WO2023145426A1 - 電池および電極の製造方法 - Google Patents

電池および電極の製造方法 Download PDF

Info

Publication number
WO2023145426A1
WO2023145426A1 PCT/JP2023/000409 JP2023000409W WO2023145426A1 WO 2023145426 A1 WO2023145426 A1 WO 2023145426A1 JP 2023000409 W JP2023000409 W JP 2023000409W WO 2023145426 A1 WO2023145426 A1 WO 2023145426A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
active material
battery
material layer
solid electrolyte
Prior art date
Application number
PCT/JP2023/000409
Other languages
English (en)
French (fr)
Inventor
貴司 大戸
正久 藤本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023145426A1 publication Critical patent/WO2023145426A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to methods for manufacturing batteries and electrodes.
  • lithium secondary batteries have been actively researched and developed, and battery characteristics such as charge/discharge voltage, charge/discharge cycle life characteristics, and storage characteristics are greatly affected by the electrodes used. For this reason, improvements in battery characteristics have been attempted by improving electrode active materials.
  • Patent Literature 1 discloses a lithium secondary battery comprising a negative electrode, a positive electrode, and an electrolyte including a negative electrode material made of an alloy containing silicon, tin, and a transition metal.
  • Patent Document 2 discloses a lithium secondary battery including a negative electrode using a silicon thin film provided on a current collector as an active material, a positive electrode, and an electrolyte.
  • Non-Patent Document 1 discloses a negative electrode containing Bi as a negative electrode active material, which is manufactured using Bi powder.
  • the present disclosure provides batteries with improved energy efficiency.
  • the battery of the present disclosure is a first electrode; a second electrode; an electrolyte layer located between the first electrode and the second electrode; with The first electrode is a current collector; an active material layer positioned between the current collector and the electrolyte layer; The active material layer includes an alloy containing Bi and Mn.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of a battery according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view schematically showing a modification of the battery according to the embodiment of the present disclosure.
  • 3 is a graph showing X-ray diffraction patterns of the active material layer of the first electrode in the battery according to Example 1 at the initial stage, after charging, and after charging and discharging.
  • FIG. 4 is a graph showing the results of a charge/discharge test of the battery according to Example 1.
  • FIG. 5 is a graph showing the results of a charge/discharge test of the battery according to Example 2.
  • FIG. 6 is a graph showing the results of a charge/discharge test of the battery according to Example 3.
  • FIG. 7 is a graph showing the X-ray diffraction patterns of the active material layer of the first electrode in the battery according to Example 4 at the initial stage, after charging, and after charging and discharging.
  • 8 is a graph showing the results of a charge/discharge test of the battery according to Example 4.
  • FIG. 9 is a graph showing the results of a charge/discharge test of the battery according to Example 5.
  • FIG. 10 is a graph showing the results of a charge/discharge test of the battery according to Example 6.
  • FIG. 11 is a graph showing the results of a charge/discharge test of the battery according to Reference Example 1.
  • FIG. 12 is a graph showing the results of a charge/discharge test of the battery according to Reference Example 2.
  • FIG. 13 is a graph showing the results of a charge/discharge test of the battery according to Reference Example 3.
  • lithium metal When lithium metal is used as the negative electrode active material, a lithium secondary battery with high energy density per weight and per volume can be obtained.
  • lithium deposits in the form of dendrites during charging. Since part of the deposited lithium metal reacts with the electrolytic solution, the charge/discharge efficiency is low and the cycle characteristics are poor.
  • carbon especially graphite
  • a negative electrode using carbon is charged and discharged by intercalation and deintercalation of lithium into and from carbon.
  • lithium metal does not deposit in a dendrite form due to the charge/discharge mechanism.
  • the reaction is topotactic, so the reversibility is very good, and the charge/discharge efficiency is almost 100%.
  • lithium secondary batteries employing negative electrodes using carbon, particularly graphite have been put to practical use.
  • the theoretical capacity density of graphite is 372 mAh/g, which is about 1/10 of the theoretical capacity density of lithium metal, 3884 mAh/g. Therefore, the active material capacity density of the negative electrode using graphite is low. Furthermore, since the actual capacity density of graphite has almost reached the theoretical capacity density, there is a limit to increasing the capacity of negative electrodes using graphite.
  • lithium secondary batteries using electrodes such as aluminum, silicon, and tin that electrochemically alloy with lithium during charging have long been proposed.
  • the capacity density of metals alloyed with lithium is much higher than that of graphite.
  • the theoretical capacity density of silicon is large. Therefore, electrodes using aluminum, silicon, tin, etc., which are alloyed with lithium, are promising as negative electrodes for batteries exhibiting high capacity, and various secondary batteries using these as negative electrodes have been proposed (Patent Documents 1).
  • negative electrodes that use a metal that alloys with lithium expand when lithium is absorbed and contract when lithium is released. If such expansion and contraction are repeated during charging and discharging, the alloy itself, which is the electrode active material, will be pulverized due to charging and discharging, and the current collection characteristics of the negative electrode will deteriorate, so sufficient cycle characteristics have not been obtained.
  • the following attempts have been made to improve such drawbacks. For example, attempts have been made to deposit silicon on a roughened current collector by sputtering or evaporation, or to deposit tin by electroplating (Patent Document 2). In this trial, the active material, that is, the metal that alloys with lithium forms a thin film and is in close contact with the current collector. not decrease.
  • the active material is formed by sputtering or vapor deposition as described above, the manufacturing cost is high and it is not practical. Although it is practical to form the active material by electroplating, which is inexpensive to manufacture, silicon is very difficult to electroplate. In addition, tin, which is easily electroplated, has poor discharge flatness and is difficult to use as a battery electrode.
  • Bi bismuth
  • LiBi lithium
  • LiBi lithium
  • Li 3 Bi Li 3 Bi
  • the potential of LiBi and the potential of Li 3 Bi are almost the same.
  • tin which has poor discharge flatness
  • Bi does not have the property that different types of compounds formed with lithium have different potentials, unlike tin. Therefore, an electrode containing Bi as an active material has a flat electric potential, and is therefore excellent in discharge flatness. Therefore, an electrode containing Bi as an active material is considered suitable as a battery electrode.
  • Bi has poor malleability and ductility, and is difficult to produce in the form of a metal plate or metal foil, and the obtained form is globules or powder. Therefore, as an electrode containing Bi as an active material, an electrode manufactured by coating a current collector with Bi powder has been studied. However, an electrode manufactured using such a Bi powder is pulverized by repeated charging and discharging, resulting in deterioration of current collection characteristics, and sufficient cycle characteristics have not been obtained. For example, in Non-Patent Document 1, an electrode containing Bi as an active material is produced using Bi powder and PVdF (polyvinylidene fluoride) or PI (polyimide) as a binder.
  • PVdF polyvinylidene fluoride
  • PI polyimide
  • Non-Patent Document 1 charging and discharging of a battery produced using this electrode are performed.
  • both the initial charge/discharge curve and cycle characteristics of the fabricated electrode are very poor.
  • the initial charge/discharge efficiency is low and the cycle deterioration is severe, so it is not practical.
  • this cycle deterioration in Non-Patent Document 1, as the Bi active material expands when Li is inserted and the Bi active material contracts when Li is desorbed, the active material becomes finer and an electron conduction path cannot be taken, resulting in a decrease in capacity. is believed to occur.
  • the present inventors have focused on Bi, which does not have the property that the potential differs greatly between the multiple types of compounds formed with Li, and has excellent discharge flatness, and can improve cycle characteristics.
  • the present inventors have arrived at a new technical idea of using an alloy containing Bi and Mn as an active material.
  • the battery according to the first aspect of the present disclosure includes a first electrode; a second electrode; a solid electrolyte layer positioned between the first electrode and the second electrode; with The first electrode is a current collector; an active material layer positioned between the current collector and the electrolyte layer; The active material layer includes an alloy containing Bi and Mn.
  • the battery according to the first aspect can improve energy efficiency by including an electrode having an active material layer containing an alloy containing Bi and Mn.
  • the active material layer may contain at least one selected from the group consisting of LiBi and Li 3 Bi.
  • the battery according to the second aspect can further improve energy efficiency.
  • the active material layer may contain BiMn as an active material.
  • the battery according to the third aspect can further improve energy efficiency.
  • the BiMn may have a crystal structure in which the space group belongs to P63/mmc.
  • the battery according to the fourth aspect can further improve energy efficiency.
  • the active material layer may contain Bi4Cu4Mn3 as an active material .
  • the battery according to the fifth aspect can further improve energy efficiency.
  • the Bi 4 Cu 4 Mn 3 may have a crystal structure in which the space group belongs to Fm-3m.
  • the battery according to the sixth aspect can further improve energy efficiency.
  • the active material layer may not contain a solid electrolyte.
  • the active material layer does not contain a solid electrolyte, the capacity per volume can be increased. Therefore, according to the seventh aspect, it is possible to provide a battery having a high capacity per volume and improved energy efficiency.
  • the current collector may contain Cu.
  • the current collector contains Cu
  • the current collector is used as a base material, and a Bi plating film and a Mn plating film are formed on the base material and heat-treated to obtain Bi
  • the active material layer may be a heat-treated plated layer.
  • the active material layer is a heat-treated plated layer, the capacity per volume can be increased. Therefore, according to the ninth aspect, it is possible to provide a battery having a high capacity per volume and improved energy efficiency.
  • the electrolyte layer may contain an electrolytic solution.
  • the battery according to the tenth aspect can have good cycle characteristics in addition to improved energy efficiency.
  • the electrolytic solution may contain vinylene carbonate as a solvent.
  • the battery according to the eleventh aspect can have good cycle characteristics in addition to improved energy efficiency.
  • the electrolyte layer may be a solid electrolyte layer.
  • the battery according to the twelfth aspect can have good cycle characteristics in addition to improved energy efficiency.
  • the solid electrolyte layer may contain a halide solid electrolyte, and the halide solid electrolyte may not contain sulfur.
  • the battery according to the thirteenth aspect can have good cycle characteristics in addition to improved energy efficiency.
  • the solid electrolyte layer may contain a sulfide solid electrolyte.
  • the battery according to the fourteenth aspect can have good cycle characteristics in addition to improved energy efficiency.
  • the first electrode may be a negative electrode and the second electrode may be a positive electrode.
  • the battery according to the fifteenth aspect has improved energy efficiency.
  • a method for manufacturing an electrode according to a sixteenth aspect of the present disclosure includes: preparing a plating layer containing a Bi plating film and a Mn plating film on a current collector by an electroplating method; Heating the current collector and the plating layer to obtain an electrode in which an active material layer containing an alloy containing Bi and Mn is formed on the current collector; including.
  • the manufacturing method according to the sixteenth aspect it is possible to easily manufacture an electrode capable of improving the energy efficiency of the battery.
  • the current collector may contain Cu.
  • the manufacturing method according to the seventeenth aspect it is possible to easily manufacture an electrode capable of improving the energy efficiency of the battery.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of a battery 1000 according to an embodiment of the present disclosure.
  • the battery 1000 includes a first electrode 101 , a second electrode 103 , and an electrolyte layer 102 positioned between the first electrode 101 and the second electrode 103 .
  • the first electrode 101 has a current collector 100 and an active material layer 104 positioned between the current collector 100 and the electrolyte layer 102 .
  • Active material layer 104 contains an alloy containing Bi and Mn.
  • a battery 1000 includes a first electrode 101 including an active material layer 104 containing an alloy containing Bi and Mn as an active material. With this configuration, the battery 1000 can improve energy efficiency.
  • the energy efficiency of a battery is specifically a value calculated by "amount of discharged power (Wh) ⁇ 100/amount of charged power (Wh)".
  • a small potential difference ( ⁇ V) between the charge reaction potential and the discharge reaction potential is regarded as high energy efficiency.
  • the potential difference between the charge reaction potential and the discharge reaction potential is evaluated by the potential of the plateau portion of the charge reaction potential and the potential of the plateau portion of the discharge reaction potential.
  • the second electrode 103 may have a current collector 105 and an active material layer 106, as shown in FIG.
  • the electrolyte layer 102 is a solid electrolyte layer. Therefore, even if the active material layer 104 containing an alloy containing Bi and Mn as an active material repeatedly expands and contracts due to charging and discharging, the electrolytic solution containing the electrolyte does not enter the active material layer 104 . Therefore, reduction in electron conduction paths in the active material layer 104 due to repeated charging and discharging is suppressed. Therefore, the battery 1000 can have good cycle characteristics because the current collecting property of the active material layer 104 is less likely to deteriorate due to charging and discharging.
  • the battery 1000 is, for example, a lithium secondary battery.
  • the active material layer 104 contains an alloy containing Bi and Mn.
  • An alloy containing Bi and Mn may be, for example, an intermetallic compound.
  • the alloy containing Bi and Mn may be, for example, BiMn. That is, the active material layer 104 may contain BiMn as an active material.
  • the energy efficiency of the battery 1000 can be further improved.
  • BiMn contained in the active material layer 104 may have a crystal structure in which the space group belongs to P63/mmc.
  • An alloy containing Bi and Mn may be, for example , Bi4Cu4Mn3 . That is, the active material layer 104 may contain Bi 4 Cu 4 Mn 3 as an active material.
  • the energy efficiency of the battery 1000 can be further improved.
  • Bi 4 Cu 4 Mn 3 contained in the active material layer 104 may have a crystal structure in which the space group belongs to Fm-3m.
  • the energy efficiency of the battery 1000 can be further improved.
  • Active material layer 104 may contain an alloy containing Bi and Mn as a main component.
  • the active material layer 104 contains an alloy containing Bi and Mn as a main component is defined as "the content of the alloy containing Bi and Mn in the active material layer 104 is 50% by mass or more.” .
  • the content ratio of the alloy containing Bi and Mn in the active material layer 104 it is confirmed that Bi and Mn are contained in the active material layer 104 by elemental analysis using, for example, EDX (energy dispersive X-ray analysis).
  • the active material layer 104 can be obtained by calculating the ratio of the contained compound (that is, the compound containing Bi and Mn as constituent elements) by Rietveld analysis of the X-ray diffraction result of the active material layer 104 .
  • the "compound containing Bi and Mn as constituent elements" is, for example, BiMn and Bi4Cu4Mn3 .
  • the active material layer 104 contains multiple kinds of compounds as an alloy containing Bi and Mn, the total content of these compounds is the content of the alloy containing Bi and Mn in the active material layer 104 .
  • the energy efficiency of the battery 1000 can be further improved.
  • the active material layer 104 containing an alloy containing Bi and Mn may be composed of, for example, an alloy containing Bi and Mn formed into a thin film (hereinafter referred to as "alloy thin film containing Bi and Mn").
  • alloy containing Bi and Mn formed into a thin film may be, for example, BiMn or Bi 4 Mn 3 Cu 4 formed into a thin film.
  • the energy efficiency of the battery 1000 can be further improved.
  • the active material layer 104 containing an alloy containing Bi and Mn can be produced, for example, by electroplating.
  • a method of manufacturing the first electrode 101 by forming the active material layer 104 by electroplating is, for example, as follows.
  • the current collector 100 serves as a base material, for example.
  • a current collector containing Cu, for example, is prepared as the current collector 100 .
  • the manufacturing method of the first electrode 101 is, for example, preparing a plating layer containing a Bi plating film and a Mn plating film on a current collector by an electroplating method; Heating the current collector and the plating layer to obtain an electrode in which an active material layer containing an alloy containing Bi and Mn is formed on the current collector; including.
  • the plating layer may be produced, for example, by first producing a Bi plating film and then forming a Mn plating film thereon.
  • the order of producing the Bi plating film and the Mn plating film is not limited to this, and for example, the plating layer may be produced by first producing the Mn plating film and then forming the Bi plating film thereon.
  • the heating temperature of the plating layer may be, for example, 150°C or higher and 400°C or lower.
  • the manufacturing method of the first electrode 101 will be explained more specifically.
  • the current collector 100 serves as a base material, for example.
  • a copper foil is prepared as the current collector 100 .
  • the copper foil is preliminarily degreased with an organic solvent, one side is masked and immersed in an acid solvent for degreasing, thereby activating the copper foil surface.
  • the activated copper foil is connected to a power source so that current can be applied.
  • a copper foil connected to a power supply is immersed in a bismuth plating bath.
  • the bismuth plating bath for example, an organic acid bath containing Bi 3+ ions and an organic acid is used.
  • Bi is electroplated on the unmasked copper foil surface.
  • the copper foil is recovered from the plating bath, removed from the masking, washed with pure water, and dried.
  • the bismuth plating bath used for forming the Bi plating film is not particularly limited, and can be appropriately selected from known bismuth plating baths capable of depositing a simple Bi thin film.
  • organic sulfonic acid baths In bismuth plating baths, organic sulfonic acid baths, gluconic acid and ethylenediaminetetraacetic acid (EDTA) baths, or citric acid and EDTA baths can be used as organic acid baths.
  • EDTA ethylenediaminetetraacetic acid
  • a sulfuric acid bath for example, may be used as the bismuth plating bath.
  • Additives may also be added to the bismuth plating bath.
  • the copper foil on which the Bi-plated film is formed is connected to a power supply so that the surface on which the Bi-plated film is not formed is masked again and current can be applied.
  • a copper foil connected to a power supply is immersed in a manganese plating bath.
  • a manganese plating bath for example, a sulfuric acid bath containing Mn 2+ ions and sulfuric acid is used.
  • Mn is electroplated on the surface of the unmasked Bi plating film.
  • the Mn-plated copper foil is recovered from the plating bath, removed from the masking, washed with pure water, and dried.
  • the manganese plating bath used for producing the Mn plating film is not particularly limited, and can be appropriately selected from known manganese plating baths capable of depositing a single Mn thin film.
  • a sulfate bath is selected as the manganese plating bath, as an example, manganese sulfate is added as a soluble manganese salt to a 1.0 mol/L aqueous solution of ammonium sulfate so that the Mn 2+ ion becomes 0.92 mol/L.
  • a plating bath may be used. Additives and the like may be added to the manganese plating bath.
  • the current density applied during electroplating is not particularly limited, and may be set as appropriate, for example, in consideration of the plating bath used and the material of the current collector used as the base material.
  • the copper foil and the plated layers that is, the Bi plated film and the Mn plated film
  • the copper foil and the plated layers are heated.
  • Mn is diffused from the Mn plating film to the Bi plating film
  • Cu is diffused in the solid phase from the copper foil to the Bi plating film, thereby producing an active material layer 104 composed of an alloy thin film containing Bi and Mn.
  • a laminate of a copper foil, a Bi-plated film, and a Mn-plated film obtained by electroplating a Bi-plated film and a Mn-plated film on a copper foil is subjected, for example, to a temperature of 150° C. or higher in a non-oxidizing atmosphere for 30 minutes.
  • Mn is diffused from the Mn plating film to the Bi plating film
  • Cu is diffused in the solid phase from the copper foil to the Bi plating film, for example, a BiMn thin film or Bi 4 Mn.
  • An active material layer 104 composed of a 3 Cu 4 thin film can be fabricated.
  • a sample obtained by electroplating bismuth on a copper foil to a thickness of 3 ⁇ m and then electroplating manganese to a thickness of 1 ⁇ m was heat-treated at 200° C. for 100 hours in an argon atmosphere to obtain BiMn.
  • An active material layer composed of a thin film containing was produced.
  • structural analysis of the surface of the active material layer composed of the thin film containing BiMn was also performed by surface X-ray diffraction measurement.
  • X-ray diffraction measurement was carried out using an X-ray diffractometer (MiNi Flex, manufactured by RIGAKU) from the surface of the active material layer, that is, from the thickness direction of the active material layer, using Cu-K ⁇ rays with wavelengths of 1.5405 ⁇ and 1.5444 ⁇ .
  • the ⁇ -2 ⁇ method was used as X-rays.
  • the obtained X-ray diffraction pattern is the same as the X-ray diffraction pattern of the first electrode produced in Example 1, which will be described later.
  • FIG. Corresponds to the pattern.
  • BiMn whose space group belongs to P63/mmc, and a phase of Cu contained in the Cu foil and the active material layer as the current collector were identified.
  • a copper foil was electroplated with bismuth to a thickness of 4 ⁇ m, and further electroplated with manganese at a thickness of 1 ⁇ m.
  • An active material layer composed of a thin film containing 4Mn3Cu4 was fabricated .
  • structural analysis of the surface of the active material layer composed of a thin film containing Bi 4 Mn 3 Cu 4 was also performed by surface X-ray diffraction measurement.
  • X-ray diffraction measurement was performed using an X-ray diffractometer (MiNi Flex manufactured by RIGAKU) from the surface of the active material layer, that is, from the thickness direction of the active material layer, and Cu-K ⁇ rays with wavelengths of 1.5405 ⁇ and 1.5444 ⁇ .
  • the ⁇ -2 ⁇ method was used as X-rays.
  • the obtained X-ray diffraction pattern is the same as the X-ray diffraction pattern of the first electrode produced in Example 4, which will be described later.
  • FIG. Corresponds to the pattern.
  • a phase of Bi 4 Mn 3 Cu 4 with a space group belonging to Fm-3m as a crystal structure and a Cu foil phase as a current collector were identified.
  • the active material layer 104 can have a high density, for example, as follows.
  • the active material layer 104 when the active material layer 104 is composed of a BiMn thin film produced by the above plating method, the active material layer 104 has a density of, for example, 5.8 g/cm 3 or more and 9.44 g/cm 3 or less. and may have a density of 7.2 g/cm 3 or more and 9.44 g/cm 3 or less.
  • the active material layer 104 when the active material layer 104 is composed of a Bi 4 Mn 3 Cu 4 thin film produced by the above plating method, the active material layer 104 has a thickness of 5.8 g/cm 3 or more and 9.51 g/cm 3 , for example. and may have a density of 7.2 g/cm 3 or more and 9.51 g/cm 3 or less.
  • first electrode 101 has current collector 100 and active material layer 104 .
  • the configuration of the active material layer 104 is as described above.
  • the first electrode 101 functions as a negative electrode. Therefore, the active material layer 104 includes a negative electrode active material that has the property of intercalating and deintercalating lithium ions.
  • Active material layer 104 contains an alloy containing Bi and Mn.
  • An alloy containing Bi and Mn is, for example, BiMn whose crystal structure has a space group of P63/mmc or Bi 4 Mn 3 Cu 4 whose crystal structure has a space group of Fm-3m.
  • BiMn and Bi4Mn3Cu4 function as negative electrode active materials.
  • Bi is a metal element that alloys with lithium.
  • Mn and Cu do not alloy with lithium, alloys containing Bi and Mn, and alloys containing Bi, Mn and Cu have a negative electrode active material during desorption and insertion of lithium atoms during charging and discharging. It is presumed that the load on the crystal structure is reduced and the decrease in the capacity retention rate of the battery is suppressed.
  • BiMn functions as a negative electrode active material
  • lithium is occluded by forming an alloy with lithium during charging. That is, a lithium-bismuth alloy is generated in the active material layer 104 when the battery 1000 is charged.
  • the produced lithium-bismuth alloy contains, for example, at least one selected from the group consisting of LiBi and Li 3 Bi.
  • BiMn as the negative electrode active material reacts, for example, as follows when the battery 1000 is charged and discharged. Note that the following reaction example is an example in which the lithium-bismuth alloy produced during charging is Li 3 Bi. Charging: BiMn+3Li + +3e ⁇ ⁇ Li 3 Bi+Ni Discharge: Li 3 Bi+Mn ⁇ BiMn+3Li + +3e ⁇
  • the active material layer 104 may substantially contain only BiMn as an active material.
  • battery 1000 can have increased capacity and improved cycling characteristics in addition to improved energy efficiency.
  • the active material layer 104 substantially contains only BiMn as an active material means, for example, that the active material contained in the active material layer 104 contains 1% by mass or less of active material other than BiMn. is.
  • the active material layer 104 may contain only BiMn as an active material.
  • the active material layer 104 When the active material layer 104 is a heat-treated plated layer provided in direct contact with the surface of the current collector 100 , the active material layer 104 firmly adheres to the current collector 100 . This makes it possible to further suppress the deterioration of the current collection characteristics of the first electrode 101 that occurs when the active material layer 104 repeatedly expands and contracts. Therefore, the cycle characteristics of battery 1000 are further improved. Furthermore, when the active material layer 104 is a heat-treated plated layer, the active material layer 104 contains Bi alloying with lithium at a high density, so that the capacity can be further increased.
  • the electrolyte solution 201 contains, for example, a non-aqueous solvent and a lithium salt.
  • An example of a cyclic ester solvent is ⁇ -butyrolactone.
  • An example of a linear ester solvent is methyl acetate.
  • fluorosolvents are fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, or fluorodimethylene carbonate.
  • One non-aqueous solvent selected from these may be used alone. Alternatively, a mixture of two or more non-aqueous solvents selected from these may be used.
  • the electrolytic solution may contain vinylene carbonate as a solvent.
  • the separator 202 has lithium ion conductivity.
  • the material of the separator 202 is not particularly limited as long as the passage of lithium ions is allowed.
  • the material of the separator 202 may be at least one selected from the group consisting of solid electrolytes, gel electrolytes, ion exchange resin membranes such as lithium cation exchange resins, semipermeable membranes, and porous membranes. If the separator 202 is made of these materials, the safety of the battery 2000 can be sufficiently ensured.
  • Solid electrolytes include sulfide solid electrolytes such as Li 2 SP 2 S 5 and oxide solid electrolytes such as Li 7 La 3 Zr 2 O 12 (LLZ).
  • Gel electrolytes include gel electrolytes containing fluororesins such as PVdF.
  • ion-exchange resin membranes include cation-exchange membranes and anion-exchange membranes.
  • porous membrane examples include a porous membrane made of polyolefin resin, a porous membrane made of glass paper obtained by weaving glass fibers into a non-woven fabric, and the like.
  • Materials for the current collector 105 include, for example, metal materials.
  • Metal materials include copper, stainless steel, iron, and aluminum.
  • the thickness of the second electrode 103 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the second electrode 103 is 10 ⁇ m or more, a sufficient energy density of the battery can be secured. When the thickness of the second electrode 103 is 500 ⁇ m or less, the battery can operate at high output.
  • the copper foil was recovered from the plating bath, and after removing the masking, it was washed with pure water and dried. After that, the copper foil and the plated layers formed on the copper foil (that is, the Bi plated film and the Mn plated film) were heat-treated at 200° C. for 100 hours in an electric furnace with an argon atmosphere.
  • FIG. 3 is a graph showing X-ray diffraction patterns of the active material layer of the first electrode in the battery according to Example 1 at the initial stage, after charging, and after charging and discharging.
  • the X-ray diffraction pattern of the initial active material layer is the X-ray diffraction pattern indicated as "Initial". From this X-ray diffraction pattern, it was confirmed that BiMn having a hexagonal crystal structure and belonging to the space group P63/mmc was generated in the active material layer. In addition, in the X-ray diffraction pattern, the phase of Cu contained in the Cu foil as the current collector and the active material layer was also confirmed.
  • Example 2 ⁇ Production of first electrode> A first electrode was fabricated in the same manner as in Example 1, except that the size of the final first electrode was different. In Example 2, the first electrode was punched to a size of ⁇ 0.92 cm.
  • the resulting first electrode was placed in an insulating outer cylinder having an inner diameter of 9.4 mm.
  • An indium-lithium alloy was made by pressing a piece of lithium foil against an indium foil and diffusing the lithium into the indium.
  • a pressure of 360 MPa was applied to the stack in the stacking direction to form a battery as a test cell comprising a first electrode, a solid electrolyte layer and a second electrode.
  • the thickness of the first electrode was 1.5 ⁇ m
  • the thickness of the solid electrolyte layer was 500 ⁇ m
  • the thickness of the second electrode was 15 ⁇ m.
  • FIG. Converting the InLi-based potential shown in FIG. (vs. Li).
  • the potential in the graph shown in FIG. 5 is the potential based on InLi, where InLi is used as the counter electrode.
  • the above conversion from the InLi-based potential to the Li-based potential is obtained by converting the InLi potential to +0.62 V based on Li.
  • the potential can be converted to Li-based potential by the same method.
  • Example 3 ⁇ Production of first electrode> A first electrode was fabricated in the same manner as in Example 1, except that the size of the final first electrode was different. In Example 3, the first electrode was punched to a size of ⁇ 0.92 cm.
  • Example 4 ⁇ Production of first electrode>
  • a copper foil (10 cm ⁇ 10 cm, thickness: 10 ⁇ m) was preliminarily degreased with an organic solvent, masked on one side, and immersed in an acidic solvent for degreasing to activate the copper foil surface.
  • Bismuth electroplating on copper foil is performed by immersing the copper foil, which serves as the plating base material, in a bismuth plating bath, constructing an electric circuit so that the copper foil becomes the anode from an external power supply, and adjusting the current and potential. was broken As a result, bismuth ions in the bismuth plating bath were reduced on the copper foil to form a Bi plating film.
  • the copper foil electroplated with bismuth was immersed in a manganese plating bath, and an electric circuit was constructed so that the copper foil electroplated with bismuth from an external power source became the anode, and the current and potential were adjusted.
  • manganese ions in the manganese plating bath were reduced on the bismuth plating to form a Mn plating film.
  • a sulfate bath was selected as the manganese plating bath.
  • a manganese plating bath was prepared by adding manganese sulfate as a soluble manganese salt to a 1.0 mol/L aqueous solution of ammonium sulfate so that the Mn 2+ ions would be 0.92 mol/L.
  • the activated copper foil was immersed in the bismuth plating bath after being connected to a power supply so that current could be applied. Then, by controlling the current density to 2 A/dm 2 , the unmasked copper foil surface was electroplated with bismuth to a thickness of about 4 ⁇ m to prepare a Bi-plated film.
  • the copper foil having the Bi-plated film formed thereon was connected to a power supply so that a current could be applied in the same manner as in the electroplating of bismuth, and then immersed in a manganese plating bath. After that, by controlling the current density to 2 A/dm 2 , the unmasked copper foil surface was electroplated with manganese to a thickness of about 1 ⁇ m to prepare a Mn-plated film.
  • Example 5 ⁇ Production of first electrode> A first electrode was fabricated in the same manner as in Example 4, except that the size of the final first electrode was different. In Example 5, the first electrode was punched to a size of ⁇ 0.92 cm.
  • Solid electrolyte A sulfide solid electrolyte Li 6 PS 5 Cl (manufactured by Ampcera, 80 mg) was used as the solid electrolyte constituting the electrolyte layer.
  • Example 5 a battery was obtained as a test cell of Example 5, in which the first electrode having the active material layer made of Bi 4 Cu 4 Mn 3 was used as the working electrode and the lithium-indium alloy was used as the counter electrode.
  • FIG. 9 is a graph showing the results of a charge/discharge test of the battery according to Example 5.
  • FIG. Converting the InLi-based potential shown in FIG. rice field. However, the charge reaction potential after the second cycle was 0.5 to 0.7 V (vs. Li), and the discharge reaction potential was around 0.85 V (vs. Li).
  • Example 6 ⁇ Production of first electrode> A first electrode was fabricated in the same manner as in Example 4, except that the size of the final first electrode was different. In Example 6, the first electrode was punched to a size of ⁇ 0.92 cm.
  • FIG. 10 is a graph showing the results of a charge/discharge test of the battery according to Example 6.
  • the charging reaction potential in the first cycle is from 0.37 to 0.75 V (vs. Li) with a large slope. rice field.
  • the charge reaction potential after the second cycle was 0.52 to 0.75 V (vs. Li), and the discharge reaction potential was around 0.85 V (vs. Li).
  • a nickel foil (10 cm ⁇ 10 cm, thickness: 12 ⁇ m) was preliminarily degreased with an organic solvent, masked on one side, and immersed in an acidic solvent for degreasing, thereby activating the copper foil surface.
  • a plating bath was prepared by adding bismuth methanesulfonate as a soluble bismuth salt to 1.0 mol/L of methanesulfonic acid so that Bi 3+ ions would be 0.18 mol/L.
  • the activated nickel foil was immersed in the plating bath after being connected to a power source so that current could be applied.
  • a battery which is a test cell of Reference Example 1, was produced in the same manner as in Example 1, except that the first electrode of Reference Example 1 was used as the working electrode.
  • FIG. 11 is a graph showing the results of a charge/discharge test of the battery according to Reference Example 1.
  • FIG. 11 As shown in FIG. 11, in the battery of Reference Example 1, the charge reaction potential decreased from 0.44 to 0.5 V (vs. Li), and the discharge reaction potential was around 0.8 V (vs. Li). .
  • Solid electrolyte A sulfide solid electrolyte Li 6 PS 5 Cl (manufactured by Ampcera, 80 mg) was used as the solid electrolyte constituting the electrolyte layer.
  • the resulting first electrode was placed in an insulating outer cylinder having an inner diameter of 9.4 mm.
  • An indium-lithium alloy was made by pressing a piece of lithium foil against an indium foil and diffusing the lithium into the indium.
  • a pressure of 360 MPa was applied to the stack in the stacking direction to form a battery as a test cell comprising a first electrode, a solid electrolyte layer and a second electrode.
  • the thickness of the first electrode was 1.5 ⁇ m
  • the thickness of the solid electrolyte layer was 500 ⁇ m
  • the thickness of the second electrode was 15 ⁇ m.
  • current collectors made of stainless steel were attached to the first electrode and the second electrode, and current collecting leads were attached to the current collectors.
  • a battery was obtained as a test cell of Reference Example 2, in which the first electrode having the active material layer made of BiNi was used as the working electrode and the lithium-indium alloy was used as the counter electrode.
  • a test cell of Reference Example 3 was prepared in the same manner as in Reference Example 2, except that Li 3 YBr 4 Cl 2 (80 mg) was used instead of Li 6 PS 5 Cl (80 mg) as the solid electrolyte layer.
  • a battery was produced as follows.
  • the battery having the first electrode having the active material layer containing an alloy containing Bi and Mn has an active material layer not containing an alloy containing Bi and Mn, such as an active material layer formed of BiNi. has improved energy efficiency compared to a battery with a first electrode having
  • the battery of the present disclosure can be used, for example, as an all-solid lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本開示による電池1000は、第一電極101と、第二電極103と、第一電極101と第二電極103との間に位置する電解質層102と、を備える。第一電極101は、集電体100と、集電体100と電解質層102との間に位置する活物質層104と、を有する。活物質層104は、BiおよびMnを含む合金を含む。本開示による電極の製造方法は、集電体上に、電気めっき法によってBiめっき膜およびMnめっき膜を含むめっき層を作製することと、前記集電体および前記めっき層を加熱して、前記集電体上にBiおよびMnを含む合金を含む活物質層が形成された電極を得ることと、を含む。

Description

電池および電極の製造方法
 本開示は、電池および電極の製造方法に関する。
 近年、研究開発が盛んに行われているリチウム二次電池では、用いられる電極により、充放電電圧、充放電サイクル寿命特性、保存特性などの電池特性が大きく左右される。このことから、電極活物質を改善することにより、電池特性の向上が図られている。
 例えば、充電の際に電気化学的にリチウムと合金化するアルミニウム、シリコン、錫などを電極として用いるリチウム二次電池が古くから提案されている。特許文献1は、シリコンと錫と遷移金属とを有する合金からなる負極材料を含む負極、正極、および電解質を備えたリチウム二次電池を開示している。
 特許文献2は、活物質として集電体上に設けられたシリコン薄膜を用いた負極と、正極と、電解質とを備えるリチウム二次電池を開示している。
 リチウムと合金化する金属として、ビスマス(Bi)が挙げられる。非特許文献1には、Bi粉末を用いて作製された、Biを負極活物質として含む負極が開示されている。
特許第4898737号公報 特許第3733065号公報
山口裕之著「ポリアクリル酸と金属酸化物の反応物からなるリチウム電池用非晶質高分子負極活物質の合成とその電気化学的特性」三重大学、博士論文、2015年
 本開示は、改善されたエネルギー効率を有する電池を提供する。
 本開示の電池は、
 第一電極と、
 第二電極と、
 前記第一電極と前記第二電極との間に位置する電解質層と、
を備え、
 前記第一電極は、
  集電体と、
  前記集電体と前記電解質層との間に位置する活物質層と、を有し、
 前記活物質層は、BiおよびMnを含む合金を含む。
 本開示によれば、改善されたエネルギー効率を有する電池を提供できる。
図1は、本開示の実施形態に係る電池の構成例を模式的に示す断面図である。 図2は、本開示の実施形態に係る電池の変形例を模式的に示す断面図である。 図3は、実施例1に係る電池における第一電極について、初期、充電後、および充放電後の活物質層のX線回折パターンを示すグラフである。 図4は、実施例1に係る電池の充放電試験の結果を示すグラフである。 図5は、実施例2に係る電池の充放電試験の結果を示すグラフである。 図6は、実施例3に係る電池の充放電試験の結果を示すグラフである。 図7は、実施例4に係る電池における第一電極について、初期、充電後、および充放電後の活物質層のX線回折パターンを示すグラフである。 図8は、実施例4に係る電池の充放電試験の結果を示すグラフである。 図9は、実施例5に係る電池の充放電試験の結果を示すグラフである。 図10は、実施例6に係る電池の充放電試験の結果を示すグラフである。 図11は、参考例1に係る電池の充放電試験の結果を示すグラフである。 図12は、参考例2に係る電池の充放電試験の結果を示すグラフである。 図13は、参考例3に係る電池の充放電試験の結果を示すグラフである。
 (本開示の基礎となった知見)
 [背景技術]の欄に記載したとおり、リチウム二次電池では、電極活物質の改善によって電池特性の向上が図られている。
 負極活物質としてリチウム金属が用いられる場合、重量当りおよび体積当りともに高いエネルギー密度を有するリチウム二次電池が得られる。しかし、このような構成を有するリチウム二次電池では、充電時にリチウムがデンドライト状に析出する。析出したリチウム金属の一部が電解液と反応するため、充放電効率が低く、サイクル特性が劣るという問題があった。
 これに対し、炭素、特に黒鉛が負極として使用されることが提案されている。炭素が使用された負極では、炭素へのリチウムの挿入および離脱によって、充電および放電が行われる。このような構成を有する負極では、充放電機構上、リチウム金属がデンドライト状に析出しない。また、このような構成を有する負極が採用されたリチウム二次電池では、反応がトポタクティックなため可逆性が非常に良好であり、充放電効率がほぼ100%である。これらのことから、炭素、特に黒鉛が使用された負極が採用されたリチウム二次電池が実用化されている。しかし、黒鉛の理論容量密度は372mAh/gであり、これはリチウム金属の理論容量密度3884mAh/gの1/10程度である。したがって、黒鉛が使用された負極の活物質容量密度は低い。さらに、黒鉛の実容量密度がほぼ理論容量密度まで達しているため、黒鉛が使用された負極においては、高容量化が限界にきている。
 これらに対し、充電の際に電気化学的にリチウムと合金化するアルミニウム、シリコン、錫などを電極として用いるリチウム二次電池が古くから提案されている。リチウムと合金化する金属の容量密度は、黒鉛の容量密度より格段に大きい。特にシリコンの理論容量密度は大きい。したがって、リチウムと合金化するアルミニウム、シリコン、錫などが用いられた電極は、高い容量を示す電池用負極として有望であり、これを負極とする種々の二次電池が提案されている(特許文献1)。
 しかし、上記のようなリチウムと合金化する金属が用いられた負極は、リチウムを吸蔵すると膨張し、リチウムを放出すると収縮する。充放電においてこのような膨張および収縮を繰り返すと、電極活物質である合金自体が充放電により微粉化し負極の集電特性が悪化することから、十分なサイクル特性が得られていなかった。このような欠点を改良しようと、次のようないくつかの試みがなされている。例えば、表面を荒らした集電体上にシリコンをスパッタリングまたは蒸着で堆積させる、あるいは錫を電気めっきで堆積させる試みがなされている(特許文献2)。この試みでは、活物質、すなわちリチウムと合金化する金属が薄膜となって集電体と密着しているので、リチウムの吸蔵および放出により負極が膨張および収縮を繰り返しても、集電性がほとんど低下しない。
 しかし、上記のようにスパッタリングまたは蒸着で活物質を形成した場合は、製造コストが高く、実用的ではない。製造コストの安価な電気めっきで活物質を形成するのが実用的であるが、シリコンは電気めっきが非常に困難である。また、電気めっきの安易な錫には、放電平坦性が乏しく、電池の電極として使いにくいという問題があった。
 また、リチウムと合金化する金属として、ビスマス(Bi)が挙げられる。Biは、リチウム(Li)と、LiBiおよびLi3Biという化合物を作る。LiBiの電位およびLi3Biの電位は、互いにほとんど差がない。一方、放電平坦性が乏しい錫では、リチウムと形成される化合物が数種あり、それぞれの化合物の電位が互いにかなり異なる。すなわち、Biは、錫のような、リチウムと形成される複数種の化合物間で電位が大きく異なるという性質を持たない。このため、Biを活物質として含む電極は、電位がフラットであるため放電平坦性に優れている。したがって、Biを活物質として含む電極は、電池の電極として適していると考えられる。
 しかし、Biは、展性延性に乏しく、金属板または金属箔という形態での製造は困難であり、得られる形態は小球または粉末となる。このため、Biを活物質として含む電極としては、Bi粉末を集電体上に塗布することによって製造される電極が検討されている。しかし、このようなBi粉末を用いて製造された電極は、充放電を繰り返すことによって微粉化し集電特性が悪化することから、十分なサイクル特性は得られていなかった。例えば、非特許文献1では、Bi粉末を用い、かつPVdF(ポリフッ化ビニリデン)またはPI(ポリイミド)を結着剤として用いて、Biを活物質として含む電極が作製されている。非特許文献1では、この電極を用いて作製された電池の充放電がなされている。しかし、作製された電極の初期充放電カーブとサイクル特性の結果はいずれも非常に劣悪である。0.042IT相当という非常に低いレートで測定されているが、初期の充放電効率は低く、サイクル劣化も激しいので、実用に供せるものではない。このサイクル劣化については、非特許文献1に、Li挿入時にBi活物質が膨張、Li脱離時にBi活物質が収縮するにしたがって、活物質が微細化して電子伝導パスがとれなくなり容量の低下が起きると考えられる、と示されている。
 本発明者らは、上述のように、Liと形成される複数種の化合物間で電位が大きく異なるという性質を持たず、放電平坦性に優れているBiに着目し、サイクル特性を向上し得る電池について鋭意検討を行った。その結果、本発明者らは、BiおよびMnを含む合金を活物質として用いるという、新たな技術思想に到達した。
 (本開示に係る一態様の概要)
 本開示の第1態様に係る電池は、
 第一電極と、
 第二電極と、
 前記第一電極と前記第二電極との間に位置する固体電解質層と、
を備え、
 前記第一電極は、
  集電体と、
  前記集電体と前記電解質層との間に位置する活物質層と、を有し、
 前記活物質層は、BiおよびMnを含む合金を含む。
 第1態様に係る電池は、BiおよびMnを含む合金を含む活物質層を有する電極を備えることにより、エネルギー効率を改善することができる。
 本開示の第2態様において、例えば、第1態様に係る電池では、前記活物質層は、LiBiおよびLi3Biからなる群より選択される少なくとも1つを含んでいてもよい。
 第2態様に係る電池は、エネルギー効率をより改善することができる。
 本開示の第3態様において、例えば、第1または第2態様に係る電池では、前記活物質層は、BiMnを活物質として含んでいてもよい。
 第3態様に係る電池は、エネルギー効率をより改善することができる。
 本開示の第4態様において、例えば、第3態様に係る電池では、前記BiMnは、空間群がP63/mmcに帰属する結晶構造を有していてもよい。
 第4態様に係る電池は、エネルギー効率をより改善することができる。
 本開示の第5態様において、例えば、第1から第4態様のいずれか1つに係る電池では、前記活物質層は、Bi4Cu4Mn3を活物質として含んでいてもよい。
 第5態様に係る電池は、エネルギー効率をより改善することができる。
 本開示の第6態様において、例えば、第5態様に係る電池では、前記Bi4Cu4Mn3は、空間群がFm-3mに帰属する結晶構造を有していてもよい。
 第6態様に係る電池は、エネルギー効率をより改善することができる。
 本開示の第7態様において、例えば、第1から第6態様のいずれか1つに係る電池では、前記活物質層は、固体電解質を含まなくてもよい。
 第7態様に係る電池は、活物質層が固体電解質を含まないので、体積あたりの容量を高めることができる。したがって、第7態様によれば、体積あたりの容量が高く、かつ改善されたエネルギー効率を有する電池を提供できる。
 本開示の第8態様において、例えば、第1から第7態様のいずれか1つに係る電池では、前記集電体は、Cuを含んでいてもよい。
 第8態様に係る電池では、集電体がCuを含むことにより、例えば集電体を基材とし、その基材上にBiめっき膜およびMnめっき膜を作製して加熱処理することによって、Bi4Mn3Cu4のようなBi、Mn、およびCuを含む合金を含む活物質層104を容易に作製することができる。したがって、第8態様によれば、容易に、エネルギー効率の改善に適した構成を有する電池を提供できる。
 本開示の第9態様において、例えば、第1から第8態様のいずれか1つに係る電池では、前記活物質層は、熱処理されためっき層であってもよい。
 第9態様に係る電池は、活物質層が熱処理されためっき層であるので、体積あたりの容量を高めることができる。したがって、第9態様によれば、体積あたりの容量が高く、かつ改善されたエネルギー効率を有する電池を提供できる。
 本開示の第10態様において、例えば、第1から第9態様のいずれか1つに係る電池では、前記電解質層は、電解液を含んでいてもよい。
 第10態様に係る電池は、改善されたエネルギー効率に加え、良好なサイクル特性も有することができる。
 本開示の第11態様において、例えば、第10態様に係る電池では、前記電解液は、ビニレンカーボネートを溶媒として含んでいてもよい。
 第11態様に係る電池は、改善されたエネルギー効率に加え、良好なサイクル特性も有することができる。
 本開示の第12態様において、例えば、第1から第9態様のいずれか1つに係る電池では、前記電解質層は、固体電解質層であってもよい。
 第12態様に係る電池は、改善されたエネルギー効率に加え、良好なサイクル特性も有することができる。
 本開示の第13態様において、例えば、第12態様に係る電池では、前記固体電解質層は、ハロゲン化物固体電解質を含んでもよく、前記ハロゲン化物固体電解質は、硫黄を含まなくてもよい。
 第13態様に係る電池は、改善されたエネルギー効率に加え、良好なサイクル特性も有することができる。
 本開示の第14態様において、例えば、第12態様に係る電池では、前記固体電解質層は、硫化物固体電解質を含んでいてもよい。
 第14態様に係る電池は、改善されたエネルギー効率に加え、良好なサイクル特性も有することができる。
 本開示の第15態様において、例えば、第1から第14態様のいずれか1つに係る電池では、前記第一電極は負極であってもよく、前記第二電極は正極であってもよい。
 第15態様に係る電池は、改善されたエネルギー効率を有する。
 本開示の第16態様に係る電極の製造方法は、
 集電体上に、電気めっき法によってBiめっき膜およびMnめっき膜を含むめっき層を作製することと、
 前記集電体および前記めっき層を加熱して、前記集電体上にBiおよびMnを含む合金を含む活物質層が形成された電極を得ることと、
を含む。
 第16態様に係る製造方法によれば、電池のエネルギー効率を改善し得る電極を容易に製造することができる。
 本開示の第17態様において、例えば、第16態様に係る製造方法では、前記集電体は、Cuを含んでいてもよい。
 第17態様に係る製造方法によれば、電池のエネルギー効率を改善し得る電極を容易に製造することができる。
 (本開示の実施形態)
 以下、本開示の実施形態が、図面を参照しながら説明される。以下の説明は、いずれも包括的又は具体的な例を示すものである。以下に示される数値、組成、形状、膜厚、電気特性、二次電池の構造などは、一例であり、本開示を限定する主旨ではない。
 図1は、本開示の実施形態に係る電池1000の構成例を模式的に示す断面図である。
 電池1000は、第一電極101と、第二電極103と、第一電極101と第二電極103との間に位置する電解質層102と、を備える。第一電極101は、集電体100と、集電体100と電解質層102との間に位置する活物質層104と、を有する。活物質層104は、BiおよびMnを含む合金を含む。
 電池1000は、BiおよびMnを含む合金を活物質として含む活物質層104を含む第一電極101を備える。この構成により、電池1000は、エネルギー効率を改善することができる。ここで、電池のエネルギー効率とは、具体的には「放電電力量(Wh)×100/充電電力量(Wh)」で算出される値である。なお、ハーフセルを用いたエネルギー効率の評価、すなわち単電極評価においては、本明細書では、充電反応電位と放電反応電位との電位差(ΔV)が小さいことをエネルギー効率が高いとみなす。充電反応電位と放電反応電位との電位差は、充電反応電位の平坦部分の電位および放電反応電位の平坦部分の電位で評価される。
 図1に示されているように、第二電極103は、集電体105と活物質層106とを有していてもよい。
 電池1000では、電解質層102が固体電解質層である。このため、充放電によりBiおよびMnを含む合金を活物質として含む活物質層104が膨張収縮を繰り返しても、活物質層104内に電解質を含む電解液が入り込まない。このため、充放電が繰り返されることによる活物質層104内の電子伝導経路の低減が抑制される。したがって、電池1000は、充放電による活物質層104の集電性の低下が生じにくいので、良好なサイクル特性を有することができる。
 電池1000は、例えば、リチウム二次電池である。以下、電池1000の充放電時に、第一電極101の活物質層106および第二電極103において吸蔵および放出される金属イオンがリチウムイオンである場合を例に挙げて説明する。
 上述のとおり、活物質層104は、BiおよびMnを含む合金を含む。BiおよびMnを含む合金は、例えば金属間化合物であってもよい。
 BiおよびMnを含む合金は、例えばBiMnであってもよい。すなわち、活物質層104は、BiMnを活物質として含んでいてもよい。
 以上の構成によれば、電池1000のエネルギー効率をより改善することができる。
 活物質層104に含まれるBiMnは、空間群がP63/mmcに帰属する結晶構造を有していてもよい。
 BiおよびMnを含む合金は、例えばBi4Cu4Mn3であってもよい。すなわち、活物質層104は、Bi4Cu4Mn3を活物質として含んでいてもよい。
 以上の構成によれば、電池1000のエネルギー効率をより改善することができる。
 活物質層104に含まれるBi4Cu4Mn3は、空間群がFm-3mに帰属する結晶構造を有していてもよい。
 以上の構成によれば、電池1000のエネルギー効率をより改善することができる。
 活物質層104は、BiおよびMnを含む合金を主成分として含んでいてもよい。ここで、「活物質層104がBiおよびMnを含む合金を主成分として含む」とは、「活物質層104におけるBiおよびMnを含む合金の含有割合が50質量%以上である」と定義する。なお、活物質層104におけるBiおよびMnを含む合金の含有割合は、例えば、EDX(エネルギー分散型X線分析)による元素分析によってBiおよびMnが活物質層104に含まれていることを確認し、活物質層104のX線回折結果をリートベルト解析することで含まれる化合物(すなわち、BiおよびMnを構成元素として含む化合物)の比率を算出することによって、求めることができる。上記の「BiおよびMnを構成元素として含む化合物」は、例えばBiMnおよびBi4Cu4Mn3である。活物質層104がBiおよびMnを含む合金として複数種の化合物を含む場合は、それら化合物の含有割合の合計が、活物質層104におけるBiおよびMnを含む合金の含有割合である。
 以上の構成によれば、電池1000のエネルギー効率をより改善することができる。
 BiおよびMnを含む合金を含む活物質層104は、例えば、薄膜状に形成されたBiおよびMnを含む合金(以下、「BiおよびMnを含む合金薄膜」という)によって構成されてもよい。薄膜状に形成されたBiおよびMnを含む合金は、例えば、薄膜状に形成されたBiMnまたはBi4Mn3Cu4であってもよい。
 以上の構成によれば、電池1000のエネルギー効率をより改善することができる。
 BiおよびMnを含む合金を含む活物質層104は、例えば、電気めっきによって作製することができる。活物質層104を電気めっきによって作製することによって第一電極101を製造する方法は、例えば以下のとおりである。
 まず、電気めっきの基材が準備される。第一電極101においては、例えば集電体100が基材となる。集電体100として、例えばCuを含む集電体が準備される。第一電極101の製造方法は、例えば、
 集電体上に、電気めっき法によってBiめっき膜およびMnめっき膜を含むめっき層を作製することと、
 前記集電体および前記めっき層を加熱して、前記集電体上にBiおよびMnを含む合金を含む活物質層が形成された電極を得ることと、
を含む。
 上記めっき層は、例えば、まずBiめっき膜を作製し、さらにその上からMnめっき膜を形成することによって作製されてもよい。Biめっき膜とMnめっき膜の作製の順番はこれに限定されず、例えばまずMnめっき膜を作製し、さらにその上からBiめっき膜を形成することによって上記めっき層が作製されてもよい。
 上記製造方法において、集電体とめっき層とを加熱することにより、例えば、Mnめっき膜中のMn、あるいはMnめっき膜中のMnと集電体に含まれるCuとを、Biめっき膜に拡散させる。これにより、集電体上に、例えばBiMnまたはBi4Mn3Cu4のようなBiおよびMnを含む合金を含む活物質層を形成することができる。
 めっき層の加熱温度は、例えば150℃以上かつ400℃以下であってもよい。
 第一電極101の製造方法について、より具体的に説明される。
 まず、電気めっきの基材を準備する。第一電極101においては、例えば集電体100が基材となる。一例として、集電体100として銅箔を準備する。銅箔を有機溶剤により予備脱脂した後、片面をマスキングして酸性溶剤に浸漬することで脱脂を行い、銅箔表面を活性化させる。活性化させた銅箔は、電流が印加できるように電源と接続される。電源と接続された銅箔は、ビスマスめっき浴に浸漬される。ビスマスめっき浴として、例えば、Bi3+イオンと有機酸とを含む有機酸浴が用いられる。その後、電流密度および印加時間を制御して銅箔に電流を印加することにより、マスキングをしていない銅箔表面にBiを電気めっきする。電気めっき後に、銅箔をめっき浴から回収し、マスキングを外した後に純水により洗浄、乾燥する。これらの方法により、銅箔表面にBiめっき膜が作製される。なお、Biめっき膜の作製に用いられるビスマスめっき浴は、特には限定されず、Bi単体薄膜を析出させることが可能な公知のビスマスめっき浴の中から適宜選択することができる。ビスマスめっき浴では、有機酸浴として、有機スルホン酸浴、グルコン酸およびエチレンジアミン四酢酸(EDTA)浴、またはクエン酸およびEDTA浴が用いられ得る。また、ビスマスめっき浴には、例えば硫酸浴が用いられてもよい。また、ビスマスめっき浴には添加剤が加えられていてもよい。
 次に、Biめっき膜が形成された銅箔は、Biめっき膜が形成されていない面を再度マスキングして電流が印加できるように電源と接続される。電源と接続された銅箔は、マンガンめっき浴に浸漬される。マンガンめっき浴として、例えば、Mn2+イオンと硫酸とを含む硫酸浴が用いられる。その後、電流密度および印加時間を制御して銅箔に電流を印加することにより、マスキングをしていないBiめっき膜の表面にMnを電気めっきする。電気めっき後に、Mnめっきした銅箔をめっき浴から回収し、マスキングを外した後に純水により洗浄、乾燥する。これらの方法により、Biめっき膜が形成された銅箔のBiめっき膜上に、Mnめっき膜が作製される。なお、Mnめっき膜の作製に用いられるマンガンめっき浴は、特には限定されず、Mn単体薄膜を析出させることが可能な公知のマンガンめっき浴の中から適宜選択することができる。例えば、マンガンめっき浴として硫酸塩浴を選択する場合、一例として、硫酸アンモニウム1.0mol/L水溶液に可溶性マンガン塩として硫酸マンガンをMn2+イオンが0.92mol/Lとなるように加えて作製されためっき浴が用いられ得る。また、マンガンめっき浴には添加剤等が加えられていてもよい。
 電気めっきの際に印加する電流密度は、特に限定されず、例えば使用されるめっき浴および基材として用いられる集電体の材料等を考慮して、適宜設定されてもよい。
 次に、銅箔および当該銅箔上に作製されためっき層(すなわち、Biめっき膜およびMnめっき膜)が、加熱される。この熱処理により、Mnめっき膜からBiめっき膜へとMn、更には銅箔からBiめっき膜へCuを固相内拡散させて、BiおよびMnを含む合金薄膜で構成された活物質層104を作製できる。銅箔にBiめっき膜およびMnめっき膜を電気めっきで作製することによって得られた銅箔、Biめっき膜、およびMnめっき膜の積層体に、例えば、非酸化雰囲気で150℃以上の温度で30分以上100時間未満の熱処理が施されることによって、Mnめっき膜からBiめっき膜へとMn、更には銅箔からBiめっき膜へCuを固相内拡散させて、例えばBiMn薄膜またはBi4Mn3Cu4薄膜で構成された活物質層104が作製され得る。
 例えば、銅箔にビスマスを厚み3μm狙いで電気めっきし、更にその上にマンガンを厚み1μm狙いで電気めっきしたサンプルについては、アルゴン雰囲気で200℃の温度で100時間の熱処理をすることによって、BiMnを含む薄膜で構成された活物質層が作製された。また、作製されたBiMnを含む薄膜で構成された活物質層について、表面X線回折測定により表面の構造解析も行われた。X線回折測定は、活物質層の表面、つまり活物質層の厚み方向よりX線回折装置(RIGAKU製、MiNi Flex)を用いて、波長1.5405Åおよび1.5444ÅであるCu-Kα線をX線として用いたθ-2θ法で行われた。得られたX線回折パターンは、後述の実施例1で作製された第一電極のX線回折パターンと同じであり、図3に示されたX線回折パターンのうち「Initial」のX線回折パターンに相当する。結晶構造として空間群がP63/mmcに帰属するBiMnと、集電体としてのCu箔及び活物質層内に含まれているCuの相が同定された。
 また、同様に銅箔にビスマスを厚み4μm狙いで電気めっきし、更にその上にマンガンを1μmで電気めっきしたサンプルについては、アルゴン雰囲気で200℃の温度で100時間の熱処理をすることによって、Bi4Mn3Cu4を含む薄膜で構成された活物質層が作製された。また、作製されたBi4Mn3Cu4を含む薄膜で構成された活物質層について、表面X線回折測定により表面の構造解析も行われた。X線回折測定は、活物質層の表面、つまり活物質層の厚み方向よりX線回折装置(RIGAKU製、MiNi Flex)を用いて、波長1.5405Åおよび1.5444ÅであるCu-Kα線をX線として用いたθ-2θ法で行われた。得られたX線回折パターンは、後述の実施例4で作製された第一電極のX線回折パターンと同じであり、図7に示されたX線回折パターンのうち「Initial」のX線回折パターンに相当する。結晶構造として空間群がFm-3mに帰属するBi4Mn3Cu4と、集電体としてのCu箔の相が同定された。
 活物質層104が、上記のような方法で作製された熱処理されためっき層である場合、活物質層104は、例えば以下のような高い密度を有することができる。例えば、活物質層104が上記のめっき法によって作製されたBiMn薄膜で構成されている場合、活物質層104は、例えば5.8g/cm3以上かつ9.44g/cm3以下の密度を有することができ、7.2g/cm3以上かつ9.44g/cm3以下の密度を有することもできる。例えば、活物質層104が上記のめっき法によって作製されたBi4Mn3Cu4薄膜で構成されている場合、活物質層104は、例えば5.8g/cm3以上かつ9.51g/cm3以下の密度を有することができ、7.2g/cm3以上かつ9.51g/cm3以下の密度を有することもできる。
 以下、第一電極101が負極であり、かつ第二電極103が正極である場合を例に挙げて、本実施形態の電池1000の各構成についてより詳しく説明する。
 [第一電極]
 上述のとおり、第一電極101は、集電体100および活物質層104を有する。活物質層104の構成は、上述したとおりである。第一電極101は、負極として機能する。したがって、活物質層104は、リチウムイオンを吸蔵かつ放出する特性を有する負極活物質を含む。活物質層104は、BiおよびMnを含む合金を含んでいる。BiおよびMnを含む合金は、例えば、結晶構造が空間群P63/mmcであるBiMnまたは空間群Fm-3mであるBi4Mn3Cu4である。BiMnおよびBi4Mn3Cu4は負極活物質として機能する。
 Biは、リチウムと合金化する金属元素である。一方、MnおよびCuは、リチウムと合金化しないため、BiおよびMnを含む合金、ならびにBi、MnおよびCuを含む合金は、充放電に伴うリチウム原子の脱離および挿入の際、負極活物質の結晶構造への負荷が低減され、電池の容量維持率の低下が抑えられると推測される。例えばBiMnが負極活物質として機能する場合は、充電時にBiがリチウムと合金を形成することによって、リチウムが吸蔵される。すなわち、活物質層104において、電池1000の充電時に、リチウムビスマス合金が生成される。生成されるリチウムビスマス合金は、例えば、LiBiおよびLi3Biからなる群より選ばれる少なくとも1つを含む。すなわち、電池1000の充電時に、活物質層104は、例えばLiBiおよびLi3Biからなる群より選ばれる少なくとも1つを含む。電池1000の放電時に、リチウムビスマス合金からリチウムが放出され、リチウムビスマス合金がBiMnに戻る。
 負極活物質としてのBiMnは、電池1000の充電時および放電時に、例えば以下のように反応する。なお、以下の反応の例は、充電時に生成されるリチウムビスマス合金がLi3Biである場合の例である。
充電:BiMn+3Li++3e-→Li3Bi+Ni
放電:Li3Bi+Mn→BiMn+3Li++3e-
 活物質層104は、活物質として実質的にBiMnのみを含んでもよい。この場合、電池1000は、改善されたエネルギー効率に加え、向上した容量および改善されたサイクル特性を有することができる。なお、「活物質層104が活物質として実質的にBiMnのみを含む」とは、例えば、活物質層104に含まれる活物質において、BiMn以外の他の活物質が1質量%以下であることである。活物質層104は、活物質としてBiMnのみを含んでもよい。
 例えばBi4Mn3Cu4が負極活物質として機能する場合は、充電時にBiがリチウムと合金を形成することによって、リチウムが吸蔵される。すなわち、活物質層104において、電池1000の充電時に、リチウムビスマス合金が生成される。生成されるリチウムビスマス合金は、例えば、LiBiおよびLi3Biからなる群より選ばれる少なくとも1つを含む。すなわち、電池1000の充電時に、活物質層104は、例えばLiBiおよびLi3Biからなる群より選ばれる少なくとも1つを含む。電池1000の放電時に、リチウムビスマス合金からリチウムが放出され、リチウムビスマス合金がBi4Mn3Cu4に戻る。
 負極活物質としてのBi4Mn3Cu4は、電池1000の充電時および放電時に、例えば以下のように反応する。なお、以下の反応の例は、充電時に生成されるリチウムビスマス合金がLi3Biである場合の例である。
充電:Bi4Mn3Cu4+12Li++12e-→4Li3Bi+3Mn+4Cu
放電:4Li3Bi+3Mn+4Cu→Bi4Mn3Cu4+12Li++12e-
 活物質層104は、活物質として実質的にBi4Mn3Cu4のみを含んでもよい。この場合、電池1000は、改善されたエネルギー効率に加え、向上した容量および改善されたサイクル特性を有することができる。なお、「活物質層104が活物質して実質的にBi4Mn3Cu4のみを含む」とは、例えば、活物質層104に含まれる活物質において、Bi4Mn3Cu4以外の他の活物質が1質量%以下であることである。活物質層104は、活物質としてBi4Mn3Cu4のみを含んでもよい。
 活物質層104は、固体電解質を含んでいなくてもよい。例えば、活物質層104は、BiおよびMnを含む合金、および/または、充電時に生成されるリチウムビスマス合金からなる層であってもよい。BiおよびMnを含む合金は、BiMnおよびBi4Mn3Cu4からなる群より選択される少なくとも1つであってもよい。
 活物質層104は、集電体100の表面に直接接して配置されていてもよい。
 活物質層104は、薄膜状であってもよい。
 活物質層104は、熱処理されためっき層であってもよい。活物質層104は、集電体100の表面に直接接して設けられた、熱処理されためっき層であってもよい。すなわち、上述のように、活物質層104は、集電体100上に形成されたBiめっき膜およびBiめっき膜上に形成されたMnめっき膜に熱処理を施すことによって形成された層であってもよい。集電体100は、例えばCuを含んでいてもよい。
 活物質層104が集電体100の表面に直接接して設けられた、熱処理されためっき層であると、活物質層104が集電体100に強固に密着する。これにより、活物質層104が膨張および収縮を繰り返した場合に起こる第一電極101の集電特性の悪化をさらに抑制することができる。したがって、電池1000のサイクル特性がより向上する。さらに、活物質層104が熱処理されためっき層であると、活物質層104にリチウムと合金化するBiが高密度で含まれるため、さらなる高容量化も実現できる。
 活物質層104は、BiおよびMnを含む合金以外の他の材料を含んでいてもよい。
 活物質層104は、導電材をさらに含んでいてもよい。
 導電材として、炭素材料、金属、無機化合物、および導電性高分子が挙げられる。炭素材料として、黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、および炭素繊維が挙げられる。黒鉛として、天然黒鉛および人造黒鉛が挙げられる。天然黒鉛として、塊状黒鉛および鱗片状黒鉛が挙げられる。金属として、銅、ニッケル、アルミニウム、銀、および金が挙げられる。無機化合物として、タングステンカーバイド、炭化チタン、炭化タンタル、炭化モリブデン、ホウ化チタン、およびチッ化チタンが挙げられる。これらの材料は単独で用いられてもよいし、複数種が混合されて用いられてもよい。
 活物質層104は、結着剤をさらに含んでいてもよい。
 結着剤として、含フッ素樹脂、熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、および天然ブチルゴム(NBR)が挙げられる。含フッ素樹脂として、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、およびフッ素ゴムが挙げられる。熱可塑性樹脂として、ポリプロピレンおよびポリエチレンが挙げられる。これらの材料は単独で用いられてもよいし、複数種が混合されて用いられてもよい。
 活物質層104の厚みは、特に限定されず、例えば、1μm以上かつ100μm以下であってもよい。
 集電体100の材料は、例えば、単体の金属または合金である。より具体的には、銅、クロム、ニッケル、チタン、白金、金、アルミニウム、タングステン、鉄、およびモリブデンからなる群より選ばれる少なくとも1つを含む単体の金属又は合金であってもよい。集電体100は、ステンレス鋼であってもよい。
 集電体100は、銅(Cu)を含んでいてもよい。集電体100がCuを含むことにより、集電体100を基材とし、その基材上にBiめっき膜およびMnめっき膜を作製して加熱処理することによって、Bi4Mn3Cu4のようなBi、Mn、およびCuを含む合金を含む活物質層104を容易に作製することができる。
 集電体100は、積層膜であってもよい。
 [電解質層]
 電解質層102は、電解質材料を含む。電解質層102は、例えば非水電解質で構成される。電解質層102に含まれる電解質材料は、固体電解質であってもよいし、電解液を含んでいてもよい。なお、図1には、電解質層102が固体電解質である構成例が示されている。
 電解質材料が固体電解質である場合、固体電解質として、ハロゲン化物固体電解質、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、または錯体水素化物固体電解質が用いられてもよい。
 ハロゲン化物固体電解質は、ハロゲン元素を含有する固体電解質を意味する。ハロゲン化物固体電解質は、ハロゲン元素だけでなく、酸素を含有していてもよい。ハロゲン化物固体電解質は、硫黄(S)を含まない。
 ハロゲン化物固体電解質は、例えば、下記の組成式(1)により、表される材料であってもよい。
 Liαβγ ・・・式(1)
 ここでα、β、およびγは、0より大きい値であり、Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、Xは、F、Cl、Br、およびIからなる群より選ばれる少なくとも1つである。
 「半金属元素」とは、B、Si、Ge、As、Sb、およびTeである。
 「金属元素」とは、水素を除く周期表1族から12族中に含まれるすべての元素、ならびに、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く全ての第13族から第16族中に含まれる元素である。すなわち、ハロゲン化合物と無機化合物を形成した際に、カチオンとなりうる元素群である。
 組成式(1)において、Mは、Yを含み、Xは、ClおよびBrを含んでもよい。
 ハロゲン化物固体電解質としては、例えば、Li3(Ca,Y,Gd)X6、Li2MgX4、Li2FeX4、Li(Al,Ga,In)X4、Li3(Al,Ga,In)X6、LiI、などが用いられてもよい。ここで、これらの固体電解質において、元素Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1種である。なお、本開示において、式中の元素を「(Al,Ga,In)」のように表すとき、この表記は、括弧内の元素群より選択される少なくとも1種の元素を示す。すなわち、「(Al,Ga,In)」は、「Al、Ga、およびInからなる群より選択される少なくとも1種」と同義である。他の元素の場合でも同様である。
 ハロゲン化物固体電解質の他の例は、LiaMebc6により表される化合物である。ここで、a+mb+3c=6、およびc>0が充足される。Meは、LiおよびY以外の金属元素と半金属元素とからなる群より選択される少なくとも1つである。mは、Meの価数を表す。「半金属元素」とは、B、Si、Ge、As、Sb、およびTeである。「金属元素」とは、周期表第1族から第12族中に含まれるすべての元素(ただし、水素を除く)、および、周期表13族から16族に含まれるすべての元素(ただし、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く)である。
 ハロゲン化物固体電解質材料のイオン伝導性を高めるために、Meは、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Zr、Hf、Ti、Sn、Ta、およびNbからなる群より選択されるすくなくとも1つであってもよい。ハロゲン化物固体電解質は、Li3YCl6、Li3YBr6、またはLi3YBrpCl6-pであってもよい。なお、pは、0<p<6を充足する。
 硫化物固体電解質は、硫黄(S)を含有する固体電解質を意味する。硫化物固体電解質は、硫黄だけでなく、ハロゲン元素を含有していてもよい。
 硫化物固体電解質としては、例えば、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、またはLi10GeP212などが用いられうる。
 酸化物固体電解質としては、例えば、LiTi2(PO43およびその元素置換体を代表とするNASICON型固体電解質、(LaLi)TiO3系のペロブスカイト型固体電解質、Li14ZnGe416、Li4SiO4、LiGeO4およびその元素置換体を代表とするLISICON型固体電解質、Li7La3Zr212およびその元素置換体を代表とするガーネット型固体電解質、Li3PO4およびそのN置換体、ならびに、LiBO2およびLi3BO3などのLi-B-O化合物をベースとして、Li2SO4、Li2CO3などが添加されたガラスまたはガラスセラミックス、などが用いられうる。
 高分子固体電解質としては、例えば、高分子化合物と、リチウム塩との化合物が用いられうる。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子化合物は、リチウム塩を多く含有することができる。このため、イオン導電率をより高めることができる。リチウム塩としては、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、およびLiC(SO2CF33、などが使用されうる。例示されたリチウム塩から選択される1種のリチウム塩が、単独で使用されうる。もしくは、例示されたリチウム塩から選択される2種以上のリチウム塩の混合物が使用されうる。
 錯体水素化物固体電解質としては、例えば、LiBH4-LiI、LiBH4-P25、などが用いられうる。
 電解質層102は、ハロゲン化物固体電解質を含んでいてもよい。ハロゲン化物固体電解質は、硫黄を含まない。
 電解質層102は、硫化物固体電解質を含んでいてもよい。
 電解質層102は、実質的にハロゲン化物固体電解質のみからなっていてもよい。なお、本明細書において「実質的になる」とは、含有率にして0.1%未満の不純物の含有を許容する趣旨である。電解質層102は、ハロゲン化物固体電解質のみからなっていてもよい。
 以上の構成によれば、電解質層102のイオン導電率を高めることができる。これにより、電池のエネルギー密度の低下を低減できる。
 電解質層102は、さらに結着剤を含んでもよい。結着剤として、活物質層104に使用可能な材料と同じ材料が使用されてもよい。
 電解質層102は、1μm以上かつ500μm以下の厚みを有していてもよい。電解質層102が1μm以上の厚みを有する場合、第一電極101および第二電極103が短絡しにくくなる。電解質層102が500μm以下の厚みを有する場合、電池が高出力で動作し得る。
 固体電解質の形状は、特に限定されない。固体電解質が粉体材料である場合、その形状は、例えば、針状、球状、楕円球状、などであってもよい。例えば、固体電解質の形状は、粒子状であってもよい。
 例えば、固体電解質の形状が、粒子状(例えば、球状)である場合、固体電解質のメジアン径は、100μm以下であってもよく、10μm以下であってもよい。
 本開示において、「メジアン径」は、体積基準の粒度分布における累積体積が50%に等しい場合の粒径を意味する。体積基準の粒度分布は、例えば、レーザー回折式測定装置または画像解析装置により測定される。
 電解質層102に含まれる固体電解質は、下記の方法により、製造され得る。
 目的の組成を有するように、原料粉が準備される。原料粉の例は、酸化物、水酸化物、ハロゲン化物、または酸ハロゲン化物である。
 一例として、目的とされる組成がLi3YBr4Cl2である場合、LiBr、YCl3、およびYBr3が、3:0.66:0.33程度のモル比で混合される。合成プロセスにおいて生じ得る組成変化を相殺するように、あらかじめ調整されたモル比で原料粉が混合されてもよい。
 原料粉を、遊星型ボールミルのような混合装置内でメカノケミカル的に(すなわち、メカノケミカルミリングの方法を用いて)互いに反応させ、反応物を得る。反応物は、真空中または不活性雰囲気中で焼成されてもよい。あるいは、原料粉の混合物を真空中または不活性雰囲気中で焼成し、反応物を得てもよい。焼成は、例えば、100℃以上かつ300℃以下で、1時間以上行われることが望ましい。焼成における組成変化を抑制するために、原料粉は石英管のような密閉容器内で焼成されることが望ましい。
 これらの方法により、電解質層102に用いられる固体電解質が得られる。
 図2は、本開示の実施形態に係る電池の変形例を模式的に示す断面図である。電解質層102を構成する電解質材料が電解液である場合、すなわち電解質層が電解液を含む場合、本開示の実施形態による電池は、例えば、図2に示されているような構成を有する電池2000であってもよい。なお、図2において、図1に示された部材と同じ機能を有する部材に対しては、同じ符号が付されている。電池2000は、第一電極101、第二電極103、電解液201、セパレータ202、および外装203を備えている。セパレータ202は、第一電極101と第二電極103との間に配置されている。セパレータ202を介して、第一電極101と第二電極103とが互いに向かい合っている。第一電極101、第二電極103、セパレータ202、および電解液201は、外装203に収められている。電解液201は、例えば、第一電極101、第二電極103、およびセパレータ202に含浸された電解液である。このように、電解質として電解液が用いられた構成を有する電池2000では、第一電極101と第二電極103との間に、セパレータ202に含浸された電解液201が位置している。すなわち、このようにセパレータ202に含浸された電解液201が、電解質層となる。電解液201は、外装203の内部空間に満たされていてもよい。
 電解液201は、例えば、非水溶媒およびリチウム塩を含む。
 非水溶媒の例は、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、またはフッ素溶媒である。環状炭酸エステル溶媒の例は、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、またはビニレンカーボネートである。鎖状炭酸エステル溶媒の例は、ジメチルカーボネート、エチルメチルカーボネート、またはジエチルカーボネートである。環状エーテル溶媒の例は、テトラヒドロフラン、1,4-ジオキサン、または1,3-ジオキソランである。鎖状エーテル溶媒の例は、1,2-ジメトキシエタン、または1,2-ジエトキシエタンである。環状エステル溶媒の例は、γ-ブチロラクトンである。鎖状エステル溶媒の例は、酢酸メチルである。フッ素溶媒の例は、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、またはフルオロジメチレンカーボネートである。これらから選択される1種の非水溶媒が単独で使用されてもよい。あるいは、これらから選択される2種以上の非水溶媒の混合物が使用されてもよい。電解液は、ビニレンカーボネートを溶媒として含んでいてもよい。
 リチウム塩の例は、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、またはLiC(SO2CF33である。これらから選択される1種のリチウム塩が単独で使用されてもよい。あるいは、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。
 セパレータ202は、リチウムイオン伝導性を有している。リチウムイオンの通過が許容される限り、セパレータ202の材料は特に限定されない。セパレータ202の材料は、固体電解質、ゲル電解質、リチウムカチオン交換樹脂などのイオン交換樹脂膜、半透膜及び多孔質膜からなる群より選ばれる少なくとも1つでありうる。これらの材料でセパレータ202が作られていると、電池2000の安全性を十分に確保できる。固体電解質としては、Li2S-P25などの硫化物固体電解質、Li7La3Zr212(LLZ)などの酸化物固体電解質などが挙げられる。ゲル電解質としては、PVdFなどのフッ素樹脂を含むゲル電解質が挙げられる。イオン交換樹脂膜としては、カチオン交換膜、アニオン交換膜などが挙げられる。多孔質膜としては、ポリオレフィン樹脂製の多孔質膜、ガラス繊維を不織布に織り込むことによって得られたガラスペーパーからなる多孔質膜などが挙げられる。
 外装203は、例えば、アルミニウム箔などの金属箔をポリエチレンテレフタレート(PET)フィルムなどの樹脂フィルムでラミネートすることによって得られた材料で作られている。外装203は、樹脂製又は金属製の容器であってもよい。
 電解質層に用いられる電解質材料として、上述の固体電解質または電解液に限定されず、ゲル電解質またはイオン液体が用いられてもよい。
 ゲル電解質として、非水電解液を含浸させたポリマー材料が使用され得る。ポリマー材料の例は、ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビニリデン、ポリメチルメタクリレート、またはエチレンオキシド結合を有するポリマーである。
 イオン液体に含まれるカチオンの例は、
(i)テトラアルキルアンモニウムまたはテトラアルキルホスホニウムのような脂肪族鎖状4級塩類、
(ii)ピロリジニウム類、モルホリニウム類、イミダゾリニウム類、テトラヒドロピリミジニウム類、ピペラジニウム類、またはピペリジニウム類のような脂肪族環状アンモニウム、または
(iii)ピリジニウム類またはイミダゾリウム類のような含窒素ヘテロ環芳香族カチオン
である。
 イオン液体に含まれるアニオンの例は、PF6 -、BF4 -、SbF6 -、AsF6 -、SO3CF3 -、N(SO2CF32 -、N(SO2252 -、N(SO2CF3)(SO249-、またはC(SO2CF33 -である。
 イオン液体はリチウム塩を含有してもよい。
 [第二電極]
 第二電極103は、正極として機能する。第二電極103は、リチウムイオンのような金属イオンを吸蔵および放出可能な材料を含有する。当該材料は、例えば、正極活物質である。
 第二電極103は、集電体105と活物質層106とを有していてもよい。活物質層106は、正極活物質を含む。活物質層106は、例えば、集電体105と電解質層102との間に配置されている。
 活物質層106は、集電体105の表面に、集電体105に直接接して配置されていてもよい。
 正極活物質として、例えば、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシ硫化物、または遷移金属オキシ窒化物、などが用いられうる。リチウム含有遷移金属酸化物の例としては、LiNi1-x-yCoxAly2((x+y)<1)、LiNi1-x-yCoxMny2((x+y)<1)またはLiCoO2、などが挙げられる。特に、正極活物質として、リチウム含有遷移金属酸化物を用いた場合には、電極の製造コストを安くでき、電池の平均放電電圧を高めることができる。例えば、正極活物質は、Li(Ni,Co,Mn)O2を含んでもよい。
 集電体105の材料としては、例えば、金属材料が挙げられる。金属材料としては、銅、ステンレス鋼、鉄、アルミニウムなどが挙げられる。
 第二電極103は、固体電解質を含んでもよい。固体電解質としては、電解質層102を構成する材料として例示された固体電解質を用いてもよい。
 正極活物質は、0.1μm以上かつ100μm以下のメジアン径を有していてもよい。正極活物質が0.1μm以上のメジアン径を有する場合、正極活物質および固体電解質が良好な分散状態を形成できる。これにより、電池の充放電特性が向上する。正極活物質が100μm以下のメジアン径を有する場合、リチウム拡散速度が向上する。これにより、電池が高出力で動作し得る。
 正極活物質は、固体電解質よりも大きいメジアン径を有していてもよい。これにより、正極活物質および固体電解質が良好な分散状態を形成できる。
 電池のエネルギー密度および出力の観点から、第二電極103において、正極活物質の体積および固体電解質の体積の合計に対する正極活物質の体積の比は、0.30以上かつ0.95以下であってもよい。
 固体電解質が正極活物質と反応するのを防ぐために、正極活物質の表面には、被覆層が形成されてもよい。これにより、電池の反応過電圧の上昇を抑制できる。被覆層に含まれる被覆材料の例は、硫化物固体電解質、酸化物固体電解質、またはハロゲン化物固体電解質である。
 第二電極103の厚みは、10μm以上かつ500μm以下であってもよい。第二電極103の厚みが10μm以上である場合、十分な電池のエネルギー密度を確保し得る。第二電極103の厚みが500μm以下である場合、電池が高出力で動作し得る。
 第二電極103は、電子導電性を高める目的で、導電材を含んでもよい。
 第二電極103は、結着剤を含んでもよい。
 導電材および結着剤として、活物質層104に使用可能な材料と同じ材料が使用されてもよい。
 第二電極103は、リチウムイオンの授受を容易にし、電池の出力特性を向上する目的で、非水電解液、ゲル電解質、またはイオン液体を含有していてもよい。
 上記においては、第一電極101が負極であって、第二電極103が正極である構成例について説明したが、第一電極101が正極であってもよく、第二電極103は負極であってもよい。
 第一電極101が正極であり、第二電極103が負極である場合、活物質層104は、正極活物質層である。すなわち、活物質層104に含まれるBiが、正極活物質として機能する。この場合、負極である第二電極103は、例えばリチウム金属から構成される。
 電池1000は、第一電極101、電解質層102、第二電極103を基本構成として、大気や水分が混入しないように密閉容器内に封入する。電池1000の形状は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、および積層型、などが挙げられる。
 以下、実施例および参考例を用いて、本開示の詳細が開示される。以下の実施例は一例であって、本開示は以下の実施例のみに限定されない。
 (実施例1)
 <第一電極の作製>
 前処理として、銅箔(10cm×10cm、厚み:10μm)を有機溶剤により予備脱脂した後、片面をマスキングして酸性溶剤に浸漬することで脱脂を行い、銅箔表面を活性化させた。銅箔へのビスマスの電気めっきは、ビスマスめっき浴にめっき基材となる銅箔を浸漬して外部電源より銅箔がアノードとなるよう電気回路を構成し、電流と電位を調整することで行われた。これにより、ビスマスめっき浴中のビスマスイオンが銅箔上で還元され、Biめっき膜が形成された。次に、ビスマスを電気めっきした銅箔を、マンガンめっき浴に浸漬して外部電源よりビスマスを電気めっきした銅箔がアノードとなるよう電気回路を構成し、電流と電位を調整した。これにより、マンガンめっき浴中のマンガンイオンがビスマスめっき上で還元され、Mnめっき膜が形成された。
 ビスマスめっき浴として、有機スルホン酸浴が用いられた。ビスマスめっき浴は、メタンスルホン酸1.0mоl/L水溶液に、可溶性ビスマス塩としてメタンスルホン酸ビスマスをBi3+イオンが0.18mоl/Lとなるように加えることによって作製された。
 マンガンめっき浴として、硫酸塩浴を選択した。マンガンめっき浴は、硫酸アンモニウム1.0mol/L水溶液に、可溶性マンガン塩として硫酸マンガンをMn2+イオンが0.92mol/Lとなるよう様に加えることによって作製された。
 活性化させた銅箔は、電流を印加できるように電源に接続した後、ビスマスめっき浴内に浸漬させた。その後、電流密度を2A/dm2に制御することにより、マスキングをしていない銅箔表面に、およそ3μmの厚みとなるようにビスマスを電気めっきして、Biめっき膜が作製された。
 次に、Biめっき膜が形成された銅箔を、ビスマスの電気めっき時と同様に電流を印加できるように電源に接続した後、マンガンめっき浴内に浸漬させた。その後、電流密度を2A/dm2に制御することにより、マスキングをしていない銅箔表面に、およそ1μmの厚みとなるようにマンガンを電気めっきして、Mnめっき膜が作製された。
 また、めっき浴に銅箔を浸漬する工程では、めっき面以外はマスキングを施した。
 電気めっき後に銅箔をめっき浴から回収し、マスキングを外した後に純水により洗浄、乾燥した。その後、アルゴン雰囲気とした電気炉内で、銅箔および当該銅箔上に作製されためっき層(すなわち、Biめっき膜およびMnめっき膜)を200℃で100時間熱処理した。
 なお、熱処理後のめっき層は、第一電極の活物質層に相当する。表面X線回折測定により、熱処理後のめっき層、すなわち活物質層の構造解析が行われた。X線回折測定は、活物質層の表面、つまり活物質層の厚み方向よりX線回折装置(RIGAKU製、MiNi Flex)を用いて、波長1.5405Åおよび1.5444ÅであるCu-Kα線をX線として用いたθ-2θ法で行われた。図3は、実施例1に係る電池における第一電極について、初期、充電後、および充放電後の活物質層のX線回折パターンを示すグラフである。図3において、初期の活物質層のX線回折パターンは、「Initial」と示されたX線回折パターンである。このX線回折パターンから、活物質層には、結晶構造が六方晶で空間群P63/mmcに帰属するBiMnが生成していることが確認された。なお、X線回折パターンには、集電体としてのCu箔及び活物質層内に含まれているCuの相も確認された。
 その後、2×2cmの大きさに打ち抜くことによって、第一電極が得られた。すなわち、実施例1の第一電極は、銅箔からなる集電体上に、BiMnからなる活物質層が設けられた構成を有していた。
 <電池の作製>
 作用極として第一電極が用いられた。対極として厚さ0.34μmのLi金属が用いられた。Li金属は、セルガード社製の微多孔性セパレータセルガード(3401)で二重に被覆された。電解液として、LiPF6を1.0モル/Lの濃度でビニレンカーボネート(VC)に溶解させた溶液を準備した。このような作用極、対極、および電解液を用いて、実施例1の試験セルとしての電池を組み立てた。なお、ここで作製された試験セルは、作用極および対極を使用した単電極評価用の試験セルであり、電池における電極の一方の極の性能を試験するために用いられる。詳しくは、作用極には試験対象の電極が用いられ、対極には作用極の反応を賄うに十分な量の適切な活物質が用いられる。本試験セルは、第一電極の負極としての性能を試験するものなので、通常用いられているように大過剰のLi金属が対極として用いられた。このような試験セルを用いて性能が試験された第一電極は、例えば、上述の実施形態において説明したような正極活物質、例えばLiを含有した遷移金属酸化物等を含む正極と組み合わせることによって、負極として使用され得る。
 <充放電試験>
 試験セルとして作製した電池に対し、充放電試験を行った。充放電試験では、0.06mAの定電流値(レートではBiの理論容量は384mAh/gとして0.05IT相当)で0V(Li基準)まで充電し、2.0V(Li基準)まで放電し、充放電を繰り返した。電池は恒温槽内で25℃として試験を行った。図4は、実施例1に係る電池の充放電試験の結果を示すグラフである。図4に示すように、実施例1では、充電反応電位が0.5から0.8V(vs. Li)となり、放電反応電位は0.85V(vs. Li)付近となった。
 <X線回折による活物質構造変化>
 上記の「充放電試験」で示した充放電試験条件と同様の手順で充電及び充放電した第一電極について、充電後および充放電後に、活物質層が形成されている面に対してX線回折測定を実施した。充電および充放電後の活物質層に対するX線回折測定は、上述の初期の活物質層に対して実施したX線回折測定と同じ方法で行われた。図3において、充電後の活物質層のX線回折パターンは「charge」と示されたX線回折パターンであり、充放電後の活物質層のX線回折パターンは「charge-discharge」と示されたX線回折パターンである。図3に示されたX線回折パターンから、BiMnが充電によりLi3Biを形成し、放電により再度BiMnを形成する様子が確認できる。
 (実施例2)
 <第一電極の作製>
 最終的な第一電極のサイズが異なる以外は、実施例1と同様の方法で第一電極が作製された。実施例2では、第一電極はφ0.92cmの大きさに打ち抜かれた。
 <固体電解質>
 電解質層を構成する固体電解質として、硫化物固体電解質Li6PS5Cl(Ampcera製、80mg)を使用した。
 <電池の作製>
 9.4mmの内径を有する絶縁性外筒の中に、得られた第一電極を配置した。第一電極の活物質層上に、固体電解質Li6PS5Cl(80mg)が積層され、次に、インジウム-リチウム合金(モル比:In:Li=1:1)(200mg)が第二電極として積層されて、積層体が得られた。インジウム-リチウム合金は、インジウム箔にリチウム箔の小片を圧接し、インジウム中にリチウムを拡散させることによって作製された。上記積層体に対し、積層方向に360MPaの圧力が印加され、第一電極、固体電解質層および第二電極を備えた試験セルとしての電池が形成された。試験セルとしての電池において、第一電極の厚みは1.5μmであり、固体電解質層の厚みは500μmであり、第二電極の厚みは15μmであった。
 次に、ステンレス鋼から形成された集電体が第一電極および第二電極に取り付けられ、当該集電体に集電リードが取り付けられた。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部が外気雰囲気から遮断され、当該筒の内部が密閉された。
 以上により、BiMnからなる活物質層を備えた第一電極を作用極とし、リチウム-インジウム合金を対極とする、実施例2の試験セルとしての電池が得られた。
 <充放電試験>
 以下の条件で、作製した電池の充放電試験を行った。電気めっきしたBi重量からBi理論容量は384mAh/gとして、レートがBi基準で0.05ITとなる定電流値で、-0.62V(すなわち、0V(vs. Li+/Li))まで充電し、その後、1.38V(すなわち、2.0V(vs. Li+/Li))まで放電し、その後、-0.62V(すなわち、0V(vs. Li+/Li))まで充電した。電池は恒温槽内で25℃として試験を行った。図5は、実施例2に係る電池の充放電試験の結果を示すグラフである。図5に示されているInLi基準の電位をLi基準の電位に換算すると、実施例2では、充電反応電位が0.5から0.77V(vs. Li)となり、放電反応電位は0.83V(vs. Li)付近となった。なお、図5に示されているグラフの電位は、対極をInLiとしたInLi基準の電位である。上記のInLi基準の電位からLi基準の電位への換算は、InLi電位をLi基準で+0.62Vとして換算したものである。以降の実施例においても、対極にInLiを用いた場合は、同様の方法でLi基準の電位に換算できる。
 (実施例3)
 <第一電極の作製>
 最終的な第一電極のサイズが異なる以外は、実施例1と同様の方法で第一電極が作製された。実施例3では、第一電極はφ0.92cmの大きさに打ち抜かれた。
 <固体電解質の作製>
 -60℃以下の露点を有するアルゴン雰囲気(以下、「乾燥アルゴン雰囲気」と称する)中で、原料粉としてLiBr、YCl3、およびYBr3が、LiBr:YCl3:YBr3=3:2/3:1/3のモル比となるように用意された。これらの原料粉が乳鉢中で粉砕および混合されて、混合粉が得られた。次いで、得られた原料粉の混合物は、乾燥アルゴン雰囲気中で、電気炉を用いて500℃で3時間焼成された。得られた焼成物は、乳鉢中で乳棒を用いて粉砕された。このようにして、Li3YBr4Cl2の組成を有する固体電解質が得られた。
 <電池の作製>
 固体電解質層の作製に、固体電解質Li6PS5Cl(80mg)に代えてLi3YBr4Cl2(80mg)を用いた以外は、実施例2と同様の方法で、実施例3の試験セルとしての電池が作製された。
 <充放電試験>
 以下の条件で、作製した電池の充放電試験を行った。電気めっきしたBi重量からBi理論容量は384mAh/gとして、レートがBi基準で0.05ITとなる定電流値で、-0.42V(すなわち、0.2V(vs. Li+/Li))まで充電し、その後、1.38V(すなわち、2.0V(vs. Li+/Li))まで放電し、その後、-0.42V(すなわち、0.2V(vs. Li+/Li))まで充電した。電池は恒温槽内で25℃として試験を行った。図6は、実施例3に係る電池の充放電試験の結果を示すグラフである。図6に示されているInLi基準の電位をLi基準の電位に換算すると、実施例3では、2サイクル目以降の充電反応電位が0.5から0.79V(vs. Li)となり、放電反応電位は0.85V(vs. Li)付近となった。
 (実施例4)
 <第一電極の作製>
 前処理として、銅箔(10cm×10cm、厚み:10μm)を有機溶剤により予備脱脂した後、片面をマスキングして酸性溶剤に浸漬することで脱脂を行い、銅箔表面を活性化させた。銅箔へのビスマスの電気めっきは、ビスマスめっき浴にめっき基材となる銅箔を浸漬して外部電源より銅箔がアノードとなるよう電気回路を構成し、電流と電位を調整することで行われた。これにより、ビスマスめっき浴中のビスマスイオンが銅箔上で還元され、Biめっき膜が形成された。次に、ビスマスを電気めっきした銅箔を、マンガンめっき浴に浸漬して外部電源よりビスマスを電気めっきした銅箔がアノードとなるよう電気回路を構成し、電流と電位を調整した。これにより、マンガンめっき浴中のマンガンイオンがビスマスめっき上で還元され、Mnめっき膜が形成された。
 ビスマスめっき浴として、有機スルホン酸浴が用いられた。ビスマスめっき浴は、メタンスルホン酸1.0mоl/L水溶液に、可溶性ビスマス塩としてメタンスルホン酸ビスマスをBi3+イオンが0.18mоl/Lとなるように加えることによって作製された。
 マンガンめっき浴として、硫酸塩浴を選択した。マンガンめっき浴は、硫酸アンモニウム1.0mol/L水溶液に、可溶性マンガン塩として硫酸マンガンをMn2+イオンが0.92mol/Lとなるよう様に加えることによって作製された。
 活性化させた銅箔は、電流を印加できるように電源に接続した後、ビスマスめっき浴内に浸漬させた。その後、電流密度を2A/dm2に制御することにより、マスキングをしていない銅箔表面に、およそ4μmの厚みとなるようにビスマスを電気めっきして、Biめっき膜が作製された。
 次に、Biめっき膜が形成された銅箔を、ビスマスの電気めっき時と同様に電流を印加できるように電源に接続した後、マンガンめっき浴内に浸漬させた。その後、電流密度を2A/dm2に制御することにより、マスキングをしていない銅箔表面に、およそ1μmの厚みとなるようにマンガンを電気めっきして、Mnめっき膜が作製された。
 また、めっき浴に銅箔を浸漬する工程では、めっき面以外はマスキングを施した。
 電気めっき後に銅箔をめっき浴から回収し、マスキングを外した後に純水により洗浄、乾燥した。その後、アルゴン雰囲気とした電気炉内で、銅箔および当該銅箔上に作製されためっき層(すなわち、Biめっき膜およびMnめっき膜)を200℃で100時間熱処理した。
 なお、熱処理後のめっき層は、第一電極の活物質層に相当する。表面X線回折測定により、熱処理後のめっき層、すなわち活物質層の構造解析が行われた。X線回折測定の方法は、実施例1と同じであった。図7は、実施例4に係る電池における第一電極について、初期、充電後、および充放電後の活物質層のX線回折パターンを示すグラフである。図7において、初期の活物質層のX線回折パターンは、「Initial」と示されたX線回折パターンである。このX線回折パターンから、活物質層には、結晶構造が立方晶で空間群Fm-3mに帰属するBi4Cu4Mn3が生成していることが確認された。なお、X線回折パターンには、集電体としてのCu箔の相も確認された。
 その後、2×2cmの大きさに打ち抜くことによって、第一電極が得られた。すなわち、実施例1の第一電極は、銅箔からなる集電体上に、Bi4Cu4Mn3からなる活物質層が設けられた構成を有していた。
 <電池の作製>
 作用極として実施例4の第一電極が用いられた以外は、実施例1と同様の方法で、実施例4の試験セルとしての電池が作製された。
 <充放電試験>
 試験セルとして作製した電池に対し、充放電試験を行った。充放電試験は、実施例1の充放電試験と同様の方法で行われた。図8は、実施例4に係る電池の充放電試験の結果を示すグラフである。図8に示すように、実施例4では、充電反応電位が0.2から0.6V(vs. Li)となり、放電反応電位は0.85V(vs. Li)付近となった。
 <X線回折による活物質構造変化>
 上記の「充放電試験」における充放電試験条件と同様の手順で充電および充放電した第一電極について、充電後および充放電後に、活物質層が形成されている面に対してX線回折測定を実施した。充電および充放電後の活物質層に対するX線回折測定は、上述の初期の活物質層に対して実施したX線回折測定と同じ方法で行われた。図7において、充電後の活物質層のX線回折パターンは「charge」と示されたX線回折パターンであり、充放電後の活物質層のX線回折パターンは「charge-discharge」と示されたX線回折パターンである。図7に示されたX線回折パターンから、Bi4Cu4Mn3が充電によりLi3Biを形成し、放電により再度Bi4Cu4Mn3を形成する様子が確認できる。
 (実施例5)
 <第一電極の作製>
 最終的な第一電極のサイズが異なる以外は、実施例4と同様の方法で第一電極が作製された。実施例5では、第一電極はφ0.92cmの大きさに打ち抜かれた。
 <固体電解質>
 電解質層を構成する固体電解質として、硫化物固体電解質Li6PS5Cl(Ampcera製、80mg)を使用した。
 <電池の作製>
 9.4mmの内径を有する絶縁性外筒の中に、得られた第一電極を配置した。第一電極の活物質層上に、固体電解質Li6PS5Cl(80mg)が積層され、次に、インジウム-リチウム合金(モル比:In:Li=1:1)(200mg)が第二電極として積層されて、積層体が得られた。インジウム-リチウム合金は、インジウム箔にリチウム箔の小片を圧接し、インジウム中にリチウムを拡散させることによって作製された。上記積層体に対し、積層方向に360MPaの圧力が印加され、第一電極、固体電解質層および第二電極を備えた試験セルとしての電池が形成された。試験セルとしての電池において、第一電極の厚みは1.5μmであり、固体電解質層の厚みは500μmであり、第二電極の厚みは15μmであった。
 次に、ステンレス鋼から形成された集電体が第一電極および第二電極に取り付けられ、当該集電体に集電リードが取り付けられた。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部が外気雰囲気から遮断され、当該筒の内部が密閉された。
 以上により、Bi4Cu4Mn3からなる活物質層を備えた第一電極を作用極とし、リチウム-インジウム合金を対極とする、実施例5の試験セルとしての電池が得られた。
 <充放電試験>
 実施例2と同様の方法で、作製した電池の充放電試験を行った。図9は、実施例5に係る電池の充放電試験の結果を示すグラフである。図9に示されているInLi基準の電位をLi基準の電位に換算すると、実施例5では、1サイクル目の充電反応電位は0.32から0.6V(vs. Li)となり大きな傾きを持った。しかし、2サイクル目以降の充電反応電位は0.5から0.7V(vs. Li)となり、放電反応電位は0.85V(vs. Li)付近となった。
 (実施例6)
 <第一電極の作製>
 最終的な第一電極のサイズが異なる以外は、実施例4と同様の方法で第一電極が作製された。実施例6では、第一電極はφ0.92cmの大きさに打ち抜かれた。
 <固体電解質の作製>
 実施例3と同様の方法で、Li3YBr4Cl2の組成を有する固体電解質が作製された。
 <電池の作製>
 固体電解質層の作製に、固体電解質Li6PS5Cl(80mg)に代えてLi3YBr4Cl2(80mg)を用いた以外は、実施例5と同様の方法で、実施例6の試験セルとしての電池が作製された。
 <充放電試験>
 実施例3と同様の方法で、作製した電池の充放電試験を行った。図10は、実施例6に係る電池の充放電試験の結果を示すグラフである。図10に示されているInLi基準の電位をLi基準の電位に換算すると、実施例6では、1サイクル目の充電反応電位は0.37から0.75V(vs. Li)となり大きな傾きを持った。しかし、2サイクル目以降の充電反応電位は0.52から0.75V(vs. Li)となり、放電反応電位は0.85V(vs. Li)付近となった。
 (参考例1)
 <第一電極の作製>
 前処理として、ニッケル箔(10cm×10cm、厚み:12μm)を有機溶剤により予備脱脂した後、片面をマスキングして酸性溶剤に浸漬することで脱脂を行い、銅箔表面を活性化させた。メタンスルホン酸1.0mol/Lに、可溶性ビスマス塩としてメタンスルホン酸ビスマスをBi3+イオンが0.18mol/Lとなるように加えて、めっき浴が作製された。活性化させたニッケル箔は、電流を印加できるように電源に接続した後、めっき浴内に浸漬させた。その後、電流密度を2A/dm2に制御することにより、マスキングをしていないニッケル箔表面に、およそ5μmの厚みとなるようにビスマスを電気めっきした。電気めっき後に、ニッケル箔を酸性浴から回収し、マスキングを外した後に純水により洗浄、乾燥した。その後、アルゴン雰囲気とした電気炉内でビスマスを電気めっきしたニッケル箔を400℃で60時間熱処理した。熱処理後、ニッケル箔上のBiめっき層について、実施例1と同様の方法で表面X線回折測定を行った。この測定によって得られたX線回折パターンから、単斜晶で空間群C2/mに帰属する結晶構造を有するBiNiが生成していることを確認した。その後、ニッケル箔上にBiNiからなる層が形成された積層体を2×2cmの大きさに打ち抜くことによって、第一電極が得られた。すなわち、参考例1の第一電極は、ニッケル箔からなる集電体上に、BiNiからなる活物質層が設けられた構成を有していた。
 <電池の作製>
 作用極として参考例1の第一電極が用いられた以外は、実施例1と同様にして参考例1の試験セルである電池が作製された。
 <充放電試験>
 参考例1の試験セルが用いられたこと以外は、実施例1と同様の方法で充放電試験が行われた。図11は、参考例1に係る電池の充放電試験の結果を示すグラフである。図11に示すように、参考例1の電池では、充電反応電位が0.44から0.5V(vs. Li)と低下し、放電反応電位は0.8V(vs. Li)付近となった。
 (参考例2)
 <第一電極の作製>
 最終的な第一電極のサイズが異なる以外は、参考例1と同様の方法で第一電極が作製された。参考例2では、第一電極はφ0.92cmの大きさに打ち抜かれた。
 <固体電解質>
 電解質層を構成する固体電解質として、硫化物固体電解質Li6PS5Cl(Ampcera製、80mg)を使用した。
 <電池の作製>
 9.4mmの内径を有する絶縁性外筒の中に、得られた第一電極を配置した。第一電極の活物質層上に、固体電解質Li6PS5Cl(80mg)が積層され、次に、インジウム-リチウム合金(モル比:In:Li=1:1)(200mg)が第二電極として積層されて、積層体が得られた。インジウム-リチウム合金は、インジウム箔にリチウム箔の小片を圧接し、インジウム中にリチウムを拡散させることによって作製された。上記積層体に対し、積層方向に360MPaの圧力が印加され、第一電極、固体電解質層および第二電極を備えた試験セルとしての電池が形成された。試験セルとしての電池において、第一電極の厚みは1.5μmであり、固体電解質層の厚みは500μmであり、第二電極の厚みは15μmであった。
 次に、ステンレス鋼から形成された集電体が第一電極および第二電極に取り付けられ、当該集電体に集電リードが取り付けられた。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部が外気雰囲気から遮断され、当該筒の内部が密閉された。
 以上により、BiNiからなる活物質層を備えた第一電極を作用極とし、リチウム-インジウム合金を対極とする、参考例2の試験セルとしての電池が得られた。
 <充放電試験>
 以下の条件で、作製した電池の充放電試験を行った。電気めっきしたBi重量からBi理論容量は384mAh/gとして、レートがBi基準で0.05ITとなる定電流値で、-0.42V(すなわち、0.2V(vs. Li+/Li))まで充電し、その後、1.38V(すなわち、2.0V(vs. Li+/Li))まで放電し、その後、-0.42V(すなわち、0.2V(vs. Li+/Li))まで充電した。電池は恒温槽内で25℃として試験を行った。図12は、参考例2に係る電池の充放電試験の結果を示すグラフである。図12に示されているInLi基準の電位をLi基準の電位に換算すると、参考例2では、充電反応電位は0.48から0.53V(vs. Li)となり、放電反応電位は0.8V(vs. Li)付近となった。
 (参考例3)
 <第一電極の作製>
 最終的な第一電極のサイズが異なる以外は、参考例1と同様の方法で第一電極が作製された。参考例3では、第一電極はφ0.92cmの大きさに打ち抜かれた。
 <固体電解質の作製>
 実施例3と同様の方法で、Li3YBr4Cl2の組成を有する固体電解質が作製された。
 <電池の作製>
 固体電解質層の作製に、固体電解質Li6PS5Cl(80mg)に代えてLi3YBr4Cl2(80mg)を用いた以外は、参考例2と同様の方法で、参考例3の試験セルとしての電池が作製された。
 <充放電試験>
 参考例2と同様の方法で、作製した電池の充放電試験を行った。図13は、参考例3に係る電池の充放電試験の結果を示すグラフである。図13に示されているInLi基準の電位をLi基準の電位に換算すると、参考例3では、1サイクル目以降の充電反応電位は0.38から0.76V(vs. Li)となり、放電反応電位は0.82V(vs. Li)付近となった。
 以上の結果から、BiおよびMnを含む合金を含む活物質層を有する第一電極を備えた電池は、BiNiで形成された活物質層のようなBiおよびMnを含む合金を含まない活物質層を有する第一電極を備えた電池と比較して、改善されたエネルギー効率を有する。
 なお、本明細書に記載された実施例では、固体電解質としてハロゲン化物固体電解質Li3YBr4Cl2と硫化物固体電解質Li6PS5Clを用いたが、一般的な他の固体電解質であっても同様の効果を得られることが期待できる。
 本開示の電池は、例えば、全固体リチウム二次電池などとして、利用されうる。

Claims (17)

  1.  第一電極と、
     第二電極と、
     前記第一電極と前記第二電極との間に位置する電解質層と、
    を備え、
     前記第一電極は、
      集電体と、
      前記集電体と前記電解質層との間に位置する活物質層と、を有し、
     前記活物質層は、BiおよびMnを含む合金を含む、
    電池。
  2.  前記活物質層は、LiBiおよびLi3Biからなる群より選択される少なくとも1つを含む、
    請求項1に記載の電池。
  3.  前記活物質層は、BiMnを活物質として含む、
    請求項1または2に記載の電池。
  4.  前記BiMnは、空間群がP63/mmcに帰属する結晶構造を有する、
    請求項3に記載の電池。
  5.  前記活物質層は、Bi4Cu4Mn3を活物質として含む、
    請求項1から4のいずれか一項に記載の電池。
  6.  前記Bi4Cu4Mn3は、空間群がFm-3mに帰属する結晶構造を有する、
    請求項5に記載の電池。
  7.  前記活物質層は、固体電解質を含まない、
    請求項1から6のいずれか一項に記載の電池。
  8.  前記集電体は、Cuを含む、
    請求項1から7のいずれか一項に記載の電池。
  9.  前記活物質層は、熱処理されためっき層である、
    請求項1から8のいずれか一項に記載の電池。
  10.  前記電解質層は、電解液を含む、
    請求項1から9のいずれか一項に記載の電池。
  11.  前記電解液は、ビニレンカーボネートを溶媒として含む、
    請求項10に記載の電池。
  12.  前記電解質層は、固体電解質層である、
    請求項1から9のいずれか一項に記載の電池。
  13.  前記固体電解質層は、ハロゲン化物固体電解質を含み、
     前記ハロゲン化物固体電解質は、硫黄を含まない、
    請求項12に記載の電池。
  14.  前記固体電解質層は、硫化物固体電解質を含む、
    請求項12に記載の電池。
  15.  前記第一電極は、負極であり、
     前記第二電極は、正極である、
    請求項1から14のいずれか一項に記載の電池。
  16.  集電体上に、電気めっき法によってBiめっき膜およびMnめっき膜を含むめっき層を作製することと、
     前記集電体および前記めっき層を加熱して、前記集電体上にBiおよびMnを含む合金を含む活物質層が形成された電極を得ることと、
    を含む、電極の製造方法。
  17.  前記集電体は、Cuを含む、
    請求項16に記載の電極の製造方法。
PCT/JP2023/000409 2022-01-25 2023-01-11 電池および電極の製造方法 WO2023145426A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-009699 2022-01-25
JP2022009699 2022-01-25

Publications (1)

Publication Number Publication Date
WO2023145426A1 true WO2023145426A1 (ja) 2023-08-03

Family

ID=87471169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000409 WO2023145426A1 (ja) 2022-01-25 2023-01-11 電池および電極の製造方法

Country Status (1)

Country Link
WO (1) WO2023145426A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236955A (ja) * 2000-02-22 2001-08-31 Sanyo Electric Co Ltd リチウム二次電池
JP2018139172A (ja) * 2017-02-24 2018-09-06 株式会社Gsユアサ 非水電解質蓄電素子、電気機器及び非水電解質蓄電素子の使用方法
WO2019230279A1 (ja) * 2018-05-30 2019-12-05 パナソニックIpマネジメント株式会社 リチウム二次電池
WO2022224572A1 (ja) * 2021-04-20 2022-10-27 パナソニックIpマネジメント株式会社 電池および電極の製造方法
WO2022224570A1 (ja) * 2021-04-20 2022-10-27 パナソニックIpマネジメント株式会社 電池および電極の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236955A (ja) * 2000-02-22 2001-08-31 Sanyo Electric Co Ltd リチウム二次電池
JP2018139172A (ja) * 2017-02-24 2018-09-06 株式会社Gsユアサ 非水電解質蓄電素子、電気機器及び非水電解質蓄電素子の使用方法
WO2019230279A1 (ja) * 2018-05-30 2019-12-05 パナソニックIpマネジメント株式会社 リチウム二次電池
WO2022224572A1 (ja) * 2021-04-20 2022-10-27 パナソニックIpマネジメント株式会社 電池および電極の製造方法
WO2022224570A1 (ja) * 2021-04-20 2022-10-27 パナソニックIpマネジメント株式会社 電池および電極の製造方法

Similar Documents

Publication Publication Date Title
WO2019146218A1 (ja) 固体電解質材料、および、電池
JP4965790B2 (ja) 非水電解質二次電池
JP5614307B2 (ja) 非水電解質二次電池
JP7140812B2 (ja) 全固体二次電池用負極層、それを含む全固体二次電池、及びその製造方法
US20240030419A1 (en) Battery and method for manufacturing electrode
US20240030418A1 (en) Battery and method for manufacturing electrode
WO2022224571A1 (ja) 電池
WO2023145426A1 (ja) 電池および電極の製造方法
WO2023017673A1 (ja) 電池
WO2023017672A1 (ja) 電池
WO2023074590A1 (ja) 電池
WO2023106126A1 (ja) 電池
WO2022163037A1 (ja) 電池
WO2022163039A1 (ja) 電池
WO2023017735A1 (ja) 電池
WO2022163038A1 (ja) 電池
US20240213459A1 (en) Battery
WO2023017736A1 (ja) 電池
WO2022255002A1 (ja) 電池
WO2022254975A1 (ja) 電池
WO2022255003A1 (ja) 電池
WO2022254974A1 (ja) 電池
WO2023223582A1 (ja) 電池および電池の製造方法
CN117501472A (zh) 电池
CN116848664A (zh) 电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746641

Country of ref document: EP

Kind code of ref document: A1