CN108431295A - 形成含钴膜的组合物、其合成、以及在膜沉积中的用途 - Google Patents

形成含钴膜的组合物、其合成、以及在膜沉积中的用途 Download PDF

Info

Publication number
CN108431295A
CN108431295A CN201680074877.2A CN201680074877A CN108431295A CN 108431295 A CN108431295 A CN 108431295A CN 201680074877 A CN201680074877 A CN 201680074877A CN 108431295 A CN108431295 A CN 108431295A
Authority
CN
China
Prior art keywords
composition
sime
precursor
film containing
silylamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680074877.2A
Other languages
English (en)
Other versions
CN108431295B (zh
Inventor
伽蒂诺谕子
木村美喜子
克里斯汀·杜斯拉特
让-马克·吉拉尔
尼古拉斯·布拉斯科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of CN108431295A publication Critical patent/CN108431295A/zh
Application granted granted Critical
Publication of CN108431295B publication Critical patent/CN108431295B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02697Forming conducting materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate

Abstract

披露了形成含钴膜的组合物、其制备、以及其用于气相沉积膜的用途。这些形成含钴膜的组合物包含含甲硅烷基酰胺的前体,特别是Co[N(SiMe3)2]2(NMe2Et)和/或Co[N(SiMe3)2]2(NMeEt2)。

Description

形成含钴膜的组合物、其合成、以及在膜沉积中的用途
相关申请的交叉引用
本申请要求于2015年12月31日提交的美国专利申请序列号14/986,286的权益,出于所有的目的将所述申请通过引用以其全文结合在此。
技术领域
披露了形成含钴膜的组合物、其制备、以及其用于气相沉积膜的用途。这些形成含钴膜的组合物包含含甲硅烷基酰胺的前体,特别是Co[N(SiMe3)2]2(NMe2Et)和/或Co[N(SiMe3)2]2(NMeEt2)。
背景技术
化学气相沉积(CVD)和原子层沉积(ALD)已被应用为用于生产半导体器件的薄膜的主要沉积技术。这些方法使能够通过在沉积工艺期间对参数进行微调来获得共形膜(金属、氧化物、氮化物、硅化物等)。主要通过含金属化合物(前体)的化学反应来控制膜生长,并且在预测其特性和反应过程下开发最佳前体是必要的。
过渡金属和过渡金属硅化物(特别是锰、铁、钴和钌)的膜对于各种电子和电化学应用而言变得重要。例如,由于钴薄膜的高磁导率,它们是所考虑的。由于钴薄膜在半导体器件的前段制程加工中的低电阻率,因此存在许多使用钴薄膜来形成用于欧姆接触的二硅化钴(CoSi2)的报道。最近研究了含钴薄膜作为用于超大规模集成器件的Cu/低k阻挡层、钝化层和封盖层。
已经报道了甲硅烷基酰胺化合物的合成(Monatsh.Chem.(1963),94(6),pp.1007-1012;Polyhedron 22(2003)pp.67-73,J.C.S.Chem.Comm.(1972)
pp.872-873;Inorg.Chem.(1984)23,4584-4588;US 6969539B2[Monatsh.Chem.(1963),94(6),第1007-1012页;多面体22(2003),第67-73页,J.C.S.化学通信(1972),第872-873页;无机化学(1984)23,4584-4588;US 6969539B2])。还已经报道了使用甲硅烷基酰胺化合物的气相沉积膜形成(Chem.Vap.Deposition 1995,1,No.2,49-51;R.G.Gordonet al;US2009/0053426A1Applied Materials;US 2014/0255606Applied Materials[化学气相沉积1995,1,第2期,49-51;R.G.Gordon等人;US 2009/0053426A1应用材料;US 2014/255606应用材料])。
授予Gordon等人的US 6969539披露了:
本领域普通技术人员将认识到,虽然含Co前体的液体形式有利于气相沉积法,但所披露的蒸气压对于薄膜沉积的工业用途而言太低。
选择适当挥发性同时保持足够稳定以用于气相膜沉积中的含Co前体对于商业实施而言是重要的并且不总是容易确定的。
发明内容
披露了形成含钴膜的组合物,这些组合物包含具有下式的含甲硅烷基酰胺的前体:
其中M是Co;每个R1、R2和R3独立地选自氢(H)或C1-C4烃;L是选自吡啶、NMe3、NEt3、NMe2Et、NMeEt2、1-Me-吡咯烷、或PMe3的一种或两种中性加合物;并且R1和R2或者R2和R3可以连接以形成环状含硅杂环。所披露的形成含甲硅烷基酰胺膜的组合物可以具有以下方面中的一项或多项:
●每个R1、R2和R3独立地选自H、甲基、乙基、异丙基、正丙基、正丁基或叔丁基;
●该含甲硅烷基酰胺的前体是{Co[N(SiMe3)2]2}2
●该含甲硅烷基酰胺的前体是Co[N(SiMe3)2]2(py);
●该含甲硅烷基酰胺的前体是Co[N(SiMe3)2]2(Me3N);
●该含甲硅烷基酰胺的前体是Co[N(SiMe3)2]2(Et3N);
●该含甲硅烷基酰胺的前体是Co[N(SiMe3)2]2(Me2EtN);
●该含甲硅烷基酰胺的前体是Co[N(SiMe3)2]2(MeEt2N);
●该含甲硅烷基酰胺的前体是Co[N(SiMe3)2]2(1-Me-吡咯烷);
●该含甲硅烷基酰胺的前体是Co[N(SiMe3)2]2(PMe3);
●该含甲硅烷基酰胺的前体是{Co[N(SiMe2Et)2]2}2
●该含甲硅烷基酰胺的前体是Co[N(SiMe2Et)2]2(py);
●该含甲硅烷基酰胺的前体是Co[N(SiMe2Et)2]2(Me3N);
●该含甲硅烷基酰胺的前体是Co[N(SiMe2Et)2]2(Et3N);
●该含甲硅烷基酰胺的前体是Co[N(SiMe2Et)2]2(Me2EtN);
●该含甲硅烷基酰胺的前体是Co[N(SiMe2Et)2]2(MeEt2N);
●该含甲硅烷基酰胺的前体是Co[N(SiMe2Et)2]2(1-Me-吡咯烷);
●该含甲硅烷基酰胺的前体是Co[N(SiMe2Et)2]2(PMe3),
●该形成含钴膜的组合物包含在大约99%w/w与大约100%w/w之间的该含甲硅烷基酰胺的前体;
●在50℃下4周之后,该形成含钴膜的组合物包含在大约99%w/w与大约100%w/w之间的该含甲硅烷基酰胺的前体;
●在室温(大约23℃)下12周之后,该形成含钴膜的组合物包含在大约99%w/w与大约100%w/w之间的该含甲硅烷基酰胺的前体;
●该形成含钴膜的组合物在热重分析下在产生1托的该含甲硅烷基酰胺的前体的蒸气压的温度下2周的稳定性测试之后产生了小于3%的剩余质量;
●该形成含钴膜的组合物在热重分析下在产生1托的该含甲硅烷基酰胺的前体的蒸气压的温度下3周的稳定性测试之后产生了小于3%的剩余质量;
●该形成含钴膜的组合物在热重分析下在产生1托的该含甲硅烷基酰胺的前体的蒸气压的温度下2个月的稳定性测试之后产生了小于3%的剩余质量;
●该形成含钴膜的组合物包含在大约95%w/w与大约100%w/w之间的该含甲硅烷基酰胺的前体;
●该形成含Co膜的组合物包含在大约5%w/w与大约50%w/w之间的该含甲硅烷基酰胺的前体;
●该形成含Co膜的组合物不包含水;
●该形成含Co膜的组合物包含在大约0%w/w与大约5%w/w之间的杂质;
●该形成含Co膜的组合物包含在大约0.0%w/w与大约2.0%w/w之间的杂质;
●该形成含Co膜的组合物包含在大约0.0%w/w与大约1.0%w/w之间的杂质;
●杂质包括卤化物,碱金属,烷基取代的硅烷,锂、钠或钾的卤化物;THF;醚;戊烷;环己烷;庚烷;苯;甲苯;
●该形成含Co膜的组合物包含在大约0ppbw与大约1ppmw之间的金属杂质;
●该形成含Co膜的组合物包含在大约0ppbw与大约500ppbw之间的金属杂质;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Al;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的As;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Ba;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Be;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Bi;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Cd;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Ca;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Cr;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Cu;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Ga;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Ge;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Hf;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Zr;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的In;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Fe;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Pb;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Li;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Mg;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Mn;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的W;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Ni;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的K;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Na;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Sr;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Th;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Sn;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Ti;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的U;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的V;
●该形成含Co膜的组合物包含在大约0ppbw与大约100ppbw之间的Zn;
●该形成含Co膜的组合物包含在大约0ppmw与大约100ppmw之间的Cl;
●该形成含Co膜的组合物包含在大约0ppmw与大约100ppmw之间的Br。
还披露了一种形成含Co膜的组合物递送装置,该递送装置包括罐,该罐具有入口导管和出口导管并且含有以上披露的任一种形成含Co膜的组合物。所披露的装置可以包括以下方面中的一项或多项:
●该形成含Co膜的组合物具有小于10ppmw的总金属污染物浓度;
●该入口导管端的一端位于该形成含Co膜的组合物的表面上方且该出口导管的一端位于该形成含Co膜的组合物的表面下方;
●该入口导管端的一端位于该形成含Co膜的组合物的表面下方且该出口导管的一端位于该形成含Co膜的组合物的表面上方;
●进一步包含在该入口和该出口上的隔膜阀。
●在该罐的内表面上进一步包括一个或多个阻挡层;
●在该罐的内表面上进一步包括一个至四个阻挡层;
●在该罐的内表面上进一步包括一个或两个阻挡层;
●每个阻挡层包含氧化硅层、氮化硅层、氧氮化硅层、碳氮化硅、氧碳氮化硅层、或其组合;
●其中每个阻挡层是1至100nm厚;
●其中每个阻挡层是2至10nm厚;
●该形成含Co膜的组合物包含Co[N(SiMe3)2]2(NMe2Et);并且
●该形成含Co膜的组合物包含Co[N(SiMe3)2]2(NMeEt2)。
还披露了在基板上沉积含Co层的方法。将以上披露的任何形成含Co膜的组合物的蒸气引入至其中布置有基板的反应器中。使用气相沉积法使该含甲硅烷基酰胺的前体的至少一部分沉积到基板上以形成含Co层。所披露的方法可具有以下方面中的一项或多项:
●这些形成含Co膜的组合物包含选自Co[N(SiMe3)2]2(NMe2Et)、Co[N(SiMe3)2]2(NMeEt2)、或其组合的含甲硅烷基酰胺的前体;
●该含甲硅烷基酰胺的前体是Co[N(SiMe3)2]2(NMe2Et);
●该含甲硅烷基酰胺的前体是Co[N(SiMe3)2]2(NMeEt2);
●将包含第二前体的蒸气引入至该反应器中;
●该第二前体的元素选自下组,该组由以下各项组成:第2族、第13族、第14族、过渡金属、镧系元素及其组合;
●该第二前体的元素选自Mg、Ca、Sr、Ba、Zr、Hf、Ti、Nb、Ta、Al、Si、Ge、Y、或镧系元素;
●将反应物引入至该反应器中;
●该反应物选自下组,该组由以下各项组成:O2、O3、H2O、H2O2、NO、NO2、羧酸、其自由基、以及其组合;
●该反应物为经等离子体处理的氧;
●该反应物是臭氧;
●该反应物选自下组,该组由以下各项组成:H2、NH3、(SiH3)3N、氢化硅烷(如SiH4、Si2H6、Si3H8、Si4H10、Si5H10、Si6H12)、氯硅烷和氯聚硅烷(如SiHCl3、SiH2Cl2、SiH3Cl、Si2Cl6、Si2HCl5、Si3Cl8)、烷基硅烷(如Me2SiH2、Et2SiH2、MeSiH3、EtSiH3)、肼(如N2H4、MeHNNH2、MeHNNHMe)、醇(如乙醇或甲醇)、有机胺(如NMeH2、NEtH2、NMe2H、NEt2H、NMe3、NEt3、(SiMe3)2NH)、吡唑啉、吡啶、含B分子(如B2H6、9-硼二环[3,3,1]壬烷、三甲基硼、三乙基硼、硼吖嗪)、烷基金属(如三甲基铝、三乙基铝、二甲基锌、二乙基锌)、其自由基物种、以及其混合物;
●该反应物选自下组,该组由以下各项组成:H2、NH3、SiH4、Si2H6、Si3H8、SiH2Me2、SiH2Et2、N(SiH3)3、其氢自由基、以及其混合物;
●该反应物选自下组,该组由以下各项组成:NH3、N2H4、N(SiH3)3、N(CH3)H2、N(C2H5)H2、N(CH3)2H、N(C2H5)2H、N(CH3)3、N(C2H5)3、(SiMe3)2NH、(CH3)HNNH2、(CH3)2NNH2、其含氮自由基物种、以及其混合物;
●该反应物是HCDS或PCDS;
●该反应物为经等离子体处理的N2
●该气相沉积法是CVD工艺;
●该气相沉积法是ALD工艺;
●该气相沉积法是PEALD工艺;该气相沉积法是空间ALD工艺;
●该含Co层是氧化钴层;
●该含Co层是氮化钴层;
●该含Co层是Co;并且
●该含Co层是CoSi。
标记和命名
贯穿以下说明及权利要求书中使用某些缩写、符号及术语,且其包括:
如在此所使用,不定冠词“一个/一种(a或an)”意指一个/一种或多个/多种。
如在此所使用,术语“大约(approximately)”或“约(about)”意指所陈述的值的±10%。
在此列举的任何及所有范围包含其端点(即,x=1至4包括x=1、x=4及x=其间的任何数)。
如在此所使用,术语“烷基”是指仅含有碳和氢原子的饱和官能团。进一步地,术语“烷基”是指直链、支链、或环状烷基。直链烷基的实例包括但不限于,甲基、乙基、丙基、丁基等。支链烷基的实例包括但不限于叔丁基。环烷基的实例包括但不限于,环丙基、环戊基、环己基等。
如在此所使用,术语“烃”意指仅含有氢和碳原子的官能团。该官能团可以是饱和的(仅含有单键)或不饱和的(含有双键或三键)。
如在此所使用,术语“杂环”意指环状化合物,其具有至少两种不同元素的原子作为其环的成员。
如在此所使用,缩写“Me”是指甲基;缩写“Et”是指乙基;缩写“Pr”是指任何丙基(即,正丙基或异丙基);缩写“iPr”是指异丙基;缩写“Bu”是指任何丁基(正丁基、异丁基、叔丁基、仲丁基);缩写“tBu”是指叔丁基;缩写“sBu”是指仲丁基;缩写“iBu”是指异丁基;缩写“Ph”是指苯基;缩写“py”是指吡啶基;缩写“THF”是指四氢呋喃;以及缩写“Cp”是指环戊二烯基。
在此使用来自元素周期表的元素的标准缩写。应理解,可通过这些缩写提及元素(例如,Co是指钴,Si是指硅,C是指碳等)。
请注意,膜或层(诸如硅化钴)在整个说明书及权利要求书中是在不提及其适当化学计量的情况下列举。这些层可包括纯(M)层、硅化物(MoSip)层、碳化物(MoCp)层、氮化物(MkNl)层、氧化物(MnOm)层或其混合物;其中M为Co;且k、l、m、n、o和p范围从1至6(包括端点)。例如,硅化钴为CokSil,其中k及l各自范围是从0.5至5。类似地,ConOm可以包括CoO和Co3O4。任何提及的层还可以包括氧化硅层SinOm,其中n范围是从0.5至1.5,并且m范围是从1.5至3.5。更优选地,氧化硅层为SiO2。氧化硅层可为基于氧化硅的介电材料,诸如基于掺杂碳的氧化硅的低k介电材料,诸如应用材料公司(Applied Materials)的Black DiamondII或III材料。可替代地,任何提及的含硅层可为纯硅。任何含硅层还可以包括掺杂剂,诸如B、C、P、As和/或Ge。
附图说明
为了进一步理解本发明的本质和目的,应结合附图来参考以下详细说明,在附图中相似元件给予相同或类似的参考号,并且其中:
图1是形成含Co膜的组合物递送装置1的一个实施例的侧截面视图;
图2是形成含Co膜的组合物递送装置1的第二实施例的侧截面视图;
图3是用于使固体形成含Co膜的组合物升华的固体前体升华器100的示例性实施例的侧截面视图;
图4是在1010毫巴下的对比开口杯热重分析(TGA)图,表明了随着温度增加Co[N(SiMe3)2]2(THF)、Co[N(SiMe2Et)2]2(THF)、Co[N(SiMe3)2]2(py)、Co[N(SiMe3)2]2(NMe2Et)、Co[N(SiMe3)2]2(NMeEt2)、Co[N(SiMe3)2]2(NEt3)、Co[N(SiMe3)2]2(Me-吡咯烷)、以及Co[N(SiMe2Et)2]2(NMe2Et)的重量损失的百分比;
图5是在20毫巴下的对比开口杯TGA图,表明了随着温度增加Co[N(SiMe2Et)2]2(THF)、Co[N(SiMe3)2]2(py)、Co[N(SiMe3)2]2(NMeEt2)、Co[N(SiMe3)2]2(NEt3)、Co[N(SiMe3)2]2(Me-吡咯烷)、以及Co[N(SiMe2Et)2]2(NMe2Et)的重量损失的百分比;
图6是对比TGA图,表明了在150℃下在稳定性测试的1周之前和之后随着温度增加Co[N(SiMe3)2]2(py)的重量损失的百分比;
图7是对比TGA图,表明了在90℃下在稳定性测试的1周、2周和3周以及1个月和2个月之前和之后随着温度增加Co[N(SiMe3)2]2(NMe2Et)的重量损失的百分比;
图8是对比TGA图,表明了在80℃下在稳定性测试的1周、2周和3周之前和之后随着温度增加Co[N(SiMe3)2]2(NMeEt2)的重量损失的百分比;
图9是对比TGA图,表明了在110℃下在稳定性测试的1周和2周之前和之后随着温度增加Co[N(SiMe3)2]2(1-Me-吡咯烷)的重量损失的百分比;以及
图10是对比TGA图,表明了在120℃下在稳定性测试的1周和2周之前和之后随着温度增加Co[N(SiMe2Et)2]2(NMe2Et)的重量损失的百分比。
具体实施方式
披露了形成含Co膜的组合物,这些组合物包含具有下式的含甲硅烷基酰胺的前体:
其中M是Co;每个R1、R2和R3独立地选自氢(H)或C1-C4烃;L是选自吡啶、NMe3、NEt3、NMe2Et、NMeEt2、1-Me-吡咯烷、或PMe3的一种或两种中性加合物;并且R1和R2或者R2和R3可以连接以形成环状含硅杂环。每个R1、R2和R3优选地独立地是甲基、乙基、异丙基、正丙基、正丁基或叔丁基。
具有式I的示例性含甲硅烷基酰胺的前体包括Co[N(SiMe3)2]2(py);Co[N(SiMe3)2]2(Me3N);Co[N(SiMe3)2]2(Et3N);Co[N(SiMe3)2]2(Me2EtN);Co[N(SiMe3)2]2(MeEt2N);Co[N(SiMe3)2]2(1-Me-吡咯烷);Co[N(SiMe3)2]2(PMe3);Co[N(SiMe2Et)2]2(py);Co[N(SiMe2Et)2]2(Me3N);Co[N(SiMe2Et)2]2(Et3N);Co[N(SiMe2Et)2]2(Me2EtN);Co[N(SiMe2Et)2]2(MeEt2N);Co[N(SiMe2Et)2]2(1-Me-吡咯烷);Co[N(SiMe2Et)2]2(PMe3);以及其组合。
具有式II的示例性含甲硅烷基酰胺的前体包括{Co[N(SiMe3)2]2}2;{Co[N(SiMe2Et)2]2}2;以及其组合。
这些含甲硅烷基酰胺的前体可以通过在溶剂(诸如四氢呋喃(THF)、醚、戊烷、环己烷、己烷、庚烷或甲苯)中使CoX2(其中X为Cl、Br或I)与M(N(SiR1R2R3)2)(其中M为Li、Na或K)反应来合成。可以将溶剂去除并使用过滤和/或升华从盐副产物中分离具有式I或II的产物。具有式I的L=THF加合物可以通过将所希望的配体的质子化形式添加到含THF前体的烷烃溶液(诸如戊烷、庚烷、己烷或环己烷)中并提取产物来取代。在下面的实例中提供了进一步细节。
为了确保工艺可靠性,所披露的形成含Co膜的组合物可以在使用之前通过连续或部分分批蒸馏、重结晶或升华纯化至范围从大约95%w/w至大约100%w/w、优选地范围从大约98%w/w至大约100%w/w的纯度。当纯度范围从大约99%w/w至大约100%w/w时,该形成含Co膜的组合物主要由该含甲硅烷基酰胺的前体组成。本领域普通技术人员将认识到该纯度可以通过H NMR或气相色谱法或液相色谱法与质谱法确定。这些形成含Co膜的组合物可含有任何以下杂质:卤化物、碱金属、烷基胺、烷基氨基取代的硅烷、吡啶、1-甲基吡咯烷、吡咯烷、THF、醚、戊烷、环己烷、庚烷、甲苯、卤化金属化合物。优选地,这些杂质的总量是低于0.1%w/w。该纯化的组合物可通过重结晶、升华、蒸馏和/或使气体或液体通过适合的吸附剂(诸如分子筛)生产。
各溶剂(诸如THF、醚、戊烷、环己烷、庚烷和/或甲苯)在经纯化的形成含Co膜的组合物中的浓度范围可以是从大约0%w/w至大约5%w/w,优选地从大约0%w/w至大约0.1%w/w。溶剂可用于该形成含Co膜的组合物的合成中。如果溶剂和组合物二者都具有相似的沸点,则从组合物中分离溶剂可能是困难的。冷却该混合物可以在液体溶剂中产生固体前体,其可以通过过滤分离。还可使用真空蒸馏,前提为该组合物不被加热至高于其大约分解点。
所披露的形成含Co膜的组合物含有小于5%v/v、优选小于1%v/v、更优选小于0.1%v/v、并且甚至更优选小于0.01%v/v的其类似物或其他反应产物中的任一种。此实施例可提供更好的工艺可重复性。此实施例可通过该形成含Co膜的组合物的蒸馏产生。
可替代地,所披露的形成含Co膜的组合物可包含在大约5%w/w至大约50%w/w之间的一种化合物,余量为包含第二化合物的组合物,特别是当混合物提供改进的工艺参数或目标化合物的分离太困难或昂贵时。例如,所披露的形成含Co膜的组合物可以是40/60%w/w的Co[N(SiMe3)2]2(NMe2Et)和Co[N(SiMe3)2]2(NMeEt2)。混合物可以产生适用于气相沉积的稳定的液体组合物。
痕量金属和类金属在该纯化的形成含Co膜的组合物中的浓度范围各自独立地可以是从大约0ppbw至大约100ppbw,并且更优选地从大约0ppbw至大约10ppbw。这些金属或类金属杂质包含但不限于铝(Al)、砷(As)、钡(Ba)、铍(Be)、铋(Bi)、镉(Cd)、钙(Ca)、铬(Cr)、铜(Cu)、镓(Ga)、锗(Ge)、铪(Hf)、锆(Zr)、铟(In)、铁(Fe)、铅(Pb)、锂(Li)、镁(Mg)、锰(Mn)、钨(W)、镍(Ni)、钾(K)、钠(Na)、锶(Sr)、钍(Th)、锡(Sn)、钛(Ti)、铀(U)、钒(V)及锌(Zn)。X(其中X=Cl、Br)在该纯化的形成含Co膜的组合物中的浓度范围可在大约0ppmw与大约100ppmw之间且更优选在大约0ppmw至大约10ppmw之间。
应注意防止所披露的形成含Co膜的组合物暴露于水中,因为这可能导致含有甲硅烷基胺的前体分解。
还披露了使用所披露的形成含Co膜的组合物用于气相沉积法的方法。所披露的方法提供了形成含Co膜的组合物用于沉积含钴膜的用途。所披露的方法可适用于制造半导体器件、光伏器件、LCD-TFT器件、平板型器件、耐火材料或航空材料。
所披露的用于在基板上形成含钴层的方法包括:将基板放置在反应器中,将所披露的形成含Co膜的组合物的蒸气递送至反应器中,并且使蒸气与基板接触(并且典型地将蒸气引导至基板)以在基板的表面上形成含钴层。
这些方法可包括使用气相沉积工艺在基板上形成含双金属层并且更具体地,沉积CoMNx膜,其中x为1-4并且M是Ti、Ta、Mn、Al、镧系元素(诸如Er)、或其组合。所披露的方法可适用于制造半导体器件、光伏器件、LCD-TFT器件、或平板型器件。还可以将H2或氮源(诸如N2、NH3、肼、胺、其N自由基以及其组合,但优选NH3或经等离子体处理的N2)引入至反应器中。
所披露的形成含Co膜的组合物可使用本领域技术人员已知的任何沉积方法用于沉积含钴膜。适合的沉积方法的实例包括化学气相沉积(CVD)或原子层沉积(ALD)。示例性CVD方法包括热CVD、脉冲CVD(PCVD)、低压CVD(LPCVD)、低于大气压的CVD(SACVD)或大气压CVD(APCVD)、热丝CVD(HWCVD,还被称为cat-CVD,其中热丝充当沉积工艺的能源)、自由基结合的CVD、等离子体增强的CVD(PECVD)(包括但不限于可流动PECVD),以及其组合。示例性ALD方法包括热ALD、等离子体增强的ALD(PEALD)、空间隔离ALD、热丝ALD(HWALD)、自由基结合的ALD、以及其组合。还可使用超临界流体沉积。沉积法优选地是ALD、PE-ALD、或空间ALD,以便提供适合的阶梯覆盖和膜厚度控制。
产生了形成含Co膜的组合物的蒸气,并且然后将其引入含有基板的反应室中。反应室内的温度及压力以及基板的温度保持在适于将该含甲硅烷基胺的前体的至少一部分气相沉积到基板上的条件下。换言之,在将汽化的组合物引入反应室中之后,调节反应室内的条件,使得该前体的至少一部分沉积到基板上以形成含Co层。本领域普通技术人员将认识到,“使该前体的至少一部分沉积”意指一些或全部前体与基板反应或粘附至基板。本文中,还可使用有助于形成含Co层的反应物。
反应室可为在其中进行沉积法的装置的任何密闭室或腔室,诸如但不限于平行板型反应器、冷壁型反应器、热壁型反应器、单晶片反应器、多晶片反应器、或其他此类类型的沉积系统。所有这些示例性反应室均能够充当ALD或CVD反应室。对于所有ALD及低于大气压的CVD,反应室可维持在范围从约0.5毫托至约20托的压力下。低于大气压的CVD及大气压CVD压力的范围可高达760托(大气压)。另外,反应室内的温度可在从约20℃至约600℃的范围内。本领域普通技术人员将认识到,温度可仅经由实验来优化以获得所希望的结果。
可通过控制基板固持器的温度或控制反应器壁的温度来控制反应器的温度。用于加热基板的装置是本领域中已知的。该反应器壁被加热至足够温度以便以足够生长率和所希望的物理状态和组成获得所希望的膜。非限制性示例性温度范围(可以将该反应器壁加热到该温度范围)包括从大约20℃至大约600℃。当利用等离子体沉积工艺时,该沉积温度范围可以是从大约20℃至大约550℃。可替代地,当进行热工艺时,该沉积温度范围可以是从大约300℃至大约600℃。
可替代地,该基板可以被加热至足够温度以便以足够生长速率和所希望的物理状态和组成获得所希望的含钴膜。非限制性示例性温度范围(可以将该基板加热到该温度范围)包括从150℃至600℃。优选地,该基板的温度保持小于或等于500℃。
反应器含有一个或多个上面沉积有膜的基板。基板一般定义为在其上进行工艺的材料。基板可为用于半导体、光伏、平板或LCD-TFT器件制造中的任何合适的基板。合适的基板的实例包括晶片,如硅、二氧化硅、玻璃、或GaAs晶片。该晶片可具有从先前的制造步骤沉积在其上的一个或多个不同材料层。例如,这些晶片可包括硅层(结晶、非晶、多孔等)、氧化硅层、氮化硅层、氧氮化硅层、掺杂碳的氧化硅(SiCOH)层、或其组合。另外,这些晶片可包括铜层或贵金属层(例如铂、钯、铑或金)。这些层可包括在MIM、DRAM、或FeRam技术中用作介电材料的氧化物(例如基于ZrO2的材料、基于HfO2的材料、基于TiO2的材料、基于稀土氧化物的材料、基于三元氧化物的材料,诸如氧化锶钌[SRO]等)或来自用作铜与低k层之间的氧阻挡层的基于氮化物的膜(例如TaN)。晶片可包括阻挡层,诸如锰、氧化锰等。也可使用塑料层诸如聚(3,4-亚乙基二氧噻吩)聚(苯乙烯磺酸酯)[PEDOT:PSS]。这些层可以是平面的或图案化的。例如,层可为由氢化碳(例如CHx,其中x大于零)制成的图案化光致抗蚀剂膜。
所披露的工艺可直接在晶片上或直接在晶片顶部的一个或多于一个(当图案化层形成该基板时)层上沉积该含钴层。该基板可以被图案化以包括具有高纵横比的通孔或沟槽。例如,可以使用任何ALD技术将共形的含Co膜如CoSi2沉积在具有范围从大约20:1至大约100:1的纵横比的硅通孔(TSV)上。此外,本领域普通技术人员将认识到,本文所用的术语“膜”或“层”是指放置或铺展在表面上的一些材料的厚度并且该表面可为沟槽或线。贯穿本说明书和权利要求书,晶片和其上的任何相关层称为基板。尽管在许多情况下,所用的优选基板可选自掺杂碳的SiO2、TaN、Ta、TiN、Ru以及Si类型基板,诸如多晶硅或晶体硅基板。
所披露的形成含Co膜的组合物可以进一步包含溶剂,诸如甲苯、乙苯、二甲苯、均三甲苯、癸烷、十二烷、辛烷、己烷、戊烷、叔胺、丙酮、四氢呋喃、乙醇、乙基甲基酮、1,4-二噁烷、或其他。所披露的组合物可以是以变化浓度存在于该溶剂中。例如,所得浓度范围可从大约0.05M至大约2M。
这些形成含Co膜的组合物可以通过图1-图3的形成含Co膜的组合物递送装置被递送至该反应器或气相沉积室,这些图示出了形成含Co膜的组合物递送装置的三个示例性实施例。
图1是形成含Co膜的组合物反应物递送装置1的一个实施例的侧视图。在图1中,所披露的形成含Co膜的组合物11被包含在具有两个导管(入口导管3和出口导管4)的容器2内。在反应物领域中的普通技术人员将认识到,容器2、入口导管3及出口导管4被制造为即使在升高的温度和压力下防止形成含Co膜的组合物11的气态形式的逸出。
递送装置1的出口导管4经由阀7流体地连接到该反应器(未示出)或在该递送装置与该反应器之间的其他部件,如气柜。优选地,容器2、入口导管3、阀6、出口导管4和阀7由316L EP或304不锈钢制成。然而,本领域普通技术人员将认识到,其他非反应性材料也可以用于在此的传授内容中。
在图1中,入口导管3的末端8位于形成含Co膜的组合物11的表面上方,而出口导管4的末端9位于形成含Co膜的组合物11的表面下方。在此实施例中,形成含Co膜的组合物11优选呈液体形式。包括但不限于氮气、氩气、氦气及其混合物的惰性气体可被引入至入口导管3中。该惰性气体对递送装置2加压,使得迫使液体形成含Co膜的组合物11通过出口导管4并且进入反应器(未示出)。该反应器可以包括汽化器,该汽化器在使用或不使用载气如氦气、氩气、氮气或其混合物下将液体形成含Co膜的组合物11转变为蒸气,以便将该蒸气递送至基板,在该基板上将形成膜。可替代地,液体形成含Co膜的组合物10可以作为射流或气溶胶被直接递送至晶片表面上。
图2是形成含Co膜的组合物递送装置1的第二实施例的侧视图。在图2中,入口导管3的末端8位于形成含Co膜的组合物11的表面下方,而出口导管4的末端9位于形成含Co膜的组合物11的表面上方。图2还包括任选的加热元件14,该加热元件可以升高形成含Co膜的组合物11的温度。在此实施例中,形成含Co膜的组合物11可以呈固体或液体形式。包括但不限于氮气、氩气、氦气及其混合物的惰性气体被引入至入口导管3中。该惰性气体鼓泡通过形成含Co膜的组合物11,并携带该惰性气体和汽化的形成含Co膜的组合物11的混合物至出口导管4并到该反应器上。用载体鼓泡还可移除该形成含Co膜的组合物中存在的任何溶解氧。
图1和图2包括阀6和7。本领域普通技术人员将认识到,阀6和7可以被置于打开或关闭位置,以分别允许流过导管3和4。如果形成含Co膜的组合物11是呈蒸气形式或如果足够的蒸气压存在于固相/液相上方,则可以使用图1和图2中的递送装置1或者具有在存在的任何固体或液体表面上方终止的单个导管的更简单的递送装置。在此情况下,通过打开图1中的阀6或图2中的阀7,使形成含Co膜的组合物11以蒸气形式通过导管3或4递送。递送装置1可维持于合适温度以向待以蒸气形式递送的形成含Co膜的组合物11提供足够的蒸气压,例如通过使用任选的加热元件14来维持。
虽然图1和图2披露了形成含Co膜的组合物递送装置1的两个实施例,但是本领域普通技术人员将认识到,入口导管3和出口导管4二者都还可以位于形成含Co膜的组合物11的表面的上方或下方,而不脱离在此的披露内容。此外,入口导管3可以是填充端口。
这些形成含Co膜的组合物的固体形式的蒸气使用升华器可以被递送至该反应器。图3示出了示例性升华器100的一个实施例。升华器100包括容器33。容器33可以是圆柱形容器,或可替代地,可以是但不限于任何形状。容器33由以下材料构造,这些材料如但不限于不锈钢、镍及其合金、石英、玻璃、以及其他化学上相容的材料。在某些情况下,容器33由另一种金属或金属合金构造(没有限制)。在某些情况下,容器33具有从约8厘米至约55厘米的内径,并且可替代地,从约8厘米至约30厘米的内径。如由本领域技术人员理解的,替代配置可以具有不同的尺寸。
容器33包括可密封的顶部15、密封件18、以及垫片20。可密封的顶部15被配置成密封容器33远离外部环境。可密封的顶部15被配置成允许进入容器33。附加地,可密封的顶部15被配置成供导管进入容器33中。可替代地,可密封的顶部15被配置成允许流体流动到容器33中。可密封的顶部15被配置成接收并且穿过包括浸入管92的导管以保持与容器33处于流体接触。具有控制阀90和配件95的浸入管92被配置成用于使载气流动到容器33中。在某些情况下,浸入管92沿着容器33的中心轴向下延伸。进一步地,可密封的顶部15被配置成接收并且穿过包括出口管12的导管。将载气以及形成含Co膜的组合物的蒸气通过出口管12从容器33中移除。出口管12包括控制阀10和配件5。在某些情况下,将出口管12流体联接至气体递送歧管,用于将载气从升华器100引导至该反应器。
容器33和可密封的顶部15被至少两个密封件18,可替代地,被至少约四个密封件密封。在某些情况下,可密封的顶部15被至少约八个密封件18密封到容器33上。如由本领域技术人员理解的,密封件18可释放地将可密封的顶部15联接到容器33上,并且与垫片20形成耐受气体的密封。密封件18可以包括对于本领域技术人员已知的用于密封容器33的任何合适的器件。在某些情况下,密封件18包括翼形螺钉。
如图3中所示,容器33进一步包括至少一个布置在其中的盘。该盘包括用于固体材料的搁架或水平支承件。在某些实施例中,内部盘30被环状地布置在容器33内,使得盘30包括小于容器33的内径或周长的外径或周长,形成开口31。外部盘86被周向地布置在容器33内,使得盘86包括与容器33的内径相同、大约相同、或总体上一致的外径或周长。外部盘86形成布置在该盘的中心处的开口87。多个盘被布置在容器33内。这些盘以交替方式堆叠,其中内部盘30、34、36、44与交替的外部盘62、78、82、86在该容器内竖直地堆叠。在实施例中,内部盘30、34、36、44环状地向外延伸,并且外部盘62、78、82、86环状地朝向容器33的中心延伸。如图3的实施例中所示,内部盘30、34、36、44不与外部盘62、78、82、86处于物理接触。
组装的升华器100包括内部盘30、34、36、44,这些内部盘包括对齐且联接的支承脚50,内部通道51,同心壁40、41、42,以及同心槽缝47、48、49。内部盘30、34、36、44竖直地堆叠,并且围绕浸入管92环状地定向。附加地,该升华器包括外部盘62、78、82、86。如图3中所示,外部盘62、78、82、86应该紧密地配合到容器33中用于良好接触以将热量从容器33传导至盘62、78、82、86。优选地,外部盘62、78、82、86被联接至容器33的内壁,或者处于与该内壁物理接触。
如所示,外部盘62、78、82、86和内部盘30、34、36、44堆叠在容器33内部。当在容器33中组装以形成升华器100时,内部盘30、34、36、44在组装的外部盘62、78、82、86之间形成外部气体通道31、35、37、45。进一步地,外部盘62、78、82、86与内部盘30、34、36、44的支承脚形成内部气体通道56、79、83、87。内部盘30、34、36、44的壁40、41、42形成用于保持固体前体的带凹槽的槽缝。外部盘62、78、82、86包括用于保持固体前体的壁68、69、70。在组装期间,将这些固体前体装载到内部盘30、34、36、44的环形槽缝47、48、49以及外部盘62、78、82、86的环形槽缝64、65、66中。
将小于约1厘米、可替代地小于约0.5厘米、并且可替代地小于约0.1厘米的尺寸的固体粉末和/或粒状颗粒装载到内部盘30、34、36、44的环形槽缝47、48、49以及外部盘62、78、82、86的环形槽缝64、65、66中。将这些固体前体通过适合于将固体在环形槽缝中均匀分布的任何方法装载到每个盘的环形槽缝中。合适的方法包括但不限于直接倾倒、使用勺、使用漏斗、自动化测量的递送、以及加压的递送。取决于固体前体材料的化学特性,可以在密封环境中进行装载。附加地,密封箱中的惰性气体气氛和/或加压可以对于那些有毒的、挥发性的、可氧化的和/或空气敏感的固体实施。每个盘能够在将该盘设置在容器33中之后装载。更优选的程序是在将该盘设置到容器33内之前装载该固体。可以通过对在装载过程之前和之后的升华器称重来记录装载到该升华器中的固体前体的总重量。进一步地,可以通过在蒸发和沉积工艺之后对升华器称重来计算消耗的固体前体。
具有控制阀90和配件95的浸入管92被定位在内部盘30、34、36、44的对齐且联接的支承脚的中心通道51中。因此,浸入管92穿过内部通道51竖直地朝向容器33的底部58。浸入管末端55被布置为邻近于容器的底部58和/或在气体窗口52的上方。气体窗口52被布置在底部内部盘44中。气体窗口52被配置成允许载气流出浸入管92。在组装的升华器100中,气体通路59通过容器33的底部表面58和底部内部盘44形成。在某些情况下,气体通路59被配置成加热载气。
在操作中,在经由浸入管92引入到容器33中之前,预热该载气。可替代地,该载气可以被加热,同时其通过底部表面58流经气体通路59。与在此传授内容一致地通过外部加热器热联接和/或加热底部表面58。然后该载气通过气体通路45,该气体通路是由内部盘44的外壁42和外部盘62的外壁61形成的。气体通路45通向内部盘44的顶部。该载气连续地在装载到环形槽缝47、48、和49的固体前体的顶部上流动。来自环形槽缝47、48、49的升华的固体蒸气与载气混合并且竖直地向上流经容器33。
虽然图3披露了能够将任何固体形成含Co膜的组合物的蒸气递送至该反应器的升华器的一个实施例,但本领域普通技术人员将认识到,其他升华器设计也是合适的,而不脱离在此的传授内容。最后,本领域普通技术人员将认识到,可使用其他递送装置(如Jurcik等人的WO 2006/059187中所披露的安瓿)将所披露的形成含Co膜的组合物递送至半导体加工工具中,而不脱离在此的传授内容。
必要时,可将图1-图3的形成含Co膜的组合物装置加热至允许该形成含Co膜的组合物处于其液相并且具有足够蒸气压的温度。可以将该递送装置维持在例如0℃-150℃的范围内的温度下。本领域技术人员认识到可以按已知方式调节该递送装置的温度以控制汽化的形成含Co膜的组合物的量。
除了所披露的前体之外,还可以将反应物引入至该反应器内。反应物可含有氧,诸如O2、O3、H2O、H2O2之一;含氧自由基,诸如O·或OH·、NO、NO2;羧酸,诸如甲酸、乙酸、丙酸;NO、NO2或羧酸的自由基物种;多聚甲醛;及其混合物。优选地,该含氧反应物选自下组,该组由以下各项组成:O2、O3、H2O、H2O2、其含氧自由基(如O·或OH·)、以及其混合物。优选地,当进行ALD工艺时,反应物为经等离子体处理的氧、臭氧或其组合。当使用含氧反应物时,所得含钴膜还将含有氧。
可替代地,该反应物可以是以下项中的一项:H2、NH3、(SiH3)3N、氢化硅烷(例如,SiH4、Si2H6、Si3H8、Si4H10、Si5H10、Si6H12)、氯硅烷和氯聚硅烷(例如,SiHCl3、SiH2Cl2、SIH3Cl、Si2Cl6、Si2HCl5、Si3Cl8)、烷基硅烷(例如,(CH3)2SiH2、(C2H5)2SiH2、(CH3)SiH3、(C2H5)SiH3)、肼(例如,N2H4、MeHNNH2、MeHNNHMe)、有机胺(例如,N(CH3)H2、N(C2H5)H2、N(CH3)2H、N(C2H5)2H、N(CH3)3、N(C2H5)3、(SiMe3)2NH)、吡唑啉、吡啶、含B分子(例如,B2H6、9-硼二环[3,3,1]壬烷、三甲基硼、三乙基硼、硼吖嗪)、烷基金属(诸如三甲基铝、三乙基铝、二甲基锌、二乙基锌)、醇(例如,乙醇或甲醇)、其自由基物种、以及其混合物。优选地,该反应物是H2、NH3、SiH4、Si2H6、Si3H8、SiH2Me2、SiH2Et2、N(SiH3)3、乙醇、其氢自由基、或其混合物。优选地,该反应物是SiHCI3、Si2CI6、Si2HCI5、Si2H2CI4、以及环-Si6H6CI6。当使用这些反应物时,所得含Co膜可以是纯Co。
该反应物可以通过等离子体处理,以便将该反应物分解成其自由基形式。当用等离子体处理时,N2还可以被用作反应物。例如,可以用范围从约50W至约500W、优选地从约100W至约200W的功率产生等离子体。等离子体可产生或存在于反应器本身内。可替代地,例如在远程定位的等离子体系统中,等离子体总体上可处于远离该反应器的位置处。本领域技术人员将认识到适于此类等离子体处理的方法和设备。
所披露的形成含Co膜的组合物还可与卤代硅烷或多卤代二硅烷(诸如六氯二硅烷、五氯二硅烷或四氯二硅烷)以及一种或多种反应物一起使用以形成CoSi膜、CoSiCN膜、或CoSiCOH膜。
当所希望的含Co膜还含有另一种元素,诸如,例如并且不限于,Ti、Mn、Ta、Hf、Nb、Mg、Al、Sr、Y、Ba、Ca、As、Sb、Bi、Sn、Pb、镧系元素(如Er)、或其组合时,这些反应物可包括另一种前体,该前体选自但不限于,烷基化合物(诸如Ln(RCp)3)、烷基胺(诸如Ti(NEt2)4)或其任何组合。
该形成含Co膜的组合物和一种或多种反应物可同时(例如CVD)、顺序地(例如ALD)或以其他组合引入反应室中。例如,该形成含Co膜的组合物可以一个脉冲引入并且两种附加的反应物可以分开的脉冲一起引入(例如经修改的ALD)。可替代地,反应室在引入该形成含Co膜的组合物之前可已含有反应物。可传递反应物通过定位于反应室中的等离子体系统或远离反应室的等离子体系统,并且分解成自由基。可替代地,该形成含Co膜的组合物可连续引入反应室中,同时通过脉冲(例如脉冲CVD)引入其他反应物。在每个实例中,可在脉冲之后进行吹扫或抽真空步骤以移除所引入的过量组分。在每个实例中,脉冲可持续范围从约0.01s至约10s、可替代地从约0.3s至约3s、可替代地从约0.5s至约2s的一段时间。在另一个替代方案中,可以同时地从喷淋头喷射形成含Co膜的组合物和一种或多种反应物,保持若干晶片的基座在该喷淋头下旋转(例如,空间ALD)。
在一个非限制性示例性ALD型工艺中,将蒸气相的形成含Co膜的组合物引入到反应室中,在该反应室中使该含甲硅烷基胺的前体的至少一部分与合适基板(诸如Si、SiO2、Al2O3等)反应以形成吸附的钴层。然后可通过对反应室进行吹扫和/或抽真空而自反应室中移除过量的组合物。将氧源引入至该反应室中,在该反应室中使其与吸收的钴层以自限制方式反应。通过对反应室进行吹扫和/或抽真空而自反应室移除任何过量氧源。如果所希望的膜是氧化钴膜,则此两步工艺可提供所希望的膜厚度或可被重复直至获得具有必需厚度的膜。
可替代地,如果所希望的膜含有第二元素(即CoMNx,其中x可以是1-4并且M是Ti、Ta、Hf、Nb、Mg、Al、Sr、Y、Ba、Ca、As、Sb、Bi、Sn、Pb、镧系元素(如Er)或其组合),在以上两步工艺之后可以接着是将第二前体的蒸气引入至该反应室内。第二前体将基于所沉积的膜的性质来选择。在引入至该反应室内后,使第二前体与该基板接触。通过对反应室进行吹扫和/或抽真空而自反应室中移除任何过量的第二前体。再次,可将N源引入反应室中以与含第二前体反应。通过对反应室进行吹扫和/或抽真空而自反应室中移除过量的N源。如果已经实现了所希望的膜厚度,则可终止该工艺。然而,如果较厚的膜是所希望的,则可重复整个四步骤工艺。通过交替提供形成含Co膜的组合物、第二前体和N源,可以沉积具有所希望的组成和厚度的膜。
附加地,通过改变脉冲次数,可获得具有所希望的化学计量的M:Co比的膜。例如,CoMN膜可以通过具有一个脉冲的该形成含Co膜的组合物和一个脉冲的该第二前体来获得,其中每个脉冲后接着是该NH3源的脉冲。然而,本领域普通技术人员将认识到,获得所希望膜所需的脉冲次数可能与所得膜的化学计量比不相同。
由以上讨论的工艺产生的含钴膜可以包括Co、CoSi2、CoO2、CoN、CoMN、CoC、CoON、CoCN、CoCON、或MCoOx,其中M是如Hf、Zr、Ti、Nb、Ta、或Ge等元素,并且x可以是从0-4,取决于M的氧化态。本领域普通技术人员将认识到,通过适当的形成含Co膜的组合物以及反应物的明断选择,可以获得所希望的膜组成。
一经获得所希望的膜厚度,可以使该膜经受另外的加工,如热退火、炉退火、快速热退火、UV或电子束固化、和/或等离子体气体暴露。本领域技术人员认识到用于进行这些附加的加工步骤的系统和方法。例如,含钴膜可在惰性气氛、含H气氛、含N气氛、含O气氛或其组合下,在范围从大约200℃与大约1000℃的温度下暴露范围从大约0.1秒至大约7200秒的时间。最优选地,在含H气氛下,该温度为600℃持续少于3600秒。所得膜可含有较少杂质,并且因此可具有改善的性能特征。退火步骤可以在进行该沉积工艺的同一反应室中进行。可替代地,可以从该反应室中移除该基板,其中在单独的设备中进行退火/快速退火工艺。已经发现任何以上后处理方法、但尤其是热退火有效地减少该含钴膜的碳和氮污染。
实例
提供以下非限制性实例以进一步说明本发明的实施例。然而,这些实例并不旨在包括所有情况并且并不旨在限制在此所描述的发明的范围。实例1:Co[N(SiMe3)2]2(THF)的合成
烧瓶填充有CoCl2(7.08g)和THF(50ml)。在-78℃下滴加NaN(SiMe3)2THF溶液(100mL),并且然后将混合物升温至室温(大约23℃,RT)。在室温下过夜反应之后,将溶液通过CeliteTM品牌硅藻土过滤,并在真空下去除所有溶剂。在真空(50毫托,70℃-80℃)下通过升华来纯化浅绿色化合物。产率58%。对于XRD分析,在-30℃下将产物从己烷中重结晶。获得了空气敏感的亮绿色晶体。
1H NMR(δ,C6D6)-16.98(s)96.91(brs),DSC 58℃(熔点),183℃(分解),在108℃下蒸气压1托。
实例2:Co[N(SiMe2Et)2]2(THF)的合成
烧瓶填充有CoCl2和THF。在-78℃下滴加NaN(SiMe2Et)2THF溶液,并且然后将混合物升温至室温(大约23℃,RT)。获得了深绿色液体。
1H NMR(δ,C6D6)-34.69(s),-19.67(s)2.11(brs)89.12(brs),DSC215℃(分解),在100℃下蒸气压1托。
实例3:Co[N(SiMe3)2]2(加合物)的合成
在氮气下将10当量的加合物配体(干燥的吡啶(py.)、二甲基乙胺、二乙基甲胺、三乙胺、1-甲基-吡咯烷)滴入Co[N(SiMe3)2]2(THF)(1.0g)(类似于实例1制备)的己烷溶液(5mL)中。在过夜反应之后,在真空下去除溶剂和过量的加合物配体。将粗产物用干己烷提取并且通过PTFE过滤器过滤。将目标化合物通过在-30℃下从干己烷中重结晶来纯化并且在真空下在室温下干燥。将每种加合的化合物作为蓝绿色固体分离。吡啶加合物(浅蓝色,产率78%)、二甲基乙胺加合物(蓝色,产率87%)、二乙基甲胺加合物(深绿色,产率56%)、三乙胺加合物(深绿色,产率93%)、1-甲基-吡咯烷加合物(浅蓝色,产率86%)。
加合的化合物的表征:通过1H NMR和XRD对每种化合物进行分析。
Py加合物:1H NMR(δ,C6D6)-18.84(s)67.04(brs),138.66(brs),DSC100℃(熔点),216℃(分解),在153℃下蒸气压1托。
二甲基乙胺加合物1H NMR(δ,C6D6)-24.91(s)71.77(brs),DSC 88℃(熔点),203℃(分解),在88℃下蒸气压1托。
二乙基甲胺加合物1H NMR(δ,C6D6)-22.58(brs),59.40(brs),97.71(brs)DSC 90℃(熔点),210℃(分解),在82℃下蒸气压1托。
三乙胺加合物1H NMR(δ,C6D6)-17.01(s),96.68(brs),DSC 221℃(分解),在100℃下蒸气压1托。
1-甲基-吡咯烷加合物1H NMR(δ,C6D6)-25.07(s),62.06(brs),76.22(brs),DSC148℃(熔点),210℃(分解),在114℃下蒸气压1托。
实例4:Co[N(SiMe2Et)2]2(二甲基乙胺)的合成
在氮气下将10当量的二甲基乙胺滴加到Co[N(SiMe2Et)2]2(THF)(1.0g)(类似于如实例2中制备)的己烷溶液(5mL)中。在过夜反应之后,在真空下去除溶剂和过量的加合物配体。将粗产物用干己烷提取并且通过PTFE过滤器过滤。在真空(30毫托)下通过蒸馏来纯化目标化合物。获得了深绿色液体(产率45%)。1H NMR(δ,C6D6)-20.45(brs),-16.20(s),0.07(s)0.50(q,J=8Hz),0.96(t,J=8Hz),12.75(brs)94.02(brs)。DSC 124℃(分解),在124℃下蒸气压1托。
实例5:热分析
在氮气(220sccm)下通过TGA(热重分析,METTLER,TGA/SDTA851)监测挥发性。温度以10℃/min增加。在氮气下在铝盘中制备测试样品。结果示出于图4和图5中。
图4是Co[N(SiR1R2R3)2]2(加合物)前体的对比开口杯TGA图,其中测量在1010毫巴下。1010毫巴等于大气压或是接近或处于可储存前体的压力。
如在图4中可以看出,Co[N(SiMe3)2]2(NMe2Et)展现出接近100%的蒸发,其中Co[N(SiMe3)2]2(NEt3)还留下很少的残余物。Co[N(SiMe3)2]2(Me-吡咯烷)、Co[N(SiMe3)2]2(NMeEt2)、以及Co[N(SiMe3)2]2(THF)全部都留下大约5%-10%的残余物。Co[N(SiMe2Et)2]2(THF)和Co[N(SiMe3)2]2(py)两者都留下大约10%的残余物。Co[N(SiMe2Et)2]2(NMe2Et)留下超过20%的残余物。
图5是Co[N(SiR1R2R3)2]2(加合物)前体的对比开口杯TGA图,其中测量在20毫巴下。20毫巴表示接近或处于可使用前体的压力。
如在图5中可以看出,所有6种测试的前体都留下接近0%的残余物(即,Co[N(SiMe2Et)2]2(THF)、Co[N(SiMe3)2]2(py)、Co[N(SiMe3)2]2(NMeEt2)、Co[N(SiMe3)2]2(NEt3)、Co[N(SiMe3)2]2(Me-吡咯烷)、以及Co[N(SiMe2Et)2]2(NMe2Et))。
如在图4和图5中表明的,虽然前体的结构相似,但Co[N(SiR1R2R3)2]2(加合物)前体家族没有展现出类似的特性。
关于前体的选择,挥发性对于被递送到反应室中是重要的。大气压下的TGA数据断定哪种前体对于使用是可接受的或者对于使用是不可接受的。优选地,该前体在真空下示出了明显的蒸发。
实例6:热应力测试
将样品在对应于1托蒸气压的温度下加热2周-3个月。在图6-图10中示出了在1010毫巴(大气压)下进行的TGA图,示出了在指定时间周期内已经被维持在指定温度下的那些样品的任何变化。图6示出了在0周和1周时在150C下Co[N(SiMe3)2]2(py)的结果。图7示出了在0周、1周、2周和3周;以及1个月和2个月时在90C下Co[N(SiMe3)2]2(NMe2Et)的结果。图8示出了在0周和1周、2周和3周时在80C下Co[N(SiMe3)2]2(NEt2Me)的结果。图9示出了在0周以及1周和2周时在110C下Co[N(SiMe3)2]2(1-Me-吡咯烷)的结果。图10示出了在0周以及1周和2周时在120C下Co[N(SiMe2Et)2]2(NMe2Et)的结果。
前体在使用温度下的稳定性也是重要的。当使用前体时,将罐加热以产生足够的蒸气,至少1托。为了获得高的生长速率,罐可以被加热超过1托的温度。因此,前体必须是稳定的而不分解以保持传送预期的蒸气。
在具有低蒸气压的半导体工业中利用的材料(诸如这些化合物)必须在升高的温度下保持稳定。已经选择升高的温度以便在罐中提供1托(133Pa)的前体的蒸气压/分压,因为已经发现该压力足以提供足够剂量的材料通过分配系统并进入工艺室中。罐可以被保持在升高的温度下持续对应于工艺工具的使用率/生产率的延长的持续时间(例如,几周或几个月)。在此类升高的温度下不维持其特征的材料可能不被有效地用作半导体加工的前体,而没有附加的异常设备或调节。申请人已经出人意料地发现Co(TMSA)2前体的NEtMe2加合物在延长的高温暴露后具有优异的热特性。
材料稳定性不仅取决于加合物的挥发性。NEtMe2加合物具有比NEt2Me加合物更高的挥发性(参见图4),但在三周后展现出显著的降解。附加地,因为该前体不含氧,它可能在沉积纯Co膜中是有用的。
申请人相信,NEtMe2的稳定性将允许在具有范围从3:1至50:1、优选地5:1至10:1的纵横比的孔洞和沟槽内部的共形阶梯覆盖,因为该前体将不展现出类似前体的降解。申请人还相信,NEtMe2前体将提供面心立方氮化钴(Co4N)的一致的沉积。Co4N在TaN或WN与铜镶嵌结构中的铜晶种层之间提供了强粘附增强层。
应当理解,由本领域技术人员可在如所附权利要求中所表述的本发明的原则和范围内做出在此已经描述且阐明以解释本发明的本质的细节、材料、步骤和零件安排上的许多附加的改变。因此,本发明不旨在限于以上给出的实例和/或附图中的具体实施例。

Claims (15)

1.一种将含Co层沉积在基板上的方法,该方法包括将形成含Co膜的组合物的蒸气引入至其中布置有基板的反应器中,其中这些形成含Co膜的组合物包含选自Co[N(SiMe3)2]2(NMe2Et)、Co[N(SiMe3)2]2(NMeEt2)、或其组合的含甲硅烷基酰胺的前体;并且使用气相沉积法使该含甲硅烷基酰胺的前体的至少一部分沉积到基板上以形成该含Co层。
2.如权利要求1所述的方法,其中该含甲硅烷基酰胺的前体是Co[N(SiMe3)2]2(NMe2Et)。
3.如权利要求1所述的方法,其中该含甲硅烷基酰胺的前体是Co[N(SiMe3)2]2(NMeEt2)。
4.如权利要求1至3中任一项所述的方法,其中该含Co层是Co。
5.如权利要求1至3中任一项所述的方法,其中该含Co层是CoSi2
6.如权利要求4或5所述的方法,其中该基板是SiO2
7.如权利要求5所述的方法,其中该基板是Si。
8.一种将含Co层沉积在基板上的方法,该方法包括:
将包含形成含Co膜的组合物的形成含Co膜的组合物递送装置流体地连接到气相沉积室,其中该形成含Co膜的组合物包含选自Co[N(SiMe3)2]2(NMe2Et)、Co[N(SiMe3)2]2(NMeEt2)、或其组合的含甲硅烷基酰胺的前体;
将该形成含Co膜的组合物递送装置加热至产生在大约0.2托(大约27帕)与大约1.5托(大约200帕)之间的该形成含Co膜的组合物的蒸气压的温度;
将形成含Co膜的组合物的蒸气递送到该其中布置有基板的气相沉积室中;并且
使用气相沉积法使该含甲硅烷基酰胺的前体的至少一部分沉积到基板上以形成该含Co层。
9.如权利要求8所述的方法,进一步包括将该形成含Co膜的组合物递送装置维持在该温度下持续范围从2周至12个月的时间。
10.如权利要求8或9所述的方法,其中该含甲硅烷基酰胺的前体是Co[N(SiMe3)2]2(NMe2Et)。
11.一种氮化钴膜涂覆的基板,该基板包括如权利要求1至10中任一项所述的方法的产物。
12.一种形成含钴膜的组合物,该组合物包含选自Co[N(SiMe3)2]2(NMe2Et)、Co[N(SiMe3)2]2(NMeEt2)、或其组合的含甲硅烷基酰胺的前体,并且在80℃下2周之后具有小于5%的剩余质量的通过热重分析表明的热稳定性。
13.如权利要求12所述的形成含钴膜的组合物,其中该含甲硅烷基酰胺的前体是Co[N(SiMe3)2]2(NMe2Et)并且在90℃下2个月之后具有小于5%的剩余质量的通过热重分析表明的热稳定性。
14.如权利要求12所述的形成含钴膜的组合物,其中该形成含Co膜的组合物主要由选自Co[N(SiMe3)2]2(NMe2Et)、Co[N(SiMe3)2]2(NMeEt2)、或其组合的含甲硅烷基酰胺的前体组成。
15.如权利要求12所述的形成含钴膜的组合物,其中该形成含Co膜的组合物主要由Co[N(SiMe3)2]2(NMe2Et)组成。
CN201680074877.2A 2015-12-31 2016-12-12 形成含钴膜的组合物、其合成、以及在膜沉积中的用途 Active CN108431295B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/986,286 2015-12-31
US14/986,286 US9719167B2 (en) 2015-12-31 2015-12-31 Cobalt-containing film forming compositions, their synthesis, and use in film deposition
PCT/IB2016/001940 WO2017115138A1 (en) 2015-12-31 2016-12-12 Cobalt-containing film forming compositions, their synthesis, and use in film deposition

Publications (2)

Publication Number Publication Date
CN108431295A true CN108431295A (zh) 2018-08-21
CN108431295B CN108431295B (zh) 2021-01-08

Family

ID=55791519

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680074877.2A Active CN108431295B (zh) 2015-12-31 2016-12-12 形成含钴膜的组合物、其合成、以及在膜沉积中的用途

Country Status (6)

Country Link
US (1) US9719167B2 (zh)
EP (1) EP3397790B1 (zh)
JP (1) JP6956086B2 (zh)
KR (1) KR102653603B1 (zh)
CN (1) CN108431295B (zh)
WO (1) WO2017115138A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10290540B2 (en) 2016-11-01 2019-05-14 Versum Materials Us, Llc Disubstituted alkyne dicobalt hexacarbonyl compounds, method of making and method of use thereof
US20180134738A1 (en) 2016-11-01 2018-05-17 Versum Materials Us, Llc Disubstituted alkyne dicobalt hexacarbonyl compounds, method of making and method of use thereof
TWI819180B (zh) * 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 藉由循環沈積製程於基板上形成含過渡金屬膜之方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984591B1 (en) * 2000-04-20 2006-01-10 International Business Machines Corporation Precursor source mixtures
US20140255606A1 (en) * 2013-03-06 2014-09-11 David Thompson Methods For Depositing Films Comprising Cobalt And Cobalt Nitrides
US20150246941A1 (en) * 2012-09-25 2015-09-03 Entegris, Inc. Cobalt precursors for low temperature ald or cvd of cobalt-based thin films

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5290488B2 (ja) 2000-09-28 2013-09-18 プレジデント アンド フェロウズ オブ ハーバード カレッジ 酸化物、ケイ酸塩及びリン酸塩の気相成長
US6464779B1 (en) * 2001-01-19 2002-10-15 Novellus Systems, Inc. Copper atomic layer chemical vapor desposition
US9051641B2 (en) 2001-07-25 2015-06-09 Applied Materials, Inc. Cobalt deposition on barrier surfaces
KR100539278B1 (ko) * 2003-09-22 2005-12-27 삼성전자주식회사 코발트 실리사이드막 형성 방법 및 반도체 장치의 제조방법.
US20060121192A1 (en) 2004-12-02 2006-06-08 Jurcik Benjamin J Liquid precursor refill system
US20080132050A1 (en) * 2006-12-05 2008-06-05 Lavoie Adrien R Deposition process for graded cobalt barrier layers
JP5571547B2 (ja) 2007-04-09 2014-08-13 プレジデント アンド フェローズ オブ ハーバード カレッジ 銅の相互接続体のための窒化コバルト層及びそれらを形成する方法
CN101680085B (zh) * 2007-05-21 2012-12-05 乔治洛德方法研究和开发液化空气有限公司 用于半导体领域的钴前体
US20090246952A1 (en) 2008-03-28 2009-10-01 Tokyo Electron Limited Method of forming a cobalt metal nitride barrier film
WO2014118747A1 (en) * 2013-01-31 2014-08-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cobalt-containing compounds, their synthesis, and use in cobalt-containing film deposition
US9385033B2 (en) * 2013-09-27 2016-07-05 Intel Corporation Method of forming a metal from a cobalt metal precursor
US9362228B2 (en) 2013-10-22 2016-06-07 Globalfoundries Inc. Electro-migration enhancing method for self-forming barrier process in copper metalization
US9601431B2 (en) * 2014-02-05 2017-03-21 Applied Materials, Inc. Dielectric/metal barrier integration to prevent copper diffusion
US10011903B2 (en) * 2015-12-31 2018-07-03 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Manganese-containing film forming compositions, their synthesis, and use in film deposition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984591B1 (en) * 2000-04-20 2006-01-10 International Business Machines Corporation Precursor source mixtures
US20150246941A1 (en) * 2012-09-25 2015-09-03 Entegris, Inc. Cobalt precursors for low temperature ald or cvd of cobalt-based thin films
US20140255606A1 (en) * 2013-03-06 2014-09-11 David Thompson Methods For Depositing Films Comprising Cobalt And Cobalt Nitrides

Also Published As

Publication number Publication date
JP6956086B2 (ja) 2021-10-27
KR102653603B1 (ko) 2024-04-01
US9719167B2 (en) 2017-08-01
KR20180098578A (ko) 2018-09-04
US20160115588A1 (en) 2016-04-28
CN108431295B (zh) 2021-01-08
WO2017115138A1 (en) 2017-07-06
JP2019503433A (ja) 2019-02-07
EP3397790B1 (en) 2023-08-09
EP3397790A1 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
CN107429389B (zh) 形成含硅膜的组合物及其使用方法
US9240319B2 (en) Chalcogenide-containing precursors, methods of making, and methods of using the same for thin film deposition
KR20090091107A (ko) 금속 박막의 cvd/ald용으로 유용한 안티몬 및 게르마늄 착체
US20160115593A1 (en) Amino(iodo)silane precursors for ald/cvd silicon-containing film applications and methods of using the same
US10584039B2 (en) Titanium-containing film forming compositions for vapor deposition of titanium-containing films
CN110073474A (zh) 锆前体、铪前体、钛前体及使用其沉积含第4族的膜
US11168099B2 (en) Titanium-containing film forming compositions for vapor deposition of titanium-containing films
US10053775B2 (en) Methods of using amino(bromo)silane precursors for ALD/CVD silicon-containing film applications
CN108431295A (zh) 形成含钴膜的组合物、其合成、以及在膜沉积中的用途
CN108474113A (zh) 形成含锰膜的组合物、其合成、以及在膜沉积中的用途
US9790591B2 (en) Titanium-containing film forming compositions for vapor deposition of titanium-containing films
US9738971B2 (en) Vapor deposition methods to form group 8-containing films
JP2023544202A (ja) 蒸着用インジウム前駆体
JP2019534939A (ja) 4族遷移金属含有膜の気相成長のための4族遷移金属含有膜形成用組成物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant