JP3733065B2 - リチウム電池用電極及びリチウム二次電池 - Google Patents
リチウム電池用電極及びリチウム二次電池 Download PDFInfo
- Publication number
- JP3733065B2 JP3733065B2 JP2001531159A JP2001531159A JP3733065B2 JP 3733065 B2 JP3733065 B2 JP 3733065B2 JP 2001531159 A JP2001531159 A JP 2001531159A JP 2001531159 A JP2001531159 A JP 2001531159A JP 3733065 B2 JP3733065 B2 JP 3733065B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- thin film
- current collector
- lithium battery
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052744 lithium Inorganic materials 0.000 title claims description 563
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims description 560
- 239000010409 thin film Substances 0.000 claims description 898
- 239000011149 active material Substances 0.000 claims description 314
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 292
- 229910052710 silicon Inorganic materials 0.000 claims description 283
- 239000010703 silicon Substances 0.000 claims description 283
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 265
- 239000011889 copper foil Substances 0.000 claims description 194
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 137
- 229910052732 germanium Inorganic materials 0.000 claims description 134
- 239000010949 copper Substances 0.000 claims description 82
- 230000003746 surface roughness Effects 0.000 claims description 80
- 229910021424 microcrystalline silicon Inorganic materials 0.000 claims description 79
- 239000000463 material Substances 0.000 claims description 74
- 229910052802 copper Inorganic materials 0.000 claims description 70
- 238000000034 method Methods 0.000 claims description 69
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 61
- 238000007600 charging Methods 0.000 claims description 58
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 55
- 238000007599 discharging Methods 0.000 claims description 50
- 238000006243 chemical reaction Methods 0.000 claims description 43
- 239000007774 positive electrode material Substances 0.000 claims description 38
- 229910045601 alloy Inorganic materials 0.000 claims description 37
- 239000000956 alloy Substances 0.000 claims description 37
- 230000008602 contraction Effects 0.000 claims description 36
- 239000000758 substrate Substances 0.000 claims description 36
- 229910052782 aluminium Inorganic materials 0.000 claims description 34
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 34
- 229910052751 metal Inorganic materials 0.000 claims description 33
- 239000002184 metal Substances 0.000 claims description 33
- 239000011888 foil Substances 0.000 claims description 30
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 28
- 239000013078 crystal Substances 0.000 claims description 26
- 239000007789 gas Substances 0.000 claims description 26
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 25
- 230000000737 periodic effect Effects 0.000 claims description 24
- 239000006104 solid solution Substances 0.000 claims description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 22
- 238000004544 sputter deposition Methods 0.000 claims description 22
- 239000007773 negative electrode material Substances 0.000 claims description 21
- 239000001257 hydrogen Substances 0.000 claims description 20
- 229910052739 hydrogen Inorganic materials 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 19
- 238000001069 Raman spectroscopy Methods 0.000 claims description 18
- 229910052759 nickel Inorganic materials 0.000 claims description 18
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 17
- 238000004611 spectroscopical analysis Methods 0.000 claims description 17
- 229910052721 tungsten Inorganic materials 0.000 claims description 17
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 15
- 229910052738 indium Inorganic materials 0.000 claims description 15
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 15
- 229910052750 molybdenum Inorganic materials 0.000 claims description 15
- 239000011733 molybdenum Substances 0.000 claims description 15
- 239000011255 nonaqueous electrolyte Substances 0.000 claims description 15
- 239000002210 silicon-based material Substances 0.000 claims description 15
- 229910052715 tantalum Inorganic materials 0.000 claims description 15
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 15
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 15
- 239000010937 tungsten Substances 0.000 claims description 15
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 14
- 229910052793 cadmium Inorganic materials 0.000 claims description 14
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 14
- 238000005229 chemical vapour deposition Methods 0.000 claims description 14
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 14
- 229910052753 mercury Inorganic materials 0.000 claims description 14
- 229910052725 zinc Inorganic materials 0.000 claims description 14
- 239000011701 zinc Substances 0.000 claims description 14
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 13
- 239000003792 electrolyte Substances 0.000 claims description 13
- 229910052718 tin Inorganic materials 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 239000010935 stainless steel Substances 0.000 claims description 12
- 229910001220 stainless steel Inorganic materials 0.000 claims description 12
- 229910052797 bismuth Inorganic materials 0.000 claims description 11
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 11
- 239000007772 electrode material Substances 0.000 claims description 11
- 239000000843 powder Substances 0.000 claims description 11
- 229910052723 transition metal Inorganic materials 0.000 claims description 11
- 238000007751 thermal spraying Methods 0.000 claims description 9
- 238000007740 vapor deposition Methods 0.000 claims description 9
- 238000002441 X-ray diffraction Methods 0.000 claims description 7
- 238000001228 spectrum Methods 0.000 claims description 7
- 238000007747 plating Methods 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 238000001771 vacuum deposition Methods 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims 1
- 239000010959 steel Substances 0.000 claims 1
- 150000003568 thioethers Chemical class 0.000 claims 1
- 238000002474 experimental method Methods 0.000 description 42
- 230000037303 wrinkles Effects 0.000 description 32
- 230000000052 comparative effect Effects 0.000 description 31
- 238000004519 manufacturing process Methods 0.000 description 29
- 238000001878 scanning electron micrograph Methods 0.000 description 20
- 239000008151 electrolyte solution Substances 0.000 description 19
- -1 crystallinity Substances 0.000 description 17
- 238000012360 testing method Methods 0.000 description 17
- 239000012535 impurity Substances 0.000 description 16
- 229910000765 intermetallic Inorganic materials 0.000 description 16
- 230000007423 decrease Effects 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 12
- 230000014759 maintenance of location Effects 0.000 description 12
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 239000000470 constituent Substances 0.000 description 10
- 238000000151 deposition Methods 0.000 description 10
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 7
- 229910032387 LiCoO2 Inorganic materials 0.000 description 7
- 238000003917 TEM image Methods 0.000 description 7
- 229910052787 antimony Inorganic materials 0.000 description 7
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 7
- 238000013459 approach Methods 0.000 description 7
- 229910052785 arsenic Inorganic materials 0.000 description 7
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 229910052733 gallium Inorganic materials 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 229910052698 phosphorus Inorganic materials 0.000 description 7
- 239000011574 phosphorus Substances 0.000 description 7
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 7
- 239000004810 polytetrafluoroethylene Substances 0.000 description 7
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 238000000605 extraction Methods 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 239000012046 mixed solvent Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 5
- 229910000927 Ge alloy Inorganic materials 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 238000010894 electron beam technology Methods 0.000 description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 239000010931 gold Substances 0.000 description 5
- 238000010030 laminating Methods 0.000 description 5
- 238000001552 radio frequency sputter deposition Methods 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 229910000906 Bronze Inorganic materials 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- 229910001290 LiPF6 Inorganic materials 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 239000010974 bronze Substances 0.000 description 4
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910001651 emery Inorganic materials 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 150000004763 sulfides Chemical class 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 229910021383 artificial graphite Inorganic materials 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 230000005489 elastic deformation Effects 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 3
- 229910052741 iridium Inorganic materials 0.000 description 3
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 3
- 229910052747 lanthanoid Inorganic materials 0.000 description 3
- 150000002602 lanthanoids Chemical class 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 239000013081 microcrystal Substances 0.000 description 3
- 229910021382 natural graphite Inorganic materials 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 3
- 229910052762 osmium Inorganic materials 0.000 description 3
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910052702 rhenium Inorganic materials 0.000 description 3
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 3
- 238000007788 roughening Methods 0.000 description 3
- 229910052707 ruthenium Inorganic materials 0.000 description 3
- 229910052706 scandium Inorganic materials 0.000 description 3
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 229910052713 technetium Inorganic materials 0.000 description 3
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 description 3
- 229910052716 thallium Inorganic materials 0.000 description 3
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 229910012820 LiCoO Inorganic materials 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 229910001431 copper ion Inorganic materials 0.000 description 2
- WCCJDBZJUYKDBF-UHFFFAOYSA-N copper silicon Chemical compound [Si].[Cu] WCCJDBZJUYKDBF-UHFFFAOYSA-N 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 150000005676 cyclic carbonates Chemical class 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000005001 laminate film Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000005518 polymer electrolyte Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910016855 F9SO2 Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910010903 Li2B12Cl12 Inorganic materials 0.000 description 1
- 229910013595 LiCo0.5Ni0.5O2 Inorganic materials 0.000 description 1
- 229910014143 LiMn2 Inorganic materials 0.000 description 1
- 229910002993 LiMnO2 Inorganic materials 0.000 description 1
- 229910011669 LiNi0.7Co0.2Mn0.1O2 Inorganic materials 0.000 description 1
- 229910003005 LiNiO2 Inorganic materials 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 241001422033 Thestylus Species 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Inorganic materials O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/109—Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M2010/4292—Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
- H01M4/405—Alloys based on lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/04—Cells with aqueous electrolyte
- H01M6/06—Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
- H01M6/10—Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/40—Printed batteries, e.g. thin film batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【技術分野】
【0002】
本発明は、新規なリチウム電池用電極並びにこれを用いたリチウム電池及びリチウム二次電池に関するものである。
【背景技術】
【0003】
近年、研究開発が盛んに行われているリチウム二次電池は、用いられる電極により充放電電圧、充放電サイクル寿命特性、保存特性などの電池特性が大きく左右される。このことから、電極活物質を改善することにより、電池特性の向上が図られている。
【0004】
負極活物質としてリチウム金属を用いると、重量当り及び体積当りともに高いエネルギー密度の電池を構成することができるが、充電時にリチウムがデンドライト状に析出し、内部短絡を引き起こすという問題があった。
【0005】
これに対し、充電の際に電気化学的にリチウムと合金化するアルミニウム、シリコン、錫などを電極として用いるリチウム二次電池が報告されている(Solid State Ionics, 113-115, p57(1998))。これらのうち、特にシリコンは理論容量が大きく、高い容量を示す電池用負極として有望であり、これを負極とする種々の二次電池が提案されている(特開平10−255768号公報)。しかしながら、この種の合金負極は、電極活物質である合金自体が充放電により微粉化し集電特性が悪化することから、十分なサイクル特性は得られていない。
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明の目的は、新規なリチウム電池用電極並びにこれを用いたリチウム電池及びリチウム二次電池を提供することにある。
【課題を解決するための手段】
【0007】
本発明に従う第1の局面は、リチウムを吸蔵・放出する活物質を含むリチウム電池用電極であり、活物質として非結晶シリコンを用いたことを特徴とするリチウム電池用電極である。
【0008】
一般に、シリコンは、結晶性の違いにより、非晶質シリコン、微結晶シリコン、多結晶シリコン、及び単結晶シリコンに大別される。本発明における「非結晶シリコン」は、多結晶シリコン及び単結晶シリコンを除く、非晶質シリコン及び微結晶シリコンを意味する。非晶質シリコンは、後述するラマン分光分析において結晶領域に対応する520cm-1近傍のピークが実質的に検出されないものである。微結晶シリコンは、ラマン分光分析において、結晶領域に対応する520cm-1近傍のピークと、非晶質領域に対応する480cm-1近傍のピークの両方が実質的に検出されるものである。従って、微結晶シリコンは結晶領域と非晶質領域とから実質的に構成される。多結晶シリコン及び単結晶シリコンは、ラマン分光分析において、非晶質領域に対応する480cm-1近傍のピークが実質的に検出されない。
【0009】
上記のように、本発明における「非結晶シリコン」には、非晶質シリコン及び微結晶シリコンが含まれる。従って、本発明に従う第1の局面では、活物質として、非晶質シリコンまたは微結晶シリコンが用いられる。
【0010】
非結晶シリコンまたは微結晶シリコンには、水素が含まれていてもよい。この場合、非結晶シリコンまたは微結晶シリコン中の水素濃度は、例えば、0.001原子%以上である。水素濃度は、2次イオン質量分析(SIMS)により測定することができる。
【0011】
第1の局面における微結晶シリコン中の結晶領域のサイズは、X線回折スペクトルとScherrerの式から算出される結晶粒径として、例えば0.5nm以上である。
