RU2658002C2 - Автомобильные каталитические композиты, имеющие слой с двумя металлами - Google Patents

Автомобильные каталитические композиты, имеющие слой с двумя металлами Download PDF

Info

Publication number
RU2658002C2
RU2658002C2 RU2015135446A RU2015135446A RU2658002C2 RU 2658002 C2 RU2658002 C2 RU 2658002C2 RU 2015135446 A RU2015135446 A RU 2015135446A RU 2015135446 A RU2015135446 A RU 2015135446A RU 2658002 C2 RU2658002 C2 RU 2658002C2
Authority
RU
Russia
Prior art keywords
oxide
alumina
composite
component
cerium oxide
Prior art date
Application number
RU2015135446A
Other languages
English (en)
Other versions
RU2015135446A (ru
Inventor
Мирко АРНОЛЬД
Штефан КОТРЕЛЬ
Аттилио ЗИАНИ
Штефан ЗАЙМУНД
Томас ШМИТЦ
Буркхард РАБЕ
Гэри А. ГРАМИЧЧОНИ
Оливер ЗЕЕЛЬ
Торстен НОЙБАУЕР
Кнут ВАССЕРМАНН
Original Assignee
Басф Корпорейшн
Басф Се
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Басф Корпорейшн, Басф Се filed Critical Басф Корпорейшн
Publication of RU2015135446A publication Critical patent/RU2015135446A/ru
Application granted granted Critical
Publication of RU2658002C2 publication Critical patent/RU2658002C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/014Stoichiometric gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0684Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having more than one coating layer, e.g. multi-layered coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Изобретение относится к автомобильным каталитическим композитам (вариантам), каталитический материал которых эффективен для практически одновременного окисления монооксида углерода и углеводородов и восстановления окислов азота. Согласно первому варианту автомобильный каталитический композит включает: каталитический материал на подложке, при этом каталитический материал включает слой с двумя металлами, который содержит: родиевый компонент на первом носителе, который содержит компонент оксида тугоплавкого металла и, необязательно, дополнительно, содержит первый композит оксид церия-оксид циркония; палладиевый компонент на втором носителе, который содержит второй композит оксид церия-оксид циркония; один или более из таких компонентов, как промотор, стабилизатор или связующее; где каталитический материал эффективен в трехкомпонентной конверсии (TWC) для по существу одновременного окисления монооксида углерода и углеводородов и восстановления оксидов азота и где общее количество по весу первого композита оксид церия-оксид циркония, если он присутствует, и второго композита оксид церия-оксид циркония в слое с двумя металлами равно или превышает количество по весу компонента оксида тугоплавкого металла. Согласно второму варианту автомобильный каталитический композит содержит: каталитический материал на подложке, при этом каталитический материал включает слой с двумя металлами, который содержит: родиевый компонент на носителе, который представляет собой активированное глиноземное соединение, выбранное из группы, состоящей из глинозема, глинозема-оксида циркония, глинозема-оксида церия-оксида циркония, оксида лантана-глинозема, оксида лантана-оксида циркония-глинозема, оксида бария-глинозема, оксида бария оксида лантана-глинозема, оксида бария оксида лантана-оксида неодима глинозема и глинозема-оксида церия; палладиевый компонент, термически прикрепленный к композиту оксид церия-оксид циркония, содержащий оксид церия в количестве, которое находится в диапазоне 25-45% по весу от композита оксид церия-оксид циркония; одно или более из соединений оксид лантана, оксид бария и оксид циркония; где каталитический материал эффективен в трехкомпонентной конверсии (TWC) для по существу одновременного окисления монооксида углерода и углеводородов и восстановления оксидов азота и где весовое отношение количества композита оксид церия-оксид циркония к количеству активированного глиноземного соединения в слое с двумя металлами составляет 4:1 или более. Изобретение также относится к системе обработки выхлопных газов, к способу обработки выхлопного газа и к способу изготовления каталитического кампозита. Технический результат заключается в улучшении каталитических характеристик. 5 н. и 10 з.п. ф-лы, 4 ил., 1 табл., 9 пр.

Description

ОБЛАСТЬ ТЕХНИКИ
[0001] Настоящее изобретение относится, в основном, к автомобильным катализаторам, имеющим слой с двумя металлами, и композитам, и системам обработки эмиссии, в которых такие катализаторы используются для обработки потока выхлопных газов бензиновых двигателей, который содержит углеводороды, монооксид углерода и оксиды азота. Более конкретно, данное изобретение относится к трехкомпонентным каталитическим конвертерам (TWC), которые содержат два металла, родий и палладий, в одном и том же слое, и к композитам, нанесенным на подложки, такие как монолитная подложка.
УРОВЕНЬ ТЕХНИКИ
[0002] Стандарты по уровням эмиссии таких поллютантов, как несгоревшие углеводороды, монооксид углерода и оксиды азота продолжают ужесточаться. Чтобы соответствовать таким стандартам, в линию выхода выхлопных газов двигателей внутреннего сгорания можно устанавливать каталитические конвертеры, которые включают трехкомпонентный каталитический конвертер (TWC). Такие катализаторы ускоряют окисление кислородом несгоревших углеводородов и монооксида углерода, так же как восстановление оксидов азота до азота в потоке выхлопных газов.
[0003] Многие катализаторы TWC производят с по меньшей мере двумя отдельными покрытиями из каталитических композиций (покрытия из пористых оксидов), которые в виде водных дисперсий наносят последовательными слоями на подложку (например, сотовый массив, состоящий из керамики или металла), чтобы разделить благородные металлы, такие как палладий и родий, которые являются основными каталитически активными компонентами. Необходимость в разделении возникла исторически, поскольку палладий и родий могут образовывать сплав, о котором известно, что у него меньшая каталитическая активность.
[0004] Катализаторы TWC включают компоненты, которые служат хранилищами кислорода (КХК), и глиноземные материалы в качестве носителя для благородных металлов. В таких катализаторах TWC, активность Rh может блокироваться его взаимодействием с глиноземом и оксидом церия, который содержится в композитном материале КХК. Такое взаимодействие может приводить к деактивации каталитической активности Rh, особенно когда концентрация оксида церия в композитном материале КХК превышает 30 весовых %. Кроме того, при высокотемпературном старении, т.е., при температурах выше 1000°C, Rh мигрирует внутри покрытия из пористого оксида. Миграция Rh негативно влияет на эксплуатационные характеристики при обработке выбросов, в частности, на степень превращения NOx при высоком содержании, поскольку Rh в этом случае окажется в контакте с оксидом церия в композитном материале КХК. Характеристики родия могут также ухудшаться в результате взаимодействия с палладием.
[0005] Существует необходимость в создании композиций для формирования единственного покрытия из пористого оксида, которое содержит оба металла, и палладий и родий, в то же время сохраняя и/или улучшая их каталитические характеристики по сравнению с композициями, предназначенными для нанесения отдельных слоев, в которых эти металлы присутствуют по отдельности. Существует также необходимость в способах, которые дают возможность наносить единственное покрытие из пористого оксида за один технологический этап. Кроме того, сохраняется необходимость в создании каталитических композитов TWC, в которых благородные металлы используются эффективно и остаются эффективными в сфере обеспечения регулируемого превращения углеводородов (НС), NOx и СО. Существует также необходимость в ограничении деактивации Rh, обусловленной его взаимодействием с КХК, и необходимость в ограничении миграции Rh по материалам носителя, которое обеспечит повышение эффективности конверсии.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0006] Предложены автомобильные каталитические композиты, которые
содержат слой с двумя металлами на подложке, и способы изготовления и использования этих каталитических композитов.
[0007] В первом аспекте, предложены автомобильные каталитические
композиты, которые включают каталитический материал на подложке, где каталитический материал является слоем с двумя металлами, содержащий: родиевый компонент на первом носителе, включающем компонент оксид тугоплавкого металла, или первый композит диоксид церия-диоксид циркония; палладиевый компонент на втором носителе, включающем второй композит диоксид церия-диоксид циркония; один или более таких компонентов как промотор, стабилизатор или связующее; где каталитический материал эффективен в трехкомпонентной конверсии (TWC) для практически одновременного окисления монооксида углерода и углеводородов и восстановления оксидов азота, и где общее количество первого и второго композитов диоксид церия-диоксид циркония в слое с двумя металлами равно или превышает количество тугоплавкого компонента из оксида металла.
[0008] В одном или более вариантах реализации изобретения, палладиевый компонент, родиевый компонент или оба эти компонента термически зафиксированы.
[0009] В одном или более вариантах реализации изобретения предлагается, чтобы первый носитель для родиевого компонента представлял собой носитель на основе глинозема или носитель на основе циркония. В подробно описанном варианте реализации изобретения, первый носитель для родиевого компонента содержит активированное глиноземное соединение, выбранное из группы, состоящей из глинозема, глинозема-оксида циркония, глинозема-оксида церия-оксида циркония, оксида лантана-глинозема, оксида лантана-оксида циркония-глинозема, оксида бария-глинозема, оксида бария оксида лантана-глинозема, оксида бария оксида лантана-оксида неодима глинозема, и глинозема-оксида церия.
[0010] В других вариантах реализации изобретения, первый носитель для родиевого компонента содержит композит оксид церия-оксид циркония, который содержит 20% по весу или менее оксида церия.
[0011] Второй носитель для палладиевого компонента может представлять собой композит оксид церия-оксид циркония, который содержит по меньшей мере 25% по весу оксида церия.
[0012] В одном или более вариантов реализации изобретения, весовое отношение общего количества первого и второго композитов оксид церия-оксид циркония к количеству компонента оксида тугоплавкого металла в слое с двумя металлами составляет более, чем 1:1; или 2,5:1 или более; или 4:1 или более; или даже 5:1 или более.
[0013] При желании, на компонент оксид тугоплавкого металла можно добавить дополнительный палладиевый компонент.
[0014] В одном из вариантов реализации изобретения, предложено, чтобы слой с двумя металлами содержал, в весовых процентах от веса слоя с двумя металлами, следующие компоненты: второй композит оксид церия-оксид циркония, количество которого находится в диапазоне 40-50%; компонент оксид тугоплавкого металла, количество которого находится в диапазоне 40-50%; и один или более таких компонентов как оксид лантана, оксид бария, оксид циркония и стронций в количестве вплоть до 10%; где второй композит оксид церия-оксид циркония содержит оксид церия, количество которого находится в диапазоне 25-45% от веса второго композита оксид церия-оксид циркония.
[0015] В другом варианте реализации изобретения, слой с двумя металлами содержит, в весовых процентах от веса слоя с двумя металлами, следующие компоненты: второй композит оксид церия-оксид циркония, количество которого находится в диапазоне 70-80%; оксид тугоплавкого металла, количество которого находится в диапазоне 10-20%; и один или более таких компонентов как оксид лантана, оксид бария, оксид циркония и стронций в количестве вплоть до 10%; где второй композит оксид церия-оксид циркония содержит оксид церия, количество которого находится в диапазоне 25-45% от веса второго композита оксид церия-оксид циркония. В подробно описанном варианте реализации изобретения, компонент оксид тугоплавкого металла содержит соединение глинозем-оксид церия.
[0016] Каталитический материал может дополнительно содержать второй слой поверх слоя с двумя металлами, второй слой содержит родиевый компонент на третьем носителе, платиновый компонент на четвертом носителе, палладиевый компонент на пятом носителе или их комбинацию. В одном или более вариантах реализации изобретения, второй слой содержит родиевый компонент на третьем носителе, который представляет собой активированное глиноземное соединение, выбранное из группы, состоящей из глинозема, глинозема-оксида циркония, глинозема-оксида церия-оксида циркония, оксида лантана-глинозема, оксида лантана-оксида циркония-глинозема, оксида бария-глинозема, оксида бария оксида лантана-глинозема, оксида бария оксида лантана-оксида неодима глинозема и глинозема-оксида церия. Для улучшения параметров конверсии, во второй слой может быть добавлен материал КХК.
[0017] В одном или более вариантах реализации изобретения, второй слой может содержать палладиевый компонент на пятом носителе, который представляет собой третий композит оксид церия-оксид циркония. В подробно описанном варианте реализации изобретения, третий носитель оксид церия-оксид циркония содержит оксид церия, количество которого находится в диапазоне 5-20% от веса третьего композита оксид церия-оксид циркония.
[0018] В одном из вариантов реализации изобретения, второй слой содержит: родиевый компонент на активированном глиноземном компоненте, выбранном из группы, состоящей из глинозема, глинозема-оксида циркония, глинозема-оксида церия-оксида циркония, оксида лантана-глинозема, оксида лантана-оксида циркония-глинозема, оксида бария-глинозема, оксида бария оксида лантана-глинозема, оксида бария оксида лантана-оксида неодима глинозема и глинозема-оксида церия; и палладиевый компонент на третьем композите оксид церия-оксид циркония, содержащем оксид церия, количество которого находится в диапазоне 5-20% от веса третьего композита оксид церия-оксид циркония.
[0019] В подробно описанном аспекте предложен автомобильный каталитический композит, который содержит: каталитический материал на подложке, где каталитический материал является слоем с двумя металлами, который содержит: родиевый компонент на активированном глиноземном соединении, выбранном из группы, состоящей из глинозема, глинозема-оксида циркония, глинозема-оксида церия-оксида циркония, оксида лантана-глинозема, оксида лантана-оксида циркония-глинозема, оксида бария-глинозема, оксида бария оксида лантана-глинозема, оксида бария оксида лантана-оксида неодима глинозема и глинозема-оксида церия; палладиевый компонент, термически прикрепленный к композиту оксид церия-оксид циркония, содержащему оксид церия, количество которого находится в диапазоне 25-45% от веса композита оксид церия-оксид циркония; один или более из таких компонентов как оксид лантана, оксид бария и оксид циркония; где каталитический материал эффективен в трехкомпонентной конверсии (TWC) для практически одновременного окисления монооксида углерода и углеводородов и восстановления оксидов азота, и где весовое отношение количества композита оксид церия-оксид циркония к количеству активированного глиноземного соединения в слое с двумя металлами составляет 4:1 или более. Активированное глиноземное соединение может, в частности, содержать соединение глинозем-оксид церия.
[0020] Композит, предложенный в данном документе, может дополнительно содержать второй слой поверх слоя с двумя металлами, второй слой содержит: родиевый компонент на активированном глиноземном соединении. Второй слой может дополнительно содержать материал КХК. Второй слой может дополнительно содержать палладиевый компонент на композите оксид церия-оксид циркония. В подробно описанном варианте реализации изобретения, композит оксид церия-оксид циркония содержит оксид церия, количество которого находится в диапазоне 5-20% от веса композита оксид церия-оксид циркония. В одном или более вариантах реализации изобретения, количество родиевого компонента во втором слое приблизительно такое же, как и количество родиевого компонента в слое с двумя металлами.
[0021] В другом аспекте предложена система обработки выхлопного газа, включающая каталитические композиты, раскрытые в данном документе, которые расположены за бензиновым двигателем. Система обработки выхлопного газа может дополнительно включать композит трехкомпонентного каталитического конвертера (TWC) с глухим соединением за бензиновым двигателем, где каталитический композит по п. 1 расположен за каталитическим композитом TWC с глухим соединением, но перед катализатором очистки от NOx. Катализаторы очистки от NOx включают, но не ограничиваются этим, ловушки NOx для обеднения и катализаторы селективного каталитического восстановления (SCR).
[0022] В других аспектах предложены способы обработки выхлопного газа, содержащего углеводороды, монооксид углерода и оксиды азота, которые включают: приведение выхлопного газа в контакт с каталитическими композитами, описанными в данном документе.
[0023] Другой аспект представляет собой способ изготовления каталитического композита, который включает: формирование каталитического материала трехкомпонентной конверсии (TWC) путем: диспергирования родиевого компонента по первому носителю, включающему компонент оксид тугоплавкого металла или первый композит оксид церия-оксид циркония, для формирования первого пропитанного носителя; необязательно, прикрепления родиевого компонента к первому пропитанному носителю; диспергирования палладиевого компонента по второму носителю, содержащему второй композит оксид церия-оксид циркония, для формирования второго пропитанного носителя; необязательно, прикрепление палладиевого компонента ко второму пропитанному носителю; последующего формирования водной суспензии покрытия из пористых оксидов путем смешивания воды, первого и второго пропитанных носителей и одного или более таких компонентов как промотор, стабилизатор или связующее; нанесение водной суспензии покрытия из пористых оксидов на подложку, для формирования на подложке единственного слоя с двумя металлами; обжига слоя с двумя металлами для формирования каталитического композита; где каталитический материал эффективен в трехкомпонентной конверсии (TWC) для практически одновременного окисления монооксида углерода и углеводородов и восстановления оксидов азота, и где общее количество первого и второго композитов диоксид церия-диоксид циркония в слое с двумя металлами равно или превышает количество компонента из оксида тугоплавкого металла в слое с двумя металлами. В одном или более вариантах реализации изобретения, палладиевый компонент, родиевый компонент или оба эти компонента термически зафиксированы. В других вариантах реализации изобретения предлагается хорошо диспергированный по первому носителю родиевый компонент и хорошо диспергированный по второму носителю палладиевый компонент. Кроме того, способы могут включать нанесение второго слоя на слой с двумя металлами, второй слой содержит родиевый компонент на третьем носителе, который представляет собой активированное глиноземное соединение, выбранное из группы, состоящей из глинозема, глинозема-оксида циркония, глинозема-оксида церия-оксида циркония, оксида лантана-глинозема, оксида лантана-оксида циркония-глинозема, оксида бария-глинозема, оксида бария оксида лантана-глинозема, оксида бария оксида лантана-оксида неодима глинозема и глинозема-оксида церия и необязательно платиновый компонент на четвертом носителе, палладиевый компонент на пятом носителе или оба эти компонента.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
[0024] ФИГ. 1 представляет собой принципиальную схему типичного каталитического материала в соответствии с одним из вариантов реализации изобретения;
[0025] ФИГ. 2 представляет собой принципиальную схему типичного каталитического материала в соответствии с одним из вариантов реализации изобретения;
[0026] ФИГ. 3 представляет собой принципиальную схему типичного каталитического материала в соответствии с одним из вариантов реализации изобретения; и
[0027] ФИГ. 4 представляет собой принципиальную схему типичного каталитического материала в соответствии с одним из вариантов реализации изобретения.
ПОДРОБНОЕ ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
[0028] Предложены автомобильные каталитические композиты, которые содержат слой с двумя металлами на подложке, и способы изготовления и использования этих каталитических композитов. Слой с двумя металлами формируют из единственного слоя пористых оксидов, который содержит два благородных металла, каждый из которых находится на собственном носителе, в результате получают гомогенную смесь двух металлов в одном и том же слое на подложке. Покрытие из пористых оксидов/слой с двумя металлами предназначено для содержания компонента активированного глинозема и/или композита оксид церия-оксид циркония в качестве носителя для родия и другого композита оксид церия-оксид циркония в качестве носителя для палладия. Особенность этого покрытия из пористых оксидов/слоя с двумя металлами заключается в том, что общий вес композитов оксид церия-оксид циркония равен или превышает количество компонента активированного глинозема. Следовательно, можно поставлять большие количества оксида церия, чем в случае применяемых на данном уровне техники многослойных композитов, в которых палладий и родий присутствуют в различных слоях, что требует больших количеств компонента активированного глинозема для подходящего распределения и связывания. Когда родий находится на активированном глиноземном компоненте, обычно весь глинозем, который требуется для создания каталитического материала, используется для приема родиевого компонента.
[0029] Один или более из благородных металлов прикреплены к их индивидуальным носителям, а это означает, что благородные компоненты нерастворимы в суспензии покрытия из пористого оксида. Прикрепление благородных металлов может происходить путем химической или термической фиксации. Для термического прикрепления, чтобы произвести “термически фиксированный” благородный металл, пропитанные носители подвергают тепловой обработке таким образом, чтобы благородные металлы переходили в свои оксидные формы, и чтобы при применении термически фиксированных благородных металлов на носителях в водной суспензии они были нерастворимыми и несклонными к образованию сплавов/агломератов. При химической фиксации, pH или некоторые другие параметры суспензии соли благородного металла с носителем изменяют, чтобы сделать компонент благородного металла нерастворимым в суспензии покрытия из пористого оксида. Без привязки к теории, предполагается, что термически фиксированные благородные металлы, которые содержатся в гомогенно смешанном слое с двумя металлами, минимизируют миграцию благородных металлов, особенно родия.
[0030] Каталитические композиты, представленные в данном документе, могут проявлять такие же, если не лучшие, эксплуатационные характеристики, как и многослойные композиты-аналоги идентичного, в целом, состава, у которых в каждом слое присутствует только один благородный металл.
[0031] Другая возможная особенность этой конструкции заключается в том, что такие компоненты, как тонко размолотый благородный металл, хорошо диспергированы по соответствующим носителям перед термическим прикреплением. Ссылка на “хорошо диспергированный” означает, что благородные металлы распределены в однородной и неагломерированной массе по всему объему пор данного носителя. Таким образом, количество материала носителя, находящееся в контакте с благородным металлом, максимизировано. Один из способов достичь этого заключается в пропитке носителя благородным металлом, при этом следует использовать водный раствор с самой низкой концентрацией, чтобы получить желаемую навеску благородного металла, в то же время максимизируя, за счет влагоемкости, количество материала носителя, вступающего в контакт с благородным металлом. Один из способов диспергирования представляет собой хемосорбцию монооксида углерода (СО). Чем выше дисперсионное число, тем лучше дисперсия. Другой способ получения хорошей дисперсии состоит в минимизации агломерации, которая определяется по размеру активных частиц.
[0032] Ссылка на “компонент хранилище кислорода” (КХК) относится к компоненту который может находиться в многовалентном состоянии и активно реагировать с окислителями, такими как кислород или оксиды азота, при подходящих для окисления условиях, или реагировать с восстановителями, такими как монооксид углерода (СО) или водород, при условиях, подходящих для восстановления. Обычно КХК содержит один или более способных восстанавливаться оксидов одного или более редкоземельных металлов. Примеры подходящих компонентов хранилищ кислорода включают оксид церия, оксид празеодимия или их комбинации. Доставку оксида церия внутрь слоя можно осуществить с использованием, например, оксида церия, смешанных оксидов церия и циркония и/или смешанных оксидов церия, циркония, иттрия, лантана, необязательно, неодима.
[0033] Ссылка на “носитель” в слое каталитического покрытия из пористых оксидов относится к материалу, который принимает благородные металлы, стабилизаторы, промоторы, связующие и т.п. посредством ассоциации, диспергирования, пропитки или других подходящих способов. Примеры носителей включают, но не ограничиваются этим, оксиды тугоплавких металлов с большой площадью поверхности и композиты, содержащие компоненты хранилища кислорода. В качестве примеров материалов носителей, можно привести компоненты оксид алюминия с высокой площадью поверхности (>80, 90, 100, 125 или даже 150 м2/г) (в различных модификациях) и оксид циркония, которые можно комбинировать с такими компонентами как стабилизаторы, такие как оксид лантана (т.е., композиты Zr-La), и компоненты хранилища кислорода (т.е., смешанные оксиды церия-циркония в различных вариантах реализации изобретения). Приведенные в качестве примера оксиды тугоплавких металлов с высокой площадью поверхности могут включать активированное глиноземное соединение, выбранное из группы, состоящей из глинозема, глинозема-оксида циркония, глинозема-оксида церия-оксида циркония, оксида лантана-глинозема, оксида лантана-оксида циркония-глинозема, оксида бария-глинозема, оксида бария оксида лантана-глинозема, оксида бария оксида лантана-оксида неодима глинозема и глинозема-оксида церия.
[0034] Соединение двух различных благородных металлов в одной композиции для покрытия сопряжено с серьезной проблемой, которая обусловлена растворимостью солей благородных металлов в воде. В обычных катализаторах TWC, благородные металлы палладий и родий в индивидуальном порядке наносят пропиткой в виде растворов нитратов (Pd(NO3)2 и Rh(NO3)3) на материалы носителей и затем последовательно вводят в водную суспензию покрытия из пористого оксида. Конкретно, на современном уровне техники способы включают следующие стадии:
[0035] a. Нанесение первого благородного металла пропиткой раствором соли металла, независимо от степени разбавления, на первый носитель (оксид алюминия или КХК) для формирования первого пропитанного носителя;
[0036] b. Изготовление первой водной суспензии покрытия из пористого оксида с использованием первого пропитанного носителя;
[0037] c. Нанесение второго благородного металла пропиткой раствором соли металла, независимо от степени разбавления, на второй носитель (оксид алюминия или КХК) для формирования второго пропитанного носителя;
[0038] d. Изготовление второй водной суспензии покрытия из пористого оксида с использованием первого пропитанного носителя;
[0039] e. Нанесение первого слоя на подложку с использованием первой водной суспензии покрытия из пористого оксида и обжиг первого слоя;
[0040] f. Нанесение второго слоя на подложку с использованием второй водной суспензии покрытия из пористого оксида и обжиг второго слоя;
[0041] Если оба благородных металла обрабатывать в одной водной суспензии покрытия из пористых оксидов с использованием традиционных способов, резко возрастет вероятность, что два благородных металла сформируют сплав внутри покрытия из пористого оксида, поскольку использовались водорастворимые соли металлов. В этом случае, эксплуатационные характеристики катализатора TWC будут хуже, чем в случае отдельных слоев палладия и родия.
[0042] Чтобы устранить проблему растворимости солей металлов в водной суспензии покрытия из пористого оксида после пропитки металлами соответствующих носителей, можно использовать раскрытые в данном документе способы термической фиксации благородных металлов на материалах носителей и формирования слоя с двумя металлами. В результате, эти благородные металлы не возвращаются в раствор, поскольку превращаются в свои оксидные формы, и не присутствуют в растворенном виде в водной фазе суспензии покрытия из пористого оксида. Кроме того, перед термическим прикреплением благородных металлов, их можно, при необходимости, хорошо диспергировать по поверхности носителей.
[0043] В общем случае, описанные в данном документе способы относятся к приготовлению композиций индивидуальных металлов, которые термически фиксированы и, необязательно, хорошо диспергированы. Таким образом, индивидуальные благородные металлы, такие как палладий и родий, в виде растворов нитратов наносят пропиткой на отдельные материалы носителей для достижения хорошей дисперсии. Иными словами, растворы нитратов разбавляют до максимально возможной степени, в то же время поставляя желательную навеску металла. Затем индивидуальные разбавленные растворы нитратов добавляют к индивидуальным материалам носителей пропиткой по влагоемкости, чтобы получить пропитанные носители. Затем пропитанные носители, в противоположность традиционному способу, последовательно обжигают (термическая фиксация) перед производством водной суспензии покрытия из пористых оксидов. Обжиг пропитанных материалов носителей приводит к превращению нитрата палладия и нитрата родия в соответствующие оксиды. Без привязки к теории, предполагается, что оксиды нерастворимы в воде, что дает возможность предотвратить повторное растворение палладия и родия. Таким образом, снижается вероятность формирования сплава палладий-родий, хотя оба благородных металла присутствуют в одном и том же слое покрытия из пористых оксидов. В общем виде, способы по данному изобретению для производства композиций из пористых оксидов для формирования единственного покрытия могут включать следующие стадии:
[0044] a. Нанесение первого благородного металла пропиткой раствором соли металла, который необязательно был разбавлен для минимизации концентрации металла, в то же время, поставляя желаемое количество в первый носитель (оксид алюминия или КХК) для формирования первого хорошо диспергированного пропитанного носителя;
[0045] b. Термическое закрепление (обжиг пропитанного носителя при 590°C) первого пропитанного носителя;
[0046] c. Нанесение второго благородного металла пропиткой раствором соли металла, который необязательно был разбавлен для минимизации концентрации металла, в то же время, поставляя желаемое количество во второй носитель (оксид алюминия или КХК) для формирования второго хорошо диспергированного пропитанного носителя;
[0047] d. Термическое закрепление (обжиг пропитанного носителя при 590°C) второго пропитанного носителя;
[0048] e. Изготовление единственной водной суспензии покрытия из пористых оксидов с использованием хорошо диспергированных и термически фиксированных пропитанных носителей;
[0049] f. Нанесение слоя с двумя металлами на подложку с использованием единственной водной суспензии покрытия из пористых оксидов и обжиг единственного слоя.
[0050] В принципе, производство водных суспензий покрытий из пористых оксидов TWC на стадиях b.) и d.) по способу, известному на современном уровне техники, не отличается от производства водной суспензии покрытия из пористых оксидов на стадии e.) для единственного покрытия, т.е. производство суспензий осуществляется в кислом диапазоне pH 2-6 (обычно: 3,5-5,0), и на этой стадии или на стадии пропитки перед обжигом вводятся любые желательные ингредиенты, такие как промоторы и стабилизаторы. Представитель каталитического материала с двумя металлами показан на ФИГ. 1, где для палладия носителем служит оксид церия-оксид циркония, а для родия - глинозем.
[0051] В другом аспекте, были разработаны составы катализатора TWC, которые включают два слоя различных композиций. Иными словами, предложен второй слой покрытия из пористых оксидов, который отличается от слоя с двумя металлами. Концепция этой структуры катализатора по существу соответствует распределению Rh между нижним и верхним слоем для ограничения миграции Rh, и в то же время для создания оптимизированных условий эксплуатации Rh в верхнем слое. Первый слой имеет отношение КХК/глинозем более чем 1:1 (или по меньшей мере 2,5/1 или по меньшей мере 4/1 или даже по меньшей мере 5/1) и содержит оба компонента, все имеющееся количество Pd и только половину Rh, которым пропитан глинозем. Второй слой имеет более низкое отношение КХК/глинозем (иными словами, здесь больше глинозема, чем материала КХК). Концентрация оксида церия в материале КХК может быть низкой и составлять примерно 10 вес. % или даже от 5 до 20 вес. %. В этом втором слое Rh пропитал глинозем. Выбор содержания оксида церия в материале КХК может быть связан с конкретным применением. Приведенный в качестве примера каталитический материал представлен на ФИГ. 2, где нижний слой представляет собой слой с двумя металлами, а верхний слой содержит родий на глиноземе и на материале КХК, и во втором слое содержание глинозема выше, чем содержание материала КХК. Может оказаться желательным, чтобы на материале КХК второого слоя был палладий, как показано на ФИГ. 3. Кроме того, может оказаться желательным, чтобы во втором слое присутствовал Rh/глинозем и материал КХК имел низкое содержание оксида церия, чтобы обеспечивать хорошие эксплуатационные характеристики двигателя и хорошую активность в конверсии обогащенной NOx смеси, что будет повышать степень превращения по сравнению со стандартным составом, где Rh находится в верхнем покрытиии, a Pd - в нижнем, или с составами соответствующей единственной суспензии, в которой Pd и Rh находятся в единственном покрытии.
[0052] Другое конструктивное решение заключается в использовании вышеописанных составов с нижним слоем, содержащим Pd/Rh, где Rh пропитали глинозем, a Pd пропитали материал КХК. Верхнее покрытие в этой концепции может содержать Rh, которым пропитан глинозем, и Pd (30 вес. % общего количества, использованного в композиции), которым пропитан материал КХК, в котором концентрация оксида церия составляет около 10 вес. %. Pd, который находится в верхнем слое, будет улучшать степень превращения НС по сравнению со стандартной композицией. Этот вариант реализации изобретения представлен на ФИГ. 4.
[0053] Таким образом, в одном или более вариантах реализации изобретения, второй слой может содержать один благородный металл, обычно - родий; два металла, обычно - родий и палладий или палладий и платину; или даже вплоть до трех металлов: родий, палладий и платину. В состав второго слоя обычно входит родиевый компонент на носителе, таком как активированный глиноземный компонент, выбранный из группы, состоящей из глинозема, глинозема-оксида циркония, глинозема-оксида церия-оксида циркония, оксида лантана-глинозема, оксида лантана-оксида циркония-глинозема, оксида бария-глинозема, оксида бария оксида лантана-глинозема, оксида бария оксида лантана-оксида неодима глинозема, и глинозема-оксида церия. Необязательно, композит оксид церия оксид циркония может быть введен во второй слой для улучшения общих эксплуатационных характеристик каталитического материала. В одном или более вариантах реализации изобретения, композит оксид церия-оксид циркония представляет собой компонент КХК с низким содержанием оксида церия, которое составляет 5-20% по весу. В других вариантах реализации изобретения, содержание оксида церия в компоненте КХК может составлять 20-45% по весу. Если потребуется, для дополнительного повышения степени превращения выбросов, таких как НС, второй слой может содержать палладиевый и/или платиновый компонент, каждый из которых термически закреплен на собственном носителе. Подходящим носителем для платины может быть активированный глиноземный компонент, а для палладия - композит оксид церия-оксид циркония с низким содержанием оксида церия. Покрытие из пористых оксидов для второго слоя можно приготовить по известным в этой области технологиям. Относительно фиксирования металлов, можно использовать, по желанию, физическое или химическое закрепление.
[0054] При использовании второго слоя поверх слоя с двумя металлами, появляется возможность добиться практически равномерного распределения родия между двумя слоями, чтобы ограничить миграцию Rh и создать для Rh две различных среды, чтобы повысить степень превращения.
[0055] От выбора материала носителя (КХК или оксид алюминия) для двух благородных металлов, палладия и родия, зависят эксплуатационные характеристики каталитических композитов TWC. Предпочтительными носителями для палладия являются композиты, содержащие церий, такие как оксид церия-оксид циркония с высокой долей оксида церия (оксид церия >25% по весу, например, в диапазоне 25-45% от веса композита). Предпочтительными носителями для родия являются оксид алюминия и композиты, содержащие церий, такие как оксид церия-оксид циркония, с низкой долей оксида церия (<40%, или <30%, или <20%, или даже <10% по весу от веса композита). Можно также производить смеси; например, часть родия наносят пропиткой на предпочтительный композит КХК, а остальную часть наносят пропиткой на оксид алюминия. Кроме того, часть палладия тоже можно наносить пропиткой на оксид алюминия.
[0056] Сравнение эксплуатационных характеристик хорошо диспергированных катализатических композитов TWC со слоем с двумя металлами, имеющих одинаковый состав, показало, что нанесение всего палладия на оксид алюминия и всего родия на композит КХК приводит к значительно худшим эксплуатационным характеристикам, чем если носителем для всего родия является оксид алюминия, а для всего палладия носителем является композит КХК.
[0057] В контексте каталитических композиций TWC, произведенных без термической фиксации, планомерное и специфическое размещение благородных металлов на материалах носителей оксиде алюминия и КХК не оказывает влияния на эксплуатационные характеристики таким же образом, как в контексте термической фиксации. В отсутствие термической фиксации, в процессе производства суспензии покрытия из пористых оксидов, некоторые из благородных металлов возвращаются обратно в раствор, и неизбежно происходит перераспределение благородных металлов, так что обычно оба материала носителей получают, в итоге, оба благородных металла. В случае термической фиксации, этого неизбежного перераспределения не происходит. По этой причине, выбор типов и количества материалов носителей оказывает влияние на эксплуатационные характеристики каталитического композита TWC, если используется термическое фиксирование, как в случае композиции покрытия с двумя металлами.
[0058] Относительно хорошо диспергированных благородных металлов, распределение благородного металла по материалам носителей зависит от концентрации благородного металла в пропитывающем растворе. Максимальное количество пропиточного раствора, которое может быть применено, лишь немного превышает “влагоемкость”, так что пропитанный порошок все еще остается сухим и текучим. Масса благородного металла, нанесенного на носитель, определяется желательной общей навеской благородного металла в каталитическом композите TWC. Хорошая дисперсия металлов достигается при выборе самой низкой из возможных концентраций благородного металла в пропиточном растворе.
[0059] Кроме того, термическая фиксация благородных металлов палладия и родия приводит к фактическому устранению необходимости в ручном регулировании водной суспензии покрытия из пористых оксидов. И наоборот, когда несущие композиции не фиксированы термически, часто требуется ручное вмешательство в процесс, чтобы установить, например, значения pH. Это приводит к разбавлению покрытия из пористых оксидов и к снижению содержания твердых частиц. Таким образом, при использовании способов, известных на современном уровне техники, трудно достичь высокого содержания твердых частиц, что, в свою очередь, препятствует нанесению покрытий большого веса за один этап. При использовании термически фиксированных композиций с носителем, ручное регулирование, например, pH, сокращено и практически отсутствует. Это вторая причина, которая дает возможность формировать суспензии покрытия из пористых оксидов с высоким содержанием твердых веществ.
[0060] Еще один аспект, который можно считать дополнительным преимуществом хорошо диспергированного и термически фиксированного покрытия с двумя металлами, состоит в уменьшении разброса в распределении благородного металла по конечному катализатору. Нанесение покрытия за единственный этап и увеличение массы, которая может быть нанесена за единственный этап будет приводить к уменьшению разброса в распределении благородного металла в процессе покрытия. Это означает, что когда применяется концепция единственного покрытия TWC, точность в определении количества благородного металла, которое должно быть нанесено на катализатор, будет выше.
Компоненты
[0061] Катализаторы TWC, которые проявляют высокую активность и имеют продолжительный срок эксплуатации, содержат один или более металлов платиновой группы (например, платина, палладий, родий, рений и иридий), расположенных на поверхности с большой площадью, и носитель в виде оксида тугоплавкого металла, например, глиноземное покрытие с большой площадью поверхности. Носитель помещен на подходящую подложку или основу, такую как монолитная подложка, которая представляет собой сотовую структуру из металла или огнеупорной керамики, или огнеупорные частицы, такие как сферы или обрезки, экструдированные сегменты подходящего огнеупорного материала. Носителям из оксидов тугоплавких металлов можно придать устойчивость к термическому разложению такими материалами как оксид циркония, диоксид титана, оксиды щелочноземельных металлов, такие как оксид бария, оксид кальция или оксид стронция или, чаще всего, оксиды редкоземельных металлов, например, оксид церия, оксид лантана и смеси двух или более оксидов редкоземельных металлов. Например, см. патент США No. 4171288 (Keith). Катализаторы TWC можно составлять таким образом, чтобы они включали компонент-хранилище кислорода (КХК), включая, например, оксид церия и оксид празеодима.
[0062] Носители из оксидов тугоплавких металлов с большой площадью поверхности относятся к несущим частицам, имеющим размер пор более 20 А и широкое распределение пор. Носители из оксидов тугоплавких металлов с большой площадью поверхности, например, глиноземные материалы носителей, которые также упоминаются как “гамма глинозем” или “активированный глинозем”, обычно имеют площадь поверхности Брюнера-Эммета-Теллера БЭТ (BET) более 60 квадратных метров на грамм (“м2/г”), часто вплоть до 200 м2/г или более. Такой активированный глинозем обычно представляет собой смесь гамма и дельта фаз глинозема, но может также содержать значительные количества эта, каппа и тета фаз глинозема. Помимо активированного глинозема, в качестве носителей для по крайней мере некоторых каталитических компонентов в данном катализаторе, можно использовать другие оксиды тугоплавких металлов. Например, известен целый ряд материалов для таких применений, в частности, оксид церия, оксид циркония, альфа глинозем и другие материалы. Хотя многие из этих материалов имеют недостаток в виде значительно меньшей поверхности BET, чем у активированного глинозема, этот недостаток компенсируется большим рабочим ресурсом полученного катализатора. “Площадь поверхности BET” употребляется в своем обычном значении, т.е., имеется в виду площадь, измеренная по адсорбции N2 по методу Brunauer, Emmett, Teller.
[0063] По желанию, каталитический слой может также содержать катализаторы и промоторы. В число подходящих стабилизаторов входят один или более невосстанавливаемых оксидов металлов, где металлы выбирают из группы, состоящей из бария, кальция, магния, стронция и их смесей. Предпочтительно, стабилизатор включает один или более из оксидов бария и/или стронция. Подходящие промоторы включают один или более невосстанавливаемых оксидов одного или более редкоземельных металлов, выбранных из группы, состоящей из лантана, празеодима, иттрия, циркония и их смесей.
Подложка
[0064] В одном или более вариантах реализации изобретения, одна или более каталитических композиций помещены на подложку. Подложка может представлять собой любой из материалов, которые обычно используются для приготовления катализаторов, и предпочтительно представляет собой керамическую или металлическую сотовую структуру. Можно использовать любую подходящую подложку, такую как монолитная основа типа такой, в которой имеются тонкие параллельные проходы для газового потока, проходящие через основу от поверхности входа до поверхности выхода, так что проходы открыты для потока через нее текучей среды (упоминается как сотовый поток через основы). Проходы, которые являются, по существу, прямыми путями от их входа для текучей среды до их выхода для текучей среды, ограничены стенками, на которые нанесен каталитический материал в виде покрытия из пористых оксидов, так что газы, протекающие через проходы, находятся в контакте с каталитическим материалом. Проходы для потока в монолитной основе представляют собой тонкостенные каналы, которые могут иметь поперечные сечения любых подходящих форм и размеров, таких как трапецевидная, прямоугольная, квадратная, синусоидальная, гексагональная, овальная, круглая и т.п. Такие структуры могут содержать от около 60 до около 900 или более входных отверстий для газа (т.е., ячеек) на квадратный дюйм поперечного сечения.
[0065] Подложка может также быть основой фильтра с пристеночным течением, в которой каналы поочередно блокируются, позволяя газовому потоку входить в каналы с одного направления (направление входа), проходить через стенки канала и выходить из каналов с другого направления (направление выхода). Каталитическая композиция двойного окисления может быть нанесена на фильтр с пристеночным течением. Если используется такая подложка, полученная система будет способна удалять взвешенные частицы, наряду с газообразными поллютантами. Фильтр с пристеночным течением можно изготавливать из материалов, общеизвестных в отрасли, таких как кордиерит или карбид кремния.
[0066] Керамическую подложку можно изготавливать из любого подходящего огнеупорного материала, например, кордиерита, кордиерита-глинозема, нитрида кремния, муллита циркона, сподумена, глинозема-кремнезема оксида магния, силиката циркона, силлиманита, силиката магния, циркона, петалита, глинозема, алюмосиликата и т.п.
[0067] Подложки, полезные для катализаторов по настоящему изобретению, могут также быть металлическими по природе и могут состоять из одного или более металлов или металлических сплавов. Металлические подложки можно применять в различных формах, таких как гофрированный лист или монолит. Предпочтительные металлические подложки включают теплостойкие металлы и металлические сплавы, такие как титан и нержавеющая сталь, также как другие сплавы, в которых железо представляет собой существенный или главный компонент. Такие сплавы могут содержать один или более из никеля, хрома и/или алюминия, и общее количество этих металлов может преимущественно включать по меньшей мере 15 вес. % сплава, например, 10-25 вес. % хрома, 3-8 вес. % алюминия и вплоть до 20 вес. % никеля. Сплавы могут также содержать небольшие или следовые количества одного или более других металлов, таких как марганец, медь, ванадий, титан и тому подобные. Поверхность металлических подложек может быть окислена при высоких температурах, например, 1000°C и выше, чтобы улучшить сопротивление коррозии сплавов формированием оксидного слоя на поверхности подложек. Такое высокотемпературное окисление может улучшать адгезию оксида тугоплавкого металла носителя и каталитически стимулирующих металлических компонентов к подложке.
[0068] В альтернативных вариантах реализации изобретения, одна или более каталитических композиций может быть нанесена на основу из поропласта с открытыми порами. Такие основы хорошо известны в данной области, и обычно их формируют из огнеупорной керамики или металлических материалов.
Варианты реализации изобретения
[0069] Один аспект ориентирован на автомобильный каталитический композит, включающий каталитический материал на подложке, где каталитический материал содержит слой с двумя металлами. Другой аспект ориентирован на автомобильный каталитический композит, включающий каталитический материал на подложке, где каталитический материал содержит слой с двумя металлами на подложке и второй слой поверх слоя с двумя металлами. Еще один аспект посвящен изготовлению единственной суспензии для получения слоя с двумя металлами. Другой аспект представляет оснащение выхлопной системы каталитическими композитами, описанными в данном документе. Различные варианты реализации изобретения перечислены ниже. Будет понятно, что перечисленные ниже варианты реализации изобретения могут быть объединены со всеми аспектами и другими вариантами реализации изобретения в соответствии с объемом изобретения.
[0070] В первом аспекте, каталитический материал включает: родиевый компонент на первом носителе, который представляет собой компонент оксид тугоплавкого металла, или первый композит диоксид церия-диоксид циркония; палладиевый компонент на втором носителе, который представляет собой второй композит диоксид церия-диоксид циркония; один или более из таких компонентов как промотор, стабилизатор или связующее; где каталитический материал эффективен в трехкомпонентной конверсии (TWC) для практически одновременного окисления монооксида углерода и углеводородов и восстановления оксидов азота, и где общее количество первого и второго композитов диоксид церия-диоксид циркония в слое с двумя металлами равно или превышает количество компонента из оксида тугоплавкого металла.
[0071] Во втором варианте реализации изобретения, палладиевый компонент, родиевый компонент или оба эти компонента термически зафиксированы. В третьем варианте реализации изобретения, родиевый компонент хорошо диспергирован в первом носителе и/или палладиевый компонент хорошо диспергирован во втором носителе.
[0072] В четвертом варианте реализации изобретения, первый носитель для родиевого компонента содержит носитель на основе глинозема или носитель на основе циркония.
[0073] В пятом варианте реализации изобретения, первый носитель для родиевого компонента представляет собой активированное глиноземное соединение, выбранное из группы, состоящей из глинозема, глинозема-оксида циркония, глинозема-оксида церия-оксида циркония, оксида лантана-глинозема, оксида лантана-оксида циркония-глинозема, оксида бария-глинозема, оксида бария оксида лантана-глинозема, оксида бария оксида лантана-оксида неодимия глинозема, и глинозема-оксида церия.
[0074] В шестом варианте реализации изобретения, первый носитель для родиевого компонента представляет собой композит оксид церия-оксид циркония, который содержит 20% по весу или менее оксида церия.
[0075] В седьмом варианте реализации изобретения, второй носитель для палладиевого компонента представляет собой оксид церия-оксид циркония.
[0076] В восьмом варианте реализации изобретения, второй носитель для палладиевого компонента представляет собой композит, содержащий по меньшей мере 25% по весу оксида церия.
[0077] В девятом варианте реализации изобретения, весовое отношение общего количества первого и второго композитов оксид церия-оксид циркония к количеству компонента оксида тугоплавкого металла в слое с двумя металлами больше, чем 1:1.
[0078] В десятом варианте реализации изобретения, весовое отношение составляет 2,5:1 или более.
[0079] В одиннадцатом варианте реализации изобретения, весовое отношение составляет 4:1 или более.
[0080] В двенадцатом варианте реализации изобретения, каталитический материал дополнительно включает палладиевый компонент на компоненте оксид тугоплавкого металла.
[0081] В тринадцатом варианте реализации изобретения, слой с двумя металлами содержит, по весовому проценту слоя с двумя металлами: второй композит оксид церия-оксид циркония, количество которого находится в диапазоне 40-50%; компонент оксид тугоплавкого металла, количество которого находится в диапазоне 40-50%; и один или более таких компонентов как оксид лантана, оксид бария, оксид циркония и стронций в количестве вплоть до 10%; где второй композит оксид церия-оксид циркония содержит оксид церия, количество которого находится в диапазоне 25-45% по весу второго композита оксида церия-оксида циркония.
[0082] В четырнадцатом варианте реализации изобретения, слой с двумя металлами содержит, по весовому проценту слоя с двумя металлами: второй композит оксид церия-оксид циркония, количество которого находится в диапазоне 70-80%; компонент оксид тугоплавкого металла, количество которого находится в диапазоне 10-20%; и один или более таких компонентов как оксид лантана, оксид бария, оксид циркония и стронций в количестве вплоть до 10%; где второй композит оксид церия-оксид циркония содержит оксид церия, количество которого находится в диапазоне 25-45% по весу второго композита оксид церия-оксид циркония.
[0083] В пятнадцатом варианте реализации изобретения, компонент оксид тугоплавкого металла представляет собой соединение глинозем-оксид церия.
[0084] В шестнадцатом варианте реализации изобретения, каталитический материал дополнительно содержит второй слой поверх слоя с двумя металлами, второй слой содержит родиевый компонент на третьем носителе, платиновый компонент на четвертом носителе, палладиевый компонент на пятом носителе или их комбинацию.
[0085] В семнадцатом варианте реализации изобретения, второй слой содержит родиевый компонент на третьем носителе, который представляет собой активированное глиноземное соединение, выбранное из группы, состоящей из глинозема, глинозема-оксида циркония, глинозема-оксида церия-оксида циркония, оксида лантана-глинозема, оксида лантана-оксида циркония-глинозема, оксида бария-глинозема, оксида бария оксида лантана-глинозема, оксида бария оксида лантана-оксида неодима глинозема и глинозема-оксида церия.
[0086] В восемнадцатом варианте реализации изобретения, второй слой содержит палладиевый компонент на пятом носителе, который представляет собой третий композит оксид церия-оксид циркония.
[0087] В девятнадцатом варианте реализации изобретения, третий композит оксид церия-оксид циркония содержит оксид церия, количество которого находится в диапазоне 5-20% от веса третьего композита оксид церия-оксид циркония.
[0088] В двадцатом варианте реализации изобретения, второй слой содержит родиевый компонент на активированном глиноземном соединении; и композит оксид церия оксид циркония.
[0089] В двадцать первом варианте реализации изобретения, количество родиевого компонента во втором слое приблизительно такое же, как и количество родиевого компонента в слое с двумя металлами.
[0090] В двадцать втором варианте реализации изобретения, каталитические композиты, раскрытые в данном документе, расположены за бензиновым двигателем.
[0091] В двадцать третьем варианте реализации изобретения, каталитические композиты, раскрытые в данном документе, расположены за трехкомпонентным каталитическим конвертером с глухим соединением (TWC), который расположен за бензиновым двигателем, но перед катализатором очистки от NOx.
[0092] В двадцать четвертом варианте реализации изобретения, поток выхлопного газа вступает в контакт с любым из каталитических композитов, раскрытых в данном документе применительно к обработке.
[0093] В двадцать пятом варианте реализации изобретения, представлен способ производства каталитического композита, который включает: формирование каталитического материала для трехкомпонентной конверсии (TWC) путем: диспергирования родиевого компонента в первом носителе, содержащем компонент оксид тугоплавкого металла или первый композит оксид церия-оксид циркония, для формирования первого пропитанного носителя; необязательно, прикрепление родиевого компонента к первому пропитанному носителю; диспергирования палладиевого компонента во втором носителе, содержащем второй композит оксид церия-оксид циркония, для формирования второго пропитанного носителя; необязательно, прикрепления палладиевого компонента ко второму пропитанному носителю; последующего формирования водной суспензии покрытия из пористых оксидов путем смешивания воды, первого и второго пропитанных носителей и одного или более таких компонентов как промотор, стабилизатор или связующее; нанесения водной суспензии покрытия из пористых оксидов на подложку для формирования на подложке единственного слоя с двумя металлами; обжига слоя с двумя металлами для формирования каталитического композита; где каталитический материал эффективен в трехкомпонентной конверсии (TWC) для практически одновременного окисления монооксида углерода и углеводородов и восстановления оксидов азота, и где общее количество первого и второго композитов диоксид церия-диоксид циркония равно или превышает количество компонента из оксида тугоплавкого металла в слое с двумя металлами.
ПРИМЕРЫ
[0094] Для иллюстрации различных вариантов реализации настоящего изобретения, представлены следующие неограничивающие примеры.
ПРИМЕР 1
[0095] Композиции термически фиксированного пропитанного носителя приготовили следующим образом. Раствором нитрата Rh или Pd пропитали выбранный материал носителя, используя раствор с минимальной концентрацией металла, чтобы доставить желательную тонко измельченную навеску, которая должна привести к хорошей дисперсии в пропитанном носителе. Затем хорошо диспергированные пропитанные носители обжигали при 590°C в течение двух часов, чтобы получить хорошо диспергированные и термически фиксированные пропитанные носители. Далее провели тестирование этих материаловна на хемосорбцию CO, чтобы определить процент дисперсии металла, который является мерой количества CO, которое благородные металлы способны поглотить, прямо зависящего от количества металла и носителя. Размер активных частиц рассчитали по поглощению CO. В Таблице 1 представлены материалы в порошках и результаты тестирования.
Figure 00000001
Figure 00000002
[0096] Как показывают данные в Таблице 1, образцы с самым низким содержанием твердого вещества (Образцы 1-А, 1-D и 1-J), что способствует хорошей дисперсии, демонстрируют самый высокий % дисперсии металла и наименьший размер частиц по сравнению с образцами с более высоким содержанием твердого вещества (Образцы 1-В, 1-С, 1-Е, 1-F, 1-К, 1-L), иными словами, менее разбавленными.
ПРИМЕР 2
[0097] Для приготовления каталитического композита, содержащего однослойный катализатор, имеющий слой с двумя металлами, приготовили два пропитанных носителя. Первый пропитанный носитель приготовили добавлением раствора нитрата родия, разбавленного для минимизации концентрации металла до 1,68 г/дюйм3 гамма-глинозема с высокой площадью поверхности, что привело к получению 3 г/фут3 Rh. Второй пропитанный носитель приготовили добавлением раствора нитрата палладия, разбавленного для минимизации концентрации металла до 1,70 г/дюйм3 композита оксида церия-оксида циркония (CeO2: 40 весовых %), что привело к получению 47 г/фут3 Pd. Два полученных пропитанных порошка раздельно подвергли термической фиксации при 590°C и размололи. Единственное водное покрытие из пористых оксидов сформировали диспергированием термически фиксированных пропитанных носителей в воде и кислоте (например, уксусной кислоте). В этой же суспензии диспергировали промоторы Ва и Zr. Суспензию перемололи и нанесли на монолит с навеской 3,66 г/дюйм3, высушили при 110°C на воздухе и отожгли при 590°C на воздухе.
ПРИМЕР 3
ОБРАЗЦЫ СРАВНЕНИЯ
[0098] Двухслойный каталитический композит приготовили таким образом,
чтобы в нижнем слое находился палладий, а в верхнем - родий. Общий состав носителей и благородных металлов был таким же, как и в Примере 2. Для формирования нижнего слоя, раствор нитрата палладия, разбавленный для минимизации концентрации металла, добавили к 0,43 г/дюйм3 гамма-глинозема с высокой площадью поверхности, что привело к получению 47 г/фут3 Pd. Полученный пропитанный порошок диспергировали в воде и кислоте (например, уксусной кислоте). В эту суспензию диспергировали 1,45 г/дюйм3 материала КХК (CeO2: 40 весовых %) и промоторы Ва, Zr и La, полученную суспензию перемололи. Полученную суспензию нанесли на монолит с навеской 2,08 г/дюйм3, высушили при 110°C на воздухе и отожгли при 590°C на воздухе.
[0099] Для формирования верхнего слоя, раствор нитрата Rh, разбавленный для минимизации концентрации металла, добавили к 1,25 г/дюйм3 гамма-глинозема с высокой площадью поверхности, что привело к получению 3 г/фут3 Rh. Полученный пропитанный порошок диспергировали в воде и кислоте (например, уксусной кислоте). В эту суспензию диспергировали 0,25 г/дюйм3 материала КХК (CeO2: 40 весовых %) и промоторы Ва и Zr, полученную суспензию перемололи. Полученную суспензию нанесли на монолит, предварительно покрытый нижним слоем, с навеской 1,60 г/дюйм3, высушили при 110°C на воздухе и отожгли при 590°C на воздухе.
ПРИМЕР 4
[00100] Для приготовления однослойного катализатора, имеющего слой с двумя металлами, приготовили два пропитанных носителя в соответствии со стадиями, описанными в Примере 2. По сравнению с Примером 2, в Примере 4 было использовано больше носителя оксид церия-оксид циркония. Первый пропитанный носитель приготовили добавлением раствора нитрата родия, разбавленного для минимизации концентрации металла до 0,43 г/дюйм3 гамма-глинозема с высокой площадью поверхности, что привело к получению 3 г/фут3 Rh. Второй пропитанный носитель приготовили добавлением раствора нитрата палладия, разбавленного для минимизации концентрации металла до 1,70 г/дюйм3 композита оксида церия-оксида циркония (CeO2: 30 весовых %), что привело к получению 47 г/фут3 Pd. Два полученных пропитанных порошка раздельно подвергли термической фиксации при 590°C и размололи. Единственное водное покрытие из пористых оксидов сформировали диспергированием термически фиксированных пропитанных носителей в воде и кислоте (например, уксусной кислоте). Кроме того, в эту суспензию диспергировали промоторы La, Ва и Zr. Суспензию перемололи и нанесли на монолит с навеской 2,98 г/дюйм, высушили при 110°C на воздухе и отожгли при 590°C на воздухе.
ПРИМЕР 5
[00101] Для приготовления однослойного катализатора, имеющего слой с двумя металлами, приготовили два пропитанных носителя в соответствии со стадиями, описанными в Примере 2. По сравнению с Примером 4, в Примере 5 был использован другой носитель для Rh. Первый пропитанный носитель приготовили добавлением раствора нитрата родия, разбавленного для минимизации концентрации металла до 0,50 г/дюйм3 гамма-глинозема-оксида церия с высокой площадью поверхности, что привело к получению 3 г/фут3 Rh. Второй пропитанный носитель приготовили добавлением раствора нитрата палладия, разбавленного для минимизации концентрации металла до 2,90 г/дюйм3 композита оксида церия-оксида циркония (CeO2: 30 весовых %), что привело к получению 47 г/фут3 Pd. Два полученных пропитанных порошка раздельно подвергли термической фиксации при 590°С и размололи. Единственное водное покрытие из пористых оксидов сформировали диспергированием термически фиксированных пропитанных носителей в воде и кислоте (например, уксусной кислоте). В этой же суспензии диспергировали промоторы Ва и Zr. Суспензию перемололи и нанесли на монолит с навеской 3,64 г/дюйм3, высушили при 110°C на воздухе и отожгли при 590°C на воздухе.
ПРИМЕР 6
[00102] Приготовили двуслойный каталитический композит, имеющий слой с двумя металлами в нижнем слое и верхний слой с Pd-Rh. Общий состав носителей и благородных металлов был таким же, как и в Примере 5. Для нижнего слоя приготовили два пропитанных носителя в соответствии со стадиями, описанными в Примере 2. Первый пропитанный носитель приготовили добавлением раствора нитрата родия, разбавленного для минимизации концентрации металла до 0,43 г/дюйм3 гамма-глинозема-оксида церия с высокой площадью поверхности, что привело к получению 1,5 г/фут3 Rh. Второй пропитанный носитель приготовили добавлением раствора нитрата палладия, разбавленного для минимизации концентрации металла до 2,25 г/дюйм3 композита оксида церия-оксида циркония (CeO2: 30 весовых %), что привело к получению 32,9 г/фут3 Pd. Два полученных пропитанных порошка раздельно подвергли термической фиксации при 590°C и размололи. Единственное водное покрытие из пористых оксидов сформировали диспергированием термически фиксированных пропитанных носителей в воде и кислоте (например, уксусной кислоте). В этой же суспензии диспергировали промоторы Ва и Zr. Суспензию перемололи и нанесли на монолит с навеской 2,91 г/дюйм3, высушили при 110°C на воздухе и отожгли при 590°C на воздухе.
[00103] Для верхнего слоя приготовили два пропитанных носителя в соответствии со стадиями, описанными в Примере 2. Первый пропитанный носитель приготовили добавлением раствора нитрата родия, разбавленного для минимизации концентрации металла до 0,40 г/дюйм3 гамма-глинозема-оксида церия с высокой площадью поверхности, что привело к получению 1,5 г/фут3 Rh. Второй пропитанный носитель приготовили добавлением раствора нитрата палладия, разбавленного для минимизации концентрации металла до 0,40 г/дюйм3 композита оксида церия-оксида циркония (CeO2: 10 весовых %), что привело к получению 14,1 г/фут3 Pd. Два полученных пропитанных порошка раздельно подвергли термической фиксации при 590°C и размололи. Единственное водное покрытие из пористых оксидов сформировали диспергированием термически фиксированных пропитанных носителей в воде и кислоте (например, уксусной кислоте). В этой же суспензии диспергировали промоторы Ba и Zr. Суспензию перемололи и нанесли на нижнее покрытие с двумя металлами с навеской 0,91 г/дюйм3, высушили при 110°C на воздухе и отожгли при 590°C на воздухе.
ПРИМЕР 7
ДАННЫЕ
[00104] Образцы из Примеров 2 и 3 состаривали в течение 80 часов при максимальной температуре 1050°C в экзотермических условиях на двигателе. В условиях Нового европейского ездового цикла (New European Drive Cycle, NEDC) на стенде с работающим двигателем, эксплуатационные характеристики таких образцов оценивали по результатам измерения эмиссии HC, CO и NOx, и обнаружили, что между эксплуатационными характеристиками двух образцов нет различий в отношении выбросов НС и NOx, но в отношении выбросов CO эксплуатационные характеристики образца из Примера 2 имеют небольшое преимущество. Были получены следующие данные:
Figure 00000003
[00105] Образцы из Примеров 4 и 3 состаривали в течение 100 часов при максимальной температуре 1030°C на двигателе в условиях обедненной топливной смеси. В условиях Нового европейского ездового цикла (NEDC) на стенде с работающим двигателем, эксплуатационные характеристики таких образцов оценивали по результатам измерения эмиссии НС, CO и NOx, и обнаружили, что эксплуатационные характеристики образца из Примера 4 в отношении выбросов НС и NOx значительно лучше, но в отношении выбросов CO существенного различия в эксплуатационных характеристиках двух образцов не было. Были получены следующие данные:
Figure 00000004
[00106] Образцы из Примеров 4 и 5 состаривали в течение 100 часов при максимальной температуре 1030°C на двигателе в условиях обедненной топливной смеси. В условиях Нового европейского ездового цикла (NEDC) на стенде с работающим двигателем, эксплуатационные характеристики таких образцов оценивали по результатам измерения эмиссии НС, CO и NOx, и обнаружили, что эксплуатационные характеристики образца из Примера 5 в отношении выбросов НС и NOx значительно лучше, но в отношении выбросов CO преимущество в эксплуатационных характеристиках у образца из Примера 5 было небольшим. Были получены следующие данные:
Figure 00000005
[00107] Образцы из Примеров 4 и 6 состаривали в течение 100 часов при максимальной температуре 1030°C на двигателе в условиях обедненной топливной смеси. В условиях Нового европейского ездового цикла (NEDC) на стенде с работающим двигателем, эксплуатационные характеристики таких образцов оценивали по результатам измерения эмиссии НС, СО и NOx, и обнаружили, что эксплуатационные характеристики образца из Примера 6 в отношении выбросов НС, СО и NOx были значительно лучшими. Были получены следующие данные:
Figure 00000006
ПРИМЕР 8
[00108] Для приготовления каталитического композита, содержащего однослойный катализатор, имеющий слой с тремя металлами, приготовили три пропитанных носителя. Первый пропитанный носитель приготовили добавлением раствора нитрата родия до навески 0,43 г/дюйм3 гамма-глинозема с высокой площадью поверхности, что привело к получению 4 г/фут3 Rh. Второй пропитанный носитель приготовили добавлением раствора нитрата палладия до навески 2,25 г/дюйм3 композита оксида церия-оксида циркония (CeO2: 30 весовых %), что привело к получению 82,8 г/фут3 Pd. Третий пропитанный носитель приготовили добавлением раствора обоих металлов, нитрата палладия и нитрата платины, до навески 1,0 г/дюйм3 гамма-глинозема с высокой площадью поверхности, что привело к получению 7,2 г/фут3 Pd и 24 г/фут3 Pt. Три полученных пропитанных порошка раздельно подвергли термической фиксации при 590°C и размололи. Единственное водное покрытие из пористых оксидов сформировали диспергированием термически фиксированных пропитанных носителей в воде и кислоте (например, уксусной кислоте). В этой же суспензии диспергировали промоторы Ba и Zr. Суспензию перемололи и нанесли на монолит с навеской 3,66 г/дюйм3, высушили при 110°C на воздухе и отожгли при 590°C на воздухе.
ПРИМЕР 9
[00109] Приготовили двухслойный каталитический композит, имеющий слой с двумя металлами Pd-Rh в нижнем слое и верхний слой с Pt-Pd. Общий состав носителей и благородных металлов был таким же, как и в Примере 8. Для нижнего слоя приготовили два пропитанных носителя в соответствии со стадиями, описанными в Примере 2. Первый пропитанный носитель приготовили добавлением раствора нитрата родия до навески 0,43 г/дюйм3 гамма-глинозема-диоксида церия с высокой площадью поверхности, что привело к получению 4 г/фут3 Rh. Второй пропитанный носитель приготовили добавлением раствора нитрата палладия до навески 2,25 г/дюйм3 композита оксида церия-оксида циркония (CeO2: 30 весовых %), что привело к получению 82,8 г/фут3 Pd. Два полученных пропитанных порошка раздельно подвергли термической фиксации при 590°C и размололи. Единственное водное покрытие из пористых оксидов сформировали диспергированием термически фиксированных пропитанных носителей в воде и кислоте (например, уксусной кислоте). В этой же суспензии диспергировали промоторы Ва и Zr. Суспензию перемололи и нанесли на монолит с навеской 2,94 г/дюйм3, высушили при 110°C на воздухе и отожгли при 590°C на воздухе.
[00110] Для верхнего слоя приготовили третий пропитанный носитель в соответствии со стадиями, описанными в Примере 8. Третий пропитанный носитель приготовили добавлением раствора обоих металлов, нитрата палладия и нитрата платины, до навески 1,0 г/дюйм3 гамма-глинозема с высокой площадью поверхности, что привело к получению 7,2 г/фут3 Pd и 24 г/фут3 Pt. Полученный пропитанный порошок подвергли термической фиксации при 590°C и размололи. Единственное водное покрытие из пористых оксидов сформировали диспергированием термически фиксированных пропитанных носителей в воде и кислоте (например, уксусной кислоте). В этой же суспензии диспергировали промоторы Ва и Zr. Суспензию перемололи и нанесли на нижнее покрытие с двумя металлами с навеской 1,16 г/дюйм, высушили при 110°C на воздухе и отожгли при 590°C на воздухе.
ПРИМЕР 10
ДАННЫЕ
[00111] Систему приготовили для установки за бензиновым двигателем. Композит трехкомпонентного каталитического конвертер (TWC) поместили в положении с глухим соединением. За каталитическим композитом TWC с глухим соединением помещали каталитический композит, либо из Примера 8, либо из Примера 9, перед катализатором очистки от NOx, который представлял собой катализатор улавливания малых концентраций NOx.
[00112] Системы состаривали в течение 64 часов при 950°C при экзотермических условиях на двигателе. Эксплуатационные характеристики таких систем, расположенных за каталитическим композитом из Примера 8 или 9 в выхлопном потоке двигателя с прямым впрыском (GDI) при обедненной смеси оценивали по результатам измерения эмиссии НС, CO и NOx, и обнаружили, что между эксплуатационными характеристиками двух образцов нет различий в отношении выбросов НС, но в отношении выбросов CO и NOx, образец из Примера 9 обеспечивает значительно лучшие степени превращения. Получены следующие данные по степени превращения:
Figure 00000007
[00113] Во всем тексте данного описания, ссылка на “один из вариантов реализации изобретения”, “определенные варианты реализации изобретения”, “один или более вариантов реализации изобретения” или “вариант реализации изобретения” означает, что конкретное свойство, структура, материал или характеристика, описанные в связи с вариантом реализации изобретения, включены в по меньшей мере один вариант реализации изобретения. Таким образом, появление таких фраз, как “в одном или более вариантов реализации изобретения”, “в определенных вариантах реализации изобретения”, “в одном варианте реализации изобретения” или “в варианте реализации изобретения” в различных местах данного описания не обязательно относятся к одному и тому же варианту реализации изобретения. Кроме того, конкретные свойства, структуры, материалы или характеристики могут быть скомбинированы любым подходящим способом в одном или более вариантах реализации изобретения.
[00114] Изобретение было описано с конкретной ссылкой на варианты реализации изобретения и их модификации, описанные выше. Дальнейшие модификации и изменения могут произойти с другими вариантами после прочтения и интерпретации данного описания. Предполагается включать все такие модификации и изменения в той мере, в которой они входят в объем изобретения.

Claims (45)

1. Автомобильный каталитический композит для обработки потока выхлопного газа, где автомобильный каталитический композит, включает:
каталитический материал на подложке, при этом каталитический материал включает слой с двумя металлами, который содержит:
родиевый компонент на первом носителе, который содержит компонент оксида тугоплавкого металла и, необязательно, дополнительно, содержит первый композит оксид церия-оксид циркония;
палладиевый компонент на втором носителе, который содержит второй композит оксид церия-оксид циркония;
один или более из таких компонентов, как промотор, стабилизатор или связующее;
где каталитический материал эффективен в трехкомпонентной конверсии (TWC) для по существу одновременного окисления монооксида углерода и углеводородов и восстановления оксидов азота и
где общее количество по весу первого композита оксид церия-оксид циркония, если он присутствует, и второго композита оксид церия-оксид циркония в слое с двумя металлами равно или превышает количество по весу компонента оксида тугоплавкого металла.
2. Композит по п. 1, отличающийся тем, что палладиевый компонент, родиевый компонент или оба эти компонента термически зафиксированы.
3. Композит по п. 1, отличающийся тем, что первый носитель для родиевого компонента содержит носитель на основе глинозема, выбранный из группы, состоящей из глинозема, глинозема-оксида циркония, глинозема-оксида церия-оксида циркония, оксида лантана-глинозема, оксида лантана-оксида циркония-глинозема, оксида бария-глинозема, оксида бария оксида лантана-глинозема, оксида бария оксида лантана-оксида неодима глинозема и глинозема-оксида церия или носитель на основе циркония.
4. Композит по п. 1, отличающийся тем, что первый носитель для родиевого компонента включает композит оксид церия-оксид циркония, содержащий 20% по весу или менее оксида церия.
5. Композит по п. 1, отличающийся тем, что второй носитель для палладиевого компонента включает композит оксид церия-оксид циркония, содержащий по меньшей мере 25% по весу оксида церия.
6. Композит по п. 1, отличающийся тем, что весовое отношение общего количества первого и второго композитов оксид церия-оксид циркония к количеству компонента оксида тугоплавкого металла в слое с двумя металлами больше чем 1:1.
7. Композит по п. 1, отличающийся тем, что слой с двумя металлами включает, по весовому проценту слоя с двумя металлами:
второй композит оксид церия-оксид циркония, количество которого находится в диапазоне 40-50%;
тугоплавкий компонент оксид металла, количество которого находится в диапазоне 40-50%; и
одно или более из соединений оксид лантана, оксид бария, оксид циркония и стронций в количестве вплоть до 10%;
отличающийся тем, что второй композит оксид церия-оксид циркония содержит оксид церия, количество которого находится в диапазоне 25-45% по весу от второго композита оксид церия-оксид циркония.
8. Композит по п. 1, отличающийся тем, что слой с двумя металлами содержит, по весовому проценту слоя с двумя металлами:
второй композит оксид церия-оксид циркония, количество которого находится в диапазоне 70-80%;
компонент оксид тугоплавкого металла, количество которого находится в диапазоне 10-20%; и
одно или более из соединений оксид лантана, оксид бария, оксид циркония и стронций в количестве вплоть до 10%;
отличающийся тем, что второй композит оксид церия-оксид циркония содержит оксид церия, количество которого находится в диапазоне 25-45% по весу от второго композита оксид церия-оксид циркония.
9. Композит по п. 1, отличающийся тем, что каталитический материал дополнительно содержит второй слой поверх слоя с двумя металлами, второй слой содержит родиевый компонент на третьем носителе, платиновый компонент на четвертом носителе, палладиевый компонент на пятом носителе или их комбинацию.
10. Автомобильный каталитический композит для обработки потока выхлопного газа, где автомобильный каталитический композит, содержит:
каталитический материал на подложке, при этом каталитический материал, включает слой с двумя металлами, который содержит:
родиевый компонент на носителе, который представляет собой активированное глиноземное соединение, выбранное из группы, состоящей из глинозема, глинозема-оксида циркония, глинозема-оксида церия-оксида циркония, оксида лантана-глинозема, оксида лантана-оксида циркония-глинозема, оксида бария-глинозема, оксида бария оксида лантана-глинозема, оксида бария оксида лантана-оксида неодима глинозема и глинозема-оксида церия;
палладиевый компонент, термически прикрепленный к композиту оксид церия-оксид циркония, содержащий оксид церия в количестве, которое находится в диапазоне 25-45% по весу от композита оксид церия-оксид циркония;
одно или более из соединений оксид лантана, оксид бария и оксид циркония;
где каталитический материал эффективен в трехкомпонентной конверсии (TWC) для по существу одновременного окисления монооксида углерода и углеводородов и восстановления оксидов азота, и
где весовое отношение количества композита оксид церия-оксид циркония к количеству активированного глиноземного соединения в слое с двумя металлами составляет 4:1 или более.
11. Композит по п. 10, отличающийся тем, что активированное глиноземное соединение содержит соединение глинозем-оксид церия.
12. Система обработки выхлопных газов, которая включает каталитический композит по п. 1, расположенный ниже бензинового двигателя.
13. Система обработки выхлопных газов по п. 12, которая дополнительно содержит композит трехкомпонентного каталитического конвертора (TWC) с глухим соединением ниже бензинового двигателя, где каталитический композит расположен ниже каталитического композита TWC с глухим соединением и перед катализатором очистки от NOx.
14. Способ обработки выхлопного газа, содержащего углеводороды, монооксид углерода и оксиды азота, который включает приведение выхлопного газа в контакт с каталитическим композитом по п. 1.
15. Способ изготовления каталитического композита по пп. 1-9, способ включает:
формирование каталитического материала для трехкомпонентной конверсии (TWC), включающий следующие стадии:
диспергирование родиевого компонента по первому носителю, содержащему компонент оксид тугоплавкого металла и, необязательно, дополнительно, содержит первый композит оксид церия-оксид циркония для формирования первого пропитанного носителя;
необязательно, прикрепление родиевого компонента к первому пропитанному носителю;
диспергирование палладиевого компонента по второму носителю, содержащему второй композит оксид церия-оксид циркония, для формирования второго пропитанного носителя;
необязательно, прикрепление палладиевого компонента ко второму пропитанному носителю;
последующее формирование водной суспензии покрытия из пористых оксидов смешиванием воды, первого и второго пропитанных носителей и одного или более таких компонентов, как промотор, стабилизатор или связующее;
нанесение водной суспензии покрытия из пористых оксидов на подложку для формирования на подложке единственного слоя с двумя металлами;
обжиг слоя с двумя металлами для формирования каталитического композита;
где каталитический материал эффективен в трехкомпонентной конверсии (TWC) для по существу одновременного окисления монооксида углерода и углеводородов и восстановления оксидов азота, и
где общее количество по весу первого композита оксид церия-оксид циркония, если он присутствует, и количество по весу второго композита оксид церия-оксид циркония равно или превышает количество по весу компонента оксида тугоплавкого металла в слое с двумя металлами.
RU2015135446A 2013-01-24 2014-01-24 Автомобильные каталитические композиты, имеющие слой с двумя металлами RU2658002C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361756139P 2013-01-24 2013-01-24
US61/756,139 2013-01-24
US14/157,865 US9266092B2 (en) 2013-01-24 2014-01-17 Automotive catalyst composites having a two-metal layer
US14/157,865 2014-01-17
PCT/US2014/012862 WO2014116897A1 (en) 2013-01-24 2014-01-24 Automotive catalyst composites having a two-metal layer

Publications (2)

Publication Number Publication Date
RU2015135446A RU2015135446A (ru) 2017-03-03
RU2658002C2 true RU2658002C2 (ru) 2018-06-19

Family

ID=51207847

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015135446A RU2658002C2 (ru) 2013-01-24 2014-01-24 Автомобильные каталитические композиты, имеющие слой с двумя металлами

Country Status (10)

Country Link
US (1) US9266092B2 (ru)
EP (1) EP2948653A4 (ru)
JP (1) JP6449785B2 (ru)
CN (1) CN104937225B (ru)
BR (1) BR112015017202B1 (ru)
CA (1) CA2897016C (ru)
MX (1) MX359178B (ru)
RU (1) RU2658002C2 (ru)
WO (1) WO2014116897A1 (ru)
ZA (1) ZA201506073B (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2789587C2 (ru) * 2018-07-27 2023-02-06 Джонсон Мэттей Паблик Лимитед Компани Улучшенные катализаторы twc, содержащие высокоэффективную подложку с допирующей добавкой
US11794170B2 (en) 2018-07-27 2023-10-24 Johnson Matthey Public Limited Company TWC catalysts containing high dopant support

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2969206A4 (en) * 2013-03-14 2016-07-06 Basf Corp CATALYTIC ARTICLE HAVING A SEPARATE LAVIS LAYER, AND METHODS OF MAKING THE SAME
RU2657017C2 (ru) 2013-03-14 2018-06-08 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи Контроль широколиственных культур с помощью 6-арилпиколинкарбоновых кислот, 2-арилпиримидинкарбоновых кислот или их солей или сложных эфиров
DE102013210270A1 (de) * 2013-06-03 2014-12-04 Umicore Ag & Co. Kg Dreiwegkatalysator
WO2016094399A1 (en) 2014-12-08 2016-06-16 Basf Corporation Nitrous oxide removal catalysts for exhaust systems
MY180110A (en) * 2014-12-12 2020-11-23 Honda Motor Co Ltd Exhaust gas purifying catalyst
EP3045226A1 (de) * 2015-01-19 2016-07-20 Umicore AG & Co. KG Doppelschichtiger Dreiweg-Katalysator mit verbesserter Alterungsstabilität
ES2751745T3 (es) * 2015-01-28 2020-04-01 Autostore Tech As Robot para transportar contenedores de almacenamiento
KR102536415B1 (ko) * 2015-06-24 2023-05-25 바스프 코포레이션 층상 자동차 촉매 복합체
CN108472641A (zh) * 2015-12-16 2018-08-31 巴斯夫公司 用于贫汽油直喷式发动机的催化剂系统
GB2545747A (en) * 2015-12-24 2017-06-28 Johnson Matthey Plc Gasoline particulate filter
US11130096B2 (en) 2016-02-03 2021-09-28 Basf Corporation Multi-layer catalyst composition for internal combustion engines
CN108698028B (zh) * 2016-03-01 2022-01-14 株式会社科特拉 排气净化催化剂
JP6851219B2 (ja) * 2016-03-10 2021-03-31 株式会社キャタラー 排ガス浄化触媒及びその製造方法
CN108883396B (zh) * 2016-03-18 2021-12-31 株式会社科特拉 废气净化用催化剂
JP6372513B2 (ja) * 2016-04-13 2018-08-15 トヨタ自動車株式会社 触媒コンバーター
EP3490709A4 (en) * 2016-07-28 2020-04-15 BASF Corporation CATALYST COMPRISING METALLIC NANOPARTICLES OF THE BIMETAL PLATINUM GROUP
GB2557673A (en) * 2016-12-15 2018-06-27 Johnson Matthey Plc NOx adsorber catalyst
US9914095B1 (en) * 2017-02-08 2018-03-13 Ford Global Technologies, Llc Catalyst for automotive emissions control
GB2560942A (en) * 2017-03-29 2018-10-03 Johnson Matthey Plc NOx Adsorber catalyst
GB2560940A (en) * 2017-03-29 2018-10-03 Johnson Matthey Plc Three layer NOx Adsorber catalyst
GB2560941A (en) * 2017-03-29 2018-10-03 Johnson Matthey Plc NOx Adsorber catalyst
JP6408062B1 (ja) * 2017-04-28 2018-10-17 株式会社キャタラー 排ガス浄化用触媒
KR101971638B1 (ko) * 2017-08-28 2019-04-23 희성촉매 주식회사 비-백금족 NOx 트랩층을 가지는 NOx 트랩 촉매
BR112020003890A2 (pt) * 2017-08-28 2020-09-01 Basf Corporation artigo catalítico de twc, método para reduzir os níveis de co, hc e nox e sistema de tratamento de emissão
CN111032194A (zh) 2017-09-18 2020-04-17 福特全球技术公司 用于汽车排放控制的催化器
JP6684257B2 (ja) * 2017-09-27 2020-04-22 イビデン株式会社 排ガス浄化用ハニカム触媒
JP2019058876A (ja) 2017-09-27 2019-04-18 イビデン株式会社 ハニカム触媒
JP2019058875A (ja) 2017-09-27 2019-04-18 イビデン株式会社 ハニカム触媒
JP6698602B2 (ja) 2017-09-27 2020-05-27 イビデン株式会社 排ガス浄化用ハニカム触媒
CN109894113B (zh) * 2017-12-08 2024-05-10 庄信万丰(上海)化工有限公司 用于汽油机废气处理的新型多区twc催化剂
EP3505246B1 (de) 2017-12-19 2019-10-23 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
EP3505245B1 (de) 2017-12-19 2019-10-23 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
EP3501648B1 (de) 2017-12-19 2023-10-04 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
JP7387643B2 (ja) 2018-02-05 2023-11-28 ビーエーエスエフ コーポレーション 改善されたフィルタ特性を有する四元変換触媒
EP3829764A1 (en) * 2018-07-27 2021-06-09 Johnson Matthey Public Limited Company Novel pgm nanoparticles twc catalysts for gasoline exhaust gas applications
CN112912173A (zh) * 2018-08-27 2021-06-04 巴斯夫公司 贱金属掺杂的氧化锆催化剂载体材料
WO2020053350A1 (en) * 2018-09-13 2020-03-19 Basf Corporation A three-way conversion catalyst in gasoline-natural gas applications
CN113260454B (zh) * 2018-12-13 2024-05-10 巴斯夫公司 层状三元转化(twc)催化剂和制造所述催化剂的方法
CN109794240B (zh) * 2018-12-26 2021-12-21 中自环保科技股份有限公司 一种Pd-Rh双涂层催化剂及其制备方法
EP3733266B1 (en) * 2019-05-03 2024-04-24 Johnson Matthey Public Limited Company Catalyst article, method and use
JP2023513989A (ja) * 2020-02-21 2023-04-05 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー ガソリンエンジン排気ガス処理のための新規twc触媒
US11364485B2 (en) 2020-04-24 2022-06-21 Johnson Matthey (Shanghai) Chemicals Co. Ltd. Multi-region catalysts for CNG engine exhaust gas treatments with improved ammonia leakage control
CN116367919A (zh) * 2020-10-09 2023-06-30 巴斯夫公司 包含铂-铑双金属组分的三元转化催化剂组合物
US20230398532A1 (en) 2020-10-29 2023-12-14 Basf Corporation Three-way diesel catalyst for cold start technology
US11788450B2 (en) * 2020-10-30 2023-10-17 Johnson Matthey Public Limited Company TWC catalysts for gasoline engine exhaust gas treatments
EP4000718A1 (en) * 2020-11-11 2022-05-25 Johnson Matthey Public Limited Company Catalyst composition
CN112316961B (zh) * 2020-11-27 2023-03-21 中自环保科技股份有限公司 一种汽车尾气处理催化剂及其制备方法
JP2024505922A (ja) 2021-02-02 2024-02-08 ビーエーエスエフ コーポレーション 移動式のガソリン用途のためのnh3低減触媒
JP7355775B2 (ja) * 2021-03-05 2023-10-03 トヨタ自動車株式会社 排ガス浄化用触媒
US20240157339A1 (en) * 2021-03-31 2024-05-16 Mitsui Mining & Smelting Co., Ltd. Exhaust gas purification catalyst
EP4311596A1 (en) 2022-07-28 2024-01-31 Johnson Matthey Public Limited Company Catalytic filter for gasoline engine exhaust treatment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090022641A1 (en) * 2007-07-19 2009-01-22 Shau-Lin Franklin Chen Multilayered catalyst compositions
RU2372141C2 (ru) * 2005-06-20 2009-11-10 Тойота Дзидося Кабусики Кайся Катализатор для очистки выхлопного газа
US20100150792A1 (en) * 2005-08-01 2010-06-17 Cataler Corporation Exhaust gas purifying catayst
US20120128557A1 (en) * 2010-11-22 2012-05-24 Nunan John G Three-Way Catalyst Having an Upstream Single-Layer Catalyst
US20120180464A1 (en) * 2011-01-19 2012-07-19 Basf Corporation Three Way Conversion Catalyst With Alumina-Free Rhodium Layer

Family Cites Families (242)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929965A (en) 1974-05-16 1975-12-30 Grace W R & Co Dual purpose auto exhaust catalysts
US4171288A (en) 1977-09-23 1979-10-16 Engelhard Minerals & Chemicals Corporation Catalyst compositions and the method of manufacturing them
JPS5881441A (ja) 1981-11-11 1983-05-16 Nippon Shokubai Kagaku Kogyo Co Ltd 排ガス浄化用触媒の製法
US4823842A (en) * 1987-09-16 1989-04-25 Humphrey Products Company Single-stem four-way valve
CA1334962C (en) 1988-04-14 1995-03-28 Tomohisa Ohata Catalyst for purifying exhaust gas and method for production thereof
JPH04118053A (ja) 1989-12-29 1992-04-20 Tokyo Roki Kk エンジンの排気ガス浄化用触媒
US5278113A (en) 1991-03-08 1994-01-11 Matsushita Electric Industrial Co., Ltd. Catalytic body and process for producing the same
CA2064977C (en) 1991-04-05 1998-09-22 Eiichi Shiraishi Catalyst for purifying exhaust gas
JP2979809B2 (ja) 1992-01-10 1999-11-15 日産自動車株式会社 排ガス浄化用触媒及びその製造方法
US5958829A (en) 1992-02-14 1999-09-28 Degussa-Huls Aktiengesellschaft Coating dispersion for exhaust gas catalysts
US5376610A (en) 1992-04-15 1994-12-27 Nissan Motor Co., Ltd. Catalyst for exhaust gas purification and method for exhaust gas purification
US5407880A (en) 1992-11-09 1995-04-18 Nissan Motor Co., Ltd. Catalysts for adsorption of hydrocarbons
JP3281087B2 (ja) 1993-02-10 2002-05-13 日本碍子株式会社 排ガス浄化用触媒
JP3052710B2 (ja) 1993-12-20 2000-06-19 日産自動車株式会社 排ガス浄化装置
DE69412780T2 (de) 1994-01-28 1999-05-12 Evangelos G. Patras Papadakis Dreiwegkatalysator mit Pt, Rh und Pd, alle mit separatem Träger
JP3371531B2 (ja) 1994-04-20 2003-01-27 株式会社豊田中央研究所 触媒の製造方法
JP3358766B2 (ja) 1994-12-16 2002-12-24 トヨタ自動車株式会社 排ガス浄化用触媒
US5556825A (en) 1995-01-06 1996-09-17 Ford Motor Company Automotive catalysts with improved oxygen storage and metal dispersion
JP3374569B2 (ja) 1995-01-10 2003-02-04 株式会社日立製作所 排ガス浄化触媒および浄化方法
US6069111A (en) 1995-06-02 2000-05-30 Nissan Motor Co., Ltd. Catalysts for the purification of exhaust gas and method of manufacturing thereof
KR100416735B1 (ko) 1995-10-09 2004-03-26 삼성전기주식회사 자동차 배기가스 정화용 촉매 및 그 제조방법
US5916839A (en) 1995-10-13 1999-06-29 Samsung Electro-Mechanics Co., Ltd. Catalyst for purifying automobile exhausts
JP3498453B2 (ja) 1995-11-27 2004-02-16 日産自動車株式会社 排気ガス浄化用触媒及びその製造方法
ATE349264T1 (de) 1995-12-27 2007-01-15 Ict Co Ltd Reinigungskatalysator für verbrennungsmotorabgas
GB9615123D0 (en) 1996-07-18 1996-09-04 Johnson Matthey Plc Three-way conversion catalysts and methods for the preparation therof
ES2131980T3 (es) 1996-11-11 1999-08-01 Degussa Catalizador purificador de gas de escape con una mejor capacidad de conversion para hidrocarburos
JPH10180110A (ja) 1996-12-25 1998-07-07 Toyota Motor Corp 排ガス浄化用触媒
US6165429A (en) 1997-01-10 2000-12-26 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst and exhaust gas purifying method
JP4092441B2 (ja) 1997-02-24 2008-05-28 日産自動車株式会社 排ガス浄化用触媒
DE19714732A1 (de) 1997-04-09 1998-10-15 Degussa Verfahren zum Abscheiden von katalytisch aktiven Komponenten auf hochoberflächigen Trägermaterialien
US6348430B1 (en) 1997-06-20 2002-02-19 Degussa Ag Exhaust gas treatment catalyst for internal combustion engines with two catalytically active layers on a carrier structure
US6047544A (en) 1997-08-20 2000-04-11 Nissan Motor Co., Ltd. Engine exhaust gas purification catalyst and exhaust gas purifier
US6022825A (en) 1998-01-08 2000-02-08 Johnson Matthey Public Limited Company Thermally durable low H2 S three-way catalysts
US6221804B1 (en) * 1998-01-27 2001-04-24 Mazda Motor Corporation Catalyst for purifying exhaust gas and manufacturing method thereof
US6350421B1 (en) 1998-08-24 2002-02-26 Dmc2 Degussa Metals Catalysts Cerdec Ag Nitrogen oxide storage material and nitrogen oxide storing catalyst prepared therefrom
US6576199B1 (en) 1998-09-18 2003-06-10 Alliedsignal Inc. Environmental control system including ozone-destroying catalytic converter having anodized and washcoat layers
JP3370957B2 (ja) 1998-09-18 2003-01-27 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2002539348A (ja) 1998-10-12 2002-11-19 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 燃焼排気ガスを処理する方法および装置
US6370870B1 (en) 1998-10-14 2002-04-16 Nissan Motor Co., Ltd. Exhaust gas purifying device
JP2002530175A (ja) 1998-11-20 2002-09-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コードレス走査ヘッドの充電器を備える超音波診断イメージングシステム
JP4438114B2 (ja) 1999-01-14 2010-03-24 株式会社日立製作所 内燃機関の排ガス浄化方法,排ガス浄化触媒及び排ガス浄化装置
DE19903533A1 (de) 1999-01-29 2000-08-10 Degussa Verfahren zur selektiven katalytischen Reduktion von Stickoxiden in sauerstoffhaltigen Abgasen
DE19908394A1 (de) 1999-02-26 2000-08-31 Degussa Katalysatormaterial und Verfahren zu seiner Herstellung
GB0212321D0 (en) 2002-05-29 2002-07-10 Johnson Matthey Plc Catalyst composition
US6146602A (en) 1999-02-08 2000-11-14 Ford Global Technologies, Inc. Mesoporous oxide molecular sieves for absorbing nitrogen oxides in oxidizing engine exhaust gas
JP4122617B2 (ja) * 1999-03-05 2008-07-23 マツダ株式会社 エンジンの排気浄化装置
GB9905550D0 (en) 1999-03-11 1999-05-05 Johnson Matthey Plc Improvements in catalyst systems
AU3923300A (en) 1999-03-26 2000-10-16 Cabot Corporation Fumed metal oxide comprising catalytic converter
US6294140B1 (en) 1999-04-23 2001-09-25 Degussa Ag Layered noble metal-containing exhaust gas catalyst and its preparation
US6103207A (en) 1999-04-26 2000-08-15 Ford Global Technologies, Inc. Treating diesel exhaust with a catalytic particulate mixture
FR2793163B1 (fr) 1999-05-07 2001-08-10 Ecia Equip Composants Ind Auto Composition d'epuration avec traitement des nox des gaz d'echappement d'un moteur a combustion interne
US6261989B1 (en) 1999-05-19 2001-07-17 Daihatsu Motor Co., Ltd. Catalytic converter for cleaning exhaust gas
DE10024994A1 (de) 1999-05-24 2001-01-04 Daihatsu Motor Co Ltd Katalytischer Umwandler zum Reinigen von Abgasen
EP1064985B1 (en) 1999-07-02 2008-02-20 Nissan Motor Co., Ltd. Exhaust gas purifying system
JP3859940B2 (ja) 1999-08-06 2006-12-20 日産自動車株式会社 排気ガス浄化用触媒及びその製造方法
GB9919013D0 (en) 1999-08-13 1999-10-13 Johnson Matthey Plc Reactor
US6881384B1 (en) 1999-08-30 2005-04-19 Daihatsu Motor Co., Ltd. Catalytic converter for cleaning exhaust gas
JP3642273B2 (ja) 1999-10-21 2005-04-27 日産自動車株式会社 排気ガス浄化システム
JP3788141B2 (ja) * 1999-10-25 2006-06-21 日産自動車株式会社 排気ガス浄化システム
DE19955456A1 (de) 1999-11-17 2001-05-23 Degussa Verfahren zur Herstellung eines Stickoxid-Speichermaterials und damit hergestelltes Speichermaterial
JP3724708B2 (ja) 1999-11-26 2005-12-07 日産自動車株式会社 排気ガス浄化用触媒
JP3489048B2 (ja) 2000-02-01 2004-01-19 日産自動車株式会社 排気ガス浄化用触媒
US6569392B1 (en) 2000-02-02 2003-05-27 Ford Global Technologies Llc Three-way rare earth oxide catalyst
US20020032123A1 (en) 2000-02-23 2002-03-14 Ford Global Technologies, Inc. Exhaust gas catalyst and method of manufacturing same
US6846466B2 (en) 2000-03-22 2005-01-25 Cataler Corporation Catalyst for purifying an exhaust gas
ES2242673T3 (es) 2000-03-28 2005-11-16 UMICORE AG &amp; CO. KG Catalizador de alto rendimiento de capa simple.
DE60138984D1 (de) 2000-06-27 2009-07-30 Ict Co Ltd Abgasreinigungskatalysator
US6617276B1 (en) 2000-07-21 2003-09-09 Johnson Matthey Public Limited Company Hydrocarbon trap/catalyst for reducing cold-start emissions from internal combustion engines
JP4642978B2 (ja) 2000-08-08 2011-03-02 株式会社キャタラー 排ガス浄化用触媒
US6537511B1 (en) 2000-08-21 2003-03-25 Ford Global Technologies, Inc. Modified platinum NOx trap for automotive emission reduction
US6557342B2 (en) 2000-09-19 2003-05-06 Nissan Motor Co., Ltd. Exhaust gas purifying system
US6729125B2 (en) 2000-09-19 2004-05-04 Nissan Motor Co., Ltd. Exhaust gas purifying system
US6864214B2 (en) 2000-09-26 2005-03-08 Daihatsu Motor Co., Ltd. Exhaust gas purifying catalyst
JP2004509740A (ja) 2000-09-29 2004-04-02 オーエムゲー アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト 触媒すすフィルターおよびリーン排気ガスの処理おけるその使用
DE10054877A1 (de) 2000-11-06 2002-05-29 Omg Ag & Co Kg Abgasreinigungsanlage für die selektive katalytische Reduktion von Stickoxiden unter mageren Abgasbedingungen und Verfahren zur Abgasreinigung
US6709643B1 (en) 2000-11-10 2004-03-23 The Ohio State University Catalyst and method of use in the reduction of nitrogen oxides using lower hydrocarbons
US7641875B1 (en) 2000-11-15 2010-01-05 Catalytic Solutions, Inc. Mixed-phase ceramic oxide three-way catalyst formulations and methods for preparing the catalysts
GB0028240D0 (en) 2000-11-20 2001-01-03 Johnson Matthey Plc Three-way catalyst composition
US6750168B2 (en) 2000-12-05 2004-06-15 Delphi Technologies, Inc. High-temperature aging tolerance catalyzed adsorber system for treating internal combustion engine exhaust gas
JP2002177781A (ja) 2000-12-12 2002-06-25 Ict:Kk 排ガス浄化用触媒
US6491985B2 (en) 2000-12-20 2002-12-10 Honda Giken Kogyo Kabushiki Kaisha Method for enhancing the surface of a metal substrate
US7005404B2 (en) 2000-12-20 2006-02-28 Honda Motor Co., Ltd. Substrates with small particle size metal oxide and noble metal catalyst coatings and thermal spraying methods for producing the same
JP2002355561A (ja) 2001-03-26 2002-12-10 Mazda Motor Corp 排気ガス浄化用触媒、及び排気ガス浄化方法
JP4863596B2 (ja) 2001-06-18 2012-01-25 日産自動車株式会社 排気ガス浄化システム
JP3845274B2 (ja) 2001-06-26 2006-11-15 ダイハツ工業株式会社 排ガス浄化用触媒
WO2003011438A1 (fr) 2001-07-30 2003-02-13 Valtion Teknillinen Tutkimuskeskus Procede de reduction catalytique d'oxydes d'azote et catalyseur utilise dans ce procede
US7326669B2 (en) 2001-09-20 2008-02-05 Honda Motor Co., Ltd. Substrate having catalyst compositions on surfaces of opposite sides
US7276212B2 (en) * 2001-10-01 2007-10-02 Engelhard Corporation Exhaust articles for internal combustion engines
JP3855266B2 (ja) 2001-11-01 2006-12-06 日産自動車株式会社 排気ガス浄化用触媒
US7138358B2 (en) 2001-11-13 2006-11-21 Sud-Chemie Inc. Catalyzed diesel particulate matter filter with improved thermal stability
US6613299B2 (en) 2001-11-13 2003-09-02 Sud-Chemie Prototech, Inc. Catalyzed diesel particulate matter exhaust filter
EP1316354A1 (de) 2001-11-30 2003-06-04 OMG AG &amp; Co. KG Katalysator zur Verminderung der Stickoxide im Abgas von Magermotoren
US7165393B2 (en) 2001-12-03 2007-01-23 Catalytica Energy Systems, Inc. System and methods for improved emission control of internal combustion engines
US7082753B2 (en) 2001-12-03 2006-08-01 Catalytica Energy Systems, Inc. System and methods for improved emission control of internal combustion engines using pulsed fuel flow
JP3870783B2 (ja) 2001-12-27 2007-01-24 日産自動車株式会社 燃料電池自動車用排ガス浄化システムおよび燃料電池自動車の排ガスの浄化方法
EP2322267B1 (en) 2002-02-01 2017-08-23 Cataler Corporation Catalyst for purifying exhaust gases
US7563746B2 (en) 2002-02-06 2009-07-21 Umicore Ag & Co. Kg Catalyst and method of making the same
US7041622B2 (en) 2002-02-06 2006-05-09 Delphi Technologies, Inc. Catalyst, an exhaust emission control device and a method of using the same
JP4244648B2 (ja) 2002-02-19 2009-03-25 日産自動車株式会社 排気ガス浄化装置
US7135153B2 (en) 2002-03-07 2006-11-14 Southwest Research Institute NOx reduction system for diesel engines, using hydrogen selective catalytic reduction
JP3971215B2 (ja) 2002-03-13 2007-09-05 日本碍子株式会社 排ガス浄化用フィルター
JP4019357B2 (ja) 2002-05-02 2007-12-12 日産自動車株式会社 排気ガス浄化用触媒粉末の製造方法及び排気ガス浄化触媒の製造方法
US7125528B2 (en) 2002-05-24 2006-10-24 Bp Corporation North America Inc. Membrane systems containing an oxygen transport membrane and catalyst
KR100494543B1 (ko) 2002-06-14 2005-06-10 현대자동차주식회사 저 백금-팔라듐-로듐 함량의 삼원촉매 제조방법
US6660683B1 (en) 2002-10-21 2003-12-09 W.R. Grace & Co.-Conn. NOx reduction compositions for use in FCC processes
US7329629B2 (en) 2002-10-24 2008-02-12 Ford Global Technologies, Llc Catalyst system for lean burn engines
US7071141B2 (en) 2002-10-24 2006-07-04 Ford Global Technologies, Llc Perovskite catalyst system for lean burn engines
BR0316367A (pt) 2002-11-15 2005-10-04 Catalytica Energy Sys Inc Dispositivos e métodos para redução de emissões de nox de motores de queima pobre
US6832473B2 (en) 2002-11-21 2004-12-21 Delphi Technologies, Inc. Method and system for regenerating NOx adsorbers and/or particulate filters
JP4161722B2 (ja) * 2003-01-28 2008-10-08 マツダ株式会社 自動車用触媒
DE10308287B4 (de) 2003-02-26 2006-11-30 Umicore Ag & Co. Kg Verfahren zur Abgasreinigung
KR100469066B1 (ko) 2003-04-14 2005-02-02 에스케이 주식회사 디젤차량 입자상 물질 제거용 필터 및 이의 제조방법
FI118418B (fi) 2003-04-17 2007-11-15 Ecocat Oy Alumiinioksidipohjainen katalyytti poistekaasujen puhdistukseen
WO2004094793A1 (en) 2003-04-24 2004-11-04 Byd Company Limited Muffler and catalytic converter devices
JP2005021880A (ja) 2003-06-13 2005-01-27 Nissan Motor Co Ltd 排ガス浄化用触媒及び排ガス浄化用触媒システム
GB0318776D0 (en) 2003-08-09 2003-09-10 Johnson Matthey Plc Lean NOx catalyst
US7030055B2 (en) 2003-08-18 2006-04-18 W.R. Grace & Co.-Conn. NOx reduction compositions for use in FCC processes
US6956007B2 (en) 2003-08-25 2005-10-18 General Motors Corporation Noble metal catalyst
US7875250B2 (en) 2003-12-11 2011-01-25 Umicore Ag & Co. Kg Exhaust treatment device, and methods of making the same
CN1901995B (zh) 2003-12-18 2010-07-28 千代田化工建设株式会社 用于生产合成气的催化剂和应用该催化剂生产合成气的方法
TW201240725A (en) 2003-12-19 2012-10-16 Celanese Int Corp Layered support material for catalysts
US7399729B2 (en) 2003-12-22 2008-07-15 General Electric Company Catalyst system for the reduction of NOx
JP3912377B2 (ja) 2003-12-25 2007-05-09 日産自動車株式会社 排ガス浄化用触媒粉末の製造方法
US20050164879A1 (en) * 2004-01-28 2005-07-28 Engelhard Corporation Layered SOx tolerant NOx trap catalysts and methods of making and using the same
JP4959129B2 (ja) 2004-02-16 2012-06-20 株式会社キャタラー 排ガス浄化用触媒
JP4547930B2 (ja) 2004-02-17 2010-09-22 日産自動車株式会社 触媒、触媒の調製方法及び排ガス浄化用触媒
JP4547935B2 (ja) 2004-02-24 2010-09-22 日産自動車株式会社 排ガス浄化用触媒、排ガス浄化触媒、及び触媒の製造方法
DE102004024026A1 (de) 2004-03-11 2005-09-29 W.C. Heraeus Gmbh Katalysator zur N2O-Zersetzung beim Ostwaldprozess
JP4513372B2 (ja) 2004-03-23 2010-07-28 日産自動車株式会社 排ガス浄化用触媒及び排ガス浄化触媒
JP3795895B2 (ja) 2004-03-25 2006-07-12 田中貴金属工業株式会社 触媒の製造方法
JP4513384B2 (ja) 2004-03-31 2010-07-28 日産自動車株式会社 高耐熱性排ガス浄化用触媒及びその製造方法
US7727928B2 (en) 2004-07-30 2010-06-01 Bp Chemicals Limited Catalyst composition and use thereof in ethane oxidation
US7811961B2 (en) 2004-08-12 2010-10-12 Ford Global Technologies, Llc Methods and formulations for enhancing NH3 adsorption capacity of selective catalytic reduction catalysts
DE102004040548A1 (de) 2004-08-21 2006-02-23 Umicore Ag & Co. Kg Verfahren zum Beschichten eines Wandflußfilters mit feinteiligen Feststoffen und damit erhaltenes Partikelfilter und seine Verwendung
US7713908B2 (en) 2004-08-30 2010-05-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Porous composite metal oxide and method of producing the same
EP1801074A4 (en) 2004-09-16 2010-09-08 Daiichi Kigensokagaku Kogyo Co CERIUM-ZIRCONIUM COMPOSITE OXIDE, PROCESS FOR PRODUCING THE SAME, OXYGEN STORAGE / RELEASE MATERIAL USING THE CERIUM-ZIRCONIUM COMPOSITE OXIDE, EXHAUST GAS PURIFYING CATALYST, AND PROCESS FOR PURIFYING THE SAME EXHAUST GAS
US7601671B2 (en) 2004-10-28 2009-10-13 Umicore Ag & Co. Kg Drying method for exhaust gas catalyst
JP4707672B2 (ja) * 2004-10-28 2011-06-22 株式会社キャタラー 排ガス浄化用触媒
US7870724B2 (en) 2004-11-09 2011-01-18 Ford Global Technologies, Llc Lean NOx trap with PGM zoned axially
JP4696546B2 (ja) 2004-12-10 2011-06-08 マツダ株式会社 排気ガス浄化用触媒
US8006484B2 (en) 2005-02-14 2011-08-30 Eaton Corporation Systems and methods for reducing emissions of internal combustion engines using a fuel processor bypass
JP4192905B2 (ja) 2005-03-04 2008-12-10 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2006095557A1 (ja) 2005-03-04 2006-09-14 Daihatsu Motor Co., Ltd. 触媒組成物
US20060217263A1 (en) 2005-03-24 2006-09-28 Tokyo Roki Co., Ltd Exhaust gas purification catalyst
JP4778724B2 (ja) 2005-05-02 2011-09-21 株式会社キャタラー 硫化水素発生抑制触媒
JP4669322B2 (ja) * 2005-05-24 2011-04-13 株式会社キャタラー 排ガス浄化用触媒
JP4648089B2 (ja) 2005-05-27 2011-03-09 株式会社キャタラー 排ガス浄化用触媒
US7107764B1 (en) 2005-06-15 2006-09-19 Caterpillar Inc. Exhaust treatment system
US7389638B2 (en) * 2005-07-12 2008-06-24 Exxonmobil Research And Engineering Company Sulfur oxide/nitrogen oxide trap system and method for the protection of nitrogen oxide storage reduction catalyst from sulfur poisoning
RU2370308C1 (ru) 2005-07-12 2009-10-20 Тойота Дзидося Кабусики Кайся Катализатор очистки выхлопных газов и способ его приготовления
US8507404B2 (en) 2005-07-12 2013-08-13 Exxonmobil Research And Engineering Company Regenerable sulfur traps for on-board vehicle applications
JP4833605B2 (ja) * 2005-07-21 2011-12-07 株式会社キャタラー 排ガス浄化用触媒
US8168560B2 (en) 2005-10-05 2012-05-01 Cataler Corporation Exhaust gas purifying catalyst
US20090232714A1 (en) 2005-10-06 2009-09-17 Akira Abe Particulate combustion catalyst, particulate filter, and exhaust gas clean-up system
JP4826207B2 (ja) 2005-10-28 2011-11-30 日産自動車株式会社 排ガス浄化触媒及び排ガス浄化触媒の製造方法
WO2007052627A1 (ja) 2005-11-01 2007-05-10 Nissan Motor Co., Ltd. 排気ガス浄化用触媒及びその製造方法
US7625836B2 (en) 2005-12-13 2009-12-01 Cataler Corporation Heat-resistant oxide
JP4523911B2 (ja) 2005-12-14 2010-08-11 本田技研工業株式会社 排ガス浄化装置
KR101051418B1 (ko) 2006-03-16 2011-07-22 인터내쇼날 카탈리스트 테크놀로지, 인코포레이티드 배기가스 정화용 촉매, 그 제조방법 및 이러한 촉매를이용한 배기가스의 정화방법
JP5073303B2 (ja) 2006-03-24 2012-11-14 日本碍子株式会社 触媒コンバータ及び触媒コンバータの製造方法
EP2000202A4 (en) 2006-03-28 2011-05-18 Toyota Chuo Kenkyusho Kk CATALYST FOR CLEANING EXHAUST GAS, METHOD FOR ITS REGENERATION, EXHAUST GAS CLEANING DEVICE THEREWITH AND METHOD FOR CLEANING EXHAUST GAS
JP2007278100A (ja) 2006-04-03 2007-10-25 Honda Motor Co Ltd 排気ガス浄化装置
KR100752372B1 (ko) 2006-04-10 2007-08-27 희성엥겔하드주식회사 황화수소 저감을 위한 제오라이트를 포함한 배기가스정화용 촉매조성물
JP4881758B2 (ja) 2006-04-28 2012-02-22 日産自動車株式会社 排気ガス浄化用触媒及びその製造方法
FR2901155B1 (fr) 2006-05-16 2008-10-10 Rhodia Recherches & Tech Compositions utilisees notamment pour le piegeage d'oxydes d'azote (nox)
CN101466468B (zh) 2006-06-14 2012-05-23 株式会社科特拉 排气净化用催化剂
US8663588B2 (en) 2006-06-29 2014-03-04 Umicore Ag & Co. Kg Three way catalyst
US7749472B2 (en) * 2006-08-14 2010-07-06 Basf Corporation Phosgard, a new way to improve poison resistance in three-way catalyst applications
KR100781670B1 (ko) * 2006-08-16 2007-12-03 희성촉매 주식회사 극소량의 로듐 또는 로듐을 포함하지 않는 내연기관배기가스 정화용 촉매
US7758834B2 (en) * 2006-08-21 2010-07-20 Basf Corporation Layered catalyst composite
EP1911506B1 (de) 2006-10-06 2009-08-19 Umicore AG & Co. KG Stickoxidspeicherkatalysator mit abgesenkter Entschwefelungstemperatur
JP5551329B2 (ja) 2006-11-14 2014-07-16 日産自動車株式会社 排気ガス浄化触媒及びその製造方法
US7657986B2 (en) 2007-01-04 2010-02-09 Delphi Technologies, Inc. Method of making a folded condenser tube
CN100998941B (zh) 2007-01-04 2012-09-05 华东理工大学 一种前置催化剂及其制备方法
CN101568381B (zh) 2007-02-01 2012-05-09 第一稀元素化学工业株式会社 用于机动车废气净化装置中的催化剂体系、使用该催化剂体系的废气净化装置及废气净化方法
DE502007004776D1 (de) 2007-03-19 2010-09-30 Umicore Ag & Co Kg Palladium-Rhodium Einfachschicht Katalysator
EP1994982A1 (en) 2007-03-30 2008-11-26 Fujifilm Corporation Catalyst body which uses an anodized layer
US7977276B2 (en) 2007-04-12 2011-07-12 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and method of producing the same
US7718150B2 (en) 2007-04-17 2010-05-18 Ford Global Technologies, Llc Reverse platinum group metal zoned lean NOx trap system and method of use
EP1985354B1 (en) 2007-04-27 2012-07-11 Mazda Motor Corporation Exhaust gas purification catalyst and manufacturing method thereof
US7950226B2 (en) 2007-05-14 2011-05-31 Eaton Corporation LNT-SCR system optimized for thermal gradient
CN101314128B (zh) 2007-05-31 2013-02-13 中国科学院大连化学物理研究所 一种自热重整制氢催化剂及其制备方法
JP2009011976A (ja) 2007-07-06 2009-01-22 Denso Corp 六角セルハニカム触媒体及びそれを用いた排ガス浄化装置
US7802420B2 (en) 2007-07-26 2010-09-28 Eaton Corporation Catalyst composition and structure for a diesel-fueled autothermal reformer placed in and exhaust stream
US8038951B2 (en) * 2007-08-09 2011-10-18 Basf Corporation Catalyst compositions
JP5350614B2 (ja) 2007-08-22 2013-11-27 本田技研工業株式会社 排ガス浄化触媒及びこれを用いた排ガス浄化装置
DE502007002874D1 (de) 2007-09-28 2010-04-01 Umicore Ag & Co Kg Entfernung von Partikeln aus dem Abgas von mit überwiegend stöchiometrischem Luft/Kraftstoff-Gemisch betriebenen Verbrennungsmotoren
DE102007048313B4 (de) 2007-10-09 2011-07-28 Süd-Chemie AG, 80333 Beschichtung von Substraten unter Gewährleistung einer hohen Porosität bei gleichzeitig hoher Abriebbeständigkeit der Beschichtung
JP2009103020A (ja) 2007-10-23 2009-05-14 Honda Motor Co Ltd 内燃機関の排気浄化方法および排気浄化装置
JP5144220B2 (ja) 2007-11-08 2013-02-13 本田技研工業株式会社 内燃機関の排気浄化装置
US20090175773A1 (en) * 2008-01-08 2009-07-09 Chen Shau-Lin F Multilayered Catalyst Compositions
JP5081635B2 (ja) 2008-01-08 2012-11-28 本田技研工業株式会社 内燃機関の排気浄化装置
JP2009162157A (ja) 2008-01-08 2009-07-23 Honda Motor Co Ltd 内燃機関の排気浄化装置
US8434296B2 (en) 2008-01-08 2013-05-07 Honda Motor Co., Ltd. Exhaust emission control device for internal combustion engine
JP2009165904A (ja) 2008-01-10 2009-07-30 Honda Motor Co Ltd 排ガス浄化装置
DE102008000463A1 (de) 2008-02-29 2009-09-03 Robert Bosch Gmbh Abgassensor
BRPI0909377A2 (pt) 2008-03-27 2017-06-13 Umicore Ag & Co Kg controle contínuo de fuligem de diesel com perda de contrapressão mínima usando substratos de fluxo convencionais e catalisador de oxidação de fuligem direta ativa disposto sobre eles
JP5249790B2 (ja) 2008-03-27 2013-07-31 イビデン株式会社 ハニカム構造体
WO2009118866A1 (ja) 2008-03-27 2009-10-01 イビデン株式会社 ハニカム構造体
WO2009118875A1 (ja) 2008-03-27 2009-10-01 イビデン株式会社 ハニカム構造体
WO2009118871A1 (ja) 2008-03-27 2009-10-01 イビデン株式会社 ハニカム構造体
WO2009118872A1 (ja) 2008-03-27 2009-10-01 イビデン株式会社 ハニカム構造体
WO2009118867A1 (ja) 2008-03-27 2009-10-01 イビデン株式会社 ハニカム構造体および排ガス処理装置
DE102008018519A1 (de) 2008-04-12 2009-10-15 Man Nutzfahrzeuge Ag Schwefelresistentes Abgasnachbehandlungssystem zur Oxidation von NO
JP5273446B2 (ja) 2008-05-12 2013-08-28 日産自動車株式会社 排ガス浄化用触媒及びその製造方法
EP2127729A1 (en) 2008-05-30 2009-12-02 Mazda Motor Corporation Exhaust gas purification catalyst
KR101571660B1 (ko) 2008-06-19 2015-11-25 우미코레 아게 운트 코 카게 디젤 차를 포함하는 상용 차량을 위한 산화 촉매
JP4751916B2 (ja) * 2008-06-30 2011-08-17 トヨタ自動車株式会社 排ガス浄化用触媒
JP5292194B2 (ja) 2008-07-04 2013-09-18 日揮株式会社 炭化水素の接触部分酸化用の触媒及び合成ガスの製造方法
JP5322526B2 (ja) 2008-07-17 2013-10-23 エヌ・イーケムキャット株式会社 自動車から排出される排気ガスを浄化するためのハニカム構造型触媒及びその製造方法、並びに、その触媒を使用した排気ガス浄化方法
JP5386121B2 (ja) 2008-07-25 2014-01-15 エヌ・イーケムキャット株式会社 排気ガス浄化触媒装置、並びに排気ガス浄化方法
BRPI0916334B1 (pt) 2008-07-31 2019-10-15 Basf Se Catalisador para armazenamento de óxido de nitrogênio, sistema e método de tratamento para uma corrente de gás de escapamento de automóvel, e, método para produzir um catalisador de armazenamento de óxido de nitrogênio
CN102112225B (zh) * 2008-07-31 2013-10-23 日产自动车株式会社 废气净化催化剂
CN105935590A (zh) 2008-08-27 2016-09-14 优美科催化剂日本有限公司 废气净化用催化剂以及使用此催化剂的废气净化方法
EP2335811B1 (en) 2008-10-09 2015-06-24 Honda Motor Co., Ltd. Exhaust gas purifying device
CN102131582B (zh) 2008-12-03 2013-11-13 第一稀元素化学工业株式会社 废气净化催化剂、使用其的废气净化装置和废气净化方法
US8211392B2 (en) * 2009-01-16 2012-07-03 Basf Corporation Diesel oxidation catalyst composite with layer structure for carbon monoxide and hydrocarbon conversion
US8252258B2 (en) * 2009-01-16 2012-08-28 Basf Corporation Diesel oxidation catalyst with layer structure for improved hydrocarbon conversion
US8568675B2 (en) * 2009-02-20 2013-10-29 Basf Corporation Palladium-supported catalyst composites
DE102009010711A1 (de) 2009-02-27 2010-09-30 Umicore Ag & Co. Kg Stickoxid-Speicherkatalysator zum Einsatz im Kraftfahrzeug in motornaher Position
EP2404669B1 (en) * 2009-03-06 2019-11-13 Umicore Shokubai Japan Co., Ltd. Catalyst for purification of exhaust gas
KR101448734B1 (ko) 2009-03-09 2014-10-08 현대자동차 주식회사 질소 산화물 저감 촉매 및 이를 이용한 배기 장치
JPWO2010103870A1 (ja) 2009-03-09 2012-09-13 第一稀元素化学工業株式会社 排気ガス浄化触媒、それを用いた排気ガス浄化装置、及び排気ガス浄化方法
US8513155B2 (en) 2009-03-16 2013-08-20 GM Global Technology Operations LLC Perovskite-type compounds for use in lean NOx traps
JP2010223083A (ja) 2009-03-23 2010-10-07 Ibiden Co Ltd 排ガス浄化装置、及び、排ガス浄化装置の製造方法
US8637426B2 (en) * 2009-04-08 2014-01-28 Basf Corporation Zoned catalysts for diesel applications
US8906330B2 (en) * 2009-05-04 2014-12-09 Basf Corporation Lean HC conversion of TWC for lean burn gasoline engines
JP5380534B2 (ja) * 2009-06-16 2014-01-08 株式会社キャタラー 排ガス浄化用触媒及びその製造方法
US8409515B2 (en) 2009-07-14 2013-04-02 GM Global Technology Operations LLC Exhaust gas treatment system
US8716170B2 (en) 2009-08-24 2014-05-06 University Of South Florida Eggshell catalyst and methods of its preparation
KR20110023158A (ko) 2009-08-28 2011-03-08 현대자동차주식회사 배기 시스템
US8353155B2 (en) 2009-08-31 2013-01-15 General Electric Company Catalyst and method of manufacture
US8833064B2 (en) * 2009-11-06 2014-09-16 Basf Corporation Small engine layered catalyst article and method of making
JP5428773B2 (ja) 2009-11-10 2014-02-26 マツダ株式会社 排気ガス浄化用触媒
JP5463861B2 (ja) * 2009-11-10 2014-04-09 マツダ株式会社 排気ガス浄化用触媒
GB0922194D0 (en) 2009-12-21 2010-02-03 Johnson Matthey Plc Improvements in emission control
US8603423B2 (en) 2010-02-01 2013-12-10 Johnson Matthey Public Limited Co. Three way catalyst comprising extruded solid body
US8828343B2 (en) * 2010-03-05 2014-09-09 Basf Corporation Carbon monoxide conversion catalyst
US8734743B2 (en) * 2010-06-10 2014-05-27 Basf Se NOx storage catalyst with improved hydrocarbon conversion activity
US8950174B2 (en) * 2010-09-02 2015-02-10 Basf Se Catalysts for gasoline lean burn engines with improved NH3-formation activity
KR101459436B1 (ko) 2012-12-17 2014-11-07 현대자동차 주식회사 내연 기관용 가스 정화 촉매
EP2969206A4 (en) * 2013-03-14 2016-07-06 Basf Corp CATALYTIC ARTICLE HAVING A SEPARATE LAVIS LAYER, AND METHODS OF MAKING THE SAME

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2372141C2 (ru) * 2005-06-20 2009-11-10 Тойота Дзидося Кабусики Кайся Катализатор для очистки выхлопного газа
US20100150792A1 (en) * 2005-08-01 2010-06-17 Cataler Corporation Exhaust gas purifying catayst
US20090022641A1 (en) * 2007-07-19 2009-01-22 Shau-Lin Franklin Chen Multilayered catalyst compositions
US20120128557A1 (en) * 2010-11-22 2012-05-24 Nunan John G Three-Way Catalyst Having an Upstream Single-Layer Catalyst
US20120180464A1 (en) * 2011-01-19 2012-07-19 Basf Corporation Three Way Conversion Catalyst With Alumina-Free Rhodium Layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2789587C2 (ru) * 2018-07-27 2023-02-06 Джонсон Мэттей Паблик Лимитед Компани Улучшенные катализаторы twc, содержащие высокоэффективную подложку с допирующей добавкой
US11794170B2 (en) 2018-07-27 2023-10-24 Johnson Matthey Public Limited Company TWC catalysts containing high dopant support

Also Published As

Publication number Publication date
US20140205523A1 (en) 2014-07-24
MX359178B (es) 2018-09-18
RU2015135446A (ru) 2017-03-03
BR112015017202A2 (pt) 2017-07-11
EP2948653A4 (en) 2016-08-24
US9266092B2 (en) 2016-02-23
CA2897016A1 (en) 2014-07-31
CN104937225B (zh) 2019-07-30
JP6449785B2 (ja) 2019-01-09
EP2948653A1 (en) 2015-12-02
JP2016505380A (ja) 2016-02-25
CA2897016C (en) 2020-07-07
BR112015017202B1 (pt) 2022-05-17
MX2015009337A (es) 2015-09-29
WO2014116897A1 (en) 2014-07-31
CN104937225A (zh) 2015-09-23
ZA201506073B (en) 2017-11-29

Similar Documents

Publication Publication Date Title
RU2658002C2 (ru) Автомобильные каталитические композиты, имеющие слой с двумя металлами
US10512898B2 (en) Layered automotive catalyst composites
US11260372B2 (en) Catalyst system for lean gasoline direct injection engines
US7622096B2 (en) Multilayered catalyst compositions
JP5843791B2 (ja) 一酸化炭素変換触媒
KR102641284B1 (ko) 백금족 금속을 비귀금속 산화물과 조합한 디젤 산화 촉매
US20180071679A1 (en) Automotive Catalysts With Palladium Supported In An Alumina-Free Layer
KR20110122194A (ko) 내연 기관을 위한 에이징-내성 촉매 물품
KR20100053636A (ko) 촉매 조성물
KR20150086490A (ko) 산화 촉매 및 이의 제조 방법
KR20240000565A (ko) 근접-결합된 엔진 적용을 위한 백금-함유 삼원 촉매
WO2022073801A1 (en) Three-way conversion catalytic article
BR112017027715B1 (pt) Compósito catalisador automotivo, e, sistema e método para tratamento de gás de escape