許第6,294,836号明細書には、銅と基板との間にコバルトの「接着剤」層を用いることによって、銅の付着を改良することが報告されている。しかしながら、米国特許第6,444,263号明細書によれば、コバルトを析出させる周知の化学蒸着(CVD)技術では、ステップカバレッジが劣り、アスペクト比5:1をもつ細孔の底部では僅か20%の厚さしか与えない。コバルトのALDは、米国特許出願第2002/0081381号において、コバルトビス(アセチルアセトナート) [Co(acac)2] と水素との反応に関して特許請求されているが、そのステップカバレッジは全く示されてなく、また、その生長に関しても単に先在するイリジウム表面についてしか認められない。また、米国特許出願第2002/0081381号では、Co(acac)2とシランとの反応によるコバルトの非選択的生長についても特許請求されているが、このコバルトはシリコンで汚染されている可能性がある。よって、高いステップカバレッジを有する不純物のないコバルトのための析出方法があれば、好都合であろうと思われる。
また、銅及びコバルトの薄層を用いて、磁気情報記憶装置用の磁気抵抗書込み及び読出しヘッドが形成されている。これらの層は、極めて均一な厚さを有し、欠陥やピンホールが殆ど無いことが必要である。これら装置を作るための商業的に成功した方法は存在するが、より一層均一な厚さで、欠陥が少ない層が得られる銅及びコバルトのための析出プロセスがあれば、好都合であろうと思われる。
マイクロエレトロニクス回路をもつ集積磁気メモリー(例えば、米国特許出願第2002/0132375号および米国特許第6,211,090号明細書参照)用の先進的な設計には、厳格にコントロールされた厚さと鋭い界面をもつ、高度に均一でかつ共形的な金属(特に、Fe、Co、Ni、Cu、Ru、Mn)層が必要とされる。所要の共形性と厚さの管理とを備えたこれら金属層を析出させる公知な方法は、全く無い。
米国特許第6,294,836号明細書 米国特許第6,444,263号明細書 米国特許第6,211,090号明細書
Journal of the Electrochemical Society、第145巻、2926〜2931頁(1998年)
本発明の一つの態様には、揮発性の金属アミジナート化合物を用いた、銅、コバルト、ニッケル、鉄、ルテニウム、マンガン、クロム、バナジウム、ニオビウム、タンタル、チタン又はランタンのような金属を含む薄膜の析出方法が含まれる。当該薄膜は、均一で、共形的な厚さと平滑な表面とを有する。
この方法の利点は、極めて均一な厚さをもつ金属含有皮膜の形成能である。
本発明の関連する態様では、基板と析出皮膜との間に良好な付着を生ずる条件下で、金属含有皮膜を析出させることにある。
この方法の利点は、極めて平滑な表面をもつ金属含有皮膜の析出を可能とすることである。
この方法の付加的な利点は、極めて均一な金属含有皮膜の蒸着が、反応器内での反応体の濃度や基板の位置のような広範な条件において達成されることである。
本発明のその他の利点は、狭い細孔、トレンチ又は他の構造物を持つ基板上での共形的な金属含有皮膜の形成能である。この能力は、通常、「良好なステップカバレッジ」として知られている。
本発明のその他の態様では、実質的にピンホールや機械的な欠陥の無い金属含有皮膜の作製である。
本発明のその他の利点は、高導電率をもつ金属含有皮膜の析出能である。
本発明のその他の利点は、酸化基板に強く付着する金属含有皮膜の析出能である。
本発明のその他の利点には、比較的低い温度下での金属含有皮膜の基板被覆能が含まれる。
本発明の更なる態様には、基板に対するプラズマ欠陥の無い金属含有皮膜からなる原子層の析出方法が含まれる。
本発明の一つの特別な態様には、マイクロエレクトロニクス装置におけるコネクターとして用いる導電性銅皮膜の析出方法が含まれる。
本発明のその他の特別な態様には、有効な磁性を有するコバルト皮膜の析出方法が含まれる。
本発明の付加的な態様では、マイクロエレクトロニクス連接構造における拡散バリアー(例えば、TiN、TaN又はWN)上に、コバルト層、次いで銅層を析出させることである。
本発明の更なる態様には、有効な磁気抵抗性を有するコバルト/銅ナノラミネート皮膜の析出方法が含まれる。
本発明の一つの態様では、金属を含む薄膜は、加熱基板を一種以上の揮発性金属アミジナート化合物(M−AMD)、次いで還元性ガスもしくは蒸気に交互に暴露することで、当該基板表面に金属皮膜を形成させることによって製造される。一以上の実施態様では、当該還元性ガスには水素が含まれる。
本発明の一つの態様では、金属窒化物を含む薄膜は、加熱基板を一種以上の揮発性金属アミジナート化合物(M−AMD)、次いで窒素含有ガスもしくは蒸気に交互に暴露することで、当該基板表面上に金属窒化物皮膜を形成させることによって製造される。一以上の実施態様では、当該窒素含有ガスにはアンモニアが含まれる。
本発明のその他の態様では、金属酸化物を含む薄膜は、加熱基板を一種以上の揮発性金属アミジナート化合物(M−AMD)、次いで酸素含有ガスもしくは蒸気に交互に暴露することで、当該基板表面上に金属酸化物皮膜を形成させることによって製造される。一以上の実施態様では、当該酸素含有ガスには水が含まれる。
一以上の実施態様では、当該揮発性金属アミジナート化合物は、M(I)AMD、M(II)AMD2及びM(III)AMD3からなる群より選ばれる式(式中、Mは金属であり、AMDはアミジナート部分である。)を有する金属アミジナート化合物、並びにそれらのオリゴマーである。
本発明の一つの態様では、揮発性銅化合物の蒸気が、水素ガスと表面で交互に反応して、基板上に銅金属の薄層が形成される。特に好適な銅化合物は、銅(I)アミジナートの種類から選定される。
本発明のその他の態様では、揮発性コバルト化合物の蒸気が、水素ガスと表面で交互に反応して、基板上にコバルト金属の薄層が形成される。特に好適なコバルト化合物は、コバルト(II)アミジナートの種類から選定される。この方法における水素ガスをアンモニアガスと置換すると、コバルト窒化物を析出させることができる。この方法における水素ガスを水蒸気と置換すると、コバルト酸化物を析出させることができる。
本発明の他の実施態様では、ニッケル、鉄、ルテニウム、マンガン、クロム、バナジウム、ニオビウム、タンタル、チタン及びランタンのアミジナートは、一種以上のこれら金属を含む薄層の蒸着に用いられる。
本発明のその他の態様では、揮発性ランタン化合物の蒸気が、アンモニアガスと表面で交互に反応して、当該基板上にランタン窒化物の薄層が形成される。特に好適なランタン化合物は、ランタン(III)アミジナートの種類から選定される。この方法におけるアンモニアを水蒸気と置換すると、ランタン酸化物を析出させることができる。
ある実施態様では、当該反応は、細孔又はトレンチを含む基板上に薄膜を形成するようにして実施されてもよい。また、皮膜は、粉体、線材の表面上に、あるいは複雑な機械的構造物の周辺及び内部に形成されてもよい。
本発明によれば、金属アミジナートを含む複数の反応体から原子層を析出させることによる、金属含有層の製造方法が提供される。原子層の析出方法では、本明細書中に後に詳述される第1図に示されるような装置によって、所定金属化合物蒸気の複数回分の送出量が、第二の反応体の蒸気と交互に表面に供給される。好ましい金属アミジナートには、金属ホルムアミジナート及び金属アセトアミジナートが含まれる。典型的な第二の反応体には、水素ガス、アンモニアガス又は水蒸気が含まれる。水素ガスが第二の反応体として選ばれた場合には、金属が析出される。アンモニアガスが第二の反応体として選ばれた場合には、金属窒化物が析出される。水蒸気が第二の反応体として選ばれた場合には、金属酸化物が析出される。
一以上の実施態様では、一価金属用の先駆物質には、揮発性金属(I)アミジナート、[M(I)(AMD)]x、(式中、x=2,3)が含まれる。これらの化合物のあるものは、以下の二量体構造1を有する。
Figure 0004988159
式中、R1、R2、R3、R1’、R2’及びR3’は、1個以上の非金属原子からなる基である。いくつかの実施態様では、R1、R2、R3、R1’、R2’及びR3’は、水素、アルキル、アリール、アルケニル、アルキニル、トリアルキルシリルもしくはフルオロアルキル基又は他の非金属原子もしくは基から独立して選ばれてよい。いくつかの実施態様では、R1、R2、R3、R1’、R2’及びR3’は、それぞれ独立して、1〜4個の炭素原子を有するアルキルもしくはフルオロアルキルもしくはシリルアルキル基である。好適な一価金属には、銅(I)、銀(I)、金(I)、及びイリジウム(I)が含まれる。一以上の実施態様では、当該金属アミジナートは銅アミジナートであり、そして当該銅アミジナートには、一般式1におけるイソプロピル基としてR1、R2、R1’及びR2’を、そしてメチル基としてR3及びR3’を採る場合に相当する、銅(I)N,N’−ジイソプロピルアセトアミジナートが含まれる。一以上の実施態様では、当該金属(I)アミジナートは、一般式[M(I)(AMD)]3を有する三量体である。
一以上の実施態様では、二価の金属先駆物質には、揮発性の金属(II)ビス−アミジナート、[M(II)(AMD)2]x、(式中、x=1,2)が含まれる。これらの化合物は、以下の単量体構造2を有してよい。
Figure 0004988159
式中、R1、R2、R3、R1’、R2’及びR3’は、1個以上の非金属原子からなる基である。また、一以上の実施態様では、この構造の二量体、例えば[M(II)(AMD2]2が用いられてもよい。いくつかの実施態様では、R1、R2、R3、R1’、R2’及びR3’は、水素、アルキル、アリール、アルケニル、アルキニル、トリアルキルシリルもしくはフルオロアルキル基又は他の非金属原子もしくは基から独立して選ばれてよい。いくつかの実施態様では、R1、R2、R3、R1’、R2’及びR3’は、それぞれ独立して、1〜4個の炭素原子を有するアルキルもしくはフルオロアルキルもしくはシリルアルキル基である。好適な二価金属には、コバルト、鉄、ニッケル、マンガン、ルテニウム、亜鉛、チタン、バナジウム、クロム、ユーロピウム、マグネシウム及びカルシウムが含まれる。一以上の実施態様では、当該金属(II)アミジナートは、コバルトアミジナートであり、そして当該コバルトアミジナートには、一般式2におけるイソプロピル基としてR1、R2、R1’及びR2’を、そしてメチル基としてR3及びR3’を採る場合に相当する、コバルト(II)ビス(N,N’−ジイソプロピルアセトアミジナート)が含まれる。
一以上の実施態様では、三価金属用の先駆物質には、揮発性の金属(III)トリス−アミジナート、M(III)(AMD)3が含まれる。典型的には、これらの化合物は、以下の単量体構造3を有する。
Figure 0004988159
式中、R1、R2、R3、R1’、R2’、R3’、R1”、R2”及びR3”は、1個以上の非金属原子からなる基である。いくつかの実施態様では、R1、R2、R3、R1’、R2’、R3’、R1”、R2”及びR3”は、水素、アルキル、アリール、アルケニル、アルキニル、トリアルキルシリル、ハロゲンもしくは部分フッ素化アルキル基から独立して選ばれてよい。いくつかの実施態様では、R1、R2、R3、R1’、R2’、R3’、R1”、R2”及びR3”は、それぞれ独立して、1〜4個の炭素原子を有するアルキル基である。好適な三価金属には、ランタン、プラセオジム及び他のランタン系列金属、イットリウム、スカンジウム、チタン、バナジウム、ニオビウム、タンタル、クロム、鉄、ルテニウム、コバルト、ロジウム、イリジウム、アルミニウム、ガリウム、インジウム、及びビスマスが含まれる。一以上の実施態様では、当該金属(III)アミジナートは、ランタンアミジナートであり、そして当該ランタンアミジナートには、一般式3におけるt−ブチル基としてR1、R2、R1’、R2’、R1”及びR2”を、メチル基としてR3、R3’及びR3”を採る場合に相当する、ランタン(III)トリス(N,N’−ジ−t−ブチルアセトアミジナート) が含まれる。
本明細書で用いられるように、単量体としてのアミジナートに対して同じ金属比を有するが、化合物における金属/アミジナート単位の総数において変わる金属アミジナートは、単量体化合物の「オリゴマー」と呼ばれる。よって、単量体化合物M(II)AMD2のオリゴマーには、[M(II)(AMD)2]x、(式中、x=2,3など)が含まれる。同様に、単量体化合物M(I)AMDのオリゴマーには、[M(I)(AMD)]x、(式中、x=2,3など)が含まれる。
金属アミジナートは、いかなる好適な方法を用いて製造されてもよい。金属アミジナート先駆物質の一つの製造方法には、先ず、以下のように、1,3−ジアルキルカルボジイミドとアルキルリチウム化合物との反応によってリチウムアミジナートを生成させることが含まれる。
Figure 0004988159
次いで、当該リチウムアミジナートは、以下のように、金属ハロゲン化物と反応させて、金属アミジナートを生成させる。
Figure 0004988159
非対称のカルボジイミド(式中、R1がR2と同じでない)、並びに対称のカルボジイミド(R1=R2)は、以下の反応機構によって合成することができる。
Figure 0004988159
1及びR2のアルキル基を提供するために、多くの種類のアルキルアミン及びアルキルイソシアネートが市販されている。異なるR3のアルキル基は、適当なアルキルリチウム化合物を用いることによって提供されてよい。
金属アミジナートのその他の製造方法には、カルボジイミドよりもむしろ、以下のN,N’−ジアルキルアミジンが用いられる。
Figure 0004988159
アミジンは、当該アミジンを以下の金属水素化物(R=H)、金属アルキル(R=アルキル)又は金属アルキルアミド(R=ジアルキルアミド)と反応させることによって金属アミジナートに転換してもよい。
Figure 0004988159
これに代えて、この最後の反応を用いてアミジンのアルカリ金属塩を形成し、次いで、引き続いて金属ハロゲン化物と反応させて所望の金属アミジンを生成させてもよい。
N,N'−ジアルキルアミジンは、有機化学の分野で周知ないかなる慣用の方法によって合成されてもよい。対称アミジン(R1=R2)は、以下のように、ランタントリフルオロメタンスルホネート(ランタントリフレートとしても知られる)により触媒されたニトリルでアミンを縮合させることによって生成させてもよい。
Figure 0004988159
非対称アミジン(R1とR2とが等しくない)は、対称アミジンと同様に、アミドから出発する以下の反応によって合成されてもよい。ある種のアミドは市販されており、そして他のものは有機酸クロリドをアミンと反応させることによって合成されてもよい。
Figure 0004988159
次いで、当該アミドは、以下のように、ピリジンのような有機塩基の存在下で、トリフロロメタンスルホン酸無水物(トリフリック無水物としても知られている)と反応させて、イミニウム塩を生成させる。
Figure 0004988159
この中間イミニウム塩は、次いで、以下のように、アルキルアンモニウム塩化物R2NH3Clと、その後、NaOHのような塩基と反応させて、所望の遊離アミジンを生成させる。
Figure 0004988159
これらの反応をできるだけ安価に行うために、非対称アミジンの合成には、R1基よりも立体的に障害の大きい基R2が選定される。
一般に、液体の先駆物質は、本発明を実行するに際していくつかの利点を有する。仮に、金属アミジナートの融点が室温以下であるならば、そのときは、当該液体化合物は分別蒸留によって高純度にすることが可能である。逆に、固体材料は、昇華によって精製することはより困難であり、この昇華は、不純物を取り除くには、蒸留よりも非効率的である。また、感気性液体化合物は、一般に、固体よりも取り扱い及び移動が容易である。
低融点をもつ金属アミジナートは、R1、R2及び/又はR3に長鎖アルキル基を用いることによって製造できる。非対称金属アミジナート(式中、R1がR2と同じでない)は、一般に、対称金属アミジナートよりも低い融点を有する。また、第二ブチルのような、1個以上の立体異性体をもつアルキル基も、結果として低融点となる。一つ以上のこれらの戦術を用いると、比較的に好ましくない固体化合物よりもむしろ望ましい液体先駆物質に導くことが可能となる。
また、低融点は、本発明による析出法の場合に、蒸気を供給する際にも望ましいことである。仮に、化合物の融点がその化合物の蒸発温度よりも低ければ、そのときは蒸気の液体源は、一般に、固体化合物が有するよりも速い気化動力学を有する。また、固体の昇華では、屡、その表面が、更に気化を遅らせる揮発性に乏しい物質の残渣で覆われたままになることがある。他方、液体源では、非揮発性の残渣が液体本体中に浸漬して、その液体表面を清浄に保ち、そして望ましい迅速な蒸発が可能となる。
本発明の一以上の実施態様では、金属アミジナートは、基板上に蒸気として導入される。先駆物質の蒸気は、液体又は固体のいずれの先駆物質から慣用の方法によって形成されてもよい。一以上の実施態様では、液体先駆物質が、その気化温度以上、例えば約100〜200℃に予熱されたキャリアガス中に噴霧化されることによって気化されてもよい。噴霧化は、空気作用で、超音波で、あるいは他の適当な方法で実施されてよい。噴霧化される固体先駆物質は、デカン、ドデカン、テトラデカン、トルエン、キシレン及びメシチレンのような炭化水素、エーテル、エステル、ケトン及び塩素化炭化水素を含む有機溶媒に溶解されてよい。液体先駆物質の溶液は、一般に、純粋な溶液よりも低粘度を有するので、ある場合には、それが、純粋な溶液よりもむしろ噴霧化されるか、あるいは気化される方が好適である。また、先駆物質の液体又は先駆物質の溶液は、薄膜蒸発器を用いて、液体又は溶液を直接加熱帯域に噴射して、あるいは通気ビン中で加熱することによって気化されてもよい。液体蒸発用の市販装置は、MKS Instruments(マサチューセッツ州、アンドーバー)、ATMI, Inc.(コネチカット州、ダンバリー)、Novellus Systems, Inc.(カリフォルニア州、サンホゼ)及びCOVA Technologies(コロラド州、コロラドスプリングス)で作られている。超音波噴霧器は、Sonotek Corporation(ニューヨーク州、ミルトン)及びCetac Tecknologies(ネブラスカ州、オマハ)で作られている。
本発明の金属先駆物質は、還元剤、例えば水素ガスと反応させて、当該金属の薄膜が形成されてよい。例えば、銅(I)N,N’−ジイソプロピルアセトアミジナートを水素ガスと反応させて、銅金属が形成されてよい。また、他の実施態様では、本発明の金属先駆物質は、他の適当な反応性の還元性化合物と反応させて、金属が形成されてもよい。ある実施態様では、本発明の金属先駆物質は、アンモニアガスと反応させて、金属窒化物が形成されてよい。例えば、コバルト(II)ビス(N,N’−ジイソプロピルアセトアミジナート)をアンモニアガスと反応させて、窒化コバルトが形成されてよい。他の実施態様では、本発明の金属先駆物質は、水蒸気と反応させて、金属酸化物が形成されてよい。例えば、ランタン(III)トリス(N,N’−ジ−t−ブチルアセトアミジナート)を水蒸気と反応させて、酸化ランタンが形成されてよい。
本発明の方法では、原子層の析出(ALD)を用いて実施されてよい。ALDは、計量された量の第一の反応体を、内部に層の析出用基板を有する析出チェンバー内に導入することで開始される。当該第一の反応体の薄層が、基板上に析出する。次いで、未反応の第一の反応体及び揮発性の反応副生物が、真空ポンプによって、選択的には、不活性のキャリアガス流によって取り除かれる。次に、計量された量の第二の反応体成分が、析出チェンバー内に導入される。当該第二の反応体が析出し、それが、第一の反応体から既に析出されている層と反応する。第一及び第二反応体の交互の複数回分の投与量が析出チェンバー内に導入され、基板上に析出して、調整された組成と厚さの層が形成される。当該複数回の各投与間の時間は秒のオーダーであり、そしてそれは、適量で導入される成分が当該薄膜の表面と反応し、かつ過剰の蒸気と副生物とを基板上方の空間から取り除くための適当な時間が与えられるように選定される。当該表面反応は自己制御的であるので、それによって予測可能な組成の再生層が析出されるように決められている。二種以上の反応体成分を用いる析出方法が、本発明の技術的範囲に含まれることは、当業者にとって自明であろう。
本発明の一以上の実施態様では、通常、ガスクロマトグラフにサンプルを注入させるために使われる6口試料採取バルブ(テキサス州、ヒューストンにある Valco Instruments社製のValco 型EP4C6WEPH)が、反応体ガスのパルスを送出するために用いられてよい。当該バルブがコンピュータ制御により切り換わる毎に、「サンプルループ」内で計量された量のガスが析出チェンバーに流入する。キャリアガスの絶え間のない流れが、チューブから加熱析出ゾーンに導入される残留反応体ガスを清浄化する作用をする。この送出方法は、水素やアンモニアのような反応体ガスに好都合である。
蒸気圧が析出チェンバー内の圧力よりも高い反応体の作業回数の投与量は、図1に示されるような装置を用いて導入することが可能である。例えば、水は、析出チェンバー内の典型的な圧力(通常、1トール未満)よりもはるかに高い蒸気圧(室温で約24トール)を有している。かかる揮発性先駆物質20は、一対の空気作動ダイアフラムバルブ50及び70(カリフォルニア州、リッチモンドにある Parker-Hannifin により作製されたチタンII型)を用いて加熱析出チェンバー110内に導入される蒸気30を有している。2個のバルブは、実測容積Vを有するチェンバー60でつながっていて、この装置は、調整された温度T2に保持されているオーブン80内に配置されている。先駆物質溜め10内の当該反応体蒸気30の圧力は、取り囲むオーブン40により決定される温度T1での、固体もしくは液体の反応体20の平衡蒸気圧Peqに等しい。当該温度T1は、先駆物質の平衡蒸気圧Peqの方が析出チェンバー内の圧力Pdepよりも高くなるように、十分高圧となるように選定される。当該温度T2は、バルブ50及び70あるいはチェンバー60内に蒸気のみが存在して、濃縮相が全く存在しないように、T1よりも高くなるように選定される。また、ガス状反応体の場合にも、この送出方法を用いることが可能である。このケースでは、容積Vにおけるガス圧は、当該ガス状反応体を蓄える容器内の圧力よりもその圧力を減らす圧力調整器(図示されていない)によって設定されてもよい。
(窒素ガスのような)キャリアガスは、析出チェンバーへ向かう反応体の流入速度を速め、また反応副生物や未反応の反応体蒸気をパージするため、制御された速度で吸気口90に流入させる。キャリアガスが、炉120によって加熱された一以上の支持体130を収容する析出チェンバー110に導入される際に、キャリアガス中により均一な濃度の先駆物質ガスが供給されるように、静的攪拌機が、反応器に導くチュービング100内に配置されてもよい。その副生物や未反応の反応体蒸気は、真空ポンプ150を通過する前に、トラップ140によって除かれる。キャリアガスは、排出口160から出る。
操作に当たっては、先ず、チェンバー60内の圧力が析出チェンバー110のそれに近い値Pdepになるまで減圧するように、バルブ70が開放される。次いで、バルブ70が閉じられ、バルブ50が開放されて、先駆物質溜め10からチェンバー60内に先駆物質蒸気が導入される。その後、チェンバー60の容積Vが圧力Peqで先駆物質の蒸気を収容するように、バルブ50が閉じられ、最後に、バルブ70が開放されて、チェンバー60内に収容した殆どの先駆物質蒸気が析出チェンバー中に導入される。このサイクルによって送出される先駆物質のモル数nは、当該蒸気が理想気体の法則:
n=(Peq−Pdep)(V/RT1)
に従うということを仮定して概算できる。式中、Rは、気体定数である。また、この数式は、チューブ90からのキャリアガスは、バルブ70が開放されて先駆物質蒸気が解放される短い時間中には、当該バルブを通してチェンバー60に入らないということを仮定している。仮に、バルブ70が開放されている時間中に、キャリアガスと先駆物質の蒸気との混合が起こるとすると、そのときは、多量の先駆物質蒸気の投与量が最大値:
n=(Peq)(V/RT1)
となるまで送出されてしまう。仮に、チェンバー60内の残留先駆物質の蒸気の全てがキャリアガスと置換されてしまうとすると、比較的高い蒸気圧(Pew>>Pdep)をもつ先駆物質の場合には、これら二つの先駆体物質量の投与量の概算値には、通常、大きな差異はない。
先駆物質20を送出するこの作業周期は、必要な場合には、所要投与量の先駆物質20が反応チェンバー内に送出されるまで繰り返される。典型的に、ALD法では、この作業周期(あるいは多量の投与量が与えられるまで繰り返される数回のかかる作業周期)で送出される先駆物質の投与量は、表面反応を完結させる(「飽和」ともいう)に十分な量であるように選定される。
eqの方がPdepより低いような蒸気圧をもつ先駆物質の場合には、上記した方法では、析出チェンバー内にいかなる先駆物質の蒸気も送出されない。その蒸気圧は、当該蒸気溜めの温度を上げることによって高めることはできるが、あるケースでは、その高温によって、先駆物質が熱分解してしまうという結果になることが予想される。金属アミジナート先駆物質は、析出チェンバー内で、操作圧より低い蒸気圧を有することが屡ある。低い蒸気圧をもつ感熱性先駆物質21の場合には、その蒸気31が図1の装置を用いて送出されてもよい。チェンバー19が、先ず、圧力調整器(図示していない)からチューブ15及びバルブ17を通って送出されるキャリアガスで加圧される。次いで、バルブ17が閉じられ、バルブ51が開放されて、当該キャリアガスによって先駆物質溜めが圧力Ptotとなるまで放置される。そのときの溜め11の蒸気空間31における先駆物質の蒸気のモル分率は、Peq/Ptotである。バルブ51が閉じられ、次いでバルブ71が開放されて、一回分の投与量の反応体蒸気31が送出される。仮に、Ptotが析出チェンバー内での圧力Pdepより大きい圧力に設定されると、そのときは、一回分の投与量に送出されるモル数は、式:
n=(Peq/Ptot)(Ptot−Pdep)(V/RT1’)
から推定することができる。式中、Vは、チェンバー11内の蒸気空間31の容積であり、そしてT1’は、オーブン41によって保持される温度である。オーブン81は、凝縮を避けるため、T1’より十分高い温度T2’に維持されている。仮に、チューブ91からのキャリアガスが、バルブ71の開放中に当該容積に入り込むと、そのときは、この推定値よりも幾分多い一回分の投与量が送出されることとなる。当該容積Vを十分に大きくすることによって、表面反応を最大値まで進めるに足るような、確実に多量な先駆物質の一回分の投与量が送出されてもよい。仮に、蒸気圧Peqが低いため、所要の容積Vが実行不能な程度に成る程大きくなるならば、そのときは、一回分の他の反応体の投与量を送出する前に、容積Vからの付加的な複数回分の投与量が送出されてもよい。
一以上の実施態様では、図1の装置には、同様の送出チェンバーであって、例えば、両者とも析出圧よりも高いか、あるいは低い蒸気圧を有する試料を送出するために用いられる2個の送出チェンバーが含まれていてもよい。
恒温析出領域110では、一般に、基板および内側のチェンバー壁を含む、先駆物質の蒸気に曝されている全ての表面に材料が析出される。よって、基板及び暴露したチェンバー壁の全面積で割り算されたモルによって、使用された先駆物質の多数回分の投与量を報告することが適当である。また、ある場合には、析出が基板の裏面の一部又は全部に起こることがあり、その場合には、その領域もまた全面積に含ませるべきである。
本発明は、以下の実施例にしたがって理解されてよいが、当該実施例は、単に本発明を説明する目的で記載されたものにすぎず、本発明について限定するものではない。本発明の技術的範囲は、特許請求の範囲の記載によって解されるべきものである。
本実施例に記載される反応及び操作は、不活性雰囲気のボックス、あるいは標準のシュレンク(Schlenk)技術のいずれかを用いて、純窒素雰囲気下で行った。テトラヒドロフラン(THF)、エーテル、ヘキサン及びアセトニトリルを、革新的な技術である溶媒精製法を用いて乾燥し、そして4Åの分子篩に貯蔵した。第二ブチルアミンを、酸化バリウムからの蒸留によって乾燥した。メチルリチウム、第三ブチルリチウム、1,3−ジイソプロピルカルボジイミド、1,3−ジ−t−ブチルカルボジイミド、CuBr,AgCl、CoCl2、NiCl2、MnCl2、MgCl2、SrCl2、TiCl3、VCl3、BiCl3、RuCl3、Me3Al(トリメチルアルミニウム)、(CF3SO3)3La(Laトリフレート)、La及びPrは、Aldrich Chemical Company から入手して使用した。これらの手順によって得られた金属化合物は、一般に、周囲空気中の湿分及び/又は酸素と反応するので、純窒素ガスあるいはアルゴンガスのような不活性な、乾燥雰囲気下で、貯蔵し、また取り扱わなければならない。
実施例1:銅(N,N’−ジイソプロピルアセトアミジナート)([Cu(iPr−AMD)]2)の合成
メチルリチウムのエーテル溶液(エーテル34mL中1.6モル、0.054モル)を、−30℃下で、100mLの1,3−ジイソプロピルカルボジイミド(6.9g、0.055モル)エーテル溶液に滴下して加えた。この混合物を室温まで暖め、4時間攪拌した。次いで、得られた無色溶液を、50mLの臭化銅(7.8g、0.054モル)溶液に添加した。この反応混合物を、光を排除した下で12時間攪拌した。次いで、減圧下で全ての揮発物を除き、得られた固体をヘキサン(100mL)で抽出した。このヘキサン抽出物をガラスフリット上のセライトパッドを通過させて濾過して、淡黄色の溶液を得た。炉液を濃縮し、それを−30℃に冷却したところ、9.5gの無色の結晶を生成物(83%)として得た。昇華:50ミリトール下で70℃。1H NMR(C66、25℃):1.16(d,12H)、1.65(s,3H)、3.40(m,2H)。C16344Cu2の計算値:C,46.92、H,8.37、N,13.68。実測値:C,46.95、H,8.20、N,13.78。
[Cu(iPr−AMD)]2結晶を、X線結晶学によって構造決定した。図2に示す[Cu(iPr−AMD)]2は、アミジナート配位子がμ,η1:η1様に銅金属原子を橋架けしている固体状態の二量体である。その平均Cu−Nの距離は、1.860(1)Åである。Cu−N−C−N−Cuの5員環の形状は、結晶構造的に中心に対して対称である平面状である。
実施例2: コバルトビス(N,N'−ジイソプロピルアセトアミジナート)([Co(iPr−AMD)2])の合成
この化合物を、溶媒としてエーテルとTHFの1:1の混合物を用いたことを除いて、 [Cu(iPr−AMD)]2に関して記載したと同様な方法で得た。−30℃下で、ヘキサン中で再結晶したところ、暗緑色の結晶を生成物(77%)として得た。昇華:50ミリトール下で40℃。融点:72℃。C16344Coの計算値:C,56.29、H,10.04、N,16.41。実測値:C,54.31、H,9.69、N,15.95。
図3に示されるCo(iPr−AMD)2は、歪んだ四面体位置におけるそれぞれのコバルト原子の近傍に配位した2個のアミジナート配位子をもつ単量体である。その平均Co−Nの距離は、2.012(8)Åである。Co−N−C−Nの4員環は、強制鏡面をもつ平面である。
実施例3: コバルトビス(N,N'−ジ−t−ブチルアセトアミジナート)([Co(iBu−AMD)2])の合成
この化合物を、1,3−ジイソプロピルカルボジイミドの代わりに1,3−ジ−t−ブチルカルボジイミドを用いて、実施例2における([Co(iPr−AMD)2])と同様な方法で得た。暗青色の結晶(84%)。昇華:50ミリトール下で45℃。融点:90℃。C20424Coの計算値:C,60.43、H,10.65、N,14.09。実測値:C,58.86、H,10.33、N,14.28。
実施例4: ランタントリス(N,N'−ジイソプロピルアセトアミジナート)([La(iPr−AMD)3])の合成
CoCl2の代わりにLaCl3(THF)2を用いて、[Co(iPr−AMD)2]に関して上記したと同様な手順にしたがって、灰色がかった白色の固体を、粗原料の固体材料を昇華した生成物として得た。昇華:40ミリトール下で80℃。1H NMR(C66、25℃):1.20(d,36H)、1.67(s,18H)、3.46(m,6H)。C24516Laの計算値:C,51.24、H,9.14、N,14.94。実測値:C,51.23、H,8.22、N,14.57。
実施例5: ランタントリス(N,N'−ジイソプロピル−2−t−ブチルアミジナート)([La(iPr−iBuAMD)3]・1/2C612)の合成
LaCl3(THF)2を用いることを除いて、[Co(iPr−AMD)2]に関して上記したと同様な手順にしたがって、灰色がかった白色固体を、粗原料の固体材料を昇華した生成物として得た。無色の結晶(80%)。昇華:50ミリトール下で120℃。融点:140℃。1H NMR(C66、25℃):1.33(br,21H)、4.26(m,6H)。C33756Laの計算値:C,57.04、H,10.88、N,12.09。実測値:C,58.50、H,10.19、N,11.89。
実施例6: 鉄ビス(N,N'−ジイソプロピルアセトアミジナート)([Fe(iPr−AMD)2]2)の合成
FeCl2を用いたことを除いて、[Co(iPr−AMD)2]に関して上記したと同様な手順にしたがって、黄緑色の固体[Fe(iPr−AMD)2]2を、そのヘキサン抽出から溶媒を蒸発させた生成物として得た。昇華:50ミリトール下で70℃。融点:110℃。
実施例7: 鉄ビス(N,N'−ジ−t−ブチルアセトアミジナート)([Fe(iBu−AMD)2])の合成
1,3−ジイソプロピルカルボジイミドに代えて1,3−ジ−t−ブチルカルボジイミドを用いたことを除いて、[Fe(iPr−AMD)2]2に関して上記したと同様な手順にしたがって、白色の結晶(77%)を得た。昇華:60ミリトール下で55℃。融点:107℃。C20424Feの計算値:C,60.90、H,10.73、N,14.20。実測値:C,59.55、H,10.77、N,13.86。
実施例8: ニッケルビス(N,N'−ジイソプロピルアセトアミジナート)([Ni(iPr−AMD)2])の合成
NiCl2を用いたことを除いて、[Co(iPr−AMD)2]に関して実施例2に記載したと同様な手順にしたがい、かつ当該反応混合物を一晩還流して、褐色の固体[Ni(iPr−AMD)2]2を、そのヘキサン抽出物から溶媒を蒸発させた生成物として得た。褐色の結晶(70%)。昇華:70ミリトール下で35℃。融点:55℃。C16344Niの計算値:C,56.34、H,10.05、N,16.42。実測値:C,55.22、H,10.19、N,16.12。
実施例9: マンガンビス(N,N'−ジイソプロピルアセトアミジナート)([Mn(iPr−AMD)2]2)の合成
MnCl2を用いたことを除いて、[Co(iPr−AMD)2]に関して記載したと同様な手順にしたがい、固体[Mn(iPr−AMD)2]2を、そのヘキサン抽出物から溶媒を蒸発させた生成物として得た。黄緑色の結晶(79%)。昇華:50ミリトール下で65℃。C32688Mn2の計算値:C,56.96、H,10.16、N,16.61。実測値:C,57.33、H,9.58、N,16.19。
実施例10: マンガンビス(N,N'−ジ−t−ブチルアセトアミジナート)([Mn(iBu−AMD)2])の合成
1,3−ジイソプロピルカルボジイミドに代えて1,3−ジ−t−ブチルカルボジイミドを用いたことを除いて、[Mn(iPr−AMD)2]に関して上記したと同様な手順にしたがって、淡黄色の結晶(87%)を得た。昇華:60ミリトール下で55℃。融点:100℃。
実施例11: チタントリス(N,N'−ジイソプロピルアセトアミジナート)([Ti(iPr−AMD)3])の合成
LaCl3(THF)2の代わりにTiCl3を用いたことを除いて、[La(iPr−AMD)3]に関して上記したと同様な手順にしたがって、[Ti(iPr−AMD)3]を、そのヘキサン抽出物から溶媒を蒸発させた生成物として得た。褐色の結晶(70%)。昇華:50ミリトール下で70℃。C24516Tiの計算値:C,61.13、H,10.90、N,17.82。実測値:C,60.22、H,10.35、N,17.14。
実施例12: バナジウムトリス(N,N'−ジイソプロピルアセトアミジナート)([V(iPr−AMD)3])の合成
TiCl3の代わりにVCl3を用いたことを除いて、[Ti(iPr−AMD)3]に関して上記したと同様な手順にしたがって、[V(iPr−AMD)3]を、そのヘキサン抽出物から溶媒を蒸発させた生成物として得た。赤褐色の粉体(80%)。昇華:45ミリトール下で70℃。
実施例13: 銀(N,N'−ジ−イソプロピルアセトアミジナート)([Ag(iPr−AMD)]x(x=2及びx=3)の合成
これら二種の化合物は、[Cu(iPr−AMD)]に関して記載したと同様な方法で同時に調製して、二量体と三量体の1:1の混合物として得た。無色の結晶(90%)。昇華:40ミリトール下で80℃。融点:95℃。1H NMR(C66、25℃):1.10(d,二量体)、1.21(d,三量体)、1.74(s,三量体)、1.76(s,二量体)、3.52(m,二量体及び三量体に係るピークは明瞭に分解されない)。[C8172Ag]xの計算値:C,38.57、H,6.88、N,11.25。実測値:C,38.62、H,6.76、N,11.34。
実施例14.銅材料の原子層の析出
図1の装置を用いて、銅材料を析出させた。銅(I)N,N’−ジイソプロピルアセトアミジナートの二量体を、蒸気容積125cm3をもつステンレス鋼製の容器11内に置いて、85℃に加熱した。その温度では、約0.15トールの蒸気圧を有する。1.0ミクロモルの投与量の銅先駆物質を、窒素のキャリアガスを用いて10トールまでチェンバーを加圧することによって導入した。水素を、ガスクロマトグラフの試料採取バルブを用いて1.4ミリモルの投与量で導入した。基板130とチェンバー110の加熱壁の面積の合計は、約103cm2となった。よって、銅先駆物質の1回分の投与量は1×10-9モル/cm2で、水素の1回分の投与量は1.4×10-6モル/cm2であった。その「暴露」は、析出領域における先駆物質の蒸気の分圧とこの蒸気が基板表面の所定の位置で接触する時間との積として定義される。当該銅先駆物質に対する基板の暴露は、2.3×104ラングミュア/作業周期で、水素に対するそれの暴露は3.4×107ラングミュア/作業周期であった。
一枚のシリコン基板130を、希塩酸溶液中に数秒間浸漬してその固有の酸化物を溶解させることによって調製した。次いで、当該基板を、その表面が親水性になるまで(約2分)、空気中で紫外線(例えば、UV水銀灯)を照射した。その後、基板130をチェンバー110内に配置し、225℃の温度まで加熱した。その他の狭い細孔(4.5:1比の長さ対直径)を有するシリコン基板を、同様に処理してチェンバー110内に配置した。ガラス状の炭素基板を、乾燥及びUV洗浄前に、10%のHF(5秒)、脱イオン水(30秒)、及びイソプロパノール(10秒)で洗浄した。シリコン上のガラス及びスパッタされた白金と銅からなる基板を、イソプロパノール(10秒)で洗浄し、乾燥した。
キャリアガスを、銅先駆物質と水素との交互の複数回分の投与量の間に、10秒間流した。500回の作業周期が完了した後、析出チェンバー用の加熱器の電源を切った。基板が室温まで冷却した後に、それらを反応器から取り出した。炭素及びシリコン基板をラザフォード後方散乱分光分析法で調べたところ、8×1016原子/cm2厚、即ち1.4×10-7モル/cm2厚の新鮮な銅からなる薄膜を有していることが判明した。
多数の細孔を有するシリコンウェーハを切り取り、その細孔の断面について走査電子顕微鏡(SEM)観察をした。図4の顕微鏡写真では、銅が約10:1のアスペクト比(長さ対直径の比として定義される)を有する細孔の内面全体を覆っていることが示されている。よって、この銅のALD法は、優れたステップカバレッジを示している。
実施例15.表面反応が自己制御的であることの立証
両反応体の複数回分の投与量を2倍にしたことを除いて、実施例14を繰り返した。薄膜の厚さ及びその特性は、実施例14のそれと不変であった。この結果は、その表面反応が自己制御的であることを示している。
実際例16.薄膜の厚さは、作業周期の数と共に直線的に変わることの立証
500回の作業周期に代えて1000回の作業周期を用いたことを除いて、実施例14を繰り返した。2倍量の材料が析出した。この結果は、それぞれの自己制御的反応が、再度開始するための他の反応に必要な条件を再生していること、および基板表面での開始反応又は核生長に、実質的な遅れが全くないことを示している。
実施例17.銅の原子層の析出に係る温度範囲の立証
基板温度を180℃〜300℃の範囲内で変えたことを除いて、実施例14を繰り返した。作業周期当たりの厚さが図6に示されるように温度と共に変化したことを除いては、同様な結果が得られた。基板温度が180℃以下では、銅の析出は全く観察されなかった。この観察によると、反応チェンバーの壁の温度が180℃以下でかつ先駆物質の露点以上に保持されるならば、当該壁には望ましくない銅の析出物は残留しないことを教示している。
実施例18.コバルト金属の原子層の析出
銅先駆物質に代えて75℃に保持されたコバルトビス(N,N’−ジイソプロピルアセトアミジナート)を用い、かつ基板温度を300℃に上げたことを除いて、実施例14を繰り返した。析出チェンバー内に、内径20μmを有する溶融シリカ製の毛管と共に、先に二酸化珪素で次いで窒化タングステンで被覆したシリコン基板を配置した。各回の作業周期では、コバルト先駆物質の一回分の投与量は4×10-9モル/cm2であり、水素の一回分の投与量は9×10-7モル/cm2であった。コバルト先駆物質に対する基板の暴露は、1×105ラングミュア/作業周期で、水素に対するそれの暴露は、2×107ラングミュア/作業周期であった。
当該基板をラザフォード後方散乱分光分析法で調べたところ、5×1016原子/cm2厚、即ち8×10-8モル/cm2厚の新鮮なコバルト金属からなる薄膜を有していることが判明した。その被覆された溶融シリカの毛管を光学顕微鏡で調べたところ、当該コバルト薄膜が管の細孔中に少なくとも60倍(即ち、アスペクト比>60)まで延びていることが判明した。図5において、1は細孔の開口端部を示し、そして2は細孔中に皮膜がどこまで浸透したかの程度を示している。この結果は、このコバルトALD法によって達成された、優れたステップカバレッジを示している。
実施例19.コバルトの原子層析出に係る温度範囲の立証
基板温度を250℃〜350℃の範囲内で変えたことを除いて、実施例18を繰り返した。作業周期当たりの厚さが図7に示されるように温度と共に変化したことを除いては、同様な結果が得られた。基板温度が250℃以下では、コバルトの析出は全く観察されなかった。この観察によると、反応チェンバーの壁の温度が250℃以下でかつ先駆物質の露点以上に保持されるならば、当該壁には望ましくないコバルトの析出物は残留しないことを教示している。
実施例20. Co/WN接着剤層/拡散バリア上への付着性銅薄膜の原子層の析出
先に二酸化珪素上に被覆された窒化タングステン(WN)層、WN/SiO2/Si上に、実施例14と実施例18における作業を交互に繰り返した。多層構造Cu/Co/WN/SiO2をもつ平滑な、付着性薄膜が得られた。次いで、この多層構造の表面に接着テープを接着した。当該テープを引き剥がしたときに、接着力の喪失は全く観察されなかった。
実施例21. 酸化コバルトの原子層の析出
水素ガスを水蒸気に代えたことを除いて、実施例18を繰り返した。略CoOの組成をもつ酸化コバルトの均一で、平滑な層が析出した。
実施例22. 金属ニッケルの原子層の析出
銅先駆物質に代えて75℃に保持されたニッケルビス(N,N’−ジイソプロピルアセトアミジナート)を用い、かつ基板温度を280℃に上げたことを除いて、実施例14を繰り返した。析出チェンバー内に、先に二酸化珪素で次いで窒化タングステンで被覆したシリコン基板を配置した。各回の作業周期では、ニッケル先駆物質の一回分の投与量は4×10-9モル/cm2であり、水素の一回分の投与量は8×10-7モル/cm2であった。ニッケル先駆物質に対する基板の暴露は、3×104ラングミュア/作業周期で、水素に対するそれの暴露は、7×106ラングミュア/作業周期であった。
当該基板をラザフォード後方散乱分光分析法で調べたところ、5×1016原子/cm2厚、即ち8×10-8モル/cm2厚の新鮮なニッケル金属からなる薄膜を有していることが判明した。
実施例23. 金属鉄の原子層の析出
銅先駆物質に代えて75℃に保持された鉄ビス(N,N’−ジ−t−ブチルアセトアミジナート)を用い、かつ基板温度を280℃に上げたことを除いて、実施例14を繰り返した。析出チェンバー内に、先に二酸化珪素で次いで窒化タングステンで被覆したシリコン基板を配置した。各回の作業周期では、鉄先駆物質の一回分の投与量は4×10-9モル/cm2であり、水素の一回分の投与量は4×10-6モル/cm2であった。鉄先駆物質に対する基板の暴露は、8×104ラングミュア/作業周期で、水素に対するそれの暴露は、4×107ラングミュア/作業周期であった。
当該基板をラザフォード後方散乱分光分析法で調べたところ、5×1016原子/cm2厚、即ち8×10-8モル/cm2厚の新鮮な鉄金属からなる薄膜を有していることが判明した。
実施例24. 酸化鉄のALD
コバルトビス(N,N’−ジイソプロピルアセトアミジナート)に代えて85℃に保持された鉄ビス(N,N’−ジ−t−ブチルアセトアミジナート)([Fe(iBu-AMD)2])を用いて、実施例21を繰り返した。各回の作業周期では、鉄先駆物質の一回分の投与量は4×10-9モル/cm2であり、水蒸気の一回分の投与量は8×10-8モル/cm2であった。鉄先駆物質に対する基板の暴露は、8×104ラングミュア/作業周期で、水蒸気に対するそれの暴露は、7×105ラングミュア/作業周期であった。略FeOの組成をもつ酸化鉄の均一で、平滑な層が250℃に加熱された基板上に析出した。
実施例25. 酸化ランタンのALD
コバルトトリス(N,N’−ジイソプロピルアセトアミジナート)に代えて120℃に保持されたランタントリス(N,N’−ジイソプロピルアセトアミジナート)([La(iBu-AMD)3])を用いて、実施例21を繰り返した。50回の作業周期のそれぞれでは、ランタン先駆物質の一回分の投与量は4×10-9モル/cm2であり、水蒸気の一回分の投与量は8×10-8モル/cm2であった。ランタン先駆物質に対する基板の暴露は、3×104ラングミュア/作業周期で、水蒸気に対するそれの暴露は、7×105ラングミュア/作業周期であった。略La23の組成をもち、約5nm厚の酸化ランタンの均一で、平滑な層が300℃に加熱された基板上に析出した。
実施例21の手順を50回以上の作業周期で繰り返すと、反応チェンバーの異なる部分での試料を覆う厚さは均一に分布せず、そして作業周期当たりの厚さは、特に真空ポンプの排出口に近い領域では作業周期当たり0.1nmより大きかった。この結果についての我々の解釈によれば、水の投与時に、水蒸気が、より厚い酸化ランタン層の塊中に吸収されるということである。噴射水に続く数秒のパージ時間中に、吸収された水の全部でなく一部が、解放されて窒素ガス中に戻り、チェンバー外に搬出された。しかしながら、更なる水蒸気の解放が、次のランタン先駆物質の投与時に継続した。La23の化学蒸着があると、次いでこの残留水蒸気とランタン先駆物質との反応が起こり、期待以上の成長速度が、特に真空ポンプの排出口に最も近い析出チェンバーの部分に得られる。均一な厚さは、水蒸気のパージ時間を長くすることによって回復することができる。厚さの均一性を回復させるより実際的な解決は、実施例26に記載される。
実施例26. 酸化ランタン/酸化アルミニウムのナノラミネートのALD
実施例25を、16回の作業周期の酸化ランタンを析出させるために繰り返した。次いで、当該分野の周知技術にしたがい、トリメチルアルミニウム蒸気と水蒸気の交互の複数回の投与量を用いて、6回の作業周期の酸化アルミニウムをALDによって析出させた。このパターン(16La23+6Al23)の作業周期を5回繰り返した。約10nm厚の均一で、平滑な層が、300℃に加熱された基体上に析出した。当該層は、略LaAlO3の平均組成を有していた。この材料から作られたコンデンサーは、約18の誘電率を有し、1ボルトの印加電圧下で、非常に低い約5×10−8アンペア/cm2の漏れ電流しか生じなかった。
実施例26で達成した厚さの均一性についての我々の解釈によれば、その酸化アルミニウム層が、下方の酸化ランタン層への水の拡散を防止するバリアとして作用しているということである。
実施例27. 酸化マンガンのALD
コバルトビス(N,N’−ジイソプロピルアセトアミジナート)に代えて75℃に保持されたマンガンビス(N,N’−ジ−t−ブチルアセトアミジナート)([Mn(iBu-AMD)2])を用いて、実施例21を繰り返した。各回の作業周期では、マグネシウム先駆物質の一回分の投与量は4×10-9モル/cm2であり、水蒸気の一回分の投与量は8×10-8モル/cm2であった。マンガン先駆物質に対する基板の暴露は、3×104ラングミュア/作業周期で、水蒸気に対するそれの暴露は、6×105ラングミュア/作業周期であった。略MnOの組成をもつ酸化マンガン(II)の均一で、平滑な層が、約0.1nm/作業周期の析出速度で、250℃に加熱された基板上に析出した。
実施例28. 酸化マグネシウムのALD
実施例21で用いたコバルトビス(N,N’−ジイソプロピルアセトアミジナート)に代えて、実施例3に記載したそれと同様な手順によって調製された、80℃に保持されたマグネシウムビス(N,N’−ジ−t−ブチルアセトアミジナート)([Mg(iBu-AMD)2])を用いて、実施例21を繰り返した。各回の作業周期では、マグネシウム先駆物質の一回分の投与量は3×10-9モル/cm2であり、水蒸気の一回分の投与量は6×10-8モル/cm2であった。マグネシウム先駆物質に対する基板の暴露は、3×104ラングミュア/作業周期で、水蒸気に対するそれの暴露は、5×105ラングミュア/作業周期であった。略MgOの組成をもつ酸化マグネシウムの均一で、平滑な層が、0.08nm/作業周期の析出速度で、250℃に加熱された基板上に析出した。
実施例29. リチウムN,N’−ジ−sec−ブチルアセトアミジナートの合成
1当量の乾燥第二ブチルアミン、1当量の乾燥アセトニトリル及び0.02当量のランタントリフレート、触媒を、還流冷却器付シュレンクフラスコに投入した。反応混合物を3日間還流させながら、乾燥窒素を、還流カラムを通して通気ビンからフラスコ中にゆっくりと通過させた。次いで、過剰の反応体を真空下に取り除き、残留液を蒸留により精製して、第二ブチルアセトアミジンを得た。1H NMR(C66、25℃):δ1.49(m,4H)、δ1.38(s,3H)、δ1.11(d,J=6Hz,6H)、δ0.90(t,J=8Hz,6H)。
第二ブチルアセトアミジンのエーテル溶液を、還流カラムとオイル通気ビンをもつ反応フラスコ内で、1g/乾燥エーテル10mLの濃度で調製した。次いで、1当量のメチルリチウムエーテル溶液をゆっくりとこの第二ブチルアセトアミジン溶液に添加して、反応混合物を1時間攪拌した。得られたリチウムN,N’−ジ−sec−ブチルアセトアミジナート溶液を、その後、更に精製することなく、他の金属sec−ブチルアセトアミジナート塩の合成に使用した。リチウムN,N’−ジ−sec−ブチルアセトアミジナートの1H NMR(C66、25℃):δ3.16(m,2H)、δ1.71(s,3H)、δ1.68(m,2H)、δ1.52(m,2H)、δ1.19(d,J=6Hz,4H)、δ0.94(m,6H)。
実施例30. コバルトビス(N,N’−ジ−sec−ブチルアセトアミジナート)([Co(sec−Bu−AMD)2])の合成
無水塩化コバルト(II)、CoCl2を、乾燥箱内のシュレンクフラスコ中に秤量装填した。実施例29で作製した2当量のリチウムN,N’−ジ−sec−ブチルアセトアミジナート溶液を、等容量の乾燥THFと共に添加した。反応混合物を一晩攪拌し、次いで揮発物を室温下、真空中で取り除いた。当該固体を乾燥ヘキサンに溶解し、濾過して、真空中、室温下で濾液からヘキサンを除いたところ、粗収率82%のコバルトビス(N,N’−ジ−sec−ブチルアセトアミジナート)を得た。この液体を蒸留(60ミリトール下で55℃)により精製した。
実施例31. 銅(I)N,N’−ジ−sec−ブチルアセトアミジナート二量体([Cu(sec−Bu−AMD)]2)の合成
実施例30の手順を、塩化コバルトと実施例29で調製した1当量のリチウムN,N’−ジ−sec−ブチルアセトアミジナートとに代えて、1当量の塩化銅(I)、CuClを用いて実施した。[Cu(sec−Bu−AMD)]2を、実施例30の手順で単離した。昇華:50ミリトール下で55℃。融点:77℃。[Cu(sec−Bu−AMD)]2は、銅のALD用の先駆物質として、それが蒸発に用いられる温度(約100℃)下で液体であり、その結果、固体先駆物質の昇華により得られるよりも一層再生可能な蒸気の送出が得られるという点で利点を有する。
実施例32. ビスマストリス(N,N’−ジ−t−ブチルアセトアミジナート)二量体([Bi(iBu−AMD)3]2)の合成
1当量の三塩化ビスマス、BiCl3、及び3当量のリチウムN,N’−ジ−t−ブチルアセトアミジナート(1,3−ジ−t−ブチルカルボジイミドとメチルリチウムとの反応によって得られる)を、THF中で一晩還流した。THFを蒸発した後、乾燥ヘキサンで抽出し、濾過して、濾液からヘキサンを抽出し、粗生成物を昇華(80ミリトール下で70℃)によって単離した。融点:95℃。p−キシレン溶液中での凝固点降下法による二量体。
実施例33. ストロンチウムビス(N,N’−ジ−t−ブチルアセトアミジナート)([St(iBu−AMD)2]n)の合成
実施例32で用いたそれと同様な手順にしたがって、ストロンチウムビス(N,N’−ジ−t−ブチルアセトアミジナート)を得た。粗生成物を、昇華(90ミリトール下で130℃)によって生成した。
実施例34. 酸化ビスマス、Bi23のALD
実施例25と同様な手順にしたがって、酸化ビスマス、Bi23の薄膜を、85℃でビスマストリス(N,N’−ジ−t−ブチルアセトアミジナート)を含む蒸発源から、200℃の温度下で基板上に析出させた。当該薄膜の厚さは、約0.03nm/作業周期であった。
実施例35. ルテニウムトリス(N,N’−ジイソプロピルアセトアミジナート)([Ru(iPr−AMD)3])の合成
実施例11と同様な手順にしたがって、ルテニウムトリス(N,N’−ジイソプロピルアセトアミジナート)([Ru(iPr−AMD)3])を、低収率で得た。
比較例1
実施例14を、銅先駆物質のみを用い、かつ水素ガスを用いないで繰り返した。基板表面に析出された薄膜は、全く観察されなかった。
比較例2
実施例18を、コバルト先駆物質のみを用い、かつ水素を用いないで繰り返した。基板表面に析出された薄膜は、全く観察されなかった。
当業者であれば、単に慣用の実験のみをもってしても、本明細書に特定して記載される発明の特定の実施態様に相当する多くの発明が認められるか、あるいはそれを確認することが可能となろう。かかる発明についても、本発明の技術的範囲に含まれることは言うまでもない。
本発明の少なくとも一つの実施態様の実施に使われる原子析出層形成装置の一断面図である。 本発明の少なくとも一つの実施態様の実施に使われる銅先駆物質の分子構造である。 本発明の少なくとも一つの実施態様の実施に使われるコバルト先駆物質の分子構造である。 狭い細孔の壁が本発明の一つの実施態様で用いられる銅金属で被覆されていることを示す、細孔断面の走査電子顕微鏡写真である。 狭い細孔の壁が本発明の一つの実施態様で用いられるコバルト金属で被覆されていることを示す、細孔の光学顕微鏡写真である。 基板温度の関数として、各ALD作業周期で析出される銅の厚さを示すプロット図である。 基板温度の関数として、各ALD作業周期で析出されるコバルトの厚さを示すプロット図である。
符号の説明
10 先駆物質溜め
11 先駆物質溜め
15 チューブ
17 バルブ
19 チェンバー
20 揮発性先駆物質
21 感熱性先駆物質
30 蒸気
31 蒸気
40 オーブン
41 オーブン
50 バルブ
51 バルブ
60 チェンバー
70 バルブ
71 バルブ
80 オーブン
81 オーブン
90 チューブ
91 チューブ
100 チューブ
110 析出チェンバー
120 炉
130 基板
140 トラップ
150 真空ポンプ
160 排出口

Claims (5)

  1. 加熱基板を一種以上の揮発性金属アミジナート化合物又はそのオリゴマーの蒸気に、次いで、還元性ガス又は蒸気に交互に暴露して、当該基板表面に金属皮膜を形成させることを含んでなる、金属を含む薄膜の形成方法であって、
    前記揮発性金属アミジナート化合物が、以下の一般式で表される化合物からなる群より選ばれる方法。
    )下記一般式の揮発性金属(II)アミジナート化合物:および
    Figure 0004988159
    )下記一般式の揮発性金属(III)アミジナート化合物:
    Figure 0004988159
    (上式中、M’は鉄、マンガン、マグネシウムまたはストロンチウムであり、M”はバナジウムであり、そしてR〜R3”は、各々独立して、アルキル基を表し、またR〜R3”は同じであっても異なってもよい。)
  2. 前記還元性ガスが水素である、請求項1に記載の方法。
  3. 加熱基板を一種以上の揮発性金属アミジナート化合物又はそのオリゴマーの蒸気に、次いで、アンモニアガス又は蒸気に交互に暴露して、当該基板表面に金属窒化物皮膜を形成させることを含んでなる、金属窒化物を含む薄膜の形成方法であって、
    前記揮発性金属アミジナート化合物が、以下の一般式で表される化合物からなる群より選ばれる方法。
    )下記一般式の揮発性金属(II)アミジナート化合物:および
    Figure 0004988159
    )下記一般式の揮発性金属(III)アミジナート化合物:
    Figure 0004988159
    (上式中、M’は鉄、マンガン、マグネシウムまたはストロンチウムであり、M”はバナジウムであり、そしてR〜R3”は、各々独立して、アルキル基を表し、またR〜R3”は同じであっても異なってもよい。)
  4. 加熱基板を一種以上の揮発性金属アミジナート化合物又はそのオリゴマーの蒸気に、次いで、酸素含有ガス又は蒸気に交互に暴露して、当該基板表面に金属酸化物皮膜を形成させることを含んでなる、金属酸化物を含む薄膜の形成方法であって、
    前記揮発性金属アミジナート化合物が、以下の一般式で表される化合物からなる群より選ばれる方法。
    )下記一般式の揮発性金属(II)アミジナート化合物:および
    Figure 0004988159
    )下記一般式の揮発性金属(III)アミジナート化合物:
    Figure 0004988159
    (上式中、M’は鉄、マンガン、マグネシウムまたはストロンチウムであり、M”はバナジウムであり、そしてR〜R3”は、各々独立して、アルキル基を表し、またR〜R3”は同じであっても異なってもよい。)
  5. 前記酸素含有ガスが水蒸気である、請求項4に記載の方法。
JP2004570408A 2002-11-15 2003-11-14 金属アミジナートを用いる原子層の析出 Expired - Lifetime JP4988159B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US42697502P 2002-11-15 2002-11-15
US60/426,975 2002-11-15
US46336503P 2003-04-16 2003-04-16
US60/463,365 2003-04-16
PCT/US2003/036568 WO2004046417A2 (en) 2002-11-15 2003-11-14 Atomic layer deposition using metal amidinates

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2010062302A Division JP5226717B2 (ja) 2002-11-15 2010-03-18 金属アミジナートを用いる原子層の析出
JP2012033846A Division JP5814155B2 (ja) 2002-11-15 2012-02-20 金属アミジナートを用いる原子層の析出

Publications (2)

Publication Number Publication Date
JP2006511716A JP2006511716A (ja) 2006-04-06
JP4988159B2 true JP4988159B2 (ja) 2012-08-01

Family

ID=32329139

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2004570408A Expired - Lifetime JP4988159B2 (ja) 2002-11-15 2003-11-14 金属アミジナートを用いる原子層の析出
JP2010062302A Expired - Lifetime JP5226717B2 (ja) 2002-11-15 2010-03-18 金属アミジナートを用いる原子層の析出
JP2011137554A Expired - Lifetime JP5714989B2 (ja) 2002-11-15 2011-06-21 金属アミジナートを用いる原子層の析出
JP2012033846A Expired - Lifetime JP5814155B2 (ja) 2002-11-15 2012-02-20 金属アミジナートを用いる原子層の析出
JP2015080137A Pending JP2015165050A (ja) 2002-11-15 2015-04-09 金属アミジナートを用いる原子層の析出
JP2016229244A Pending JP2017122273A (ja) 2002-11-15 2016-11-25 金属アミジナートを用いる原子層の析出

Family Applications After (5)

Application Number Title Priority Date Filing Date
JP2010062302A Expired - Lifetime JP5226717B2 (ja) 2002-11-15 2010-03-18 金属アミジナートを用いる原子層の析出
JP2011137554A Expired - Lifetime JP5714989B2 (ja) 2002-11-15 2011-06-21 金属アミジナートを用いる原子層の析出
JP2012033846A Expired - Lifetime JP5814155B2 (ja) 2002-11-15 2012-02-20 金属アミジナートを用いる原子層の析出
JP2015080137A Pending JP2015165050A (ja) 2002-11-15 2015-04-09 金属アミジナートを用いる原子層の析出
JP2016229244A Pending JP2017122273A (ja) 2002-11-15 2016-11-25 金属アミジナートを用いる原子層の析出

Country Status (9)

Country Link
US (3) US7557229B2 (ja)
EP (2) EP2182088B1 (ja)
JP (6) JP4988159B2 (ja)
KR (8) KR101437250B1 (ja)
CN (3) CN1726303B (ja)
AT (1) ATE454483T1 (ja)
AU (1) AU2003290956A1 (ja)
DE (1) DE60330896D1 (ja)
WO (1) WO2004046417A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501714A (ja) * 2009-08-07 2013-01-17 シグマ−アルドリッチ・カンパニー、エルエルシー 高分子量アルキル−アリルコバルトトリカルボニル錯体及び誘電体薄膜を作製するためのそれらの使用

Families Citing this family (451)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2249250T3 (es) 1997-02-15 2006-04-01 Edelstam Inc. Medicamento contra la dismenorrea y el sindrome premenstrual que comprende lidocaina.
CN1726303B (zh) * 2002-11-15 2011-08-24 哈佛学院院长等 使用脒基金属的原子层沉积
US7927661B2 (en) * 2003-03-17 2011-04-19 Sigma-Aldrich Co. Methods of depositing a metal oxide layer or film using a rare earth metal precursor
US20050227007A1 (en) 2004-04-08 2005-10-13 Bradley Alexander Z Volatile copper(I) complexes for deposition of copper films by atomic layer deposition
WO2009105668A1 (en) 2008-02-20 2009-08-27 President And Fellows Of Harvard College Bicyclic guanidines, metal complexes thereof and their use in vapor deposition
KR100519800B1 (ko) * 2004-01-13 2005-10-10 삼성전자주식회사 란타늄 산화막의 제조방법 및 이를 이용한 모스 전계효과트랜지스터 및 캐패시터의 제조방법
US7166732B2 (en) 2004-06-16 2007-01-23 Advanced Technology Materials, Inc. Copper (I) compounds useful as deposition precursors of copper thin films
JP4639686B2 (ja) * 2004-07-27 2011-02-23 Jsr株式会社 化学気相成長材料及び化学気相成長方法
KR20070048215A (ko) * 2004-07-30 2007-05-08 이 아이 듀폰 디 네모아 앤드 캄파니 원자층 침착에 의한 구리 막의 침착용 구리(ⅱ) 착물
KR100589040B1 (ko) 2004-08-05 2006-06-14 삼성전자주식회사 막 형성방법 및 이를 이용한 반도체 장치의 커패시터제조방법
KR100643637B1 (ko) * 2005-01-25 2006-11-10 한국화학연구원 니켈 아미노알콕사이드 선구 물질을 사용하는 원자층침착법으로 니켈 산화물 박막을 제조하는 방법
US7064224B1 (en) * 2005-02-04 2006-06-20 Air Products And Chemicals, Inc. Organometallic complexes and their use as precursors to deposit metal films
US7816550B2 (en) * 2005-02-10 2010-10-19 Praxair Technology, Inc. Processes for the production of organometallic compounds
JP2006328034A (ja) * 2005-05-30 2006-12-07 Nippon Zeon Co Ltd 遷移金属錯体、環状オレフィン重合用触媒、および環状オレフィン重合体の製造方法
CN101238095B (zh) * 2005-08-04 2011-08-10 东曹株式会社 含有金属的化合物,其制备方法、含有金属的薄膜和其形成方法
US7776394B2 (en) 2005-08-08 2010-08-17 E.I. Du Pont De Nemours And Company Atomic layer deposition of metal-containing films using surface-activating agents
KR100704914B1 (ko) * 2005-08-24 2007-04-06 한국화학연구원 니켈 아미노알콕사이드 선구 물질을 사용하여 금속 유기물화학 증착법으로 니켈 산화물 박막을 제조하는 방법
EP1999067B1 (en) 2006-02-07 2014-04-09 President and Fellows of Harvard College Gas-phase functionalization of carbon nanotubes
WO2007106788A2 (en) 2006-03-10 2007-09-20 Advanced Technology Materials, Inc. Precursor compositions for atomic layer deposition and chemical vapor deposition of titanate, lanthanate, and tantalate dielectric films
TW200801222A (en) 2006-05-12 2008-01-01 Advanced Tech Materials Low temperature deposition of phase change memory materials
WO2007142700A1 (en) * 2006-06-02 2007-12-13 Advanced Technology Materials, Inc. Copper (i) amidinates and guanidinates for forming copper thin films
JP2008013533A (ja) * 2006-06-07 2008-01-24 Toyota Motor Corp アミジン−カルボン酸錯体及び複数錯体含有化合物
WO2007147020A2 (en) * 2006-06-15 2007-12-21 Advanced Technology Materials, Inc. Cobalt precursors useful for forming cobalt-containing films on substrates
CN102993050A (zh) * 2006-06-28 2013-03-27 哈佛学院院长等 四脒基金属(iv)化合物及其在气相沉积中的用途
US7638645B2 (en) 2006-06-28 2009-12-29 President And Fellows Of Harvard University Metal (IV) tetra-amidinate compounds and their use in vapor deposition
US7547631B2 (en) * 2006-07-31 2009-06-16 Rohm And Haas Electronic Materials Llc Organometallic compounds
US7781016B2 (en) * 2006-08-23 2010-08-24 Applied Materials, Inc. Method for measuring precursor amounts in bubbler sources
US8404306B2 (en) 2006-09-22 2013-03-26 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés George Claude Method for the deposition of a ruthenium containing film
KR101097112B1 (ko) 2006-11-02 2011-12-22 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 금속 박막의 cvd/ald용으로 유용한 안티몬 및 게르마늄 착체
US7749574B2 (en) 2006-11-14 2010-07-06 Applied Materials, Inc. Low temperature ALD SiO2
US7776395B2 (en) * 2006-11-14 2010-08-17 Applied Materials, Inc. Method of depositing catalyst assisted silicates of high-k materials
JP2008182183A (ja) * 2006-12-26 2008-08-07 Doshisha 原子層成長法を用いた成膜方法及びその成膜装置
WO2008088563A2 (en) * 2007-01-17 2008-07-24 Advanced Technology Materials, Inc. Precursor compositions for ald/cvd of group ii ruthenate thin films
US7750173B2 (en) 2007-01-18 2010-07-06 Advanced Technology Materials, Inc. Tantalum amido-complexes with chelate ligands useful for CVD and ALD of TaN and Ta205 thin films
US7851360B2 (en) * 2007-02-14 2010-12-14 Intel Corporation Organometallic precursors for seed/barrier processes and methods thereof
JP5313171B2 (ja) 2007-02-21 2013-10-09 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード ルテニウムベースの膜を基板上に形成するための方法
US7964746B2 (en) * 2007-03-30 2011-06-21 Advanced Technology Materials, Inc. Copper precursors for CVD/ALD/digital CVD of copper metal films
US7858525B2 (en) * 2007-03-30 2010-12-28 Intel Corporation Fluorine-free precursors and methods for the deposition of conformal conductive films for nanointerconnect seed and fill
TWI480977B (zh) 2007-04-09 2015-04-11 Harvard College 銅內連線用的氮化鈷層及其製造方法
KR20100016477A (ko) * 2007-04-12 2010-02-12 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 Ald/cvd용의 지르코늄, 하프늄, 티타늄 및 규소 전구체
JP2009016782A (ja) * 2007-06-04 2009-01-22 Tokyo Electron Ltd 成膜方法及び成膜装置
TWI398541B (zh) * 2007-06-05 2013-06-11 羅門哈斯電子材料有限公司 有機金屬化合物
JP2011511881A (ja) 2007-06-28 2011-04-14 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド 二酸化ケイ素ギャップ充填材のための前駆体
US8142847B2 (en) 2007-07-13 2012-03-27 Rohm And Haas Electronic Materials Llc Precursor compositions and methods
US20100209610A1 (en) * 2007-07-16 2010-08-19 Advanced Technology Materials, Inc. Group iv complexes as cvd and ald precursors for forming metal-containing thin films
US7659414B2 (en) * 2007-07-20 2010-02-09 Rohm And Haas Company Method of preparing organometallic compounds
WO2009013721A1 (en) * 2007-07-24 2009-01-29 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Ruthenium precursor with two differing ligands for use in semiconductor applications
WO2009020888A1 (en) 2007-08-08 2009-02-12 Advanced Technology Materials, Inc. Strontium and barium precursors for use in chemical vapor deposition, atomic layer deposition and rapid vapor deposition
US20090087561A1 (en) * 2007-09-28 2009-04-02 Advanced Technology Materials, Inc. Metal and metalloid silylamides, ketimates, tetraalkylguanidinates and dianionic guanidinates useful for cvd/ald of thin films
US8834968B2 (en) 2007-10-11 2014-09-16 Samsung Electronics Co., Ltd. Method of forming phase change material layer using Ge(II) source, and method of fabricating phase change memory device
KR101458953B1 (ko) 2007-10-11 2014-11-07 삼성전자주식회사 Ge(Ⅱ)소오스를 사용한 상변화 물질막 형성 방법 및상변화 메모리 소자 제조 방법
JP5650880B2 (ja) 2007-10-31 2015-01-07 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド 非晶質Ge/Te蒸着方法
US20100279011A1 (en) * 2007-10-31 2010-11-04 Advanced Technology Materials, Inc. Novel bismuth precursors for cvd/ald of thin films
EP2225407B1 (en) 2007-12-28 2017-05-31 Universitetet I Oslo Formation of a lithium comprising structure on a substrate by ald
US20090209777A1 (en) * 2008-01-24 2009-08-20 Thompson David M Organometallic compounds, processes for the preparation thereof and methods of use thereof
US20090215225A1 (en) 2008-02-24 2009-08-27 Advanced Technology Materials, Inc. Tellurium compounds useful for deposition of tellurium containing materials
WO2009116004A2 (en) 2008-03-19 2009-09-24 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Alkali earth metal precursors for depositing calcium and strontium containing films
JP5820267B2 (ja) * 2008-03-21 2015-11-24 プレジデント アンド フェローズ オブ ハーバード カレッジ 配線用セルフアライン(自己整合)バリア層
EP2271789A1 (en) 2008-03-26 2011-01-12 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Deposition of ternary oxide films containing ruthenium and alkali earth metals
FR2929449A1 (fr) * 2008-03-28 2009-10-02 Stmicroelectronics Tours Sas S Procede de formation d'une couche d'amorcage de depot d'un metal sur un substrat
WO2009134989A2 (en) 2008-05-02 2009-11-05 Advanced Technology Materials, Inc. Antimony compounds useful for deposition of antimony-containing materials
TWI467045B (zh) * 2008-05-23 2015-01-01 Sigma Aldrich Co 高介電常數電介質薄膜與使用鈰基前驅物製造高介電常數電介質薄膜之方法
TW200949939A (en) * 2008-05-23 2009-12-01 Sigma Aldrich Co High-k dielectric films and methods of producing using titanium-based β -diketonate precursors
KR101711356B1 (ko) * 2008-06-05 2017-02-28 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 란탄족 함유 전구체의 제조 및 란탄족 함유 필름의 증착 방법
TWI565827B (zh) * 2008-06-05 2017-01-11 液態空氣喬治斯克勞帝方法研究開發股份有限公司 含鑭系元素前驅物的製備和含鑭系元素薄膜的沈積
US20120156373A1 (en) 2008-06-05 2012-06-21 American Air Liquide, Inc. Preparation of cerium-containing precursors and deposition of cerium-containing films
WO2009152108A2 (en) * 2008-06-10 2009-12-17 Advanced Technology Materials, Inc. GeSbTe MATERIAL INCLUDING SUPERFLOW LAYER(S), AND USE OF Ge TO PREVENT INTERACTION OF Te FROM SbXTeY AND GeXTeY RESULTING IN HIGH Te CONTENT AND FILM CRISTALLINITY
US8168811B2 (en) 2008-07-22 2012-05-01 Advanced Technology Materials, Inc. Precursors for CVD/ALD of metal-containing films
US8105937B2 (en) * 2008-08-13 2012-01-31 International Business Machines Corporation Conformal adhesion promoter liner for metal interconnects
US8330136B2 (en) 2008-12-05 2012-12-11 Advanced Technology Materials, Inc. High concentration nitrogen-containing germanium telluride based memory devices and processes of making
US9379011B2 (en) 2008-12-19 2016-06-28 Asm International N.V. Methods for depositing nickel films and for making nickel silicide and nickel germanide
US7927942B2 (en) 2008-12-19 2011-04-19 Asm International N.V. Selective silicide process
CN102326213A (zh) * 2009-02-18 2012-01-18 东洋纺织株式会社 金属薄膜制造方法以及金属薄膜
JP2010209425A (ja) * 2009-03-11 2010-09-24 Tokyo Electron Ltd Cu膜の成膜方法および記憶媒体
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
JP5530118B2 (ja) * 2009-04-08 2014-06-25 東京エレクトロン株式会社 酸化マンガン膜の形成方法、半導体装置の製造方法および半導体装置
KR101329449B1 (ko) 2009-05-22 2013-11-14 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 저온 gst 방법
WO2011002705A2 (en) * 2009-07-02 2011-01-06 Advanced Technology Materials, Inc. Hollow gst structure with dielectric fill
EP2451989A2 (en) 2009-07-10 2012-05-16 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Bis-ketoiminate copper precursors for deposition of copper-containing films
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
JP5593320B2 (ja) * 2009-09-02 2014-09-24 株式会社アルバック Co膜の形成方法
US8809193B2 (en) 2009-09-02 2014-08-19 Ulvac, Inc. Method for the formation of Co film and method for the formation of Cu interconnection film
EP2339048B1 (en) 2009-09-14 2016-12-07 Rohm and Haas Electronic Materials, L.L.C. Method for depositing organometallic compounds
JP2011066060A (ja) * 2009-09-15 2011-03-31 Tokyo Electron Ltd 金属シリサイド膜の形成方法
JP5225957B2 (ja) * 2009-09-17 2013-07-03 東京エレクトロン株式会社 成膜方法および記憶媒体
WO2011040385A1 (ja) * 2009-09-29 2011-04-07 東京エレクトロン株式会社 Ni膜の成膜方法
EP2491579B1 (en) 2009-10-23 2019-03-13 President and Fellows of Harvard College Self-aligned barrier and capping layers for interconnects
US20110124182A1 (en) * 2009-11-20 2011-05-26 Advanced Techology Materials, Inc. System for the delivery of germanium-based precursor
US8859047B2 (en) 2010-02-23 2014-10-14 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Use of ruthenium tetroxide as a precursor and reactant for thin film depositions
US9012876B2 (en) 2010-03-26 2015-04-21 Entegris, Inc. Germanium antimony telluride materials and devices incorporating same
US8796483B2 (en) 2010-04-01 2014-08-05 President And Fellows Of Harvard College Cyclic metal amides and vapor deposition using them
US8357614B2 (en) 2010-04-19 2013-01-22 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Ruthenium-containing precursors for CVD and ALD
WO2011146913A2 (en) 2010-05-21 2011-11-24 Advanced Technology Materials, Inc. Germanium antimony telluride materials and devices incorporating same
TWI529808B (zh) 2010-06-10 2016-04-11 Asm國際股份有限公司 使膜選擇性沈積於基板上的方法
CN103313993A (zh) * 2010-11-02 2013-09-18 宇部兴产株式会社 (酰胺氨基烷烃)金属化合物及使用所述金属化合物制备含金属的薄膜的方法
TWI481615B (zh) 2011-03-11 2015-04-21 Applied Materials Inc 用於錳的原子層沉積之前驅物及方法
US8871617B2 (en) 2011-04-22 2014-10-28 Asm Ip Holding B.V. Deposition and reduction of mixed metal oxide thin films
EP2707375A4 (en) 2011-05-13 2015-01-07 Greenct Canada MONO-METALLIC GROUP-11 PRECURSOR COMPOUNDS AND USE THEREOF IN A METAL SEPARATION
US9312155B2 (en) 2011-06-06 2016-04-12 Asm Japan K.K. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
EP2545972A1 (en) 2011-07-13 2013-01-16 Dow Global Technologies LLC Organometallic compound purification by two steps distillation
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US8525232B2 (en) 2011-08-10 2013-09-03 International Business Machines Corporation Semiconductor structure having a wetting layer
EP2559681B1 (en) 2011-08-15 2016-06-22 Dow Global Technologies LLC Organometallic compound preparation
EP2559682B1 (en) 2011-08-15 2016-08-03 Rohm and Haas Electronic Materials LLC Organometallic compound preparation
JP5661006B2 (ja) * 2011-09-02 2015-01-28 東京エレクトロン株式会社 ニッケル膜の成膜方法
KR101405256B1 (ko) * 2011-09-16 2014-06-10 엠파이어 테크놀로지 디벨롭먼트 엘엘씨 그래핀 결함 변경
JP5779721B2 (ja) 2011-09-16 2015-09-16 エンパイア テクノロジー ディベロップメント エルエルシー グラフェン欠陥を修正するための方法及びシステム
US20130078454A1 (en) * 2011-09-23 2013-03-28 Applied Materials, Inc. Metal-Aluminum Alloy Films From Metal Amidinate Precursors And Aluminum Precursors
WO2013051670A1 (ja) * 2011-10-07 2013-04-11 気相成長株式会社 コバルト系膜形成方法、コバルト系膜形成材料、及び新規化合物
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
JP5806912B2 (ja) * 2011-11-08 2015-11-10 株式会社アルバック 液体原料の気化方法
JP5795520B2 (ja) * 2011-11-14 2015-10-14 大陽日酸株式会社 金属薄膜材料および金属薄膜の成膜方法
JP2013104100A (ja) * 2011-11-14 2013-05-30 Taiyo Nippon Sanso Corp 金属薄膜の成膜方法および金属薄膜成膜用原料
US9112003B2 (en) 2011-12-09 2015-08-18 Asm International N.V. Selective formation of metallic films on metallic surfaces
US20130168614A1 (en) * 2011-12-29 2013-07-04 L'Air Liquide Société Anonyme pour ''Etude et l'Exploitation des Procédés Georges Claude Nickel allyl amidinate precursors for deposition of nickel-containing films
JP5843318B2 (ja) * 2012-02-14 2016-01-13 株式会社Adeka Ald法用窒化アルミニウム系薄膜形成用原料及び該薄膜の製造方法
JP5919882B2 (ja) * 2012-02-27 2016-05-18 宇部興産株式会社 コバルト化合物の混合物、及び当該コバルト化合物の混合物を用いたコバルト含有薄膜の製造方法
JP5842687B2 (ja) * 2012-03-15 2016-01-13 宇部興産株式会社 コバルト膜形成用原料及び当該原料を用いたコバルト含有薄膜の製造方法
KR102117124B1 (ko) 2012-04-30 2020-05-29 엔테그리스, 아이엔씨. 유전체 물질로 중심-충전된 상 변화 합금을 포함하는 상 변화 메모리 구조체
US9443736B2 (en) 2012-05-25 2016-09-13 Entegris, Inc. Silylene compositions and methods of use thereof
US8692010B1 (en) 2012-07-13 2014-04-08 American Air Liquide, Inc. Synthesis method for copper compounds
US9938303B2 (en) 2012-07-20 2018-04-10 American Air Liquide, Inc. Organosilane precursors for ALD/CVD silicon-containing film applications
US8859045B2 (en) 2012-07-23 2014-10-14 Applied Materials, Inc. Method for producing nickel-containing films
US9194040B2 (en) 2012-07-25 2015-11-24 Applied Materials, Inc. Methods for producing nickel-containing films
JP5917351B2 (ja) * 2012-09-20 2016-05-11 東京エレクトロン株式会社 金属膜の成膜方法
JP2014062312A (ja) * 2012-09-24 2014-04-10 Tokyo Electron Ltd マンガンシリケート膜の形成方法、処理システム、半導体デバイスの製造方法および半導体デバイス
JP6008682B2 (ja) * 2012-10-05 2016-10-19 大陽日酸株式会社 気相成長装置用配管のクリーニング方法
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
JP2014084506A (ja) * 2012-10-24 2014-05-12 Hitachi Kokusai Electric Inc 基板処理方法、基板処理装置およびプログラム
WO2014070682A1 (en) 2012-10-30 2014-05-08 Advaned Technology Materials, Inc. Double self-aligned phase change memory device structure
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
US11326255B2 (en) 2013-02-07 2022-05-10 Uchicago Argonne, Llc ALD reactor for coating porous substrates
WO2014124056A1 (en) 2013-02-08 2014-08-14 Advanced Technology Materials, Inc. Ald processes for low leakage current and low equivalent oxide thickness bitao films
US9005704B2 (en) * 2013-03-06 2015-04-14 Applied Materials, Inc. Methods for depositing films comprising cobalt and cobalt nitrides
JP2014236192A (ja) * 2013-06-05 2014-12-15 東京エレクトロン株式会社 酸化マンガン膜の形成方法
JP6440695B2 (ja) * 2013-06-06 2018-12-19 プレジデント アンド フェローズ オブ ハーバード カレッジ 前駆体の第3級アミン溶液を用いる蒸気源
TW201509799A (zh) 2013-07-19 2015-03-16 Air Liquide 用於ald/cvd含矽薄膜應用之六配位含矽前驅物
US9994954B2 (en) * 2013-07-26 2018-06-12 Versum Materials Us, Llc Volatile dihydropyrazinly and dihydropyrazine metal complexes
US9343315B2 (en) 2013-11-27 2016-05-17 Taiwan Semiconductor Manufacturing Co., Ltd. Method for fabricating semiconductor structure, and solid precursor delivery system
US9099301B1 (en) 2013-12-18 2015-08-04 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Preparation of lanthanum-containing precursors and deposition of lanthanum-containing films
US9895715B2 (en) 2014-02-04 2018-02-20 Asm Ip Holding B.V. Selective deposition of metals, metal oxides, and dielectrics
KR102198856B1 (ko) 2014-02-10 2021-01-05 삼성전자 주식회사 니켈 함유막을 포함하는 반도체 소자의 제조 방법
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
KR102168174B1 (ko) 2014-03-19 2020-10-20 삼성전자주식회사 니켈 화합물 및 이를 이용한 박막 형성 방법
US10047435B2 (en) 2014-04-16 2018-08-14 Asm Ip Holding B.V. Dual selective deposition
KR102193623B1 (ko) 2014-06-05 2020-12-21 삼성전자주식회사 커패시터 및 그 제조 방법
US9382618B2 (en) * 2014-07-18 2016-07-05 UChicago Argnonne, LLC Oxygen-free atomic layer deposition of indium sulfide
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US10106888B2 (en) * 2014-08-04 2018-10-23 Basf Se Process for the generation of thin inorganic films
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10570513B2 (en) 2014-12-13 2020-02-25 American Air Liquide, Inc. Organosilane precursors for ALD/CVD silicon-containing film applications and methods of using the same
US9816180B2 (en) 2015-02-03 2017-11-14 Asm Ip Holding B.V. Selective deposition
US9490145B2 (en) 2015-02-23 2016-11-08 Asm Ip Holding B.V. Removal of surface passivation
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
EP3310788A4 (en) * 2015-06-18 2019-02-20 INTEL Corporation INHERENT SELECTIVE PRELIMINARY TO SEPARATE TRANSITION METAL THIN FILMS OF THE SECOND OR THIRD SERIES
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
KR102551351B1 (ko) * 2018-03-16 2023-07-04 삼성전자 주식회사 란타넘 화합물과 이를 이용한 박박 형성 방법 및 집적회로 소자의 제조 방법
KR102424961B1 (ko) 2015-07-07 2022-07-25 삼성전자주식회사 란타넘 화합물 및 그 제조 방법과 란타넘 전구체 조성물과 이를 이용한 박막 형성 방법 및 집적회로 소자의 제조 방법
US10913754B2 (en) 2015-07-07 2021-02-09 Samsung Electronics Co., Ltd. Lanthanum compound and methods of forming thin film and integrated circuit device using the lanthanum compound
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US10428421B2 (en) 2015-08-03 2019-10-01 Asm Ip Holding B.V. Selective deposition on metal or metallic surfaces relative to dielectric surfaces
US10121699B2 (en) 2015-08-05 2018-11-06 Asm Ip Holding B.V. Selective deposition of aluminum and nitrogen containing material
US10566185B2 (en) 2015-08-05 2020-02-18 Asm Ip Holding B.V. Selective deposition of aluminum and nitrogen containing material
JP6655838B2 (ja) * 2015-09-28 2020-02-26 気相成長株式会社 Mg系材形成材料、Mg系材形成方法、及び新規化合物
US9607842B1 (en) 2015-10-02 2017-03-28 Asm Ip Holding B.V. Methods of forming metal silicides
US10695794B2 (en) 2015-10-09 2020-06-30 Asm Ip Holding B.V. Vapor phase deposition of organic films
US10343186B2 (en) 2015-10-09 2019-07-09 Asm Ip Holding B.V. Vapor phase deposition of organic films
US10814349B2 (en) 2015-10-09 2020-10-27 Asm Ip Holding B.V. Vapor phase deposition of organic films
TWI740848B (zh) * 2015-10-16 2021-10-01 荷蘭商Asm智慧財產控股公司 實施原子層沉積以得閘極介電質
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
KR102442621B1 (ko) * 2015-11-30 2022-09-13 삼성전자주식회사 니오븀 화합물을 이용한 박막 형성 방법 및 집적회로 소자의 제조 방법
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US9981286B2 (en) 2016-03-08 2018-05-29 Asm Ip Holding B.V. Selective formation of metal silicides
US10204782B2 (en) 2016-04-18 2019-02-12 Imec Vzw Combined anneal and selective deposition process
US10551741B2 (en) 2016-04-18 2020-02-04 Asm Ip Holding B.V. Method of forming a directed self-assembled layer on a substrate
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11081342B2 (en) 2016-05-05 2021-08-03 Asm Ip Holding B.V. Selective deposition using hydrophobic precursors
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US10373820B2 (en) 2016-06-01 2019-08-06 Asm Ip Holding B.V. Deposition of organic films
US10453701B2 (en) 2016-06-01 2019-10-22 Asm Ip Holding B.V. Deposition of organic films
US9803277B1 (en) 2016-06-08 2017-10-31 Asm Ip Holding B.V. Reaction chamber passivation and selective deposition of metallic films
US10014212B2 (en) 2016-06-08 2018-07-03 Asm Ip Holding B.V. Selective deposition of metallic films
JP6735163B2 (ja) * 2016-06-22 2020-08-05 株式会社Adeka バナジウム化合物、薄膜形成用原料及び薄膜の製造方法
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
KR102592325B1 (ko) 2016-07-14 2023-10-20 삼성전자주식회사 알루미늄 화합물과 이를 이용한 박막 형성 방법 및 집적회로 소자의 제조 방법
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
KR102532607B1 (ko) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. 기판 가공 장치 및 그 동작 방법
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
WO2018063410A1 (en) * 2016-10-01 2018-04-05 Intel Corporation Scandium precursor for sc2o3 or sc2s3 atomic layer deposition
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
CN109923119B (zh) 2016-11-08 2022-03-18 株式会社Adeka 化合物、薄膜形成用原料、薄膜的制造方法和脒化合物
KR102546317B1 (ko) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기체 공급 유닛 및 이를 포함하는 기판 처리 장치
US11430656B2 (en) 2016-11-29 2022-08-30 Asm Ip Holding B.V. Deposition of oxide thin films
KR20180068582A (ko) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
KR20180070971A (ko) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
JP7169072B2 (ja) 2017-02-14 2022-11-10 エーエスエム アイピー ホールディング ビー.ブイ. 選択的パッシベーションおよび選択的堆積
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11161857B2 (en) 2017-03-27 2021-11-02 President And Fellows Of Harvard College Metal bicyclic amidinates
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
USD876504S1 (en) 2017-04-03 2020-02-25 Asm Ip Holding B.V. Exhaust flow control ring for semiconductor deposition apparatus
KR102457289B1 (ko) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법 및 반도체 장치의 제조 방법
US11501965B2 (en) 2017-05-05 2022-11-15 Asm Ip Holding B.V. Plasma enhanced deposition processes for controlled formation of metal oxide thin films
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
JP7183187B2 (ja) 2017-05-16 2022-12-05 エーエスエム アイピー ホールディング ビー.ブイ. 誘電体上の酸化物の選択的peald
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
US10900120B2 (en) 2017-07-14 2021-01-26 Asm Ip Holding B.V. Passivation against vapor deposition
KR20190009245A (ko) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
CN107382778A (zh) * 2017-08-04 2017-11-24 苏州复纳电子科技有限公司 一种(n,n′‑二异丙基甲基碳酰亚胺)钇的合成方法
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
KR102491945B1 (ko) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR102630301B1 (ko) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. 침투성 재료의 순차 침투 합성 방법 처리 및 이를 이용하여 형성된 구조물 및 장치
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
KR102443047B1 (ko) 2017-11-16 2022-09-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 방법 및 그에 의해 제조된 장치
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
JP7206265B2 (ja) 2017-11-27 2023-01-17 エーエスエム アイピー ホールディング ビー.ブイ. クリーン・ミニエンバイロメントを備える装置
JP7214724B2 (ja) 2017-11-27 2023-01-30 エーエスエム アイピー ホールディング ビー.ブイ. バッチ炉で利用されるウェハカセットを収納するための収納装置
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
KR20200108016A (ko) 2018-01-19 2020-09-16 에이에스엠 아이피 홀딩 비.브이. 플라즈마 보조 증착에 의해 갭 충진 층을 증착하는 방법
TW202325889A (zh) 2018-01-19 2023-07-01 荷蘭商Asm 智慧財產控股公司 沈積方法
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
US10566428B2 (en) 2018-01-29 2020-02-18 Raytheon Company Method for forming gate structures for group III-V field effect transistors
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
EP3737779A1 (en) 2018-02-14 2020-11-18 ASM IP Holding B.V. A method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10896820B2 (en) * 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
KR102636427B1 (ko) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 장치
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (ko) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102501472B1 (ko) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법
US20210163348A1 (en) * 2018-04-09 2021-06-03 Ald Nanosolutions, Inc. Hydrophobic Coatings on Glass Having Superior Properties and Methods of Coating Using Atomic or Molecular Deposition
JP7146690B2 (ja) 2018-05-02 2022-10-04 エーエスエム アイピー ホールディング ビー.ブイ. 堆積および除去を使用した選択的層形成
TW202344708A (zh) 2018-05-08 2023-11-16 荷蘭商Asm Ip私人控股有限公司 藉由循環沉積製程於基板上沉積氧化物膜之方法及相關裝置結構
TWI816783B (zh) 2018-05-11 2023-10-01 荷蘭商Asm 智慧財產控股公司 用於基板上形成摻雜金屬碳化物薄膜之方法及相關半導體元件結構
KR102596988B1 (ko) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 방법 및 그에 의해 제조된 장치
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
KR102568797B1 (ko) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 시스템
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
TWI819010B (zh) 2018-06-27 2023-10-21 荷蘭商Asm Ip私人控股有限公司 用於形成含金屬材料及包含含金屬材料的膜及結構之循環沉積方法
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
KR20200002519A (ko) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법 및 반도체 장치의 제조 방법
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR20200030162A (ko) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. 박막 증착 방법
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (zh) 2018-10-01 2020-04-07 Asm Ip控股有限公司 衬底保持设备、包含所述设备的系统及其使用方法
JP2020056104A (ja) 2018-10-02 2020-04-09 エーエスエム アイピー ホールディング ビー.ブイ. 選択的パッシベーションおよび選択的堆積
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (ko) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
KR102605121B1 (ko) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
KR102546322B1 (ko) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 기판 처리 방법
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (ko) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. 기판 지지 유닛 및 이를 포함하는 기판 처리 장치
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US20200165270A1 (en) * 2018-11-28 2020-05-28 Versum Materials Us, Llc Low Halide Lanthanum Precursors For Vapor Deposition
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (ko) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치를 세정하는 방법
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP2020096183A (ja) 2018-12-14 2020-06-18 エーエスエム・アイピー・ホールディング・ベー・フェー 窒化ガリウムの選択的堆積を用いてデバイス構造体を形成する方法及びそのためのシステム
EP3680247A1 (de) 2019-01-08 2020-07-15 Umicore Ag & Co. Kg Metallorganische verbindungen
TWI819180B (zh) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 藉由循環沈積製程於基板上形成含過渡金屬膜之方法
KR20200091543A (ko) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
CN111524788B (zh) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 氧化硅的拓扑选择性膜形成的方法
JP2020136678A (ja) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー 基材表面内に形成された凹部を充填するための方法および装置
KR20200102357A (ko) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. 3-d nand 응용의 플러그 충진체 증착용 장치 및 방법
KR102626263B1 (ko) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치
JP2020136677A (ja) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー 基材表面内に形成された凹部を充填するための周期的堆積方法および装置
TW202100794A (zh) 2019-02-22 2021-01-01 荷蘭商Asm Ip私人控股有限公司 基材處理設備及處理基材之方法
KR20200108248A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. SiOCN 층을 포함한 구조체 및 이의 형성 방법
KR20200108242A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체
KR20200108243A (ko) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. SiOC 층을 포함한 구조체 및 이의 형성 방법
KR20200116033A (ko) 2019-03-28 2020-10-08 에이에스엠 아이피 홀딩 비.브이. 도어 개방기 및 이를 구비한 기판 처리 장치
KR20200116855A (ko) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. 반도체 소자를 제조하는 방법
US11965238B2 (en) 2019-04-12 2024-04-23 Asm Ip Holding B.V. Selective deposition of metal oxides on metal surfaces
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
JP7332211B2 (ja) * 2019-04-22 2023-08-23 気相成長株式会社 新規化合物および製造方法
JP7161767B2 (ja) * 2019-04-22 2022-10-27 気相成長株式会社 形成材料、形成方法、及び新規化合物
KR20200125453A (ko) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. 기상 반응기 시스템 및 이를 사용하는 방법
KR20200130118A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 비정질 탄소 중합체 막을 개질하는 방법
KR20200130121A (ko) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. 딥 튜브가 있는 화학물질 공급원 용기
KR20200130652A (ko) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조
JP2020188255A (ja) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. ウェハボートハンドリング装置、縦型バッチ炉および方法
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141003A (ko) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. 가스 감지기를 포함하는 기상 반응기 시스템
KR20200143254A (ko) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (ko) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법
JP2021015791A (ja) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. 同軸導波管を用いたプラズマ装置、基板処理方法
CN112216646A (zh) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 基板支撑组件及包括其的基板处理装置
KR20210010307A (ko) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210010816A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 라디칼 보조 점화 플라즈마 시스템 및 방법
KR20210010820A (ko) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. 실리콘 게르마늄 구조를 형성하는 방법
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
JP2021019198A (ja) 2019-07-19 2021-02-15 エーエスエム・アイピー・ホールディング・ベー・フェー トポロジー制御されたアモルファスカーボンポリマー膜の形成方法
CN112309843A (zh) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 实现高掺杂剂掺入的选择性沉积方法
CN112309900A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
CN112309899A (zh) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 基板处理设备
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
KR20210018759A (ko) 2019-08-05 2021-02-18 에이에스엠 아이피 홀딩 비.브이. 화학물질 공급원 용기를 위한 액체 레벨 센서
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
JP2021031769A (ja) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. 成膜原料混合ガス生成装置及び成膜装置
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
KR20210024423A (ko) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 홀을 구비한 구조체를 형성하기 위한 방법
KR20210024420A (ko) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210029090A (ko) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. 희생 캡핑 층을 이용한 선택적 증착 방법
KR20210029663A (ko) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (zh) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法
TW202129060A (zh) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 基板處理裝置、及基板處理方法
KR20210043460A (ko) 2019-10-10 2021-04-21 에이에스엠 아이피 홀딩 비.브이. 포토레지스트 하부층을 형성하기 위한 방법 및 이를 포함한 구조체
KR20210045930A (ko) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. 실리콘 산화물의 토폴로지-선택적 막의 형성 방법
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (ko) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. 막을 선택적으로 에칭하기 위한 장치 및 방법
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11139163B2 (en) 2019-10-31 2021-10-05 Asm Ip Holding B.V. Selective deposition of SiOC thin films
KR20210054983A (ko) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (ko) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템
KR20210065848A (ko) 2019-11-26 2021-06-04 에이에스엠 아이피 홀딩 비.브이. 제1 유전체 표면과 제2 금속성 표면을 포함한 기판 상에 타겟 막을 선택적으로 형성하기 위한 방법
CN112951697A (zh) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 基板处理设备
CN112885693A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
CN112885692A (zh) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 基板处理设备
JP2021090042A (ja) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. 基板処理装置、基板処理方法
KR20210070898A (ko) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
CN112992667A (zh) 2019-12-17 2021-06-18 Asm Ip私人控股有限公司 形成氮化钒层的方法和包括氮化钒层的结构
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
KR20210095050A (ko) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법 및 박막 표면 개질 방법
TW202130846A (zh) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 形成包括釩或銦層的結構之方法
KR20210100010A (ko) 2020-02-04 2021-08-13 에이에스엠 아이피 홀딩 비.브이. 대형 물품의 투과율 측정을 위한 방법 및 장치
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11111578B1 (en) * 2020-02-13 2021-09-07 Uchicago Argonne, Llc Atomic layer deposition of fluoride thin films
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
KR20210116240A (ko) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. 조절성 접합부를 갖는 기판 핸들링 장치
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
CN113394086A (zh) 2020-03-12 2021-09-14 Asm Ip私人控股有限公司 用于制造具有目标拓扑轮廓的层结构的方法
TW202140832A (zh) 2020-03-30 2021-11-01 荷蘭商Asm Ip私人控股有限公司 氧化矽在金屬表面上之選擇性沉積
TW202204658A (zh) 2020-03-30 2022-02-01 荷蘭商Asm Ip私人控股有限公司 在兩不同表面上同時選擇性沉積兩不同材料
TW202140833A (zh) 2020-03-30 2021-11-01 荷蘭商Asm Ip私人控股有限公司 相對於金屬表面在介電表面上之氧化矽的選擇性沉積
KR20210124042A (ko) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. 박막 형성 방법
TW202146689A (zh) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 阻障層形成方法及半導體裝置的製造方法
TW202145344A (zh) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 用於選擇性蝕刻氧化矽膜之設備及方法
EP4134372A1 (en) 2020-04-10 2023-02-15 Adeka Corporation Amidinate compound, dimer compound thereof, raw material for thin film formation, and method for producing thin film
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
KR20210132605A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 냉각 가스 공급부를 포함한 수직형 배치 퍼니스 어셈블리
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
KR20210132600A (ko) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템
KR20210134226A (ko) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. 고체 소스 전구체 용기
KR20210134869A (ko) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Foup 핸들러를 이용한 foup의 빠른 교환
KR20210141379A (ko) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. 반응기 시스템용 레이저 정렬 고정구
KR20210143653A (ko) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치
KR20210145078A (ko) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법
TW202201602A (zh) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
TW202218133A (zh) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 形成含矽層之方法
TW202217953A (zh) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 基板處理方法
KR20220010438A (ko) 2020-07-17 2022-01-25 에이에스엠 아이피 홀딩 비.브이. 포토리소그래피에 사용하기 위한 구조체 및 방법
TW202204662A (zh) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 用於沉積鉬層之方法及系統
TW202212623A (zh) 2020-08-26 2022-04-01 荷蘭商Asm Ip私人控股有限公司 形成金屬氧化矽層及金屬氮氧化矽層的方法、半導體結構、及系統
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202229613A (zh) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 於階梯式結構上沉積材料的方法
TW202217037A (zh) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 沉積釩金屬的方法、結構、裝置及沉積總成
JP2022068761A (ja) * 2020-10-22 2022-05-10 気相成長株式会社 アミジネート金属錯体の製造方法
TW202223136A (zh) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 用於在基板上形成層之方法、及半導體處理系統
KR20220076343A (ko) 2020-11-30 2022-06-08 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치의 반응 챔버 내에 배열되도록 구성된 인젝터
CN114639631A (zh) 2020-12-16 2022-06-17 Asm Ip私人控股有限公司 跳动和摆动测量固定装置
TW202231903A (zh) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
JPWO2023286589A1 (ja) * 2021-07-12 2023-01-19
CN113582879A (zh) * 2021-09-02 2021-11-02 合肥安德科铭半导体科技有限公司 一种有机镧前驱体La(iPr2-FMD)3的制备方法
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11901169B2 (en) 2022-02-14 2024-02-13 Uchicago Argonne, Llc Barrier coatings
CN116230631B (zh) * 2023-05-09 2024-01-30 北京超弦存储器研究院 金属互连结构的制备方法、金属互连结构及半导体组件
CN116924939B (zh) * 2023-07-25 2024-01-26 苏州源展材料科技有限公司 一种镁配合物的制备方法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2699285B2 (ja) 1989-04-11 1998-01-19 タイホー工業株式会社 インパクトプリンターによるオーバーヘッドプロジェクターシートの作製方法及び被記録体
US5139825A (en) 1989-11-30 1992-08-18 President And Fellows Of Harvard College Process for chemical vapor deposition of transition metal nitrides
DE4009394A1 (de) * 1989-12-12 1991-06-13 Merck Patent Gmbh Heterocyclische metallorganische verbindungen
DE4020941A1 (de) * 1990-06-30 1992-01-02 Bayer Ag Verfahren zur herstellung von dialkylcarbonaten
US5280012A (en) * 1990-07-06 1994-01-18 Advanced Technology Materials Inc. Method of forming a superconducting oxide layer by MOCVD
US5204314A (en) * 1990-07-06 1993-04-20 Advanced Technology Materials, Inc. Method for delivering an involatile reagent in vapor form to a CVD reactor
US5820664A (en) * 1990-07-06 1998-10-13 Advanced Technology Materials, Inc. Precursor compositions for chemical vapor deposition, and ligand exchange resistant metal-organic precursor solutions comprising same
US5453494A (en) * 1990-07-06 1995-09-26 Advanced Technology Materials, Inc. Metal complex source reagents for MOCVD
US5711816A (en) * 1990-07-06 1998-01-27 Advanced Technolgy Materials, Inc. Source reagent liquid delivery apparatus, and chemical vapor deposition system comprising same
US5362328A (en) * 1990-07-06 1994-11-08 Advanced Technology Materials, Inc. Apparatus and method for delivering reagents in vapor form to a CVD reactor, incorporating a cleaning subsystem
US5225561A (en) * 1990-07-06 1993-07-06 Advanced Technology Materials, Inc. Source reagent compounds for MOCVD of refractory films containing group IIA elements
US6110529A (en) 1990-07-06 2000-08-29 Advanced Tech Materials Method of forming metal films on a substrate by chemical vapor deposition
DE4039449A1 (de) 1990-12-11 1992-06-17 Bayer Ag Verfahren zur herstellung eines kupfer-i-formamidin-komplexes
US5098516A (en) * 1990-12-31 1992-03-24 Air Products And Chemicals, Inc. Processes for the chemical vapor deposition of copper and etching of copper
US5144049A (en) * 1991-02-04 1992-09-01 Air Products And Chemicals, Inc. Volatile liquid precursors for the chemical vapor deposition of copper
US5085731A (en) * 1991-02-04 1992-02-04 Air Products And Chemicals, Inc. Volatile liquid precursors for the chemical vapor deposition of copper
US5235075A (en) * 1992-12-10 1993-08-10 The Dow Chemical Company Purification of propylene oxide
US5322712A (en) * 1993-05-18 1994-06-21 Air Products And Chemicals, Inc. Process for improved quality of CVD copper films
GB9315975D0 (en) * 1993-08-02 1993-09-15 Ass Octel Organometallic complexes of gallium and indium
US5689123A (en) 1994-04-07 1997-11-18 Sdl, Inc. III-V aresenide-nitride semiconductor materials and devices
GB9423614D0 (en) 1994-11-23 1995-01-11 Ass Octel Organometallic complexes of aluminium, gallium and indium
GB9423613D0 (en) * 1994-11-23 1995-01-11 Ass Octel Organometallic complexes of aluminium, gallium and indium
US5502128A (en) * 1994-12-12 1996-03-26 University Of Massachusetts Group 4 metal amidinate catalysts and addition polymerization process using same
US5919522A (en) * 1995-03-31 1999-07-06 Advanced Technology Materials, Inc. Growth of BaSrTiO3 using polyamine-based precursors
US5932363A (en) 1997-10-02 1999-08-03 Xerox Corporation Electroluminescent devices
US6294836B1 (en) * 1998-12-22 2001-09-25 Cvc Products Inc. Semiconductor chip interconnect barrier material and fabrication method
US6337148B1 (en) 1999-05-25 2002-01-08 Advanced Technology Materials, Inc. Copper source reagent compositions, and method of making and using same for microelectronic device structures
US6273951B1 (en) * 1999-06-16 2001-08-14 Micron Technology, Inc. Precursor mixtures for use in preparing layers on substrates
US6417369B1 (en) 2000-03-13 2002-07-09 Advanced Technology Materials, Inc. Pyrazolate copper complexes, and MOCVD of copper using same
US6211090B1 (en) * 2000-03-21 2001-04-03 Motorola, Inc. Method of fabricating flux concentrating layer for use with magnetoresistive random access memories
KR200195246Y1 (ko) 2000-03-22 2000-09-01 유덕준 단추 성형장치
US20020013487A1 (en) * 2000-04-03 2002-01-31 Norman John Anthony Thomas Volatile precursors for deposition of metals and metal-containing films
US6444263B1 (en) * 2000-09-15 2002-09-03 Cvc Products, Inc. Method of chemical-vapor deposition of a material
US6527855B2 (en) * 2000-10-10 2003-03-04 Rensselaer Polytechnic Institute Atomic layer deposition of cobalt from cobalt metallorganic compounds
US6653154B2 (en) * 2001-03-15 2003-11-25 Micron Technology, Inc. Method of forming self-aligned, trenchless mangetoresistive random-access memory (MRAM) structure with sidewall containment of MRAM structure
KR100406534B1 (ko) * 2001-05-03 2003-11-20 주식회사 하이닉스반도체 루테늄 박막의 제조 방법
US6933011B2 (en) * 2002-10-17 2005-08-23 Aviza Technology, Inc. Two-step atomic layer deposition of copper layers
CN1726303B (zh) * 2002-11-15 2011-08-24 哈佛学院院长等 使用脒基金属的原子层沉积
US7396949B2 (en) * 2003-08-19 2008-07-08 Denk Michael K Class of volatile compounds for the deposition of thin films of metals and metal compounds
US20050214458A1 (en) * 2004-03-01 2005-09-29 Meiere Scott H Low zirconium hafnium halide compositions
US20060062910A1 (en) * 2004-03-01 2006-03-23 Meiere Scott H Low zirconium, hafnium-containing compositions, processes for the preparation thereof and methods of use thereof
US7166732B2 (en) * 2004-06-16 2007-01-23 Advanced Technology Materials, Inc. Copper (I) compounds useful as deposition precursors of copper thin films
US7816550B2 (en) * 2005-02-10 2010-10-19 Praxair Technology, Inc. Processes for the production of organometallic compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013501714A (ja) * 2009-08-07 2013-01-17 シグマ−アルドリッチ・カンパニー、エルエルシー 高分子量アルキル−アリルコバルトトリカルボニル錯体及び誘電体薄膜を作製するためのそれらの使用

Also Published As

Publication number Publication date
CN102312214A (zh) 2012-01-11
KR20170044770A (ko) 2017-04-25
KR101530502B1 (ko) 2015-06-19
KR101266442B1 (ko) 2013-05-22
WO2004046417A3 (en) 2005-03-10
US7737290B2 (en) 2010-06-15
EP1563117B1 (en) 2010-01-06
JP5226717B2 (ja) 2013-07-03
CN1726303B (zh) 2011-08-24
CN1726303A (zh) 2006-01-25
KR102220703B1 (ko) 2021-02-26
WO2004046417A2 (en) 2004-06-03
US7557229B2 (en) 2009-07-07
JP2015165050A (ja) 2015-09-17
JP2010156058A (ja) 2010-07-15
CN102344460A (zh) 2012-02-08
EP2182088B1 (en) 2013-07-17
CN102344460B (zh) 2014-05-28
US20100092667A1 (en) 2010-04-15
KR20110069866A (ko) 2011-06-23
JP2011236223A (ja) 2011-11-24
KR101437250B1 (ko) 2014-10-13
AU2003290956A1 (en) 2004-06-15
EP2182088A1 (en) 2010-05-05
DE60330896D1 (de) 2010-02-25
KR20120073367A (ko) 2012-07-04
JP5814155B2 (ja) 2015-11-17
US20060141155A1 (en) 2006-06-29
US20090291208A1 (en) 2009-11-26
KR20050084997A (ko) 2005-08-29
KR20140067174A (ko) 2014-06-03
KR20110069865A (ko) 2011-06-23
KR20140096288A (ko) 2014-08-05
JP2012162804A (ja) 2012-08-30
ATE454483T1 (de) 2010-01-15
KR20150067397A (ko) 2015-06-17
KR101266441B1 (ko) 2013-05-24
EP1563117A2 (en) 2005-08-17
US8455672B2 (en) 2013-06-04
JP5714989B2 (ja) 2015-05-07
JP2017122273A (ja) 2017-07-13
CN102312214B (zh) 2013-10-23
JP2006511716A (ja) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4988159B2 (ja) 金属アミジナートを用いる原子層の析出
US7560581B2 (en) Vapor deposition of tungsten nitride
JP5555872B2 (ja) 金属(iv)テトラ−アミジネート化合物ならびに蒸着においての使用
KR100665084B1 (ko) 유기금속 착물 및 금속막 증착을 위한 전구체로서의 이의용도
JP2009542654A5 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100126

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101130

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

R150 Certificate of patent or registration of utility model

Ref document number: 4988159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term