【0012】
X線回折スペクトルとScherrerの式から結晶粒径を算出する方法は、薄膜ハンドブック(第1版、日本学術振興会薄膜第131委員会編、株式会社オーム社発行)の第375頁に記載されている。
【0013】
上記X線回折スペクトルとScherrerの式から算出される結晶粒径は、例えば走査型電子顕微鏡で観察される結晶粒径とは必ずしも一致しない。また、特定方向、例えば厚み方向に長く延びた結晶領域であってもよい。この場合、例えば厚み方向の長さが10μm程度のものであってもよい。
【0014】
また、第1の局面において、微結晶シリコンのラマン分光分析における520cm-1近傍のピーク強度に対する480cm-1近傍のピーク強度比(480cm-1近傍/520cm-1近傍)は、例えば0.05以上である。
【0015】
なお、非晶質領域に対応する480cm-1近傍のピークは、10cm-1程度シフトすることが知られている。また、結晶領域に対応する520cm-1近傍のピークは、5cm-1程度シフトすることが知られている。なお、480cm-1近傍のピークは、ブロードなピークであるので、520cm-1近傍までピークの裾が広がる場合がある。この場合、ピークの広がり部分を差し引くことなく、520cm-1近傍のピークの高さをピーク強度として、上記ピーク強度比を算出している。
【0016】
第1の局面において、非結晶シリコン及び微結晶シリコンは、シリコン薄膜であることが好ましい。特に、気相からシリコン材料を供給することにより基板上に堆積させたシリコン薄膜であることが好ましい。シリコン材料とともに、水素ガスを導入して形成したシリコン薄膜であってもよい。
【0017】
シリコン材料としては、シリコン原子を含む原料ガスまたはシリコン原子を含む原料パウダーが挙げられる。
【0018】
上記シリコン薄膜を形成する方法としては、例えば、CVD法、スパッタリング法、溶射法、または真空蒸着法を挙げることができる。
【0019】
第1の局面においては、基板として集電体を用い、集電体上にシリコン薄膜を形成したものが特に好ましい。集電体上にシリコン薄膜を形成する際、集電体上に中間層を形成し、該中間層の上にシリコン薄膜を形成してもよい。
【0020】
集電体の材料としては、銅、ニッケル、ステンレス、モリブデン、タングステン、及びタンタルから選ばれる少なくとも1種が挙げられる。
【0021】
集電体の表面粗さRaは、0.01μm以上であることが好ましく、さらに好ましくは0.01〜1μmであり、さらに好ましくは0.05〜0.5μmである。表面粗さRaは、日本工業規格(JIS B 0601−1994)に定められており、例えば表面粗さ計により測定することができる。
【0022】
集電体の表面粗さRaは、活物質薄膜の厚みtに対してRa≦tの関係を有することが好ましい。また、集電体の表面粗さRaと局部山頂の平均間隔Sは、100Ra≧Sの関係を有することが好ましい。局部山頂の平均間隔Sは、日本工業規格(JIS B 0601−1994)に定められており、例えば表面粗さ計により測定することができる。
【0023】
集電体表面の凹凸の凸部の形状は、特に限定されるものではないが、例えば錐体状であることが好ましい。
【0024】
本発明に従う第2の局面は、リチウムを吸蔵・放出する活物質からなる薄膜が集電体上に設けられたリチウム電池用電極であり、薄膜がその厚み方向に形成された切れ目によって柱状に分離されており、かつ該柱状部分の底部が集電体と密着していることを特徴としている。
【0025】
上記第1の局面におけるシリコン薄膜は、第2の局面に従う薄膜であることが好ましい。すなわち、シリコン薄膜がその厚み方向に形成された切れ目によって柱状に分離されており、かつ該柱状部分の底部が集電体と密着していることが好ましい。
【0026】
第2の局面における活物質薄膜は、その厚み方向に形成された切れ目によって柱状に分離されている。このため、柱状部分の周囲には隙間が形成されており、この隙間によって充放電サイクルに伴う薄膜の膨張収縮が緩和され、活物質薄膜が集電体から剥離するような応力が発生するのを抑制することができる。従って、柱状部分の底部における集電体との密着状態を良好に保つことができる。
【0027】
第2の局面では、薄膜の厚み方向において、少なくとも薄膜の厚みの1/2以上の部分が、切れ目によって柱状に分離されていることが好ましい。
【0028】
また、薄膜の表面に凹凸が形成されており、該凹凸の谷部を端部とする切れ目が薄膜に形成されている場合には、柱状部分が薄膜表面の少なくとも1つの凸部を含むように切れ目が形成されていてもよい。この場合、複数の凸部を含むように切れ目が形成されていてもよい。
【0029】
第2の局面において、薄膜に形成される切れ目は、初回以降の充放電で形成されてもよい。このような場合、例えば、充放電前において薄膜の表面に凹凸が形成されており、初回以降の充放電により薄膜表面の凹凸の谷部を端部とする切れ目が形成され、この切れ目によって薄膜が柱状に分離されていてもよい。
【0030】
薄膜表面の凹凸は、下地層である集電体表面の凹凸に対応して形成されていてもよい。すなわち、表面に凹凸を有する集電体を用い、その上に薄膜を形成することにより、薄膜の表面に凹凸を付与することができる。
【0031】
集電体の表面粗さRaは、0.01μm以上であることが好ましく、さらに好ましくは0.01〜1μmであり、さらに好ましくは0.05〜0.5μmである。表面粗さRaは、日本工業規格(JIS B 0601−1994)に定められており、例えば表面粗さ計により測定することができる。
【0032】
集電体の表面粗さRaは、活物質薄膜の厚みtに対してRa≦tの関係を有することが好ましい。また、集電体の表面粗さRaと局部山頂の平均間隔Sは、100Ra≧Sの関係を有することが好ましい。局部山頂の平均間隔Sは、日本工業規格(JIS B 0601−1994)に定められており、例えば表面粗さ計により測定することができる。
【0033】
集電体表面の凹凸の凸部の形状は、特に限定されるものではないが、例えば錐体状であることが好ましい。
【0034】
また、柱状部分の上方部は、充放電反応における電流の集中を避けるため、丸みを帯びた形状であることが好ましい。
【0035】
第2の局面において、活物質からなる薄膜に形成される厚み方向の切れ目は、初回以降の充放電で形成されていてもよいし、充放電前に予め形成されていてもよい。このような切れ目を充放電前に薄膜に予め形成させる方法としては、電池を組み立てる前に、電極の薄膜にリチウム等を吸蔵させた後放出させるなどの方法により、薄膜の体積を膨張させた後収縮させて形成させることができる。また、フォトリソグラフィーによりパターニングしたレジスト膜などを用いて、柱状に薄膜を形成することにより、切れ目によって柱状に分離された薄膜としてもよい。
【0036】
第2の局面における活物質薄膜は、例えば、リチウムと化合物もしくは固溶体を形成する材料から形成することができる。このような材料として、周期律表IIB族、IIIB族、IVB族及びVB族の元素、並びに周期律表4周期、5周期及び6周期の遷移金属元素の酸化物及び硫化物から選ばれる少なくとも1種の材料を挙げることができる。
【0037】
第2の局面において、リチウムと化合物もしくは固溶体を形成する周期律表IIB族、IIIB族、IVB族及びVB族の元素としては、炭素、アルミニウム、シリコン、リン、亜鉛、ガリウム、ゲルマニウム、ヒ素、カドミウム、インジウム、錫、アンチモン、水銀、タリウム、鉛、及びビスマスが挙げられる。また、周期律表4周期、5周期及び6周期の遷移金属元素は、具体的には、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、カドミウム、ランタノイド系元素、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、金、及び水銀である。
【0038】
上記元素の中でも、炭素、シリコン、ゲルマニウム、錫、鉛、アルミニウム、インジウム、亜鉛、カドミウム、ビスマス、及び水銀から選ばれる少なくとも1種であることが好ましく、さらに好ましくはシリコン及び/またはゲルマニウムである。
【0039】
第2の局面における「非結晶シリコン」も、上述と同様に、多結晶シリコン及び単結晶シリコンを除く、非晶質シリコン及び微結晶シリコンを意味する。
【0040】
第2の局面において、活物質薄膜として用いるシリコン薄膜としては、微結晶シリコン薄膜及び非晶質シリコン薄膜が好ましい。
【0041】
また、第2の局面において用いる好ましい活物質薄膜としては、上記のシリコン薄膜以外に、ゲルマニウム薄膜及びシリコンゲルマニウム合金薄膜が挙げられる。ゲルマニウム薄膜としては、微結晶ゲルマニウム薄膜及び非晶質ゲルマニウム薄膜が好ましく用いられる。シリコンゲルマニウム合金薄膜としては、微結晶シリコンゲルマニウム合金薄膜及び非晶質シリコンゲルマニウム薄膜が好ましく用いられる。ゲルマニウム薄膜及びシリコンゲルマニウム合金薄膜の微結晶及び非晶質は、上記のシリコン薄膜と同様にして定めることができる。シリコン、ゲルマニウムについては後述の実施例で述べるように、良好な結果が得られている。シリコン、ゲルマニウムは任意の割合で固溶するので、シリコンゲルマニウム合金についても同様の効果が期待できる。
【0042】
第2の局面において、活物質薄膜を集電体上に形成する方法は、特に限定されるものではないが、例えば、CVD法、スパッタリング法、蒸着法、溶射法、またはめっき法などが挙げられる。これらの薄膜形成方法の中でも、CVD法、スパッタリング法、及び蒸着法が特に好ましく用いられる。
【0043】
第2の局面において用いる集電体は、その上に活物質薄膜を良好な密着性で形成できるものであれば特に限定されるものではない。集電体の具体例としては、銅、ニッケル、ステンレス、モリブデン、タングステン、及びタンタルから選ばれる少なくとも1種が挙げられる。
【0044】
集電体は、厚みの薄いものであることが好ましく、金属箔であることが好ましい。集電体は、リチウムと合金化しない材料から形成されていることが好ましく、特に好ましい材料としては、銅が挙げられる。集電体は銅箔であることが好ましく、その表面が粗面化された銅箔であることが好ましい。このような銅箔としては電解銅箔が挙げられる。電解銅箔は、例えば、銅イオンが溶解された電解液中に金属製のドラムを浸漬し、これを回転させながら電流を流すことにより、ドラムの表面に銅を析出させ、これを剥離して得られる銅箔である。電解銅箔の片面または両面には、粗面化処理や表面処理がなされていてもよい。
【0045】
また、圧延銅箔の表面に、電解法により銅を析出させ、表面を粗面化した銅箔であってもよい。
【0046】
また、集電体の上に中間層を形成し、この中間層の上に活物質薄膜を形成してもよい。この場合、中間層としては、活物質薄膜中に拡散し易い成分を含むものが好ましく、例えば銅層が好ましい。例えば、表面が粗面化されたニッケル箔(電解ニッケル箔など)の上に、銅層を形成した集電体を用いてもよい。また、ニッケル箔の上に電解法により、銅を析出させ、これによって粗面化したニッケル箔を用いてもよい。
【0047】
第2の局面において活物質薄膜に形成される切れ目は、予め活物質薄膜中に厚み方向に延びるように形成された低密度領域に沿って形成されたものであってもよい。このような低密度領域は、例えば、集電体表面の凹凸の谷部から上方に向かって延びるように形成されている。
【0048】
第2の局面においては、活物質薄膜に集電体の成分が拡散していることが好ましい。このような集電体成分の薄膜内への拡散により、集電体と活物質薄膜の密着性を高めることができる。また、集電体成分として、リチウムと合金化しない銅などの元素が拡散している場合、拡散領域においてリチウムとの合金化が抑制されるため、充放電反応に伴う薄膜の膨張・収縮を抑制することができ、活物質薄膜の集電体からの剥離を生じさせるような応力の発生を抑制することができる。
【0049】
また、薄膜内に拡散した集電体成分の濃度は、集電体近傍で高く、薄膜表面に近づくにつれて減少していることが好ましい。このような集電体成分の濃度勾配を有することにより、充放電反応に伴う薄膜の膨張・収縮の抑制が、集電体近傍においてより強く働くため、活物質薄膜の剥離を生じさせる応力が集電体近傍で発生するのを抑制することができ易くなる。また、薄膜表面に近づくにつれて集電体成分の濃度が減少することにより、高い充放電容量を維持することができる。
【0050】
また、拡散した集電体成分は、薄膜中において、薄膜成分と金属間化合物を形成せずに、固溶体を形成していることが好ましい。ここで、金属間化合物とは、金属同士が特定の比率で化合した特定の結晶構造を有する化合物をいう。薄膜成分と集電体成分が薄膜中において、金属間化合物ではなく、固溶体を形成することにより、薄膜と集電体との密着状態がより良好となり、より高い充放電容量を得ることができる。
【0051】
第2の局面における活物質薄膜には、不純物がドープされていてもよい。このような不純物としては、例えば、リン、アルミニウム、ヒ素、アンチモン、ホウ素、ガリウム、インジウム、酸素、窒素等の周期律表IIIB族、IVB族、VB族、VIB族の元素を挙げることができる。
【0052】
また、第2の局面における活物質薄膜は、複数の層を積層して形成されていてもよい。積層された各層においては、組成、結晶性、不純物濃度等が異なっていてもよい。また、薄膜の厚み方向に傾斜構造を有するものであってもよい。例えば、組成、結晶性、不純物濃度等を厚み方向に変化させた傾斜構造とすることができる。
【0053】
また、第2の局面の活物質薄膜の厚みは特に限定されるものではないが、例えば20μm以下の厚みとすることができる。また、高い充放電容量を得るためには、厚みは1μm以上であることが好ましい。
【0054】
第2の局面においては、集電体と、薄膜との密着性を向上させるため、集電体と、薄膜との間に中間層を設けてもよい。このような中間層の材料としては、集電体材料及び活物質材料との間で合金を形成するような物質が好ましく用いられる。
【0055】
第2の局面における活物質薄膜は、リチウムと合金を形成することによりリチウムを吸蔵する活物質薄膜であることが好ましい。
【0056】
また、第2の局面における活物質薄膜には、予めリチウムが吸蔵または添加されていてもよい。リチウムは、活物質薄膜を形成する際に添加してもよい。すなわち、リチウムを含有する活物質薄膜を形成することにより、活物質薄膜にリチウムを添加してもよい。また、活物質薄膜を形成した後に、活物質薄膜にリチウムを吸蔵または添加させてもよい。活物質薄膜にリチウムを吸蔵または添加させる方法としては、電気化学的にリチウムを吸蔵または添加させる方法が挙げられる。
【0057】
本発明の第3の局面の一実施形態では、リチウムの吸蔵・放出により膨張・収縮する活物質薄膜を集電体上に形成したリチウム二次電池用電極であり、以下の式で定義される集電体の引張強度が3.82N/mm以上であることを特徴としている。
【0058】
集電体の引張強度(N/mm)=集電体材料の断面積当りの引張強さ(N/mm2)×集電体の厚み(mm)
ここで、集電体材料の断面積当りの引張強さは、例えば、日本工業規格(JIS)によって規定された方法で測定することができる。
【0059】
上記実施形態において、集電体の引張強度は、7.44N/mm以上であることが好ましい。
【0060】
本発明の第3の局面の他の実施形態では、リチウムの吸蔵・放出により膨張・収縮する活物質薄膜を集電体上に形成したリチウム二次電池用電極であり、活物質薄膜の厚み1μmあたりの集電体の引張強度が、1.12N/mm以上であることを特徴としている。
【0061】
活物質薄膜の厚み1μmあたりの集電体の引張強度は、以下の式により求めることができる。
【0062】
(活物質薄膜の厚み1μmあたりの集電体の引張強度)=(集電体の引張強度)÷(活物質薄膜の厚み:μm)
なお、集電体の引張強度は、上記の第1の局面において定義される値である。 上記実施形態においては、活物質薄膜の厚み1μmあたりの集電体の引張強度が、2.18N/mm以上であることが好ましく、さらに好ましくは、4.25N/mm以上である。
【0063】
本発明の第3の局面のさらに他の実施形態では、リチウムの吸蔵・放出により膨張・収縮する活物質薄膜を集電体上に形成したリチウム二次電極であり、集電体の厚みに対する活物質薄膜の厚みの比(活物質薄膜の厚み/集電体の厚み)が0.19以下であることを特徴としている。
【0064】
上記実施形態では、集電体の厚みに対する活物質薄膜の厚みの比が0.098以下であることが好ましく、さらに好ましくは、0.05以下である。
【0065】
本発明の第3の局面に従えば、充放電により電極にしわが発生するのを抑制することができる。
【0066】
第3の局面において、集電体の表面粗さRaは、0.01μm以上であることが好ましく、0.01〜1μmであることがさらに好ましく、さらに好ましくは0.05〜0.5μmである。また、集電体の表面粗さRaは、後述する電解銅箔の表面粗さRa程度であることが好ましい。従って、集電体の表面粗さRaは0.1μm以上であることが好ましく、さらに好ましくは0.1〜1μmである。表面粗さRaは、日本工業規格(JIS B 0601−1994)に定められており、例えば表面粗さ計により測定することができる。
【0067】
第3の局面において、集電体の表面粗さRaは、活物質の厚みtに対してRa≦tの関係を有することが好ましい。また、集電体の表面粗さRaと局部山頂の平均間隔Sは、100Ra≧Sの関係を有することが好ましい。局部山頂の平均間隔Sは、日本工業規格(JIS B 0601−1994)に定められており、例えば表面粗さ計により測定することができる。
【0068】
集電体表面の凹凸の凸部の形状は、特に限定されるものではないが、例えば錐体状であることが好ましい。
【0069】
第3の局面においては、活物質薄膜に集電体成分が拡散していることが好ましい。活物質薄膜に集電体成分が拡散することにより、活物質薄膜と集電体との密着性がさらに高まり、集電体からの活物質薄膜の剥離をさらに有効に防止することができる。従って、充放電サイクル特性をさらに優れたものにすることができる。
【0070】
活物質薄膜としてリチウムと合金化する活物質からなる薄膜を用い、集電体としてリチウムと合金化しない材料からなる集電体を用いる場合、集電体成分の拡散によって、リチウムの吸蔵・放出に伴う集電体近傍の薄膜部分の膨張収縮を相対的に小さくすることができる。従って、薄膜と集電体との密着状態をさらに良好に保つことができる。
【0071】
薄膜における集電体成分の濃度は、集電体近傍で高く、薄膜表面に近づくにつれて減少していることが好ましい。このような濃度勾配を有することにより、集電体近傍では薄膜の膨張収縮が抑制され、薄膜と集電体の密着状態が保たれると共に、薄膜表面近傍では活物質の量が相対的に多くなるので、高い充放電容量を維持することができる。
【0072】
拡散した集電体成分は、薄膜中において、薄膜成分と金属間化合物を形成せずに、固溶体を形成していることが好ましい。ここで、金属間化合物とは、金属同士が特定の比率で化合した特定の結晶構造を有する化合物をいう。薄膜成分と集電体成分が薄膜中において、金属間化合物ではなく、固溶体を形成することにより、薄膜と集電体との密着状態がより良好となり、より高い充放電容量を得ることができる。
【0073】
第3の局面において、集電体成分が拡散している領域の厚みは、特に限定されるものではないが、1μm以上であることが好ましい。
【0074】
第3の局面において用いる集電体は、上記第3の局面の条件を満足できるものであれば特に限定されるものではない。集電体の具体例としては、銅、ニッケル、ステンレス、モリブデン、タングステン、及びタンタルから選ばれる少なくとも1種が挙げられる。
【0075】
集電体は、厚みの薄いものであることが好ましく、金属箔であることが好ましい。集電体は、リチウムと合金化しない材料から形成されていることが好ましく、特に好ましい材料としては、銅が挙げられる。集電体は銅箔であることが好ましく、その表面が粗面化された銅箔であることが好ましい。このような銅箔としては電解銅箔が挙げられる。電解銅箔は、例えば、銅イオンが溶解された電解液中に金属製のドラムを浸漬し、これを回転させながら電流を流すことにより、ドラムの表面に銅を析出させ、これを剥離して得られる銅箔である。電解銅箔の片面または両面には、粗面化処理や表面処理がなされていてもよい。
【0076】
また、圧延銅箔の表面に、電解法により銅を析出させ、表面を粗面化した銅箔であってもよい。
【0077】
また、集電体の上に中間層を形成し、この中間層の上に活物質薄膜を形成してもよい。この場合、中間層としては、活物質薄膜中に拡散し易い成分を含むものが好ましく、例えば銅層が好ましい。例えば、表面が粗面化されたニッケル箔(電解ニッケル箔など)の上に、銅層を形成した集電体を用いてもよい。また、ニッケル箔の上に電解法により、銅を析出させ、これによって粗面化したニッケル箔を用いてもよい。
【0078】
第3の局面における活物質薄膜は、例えば、リチウムと化合物もしくは固溶体を形成する材料から形成することができる。このような材料として、周期律表IIB族、IIIB族、IVB族及びVB族の元素、並びに周期律表4周期、5周期及び6周期の遷移金属元素の酸化物及び硫化物から選ばれる少なくとも1種の材料を挙げることができる。
【0079】
第3の局面において、リチウムと化合物もしくは固溶体を形成する周期律表IIB族、IIIB族、IVB族及びVB族の元素としては、炭素、アルミニウム、シリコン、リン、亜鉛、ガリウム、ゲルマニウム、ヒ素、カドミウム、インジウム、錫、アンチモン、水銀、タリウム、鉛、及びビスマスが挙げられる。また、周期律表4周期、5周期及び6周期の遷移金属元素は、具体的には、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、カドミウム、ランタノイド系元素、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、金、及び水銀である。
【0080】
上記元素の中でも、炭素、シリコン、ゲルマニウム、錫、鉛、アルミニウム、インジウム、亜鉛、カドミウム、ビスマス、及び水銀から選ばれる少なくとも1種であることが好ましく、さらに好ましくはシリコン及び/またはゲルマニウムである。
【0081】
第3の局面における「非結晶シリコン」も、上述のように、多結晶シリコン及び単結晶シリコンを除く、非晶質シリコン及び微結晶シリコンを意味する。
【0082】
第3の局面において、活物質薄膜として用いるシリコン薄膜としては、微結晶シリコン薄膜及び非晶質シリコン薄膜が好ましい。
【0083】
また、第3の局面において用いる好ましい活物質薄膜としては、上記のシリコン薄膜以外に、ゲルマニウム薄膜及びシリコンゲルマニウム合金薄膜が挙げられる。ゲルマニウム薄膜としては、微結晶ゲルマニウム薄膜及び非晶質ゲルマニウム薄膜が好ましく用いられる。シリコンゲルマニウム合金薄膜としては、微結晶シリコンゲルマニウム合金薄膜及び非晶質シリコンゲルマニウム薄膜が好ましく用いられる。ゲルマニウム薄膜及びシリコンゲルマニウム合金薄膜の微結晶及び非晶質は、上記のシリコン薄膜と同様にして定めることができる。シリコン、ゲルマニウムについては後述の実施例で述べるように、良好な結果が得られている。シリコン、ゲルマニウムは任意の割合で固溶するので、シリコンゲルマニウム合金についても同様の効果が期待できる。
【0084】
第3の局面において、薄膜は、その厚み方向に形成された切れ目によって柱状に分離されており、かつ該柱状部分の底部が集電体と密着していることが好ましい。また、薄膜の厚み方向において、少なくとも厚みの1/2以上の部分が、切れ目によって柱状に分離されていることが好ましい。
【0085】
上記切れ目は、薄膜の膨張収縮により形成されるものであることが好ましく、このような薄膜の膨張収縮は、例えば薄膜の充放電反応により与えられる。従って、上記切れ目は、電池を組み立てた後の充放電反応により形成されてもよいし、電池を組み立てる前の充放電反応により形成されてもよい。このような切れ目を充放電前に薄膜に予め形成させる方法としては、電池を組み立てる前に、電極の薄膜にリチウム等を吸蔵させた後放出させるなどの方法により、薄膜の体積を膨張させた後収縮させて形成することができる。また、フォトリソグラフィー法によりパターニングしたレジスト膜などを用いて、柱状に薄膜を形成することにより、切れ目によって柱状に分離された薄膜としてもよい。
【0086】
薄膜の表面に凹凸が形成されている場合、上記切れ目は該薄膜表面の凹凸の谷部から集電体に向かって厚み方向に形成されていてもよい。また、薄膜表面の凹凸は、集電体表面の凹凸に対応して形成されていてもよい。すなわち、表面に凹凸を有する集電体を用い、その上に薄膜を形成することにより、薄膜の表面に凹凸を付与することができる。
【0087】
また、薄膜の柱状部分の上方の形状は特に限定されるものではないが、丸みを帯びた形状であることが好ましい。
【0088】
また、上記切れ目は、薄膜に予め形成された低密度領域に沿って厚み方向に形成されたものであってもよい。このような低密度領域は、例えば面方向に網目状に連なり、かつ集電体に向かって厚み方向に延びている。
【0089】
第3の局面において、活物質薄膜を集電体上に形成する方法は、特に限定されるものではないが、例えば、CVD法、スパッタリング法、蒸着法、溶射法、またはめっき法などが挙げられる。これらの薄膜形成方法の中でも、CVD法、スパッタリング法、及び蒸着法が特に好ましく用いられる。
【0090】
第3の局面における活物質薄膜には、不純物がドープされていてもよい。このような不純物としては、例えば、リン、アルミニウム、ヒ素、アンチモン、ホウ素、ガリウム、インジウム、酸素、窒素等の周期律表IIIB族、IVB族、VB族、VIB族の元素を挙げることができる。
【0091】
また、第3の局面における活物質薄膜は、複数の層を積層して形成されていてもよい。積層された各層においては、組成、結晶性、不純物濃度等が異なっていてもよい。また、薄膜の厚み方向に傾斜構造を有するものであってもよい。例えば、組成、結晶性、不純物濃度等を厚み方向に変化させた傾斜構造とすることができる。
【0092】
第3の局面における活物質薄膜は、リチウムと合金を形成することによりリチウムを吸蔵する活物質薄膜であることが好ましい。
【0093】
また、第3の局面における活物質薄膜には、予めリチウムが吸蔵または添加されていてもよい。リチウムは、活物質薄膜を形成する際に添加してもよい。すなわち、リチウムを含有する活物質薄膜を形成することにより、活物質薄膜にリチウムを添加してもよい。また、活物質薄膜を形成した後に、活物質薄膜にリチウムを吸蔵または添加させてもよい。活物質薄膜にリチウムを吸蔵または添加させる方法としては、電気化学的にリチウムを吸蔵または添加させる方法が挙げられる。
【0094】
また、第3の局面の活物質薄膜の厚みは、高い充放電容量を得るためには、1μm以上であることが好ましい。
【0095】
第3の局面においては、上述のように、集電体と薄膜との密着性を向上させるため、集電体と薄膜との間に中間層を設けてもよい。このような中間層の材料としては、集電体材料及び活物質材料との間で合金を形成するような物質が好ましく用いられる。
【0096】
本発明の第4の局面は、リチウムを吸蔵・放出する活物質からなる活物質薄膜が中間層を介して集電体上に設けられたリチウム電池用電極であり、中間層が活物質薄膜と合金化する材料から形成されていることを特徴としている。
【0097】
中間層として、活物質薄膜と合金化する材料から形成された中間層を用いることにより、活物質薄膜の集電体に対する密着性を向上させることができる。従って、充放電反応により薄膜が膨張収縮する際の集電体からの薄膜の脱離を防止することができ、良好な充放電サイクル特性を得ることができる。
【0098】
第4の局面に従う好ましい実施形態の1つにおいては、集電体として、中間層の材料よりも機械的強度の高い金属または合金からなる箔が用いられる。
【0099】
第4の局面においては、リチウムの吸蔵・放出により活物質薄膜が膨張収縮するため、充放電反応に伴い集電体に応力が生じる。このような応力により、集電体に不可逆的、すなわち塑性変形によるしわが発生する。このしわの発生は、結果的に電池の体積増加と電極での反応の不均一性をもたらし、エネルギー密度を低下させる原因となる。このようなしわの発生を抑制するためには、機械的強度、すなわち引張強度及び引張弾性率などの高い材料を集電体として用いることが好ましい。しかしながら、このような材料を集電体として用い、その上に直接活物質薄膜を形成すると、活物質薄膜と集電体との密着性が不十分となり、良好な充放電サイクルを得られない場合がある。このような場合、上記のように活物質薄膜と合金化する材料からなる中間層を集電体と薄膜との間に設けることにより、充放電反応の際の薄膜の脱離を防止することができると共に、集電体におけるしわの発生を抑制することが可能となる。
【0100】
従って、集電体として、中間層の材料よりも機械的強度の高い金属または合金からなる箔を用いることにより、良好な充放電サイクル特性を維持しながら、集電体におけるしわの発生を抑制することができる。
【0101】
また、第4の局面においては、中間層の表面に凹凸が形成されていることが好ましい。中間層の表面に凹凸が形成されることにより、中間層と活物質薄膜との界面における接触面積が大きくなり、活物質薄膜と中間層との密着性、すなわち活物質薄膜と集電体との密着性を高めることができる。
【0102】
上記中間層の表面の凹凸は、例えば、表面に凹凸が形成された集電体を用いることにより、形成することができる。この場合、集電体の表面の凹凸に対応した凹凸が中間層の表面に形成される。
【0103】
上記の場合、集電体の表面粗さRaは、0.001〜1μmであることが好ましく、さらに好ましくは、0.01〜1μmである。表面粗さRaは、日本工業規格(JIS B
0601−1994)に定められており、例えば表面粗さ計により測定することができる。
【0104】
第4の局面において、集電体の表面粗さRaは、活物質の厚みtに対してRa≦tの関係を有することが好ましい。また、集電体の表面粗さRaと局部山頂の平均間隔Sは、100Ra≧Sの関係を有することが好ましい。局部山頂の平均間隔Sは、日本工業規格(JIS B 0601−1994)に定められており、例えば表面粗さ計により測定することができる。
【0105】
集電体表面の凹凸の凸部の形状は、特に限定されるものではないが、例えば錐体状であることが好ましい。
【0106】
第4の局面における活物質薄膜は、例えば、リチウムと化合物もしくは固溶体を形成する材料から形成することができる。このような材料として、周期律表IIB族、IIIB族、IVB族及びVB族の元素、並びに周期律表4周期、5周期及び6周期の遷移金属元素の酸化物及び硫化物から選ばれる少なくとも1種の材料を挙げることができる。
【0107】
第4の局面において、リチウムと化合物もしくは固溶体を形成する周期律表IIB族、IIIB族、IVB族及びVB族の元素としては、炭素、アルミニウム、シリコン、リン、亜鉛、ガリウム、ゲルマニウム、ヒ素、カドミウム、インジウム、錫、アンチモン、水銀、タリウム、鉛、及びビスマスが挙げられる。また、周期律表4周期、5周期及び6周期の遷移金属元素は、具体的には、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、銀、カドミウム、ランタノイド系元素、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、金、及び水銀である。
【0108】
上記元素の中でも、炭素、シリコン、ゲルマニウム、錫、鉛、アルミニウム、インジウム、亜鉛、カドミウム、ビスマス、及び水銀から選ばれる少なくとも1種であることが好ましく、さらに好ましくはシリコン及び/またはゲルマニウムである。
【0109】
第4の局面における「非結晶シリコン」も、上述のように、多結晶シリコン及び単結晶シリコンを除く、非晶質シリコン及び微結晶シリコンを意味する。
【0110】
第4の局面において、活物質薄膜として用いるシリコン薄膜としては、微結晶シリコン薄膜及び非晶質シリコン薄膜が好ましい。
【0111】
また、第4の局面において用いる好ましい活物質薄膜としては、上記のシリコン薄膜以外に、ゲルマニウム薄膜及びシリコンゲルマニウム合金薄膜が挙げられる。ゲルマニウム薄膜としては、微結晶ゲルマニウム薄膜及び非晶質ゲルマニウム薄膜が好ましく用いられる。シリコンゲルマニウム合金薄膜としては、微結晶シリコンゲルマニウム合金薄膜及び非晶質シリコンゲルマニウム薄膜が好ましく用いられる。ゲルマニウム薄膜及びシリコンゲルマニウム合金薄膜の微結晶及び非晶質は、上記のシリコン薄膜と同様にして定めることができる。シリコン、ゲルマニウムについては後述の実施例で述べるように、良好な結果が得られている。シリコン、ゲルマニウムは任意の割合で固溶するので、シリコンゲルマニウム合金についても同様の効果が期待できる。
【0112】
活物質薄膜として、シリコン薄膜、ゲルマニウム薄膜、またはシリコンゲルマニウム合金薄膜を用いる場合、これらと合金化する材料として、銅が挙げられる。従って、これらの薄膜を用いる場合、中間層として銅層を用いることが好ましい。銅の引張強さは、212.7N/mm2(21.7kgf/mm2、「改訂2版金属データブック」丸善株式会社発行)である。このような銅の引張強さよりも高い引張強さを有する金属または合金としては、ニッケル(引張強さ=315.6N/mm2=32.2kgf/mm2、「改訂2版金属データブック」丸善株式会社発行)が挙げられる。従って、中間層として銅層を形成する場合、集電体としては、ニッケル箔を用いることが好ましい。また、その他の集電体材料としては、錫青銅(リン青銅)、ケイ素青銅、アルミ青銅などの種々の銅合金、ニッケル合金、鉄及び鉄合金、ステンレススチールなどの材質が挙げられる。また、さらに他の集電体材料として、モリブデン、タングステン、タンタルなどが挙げられる。
【0113】
第4の局面において、中間層の材料は、活物質薄膜と合金化する材料であるが、中間層の成分は、活物質薄膜中に拡散していることが好ましい。活物質薄膜に中間層の成分が拡散することにより、活物質薄膜と中間層との密着性がさらに高まり、集電体からの活物質薄膜の剥離を有効に防止することができる。従って、充放電サイクル特性をさらに優れたものにすることができる。
【0114】
活物質薄膜としてリチウムと合金化する活物質からなる薄膜を用い、中間層としてリチウムと合金化しない材料からなる中間層を集電体上に形成する場合、中間層の成分の拡散によって、リチウムの吸蔵・放出に伴う中間層近傍の薄膜部分の膨張収縮を相対的に小さくすることができる。従って、薄膜と中間層との密着状態をさらに良好に保つことができる。
【0115】
活物質薄膜における中間層の成分の濃度は、中間層近傍で高く、活物質薄膜表面に近づくにつれて減少していることが好ましい。このような濃度勾配を有することにより、中間層近傍では薄膜の膨張収縮が抑制され、薄膜と中間層の密着状態が保たれると共に、薄膜表面近傍では活物質の量が相対的に多くなるので、高い充放電容量を維持することができる。
【0116】
拡散した中間層の成分は、薄膜中において、薄膜成分と金属間化合物を形成せずに、固溶体を形成していることが好ましい。ここで、金属間化合物とは、金属同士が特定の比率で化合した特定の結晶構造を有する化合物をいう。薄膜成分と中間層成分が薄膜中において、金属間化合物ではなく、固溶体を形成することにより、薄膜と中間層との密着状態がより良好となり、より高い充放電容量を得ることができる。
【0117】
集電体は、厚みの薄いものであることが好ましく、金属箔であることが好ましい。集電体は、リチウムと合金化しない材料から形成されていることが好ましい。上述のように、中間層として銅層を形成する場合、集電体としてはニッケル箔を用いることが好ましい。
【0118】
集電体としてニッケル箔を用いる場合、その表面に凹凸が形成されたニッケル箔としては、電解ニッケル箔を用いることができる。
【0119】
電解ニッケル箔は、例えば、ニッケルイオンが溶解された電解液中に、金属製のドラムを浸漬し、これを回転させながら電流を流すことにより、ドラムの表面にニッケルを析出させ、これを剥離して得られるニッケル箔である。電解ニッケル箔の片面または両面には、粗面化処理や表面処理がなされていてもよい。
【0120】
また、圧延ニッケル箔の表面に、電解法により銅を析出させ、表面を粗面化した銅層で被覆したニッケル箔であってもよい。
【0121】
第4の局面において、活物質薄膜は、その厚み方向に形成された切れ目によって柱状に分離されており、かつ該柱状部分の底部が集電体と密着していることが好ましい。また、活物質薄膜の厚み方向において、少なくとも厚みの1/2以上の部分が、切れ目によって柱状に分離されていることが好ましい。
【0122】
上記切れ目は、活物質薄膜の膨張収縮により形成されるものであることが好ましく、このような活物質薄膜の膨張収縮は、例えば活物質薄膜の充放電反応により与えられる。従って、上記切れ目は、電池を組み立てた後の充放電反応により形成されてもよいし、電池を組み立てる前の充放電反応により形成されてもよい。このような切れ目を充放電前に活物質薄膜に予め形成させる方法としては、電池を組み立てる前に、電極の活物質薄膜にリチウム等を吸蔵させた後放出させるなどの方法により、活物質薄膜の体積を膨張させた後収縮させて形成することができる。また、フォトリソグラフィー法によりパターニングしたレジスト膜などを用いて、柱状に活物質薄膜を形成することにより、切れ目によって柱状に分離された活物質薄膜としてもよい。
【0123】
活物質薄膜の表面に凹凸が形成されている場合、上記切れ目は該薄膜表面の凹凸の谷部から集電体に向かって厚み方向に形成されていてもよい。また、活物質薄膜表面の凹凸は、中間層表面の凹凸に対応して形成されていてもよい。すなわち、表面に凹凸を有する中間層を形成し、その上に活物質薄膜を形成することにより、活物質薄膜の表面に凹凸を付与することができる。
【0124】
また、活物質薄膜の柱状部分の上方の形状は特に限定されるものではないが、丸みを帯びた形状であることが好ましい。
【0125】
また、上記切れ目は、活物質薄膜に予め形成された低密度領域に沿って厚み方向に形成されたものであってもよい。このような低密度領域は、例えば面方向に網目状に連なり、かつ集電体に向かって厚み方向に延びている。
【0126】
第4の局面において、活物質薄膜を中間層の上に形成する方法は、特に限定されるものではないが、例えば、CVD法、スパッタリング法、蒸着法、溶射法、またはめっき法などが挙げられる。これらの薄膜形成方法の中でも、CVD法、スパッタリング法、及び蒸着法が特に好ましく用いられる。
【0127】
第4の局面における活物質薄膜には、不純物がドープされていてもよい。このような不純物としては、例えば、リン、アルミニウム、ヒ素、アンチモン、ホウ素、ガリウム、インジウム、酸素、窒素等の周期律表IIIB族、IVB族、VB族、VIB族の元素を挙げることができる。
【0128】
また、第4の局面における活物質薄膜は、複数の層を積層して形成されていてもよい。積層された各層においては、組成、結晶性、不純物濃度等が異なっていてもよい。また、薄膜の厚み方向に傾斜構造を有するものであってもよい。例えば、組成、結晶性、不純物濃度等を厚み方向に変化させた傾斜構造とすることができる。
【0129】
第4の局面における活物質薄膜は、リチウムと合金を形成することによりリチウムを吸蔵する活物質薄膜であることが好ましい。
【0130】
また、第4の局面における活物質薄膜には、予めリチウムが吸蔵または添加されていてもよい。リチウムは、活物質薄膜を形成する際に添加してもよい。すなわち、リチウムを含有する活物質薄膜を形成することにより、活物質薄膜にリチウムを添加してもよい。また、活物質薄膜を形成した後に、活物質薄膜にリチウムを吸蔵または添加させてもよい。活物質薄膜にリチウムを吸蔵または添加させる方法としては、電気化学的にリチウムを吸蔵または添加させる方法が挙げられる。
【0131】
また、第4の局面の活物質薄膜の厚みは、高い充放電容量を得るためには、1μm以上であることが好ましい。
【0132】
第4の局面において、集電体上に中間層を形成する方法は、特に限定されるものではないが、例えば、CVD法、スパッタリング法、蒸着法、溶射法、または電解法(めっき法)などが挙げられる。
【0133】
第4の局面において、中間層の厚みは、活物質薄膜との密着性を向上させることができる厚みであれば特に限定されるものではないが、一般に0.01〜10μm程度の厚みが好ましい。
【0134】
また、中間層の材料は、集電体の材料に対しても馴染みがある材質であることが好ましく、集電体材料とも合金を形成するような材料であることが好ましい。
【0135】
本発明の第5の局面のリチウム二次電池用電極は、板状の集電体と、該集電体の両面上に堆積して形成された、リチウムを吸蔵・放出する活物質薄膜とを備えることを特徴としている。
【0136】
第5の局面において、リチウムを吸蔵・放出する活物質薄膜としては、集電体の上に堆積して形成することができ、かつリチウムを吸蔵・放出することができる薄膜であれば、特に限定されるものではないが、リチウムと化合物もしくは固溶体を形成する、周期律表IIB族、IIIB族、IVB族及びVB族の元素、並びに周期律表4周期、5周期及び6周期の遷移金属元素の酸化物及び硫化物から選ばれる少なくとも1種の材料が挙げられる。これらの中でも、炭素、シリコン、ゲルマニウム、錫、鉛、アルミニウム、インジウム、亜鉛、カドミウム、ビスマス、及び水銀から選ばれる少なくとも1種が好ましい。高い電極容量を得るという観点からは、特にシリコン薄膜、ゲルマニウム薄膜、及びシリコンゲルマニウム合金薄膜が好ましい。
【0137】
シリコン薄膜の中でも、微結晶シリコン薄膜または非晶質シリコン薄膜が特に好ましい。微結晶シリコン薄膜は、ラマン分光分析において、結晶領域に対応する520cm-1近傍のピークと、非晶質領域に対応する480cm-1近傍のピークの両方が実質的に検出されるシリコン薄膜である。非晶質シリコン薄膜は、結晶領域に対応する520cm-1近傍のピークが実質的に検出されず、非晶質領域に対応する480cm-1近傍のピークが実質的に検出されるシリコン薄膜である。
【0138】
またゲルマニウム薄膜としては、非晶質ゲルマニウム薄膜または微結晶ゲルマニウム薄膜が好ましい。シリコンゲルマニウム合金薄膜としては、非晶質シリコンゲルマニウム合金薄膜または微結晶シリコンゲルマニウム合金薄膜が好ましい。
【0139】
第5の局面において活物質薄膜を形成する方法としては、CVD法、スパッタリング法、蒸着法、溶射法などの気相中から薄膜を凝集して堆積させる方法並びにめっき法が挙げられる。
【0140】
活物質薄膜は、集電体の両面において、それぞれの活物質薄膜のリチウムとの放電充放電反応量が、単位面積当りで実質的に同じになるように形成されることが好ましい。従って、集電体の両面において、それぞれの活物質薄膜の厚みが、実質的に同じになるように各活物質薄膜が形成されることが好ましい。
【0141】
第5の局面における集電体としては、例えば金属箔を用いることができる。金属箔としては、活物質薄膜との密着性を高めるという観点からは、活物質薄膜と合金化し得る金属からなる金属箔であることが好ましい。シリコン薄膜及びゲルマニウム薄膜を活物質薄膜として形成する場合、集電体としては特に銅箔であることが好ましい。また、銅箔としては、表面粗さRaが大きい銅箔である、電解銅箔が好ましい。このような電解銅箔としては、圧延銅箔などの銅箔を電解液中に浸漬し、銅箔の両面に電解法により銅を析出させて両面を粗面化した電解銅箔が挙げられる。
【0142】
また、集電体の両面上に中間層を形成し、この中間層の上に活物質薄膜を形成してもよい。この場合、中間層は、活物質薄膜と合金化する材料から形成することが好ましい。このような中間層を形成することにより、活物質薄膜中に中間層の成分を拡散させることができる。
【0143】
また、中間層を形成する場合の集電体は、中間層の材料よりも機械的強度の高い金属または合金からなる箔であることが好ましい。例えば、中間層として銅層を形成する場合、集電体としてニッケル箔を用いることが好ましい。例えば、表面が粗面化されたニッケル箔(電解ニッケル箔など)の上に、銅層を形成してもよい。また、ニッケル箔の上に電解法により、銅を析出させ、これによって粗面化したニッケル箔を用いてもよい。
【0144】
第5の局面において、活物質薄膜が形成される集電体の両面は、互いに実質的に同一の表面粗さRaを有していることが好ましい。
【0145】
また、第5の局面において、集電体の両面の表面粗さRaは、それぞれ0.01μm以上であることが好ましく、0.01〜1μmであることがさらに好ましい。また、集電体の表面粗さRaは、後述する電解銅箔の表面粗さRa程度であることが好ましい。従って、集電体の表面粗さRaは0.1μm以上であることが好ましく、さらに好ましくは0.1〜1μmである。また、表面粗さRaと局部山頂の平均間隔Sが、100Ra≧Sの関係を有することが好ましい。
【0146】
表面粗さRa及び局部山頂の平均間隔Sは、日本工業規格(JIS B 0601−1994)に定められており、例えば表面粗さ計により測定することができる。
【0147】
第5の局面に従う好ましい実施形態のリチウム二次電池用電極においては、活物質薄膜がその厚み方向に形成された切れ目によって柱状に分離されており、かつ該柱状部分の底部が集電体と密着していることを特徴としている。
【0148】
柱状部分のまわりには隙間が形成されているため、充放電反応により活物質の膨張及び収縮が繰り返されても、このような膨張収縮を柱状部分のまわりに形成された隙間により吸収することができる。従って、活物質薄膜が集電体から脱離及び剥離等をすることなく充放電反応を繰り返すことができる。
【0149】
活物質薄膜の厚み方向において、少なくとも厚みの1/2以上の部分が、上記切れ目によって柱状に分離されていることが好ましい。
【0150】
また、上記切れ目は、好ましくは活物質薄膜の膨張収縮により形成される。
【0151】
また、上記切れ目は、電池を組み立てた後の充放電反応により形成してもよいし、電池を組み立てる前の充放電反応により形成してもよい。
【0152】
第5の局面において、活物質薄膜の表面には凹凸が形成されていることが好ましい。また、上記切れ目は、該薄膜表面の凹凸の谷部から集電体に向かって厚み方向に形成されていることが好ましい。
【0153】
上記薄膜表面の凹凸は、好ましくは集電体表面の凹凸に対応して形成されている。また、集電体表面の凹凸の凸部は、錐体状であることが好ましい。
【0154】
さらに、活物質薄膜の柱状部分の上方は、丸みを帯びた形状であることが好ましい。
【0155】
第5の局面に従う好ましい他の実施形態においては、上記切れ目が形成される前の活物質薄膜には、面方向に網目状に連なりかつ集電体に向かって厚み方向に延びた低密度領域が形成されており、該低密度領域に沿って上記切れ目が厚み方向に形成されていることを特徴としている。
【0156】
第5の局面においては、活物質薄膜に集電体成分が拡散していることが好ましい。活物質薄膜に集電体成分が拡散することにより、活物質薄膜と集電体との密着性がさらに高まり、集電体からの活物質薄膜の剥離をさらに有効に防止することができる。従って、充放電サイクル特性をさらに優れたものにすることができる。
【0157】
活物質薄膜としてリチウムと合金化する活物質からなる薄膜を用い、集電体としてリチウムと合金化しない材料からなる集電体を用いる場合、集電体成分の拡散によって、リチウムの吸蔵・放出に伴う集電体近傍の薄膜部分の膨張収縮を相対的に小さくすることができる。従って、薄膜と集電体との密着状態をさらに良好に保つことができる。
【0158】
薄膜における集電体成分の濃度は、集電体近傍で高く、薄膜表面に近づくにつれて減少していることが好ましい。このような濃度勾配を有することにより、集電体近傍では薄膜の膨張収縮が抑制され、薄膜と集電体の密着状態が保たれると共に、薄膜表面近傍では活物質の量が相対的に多くなるので、高い充放電容量を維持することができる。
【0159】
拡散した集電体成分は、薄膜中において、薄膜成分と金属間化合物を形成せずに、固溶体を形成していることが好ましい。ここで、金属間化合物とは、金属同士が特定の比率で化合した特定の結晶構造を有する化合物をいう。薄膜成分と集電体成分が薄膜中において、金属間化合物ではなく、固溶体を形成することにより、薄膜と集電体との密着状態がより良好となり、より高い充放電容量を得ることができる。
【0160】
第5の局面において、集電体成分が拡散している領域の厚みは、特に限定されるものではないが、1μm以上であることが好ましい。
【0161】
また、上述のように、集電体の上に中間層を形成し、該中間層の上に活物質薄膜を形成する場合、活物質薄膜中に中間層の成分が拡散していることが好ましい。このような中間層成分の濃度は、活物質薄膜中において、中間層近傍で高く、活物質薄膜表面に近づくにつれて減少していることが好ましい。また、拡散した中間層の成分は、薄膜中において、薄膜成分と金属間化合物を形成せずに、固溶体を形成していることが好ましい。金属間化合物ではなく、固溶体を形成することにより、薄膜と中間層との密着状態がより良好となり、より高い充放電容量を得ることができる。
【0162】
第5の局面において用いる集電体は、上記第5の局面の条件を満足できるものであれば特に限定されるものではない。集電体の具体例としては、銅、ニッケル、ステンレス、モリブデン、タングステン、及びタンタルから選ばれる少なくとも1種が挙げられる。
【0163】
第5の局面における活物質薄膜には、不純物がドープされていてもよい。このような不純物としては、例えば、リン、アルミニウム、ヒ素、アンチモン、ホウ素、ガリウム、インジウム、酸素、窒素等の周期律表IIIB族、IVB族、VB族、VIB族の元素を挙げることができる。
【0164】
また、第5の局面における活物質薄膜は、複数の層を積層して形成されていてもよい。積層された各層においては、組成、結晶性、不純物濃度等が異なっていてもよい。また、薄膜の厚み方向に傾斜構造を有するものであってもよい。例えば、組成、結晶性、不純物濃度等を厚み方向に変化させた傾斜構造とすることができる。
【0165】
第5の局面における活物質薄膜は、リチウムと合金を形成することによりリチウムを吸蔵する活物質薄膜であることが好ましい。
【0166】
また、第5の局面における活物質薄膜には、予めリチウムが吸蔵または添加されていてもよい。リチウムは、活物質薄膜を形成する際に添加してもよい。すなわち、リチウムを含有する活物質薄膜を形成することにより、活物質薄膜にリチウムを添加してもよい。また、活物質薄膜を形成した後に、活物質薄膜にリチウムを吸蔵または添加させてもよい。活物質薄膜にリチウムを吸蔵または添加させる方法としては、電気化学的にリチウムを吸蔵または添加させる方法が挙げられる。
【0167】
また、第5の局面の活物質薄膜の厚みは、高い充放電容量を得るためには、1μm以上であることが好ましい。
【0168】
第5の局面のリチウム二次電池は、上記第5の局面のリチウム二次電池用電極を用いたことを特徴としている。
【0169】
上記第5の局面のリチウム二次電池用電極は、第5の局面のリチウム二次電池において、負極として用いてもよいし、正極として用いてもよいが、一般に上記活物質薄膜の金属リチウムに対する標準電位は低いので、負極として用いることが好ましい。
【0170】
第5の局面のリチウム二次電池において、正極と負極の組み合わせによる電極構造は、特に限定されるものではなく、種々の電極構造を採用することができる。
【0171】
例えば、第5の局面のリチウム二次電池用電極からなる負極と、集電体の両面上に正極活物質層を設けた正極とを、セパレータを介して交互に積層したスタック型の電極構造を有していてもよい。
【0172】
また、第5の局面のリチウム二次電池用電極からなる負極と、集電体の両面上に正極活物質層を設けた正極との間にセパレータを介在させ、これらをスパイラル状に巻き付けた電極構造を有していてもよい。このような電極構造を有するリチウム二次電池として、円筒型リチウム二次電池及び角形リチウム二次電池が知られている。
【0173】
また、U字形状に折り曲げられた一方の電極内に、他方の電極を挿入した挟み込みの電極構造であってもよい。
【0174】
上記挟み込みの電極構造を有するリチウム二次電池の1つとして、U字形状に折り曲げられた集電体の内側に一対の正極活物質層が対向するように設けられた正極と、集電体の両面上に負極活物質層が設けられ、上記U字形状の正極の内側に挿入される負極と、上記正極の正極活物質層と上記負極の負極活物質層の間に配置されるセパレータとを備え、上記負極が上記第5の局面のリチウム二次電池用電極であることを特徴とするリチウム二次電池が挙げられる。
【0175】
また、上記挟み込みの電極構造を有する他のリチウム二次電池として、U字形状に折り曲げられた負極の内側に一対の負極活物質層が対向するように設けられた負極と、集電体の両面上に正極活物質層が設けられ、上記U字形状の負極の内側に挿入される正極と、上記正極の正極活物質層と上記負極の負極活物質層の間に配置されるセパレータとを備え、上記負極の負極活物質層が、上記本発明の第1の局面〜第4の局面に従うシリコン薄膜またはゲルマニウム薄膜などの活物質薄膜であることを特徴とするリチウム二次電池が挙げられる。
【0176】
上記第5の局面のリチウム二次電池において、両面上に活物質層が設けられた集電体として、片面上に活物質層が設けられた2つの集電体を背面で互いに貼り合わせたものを用いてもよい。
【0177】
第5の局面のリチウム二次電池電極用集電体は、リチウムを吸蔵・放出する活物質薄膜が堆積して形成される表面を両面に有することを特徴としている。
【0178】
第5の局面の集電体は、上述のように、その両面が実質的に同一の表面粗さRaを有することが好ましく、また両面の表面粗さRaがそれぞれ0.01μm以上であることが好ましく、0.01〜1μmであることがさらに好ましい。
【0179】
第5の局面の集電体は、金属箔であることが好ましく、活物質薄膜がシリコン薄膜などである場合には、銅箔であることが好ましい。銅箔としては、表面粗さRaが大きな銅箔である、電解銅箔であることが好ましい。このような電解銅箔としては、例えば、銅箔の両面に電解法により銅を析出させることにより粗面化した銅箔が挙げられる。
【0180】
以下、本発明の第1の局面〜第5の局面を「本発明」として説明する。
【0181】
本発明のリチウム電池は、上記本発明の電極からなる負極と、正極と、電解質とを備えることを特徴としている。
【0182】
本発明において、「リチウム電池」の言葉は、リチウム一次電池及びリチウム二次電池を含んでいる。従って、本発明の電極は、リチウム一次電池用及びリチウム二次電池用として用いることができる。
【0183】
本発明のリチウム二次電池は、上記本発明の電極からなる負極と、正極と、非水電解質とを備えることを特徴としている。
【0184】
本発明のリチウム二次電池に用いる電解質の溶媒は、特に限定されるものではないが、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネートと、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの鎖状カーボネートとの混合溶媒が例示される。また、前記環状カーボネートと1,2−ジメトキシエタン、1,2−ジエトキシエタンなどのエーテル系溶媒や、γ−ブチロラクトン、スルホラン、酢酸メチル等の鎖状エステル等との混合溶媒も例示される。また、電解質の溶質としては、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiN(CF3SO2)(C4F9SO2)、LiC(CF3SO2)3、LiC(C2F5SO2)3、LiAsF6、LiClO4、Li2B10Cl10、Li2B12Cl12など及びそれらの混合物が例示される。さらに電解質として、ポリエチレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデンなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、LiI、Li3Nなどの無機固体電解質が例示される。本発明のリチウム二次電池の電解質は、イオン導電性を発現させる溶媒としてのLi化合物とこれを溶解・保持する溶媒が電池の充電時や放電時あるいは保存時の電圧で分解しない限り、制約なく用いることができる。
【0185】
本発明のリチウム二次電池の正極活物質としては、LiCoO2、LiNiO2、LiMn2O4、LiMnO2、LiCo0.5Ni0.5O2、LiNi0.7Co0.2Mn0.1O2などのリチウム含有遷移金属酸化物や、MnO2などのリチウムを含有していない金属酸化物が例示される。また、この他にも、リチウムを電気化学的に挿入・脱離する物質であれば、制限なく用いることができる。
【0186】
本発明の電極は、リチウム以外の、ナトリウムやカリウムなどのアルカリ金属や、マグネシウムやカルシウムなどのアルカリ土類金属を吸蔵・放出する電極活物質を用いる非水電解質電池及び非水電解質二次電池の電極としても用いることができると考えられる。
【発明を実施するための最良の形態】
【0187】
以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は下記の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。
【0188】
(実験1)
〔負極の作製〕
基板として圧延銅箔(厚み18μm)を用い、原料ガスとしてシラン(SiH4)を用い、キャリアガスとして水素ガスを用いて、CVD法により銅箔の上に微結晶シリコン薄膜を形成した。具体的には、反応室中のヒーターの上に基板としての銅箔を設置し、真空排気装置により、反応室中の圧力を1Pa以下まで排気した。その後、原料ガスであるシラン(SiH4)及びキャリアガスである水素(H2)ガスを、原料ガス導入ポートから導入し、ヒーターで基板を180℃まで加熱した。真空排気装置により、真空度を反応圧力になるように調整し、高周波電源で高周波を励起し、その高周波を電極より導入してグロー放電を誘起した。詳細な薄膜形成条件を表1に示す。なお、表1における流量の単位sccmは、0℃、1気圧(101.33kPa)の1分間当りの体積流量(cm3/分)であり、Standard Cubic Centimeters Per Minute の略である。
【0189】
【表1】
【0190】
微結晶シリコン薄膜の膜厚が約10μmになるまで上記条件で堆積させた。これを、電子顕微鏡(200万倍)で観察すると微小な結晶粒からなる結晶領域の周囲に、非晶質領域が配置された状態であって、非結晶であることが確認できた。次に、得られたサンプルを直径17mmとなるように打ち抜き、電極a1を得た。電極a1と同じものを400℃で3時間熱処理し、電極a2とした。
【0191】
また、比較のため、市販の単結晶シリコン粉末(粒子径10μm)が90重量部、結着剤としてのポリテトラフルオロエチレンが10重量部となるように混合し、これを直径17mmの金型でプレスし加圧成形して、ペレット状の電極b1を得た。
【0192】
〔正極の作製〕
出発原料として、Li2CO3及びCoCO3を用いて、Li:Coの原子比が1:1となるように秤量して乳鉢で混合し、これを直径17mmの金型でプレスし加圧成形した後、空気中において800℃で24時間焼成し、LiCoO2の焼成体を得た。これを乳鉢で平均粒子径20μmとなるまで粉砕した。
【0193】
得られたLiCoO2粉末が80重量部、導電材としてのアセチレンブラックが10重量部、結着剤としてのポリテトラフルオロエチレンが10重量部となるように混合し、直径17mmの金型でプレスし加圧成形して、ペレット状の正極を作製した。
【0194】
〔電解液の作製〕
エチレンカーボネートとジエチルカーボネートとの等体積混合溶媒に、LiPF6を1モル/リットル溶解して電解液を作製し、これを以下の電池の作製において用いた。
【0195】
〔電池の作製〕
上記の電極a1、a2及びb1を負極として用い、上記正極及び電解液を用いて、扁平形リチウム二次電池を作製した。
【0196】
図1は、作製したリチウム二次電池の断面模式図であり、正極1、負極2、セパレーター3、正極缶4、負極缶5、正極集電体6、負極集電体7及びポリプロピレン製の絶縁パッキング8などからなる。
【0197】
正極1及び負極2は、セパレーター3を介して対向している。これらは正極缶4及び負極缶5が形成する電池ケース内に収納されている。正極1は、正極集電体6を介して正極缶4に接続され、負極2は負極集電体7を介して負極缶5に接続され、二次電池としての充電及び放電が可能な構造となっている。
【0198】
電極a1を負極として用いたものを電池A1とし、電極a2を負極として用いたものを電池A2とし、電極b1を負極として用いたものを電池B1とした。
【0199】
〔充放電サイクル寿命特性の測定〕
25℃において電流値100μAで負極容量が2000mAh/gとなるまで充電した後放電し、これを1サイクルの充放電とし、各電池について50サイクル目の容量維持率を測定した。なお、2000mAh/gまで充電されなかったB1電池については、4.2Vまで充電した後、放電することによりサイクル試験を行った。結果を表2に示す。
【0200】
表2には、各電池の負極活物質の、SIMS測定により得られた水素濃度、ラマン分光分析による480cm-1近傍/520cm-1近傍のピーク強度比、並びにX線回折スペクトルとScherrerの式により算出された結晶粒径を併せて示した。なお、電池B1の結晶粒径は、粉末の粒子径とほぼ同じであると思われるので粉末の粒子径を示している。
【0201】
【表2】
【0202】
表2に示す結果から明らかなように、本発明に従う電池A1及びA2は、比較の電池B1に比べ、著しく高い容量維持率を示している。
【0203】
以上のように、微結晶シリコン薄膜を負極活物質として用いることにより、リチウム二次電池の充放電サイクル特性が著しく改善されている。微結晶シリコン薄膜において、リチウムを吸蔵・放出する際の膨張収縮が緩和されているため、負極活物質の微粉化を抑制することができ、集電特性の悪化を抑制しているものと思われる。
【0204】
(実験2)
基板である集電体として電解銅箔(厚み18μm)を用いる以外は、上記実験1の電池A1と同様にして、電解銅箔上に微結晶シリコン薄膜(厚み約10μm)を形成して電極a3を作製し、これを用いて電池A3を作製した。
【0205】
また、実験1で用いた圧延銅箔の表面をエメリー紙#400または#120で1分間研磨処理した銅箔を作製し、これらの銅箔を基板である集電体として用いる以外は、上記実験1の電池A1と同様にして、銅箔上に微結晶シリコン薄膜(厚み約10μm)を形成して電極を作製した。エメリー紙#400で研磨したものを電極a4とし、エメリー紙#120で研磨したものを電極a5とした。これらを用いて電池A4及びA5を上記実験1と同様にして作製した。
【0206】
これらの電池A3〜A5並びに上記実験1で作製した電池A1及び電池B1について、上記実験1と同様の充放電サイクル条件で、充放電サイクル試験を行い、10サイクル目の容量維持率を求めた。結果を表3に示す。なお、表3には、電池A1及び電池B1の集電体である銅箔及び電池A3〜A5の集電体である銅箔の表面粗さRa及び局部山頂の平均間隔Sを併せて示す。
【0207】
銅箔の表面粗さRa及び局部山頂の平均間隔Sは、触針式表面形状測定器Dektak
ST(日本真空技術社製)を用い、測定距離を2.0mmに設定して測定した。表面粗さRaの計算は、たわみ分の補正後に行った。たわみの補正に用いた補正値は、ローパス=200μm、ハイパス=20μmである。表面粗さRaは自動計算された値であり、局部山頂の平均間隔Sはチャートから読み取った値である。
【0208】
【表3】
【0209】
表3に示す結果から明らかなように、表面粗さRaの値が大きな銅箔を集電体として用いた電池A3〜A5は、表面粗さRaの値が小さな銅箔を用いた電池A1に比べ、10サイクル目の容量維持率が向上していることがわかる。これは、表面粗さRaの値が大きな銅箔を集電体として用いることにより、集電体と活物質との密着性が向上し、リチウムを吸蔵・放出する際の活物質の膨張収縮による活物質の構造変化の影響を低減することができるためであると思われる。
【0210】
(実験3)
上記実験1で作製した電池A1及び上記実験2で作製した電池A3について、上記実験1と同様の充放電サイクル条件で、さらに充放電サイクル試験を行い、30サイクル目の容量維持率を求めた。結果を表4に示す。
【0211】
【表4】
【0212】
表4に示す結果から明らかなように、30サイクル目においても、電池A1及び電池A3は良好な容量維持率を示している。特に、表面粗さRaの値が大きな銅箔を集電体として用いた電池A3が良好な容量維持率を示している。
【0213】
そこで、電池A3に用いた電極a3のシリコン薄膜の状態を電子顕微鏡で観察した。先ず、電池に組み込む前の状態、すなわち充放電前の状態の電極a3を走査型電子顕微鏡で観察した。図2及び図3は、それぞれ充放電前の電極a3を示す走査型電子顕微鏡写真(二次電子像)である。図2の倍率は2000倍であり、図3の倍率は5000倍である。
【0214】
サンプルは、電極を樹脂で包埋し、これをスライスしたものを用いた。図2において上方端部及び下方端部に観察される層及び図3において上方端部に観察される層は、この包埋樹脂の層である。
【0215】
図2及び図3において、やや明るい部分は、銅箔の部分を示しており、銅箔の上にやや暗い部分としてシリコン薄膜(厚み約10μm)が形成されている。図2及び図3に示すように、銅箔の表面には凹凸が形成されており、特に凸部は錐体状になっている。そしてその上に設けられたシリコン薄膜の表面にも、銅箔の凹凸と同様の凹凸が形成されている。従って、シリコン薄膜表面の凹凸は、銅箔表面の凹凸により形成されているものと思われる。
【0216】
次に、上記の30サイクル後の電池A3から取り出した電極a3について同様にして樹脂で包埋して走査型電子顕微鏡で観察した。なお、電極a3は放電後に取り出した。従って、観察した電極a3は放電後の状態のものである。
【0217】
図4及び図5は、この放電後の電極a3を示す走査型電子顕微鏡写真(二次電子像)である。図4の倍率は500倍であり、図5の倍率は2500倍である。
【0218】
図4及び図5に示すように、シリコン薄膜には、その厚み方向に切れ目が形成され、この切れ目によって、シリコン薄膜が柱状に分離されていることがわかる。また、切れ目は厚み方向に形成されているが、面方向にはほとんど形成されておらず、柱状部分の底部は集電体である銅箔と密着していることがわかる。また、柱状部分の上方部は丸みを帯びた形状であり、充放電前のシリコン薄膜表面の凹凸の谷部から切れ目が形成されていることがわかる。
【0219】
さらに、充放電後の電極a3のシリコン薄膜の表面を、走査型電子顕微鏡で観察した。図6及び図7はシリコン薄膜の表面を上方から観察した走査型電子顕微鏡写真(二次電子像)であり、図6の倍率は1000倍、図7の倍率は5000倍である。図8及び図9は、シリコン薄膜の表面をやや斜め方向から観察した走査型電子顕微鏡写真(二次電子像)であり、図8の倍率は1000倍、図9の倍率は5000倍である。
【0220】
図6〜図9に示すように、シリコン薄膜の柱状部分の周りには切れ目が形成されており、隣接する柱状部分との間に隙間が設けられている。このため、充電の際シリコン薄膜がリチウムを吸蔵し、柱状部分が膨張してその体積が増加しても、柱状部分の周囲に形成れた隙間により、この体積増加を吸収することができるものと思われる。また、放電の際にはシリコン薄膜の柱状部分がリチウムを放出し収縮するため、再び体積が減少し、柱状部分の周りに隙間が形成されるものと思われる。このようなシリコン薄膜の柱状構造により、充放電の際の活物質の膨張収縮を緩和することができるものと思われる。
【0221】
また、シリコン薄膜に切れ目が形成され、柱状に分離されることにより、電解液との接触面積が大幅に増加する。また、柱状部分がほぼ同程度の大きさでそれぞれ形成されているので、リチウムの吸蔵・放出を伴う充放電反応が活物質薄膜内において効率的になされるものと思われる。
【0222】
また、図4及び図5に示すように、シリコン薄膜の各柱状部分は集電体と密着しているので、活物質が集電体に良好な状態で電気的に接続されており、充放電反応を効率的に行うことができるものと思われる。
【0223】
また、図6〜図9に示すように、柱状部分の上方部は丸みを帯びた形状を有している。従って、電流の集中が生じ難く、リチウム金属の析出反応等を生じ難い電極構造となっている。
【0224】
図10は、銅箔上に形成されたシリコン薄膜に切れ目が形成され、柱状に分離される工程を示す模式的断面図である。
【0225】
図10(a)に示すように、銅箔10の表面10aには、凹凸が形成されている。このような凹凸は、表面粗さRaの値が大きな銅箔程、より大きな凹凸となる。
【0226】
図10(b)は、銅箔10の凹凸が形成された表面10aの上に、非結晶シリコン薄膜11を堆積した状態を示している。シリコン薄膜11の表面11aは、銅箔10の表面10aの凹凸の影響を受け、銅箔10の表面10aの凹凸と同様の凹凸を有している。充放電前においては、図10(b)に示すように、シリコン薄膜11は連続した薄膜である。このような状態で、充電を行うと、シリコン薄膜11中にリチウムが吸蔵され、シリコン薄膜11の体積が膨張する。このときのシリコン薄膜11の膨張は、薄膜の面方向及び厚み方向に共に生じるものと思われるが、その詳細は明らかでない。次に、放電反応の際には、シリコン薄膜11からリチウムが放出され、体積が収縮する。このとき、シリコン薄膜11内では引っ張り応力が生じる。このような応力は、おそらくシリコン薄膜11の表面11aの凹凸の谷部11bに集中し、このため、図10(c)に示すように、谷部11bを起点として、厚み方向に切れ目12が形成されるものと思われる。このように形成された切れ目12により、応力が開放され、シリコン薄膜11が銅箔10から剥離することなく、シリコン薄膜11が収縮するものと思われる。
【0227】
以上のようにして柱状に分離されたシリコン薄膜は、その後の充放電サイクルにおいても、上述のように、柱状部分の周りに形成された隙間により、活物質の膨張収縮が緩和されるため、活物質が集電体から剥離することなく充放電サイクルを繰り返すことができるものと思われる。
【0228】
さらに、上記シリコン薄膜に切れ目が形成されるメカニズムについて検討するため、電解銅箔上に膜厚約10μmの微結晶シリコン薄膜を形成した電極a3について透過型電子顕微鏡で観察した。図11は、充放電前の電極a3の断面を示す透過型電子顕微鏡写真(倍率12500倍)である。観察したサンプルは、電極を樹脂で包埋し、これをスライスしたものを用いた。
【0229】
図13は、図11に示す透過型電子顕微鏡写真を模式的に示す図である。図11に示す透過型電子顕微鏡写真においては、図13に示すように電解銅箔10の表面10a上に、シリコン薄膜11が形成されている。なお、透過型電子顕微鏡写真においては、シリコン薄膜11は銅箔10よりも明るい部分として示されている。図11に示されたシリコン薄膜11を観察すると、シリコン薄膜11の表面11aの凹凸の谷部11bと、銅箔10の表面10aの凹凸の谷部10bを結ぶ領域により明るい部分が観察される。図13においては、この明るい部分をA、B及びCとして一点鎖線で図示している。特にAで示す領域において明るい部分がより明確に観察されている。これらの領域は、シリコン薄膜11において密度が低い領域、すなわち低密度領域であると考えられる。この低密度領域についてさらに詳細に観察するため、電極a3と同様の条件で電解銅箔上に膜厚約2μmの微結晶シリコン薄膜を形成した電極a6を作製した。
【0230】
図12は、この電極a6を上記と同様にして透過型電子顕微鏡で観察した時の透過型電子顕微鏡写真である。図12において、倍率は25000倍である。図14は、図12に示す透過型電子顕微鏡写真を模式的に示す図である。図12から明らかなように、電極a6においても、シリコン薄膜11の表面11aの凹凸の谷部11bと、銅箔10の表面10aの凹凸の谷部10bを結ぶ領域Dにおいて低密度領域が観察される。さらに詳細に図12の写真を観察すると、図14において矢印で示す方向に延びる微細な筋がシリコン薄膜11中に観察される。この筋は、おそらくシリコン薄膜の成長に伴って形成されるものと考えられる。従って、シリコン薄膜11は、銅箔10の表面10aに対し略垂直方向に成長するものと考えられる。そして、このような方向に成長するシリコン薄膜の層は、隣接する銅箔表面の傾斜面上に堆積し成長する層と領域Dの部分で互いにぶつかり合い、この結果として領域Dの部分に低密度領域が形成されるものと考えられる。このようなシリコン薄膜層のぶつかり合いが薄膜形成完了まで続き、低密度領域がシリコン薄膜の表面まで引き続き形成されるものと思われる。
【0231】
図15は、電極a3の表面を上方から観察した走査型電子顕微鏡写真(二次電子像)である。図15に示す電極a3は充放電前の状態のものである。図15の倍率は1000倍である。図15において、明るい部分はシリコン薄膜表面の凸部であり、その周囲の暗い部分はシリコン薄膜表面の谷部である。図15に示すように、シリコン薄膜表面の谷部は網目状に連なっている。従って、シリコン薄膜における上記低密度領域は、面方向に網目状に連なって形成されていることがわかる。このような網目状の低密度領域は、図11及び図13に示すように、さらに集電体に向かって厚み方向に延びている。なお、図15における暗い部分が切れ目(空隙)でないことは、図2及び図3に示す走査型電子顕微鏡写真において厚み方向に切れ目(空隙)が観察されないことから明らかである。
【0232】
図16は、充放電前の状態の電極a6の表面を上方から観察した走査型電子顕微鏡写真(二次電子像)であり、倍率は1000倍である。図16から明らかなように、電極a6においても谷部が網目状に連なっており、従って低密度領域が面方向に網目状に連なっていることがわかる。
【0233】
図17は、電極a6におけるシリコン薄膜の深さ方向での構成元素の濃度分布を示す図である。構成元素の濃度分布は、SIMSにより、O2 +をスパッタ源に用いて、銅元素(63Cu+)及びシリコン元素(Si2+)の濃度を測定することにより行った。図17において横軸はシリコン薄膜表面からの深さ(μm)を示しており、縦軸は各構成元素の強度(カウント数)を示している。
【0234】
図17から明らかなように、集電体近傍ではシリコン薄膜に集電体の成分である銅(Cu)が拡散しており、シリコン薄膜の表面に近づくにつれて集電体の成分である銅(Cu)の濃度が減少していることがわかる。また、銅(Cu)の濃度が連続的に変化していることから、銅(Cu)が拡散している領域においては、シリコンと銅の金属間化合物ではなく、シリコンと銅の固溶体が形成されていることがわかる。
【0235】
以上のことを考慮すると、充放電によるシリコン薄膜の膨張収縮によりシリコン薄膜に厚み方向の切れ目が形成されるメカニズムは以下の通りであると考えられる。すなわち、図10を参照して説明したように、シリコン薄膜の体積の膨張収縮により生じる応力は、シリコン薄膜表面の凹凸の谷部に集中するとともに、この谷部から下方の集電体に向かって低密度領域が予め存在しており、この低密度領域が機械的強度の低い部分であることから、この低密度領域に沿って切れ目(空隙)が形成されるものと思われる。
【0236】
さらに図17に示すように、シリコン薄膜中には、集電体の成分である銅元素が拡散しており、しかも集電体近傍では銅の濃度が高く、シリコン薄膜表面に近づくにつれて銅の濃度が減少する濃度勾配を有している。従って、集電体近傍ではリチウムと反応しない銅の濃度が高くなり、リチウムと反応するシリコンの濃度が小さくなっている。このため、集電体近傍ではリチウムの吸蔵・放出が少なく、従ってシリコン薄膜の膨張収縮が相対的に小さくなると考えられる。このため、集電体近傍のシリコン薄膜に生じる応力が小さくなり、集電体近傍では、シリコン薄膜が集電体から剥離あるいは脱離するような切れ目(空隙)が生じにくく、シリコン薄膜の柱状部分の底部は集電体との密着状態を保つことができるものと考えられる。
【0237】
以上のようにして形成される切れ目によって柱状に分離されたシリコン薄膜は、充放電サイクルにおいても、集電体と強固に密着しており、かつ柱状部分の周りに形成された隙間により、充放電サイクルに伴う薄膜の膨張収縮が緩和されるため、優れた充放電サイクル特性が得られるものと考えられる。
【0238】
(実験4)
〔電極a7の作製〕
基板である集電体として、電極a3に用いたのと同様の電解銅箔を用い、この上にRFスパッタリング法により非晶質ゲルマニウム薄膜(厚み約2μm)を形成して電極a7を作製した。
【0239】
薄膜形成条件は、ターゲット:ゲルマニウム、スパッタガス(Ar)流量:100sccm、基板温度:室温(加熱なし)、反応圧力0.1Pa、高周波電力200Wとした。
【0240】
得られたゲルマニウム薄膜について、ラマン分光分析を行ったところ、274cm-1近傍のピークは検出されたが、300cm-1近傍のピークは検出されなかった。このことから、得られたゲルマニウム薄膜は非晶質ゲルマニウム薄膜であることが確認された。
【0241】
〔電極a8の作製〕
電極a7の集電体と同様の電解銅箔を用いて、この上に蒸着法により非晶質ゲルマニウム薄膜(厚み約2μm)を形成して電極a8を作製した。
【0242】
具体的には、図18に示す構成の装置を用い、ゲルマニウム薄膜を基板上に形成した。図18を参照して、ECRプラズマ源81には、プラズマ発生室82が設けられており、プラズマ発生室82にマイクロ波電力85及びArガス86が供給される。プラズマ発生室82にマイクロ波電力85が供給されると、Arプラズマが発生する。このArプラズマ83をプラズマ発生室82から引き出し、基板80に照射する。基板80の下方には、電子ビーム(EB)ガン84が設けられており、電子ビームガン84からの電子ビームにより、ゲルマニウム薄膜を基板80上に堆積することができる。
【0243】
基板である電解銅箔上にゲルマニウム薄膜を堆積する前に、Arプラズマを基板上に照射し前処理を行った。反応室内の真空度を約0.05Pa(約5×10-4Torr)とし、Arガス流量を40sccmとし、供給するマイクロ波電力を200WとしてArプラズマを基板上に照射した。Arプラズマを照射する際、基板に−100Vのバイアス電圧を印加した。15分間Arプラズマを照射し、前処理を行った。
【0244】
次に、電子ビームガンにより、蒸着速度1nm/秒(10Å/秒)で、基板上にゲルマニウム薄膜を堆積させた。基板温度は室温(加熱なし)とした。
【0245】
得られたゲルマニウム薄膜について、ラマン分光分析を行ったところ、電極a7と同様に、非晶質ゲルマニウム薄膜であることが確認された。
【0246】
〔電極b2の作製〕
平均粒子径が10μmのゲルマニウム粉末を用い、ゲルマニウム粉末が80重量部、導電材としてのアセチレンブラックが10重量部、結着剤としてのポリテトラフルオロエチレンが10重量部となるように混合し、これを直径17mmの金型でプレスして加圧成形し、ペレット状の電極b2を作製した。
【0247】
〔電池の作製〕
上記の電極a7、a8及びb2を負極として用い、それ以外は実験1と同様にしてリチウム二次電池を作製した。電極a7を負極として用いたものを電池A7とし、電極a8を負極として用いたものを電池A8とし、電極b2を負極として用いたものを電池B2とした。
【0248】
〔充放電サイクル特性の評価〕
上記各電池について、25℃にて、0.1mAの電流で充電電圧が4.2Vとなるまで充電した後、充電電圧が2.75Vとなるまで放電し、これを1サイクルの充放電とし、10サイクル目の容量維持率を測定した。測定結果を表5に示す。
【0249】
【表5】
【0250】
表5から明らかなように、集電体上にゲルマニウム薄膜を形成した本発明の電極を負極として用いた電池A7及び電池8は、ゲルマニウム粉末を負極材料として用いた電池B2に比べ、非常に良好な容量維持率を示している。
【0251】
〔電子顕微鏡による観察〕
図19及び図20は、充放電前の状態の電極a7の断面を示す走査型電子顕微鏡写真(反射電子像)である。図19の倍率は2000倍であり、図20の倍率は10000倍である。
【0252】
サンプルは、電極を樹脂で包埋し、これをスライスしたものを用いた。図19において上方端部及び下方端部に観察される層及び図20において上方端部に観察される層は、この包埋樹脂の層である。
【0253】
図19及び図20において、明るい部分は、銅箔及びゲルマニウム薄膜であり、明るい部分の表面の薄い層がゲルマニウム薄膜であり、その下が銅箔である。銅箔の表面には凹凸が形成されており、その上に設けられたゲルマニウム薄膜の表面にも、銅箔の凹凸と同様の凹凸が形成されている。従って、ゲルマニウム薄膜表面の凹凸は銅箔表面の凹凸により形成されたものと思われる。
【0254】
図20において、銅箔の左端の谷部上のゲルマニウム薄膜の領域には、薄膜の厚み方向に延びる暗い部分が観察される、この部分は、ゲルマニウム薄膜において密度の低い領域、すなわち低密度領域であると思われる。
【0255】
図21及び図22は、充放電前の電極a8の断面を示す走査型電子顕微鏡写真(反射電子像)である。図21の倍率は2000倍であり、図22の倍率は10000倍である。サンプルは、図19及び図20に示す電極a7と同様に、樹脂によって包埋されている。
【0256】
図21及び図22において、明るい部分は銅箔の部分を示しており、銅箔の上にやや暗い部分としてゲルマニウム薄膜(厚み約2μm)が形成されている。電極a8においても、電極a7と同様に、ゲルマニウム薄膜の表面に銅箔と同様の凹凸が形成されている。
【0257】
図23及び図24は、10サイクル後の電池A7から取り出した電極a7の断面を示す走査型電子顕微鏡写真(反射電子像)である。また、図25及び図26は、10サイクル後の電池A8から取り出した電極a8の断面を示す走査型電子顕微鏡写真(反射電子像)である。いずれのサンプルも、電極を樹脂で包埋し、これをスライスしたものを用いている。図23及び図25の倍率は500倍であり、図24及び図26の倍率は2500倍である。
【0258】
図23〜図26において、ゲルマニウム薄膜の表面に観察される白い部分は、包埋樹脂に埋め込む際にゲルマニウム薄膜の表面にコートした金である。このように金でコートする理由は、ゲルマニウム薄膜と樹脂との反応を防ぐこと及び樹脂とゲルマニウム薄膜との境界を明確にするためである。
【0259】
図23〜図26から明らかなように、ゲルマニウム薄膜の場合にも、シリコン薄膜と同様に、充放電によって、薄膜の厚み方向に切れ目が形成され、この切れ目によって、薄膜が柱状に分離されていることがわかる。また、集電体である銅箔とゲルマニウム薄膜とのコントラストの差があまりないため、その境界がわかりにくくなっているが、注意深く観察すれば、集電体の凸部に柱状のゲルマニウム薄膜が存在しており、ゲルマニウム薄膜が集電体に密着していることがわかる。
【0260】
シリコン薄膜の場合と異なり、ゲルマニウム薄膜の場合は、横方向にも切れ目が観察されているが、このような切れ目は、断面観察のためにゲルマニウム薄膜を研磨した際に発生した可能性がある。
【0261】
また、ゲルマニウム薄膜の場合、柱状部分の間の切れ目(空隙)の幅がシリコン薄膜に比べ大きくなっている。これは、充放電後の柱状部分の高さが約6μmであり、充放電前の膜厚2μmの3倍程度に高くなっていることから、充電によってリチウムを吸蔵し膨張した薄膜が、放電によって収縮する際、横方向、すなわち面方向に主に収縮し、厚み方向の収縮率が小さいため、柱状部分の間の切れ目(隙間)の幅が大きくなることによるものと思われる。
【0262】
図27及び図28は、充放電後の電極a7のゲルマニウム薄膜の表面を、上方から観察した走査型電子顕微鏡写真(二次電子像)であり、図27の倍率は1000倍、図28の倍率は5000倍である。図29及び図30は、充放電後の電極a7のゲルマニウム薄膜の表面をやや斜め方向から観察した走査型電子顕微鏡写真(二次電子像)であり、図29の倍率は1000倍、図30の倍率は5000倍である。
【0263】
図31及び図32は、充放電後の電極a8のゲルマニウム薄膜の表面を上方から観察した走査型電子顕微鏡写真(二次電子像)であり、図31の倍率は1000倍、図32の倍率は5000倍である。図33及び図34は、充放電後の電極a8のゲルマニウム薄膜の表面をやや斜め方向から観察した走査型電子顕微鏡写真(二次電子像)であり、図33の倍率は1000倍、図34の倍率は5000倍である。
【0264】
図27〜図34に示すように、ゲルマニウム薄膜の柱状部分の周りには切れ目(空隙)が形成されており、隣接する柱状部分との間に隙間が設けられている。このため、上述のシリコン薄膜と同様に、充放電の際の活物質の膨張収縮を緩和することができるものと思われる。
【0265】
図35は、充放電前の電極a7のゲルマニウム薄膜の表面を上方から観察した走査型電子顕微鏡写真(二次電子像)である。図36は、充放電前の電極a8のゲルマニウム薄膜の表面を上方から観察した走査型電子顕微鏡写真(二次電子像)である。図35及び図36の倍率は、1000倍である。
【0266】
図35及び図36に示すように、ゲルマニウム薄膜の表面には、下地の電解銅箔の凹凸に沿った凹凸が形成されている。ゲルマニウム薄膜の谷部は網目状に連なっている。このような谷部の厚み方向に沿って切れ目(空隙)が形成され、ゲルマニウム薄膜の柱状部分が形成されることがわかる。
【0267】
〔SIMSによる深さ方向の濃度分布の分析〕
図37は、電池に組み込む前、すなわち充放電前の電極a7における深さ方向の構成元素の濃度分布を示す図である。図38は、同様に、充放電前の電極a8における深さ方向の構成元素の濃度分布を示す図である。構成元素の濃度分布は、二次イオン質量分析(SIMS)により、O2 +をスパッタ源に用いて、銅元素(63Cu-)及びゲルマニウム元素(73Ge-)の濃度を、薄膜表面から深さ方向に測定することにより行った。横軸はゲルマニウム薄膜の表面からの深さ(μm)を示しており、縦軸は各構成元素の強度(カウント数)を示している。
【0268】
図37及び図38から明らかなように、集電体近傍では、ゲルマニウム薄膜に集電体成分である銅(Cu)が拡散しており、ゲルマニウム薄膜の表面に近づくにつれて集電体成分である銅(Cu)が減少していることがわかる。
【0269】
以上のように、ゲルマニウム薄膜中には、集電体の成分である銅元素が拡散しており、しかも集電体近傍では銅の濃度が高く、ゲルマニウム薄膜表面に近づくにつれて銅の濃度が減少する濃度勾配を有している。従って、集電体近傍ではリチウムと反応しない銅の濃度が高くなり、リチウムと反応するゲルマニウムの濃度が小さくなっている。このため、集電体近傍ではリチウムの吸蔵・放出が少なく、従ってゲルマニウム薄膜の膨張収縮が相対的に小さくなると考えられる。このため、集電体近傍のゲルマニウム薄膜に生じる応力が小さくなり、集電体近傍では、ゲルマニウム薄膜が集電体から剥離あるいは脱離するような切れ目(空隙)が生じにくく、ゲルマニウム薄膜の柱状部分の底部は集電体と密着状態を保つことができるものと考えられる。
【0270】
以上のように、柱状に分離されたゲルマニウム薄膜は、充放電サイクルにおいても、集電体と強固に密着しており、かつ柱状部分の周りに形成された隙間により、充放電サイクルに伴う薄膜の膨張収縮により生じる応力が緩和されるため、優れた充放電サイクル特性が得られるものと考えられる。
【0271】
(実験5)
〔電極a9の作製〕
基板である集電体として電解銅箔(厚み18μm)を用い、RFスパッタリング法によりこの電解銅箔の上にシリコン薄膜を形成した。スパッタリングの条件は、スパッタガス(Ar)流量:100sccm、基板温度:室温(加熱なし)、反応圧力:0.1Pa(1.0×10-3Torr)、高周波電力:200Wの条件とした。シリコン薄膜は、その厚みが約2μmとなるまで堆積させた。
【0272】
得られたシリコン薄膜について、ラマン分光分析を行ったところ、480cm-1近傍のピークは検出されたが、520cm-1近傍のピークは検出されなかった。このことから、得られたシリコン薄膜は非晶質シリコン薄膜であることがわかる。
【0273】
この非晶質シリコン薄膜を形成した電解銅箔を2cm×2cmの大きさに切り出し、電極a9を作製した。
【0274】
用いた電解銅箔の表面粗さRa及び局部山頂の平均間隔Sを、触針式表面形状測定器Dektat3ST(日本真空技術社製)を用い、測定距離を2.0mmに設定して測定した。表面粗さRaは0.188μmであり、局部山頂の平均間隔Sは11μmであった。
【0275】
〔電極a10の作製〕
基板である集電体として、上記電極a9の作製に用いた電解銅箔と同じものを用い、シリコン薄膜の厚みを約2μmとする以外は、上記実験1の電極a1と同じ条件でシリコン薄膜を電解銅箔上に形成し、上記電極a9と同様にして電極a10を作製した。
【0276】
得られたシリコン薄膜について、ラマン分光分析を行ったところ、480cm-1近傍のピークと、520cm-1近傍のピークの両方が検出された。従って、得られたシリコン薄膜は微結晶シリコン薄膜である。
【0277】
〔比較電極b3の作製〕
基板である集電体として、上記実験1において用いた圧延銅箔を用い、電極a9の作製と同様に、RFスパッタリング法により非晶質シリコン薄膜(厚み約2μm)を形成した。
【0278】
次に、得られた非晶質シリコン薄膜に対し、650℃、1時間のアニール処理を施した。アニール処理後のシリコン薄膜について、ラマン分光分析を行ったところ、480cm-1近傍のピークが消失し、520cm-1近傍のピークのみが検出された。従って、アニール処理により多結晶シリコン薄膜が形成されていることが確認された。
【0279】
この圧延銅箔上に形成された多結晶シリコン薄膜を用いて、上記電極a9と同様にして電極b3を作製した。
【0280】
圧延銅箔について、上記と同様にして表面粗さRa及び局部山頂の平均間隔Sを測定したところ、表面粗さRaは0.037μmであり、局部山頂の平均間隔Sは14μmであった。
【0281】
〔充放電特性の測定〕
上記で得られた電極a9、電極a10及び電極b3を作用極として用い、対極及び参照極を金属リチウムとした試験セルを作製した。電解液としては、上記実験1で作製したものと同じものを用いた。なお、単極の試験セルでは作用極の還元を充電とし、酸化を放電としている。
【0282】
上記の各試験セルを、25℃にて、0.5mAの定電流で、参照極を基準とする電位が0Vに達するまで充電した後、2Vに達するまで放電を行った。これを1サイクルの充放電とし、1サイクル目及び5サイクル目の放電容量及び充放電効率を測定した。結果を表6に示す。
【0283】
【表6】
【0284】
表6に示す結果から明らかなように、非晶質シリコン薄膜を電極活物質とした電極a9及び微結晶シリコン薄膜を電極活物質とした電極a10は、薄膜形成後にアニール処理して形成した多結晶シリコン薄膜を電極活物質とした比較電極b3に比べ、高い放電容量を示すと共に、5サイクル目においても良好な充放電効率を示している。
【0285】
(実験6)
<実施例1〜7及び比較例1〜2>
〔集電体の作製〕
基板となる集電体として、表7に示すサンプル1〜4を用いた。サンプル1は、電極b3において集電体として用いた圧電銅箔と同様のものである。サンプル2〜4は、圧延銅箔の表面を、エメリーペーパーの#100、#400、#1000で研磨して粗面化した後、純水で洗浄し乾燥させたものである。
【0286】
【表7】
【0287】
上記の銅箔を基板として用い、表8〜表10に示す条件で、RFアルゴンスパッタリング装置を用いて、基板上にシリコン薄膜を堆積させた。比較例2については、薄膜形成後、熱処理(アニール処理)を行った。なお、実施例1〜7及び比較例1については、薄膜形成前に基板に対して前処理を行った。前処理は、別に設けたプラズマ源で、ECRアルゴンプラズマを発生させ、マイクロ波電力200W、アルゴンガス分圧0.06Paで10分間、基板に照射することにより行った。
【0288】
シリコン薄膜について、ラマン分光分析を行い、結晶性を同定した。結果を表8〜表10に示す。
【0289】
〔充放電特性の測定〕
実施例1〜7及び比較例1〜2の銅箔上に形成されたシリコン薄膜を、2cm×2cmの大きさに切り出し、上記実験5と同様にして、試験セルを作製した。各試験セルについて、上記実験5と同様にして充放電試験を行い、1サイクル目、5サイクル目、及び20サイクル目の放電容量及び充放電効率を測定した。結果を表8〜表10に示す。
【0290】
【表8】
【0291】
【表9】
【0292】
【表10】
【0293】
表8〜表10に示す結果から明らかなように、非晶質シリコン薄膜を電極活物質とした実施例1〜7においては、基板温度を450℃にすることにより、あるいは薄膜形成後に650℃で熱処理することにより形成した多結晶シリコン薄膜を電極活物質とした比較例1〜2に比べ、高い放電容量が得られるとともに、良好な充放電サイクル特性が得られている。
【0294】
(実験7)
電解銅箔(厚み18μm、表面粗さRa=0.188μm、平均間隔S=6μm)の上に、RFスパッタリング法により非晶質シリコン薄膜(厚み約3μm)を形成して電極a11を作製した。なお、薄膜形成条件は、ターゲット:単結晶シリコン、スパッタガス(Ar)流量:100sccm、基板温度:室温(加熱なし)、反応圧力:0.1Pa、高周波電力:200Wとした。
【0295】
得られたシリコン薄膜について、ラマン分光分析を行ったところ、480cm-1近傍のピークは検出されたが、520cm-1近傍のピークは検出されなかった。このことから、得られたシリコン薄膜は非晶質シリコン薄膜であることがわかる。
【0296】
得られた電極a11を用い、上記実験1と同様にして電池A11を作製し、上記実験1と同様の充放電サイクル条件で、充放電サイクル試験を行い、30サイクル目の容量維持率を求めた。結果を表11に示す。なお、表11には、電池A1及び電池A3の結果も併せて示す。
【0297】
【表11】
【0298】
表11に示す結果から明らかなように、スパッタリング法により形成した非晶質シリコン薄膜を活物質として用いた電池A11も、微結晶シリコン薄膜を活物質として用いた電池A1及びA3と同様に、良好な容量維持率を示している。
【0299】
電極a11のシリコン薄膜の状態を電子顕微鏡で観察した。まず、充放電前の状態の電極a11の断面を走査型電子顕微鏡で観察した。図39及び図40は、それぞれ充放電前の電極a11の断面を示す走査型電子顕微鏡写真(二次電子像)である。図39の倍率は2000倍であり、図40の倍率は10000倍である。なお、サンプルは図2及び図3のサンプルと同様に、電極を樹脂で包埋し、これをスライスしたものを用いた。
【0300】
図39及び図40において、やや明るい部分は、電解銅箔の部分を示しており、銅箔の上にやや暗い部分としてシリコン薄膜(厚み約3μm)が示されている。図39及び図40に示すように、電解銅箔の表面には凹凸が形成されており、凸部は錐体状の形状を有している。その上に設けられたシリコン薄膜の表面にも、銅箔の凹凸と同様の凹凸が形成されており、凸部は錐体状の形状を有している
。従って、シリコン薄膜表面の凹凸は、銅箔表面の凹凸により形成されている。
【0301】
図41は、電極a11のシリコン薄膜の表面を示す走査型電子顕微鏡写真(二次電子像)であり、倍率は1000倍である。図41に示すように、シリコン薄膜の表面には、多数の凸部が形成されている。この凸部は、図39及び図40に示すように、銅箔表面の凸部に対応して形成されている。
【0302】
図42は、上記充放電試験の30サイクル後の電池A11から取り出した電極a11のシリコン薄膜の表面を示す走査型電子顕微鏡写真(二次電子像)である。図42に示す写真の倍率は1000倍である。
【0303】
図42に示すように、シリコン薄膜には、その厚み方向に切れ目(隙間)が形成され、この切れ目(隙間)によって、シリコン薄膜が柱状に分離されている。図6〜図9に示すシリコン薄膜では、柱状部分が薄膜表面の1つの凸部を含むように切れ目が形成されているのに対し、図42に示すシリコン薄膜では、柱状部分が薄膜表面の複数の凸部を含むように切れ目が形成されていることがわかる。また、切れ目(隙間)の幅も、図6〜図9に示すシリコン薄膜に比べ大きいことがわかる。
【0304】
電池A11は、電池A3と同様の良好な容量維持率を示している。従って、図42に示すように、薄膜表面の複数の凸部を含むように柱状部分が形成される場合であっても、柱状部分の周りに形成された隙間により、活物質の膨張収縮による応力が緩和されるため、活物質が集電体から剥離することなく、充放電サイクルを繰り返すことができるものと思われる。
【0305】
(実験8)
実験1における電極a1を作製したのと同一の薄膜形成条件で、圧延銅箔及び電解銅箔(厚み18μm)の上にそれぞれ膜厚約2μmの微結晶シリコン薄膜を形成した。次に、得られたサンプルを直径17mmとなるように打ち抜き、圧延銅箔上に形成したものを電極c1とし、電解銅箔上に形成したものを電極c3とした。電極c1及び電極c3と同じものを実験1における電極a2と同様に400℃で3時間熱処理し、それぞれ電極c2及び電極c4とした。
【0306】
上記の電極c1〜c4を負極として用いる以外は、上記実験1と同様にしてリチウム二次電池を作製し、電池C1〜C4とした。これらの電池について、上記実験1と同様にして充放電サイクル寿命特性を測定した。また、実験1と同様に、各電極のシリコン薄膜の水素含有量、ラマン分光分析におけるピーク強度比(480cm-1/520cm-1)、及び結晶粒径を測定し、結果を表12に示した。
【0307】
【表12】
【0308】
表12に示す結果から明らかなように、微結晶シリコン薄膜の膜厚を約2μmとした電池C1〜C4においても、著しく高い容量維持率が得られている。
【0309】
次に、圧延銅箔上に微結晶シリコン薄膜を形成した電極c1を厚み方向にスライスし、顕微鏡観察用サンプルとし、これを透過型電子顕微鏡で観察した。
【0310】
図43及び図44は、電極c1における銅箔とシリコン薄膜の界面付近を示す透過型電子顕微鏡写真であり、図43は倍率50万倍であり、図44は倍率100万倍である。それぞれの写真において、下方は銅箔側であり、上方はシリコン薄膜側である。
【0311】
図43及び図44において、下方の明るい部分は銅箔部分であると思われるが、銅箔とシリコン薄膜の界面付近では、上方に向かって徐々に暗くなっている。この部分(約30nm〜100nm程度)は、銅箔の銅とシリコンとが特に多く混合した混合層の一部であると考えられる。この混合層においては、シリコン(Si)と銅(Cu)とが合金化していると考えられる。また、図43及び図44に示されるように、この混合層と思われる部分と銅箔との界面付近には、粒子状の部分が観察され、この粒子状部分では、銅(Cu)のシリコン(Si)への拡散による凹凸がその界面において認められる。
【0312】
次に、混合層の深さ方向における構成元素の濃度分布を測定するため、SIMSにより、O2 +をスパッタ源に用いて、銅元素(63Cu+)及び水素元素(1H+)の濃度を測定した。図45は、混合層の深さ方向における各構成元素の濃度分布を示しており、横軸は深さ(μm)を示しており、縦軸は原子密度(個/cm3)を示している。
【0313】
図45に示すように、混合層においては、深くなるにつれて、すなわち銅箔に近づくにつれて銅(Cu)の濃度が増加している。ここで、シリコン薄膜中において集電体材料が1%(原子密度で1020個/cm3)以上含まれている層を混合層とすると、深さ1.9μm程度の部分から2.7μm程度の部分まで混合層が存在することがわかる。
【0314】
次に、電解銅箔上に膜厚約2μmの微結晶シリコン薄膜を形成した電極c3について、上記と同様にしてSIMSにより混合層の深さ方向における各構成元素の濃度を測定した。図46は、この結果を示している。図46に示すように、電極c3においては、シリコン薄膜の表面において既に銅(Cu)の原子密度が1020個/cm3以上となっており、銅(Cu)がシリコン薄膜の表面まで拡散し、シリコン薄膜全体が混合層になっていることがわかる。また、この電極c3を用いた電池C3は良好な充放電サイクル特性を示しており、シリコン薄膜全体が混合層となっても電極活物質として作用していることがわかる。
【0315】
図45及び図46から明らかなように、シリコン薄膜中における銅(Cu)の濃度は連続的に変化している。従って、シリコン薄膜中において、銅元素はシリコンとの金属間化合物を形成するのではなく、シリコンとの固溶体を形成していることがわかる。
【0316】
以上のように、銅箔とシリコン薄膜の界面には、銅箔の銅とシリコン薄膜のシリコンとが混合した混合層が形成されていることが確認された。このような混合層の存在により、シリコン薄膜の銅箔に対する密着性が高められ、充放電によりシリコン薄膜が膨張収縮しても、シリコン薄膜が集電体である銅箔から剥離することなく、良好な充放電サイクル特性が得られるものと思われる。
【0317】
(実験A)
本発明のリチウム電池用電極においては、リチウムの吸蔵・放出により活物質薄膜が膨張・収縮するため、充放電反応に伴い集電体に応力が生じる。このような応力により、電極集電体に不可逆的、すなわち塑性変形によるしわが発生する。このしわの発生は、結果的に電池の体積増加と電極での反応の不均一性をもたらし、エネルギー密度を低下させる原因となる。そこで負極集電体である電解銅箔の厚みを変化させ、負極集電体の引張強度と、電極に発生するしわとの関係について以下検討した。
【0318】
〔負極の作製〕
電解銅箔としては、厚みが12μm、18μm、35μm、及び70μmの4種類の電解銅箔を用いた。なお、負極集電体である電解銅箔の厚みはマイクロメーターを用いて測定した。これらの集電体の引張強度(N/mm)は、(集電体材料の断面積当りの引張強さ:N/mm2)×(集電体の厚み:mm)により求めることができる。なお、銅の断面積当りの引張強さは、212.7N/mm2(21.7kgf/mm2、「改訂2版金属データブック」丸善株式会社発行)として計算している。
【0319】
上記の電解銅箔の上に、それぞれAr雰囲気中でのRFスパッタリング法によりシリコン薄膜を形成した。薄膜形成条件は、ターゲット:単結晶シリコン、高周波電力:350W、Arガス流量:100sccm、チャンバー内圧力:0.1Pa、基板温度:室温(加熱なし)とした。
【0320】
上記の薄膜形成条件で形成したシリコン薄膜は、ラマン分光分析の結果、非晶質シリコン薄膜であることがわかった。シリコン薄膜の厚みは、いずれも3.4μmであった。シリコン薄膜の厚みは、チャンバー内に、シリコン薄膜を形成する電解銅箔と共に、シリコン基板を設置しておき、シリコン基板上に形成されたシリコン薄膜の厚みを表面粗さ計で測定することにより求めた。具体的には、シリコン薄膜のエッジの部分を表面粗さ計で触針し、シリコン薄膜のエッジ部分の段差の高さを測定することにより求めた。
【0321】
シリコン薄膜は、銅箔上の2.5cm×2.5cmの領域に、マスクを用いて限定的に形成した。シリコン薄膜が形成されていない銅箔の上に負極タブを取り付け、負極を完成した。
【0322】
〔正極の作製〕
実験1の正極の作製で得られたLiCoO2粉末を用いて正極を作製した。具体的には、LiCoO2粉末90重量部、及び導電材としての人工黒鉛粉末5重量部を、結着剤としてのポリテトラフルオロエチレンを5重量部含む5重量%のN−メチルピロリドン水溶液に混合し、正極合剤スラリーとした。このスラリーをドクターブレード法により、正極集電体であるアルミニウム箔(厚み18μm)の2cm×2cmの領域の上に塗布した後乾燥し、正極活物質層を形成した。スラリーの塗布量としては、正極容量が15.75mAhとなるように調整した。正極活物質層を塗布しなかったアルミニウム箔の領域の上に正極タブを取り付け、正極を完成した。
【0323】
〔電解液の作製〕
エチレンカーボネートとジメチルカーボネートとの等体積混合溶媒に、LiPF6を1モル/リットル溶解して電解液を調製し、これを以下の電池の作製において用いた。
【0324】
〔電池の作製〕
図47は、作製したリチウム二次電池を示す斜視図である。図48は、作製したリチウム二次電池を示す断面模式図である。図48に示すように、アルミラミネートフィルムからなる外装体40内に、正極及び負極が挿入されている。負極集電体31の上には負極活物質としてのシリコン薄膜32が設けられており、正極集電体33の上には正極活物質層34が設けられている。シリコン薄膜32と正極活物質層34は、セパレーター35を介して対向するように配置されている。外装体40内には、上記の電解液36が注入されている。外装体40の端部は溶着により封口されており、封口部40aが形成されている。負極集電体31に取り付けられた負極タブ37は、この封口部40aを通り外部に取り出されている。なお、図48に図示されないが、正極集電体33に取り付けられた正極タブ38も、同様に封口部40aを通り外部に取り出されている。
【0325】
〔充放電サイクル試験〕
上記のようにして作製したリチウム二次電池について、充放電サイクル試験を行った。充放電の条件は、充電電流9mAで充電終止容量9mAhとなるまで充電した後、放電電流9mAで放電終止電圧2.75Vとなるまで放電し、これを1サイクルの充放電として、各電池について10サイクル目までの充放電効率を求めた。なお、厚みの異なる銅箔を用いた各電池についてそれぞれサンプルを3個(1C−1、1C−2、及び1C−3)作製し、測定した。結果を図49に示す。
【0326】
図49に示すように、銅箔の厚みの違いによる充放電サイクル特性への影響は特に認められず、いずれの厚みの銅箔を用いた場合にも良好な充放電サイクル特性が得られている。
【0327】
更に、10サイクル後、各電池から負極を取り出し、負極の状態を観察した。図50及び図51は、シリコン薄膜を形成した負極表面の状態を示しており、図52及び図53は、シリコン薄膜を形成していない負極裏面の状態を示している。なお、図50〜図53において、「12」、「18」、「35」、及び「70」は、それぞれ銅箔の厚みを示している。
【0328】
図52及び図53から明らかなように、充放電反応後において、厚み12μmの銅箔を用いた電極では多数のしわが観察される。これに対し、厚み18μmの銅箔を用いた電極においては、若干のしわが認められ、厚み35μm及び70μmの銅箔を用いた電極においては、ほとんどしわが観察されていない。これらの結果をまとめると、表13に示す通りとなる。表13における評価は、以下の基準で行っている。
【0329】
×:多数のしわが認められる。
【0330】
○:若干のしわが認められる。
【0331】
◎:ほとんどしわが認められない。
【0332】
【表13】
【0333】
表13から明らかなように、集電体の引張強度が3.82N/mm以上になると、急激に電極に発生するしわが少なくなり、7.44N/mm以上になると、しわがほとんど認められなくなることがわかる。また、シリコン薄膜の厚み/集電体の厚みの比が0.19以下になると急激に電極に発生するしわが少なくなり、0.10以下になるとしわがほとんど認められなくなることがわかる。これは、集電体が一定の引張強度以上となると、活物質薄膜の膨張・収縮による応力が、おおむね集電体の弾性変形で緩和されるためと考えられる。
【0334】
(実験B)
次に、負極集電体である電解銅箔の上に形成するシリコン薄膜の厚みを変化させ、シリコン薄膜の厚み1μmあたりの負極集電体の引張強度と、電極に発生するしわとの関係について検討した。
【0335】
〔負極の作製〕
負極集電体としては、厚みが18μmの電解銅箔を用いた。なお、電解銅箔の厚みは、実験Aと同様に、マイクロメーターを用いて測定した。また、集電体の引張強度(N/mm)も、実験Aと同様にして求めた。
【0336】
上記の電解銅箔の上に、実験Aと同様の薄膜形成条件で、非晶質シリコン薄膜を形成した。シリコン薄膜の厚みとしては、0.9μm、1.8μm、及び3.6μmの3種類のものを形成した。シリコン薄膜の厚みは、実験Aと同様にして求めた。
【0337】
実験Aと同様にして、負極タブを銅箔の上に取り付け、負極を完成した。
【0338】
〔電池の作製〕
実験Aと同様にして、正極及び電解液を作製し、実験Aと同様にしてリチウム二次電池を作製した。
【0339】
〔充放電サイクル試験〕
上記のようにして作製した、シリコン薄膜の厚みが異なる負極を用いた各リチウム二次電池について、実験Aと同様の条件で充放電サイクル試験を行った。各電池についての30サイクル目までの充放電効率を求めた。なお、シリコン薄膜の厚みの異なる負極を用いた各電池について、それぞれサンプルを3個作製し、測定した。結果を図54に示す。図54における「0.9μm」、「1.8μm」、及び「3.6μm」は、いずれもシリコン薄膜の厚みを示しており、各サイクルにおける充放電効率は、サンプル3個の平均値である。
【0340】
図54から明らかなように、シリコン薄膜の厚みの違いによる充放電サイクル特性への影響は特に認められず、いずれの厚みのシリコン薄膜を用いた場合にも良好な充放電サイクル特性が得られている。
【0341】
更に、10サイクル充放電した後、すなわち40サイクル後、各電池から電極を取り出し、負極の状態を観察した。図55は、負極裏面の状態、すなわちシリコン薄膜を形成していない面の状態を示している。なお、図55において、「0.9」、「1.8」、及び「3.6」は、それぞれシリコン薄膜の厚みを示している。
【0342】
図55から明らかなように、充放電反応後において、厚み3.6μmのシリコン薄膜を形成した電極では多数のしわが観察されている。これに対し、厚み1.8μmのシリコン薄膜を形成した電極においては、若干のしわが認められ、厚み0.9μmのシリコン薄膜を形成した電極においては、ほとんどしわが観察されていない。これらの結果をまとめると、表14に示す通りとなる。表14における評価は、表13における評価と同様の基準で行っている。
【0343】
【表14】
【0344】
さらに、実験Aの表13に示す結果と併せ、シリコン薄膜1μmあたりの集電体の引張強度の順に並べ替えたものを表15として示す。
【0345】
【表15】
【0346】
表15から明らかなように、シリコン薄膜1μmあたりの集電体の引張強度が1.12N/mm以上になると、急激に電極に発生するしわが少なくなることがわかる。また、表15に示す結果から、シリコン薄膜の厚み1μmあたりの負極集電体の引張強度が2.18N/mm以上になると、さらに発生するしわが少なくなり、ほとんどしわが認められなくなることがわかる。また、図53に示す「35」と図55に示す「0.9」とをさらに詳細に比較すると、どちらも「◎」の評価であるが、図55に示す「0.9」の方がしわが少なくなっている。このことから、シリコン薄膜の厚み1μmあたりの負極集電体の引張強度が4.25N/mm以上になると、さらに発生するしわが少なくなることがわかる。
【0347】
上記と同様にして、シリコン薄膜の厚み/集電体の厚みの比の観点からみると、この比が0.19以下であると急激に発生するしわが少なくなり、0.098以下になるとさらに少なくなり、0.05以下になるとさらにしわが少なくなることがわかる。
【0348】
以上のことより、活物質薄膜の厚み1μmあたりの負極集電体の引張強度が一定の値以上になると、活物質薄膜の膨張・収縮による応力が、集電体の弾性変形によってほぼ緩和されるため、しわの発生が少なくなると考えられる。同様に、負極集電体の厚みに対する活物質薄膜の厚みの比が一定の値以下になると、活物質薄膜の膨張・収縮による応力が、集電体の弾性変形によってほぼ緩和されるため、しわの発生が少なくなると考えられる。
【0349】
以下、本発明の第5の局面に従う実施例を説明する。
【0350】
(実施例A)
〔負極の作製〕
図56及び図58に示すような負極20を作製した。図56は平面図であり、図58は側面図である。図58に示すように、電解銅箔21の一方の面21aの上に微結晶シリコン薄膜22aを形成し、他方の面21bの上に微結晶シリコン薄膜22bを形成した。
【0351】
電解銅箔21は、圧延銅箔を電解液中に浸漬し、その両面に電解法により銅を析出させて両面を粗面化した銅箔である。電解銅箔21の大きさは20mm×30mmであり、微結晶シリコン薄膜22a及び22bを形成した領域の大きさは20mm×20mmである。電解銅箔21の厚みは18μmであり、微結晶シリコン薄膜22a及び22bの厚みはそれぞれ約5μmである。電解銅箔21の表面21a及び21bの表面粗さRaは0.20μmであり、局部山頂の平均間隔Sは10μmである。
【0352】
微結晶シリコン薄膜22a及び22bは、プラズマCVD法により形成した。原料ガスとしてシラン(SiH4)ガスを用い、キャリアガスとして水素ガスを用いた。薄膜形成条件は、SiH4流量:10sccm、H2ガス流量:200sccm、基板温度:180℃、反応圧力40Pa、高周波電力:555Wとした。
【0353】
図56及び図58に示すように、微結晶シリコン薄膜22a及び22bが形成されていない電解銅箔21の表面21aの領域上に、ニッケル製のタブ23を取り付け、負極電極を完成した。
【0354】
〔正極の作製〕
図57に示すような正極25を作製した。図57に示すように、集電体であるアルミニウム箔26の上に、LiCoO2正極合剤スラリーを塗布した後乾燥し、正極活物質層27a及び27bを形成した。アルミニウム箔26としては、大きさ20mm×60mmのものを用いた。正極活物質層27a及び27bの形成面積は、それぞれ20mm×20mmとした。正極合剤スラリーは以下のようにして調製した。
【0355】
出発原料として、Li2CO3及びCoCO3を用いて、Li:Coの原子比が1:1となるように秤量して乳鉢で混合し、これを直径17mmの金型でプレスし加圧成形した後、空気中において800℃で24時間焼成し、LiCoO2の焼成体を得た。これを乳鉢で平均粒子径20μmとなるまで粉砕した。
【0356】
得られたLiCoO2粉末90重量部、及び導電材としての人造黒鉛粉末5重量部を、結着剤としてのポリテトラフルオロエチレンを5重量部含む5重量%のN−メチルピロリドン水溶液に混合し、正極合剤スラリーとした。
【0357】
アルミニウム箔26の裏面に、図57に示すようにアルミニウム製のタブ28を取り付け、正極電極を完成した。
【0358】
〔電解液の作製〕
エチレンカーボネートとジエチルカーボネートとの等体積混合溶媒に、LiPF6を1モル/リットル溶解して電解液を調製し、これを以下の電池の作製において用いた。
【0359】
〔電池の作製〕
図59は、作製したリチウム二次電池を示す平面図である。図60は、図59のA−A線に沿う断面図である。図60に示すように、アルミラミネートフィルムからなる封筒型の容器30内に、上記の負極20及び正極25を配置することにより、電池が組み立てられている。正極活物質層27a及び27bが内側となるように正極25を折り曲げ、その内側に負極20が挿入されている。負極20の微結晶シリコン薄膜22aは、セパレーター29aを介して正極活物質層27aと対向しており、微結晶シリコン薄膜22bは、セパレーター29bを介して正極活物質層27bと対向している。このような状態で、容器30内に正極25及び負極20を挿入した後、105℃で2時間の真空加熱処理を行い、次に上記の電解液を容器30内に注入した後、図59に示す封口部31で封口し、リチウム二次電池を作製した。
【0360】
(比較例a)
〔負極の作製〕
電解銅箔21の一方の面21a上にのみ微結晶シリコン薄膜22aを形成する以外は、上記実施例Aの負極の作製と同様にして負極を作製した。
【0361】
〔正極の作製〕
図57に示すアルミニウム箔26の上に、正極活物質層として正極活物質層27aのみを形成する以外は、上記実施例Aの正極の作製と同様にして正極を作製した。
【0362】
〔電池の作製〕
上記実施例Aと同様に、正極25を正極活物質層27aが内側となるように2つに折り曲げ、その間に負極20を挿入した。微結晶シリコン薄膜22aと正極活物質層27aの間にはセパレーター29aを介し、微結晶シリコン薄膜22bが設けられていない電解銅箔21の面と、正極活物質層27bが設けられていないアルミニウム箔26の面との間にはセパレーター29bを介し、その他は上記実施例Aと同様にしてリチウム二次電池を作製した。
【0363】
(充放電サイクル試験)
上記の実施例A及び比較例aのリチウム二次電池について、充放電サイクル試験を行った。充放電の条件は、25℃において充放電電流密度0.2mA/cm2で4.2Vまで充電した後、2.75Vまで放電し、これを1サイクルの充放電とし、各電池について15サイクル目の容量維持率を測定した。なお、1サイクル目の放電容量は、実施例Aの電池が25mAhであり、比較例aの電池が12mAhであった。
【0364】
結果を表16に示す。
【0365】
【表16】
【0366】
表16に示す結果から明らかなように、実施例Aの電池は、比較例aの電池に比べ、高い容量維持率を示している。これは、負極集電体の両面に微結晶シリコン薄膜を形成することにより、負極集電体の充放電反応によって生じる歪みが軽減され、負極集電体からの活物質薄膜の剥離が抑制されたことによるものであると思われる。
【0367】
(実施例B)
本発明に従うリチウム二次電池として、正極及び負極が図61に示すようなスタック構造となるように組み合わされたリチウム二次電池を作製した。
【0368】
〔負極の作製〕
実施例Aで用いた両面を粗面化した電解銅箔の両面上に、実施例Aと同様にして厚み約5μmの微結晶シリコン薄膜を形成し負極とした。
【0369】
〔正極の作製〕
実施例Aと同様にして得られたLiCoO2粉末85重量部、導電材としての人造黒鉛粉末10重量部、結着剤としてのポリテトラフルオロエチレン5重量部を含む5重量%のN−メチルピロリドン水溶液を作製し、正極合剤スラリーとした。これを、厚み20μmのアルミニウム箔の両面の上に塗布した後乾燥し、両面上に正極活物質層が形成された正極とした。
【0370】
〔電池の作製〕
以上のようにして得られた、両面上に微結晶シリコン薄膜を形成した負極41と、両面上に正極活物質層を形成した正極42とを、図61に示すように、セパレータ43を介して交互に積層しスタック型電極構造を構成した。なお、負極41の上方端部には負極タブ41aが設けられており、正極42の上方端部には正極タブ42aが設けられている。負極41及び正極42をそれぞれ8枚用い、正極と負極の組み合わせを8段積層した。
【0371】
上記のスタック状に積層した電極群を、図62に示すような、アルミニウム製ラミネートからなる外装体44の内部に挿入した後、外装体44内に電解液を注液して封口した。負極タブ41a及び正極タブ42aが外装体44の外部に出るように配置して、封口した。
【0372】
なお、外装体44内に注液する電解液としては、エチレンカーボネートとジエチルカーボネートとの4:6混合溶媒に、LiPF6を1モル/リットル溶解したものを用いた。
【0373】
(比較例b)
天然黒鉛を活物質として用いた負極を作製した。具体的には、天然黒鉛粉末95重量部と結着剤としてのポリテトラフルオロエチレン5重量部を含む5重量%のN−メチルピロリドン水溶液を作製し、負極合剤スラリーとした。これを、厚み18μmの圧延銅箔の両面上に塗布した後乾燥し、負極とした。
【0374】
以上のようにして得られた負極を用いる以外は、上記実施例Bと同様にして図61及び図62に示すリチウム二次電池を作製した。
【0375】
実施例B及び比較例bのリチウム二次電池の放電容量、平均放電電圧、体積当たりのエネルギー密度及び重量当たりのエネルギー密度を表17に示す。なお、実施例Bで用いた正極活物質の初期放電容量を150mAh/gとし、実施例Bで用いた負極活物質の初期放電容量を3200mAh/gとし、比較例bで用いた負極活物質の初期放電容量を370mAh/gとしている。
【0376】
【表17】
【0377】
表17に示すように、本発明に従うリチウム二次電池用電極を負極として用いた実施例Bは、従来のグラファイトの負極を用いた比較例bに比べ、体積当たりのエネルギー密度及び重量当たりのエネルギー密度が高くなることがわかる。
【0378】
(実施例C)
図63に示すコイン型のリチウム二次電池を作製した。負極は、負極集電体51の両面上に、それぞれ微結晶シリコン薄膜52a及び52bを形成することにより構成されている。負極集電体51としては、実施例Bに用いた両面が粗面化された電解銅箔を用いている。また、微結晶シリコン薄膜52a及び52bも、実施例Bと同様にして形成されている。
【0379】
正極は、U字形状に曲げられた正極集電体54の内側に、正極活物質層55a及び55bを設けることにより構成されている。正極集電体54としては、実施例Bにおいて用いたアルミニウム箔と同様のアルミニウム箔が用いられている。また、正極活物質層55a及び55bも、実施例Bにおける正極活物質層と同様にして形成されている。
【0380】
図63に示すように、U字形状に折り曲げられた正極集電体54の内側に、負極が挿入されている。負極の負極活物質層であるシリコン薄膜52a及び52bと、正極の正極活物質層55a及び55bとの間には、それぞれセパレータ56a及び56bが配置されている。
【0381】
負極集電体51は負極タブ53と接続されており、負極タブ53は、負極缶58に接続されている。負極缶58側の正極集電体54と、負極缶58との間には、絶縁シート57が設けられており、絶縁シート57によって、負極缶58と正極集電体54とが電気的に絶縁されている。
【0382】
正極集電体54は、正極缶59と接するように設けられており、これにより正極集電体54と正極缶59とが電気的に接続されている。負極缶58と正極缶59の間には、絶縁パッキング60が設けられており、これにより電気的に絶縁され、電池缶内が密閉されている。電池缶内には、実施例Bと同様の電解液が封入されている。
【0383】
(比較例c)
負極として、比較例bと同様の天然黒鉛を活物質とした負極活物質層を形成したものを用いる以外は、上記実施例Cと同様にしてコイン型のリチウム二次電池を作製した。
【0384】
実施例C及び比較例cのコイン型リチウム二次電池の放電容量、平均放電電圧、体積当たりのエネルギー密度、及び重量当たりのエネルギー密度を表18に示す。
【0385】
【表18】
【0386】
表18に示すように、本発明に従うリチウム二次電池用電極を負極に用いた実施例Cのリチウム二次電池は、比較例cのリチウム二次電池に比べ、体積当たり及び重量当たりのエネルギー密度において優れていることがわかる。
【0387】
(実施例D)
図64に示すラミネートタイプのリチウム二次電池を作製した。図64において、負極61は、図63に示す負極と同様に、電解銅箔の両面上に膜厚5μmの微結晶シリコン薄膜を形成することにより構成されている。正極62も、図63に示す正極と同様に、U字形状に折り曲げられた正極集電体であるアルミニウム箔の内側に、一対の正極活物質層を設けることにより構成されている。負極61が、U字形状の正極62の内側に挿入されて1組の電池65が構成されている。負極61からは負極タブ63が外部に取り出され、正極62からは正極タブ64が外部に取り出されている。この1組の電池65を4段積層し、アルミニウムラミネートからなる外装体66の内部に挿入されている。なお、図64には、1組の電池65を3段積層した状態が示されているが、実際には上述のように4段積層されている。外装体66の内部には、実施例Bと同様の電解液が注入されている。
【0388】
図65は、図64に示すラミネートタイプのリチウム二次電池の平面図である。図65に示すように、外装体66の三方を溶着し、溶着部67が形成されてい
る。負極タブ63及び正極タブ64は、外装体66の外部に引き出されている。
【0389】
(比較例d)
比較例bと同様に、負極としてグラファイトを用いた負極を用いる以外は、上記実施例Dと同様にしてラミネートタイプのリチウム二次電池を作製した。
【0390】
実施例D及び比較例dのリチウム二次電池の放電容量、平均放電電圧、体積当たりのエネルギー密度、及び重量当たりのエネルギー密度を表19に示す。
【0391】
【表19】
【0392】
表19から明らかなように、本発明に従うリチウム二次電池用電極を負極に用いた実施例Dのリチウム二次電池は、比較例dのリチウム二次電池に比べ、体積当たり及び重量当たりのエネルギー密度において優れている。
【0393】
(実施例E)
図66に示す円筒型のリチウム二次電池を作製した。正極71と負極72の間にセパレータ73を挟み、さらに正極71の外側にさらに別のセパレータ73を配置し、この状態でスパイラル状に巻き付けて電池缶内に挿入されている。正極71及び負極72としては、実施例Bと同様に、アルミニウム箔の両面上に正極活物質層を形成したもの及び電解銅箔の両面上に微結晶シリコン薄膜を形成したものを用いた。電池缶内には、実施例Bと同様の電解液が注入されている。
【0394】
負極72は負極缶74にリードによって電気的に接続されており、正極71は正極端子75にリードにより電気的に接続されている。
【0395】
(比較例e)
負極として、グラファイトを活物質とした比較例bと同様の負極を用いる以外は、上記実施例Eと同様にして円筒型リチウム二次電池を作製した。
【0396】
実施例E及び比較例eのリチウム二次電池の放電容量、平均放電電圧、体積当たりのエネルギー密度、及び重量当たりのエネルギー密度を表20に示す。
【0397】
【表20】
【0398】
表20から明らかなように、本発明に従うリチウム二次電池用電極を負極として用いた実施例Eのリチウム二次電池は、比較例eのリチウム二次電池に比べ、体積当たり及び重量当たりのエネルギー密度において優れている。
【0399】
(実施例F)
図67に示す角形リチウム二次電池を作製した。図66に示す円筒型リチウム二次電池と同様に、正極71と負極72の間及び正極71の外側に、それぞれセパレータ73を配置し、これをスパイラル状に巻き取った後、扁平化して負極缶74内に収納している。負極72としては、実施例Bと同様に電解銅箔の両面に微結晶シリコン薄膜を形成したものを用いた。負極72はリードにより負極缶74に電気的に接続されており、正極71はリードにより、正極端子75に電気的に接続されている。電池缶内には、実施例Bと同様の電解液が注入されている。
【0400】
(比較例f)
負極として、グラファイトを活物質とした比較例bと同様の負極を用いる以外は、上記実施例Fと同様にして角形リチウム二次電池を作製した。
【0401】
実施例F及び比較例fの放電容量、平均放電電圧、体積当たりのエネルギー密度、及び重量当たりのエネルギー密度を表21に示す。
【0402】
【表21】
【0403】
表21から明らかなように、本発明に従うリチウム二次電池用電極を負極として用いた実施例Fのリチウム二次電池は、比較例fのリチウム二次電池に比べ、体積当たり及び重量当たりのエネルギー密度において優れている。
【産業上の利用可能性】
【0404】
本発明の第1の局面及び及び第2の局面によれば、充放電容量が高く、かつ充放電サイクル特性に優れたリチウム二次電池とすることができる。
【0405】
本発明の第3の局面によれば、充放電容量が高く、かつ充放電サイクル特性に優れたリチウム二次電池用電極であり、充放電によって電極にしわが発生するのを抑制することができるリチウム二次電池用電極とすることができる。
【0406】
本発明の第4の局面によれば、集電体の上に、活物質薄膜と合金化する材料からなる中間層を形成した後、該中間層の上に活物質薄膜を形成することにより、集電体からの活物質薄膜の脱離を防止することができ、集電特性を高めて、良好な充放電サイクルを得ることができる。
【0407】
本発明の第5の局面によれば、リチウム二次電池用電極において、充放電反応により生じる集電体の歪みを小さくすることができ、さらにリチウム二次電池の充放電サイクル特性を向上させることができる。
Claims (316)
- リチウムを吸蔵・放出する活物質を含むリチウム電池用電極であって、前記活物質として集電体上に設けられた非結晶シリコン薄膜を用い、前記シリコン薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記切れ目が初回以降の充放電で形成されていることを特徴とするリチウム電池用電極。
- リチウムを吸蔵・放出する活物質を含むリチウム電池用電極であって、前記活物質として集電体上に設けられた微結晶シリコン薄膜を用い、前記シリコン薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記切れ目が初回以降の充放電で形成されていることを特徴とするリチウム電池用電極。
- 前記非結晶シリコンまたは前記微結晶シリコンが水素を含むことを特徴とする請求項1または2に記載のリチウム電池用電極。
- 前記微結晶シリコン中の結晶領域のサイズが、X線回折スペクトルとScherrerの式から算出される結晶粒径として0.5nm以上であることを特徴とする請求項2または3に記載のリチウム電池用電極。
- 前記微結晶シリコンのラマン分光分析における520cm-1 近傍のピーク
強度に対する480cm-1 近傍のピーク強度比(480cm-1 近傍/520cm-1 近
傍)が0.05以上であることを特徴とする請求項2〜4のいずれか1項に記載のリチウム電池用電極。 - リチウムを吸蔵・放出する活物質を含むリチウム電池用電極であって、前記活物質として集電体上に設けられた水素を含む非結晶シリコン薄膜を用い、前記シリコン薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記切れ目が初回以降の充放電で形成されていることを特徴とするリチウム電池用電極。
- リチウムを吸蔵・放出する活物質を含むリチウム電池用電極であって、前記活物質として集電体上に設けられた水素を含む微結晶シリコン薄膜を用い、前記シリコン薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記切れ目が初回以降の充放電で形成されていることを特徴とするリチウム電池用電極。
- 水素濃度が0.001原子%以上であることを特徴とする請求項3、6または7のいずれか1項に記載のリチウム電池用電極。
- 前記シリコン薄膜が、気相からシリコン材料を供給することにより集電体上に堆積させたシリコン薄膜であることを特徴とする請求項1〜8のいずれか1項に記載のリチウム電池用電極。
- 前記シリコン材料とともに水素ガスを導入することを特徴とする請求項9に記載のリチウム電池用電極。
- リチウムを吸蔵・放出する活物質を含むリチウム電池用電極であって、前記活物質として、気相からシリコン材料とともに水素ガスを供給することにより集電体上に形成したシリコン薄膜を用い、前記シリコン薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記切れ目が初回以降の充放電で形成されていることを特徴とするリチウム電池用電極。
- 前記シリコン材料が、シリコン原子を含む原料ガスまたはシリコン原子を含む原料パウダーであることを特徴とする請求項9〜11のいずれか1項に記載のリチウム電池用電極。
- 前記シリコン薄膜を形成する方法がCVD法、スパッタリング法、溶射法、または真空蒸着法である請求項1〜12のいずれか1項に記載のリチウム電池用電極。
- 前記シリコン薄膜が、中間層を介して集電体上に設けられている請求項1〜13のいずれか1項に記載のリチウム電池用電極。
- 前記集電体が、銅、ニッケル、ステンレス、モリブデン、タングステン、及びタンタルから選ばれる少なくとも1種であることを特徴とする請求項1〜14のいずれか1項に記載のリチウム電池用電極。
- 請求項1〜15のいずれか1項に記載のシリコン薄膜に予めリチウムが添加されていることを特徴とするリチウム電池用電極。
- 前記集電体の表面粗さRaが0.01〜1μmであることを特徴とする請求項1〜16のいずれか1項に記載のリチウム電池用電極。
- 前記集電体が銅箔であることを特徴とする請求項17に記載のリチウム電池用電極。
- 前記銅箔が電解銅箔であることを特徴とする請求項18に記載のリチウム電池用電極。
- 前記集電体の表面粗さRaが、活物質の厚みtに対してRa≦tの関係を有することを特徴とする請求項1〜19のいずれか1項に記載のリチウム電池用電極。
- 前記集電体の表面粗さRaと局部山頂の平均間隔Sが、100Ra≧Sの関係を有することを特徴とする請求項1〜20のいずれか1項に記載のリチウム電池用電極。
- 前記シリコン薄膜の厚み方向において、少なくとも厚みの1/2以上の部分が、前記切れ目によって柱状に分離されていることを特徴とする請求項1〜21のいずれか1項に記載のリチウム電池用電極。
- 充放電前において前記シリコン薄膜の表面に凹凸が形成されており、初回以降の充放電により前記薄膜にその表面の凹凸の谷部を端部とする切れ目が形成され、この切れ目によって前記薄膜が柱状に分離されている請求項1〜22のいずれか1項に記載のリチウム電池用電極。
- 前記シリコン薄膜表面の凹凸が、下地層である集電体表面の凹凸に対応している請求項23に記載のリチウム電池用電極。
- 前記集電体表面の凹凸の凸部が錐体状であることを特徴とする請求項24に記載のリチウム電池用電極。
- 前記柱状部分の上方部が丸みを帯びた形状であることを特徴とする請求項1〜25のいずれか1項に記載のリチウム電池用電極。
- 請求項1〜26のいずれか1項に記載のリチウム電池用電極において、前記切れ目が、前記シリコン薄膜中の厚み方向に延びる低密度領域に沿って形成されたものであることを特徴とするリチウム電池用電極。
- 前記低密度領域が前記集電体表面の凹凸の谷部から上方に向かって延びていることを特徴とする請求項27に記載のリチウム電池用電極。
- 前記シリコン薄膜に前記集電体の成分が拡散していることを特徴とする請求項1〜28のいずれか1項に記載のリチウム電池用電極。
- リチウムを吸蔵・放出する活物質からなる薄膜が集電体上に設けられたリチウム電池用電極であって、
前記薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記切れ目が初回以降の充放電で形成されていることを特徴とするリチウム電池用電極。 - 前記薄膜の厚み方向において、少なくとも厚みの1/2以上の部分が、前記切れ目によって柱状に分離されていることを特徴とする請求項30に記載のリチウム電池用電極。
- 充放電前において前記薄膜の表面に凹凸が形成されており、初回以降の充放電により前記薄膜にその表面の凹凸の谷部を端部とする切れ目が形成され、この切れ目によって前記薄膜が柱状に分離されている請求項30または31に記載のリチウム電池用電極。
- 前記薄膜表面の凹凸が、下地層である集電体表面の凹凸に対応している請求項32に記載のリチウム電池用電極。
- 前記集電体表面の凹凸の凸部が錐体状であることを特徴とする請求項33に記載のリチウム電池用電極。
- 前記柱状部分の上方部が丸みを帯びた形状であることを特徴とする請求項30〜34のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が、リチウムと化合物もしくは固溶体を形成する周期律表IIB族、IIIB族、IVB族及びVB族の元素、並びに周期律表4周期、5周期及び6周期の遷移金属元素の酸化物及び硫化物から選ばれる少なくとも1種の材料から構成されていることを特徴とする請求項30〜35のいずれか1項に記載のリチウム電池用電極。
- 前記元素が、炭素、シリコン、ゲルマニウム、錫、鉛、アルミニウム、インジウム、亜鉛、カドミウム、ビスマス、及び水銀から選ばれる少なくとも1種であることを特徴とする請求項36に記載のリチウム電池用電極。
- 前記元素がシリコンであることを特徴とする請求項36に記載のリチウム電池用電極。
- 前記元素がゲルマニウムであることを特徴とする請求項36に記載のリチウム電池用電極。
- 前記薄膜が非結晶薄膜であることを特徴とする請求項30〜39のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が非晶質薄膜であることを特徴とする請求項30〜39のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が非結晶シリコン薄膜であることを特徴とする請求項30〜35のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が微結晶シリコン薄膜であることを特徴とする請求項30〜35のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が非晶質シリコン薄膜であることを特徴とする請求項30〜35のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が非結晶ゲルマニウム薄膜であることを特徴とする請求項30〜35のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が非晶質ゲルマニウム薄膜であることを特徴とする請求項30〜35のいずれか1項に記載のリチウム電池用電極。
- 前記集電体が、鋼、ニッケル、ステンレス、モリブデン、タングステン、及びタンタルから選ばれる少なくとも1種であることを特徴とする請求項30〜46のいずれか1項に記載のリチウム電池用電極。
- 前記集電体の表面粗さRaが0.01〜1μmであることを特徴とする請求項30〜47のいずれか1項に記載のリチウム電池用電極。
- 前記集電体が銅箔であることを特徴とする請求項30〜48のいずれか1項に記載のリチウム電池用電極。
- 前記銅箔が電解銅箔であることを特徴とする請求項49に記載のリチウム電池用電極。
- 請求項30〜50のいずれか1項に記載のリチウム電池用電極において、前記切れ目が、前記薄膜中の厚み方向に延びる低密度領域に沿って形成されたものであることを特徴とするリチウム電池用電極。
- 前記低密度領域が前記集電体表面の凹凸の谷部から上方に向かって延びていることを特徴とする請求項51に記載のリチウム電池用電極。
- 請求項1〜52のいずれか1項に記載の電極からなる負極と、正極と、電解質とを備えるリチウム電池。
- 請求項1〜52のいずれか1項に記載の電極からなる負極と、正極と、非水電解質とを備えるリチウム二次電池。
- U字形状に折り曲げられた集電体の内側に一対の負極活物質層が対向するように設けられた負極と、
集電体の両面上に正極活物質層が設けられ、前記U字形状の負極の内側に挿入される正極と、
前記正極の正極活物質層と前記負極の負極活物質層の間に配置されるセパレータとを備え、
前記負極が請求項1〜52のいずれか1項に記載の電極であることを特徴とするリチウム二次電池。 - 前記正極がリチウムを吸蔵・放出可能な酸化物を活物質として含むことを特徴とする請求項54または55に記載のリチウム二次電池。
- 前記正極がリチウム含有酸化物を活物質として含むことを特徴とする請求項54または55に記載のリチウム二次電池。
- 薄膜からなる電極材料層と、前記電極材料層と密着した集電体とを備え、
前記薄膜には、面方向に網目状に連なりかつ前記集電体に向かって厚み方向に延びた低密度領域が形成されていることを特徴とする二次電池用電極。 - 前記薄膜に前記集電体の成分が拡散していることを特徴とする請求項58に記載の二次電池用電極。
- 前記薄膜が前記集電体上に薄膜形成法により形成した薄膜であることを特徴とする請求項58または59に記載の二次電池用電極。
- 前記薄膜形成法が、CVD法、スパッタリング法、蒸着法、溶射法、またはめっき法であることを特徴とする請求項60に記載の二次電池用電極。
- 前記集電体がその表面に凹凸を有しており、該凹凸の谷部を基部として前記低密度領域が形成されていることを特徴とする請求項58〜61のいずれか1項に記載の二次電池用電極。
- 前記集電体表面の凹凸の凸部が錐体状であることを特徴とする請求項62に記載の二次電池用電極。
- 前記薄膜の表面に前記集電体表面の凹凸に対応した凹凸が形成されていることを特徴とする請求項58〜63のいずれか1項に記載の二次電池用電極。
- 前記薄膜の膨張収縮により、前記低密度領域に沿って厚み方向に切れ目が形成され、これによって前記薄膜が柱状に分離されていることを特徴とする請求項58〜64のいずれか1項に記載の二次電池用電極。
- 前記薄膜の膨張収縮が、充放電によって与えられることを特徴とする請求項65に記載の二次電池用電極。
- 前記薄膜がシリコン薄膜であることを特徴とする請求項58〜66のいずれか1項に記載の二次電池用電極。
- 前記シリコン薄膜が非晶質シリコン薄膜または微結晶シリコン薄膜であることを特徴とする請求項67に記載の二次電池用電極。
- 前記薄膜がゲルマニウム薄膜であることを特徴とする請求項58〜66のいずれか1項に記載の二次電池用電極。
- 前記ゲルマニウム薄膜が非晶質ゲルマニウム薄膜または微結晶ゲルマニウム薄膜であることを特徴とする請求項69に記載の二次電池用電極。
- 前記集電体が銅箔であることを特徴とする請求項58〜70のいずれか1項に記載の二次電池用電極。
- 前記銅箔が電解銅箔であることを特徴とする請求項71に記載の二次電池用電極。
- 請求項58〜72のいずれか1項に記載の電極を用いたことを特徴とする二次電池。
- 前記電極が二次電池の正極及び/または負極であることを特徴とする請求項73に記載の二次電池。
- 前記二次電池が非水電解質二次電池であることを特徴とする請求項73または74に記載の二次電池。
- 前記非水電解質二次電池がリチウム二次電池であることを特徴とする請求項75に記載の二次電池。
- リチウムを吸蔵・放出する材料からなる活物質を含むリチウム電池用電極であって、前記活物質が、結晶領域と、前記結晶領域と同種の材料または異なる材料からなる非晶質領域とから実質的に構成され、前記活物質が集電体上に形成された薄膜であり、前記薄膜がその厚み方向に形成された切れ目によって柱状に分離されており、かつ該柱状部分の底部が前記集電体と密着していることを特徴とするリチウム電池用電極。
- 前記結晶領域のまわりに前記非晶質領域が配置していることを特徴とする請求項77に記載のリチウム電池用電極。
- 前記結晶領域が微小な結晶粒から構成されていることを特徴とする請求項77または78に記載のリチウム電池用電極。
- 前記結晶領域及び/または前記非晶質領域が、リチウムと化合物もしくは固溶体を形成する周期律表IIB族、IIIB族、IVB族及びVB族の元素、並びに周期律表4周期、5周期及び6周期の遷移金属元素の酸化物及び硫化物から選ばれる少なくとも1種の材料から構成されていることを特徴とする請求項77〜79のいずれか1項に記載のリチウム電池用電極。
- 前記元素が、炭素、シリコン、ゲルマニウム、錫、鉛、アルミニウム、インジウム、亜鉛、カドミウム、ビスマス、及び水銀から選ばれる少なくとも1種であることを特徴とする請求項80に記載のリチウム電池用電極。
- 前記元素がシリコンであることを特徴とする請求項80に記載のリチウム電池用電極。
- 前記非晶質領域が水素を含むことを特徴とする請求項77〜82のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が中間層を介して集電体上に形成されていることを特徴とする請求項77〜83のいずれか1項に記載のリチウム電池用電極。
- 前記集電体が、銅、ニッケル、ステンレス、モリブデン、タングステン、タンタル、及び炭素から選ばれる少なくとも1種であることを特徴とする請求項77〜84のいずれか1項に記載のリチウム電池用電極。
- 前記集電体の表面粗さRaが0.01〜1μmであることを特徴とする請求項77〜85のいずれか1項に記載のリチウム電池用電極。
- 前記集電体が銅箔であることを特徴とする請求項77〜86のいずれか1項に記載のリチウム電池用電極。
- 前記銅箔が電解銅箔であることを特徴とする請求項77〜87のいずれか1項に記載のリチウム電池用電極。
- 前記集電体の表面粗さRaが、活物質の厚みtに対してRa≦tの関係を有することを特徴とする請求項77〜88のいずれか1項に記載のリチウム電池用電極。
- 前記集電体の表面粗さRaと局部山頂の平均間隔Sが、100Ra≧Sの関係を有することを特徴とする請求項77〜89のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜の厚み方向において、少なくとも厚みの1/2以上の部分が、前記切れ目によって柱状に分離されていることを特徴とする請求項77〜90のいずれか1項に記載のリチウム電池用電極。
- 前記切れ目が初回以降の充放電で形成されることを特徴とする請求項77〜91のいずれか1項に記載のリチウム電池用電極。
- 充放電前において前記活物質薄膜の表面に凹凸が形成されており、初回以降の充放電により前記薄膜にその表面の凹凸の谷部を端部とする切れ目が形成され、この切れ目によって前記薄膜が柱状に分離されている請求項92に記載のリチウム電池用電極。
- 前記活物質薄膜表面の凹凸が、下地層である集電体表面の凹凸に対応している請求項93に記載のリチウム電池用電極。
- 前記集電体表面の凹凸の凸部が錐体状であることを特徴とする請求項94に記載のリチウム電池用電極。
- 前記柱状部分の上方部が丸みを帯びた形状であることを特徴とする請求項77〜95のいずれか1項に記載のリチウム電池用電極。
- 前記切れ目が、充放電前に予め形成されていることを特徴とする請求項77〜91及び96のいずれか1項に記載のリチウム電池用電極。
- 請求項77〜97のいずれか1項に記載のリチウム電池用電極において、前記切れ目が、前記活物質薄膜中の厚み方向に延びる低密度領域に沿って形成されたものであることを特徴とするリチウム電池用電極。
- 前記低密度領域が前記集電体表面の凹凸の谷部から上方に向かって延びていることを特徴とする請求項98に記載のリチウム電池用電極。
- 前記活物質薄膜に前記集電体の成分が拡散していることを特徴とする請求項77〜99のいずれか1項に記載のリチウム電池用電極。
- 請求項77〜100のいずれか1項に記載の電極からなる負極と、正極と、電解質とを備えるリチウム電池。
- 請求項77〜100のいずれか1項に記載の電極からなる負極と、正極と、非水電解質とを備えるリチウム二次電池。
- 前記正極がリチウムを吸蔵・放出可能な酸化物を活物質として含むことを特徴とする請求項102に記載のリチウム二次電池。
- 前記正極がリチウム含有酸化物を活物質として含むことを特徴とする請求項102に記載のリチウム二次電池。
- 請求項1〜52、58〜72、及び77〜100のいずれか1項に記載のリチウム電池用電極において、
前記集電体の引張強度が3.82N/mm以上であることを特徴とするリチウム電池用電極。
ここで、集電体の引張強度とは、以下の式で求められる値である。
集電体の引張強度(N/mm)=集電体材料の断面積当りの引張強さ(N/mm2 )×集電体の厚み(mm) - 請求項1〜52、58〜72、及び77〜100のいずれか1項に記載のリチウム電池用電極において、
前記集電体の引張強度が7.44N/mm以上であることを特徴とするリチウム電池用電極。
ここで、集電体の引張強度とは、以下の式で求められる値である。
集電体の引張強度(N/mm)=集電体材料の断面積当りの引張強さ(N/mm2 )×集電体の厚み(mm) - 前記集電体の厚みに対する前記シリコン薄膜または前記活物質の厚みの比が0.19以下であることを特徴とする請求項105または106に記載のリチウム電池用電極。
- 前記集電体の厚みに対する前記シリコン薄膜または前記活物質の厚みの比が0.10以下であることを特徴とする請求項105または106に記載のリチウム電池用電極。
- 請求項1〜52、58〜72、及び77〜100のいずれか1項に記載のリチウム電池用電極において、
前記シリコン薄膜または前記活物質の厚み1μmあたりの集電体の引張強度が1.12N/mm以上であることを特徴とするリチウム電池用電極。
ここで、集電体の引張強度とは、以下の式で求められる値である。
集電体の引張強度(N/mm)=集電体材料の断面積当りの引張強さ(N/mm2 )×集電体の厚み(mm) - 請求項1〜52、58〜72、及び77〜100のいずれか1項に記載のリチウム電池用電極において、
前記シリコン薄膜または前記活物質の厚み1μmあたりの集電体の引張強度が2.18N/mm以上であることを特徴とするリチウム電池用電極。
ここで、集電体の引張強度とは、以下の式で求められる値である。
集電体の引張強度(N/mm)=集電体材料の断面積当りの引張強さ(N/mm2 )×集電体の厚み(mm) - 請求項1〜52、58〜72、及び77〜100のいずれか1項に記載のリチウム電池用電極において、
前記シリコン薄膜または前記活物質の厚み1μmあたりの集電体の引張強度が4.25N/mm以上であることを特徴とするリチウム電池用電極。
ここで、集電体の引張強度とは、以下の式で求められる値である。
集電体の引張強度(N/mm)=集電体材料の断面積当りの引張強さ(N/mm2 )×集電体の厚み(mm) - 請求項1〜52、58〜72、及び77〜100のいずれか1項に記載のリチウム電池用電極において、
前記集電体の厚みに対する前記シリコン薄膜または前記活物質の厚みの比が0.19以下であることを特徴とするリチウム電池用電極。 - 請求項1〜52、58〜72、及び77〜100のいずれか1項に記載のリチウム電池用電極において、
前記集電体の厚みに対する前記シリコン薄膜または前記活物質の厚みの比が0.098以下であることを特徴とするリチウム電池用電極。 - 請求項1〜52、58〜72、及び77〜100のいずれか1項に記載のリチウム電池用電極において、
前記集電体の厚みに対する前記シリコン薄膜または前記活物質の厚みの比が0.05以下であることを特徴とするリチウム電池用電極。 - 請求項1〜52、58〜72、及び77〜100のいずれか1項に記載のリチウム電池用電極において、
シリコン薄膜または活物質薄膜が中間層を介して集電体上に設けられており、前記中間層がシリコン薄膜または活物質薄膜と合金化する材料から形成されていることを特徴とするリチウム電池用電極。 - 前記集電体が前記中間層の材料よりも機械的強度の高い金属または合金からなる箔であることを特徴とする請求項115に記載のリチウム電池用電極。
- 前記集電体の表面に凹凸が形成されており、前記中間層の表面に前記集電体表面の凹凸に対応して凹凸が形成されていることを特徴とする請求項115または116に記載のリチウム電池用電極。
- 前記集電体表面の表面粗さRaが0.001〜1μmまたは0.01〜1μmであることを特徴とする請求項115〜117のいずれか1項に記載のリチウム電池用電極。
- 前記活物質薄膜がゲルマニウム薄膜またはシリコンゲルマニウム合金薄膜であることを特徴とする請求項115〜118のいずれか1項に記載のリチウム電池用電極。
- 前記集電体がニッケル箔であることを特徴とする請求項115〜119のいずれか1項に記載のリチウム電池用電極。
- 前記中間層が銅層であることを特徴とする請求項115〜120のいずれか1項に記載のリチウム電池用電極。
- リチウムを吸蔵・放出する活物質を含むリチウム電池用電極であって、前記活物質として集電体上に設けられた非結晶シリコン薄膜を用い、前記シリコン薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記柱状部分の上方部が丸みを帯びた形状であることを特徴とするリチウム電池用電極。
- リチウムを吸蔵・放出する活物質を含むリチウム電池用電極であって、前記活物質として集電体上に設けられた微結晶シリコン薄膜を用い、前記シリコン薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記柱状部分の上方部が丸みを帯びた形状であることを特徴とするリチウム電池用電極。
- 前記非結晶シリコンまたは前記微結晶シリコンが水素を含むことを特徴とする請求項122または123に記載のリチウム電池用電極。
- 前記微結晶シリコン中の結晶領域のサイズが、X線回折スペクトルとScherrerの式から算出される結晶粒径として0.5nm以上であることを特徴とする請求項123または124に記載のリチウム電池用電極。
- 前記微結晶シリコンのラマン分光分析における520cm-1 近傍のピーク強度に対する480cm-1 近傍のピーク強度比(480cm-1 近傍/520cm-1近傍)が0.05以上であることを特徴とする請求項123〜125のいずれか1項に記載のリチウム電池用電極。
- リチウムを吸蔵・放出する活物質を含むリチウム電池用電極であって、前記活物質として集電体上に設けられた水素を含む非結晶シリコン薄膜を用い、前記シリコン薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記柱状部分の上方部が丸みを帯びた形状であることを特徴とするリチウム電池用電極。
- リチウムを吸蔵・放出する活物質を含むリチウム電池用電極であって、前記活物質として集電体上に設けられた水素を含む微結晶シリコン薄膜を用い、前記シリコン薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記柱状部分の上方部が丸みを帯びた形状であることを特徴とするリチウム電池用電極。
- 水素濃度が0.001原子%以上であることを特徴とする請求項124、127または128のいずれか1項に記載のリチウム電池用電極。
- 前記シリコン薄膜が、気相からシリコン材料を供給することにより集電体上に堆積させたシリコン薄膜であることを特徴とする請求項122〜129のいずれか1項に記載のリチウム電池用電極。
- 前記シリコン材料とともに水素ガスを導入することを特徴とする請求項130に記載のリチウム電池用電極。
- リチウムを吸蔵・放出する活物質を含むリチウム電池用電極であって、前記活物質として、気相からシリコン材料とともに水素ガスを供給することにより集電体上に形成したシリコン薄膜を用い、前記シリコン薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記柱状部分の上方部が丸みを帯びた形状であることを特徴とするリチウム電池用電極。
- 前記シリコン材料が、シリコン原子を含む原料ガスまたはシリコン原子を含む原料パウダーであることを特徴とする請求項131〜132のいずれか1項に記載のリチウム電池用電極。
- 前記シリコン薄膜を形成する方法がCVD法、スパッタリング法、溶射法、または真空蒸着法である請求項122〜133のいずれか1項に記載のリチウム電池用電極。
- 前記シリコン薄膜が、中間層を介して集電体上に設けられている請求項122〜134のいずれか1項に記載のリチウム電池用電極。
- 前記集電体が、銅、ニッケル、ステンレス、モリブデン、タングステン、及びタンタルから選ばれる少なくとも1種であることを特徴とする請求項122〜135のいずれか1項に記載のリチウム電池用電極。
- 請求項122〜136のいずれか1項に記載のシリコン薄膜に予めリチウムが添加されていることを特徴とするリチウム電池用電極。
- 前記集電体の表面粗さRaが0.01〜1μmであることを特徴とする請求項122〜137のいずれか1項に記載のリチウム電池用電極。
- 前記集電体が銅箔であることを特徴とする請求項138に記載のリチウム電池用電極。
- 前記銅箔が電解銅箔であることを特徴とする請求項139に記載のリチウム電池用電極。
- 前記集電体の表面粗さRaが、活物質の厚みtに対してRa≦tの関係を有することを特徴とする請求項122〜140のいずれか1項に記載のリチウム電池用電極。
- 前記集電体または前記基板の表面粗さRaと局部山頂の平均間隔Sが、100Ra≧Sの関係を有することを特徴とする請求項122〜141のいずれか1項に記載のリチウム電池用電極。
- 前記シリコン薄膜の厚み方向において、少なくとも厚みの1/2以上の部分が、前記切れ目によって柱状に分離されていることを特徴とする請求項122〜142のいずれか1項に記載のリチウム電池用電極。
- 前記切れ目が初回以降の充放電で形成されることを特徴とする請求項122〜143のいずれか1項に記載のリチウム電池用電極。
- 充放電前において前記シリコン薄膜の表面に凹凸が形成されており、初回以降の充放電により前記薄膜にその表面の凹凸の谷部を端部とする切れ目が形成され、この切れ目によって前記薄膜が柱状に分離されている請求項122〜144のいずれか1項に記載のリチウム電池用電極。
- 前記シリコン薄膜表面の凹凸が、下地層である集電体表面の凹凸に対応している請求項145に記載のリチウム電池用電極。
- 前記集電体表面の凹凸の凸部が錐体状であることを特徴とする請求項146に記載のリチウム電池用電極。
- 前記切れ目が、充放電前に予め形成されていることを特徴とする請求項122〜143及び147のいずれか1項に記載のリチウム電池用電極。
- 請求項122〜148のいずれか1項に記載のリチウム電池用電極において、前記切れ目が、前記シリコン薄膜中の厚み方向に延びる低密度領域に沿って形成されたものであることを特徴とするリチウム電池用電極。
- 前記低密度領域が前記集電体表面の凹凸の谷部から上方に向かって延びていることを特徴とする請求項149に記載のリチウム電池用電極。
- 前記シリコン薄膜に前記集電体の成分が拡散していることを特徴とする請求項122〜150のいずれか1項に記載のリチウム電池用電極。
- リチウムを吸蔵・放出する活物質を含むリチウム電池用電極であって、前記活物質として集電体上に設けられた非結晶シリコン薄膜を用い、前記シリコン薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記切れ目が、前記シリコン薄膜中の厚み方向に延びる低密度領域に沿って形成されたものであることを特徴とするリチウム電池用電極。
- リチウムを吸蔵・放出する活物質を含むリチウム電池用電極であって、前記活物質として集電体上に設けられた微結晶シリコン薄膜を用い、前記シリコン薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記切れ目が、前記シリコン薄膜中の厚み方向に延びる低密度領域に沿って形成されたものであることを特徴とするリチウム電池用電極。
- 前記非結晶シリコンまたは前記微結晶シリコンが水素を含むことを特徴とする請求項152または153に記載のリチウム電池用電極。
- 前記微結晶シリコン中の結晶領域のサイズが、X線回折スペクトルとScherrerの式から算出される結晶粒径として0.5nm以上であることを特徴とする請求項153または154に記載のリチウム電池用電極。
- 前記微結晶シリコンのラマン分光分析における520cm-1 近傍のピ
ーク強度に対する480cm-1 近傍のピーク強度比(480cm-1 近傍/520cm-1
近傍)が0.05以上であることを特徴とする請求項153〜155のいずれか1項に
記載のリチウム電池用電極。 - リチウムを吸蔵・放出する活物質を含むリチウム電池用電極であって、前記活物質として集電体上に設けられた水素を含む非結晶シリコン薄膜を用い、前記シリコン薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記切れ目が、前記シリコン薄膜中の厚み方向に延びる低密度領域に沿って形成されたものであることを特徴とするリチウム電池用電極。
- リチウムを吸蔵・放出する活物質を含むリチウム電池用電極であって、前記活物質として集電体上に設けられた水素を含む微結晶シリコン薄膜を用い、前記シリコン薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記切れ目が、前記シリコン薄膜中の厚み方向に延びる低密度領域に沿って形成されたものであることを特徴とするリチウム電池用電極。
- 水素濃度が0.001原子%以上であることを特徴とする請求項154、157または158のいずれか1項に記載のリチウム電池用電極。
- 前記シリコン薄膜が、気相からシリコン材料を供給することにより基板上に堆積させたシリコン薄膜であることを特徴とする請求項151〜159のいずれか1項に記載のリチウム電池用電極。
- 前記シリコン材料とともに水素ガスを導入することを特徴とする請求項160に記載のリチウム電池用電極。
- リチウムを吸蔵・放出する活物質を含むリチウム電池用電極であって、前記活物質として、気相からシリコン材料とともに水素ガスを供給することにより集電体上に形成したシリコン薄膜を用い、前記シリコン薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記切れ目が、前記シリコン薄膜中の厚み方向に延びる低密度領域に沿って形成されたものであることを特徴とするリチウム電池用電極。
- 前記シリコン材料が、シリコン原子を含む原料ガスまたはシリコン原子を含む原料パウダーであることを特徴とする請求項160〜162のいずれか1項に記載のリチウム電池用電極。
- 前記シリコン薄膜を形成する方法がCVD法、スパッタリング法、溶射法、または真空蒸着法である請求項152〜163のいずれか1項に記載のリチウム電池用電極。
- 前記シリコン薄膜が、中間層を介して集電体上に設けられている請求項152〜164のいずれか1項に記載のリチウム電池用電極。
- 前記集電体が、銅、ニッケル、ステンレス、モリブデン、タングステン、及びタンタルから選ばれる少なくとも1種であることを特徴とする請求項152〜165のいずれか1項に記載のリチウム電池用電極。
- 請求項152〜166のいずれか1項に記載のシリコン薄膜に予めリチウムが添加されていることを特徴とするリチウム電池用電極。
- 前記集電体の表面粗さRaが0.01〜1μmであることを特徴とする請求項152〜167のいずれか1項に記載のリチウム電池用電極。
- 前記集電体が銅箔であることを特徴とする請求項168に記載のリチウム電池用電極。
- 前記銅箔が電解銅箔であることを特徴とする請求項169に記載のリチウム電池用電極。
- 前記集電体の表面粗さRaが、活物質の厚みtに対してRa≦tの関係を有することを特徴とする請求項168〜170のいずれか1項に記載のリチウム電池用電極。
- 前記集電体の表面粗さRaと局部山頂の平均間隔Sが、100Ra≧Sの関係を有することを特徴とする請求項168〜171のいずれか1項に記載のリチウム電池用電極。
- 前記シリコン薄膜の厚み方向において、少なくとも厚みの1/2以上の部分が、前記切れ目によって柱状に分離されていることを特徴とする請求項152〜172のいずれか1項に記載のリチウム電池用電極。
- 前記切れ目が初回以降の充放電で形成されることを特徴とする請求項1 52〜173のいずれか1項に記載のリチウム電池用電極。
- 充放電前において前記シリコン薄膜の表面に凹凸が形成されており、初回以降の充放電により前記薄膜にその表面の凹凸の谷部を端部とする切れ目が形成され、この切れ目によって前記薄膜が柱状に分離されている請求項174に記載のリチウム電池用電極。
- 前記シリコン薄膜表面の凹凸が、下地層である集電体表面の凹凸に対応している請求項175に記載のリチウム電池用電極。
- 前記集電体表面の凹凸の凸部が錐体状であることを特徴とする請求項176に記載のリチウム電池用電極。
- 前記柱状部分の上方部が丸みを帯びた形状であることを特徴とする請求項152〜177のいずれか1項に記載のリチウム電池用電極。
- 前記切れ目が、充放電前に予め形成されていることを特徴とする請求項152〜173及び178のいずれか1項に記載のリチウム電池用電極。
- 前記低密度領域が前記集電体表面の凹凸の谷部から上方に向かって延びていることを特徴とする請求項152〜179のいずれか1項に記載のリチウム電池用電極。
- 前記シリコン薄膜に前記集電体の成分が拡散していることを特徴とする請求項152〜180のいずれか1項に記載のリチウム電池用電極。
- リチウムを吸蔵・放出する活物質からなる薄膜が集電体上に設けられたリチウム電池用電極であって、
前記薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記柱状部分の上方部が丸みを帯びた形状であることを特徴とするリチウム電池用電極。 - 前記薄膜の厚み方向において、少なくとも厚みの1/2以上の部分が、前記切れ目によって柱状に分離されていることを特徴とする請求項182に記載のリチウム電池用電極。
- 前記切れ目が初回以降の充放電で形成されることを特徴とする請求項182または183に記載のリチウム電池用電極。
- 充放電前において前記薄膜の表面に凹凸が形成されており、初回以降の充放電により前記薄膜にその表面の凹凸の谷部を端部とする切れ目が形成され、この切れ目によって前記薄膜が柱状に分離されている請求項184に記載のリチウム電池用電極。
- 前記薄膜表面の凹凸が、下地層である集電体表面の凹凸に対応している請求項185に記載のリチウム電池用電極。
- 前記集電体表面の凹凸の凸部が錐体状であることを特徴とする請求項186に記載のリチウム電池用電極。
- 前記切れ目が充放電前に予め形成されていることを特徴とする請求項182または183に記載のリチウム電池用電極。
- 前記薄膜が、リチウムと化合物もしくは固溶体を形成する周期律表IIB族、IIIB族、IVB族及びVB族の元素、並びに周期律表4周期、5周期及び6周期の遷移金属元素の酸化物及び硫化物から選ばれる少なくとも1種の材料から構成されていることを特徴とする請求項182〜188のいずれか1項に記載のリチウム電池用電極。
- 前記元素が、炭素、シリコン、ゲルマニウム、錫、鉛、アルミニウム、インジウム、亜鉛、カドミウム、ビスマス、及び水銀から選ばれる少なくとも1種であることを特徴とする請求項189に記載のリチウム電池用電極。
- 前記元素がシリコンであることを特徴とする請求項189に記載のリチウム電池用電極。
- 前記元素がゲルマニウムであることを特徴とする請求項189に記載のリチウム電池用電極。
- 前記薄膜が非結晶薄膜であることを特徴とする請求項182〜192のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が非晶質薄膜であることを特徴とする請求項182〜192のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が非結晶シリコン薄膜であることを特徴とする請求項182〜188のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が微結晶シリコン薄膜であることを特徴とする請求項182〜188のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が非晶質シリコン薄膜であることを特徴とする請求項182〜188のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が非結晶ゲルマニウム薄膜であることを特徴とする請求項182〜188のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が非晶質ゲルマニウム薄膜であることを特徴とする請求項182〜188のいずれか1項に記載のリチウム電池用電極。
- 前記集電体が、銅、ニッケル、ステンレス、モリブデン、タングステン、及びタンタルから選ばれる少なくとも1種であることを特徴とする請求項182〜199のいずれか1項に記載のリチウム電池用電極。
- 前記集電体の表面粗さRaが0.01〜1μmであることを特徴とする請求項182〜200のいずれか1項に記載のリチウム電池用電極。
- 前記集電体が銅箔であることを特徴とする請求項182〜201のいずれか1項に記載のリチウム電池用電極。
- 前記銅箔が電解銅箔であることを特徴とする請求項202に記載のリチウム電池用電極。
- 請求項182〜203のいずれか1項に記載のリチウム電池用電極において、前記切れ目が、前記薄膜中の厚み方向に延びる低密度領域に沿って形成されたものであることを特徴とするリチウム電池用電極。
- 前記低密度領域が前記集電体表面の凹凸の谷部から上方に向かって延びていることを特徴とする請求項204に記載のリチウム電池用電極。
- 前記薄膜に前記集電体の成分が拡散していることを特徴とする請求項182〜205のいずれか1項に記載のリチウム電池用電極。
- リチウムを吸蔵・放出する活物質からなる薄膜が集電体上に設けられたリチウム電池用電極であって、
前記薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記切れ目が、前記薄膜中の厚み方向に延びる低密度領域に沿って形成されたものであり、
充放電前において前記薄膜の表面に凹凸が形成されており、初回以降の充放電により前記薄膜にその表面の凹凸の谷部を端部とする切れ目が形成され、この切れ目によって前記薄膜が柱状に分離されていることを特徴とするリチウム電池用電極。 - 前記薄膜の厚み方向において、少なくとも厚みの1/2以上の部分が、前記切れ目によって柱状に分離されていることを特徴とする請求項207に記載のリチウム電池用電極。
- 前記薄膜表面の凹凸が、下地層である集電体表面の凹凸に対応している請求項207に記載のリチウム電池用電極。
- 前記集電体表面の凹凸の凸部が錐体状であることを特徴とする請求項209に記載のリチウム電池用電極。
- 前記柱状部分の上方部が丸みを帯びた形状であることを特徴とする請求項207〜210のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が、リチウムと化合物もしくは固溶体を形成する周期律表IIB族、IIIB族、IVB族及びVB族の元素、並びに周期律表4周期、5周期及び6周期の遷移金属元素の酸化物及び硫化物から選ばれる少なくとも1種の材料から構成されていることを特徴とする請求項207〜211のいずれか1項に記載のリチウム電池用電極。
- 前記元素が、炭素、シリコン、ゲルマニウム、錫、鉛、アルミニウム、インジウム、亜鉛、カドミウム、ビスマス、及び水銀から選ばれる少なくとも1種であることを特徴とする請求項212に記載のリチウム電池用電極。
- 前記元素がシリコンであることを特徴とする請求項212に記載のリチウム電池用電極。
- 前記元素がゲルマニウムであることを特徴とする請求項212に記載のリチウム電池用電極。
- 前記薄膜が非結晶薄膜であることを特徴とする請求項207〜215のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が非晶質薄膜であることを特徴とする請求項207〜215のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が非結晶シリコン薄膜であることを特徴とする請求項207〜211のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が微結晶シリコン薄膜であることを特徴とする請求項207〜211のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が非晶質シリコン薄膜であることを特徴とする請求項207〜211のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が非結晶ゲルマニウム薄膜であることを特徴とする請求項207〜211のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜が非晶質ゲルマニウム薄膜であることを特徴とする請求項207〜211のいずれか1項に記載のリチウム電池用電極。
- 前記集電体が、銅、ニッケル、ステンレス、モリブデン、タングステン、及びタンタルから選ばれる少なくとも1種であることを特徴とする請求項207〜222のいずれか1項に記載のリチウム電池用電極。
- 前記集電体の表面粗さRaが0.01〜1μmであることを特徴とする請求項207〜223のいずれか1項に記載のリチウム電池用電極。
- 前記集電体が銅箔であることを特徴とする請求項207〜224のいずれか1項に記載のリチウム電池用電極。
- 前記銅箔が電解銅箔であることを特徴とする請求項225に記載のリチウム電池用電極。
- 前記低密度領域が前記集電体表面の凹凸の谷部から上方に向かって延びていることを特徴とする請求項207〜226のいずれか1項に記載のリチウム電池用電極。
- 前記薄膜に前記集電体の成分が拡散していることを特徴とする請求項207〜227のいずれか1項に記載のリチウム電池用電極。
- 請求項122〜228のいずれか1項に記載の電極からなる負極と、正極と、電解質とを備えるリチウム電池。
- 請求項122〜228のいずれか1項に記載の電極からなる負極と、正極と、非水電解質とを備えるリチウム二次電池。
- U字形状に折り曲げられた集電体の内側に一対の負極活物質層が対向するように設けられた負極と、
集電体の両面上に正極活物質層が設けられ、前記U字形状の負極の内側に挿入される正極と、
前記正極の正極活物質層と前記負極の負極活物質層の間に配置されるセパレータとを備え、
前記負極が請求項122〜228のいずれか1項に記載の電極であることを特徴とするリチウム二次電池。 - 前記正極がリチウムを吸蔵・放出可能な酸化物を活物質として含むことを特徴とする請求項230または231に記載のリチウム二次電池。
- 前記正極がリチウム含有酸化物を活物質として含むことを特徴とする請求項230または231に記載のリチウム二次電池。
- 請求項122〜228のいずれか1項に記載のリチウム電池用電極において、
前記集電体の引張強度が3.82N/mm以上であることを特徴とするリチウム電池用電極。
ここで、集電体の引張強度とは、以下の式で求められる値である。
集電体の引張強度(N/mm)=集電体材料の断面積当りの引張強さ(N/mm2 )×集電体の厚み(mm) - 請求項122〜228のいずれか1項に記載のリチウム電池用電極において、
前記集電体の引張強度が7.44N/mm以上であることを特徴とするリチウム電池用電極。
ここで、集電体の引張強度とは、以下の式で求められる値である。
集電体の引張強度(N/mm)=集電体材料の断面積当りの引張強さ(N/mm2 )×集電体の厚み(mm) - 前記集電体の厚みに対する前記シリコン薄膜または前記活物質の厚みの比が0.19以下であることを特徴とする請求項234または235に記載のリチウム電池用電極。
- 前記集電体の厚みに対する前記シリコン薄膜または前記活物質の厚みの比が0.10以下であることを特徴とする請求項234または235に記載のリチウム電池用電極。
- 請求項122〜228のいずれか1項に記載のリチウム電池用電極において、
前記シリコン薄膜または前記活物質の厚み1μmあたりの集電体の引張強度が1.12N/mm以上であることを特徴とするリチウム電池用電極。
ここで、集電体の引張強度とは、以下の式で求められる値である。
集電体の引張強度(N/mm)=集電体材料の断面積当りの引張強さ(N/mm2 )×集電体の厚み(mm) - 請求項122〜228のいずれか1項に記載のリチウム電池用電極において、
前記シリコン薄膜または前記活物質の厚み1μmあたりの集電体の引張強度が2.18N/mm以上であることを特徴とするリチウム電池用電極。
ここで、集電体の引張強度とは、以下の式で求められる値である。
集電体の引張強度(N/mm)=集電体材料の断面積当りの引張強さ(N/mm2 )×集電体の厚み(mm) - 請求項122〜228のいずれか1項に記載のリチウム電池用電極において、
前記シリコン薄膜または前記活物質の厚み1μmあたりの集電体の引張強度が4.25N/mm以上であることを特徴とするリチウム電池用電極。
ここで、集電体の引張強度とは、以下の式で求められる値である。
集電体の引張強度(N/mm)=集電体材料の断面積当りの引張強さ(N/mm2 )×集電体の厚み(mm) - 請求項122〜228のいずれか1項に記載のリチウム電池用電極において、
前記集電体の厚みに対する前記シリコン薄膜または前記活物質の厚みの比が0.19以下であることを特徴とするリチウム電池用電極。 - 請求項122〜228のいずれか1項に記載のリチウム電池用電極において、
前記集電体の厚みに対する前記シリコン薄膜または前記活物質の厚みの比が0.098以下であることを特徴とするリチウム電池用電極。 - 請求項122〜228のいずれか1項に記載のリチウム電池用電極において、
前記集電体の厚みに対する前記シリコン薄膜または前記活物質の厚みの比が0.05以下であることを特徴とするリチウム電池用電極。 - 請求項30、58、77、182、または207に記載の電極からなる負極と、正極と、非水電解質とを備えるリチウム二次電池において、
前記負極集電体の引張強度が3.82N/mm以上であり、前記活物質薄膜が微結晶ゲルマニウム薄膜または非晶質ゲルマニウム薄膜であることを特徴とするリチウム二次電池。
ここで、集電体の引張強度とは、以下の式で求められる値である。
集電体の引張強度(N/mm)=集電体材料の断面積当りの引張強さ(N/mm2 )×集電体の厚み(mm) - 前記負極集電体の引張強度が7.44N/mm以上であることを特徴とする請求項244に記載のリチウム二次電池。
- 前記集電体の厚みに対する前記活物質薄膜の厚みの比が0.19以下であることを特徴とする請求項244または245に記載のリチウム二次電池。
- 前記集電体の厚みに対する前記活物質薄膜の厚みの比が0.10以下であることを特徴とする請求項244または245に記載のリチウム二次電池。
- 請求項30、58、77、182、または207に記載の電極からなる負極と、正極と、非水電解質とを備えるリチウム二次電池おいて、
前記活物質薄膜の厚み1μmあたりの負極集電体の引張強度が1.12N/mm以上であり、前記活物質薄膜が微結晶ゲルマニウム薄膜または非晶質ゲルマニウム薄膜であることを特徴とするリチウム電池用電極。
ここで、集電体の引張強度とは、以下の式で求められる値である。
集電体の引張強度(N/mm)=集電体材料の断面積当りの引張強さ(N/mm2 )×集電体の厚み(mm) - 請求項30、58、77、182、または207に記載の電極からなる負極と、正極と、非水電解質とを備えるリチウム二次電池おいて、
前記活物質薄膜の厚み1μmあたりの負極集電体の引張強度が2.18N/mm以上であり、前記活物質薄膜が微結晶ゲルマニウム薄膜または非晶質ゲルマニウム薄膜であることを特徴とするリチウム二次電池。
ここで、集電体の引張強度とは、以下の式で求められる値である。
集電体の引張強度(N/mm)=集電体材料の断面積当りの引張強さ(N/mm2 )×集電体の厚み(mm) - 請求項30、58、77、182、または207に記載の電極からなる負極と、正極と、非水電解質とを備えるリチウム二次電池おいて、
前記活物質薄膜の厚み1μmあたりの負極集電体の引張強度が4.25N/mm以上であり、前記活物質薄膜が微結晶ゲルマニウム薄膜または非晶質ゲルマニウム薄膜であることを特徴とするリチウム二次電池。
ここで、集電体の引張強度とは、以下の式で求められる値である。
集電体の引張強度(N/mm)=集電体材料の断面積当りの引張強さ(N/mm2 )×集電体の厚み(mm) - 請求項30、58、77、182、または207に記載の電極からなる負極と、正極と、非水電解質とを備えるリチウム二次電池おいて、
前記負極集電体の厚みに対する前記活物質薄膜の厚みの比が0.19以下であり、前記活物質薄膜が微結晶ゲルマニウム薄膜または非晶質ゲルマニウム薄膜であることを特徴とするリチウム二次電池。 - 請求項30、58、77、182、または207に記載の電極からなる負極と、正極と、非水電解質とを備えるリチウム二次電池おいて、
前記負極集電体の厚みに対する前記活物質薄膜の厚みの比が0.098以下であり、前記活物質薄膜が微結晶ゲルマニウム薄膜または非晶質ゲルマニウム薄膜であることを特徴とするリチウム二次電池。 - 請求項30、58、77、182、または207に記載の電極からなる負極と、正極と、非水電解質とを備えるリチウム二次電池おいて、
前記負極集電体の厚みに対する前記活物質薄膜の厚みの比が0.05以下であり、前記活物質薄膜が微結晶ゲルマニウム薄膜または非晶質ゲルマニウム薄膜であることを特徴とするリチウム二次電池。 - 前記負極集電体の表面粗さRaが0.01〜1μmであることを特徴とする請求項244〜253のいずれか1項に記載のリチウム二次電池。
- 前記負極集電体が銅箔であることを特徴とする請求項244〜254のいずれか1項に記載のリチウム二次電池。
- 前記銅箔が電解銅箔であることを特徴とする請求項255に記載のリチウム二次電池。
- 請求項122〜228のいずれか1項に記載のリチウム電池用電極において、
シリコン薄膜または活物質薄膜が中間層を介して集電体上に設けられており、前記中間層がシリコン薄膜または活物質薄膜と合金化する材料から形成されていることを特徴とするリチウム電池用電極。 - 前記集電体が前記中間層の材料よりも機械的強度の高い金属または合金からなる箔であることを特徴とする請求項257に記載のリチウム電池用電極。
- 前記集電体の表面に凹凸が形成されており、前記中間層の表面に前記集電体表面の凹凸に対応して凹凸が形成されていることを特徴とする請求項257または258に記載のリチウム電池用電極。
- 前記集電体表面の表面粗さRaが0.001〜1μmまたは0.01〜1μmであることを特徴とする請求項257〜259のいずれか1項に記載のリチウム電池用電極。
- 前記活物質薄膜がゲルマニウム薄膜またはシリコンゲルマニウム合金薄膜であることを特徴とする請求項257〜260のいずれか1項に記載のリチウム電池用電極。
- 前記集電体がニッケル箔であることを特徴とする請求項257〜261のいずれか1項に記載のリチウム電池用電極。
- 前記中間層が銅層であることを特徴とする請求項257〜262のいずれか1項に記載のリチウム電池用電極。
- 板状の集電体と、該集電体の両面上に堆積して形成された、リチウムを吸蔵・放出する活物質薄膜とを備え、前記活物質薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記切れ目が電池を組み立てた後の充放電反応により形成されることを特徴とするリチウム二次電池用電極。
- 前記集電体が金属箔であることを特徴とする請求項264に記載のリチウム二次電池用電極。
- 前記金属箔が銅箔であることを特徴とする請求項265に記載のリチウム二次電池用電極。
- 前記銅箔が電解銅箔であることを特徴とする請求項266に記載のリチウム二次電池用電極。
- 前記集電体の両面が、実質的に同一の表面粗さRaを有していることを特徴とする請求項264〜267のいずれか1項に記載のリチウム二次電池用電極。
- 前記集電体の両面の表面粗さRaが、それぞれ0.01〜1μmであることを特徴とする請求項264〜268のいずれか1項に記載のリチウム二次電池用電極。
- 前記活物質薄膜が、シリコン薄膜またはゲルマニウム薄膜であることを特徴とする請求項264〜269のいずれか1項に記載のリチウム二次電池用電極。
- 前記シリコン薄膜が、微結晶シリコン薄膜または非晶質シリコン薄膜であることを特徴とする請求項270に記載のリチウム二次電池用電極。
- 前記ゲルマニウム薄膜が、非晶質ゲルマニウム薄膜であることを特徴とする請求項270に記載のリチウム二次電池用電極。
- 前記活物質薄膜の厚み方向において、少なくとも厚みの1/2以上の部分が、前記切れ目によって柱状に分離されていることを特徴とする請求項264〜272のいずれか1項に記載のリチウム二次電池用電極。
- 前記切れ目が前記活物質薄膜の膨張収縮により形成されていることを特徴とする請求項264〜273のいずれか1項に記載のリチウム二次電池用電極。
- 前記切れ目が電池を組み立てる前の充放電反応により形成されていることを特徴とする請求項264〜274のいずれか1項に記載のリチウム二次電池用電極。
- 前記活物質薄膜の表面に凹凸が形成されており、前記切れ目が該薄膜表面の凹凸の谷部から前記集電体に向かって厚み方向に形成されていることを特徴とする請求項264〜275のいずれか1項に記載のリチウム二次電池用電極。
- 前記薄膜表面の凹凸が、集電体表面の凹凸に対応して形成されていることを特徴とする請求項276に記載のリチウム二次電池用電極。
- 前記集電体表面の凹凸の凸部が錐体状であることを特徴とする請求項277に記載のリチウム二次電池用電極。
- 前記柱状部分の上方が丸みを帯びた形状であることを特徴とする請求項264〜278のいずれか1項に記載のリチウム二次電池用電極。
- 板状の集電体と、該集電体の両面上に堆積して形成された、リチウムを吸蔵・放出する活物質薄膜とを備え、前記活物質薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記活物質薄膜の表面に凹凸が形成され、前記切れ目が該薄膜表面の凹凸の谷部から前記集電体に向かって厚み方向に形成されており、前記薄膜表面の凹凸が、集電体表面の凹凸に対応して形成されていることを特徴とするリチウム二次電池用電極。
- 前記集電体が金属箔であることを特徴とする請求項280に記載のリチウム二次電池用電極。
- 前記金属箔が銅箔であることを特徴とする請求項281に記載のリチウム二次電池用電極。
- 前記銅箔が電解銅箔であることを特徴とする請求項282に記載のリチウム二次電池用電極。
- 前記集電体の両面が、実質的に同一の表面粗さRaを有していることを特徴とする請求項280〜283のいずれか1項に記載のリチウム二次電池用電極。
- 前記集電体の両面の表面粗さRaが、それぞれ0.01〜1μmであることを特徴とする請求項280〜284のいずれか1項に記載のリチウム二次電池用電極。
- 前記活物質薄膜が、シリコン薄膜またはゲルマニウム薄膜であることを特徴とする請求項280〜285のいずれか1項に記載のリチウム二次電池用電極。
- 前記シリコン薄膜が、微結晶シリコン薄膜または非晶質シリコン薄膜であることを特徴とする請求項286に記載のリチウム二次電池用電極。
- 前記ゲルマニウム薄膜が、非晶質ゲルマニウム薄膜であることを特徴とする請求項286に記載のリチウム二次電池用電極。
- 前記活物質薄膜の厚み方向において、少なくとも厚みの1/2以上の部分が、前記切れ目によって柱状に分離されていることを特徴とする請求項280〜288のいずれか1項に記載のリチウム二次電池用電極。
- 前記切れ目が前記活物質薄膜の膨張収縮により形成されていることを特徴とする請求項280〜289のいずれか1項に記載のリチウム二次電池用電極。
- 前記切れ目が電池を組み立てた後の充放電反応により形成されることを特徴とする請求項280〜290のいずれか1項に記載のリチウム二次電池用電極。
- 前記切れ目が電池を組み立てる前の充放電反応により形成されていることを特徴とする請求項280〜290のいずれか1項に記載のリチウム二次電池用電極。
- 前記集電体表面の凹凸の凸部が錐体状であることを特徴とする請求項280〜292のいずれか1項に記載のリチウム二次電池用電極。
- 前記柱状部分の上方が丸みを帯びた形状であることを特徴とする請求項280〜293のいずれか1項に記載のリチウム二次電池用電極。
- 前記切れ目が形成される前の前記活物質薄膜に、面方向に網目状に連なりかつ前記集電体に向かって厚み方向に延びた低密度領域が形成されており、該低密度領域に沿って前記切れ目が厚み方向に形成されていることを特徴とする請求項280〜294のいずれか1項に記載のリチウム二次電池用電極。
- 板状の集電体と、該集電体の両面上に堆積して形成された、リチウムを吸蔵・放出する活物質薄膜とを備え、前記活物質薄膜がその厚み方向に形成された切れ目によって柱状に分離され、かつ該柱状部分の底部が前記集電体と密着しており、前記柱状部分の上方が丸みを帯びた形状であることを特徴とするリチウム二次電池用電極。
- 前記集電体が金属箔であることを特徴とする請求項296に記載のリチウム二次電池用電極。
- 前記金属箔が銅箔であることを特徴とする請求項297に記載のリチウム二次電池用電極。
- 前記銅箔が電解銅箔であることを特徴とする請求項298に記載のリチウム二次電池用電極。
- 前記集電体の両面が、実質的に同一の表面粗さRaを有していることを特徴とする請求項296〜299のいずれか1項に記載のリチウム二次電池用電極。
- 前記集電体の両面の表面粗さRaが、それぞれ0.01〜1μmであることを特徴とする請求項296〜300のいずれか1項に記載のリチウム二次電池用電極。
- 前記活物質薄膜が、シリコン薄膜またはゲルマニウム薄膜であることを特徴とする請求項296〜301のいずれか1項に記載のリチウム二次電池用電極。
- 前記シリコン薄膜が、微結晶シリコン薄膜または非晶質シリコン薄膜であることを特徴とする請求項302に記載のリチウム二次電池用電極。
- 前記ゲルマニウム薄膜が、非晶質ゲルマニウム薄膜であることを特徴とする請求項302に記載のリチウム二次電池用電極。
- 前記活物質薄膜の厚み方向において、少なくとも厚みの1/2以上の部分が、前記切れ目によって柱状に分離されていることを特徴とする請求項296〜304のいずれか1項に記載のリチウム二次電池用電極。
- 前記切れ目が前記活物質薄膜の膨張収縮により形成されていることを特徴とする請求項296〜305のいずれか1項に記載のリチウム二次電池用電極。
- 前記切れ目が電池を組み立てた後の充放電反応により形成されることを特徴とする請求項296〜306のいずれか1項に記載のリチウム二次電池用電極。
- 前記切れ目が電池を組み立てる前の充放電反応により形成されていることを特徴とする請求項296〜306のいずれか1項に記載のリチウム二次電池用電極。
- 前記活物質薄膜の表面に凹凸が形成されており、前記切れ目が該薄膜表面の凹凸の谷部から前記集電体に向かって厚み方向に形成されていることを特徴とする請求項296〜308のいずれか1項に記載のリチウム二次電池用電極。
- 前記薄膜表面の凹凸が、集電体表面の凹凸に対応して形成されていることを特徴とする請求項309に記載のリチウム二次電池用電極。
- 前記集電体表面の凹凸の凸部が錐体状であることを特徴とする請求項310に記載のリチウム二次電池用電極。
- 前記切れ目が形成される前の前記活物質薄膜に、面方向に網目状に連なりかつ前記集電体に向かって厚み方向に延びた低密度領域が形成されており、該低密度領域に沿って前記切れ目が厚み方向に形成されていることを特徴とする請求項296〜311のいずれか1項に記載のリチウム二次電池用電極。
- 請求項264〜312のいずれか1項に記載のリチウム二次電池用電極を用いたことを特徴とするリチウム二次電池。
- 請求項264〜312のいずれか1項に記載のリチウム二次電池用電極からなる負極と、集電体の両面上に正極活物質を設けた正極とを、セパレータを介して交互に積層した電極構造を有することを特徴とするリチウム二次電池。
- 請求項264〜312のいずれか1項に記載のリチウム二次電池用電極からなる負極と、集電体の両面上に正極活物質を設けた正極との間にセパレータを介在させ、これらをスパイラル状に巻き付けた電極構造を有することを特徴とするリチウム二次電池。
- U字形状に折り曲げられた集電体の内側に一対の正極活物質層が対向するように設けられた正極と、
集電体の両面上に負極活物質層が設けられ、前記U字形状の正極の内側に挿入される負極と、
前記正極の正極活物質層と前記負極の負極活物質層の間に配置されるセパレータとを備え、
前記負極が請求項264〜312のいずれか1項に記載のリチウム二次電池用電極であることを特徴とするリチウム二次電池。
Applications Claiming Priority (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30164699 | 1999-10-22 | ||
JP35780899 | 1999-12-16 | ||
JP36530699 | 1999-12-22 | ||
JP37451299 | 1999-12-28 | ||
JP2000039454 | 2000-02-17 | ||
JP2000047675 | 2000-02-24 | ||
JP2000090583 | 2000-03-29 | ||
JP2000100405 | 2000-04-03 | ||
JP2000105506 | 2000-04-06 | ||
JP2000124305 | 2000-04-25 | ||
JP2000142755 | 2000-05-16 | ||
JP2000150496 | 2000-05-22 | ||
JP2000207274 | 2000-07-07 | ||
PCT/JP2000/007298 WO2001029912A1 (fr) | 1999-10-22 | 2000-10-20 | Electrode de pile au lithium et d'accumulateur au lithium |
Publications (1)
Publication Number | Publication Date |
---|---|
JP3733065B2 true JP3733065B2 (ja) | 2006-01-11 |
Family
ID=27584361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001531159A Expired - Fee Related JP3733065B2 (ja) | 1999-10-22 | 2000-10-20 | リチウム電池用電極及びリチウム二次電池 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3733065B2 (ja) |
AU (1) | AU7951200A (ja) |
WO (1) | WO2001029912A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019230279A1 (ja) | 2018-05-30 | 2019-12-05 | パナソニックIpマネジメント株式会社 | リチウム二次電池 |
WO2019244540A1 (ja) | 2018-06-19 | 2019-12-26 | パナソニックIpマネジメント株式会社 | リチウム二次電池 |
WO2022163037A1 (ja) | 2021-01-26 | 2022-08-04 | パナソニックIpマネジメント株式会社 | 電池 |
WO2022163038A1 (ja) | 2021-01-26 | 2022-08-04 | パナソニックIpマネジメント株式会社 | 電池 |
WO2022163039A1 (ja) | 2021-01-26 | 2022-08-04 | パナソニックIpマネジメント株式会社 | 電池 |
WO2022224570A1 (ja) | 2021-04-20 | 2022-10-27 | パナソニックIpマネジメント株式会社 | 電池および電極の製造方法 |
WO2022224571A1 (ja) | 2021-04-20 | 2022-10-27 | パナソニックIpマネジメント株式会社 | 電池 |
WO2023017673A1 (ja) | 2021-08-10 | 2023-02-16 | パナソニックIpマネジメント株式会社 | 電池 |
WO2023017735A1 (ja) | 2021-08-10 | 2023-02-16 | パナソニックIpマネジメント株式会社 | 電池 |
WO2023017736A1 (ja) | 2021-08-10 | 2023-02-16 | パナソニックIpマネジメント株式会社 | 電池 |
WO2023074590A1 (ja) | 2021-10-28 | 2023-05-04 | パナソニックIpマネジメント株式会社 | 電池 |
WO2023106126A1 (ja) | 2021-12-07 | 2023-06-15 | パナソニックIpマネジメント株式会社 | 電池 |
WO2023145426A1 (ja) | 2022-01-25 | 2023-08-03 | パナソニックIpマネジメント株式会社 | 電池および電極の製造方法 |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1260841C (zh) * | 1999-10-22 | 2006-06-21 | 三洋电机株式会社 | 锂电池和可再充电锂电池中用的电极 |
JP2002170555A (ja) | 2000-12-01 | 2002-06-14 | Sanyo Electric Co Ltd | リチウム二次電池用電極の製造方法 |
JP4330290B2 (ja) | 2001-06-20 | 2009-09-16 | 三洋電機株式会社 | リチウム二次電池用電極の製造方法 |
JP2003007343A (ja) | 2001-06-25 | 2003-01-10 | Sanyo Electric Co Ltd | リチウム二次電池の製造方法および製造装置 |
JP4463693B2 (ja) | 2003-01-14 | 2010-05-19 | 独立行政法人科学技術振興機構 | 光検出可能な固体薄膜二次電池 |
JP2005259726A (ja) * | 2004-03-09 | 2005-09-22 | Yuasa Corp | 電気化学デバイス及びその製造方法 |
JP4780923B2 (ja) * | 2004-03-30 | 2011-09-28 | 三洋電機株式会社 | リチウム二次電池 |
JP4367311B2 (ja) | 2004-10-18 | 2009-11-18 | ソニー株式会社 | 電池 |
TWI311384B (en) | 2004-11-25 | 2009-06-21 | Sony Corporatio | Battery and method of manufacturing the same |
JP4895503B2 (ja) | 2004-12-28 | 2012-03-14 | 三洋電機株式会社 | リチウム二次電池 |
JP4911909B2 (ja) | 2005-03-29 | 2012-04-04 | 三洋電機株式会社 | リチウム二次電池用電極の製造方法 |
JP2006338996A (ja) | 2005-06-01 | 2006-12-14 | Sony Corp | 二次電池用負極、二次電池および二次電池用負極の製造方法 |
JP2007115661A (ja) * | 2005-09-21 | 2007-05-10 | Sumitomo Electric Ind Ltd | 薄膜リチウム電池 |
JP4779633B2 (ja) | 2005-12-16 | 2011-09-28 | ソニー株式会社 | 二次電池 |
JP4984553B2 (ja) | 2006-01-30 | 2012-07-25 | ソニー株式会社 | 二次電池用負極及びそれを用いた二次電池 |
CN101145608B (zh) | 2006-09-14 | 2010-06-16 | 松下电器产业株式会社 | 锂离子二次电池用负极及采用了该负极的锂离子二次电池 |
US7851089B2 (en) | 2006-10-26 | 2010-12-14 | Panasonic Corporation | Electrode plate for battery and lithium secondary battery including the same |
JP5321788B2 (ja) | 2007-05-23 | 2013-10-23 | ソニー株式会社 | 二次電池用集電体、二次電池用負極、二次電池および電子機器 |
JP4581029B2 (ja) * | 2008-02-14 | 2010-11-17 | パナソニック株式会社 | リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法 |
JP4952746B2 (ja) | 2008-11-14 | 2012-06-13 | ソニー株式会社 | リチウムイオン二次電池およびリチウムイオン二次電池用負極 |
JP5608990B2 (ja) * | 2009-03-12 | 2014-10-22 | トヨタ自動車株式会社 | 集電箔、電池、車両、電池使用機器及び集電箔の製造方法 |
JP5356308B2 (ja) * | 2009-05-08 | 2013-12-04 | 古河電気工業株式会社 | 2次電池用負極、電極用銅箔、2次電池および2次電池用負極の製造方法 |
KR101740692B1 (ko) | 2009-09-30 | 2017-05-26 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 축전 장치용 전극의 제작 방법 및 축전 장치의 제작 방법 |
JP5387904B2 (ja) * | 2009-12-17 | 2014-01-15 | トヨタ自動車株式会社 | リチウムイオン二次電池 |
CN102823028B (zh) * | 2010-03-26 | 2016-06-29 | 株式会社半导体能源研究所 | 二次电池及二次电池的电极的制造方法 |
JP5074611B2 (ja) | 2011-03-30 | 2012-11-14 | Jx日鉱日石金属株式会社 | 二次電池負極集電体用電解銅箔及びその製造方法 |
US20180040881A1 (en) * | 2015-03-13 | 2018-02-08 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte secondary battery |
WO2021075873A1 (ko) * | 2019-10-15 | 2021-04-22 | 한양대학교에리카산학협력단 | 음극 전극, 전해 증착을 이용한 그 제조 방법, 및 그 제조 장치 |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5916535A (ja) * | 1982-07-20 | 1984-01-27 | Konishiroku Photo Ind Co Ltd | 蒸着方法及びその装置 |
JPS60175375A (ja) * | 1984-02-20 | 1985-09-09 | Hitachi Maxell Ltd | リチウム有機二次電池 |
JPS6134931A (ja) * | 1984-07-26 | 1986-02-19 | Canon Inc | シリコン膜の製造方法 |
JPH04137525A (ja) * | 1990-12-03 | 1992-05-12 | Agency Of Ind Science & Technol | シリコン薄膜剥離防止方法 |
JPH0574479A (ja) * | 1991-09-09 | 1993-03-26 | Asahi Chem Ind Co Ltd | 渦巻き型非水電池 |
EP0603397B2 (en) * | 1991-09-13 | 2002-12-18 | Asahi Kasei Kogyo Kabushiki Kaisha | Secondary cell |
JP3338071B2 (ja) * | 1991-10-11 | 2002-10-28 | 旭化成株式会社 | 電 池 |
JPH05308051A (ja) * | 1992-04-30 | 1993-11-19 | Japan Steel Works Ltd:The | 水素化アモルファスシリコン膜の製造方法及び装置 |
JPH08255610A (ja) * | 1995-03-17 | 1996-10-01 | Canon Inc | リチウム二次電池 |
JP3352316B2 (ja) * | 1995-03-17 | 2002-12-03 | キヤノン株式会社 | リチウム二次電池、リチウム二次電池用電極およびそれ等の作製方法 |
JP3669646B2 (ja) * | 1995-10-13 | 2005-07-13 | 松下電器産業株式会社 | 非水電解質二次電池 |
JPH09213339A (ja) * | 1996-02-05 | 1997-08-15 | Fuji Photo Film Co Ltd | 非水二次電池 |
JPH1021928A (ja) * | 1996-06-28 | 1998-01-23 | Furukawa Circuit Foil Kk | 二次電池用電極材料 |
CA2223370A1 (en) * | 1996-12-05 | 1998-06-05 | Mitsubishi Cable Industries, Ltd. | Sheet type lithium secondary battery |
CN1145231C (zh) * | 1997-01-28 | 2004-04-07 | 佳能株式会社 | 电极结构体、可充电电池及其制造方法 |
JPH10294098A (ja) * | 1997-04-17 | 1998-11-04 | Yuasa Corp | リチウム電池 |
JPH11135130A (ja) * | 1997-10-30 | 1999-05-21 | Mitsubishi Alum Co Ltd | 二次電池集電体用金属箔、その製造方法、及び二次電池 |
JPH11167930A (ja) * | 1997-12-05 | 1999-06-22 | Shin Kobe Electric Mach Co Ltd | 薄型電極を用いた積層式二次電池 |
JPH11233116A (ja) * | 1998-02-16 | 1999-08-27 | Canon Inc | リチウム二次電池用電極構造体、その製造方法及びリチウム二次電池 |
JPH11250892A (ja) * | 1998-02-26 | 1999-09-17 | Yuasa Corp | 電 池 |
JP3581784B2 (ja) * | 1998-03-19 | 2004-10-27 | 古河電気工業株式会社 | 非水溶媒二次電池の負極集電体用銅箔 |
JPH11283628A (ja) * | 1998-03-30 | 1999-10-15 | Fuji Photo Film Co Ltd | 非水二次電池 |
JP4085473B2 (ja) * | 1998-06-18 | 2008-05-14 | 宇部興産株式会社 | 非水二次電池の充電方法 |
JP3945023B2 (ja) * | 1998-06-19 | 2007-07-18 | 宇部興産株式会社 | 非水二次電池 |
JP4191281B2 (ja) * | 1998-06-19 | 2008-12-03 | 三菱化学株式会社 | 負極活物質、負極とその製造方法、および非水系二次電池 |
JP2000012091A (ja) * | 1998-06-23 | 2000-01-14 | Fuji Photo Film Co Ltd | 非水二次電池とその製造方法 |
JP2000100429A (ja) * | 1998-09-18 | 2000-04-07 | Canon Inc | 電極構造体及び二次電池 |
JP3649373B2 (ja) * | 1998-10-20 | 2005-05-18 | ニッパク産業株式会社 | 二次電池用負極集電体の製造方法 |
JP3850155B2 (ja) * | 1998-12-11 | 2006-11-29 | 日本電解株式会社 | 電解銅箔、二次電池の集電体用銅箔及び二次電池 |
JP3058157B1 (ja) * | 1999-01-13 | 2000-07-04 | 日本電気株式会社 | 電池用電極製造方法、及び電池用電極並びに二次電池 |
JP3933342B2 (ja) * | 1999-04-05 | 2007-06-20 | 東洋アルミニウム株式会社 | 二次電池の集電体用金属箔および二次電池用集電体 |
JP2000294250A (ja) * | 1999-04-08 | 2000-10-20 | Hitachi Cable Ltd | Liイオン電池の負極集電体用銅材およびLiイオン電池 |
-
2000
- 2000-10-20 WO PCT/JP2000/007298 patent/WO2001029912A1/ja active Application Filing
- 2000-10-20 JP JP2001531159A patent/JP3733065B2/ja not_active Expired - Fee Related
- 2000-10-20 AU AU79512/00A patent/AU7951200A/en not_active Abandoned
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019230279A1 (ja) | 2018-05-30 | 2019-12-05 | パナソニックIpマネジメント株式会社 | リチウム二次電池 |
WO2019244540A1 (ja) | 2018-06-19 | 2019-12-26 | パナソニックIpマネジメント株式会社 | リチウム二次電池 |
US11791498B2 (en) | 2018-06-19 | 2023-10-17 | Panasonic Intellectual Property Management Co., Ltd. | Lithium secondary battery |
WO2022163037A1 (ja) | 2021-01-26 | 2022-08-04 | パナソニックIpマネジメント株式会社 | 電池 |
WO2022163038A1 (ja) | 2021-01-26 | 2022-08-04 | パナソニックIpマネジメント株式会社 | 電池 |
WO2022163039A1 (ja) | 2021-01-26 | 2022-08-04 | パナソニックIpマネジメント株式会社 | 電池 |
WO2022224571A1 (ja) | 2021-04-20 | 2022-10-27 | パナソニックIpマネジメント株式会社 | 電池 |
WO2022224570A1 (ja) | 2021-04-20 | 2022-10-27 | パナソニックIpマネジメント株式会社 | 電池および電極の製造方法 |
WO2023017673A1 (ja) | 2021-08-10 | 2023-02-16 | パナソニックIpマネジメント株式会社 | 電池 |
WO2023017735A1 (ja) | 2021-08-10 | 2023-02-16 | パナソニックIpマネジメント株式会社 | 電池 |
WO2023017736A1 (ja) | 2021-08-10 | 2023-02-16 | パナソニックIpマネジメント株式会社 | 電池 |
WO2023074590A1 (ja) | 2021-10-28 | 2023-05-04 | パナソニックIpマネジメント株式会社 | 電池 |
WO2023106126A1 (ja) | 2021-12-07 | 2023-06-15 | パナソニックIpマネジメント株式会社 | 電池 |
WO2023145426A1 (ja) | 2022-01-25 | 2023-08-03 | パナソニックIpマネジメント株式会社 | 電池および電極の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
AU7951200A (en) | 2001-04-30 |
WO2001029912A1 (fr) | 2001-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3733065B2 (ja) | リチウム電池用電極及びリチウム二次電池 | |
JP3733070B2 (ja) | リチウム二次電池用電極及びリチウム二次電池 | |
JP3733068B2 (ja) | リチウム電池用電極及びリチウム二次電池 | |
JP3733066B2 (ja) | リチウム二次電池用電極及びリチウム二次電池 | |
JP3733071B2 (ja) | リチウム電池用電極及びリチウム二次電池 | |
JP3702223B2 (ja) | リチウム電池用電極材料の製造方法 | |
JP2002083594A (ja) | リチウム電池用電極並びにこれを用いたリチウム電池及びリチウム二次電池 | |
JP4201509B2 (ja) | リチウム二次電池用電極及びリチウム二次電池 | |
JP3676301B2 (ja) | リチウム二次電池用電極及びリチウム二次電池 | |
JP4082922B2 (ja) | リチウム二次電池用電極及びその製造方法 | |
JP2003017069A (ja) | リチウム二次電池用電極及びリチウム二次電池 | |
MXPA02003949A (en) | Electrode for lithium cell and lithium secondary cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050519 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20050705 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050901 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050905 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051004 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051014 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081021 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091021 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101021 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111021 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111021 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121021 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121021 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131021 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |