WO2023017673A1 - 電池 - Google Patents

電池 Download PDF

Info

Publication number
WO2023017673A1
WO2023017673A1 PCT/JP2022/023790 JP2022023790W WO2023017673A1 WO 2023017673 A1 WO2023017673 A1 WO 2023017673A1 JP 2022023790 W JP2022023790 W JP 2022023790W WO 2023017673 A1 WO2023017673 A1 WO 2023017673A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
active material
solid electrolyte
battery
material layer
Prior art date
Application number
PCT/JP2022/023790
Other languages
English (en)
French (fr)
Inventor
貴司 大戸
孝紀 大前
正久 藤本
暁彦 相良
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280042456.7A priority Critical patent/CN117501472A/zh
Publication of WO2023017673A1 publication Critical patent/WO2023017673A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to batteries.
  • lithium secondary batteries have been actively researched and developed, and battery characteristics such as charge/discharge voltage, charge/discharge cycle life characteristics, and storage characteristics are greatly affected by the electrodes used. For this reason, improvements in battery characteristics have been attempted by improving electrode active materials.
  • Patent Literature 1 discloses a lithium secondary battery comprising a negative electrode, a positive electrode, and an electrolyte including a negative electrode material made of an alloy containing silicon, tin, and a transition metal.
  • Patent Document 2 discloses a lithium secondary battery including a negative electrode using a silicon thin film provided on a current collector as an active material, a positive electrode, and an electrolyte.
  • Non-Patent Document 1 discloses a negative electrode containing Bi as a negative electrode active material, which is manufactured using Bi powder.
  • the present disclosure provides a battery having a structure suitable for improving charge/discharge characteristics.
  • the battery of the present disclosure is a first electrode; a second electrode; a solid electrolyte layer positioned between the first electrode and the second electrode; with The solid electrolyte layer includes a first solid electrolyte,
  • the first electrode is a substrate that is a porous body; and an active material layer located on the surface of the substrate,
  • the active material layer includes an alloy containing Bi and Ni.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of a battery according to an embodiment of the present disclosure.
  • FIG. 2 is a partially enlarged cross-sectional view schematically showing a configuration example of the first electrode in the battery according to the embodiment of the present disclosure.
  • FIG. 3 is a cross-sectional view schematically showing a modification of the battery according to the embodiment of the present disclosure.
  • FIG. 4 is a graph showing an example of an X-ray diffraction pattern of an active material layer composed of a BiNi thin film formed on a nickel mesh.
  • 5 is a graph showing the results of a charge/discharge test of the test cell according to Example 1.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of a battery according to an embodiment of the present disclosure.
  • FIG. 2 is a partially enlarged cross-sectional view schematically showing a configuration example of the first electrode in the battery according to the embodiment of the present disclosure.
  • FIG. 3 is a cross-
  • FIG. 6 is a graph showing an example of an X-ray diffraction pattern of an active material layer composed of a BiNi thin film produced on porous nickel in Example 2.
  • FIG. 7 is a graph showing the results of a charge/discharge test of the test cell according to Example 2.
  • FIG. 8 is a graph showing an example of an X-ray diffraction pattern of an active material layer composed of a BiNi thin film formed on porous nickel in Example 3.
  • FIG. 9 is a graph showing the results of a charge/discharge test of the test cell according to Example 3.
  • FIG. FIG. 10 is a graph showing an example of an X-ray diffraction pattern of an active material layer composed of a BiNi thin film formed on a nickel foil.
  • FIG. 11 is a graph showing the results of a charge/discharge test of a test cell according to Reference Example 1.
  • FIG. FIG. 12 is a graph showing an example of X-ray diffraction patterns of the first electrode used in Example 1 before charging, after charging, and after discharging.
  • lithium metal When lithium metal is used as the negative electrode active material, a lithium secondary battery having high energy density per weight and per volume can be obtained.
  • lithium deposits in the form of dendrites during charging. Since part of the deposited lithium metal reacts with the electrolytic solution, the charge/discharge efficiency is low and the cycle characteristics are poor.
  • carbon especially graphite
  • a negative electrode using carbon is charged and discharged by intercalation and deintercalation of lithium into and from carbon.
  • lithium metal does not deposit in a dendrite form due to the charge/discharge mechanism.
  • the reaction is topotactic, so the reversibility is very good, and the charge/discharge efficiency is almost 100%.
  • lithium secondary batteries employing negative electrodes using carbon, particularly graphite have been put to practical use.
  • the theoretical capacity density of graphite is 372 mAh/g, which is about 1/10 of the theoretical capacity density of lithium metal, 3884 mAh/g. Therefore, the active material capacity density of the negative electrode using graphite is low. Furthermore, since the actual capacity density of graphite has almost reached the theoretical capacity density, there is a limit to increasing the capacity of negative electrodes using graphite.
  • lithium secondary batteries using electrodes such as aluminum, silicon, and tin that electrochemically alloy with lithium during charging have long been proposed.
  • the capacity density of metals alloyed with lithium is much higher than that of graphite.
  • the theoretical capacity density of silicon is large. Therefore, electrodes using aluminum, silicon, tin, etc., which are alloyed with lithium, are promising as negative electrodes for batteries exhibiting high capacity, and various secondary batteries using these as negative electrodes have been proposed (Patent Documents 1).
  • a negative electrode that uses a metal that alloys with lithium as described above expands when it absorbs lithium and contracts when it releases lithium. If such expansion and contraction are repeated during charging and discharging, the alloy itself, which is the electrode active material, will be pulverized due to charging and discharging, and the current collection characteristics of the negative electrode will deteriorate, so sufficient cycle characteristics have not been obtained.
  • the following attempts have been made to improve such drawbacks. For example, attempts have been made to deposit silicon on a roughened current collector by sputtering or evaporation, or to deposit tin by electroplating (Patent Document 2). In this trial, the active material, that is, the metal that alloys with lithium forms a thin film and adheres to the current collector. not decrease.
  • the active material is formed by sputtering or vapor deposition as described above, the manufacturing cost is high and it is not practical. Although it is practical to form the active material by electroplating, which is inexpensive to manufacture, silicon is very difficult to electroplate. In addition, tin, which is easily electroplated, has poor discharge flatness and is difficult to use as a battery electrode.
  • Bi bismuth
  • LiBi lithium
  • LiBi lithium
  • Li 3 Bi Li 3 Bi
  • the potential of LiBi and the potential of Li 3 Bi are almost the same.
  • tin which has poor discharge flatness
  • Bi does not have the property that different types of compounds formed with lithium have different potentials, unlike tin. Therefore, an electrode containing Bi as an active material has a flat electric potential, and is therefore excellent in discharge flatness. Therefore, an electrode containing Bi as an active material is considered suitable as a battery electrode.
  • Bi has poor malleability and ductility, and is difficult to produce in the form of a metal plate or metal foil, and the obtained form is globules or powder. Therefore, as an electrode containing Bi as an active material, an electrode manufactured by coating a current collector with Bi powder has been studied. However, an electrode manufactured using such a Bi powder is pulverized by repeated charging and discharging, resulting in deterioration of current collection characteristics, and sufficient cycle characteristics have not been obtained. For example, in Non-Patent Document 1, an electrode containing Bi as an active material is produced using Bi powder and PVdF (polyvinylidene fluoride) or PI (polyimide) as a binder.
  • PVdF polyvinylidene fluoride
  • PI polyimide
  • Non-Patent Document 1 charging and discharging of a battery produced using this electrode are performed.
  • both the initial charge/discharge curve and cycle characteristics of the fabricated electrode are very poor.
  • the initial charge/discharge efficiency is low and the cycle deterioration is severe, making it unusable for practical use.
  • this cycle deterioration in Non-Patent Document 1, as the Bi active material expands when Li is inserted and the Bi active material contracts when Li is desorbed, the active material becomes finer and an electron conduction path cannot be taken, resulting in a decrease in capacity. is believed to occur.
  • the present inventors have focused on Bi, which does not have the property that the potential differs greatly between the multiple types of compounds formed with Li, and has excellent discharge flatness, and can improve cycle characteristics.
  • the present inventors have reached a new technical idea that the cycle characteristics of a battery are improved when an alloy containing Bi and Ni is used as an active material.
  • the inventors have conducted more detailed studies on batteries in which an alloy containing Bi and Ni is used as an active material.
  • a Ni foil is electroplated with Bi to form a Bi electroplating layer, which is heat-treated to diffuse Ni from the Ni foil into the Bi electroplating layer in the solid phase.
  • an alloy eg, BiNi
  • This alloy containing Bi and Ni is obtained by solid phase diffusion of Ni from the Ni foil to the Bi electroplating layer by heat treatment.
  • the interface between the Ni foil that can function as a current collector and the BiNi that is the active material is firmly bonded, and the current collector and the active material layer are formed by expansion and contraction of the active material during charging and discharging as a battery electrode. It is possible to improve deterioration of cycle characteristics due to peeling at the interface.
  • the battery using 2 was charged and discharged. As a result, the initial charge capacity was 70% or less, the discharge capacity was 60% or less, and the initial efficiency was 79.8% with respect to the theoretical capacity of BiNi of 300 mAh/g.
  • the present inventors have further investigated, and found out the cause of low charge/discharge capacity and low initial efficiency of the battery when using an electrode having a structure in which an alloy containing Bi and Ni is provided on a Ni foil as follows. I figured it out.
  • an electrode containing an alloy containing Bi and Ni as an active material is formed by forming an alloy containing Bi and Ni on the surface of the base material, using a porous body as a base material.
  • the inventors have found that the charge-discharge characteristics can be improved by using a layer containing an alloy containing Ni and Ni as the active material layer, and have completed the present disclosure.
  • the battery according to the first aspect of the present disclosure includes a first electrode; a second electrode; a solid electrolyte layer positioned between the first electrode and the second electrode; with The solid electrolyte layer includes a first solid electrolyte,
  • the first electrode is a substrate that is a porous body; and an active material layer located on the surface of the substrate,
  • the active material layer includes an alloy containing Bi and Ni.
  • the active material layer on the surface of the porous base material rather than on the surface of the foil-like base material.
  • the layer area increases. Therefore, in the battery according to the first aspect, when the same amount of active material is provided on the substrate, the active material layer can be formed thinner than when provided on the foil-shaped substrate.
  • the battery according to the first aspect can improve the charge/discharge characteristics, for example, the initial efficiency.
  • the battery according to the first aspect has a structure suitable for improving charge-discharge characteristics.
  • the active material layer may contain BiNi.
  • the battery according to the second aspect can further improve charge-discharge characteristics.
  • the active material layer may contain the BiNi as a main component of the active material.
  • the battery according to the third aspect has higher capacity and improved charge/discharge characteristics.
  • the active material layer may substantially contain only the BiNi as an active material.
  • the battery according to the fourth aspect has higher capacity and improved charge/discharge characteristics.
  • the BiNi may have a crystal structure in which the space group belongs to C2/m.
  • the battery according to the fifth aspect has higher capacity and improved charge/discharge characteristics.
  • the active material layer may contain at least one selected from the group consisting of LiBi and Li 3 Bi good.
  • the battery according to the sixth aspect has higher capacity and improved charge/discharge characteristics.
  • the active material layer may not contain an electrolyte.
  • the battery according to the seventh aspect has higher capacity and improved charge/discharge characteristics.
  • the base material may contain Ni.
  • the battery according to the eighth aspect has higher capacity and improved charge/discharge characteristics.
  • the active material layer may be a heat-treated plated layer.
  • the battery according to the ninth aspect has higher capacity and improved charge/discharge characteristics.
  • the first solid electrolyte may include a first halide solid electrolyte, and the first halide solid The electrolyte may be substantially free of sulfur.
  • the battery according to the tenth aspect has higher capacity and improved charge/discharge characteristics.
  • the first solid electrolyte may contain a first sulfide solid electrolyte.
  • the battery according to the eleventh aspect has higher capacity and improved charge/discharge characteristics.
  • the first electrode may further have a second solid electrolyte in contact with the active material layer.
  • the active material layer is located on the surface of the substrate that is a porous body, and the solid electrolyte (that is, the second solid electrolyte) is in contact with the active material layer. is provided.
  • the area of the interface between the active material and the solid electrolyte increases in the first electrode, so that the interface resistance between the active material and the solid electrolyte can be reduced. Therefore, the battery according to the twelfth aspect has good charge/discharge characteristics.
  • the battery according to the twelfth aspect has a structure suitable for improving charge/discharge characteristics.
  • the second solid electrolyte may include a second halide solid electrolyte, the second halide solid electrolyte substantially containing sulfur May not be included.
  • the battery according to the thirteenth aspect is safer and has improved charge/discharge characteristics.
  • the second halide solid electrolyte may be represented by the following compositional formula (1).
  • Li ⁇ M ⁇ X ⁇ Formula (1) here, ⁇ , ⁇ , and ⁇ are values greater than 0; M is at least one selected from the group consisting of metal elements other than Li and metalloid elements, X is at least one selected from the group consisting of F, Cl, Br and I;
  • the battery according to the fourteenth aspect has more improved charge-discharge characteristics.
  • M may include Y in the composition formula (1).
  • the battery according to the fifteenth aspect has more improved charge-discharge characteristics.
  • the X is at least one selected from the group consisting of Cl, Br, and I may
  • the battery according to the sixteenth aspect has more improved charge-discharge characteristics.
  • the second solid electrolyte is selected from the group consisting of Li3YBr3Cl3 and Li3YBr2Cl4 At least one may be selected.
  • the battery according to the seventeenth aspect has more improved charge/discharge characteristics.
  • the second solid electrolyte may contain a second sulfide solid electrolyte.
  • the battery according to the eighteenth aspect has higher capacity and improved charge/discharge characteristics.
  • the second solid electrolyte may be contained in the pores of the substrate.
  • the second solid electrolyte is included in the pores of the substrate of the first electrode, that is, the pores of the porous body.
  • the first electrode may be a negative electrode and the second electrode may be a positive electrode.
  • the battery according to the twentieth aspect has higher capacity and improved charge/discharge characteristics.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of a battery 1000 according to an embodiment of the present disclosure.
  • a battery 1000 includes a first electrode 101 , a second electrode 103 , and a solid electrolyte layer 102 located between the first electrode 101 and the second electrode 103 .
  • FIG. 2 is a partially enlarged cross-sectional view schematically showing a configuration example of the first electrode 101 in the battery 1000 according to the embodiment of the present disclosure.
  • the first electrode 101 has a base material 105 that is a porous body and an active material layer 106 located on the surface of the base material 105 .
  • Active material layer 106 contains an alloy containing Bi and Ni.
  • the active material layer 106 contains, for example, BiNi as an alloy containing Bi and Ni.
  • the battery 1000 according to this embodiment may further include a first current collector 100 in contact with the first electrode 101, for example.
  • the battery 1000 according to this embodiment may further include a second current collector 104 that is in contact with the second electrode 103, for example.
  • the active material layer 106 containing an alloy containing Bi and Ni is formed on the surface of the substrate 105 which is a porous body.
  • the active material layer 106 is also formed on the inner walls of the pores of the substrate 105 as shown in FIG. 2, for example. Therefore, in the battery 1000, the active material layer 106 is formed on the surface of the base material 105, which is a porous body, rather than on the surface of the foil-like base material, in terms of the area where the active material and the solid electrolyte can contact.
  • the area of the active material layer 106 becomes larger. Therefore, in the battery 1000, when the same amount of active material is provided on the substrate, the active material layer 106 can be formed thinner than when provided on the foil-shaped substrate.
  • the battery 1000 according to this embodiment has a structure suitable for improving charge/discharge characteristics.
  • the active material layer 106 is formed in the form of a thin film on the inner walls of the pores of the substrate 105, and the pores are present with a relatively high porosity.
  • the first electrode 101 is not limited to this configuration.
  • the active material layer 106 substantially fills the inside of the pores of the base material 105, and the porosity may be low. Even when the first electrode 101 has such a structure, the boundary between the substrate 105 and the active material layer 106 can be clearly confirmed, and in the first electrode 101, the substrate 105 is porous. , the active material layer 106 can be said to be formed on the surface of the substrate 105 .
  • the active material layer 106 may be formed on a part of the inner walls of the plurality of holes, or may be formed on almost all of them.
  • FIG. 3 is a cross-sectional view schematically showing a modification of the battery according to the embodiment of the present disclosure.
  • the battery 2000 shown in FIG. 3 differs from the battery 1000 in that a second solid electrolyte 107 is further provided in contact with the active material layer 106, but the configuration other than the second solid electrolyte 107 is the same as that of the battery 1000.
  • the battery 2000 includes a first electrode 101 , a second electrode 103 , and a solid electrolyte layer 102 positioned between the first electrode 101 and the second electrode 103 .
  • the first electrode 101 has a porous substrate 105 , an active material layer 106 located on the surface of the substrate 105 , and a second solid electrolyte 107 in contact with the active material layer 106 .
  • Active material layer 106 contains an alloy containing Bi and Ni.
  • the active material layer 106 contains, for example, BiNi as an alloy containing Bi and Ni.
  • the battery 2000 may further include, for example, a first current collector 100 in contact with the first electrode 101, similar to the battery 1000 according to the embodiment of the present disclosure.
  • the battery 2000 may further include a second current collector 104 that contacts the second electrode 103, for example, like the battery 1000 according to the embodiment of the present disclosure.
  • first electrode 101 in the first electrode 101, the active material layer 106 containing an alloy containing Bi and Ni is formed on the surface of the substrate 105 which is a porous body.
  • the active material layer 106 is also formed on the inner walls of the pores of the substrate 105 as shown in FIG. 3, for example.
  • first electrode 101 further has second solid electrolyte 107 in contact with active material layer 106 .
  • the second solid electrolyte 107 may be contained within the pores of the substrate 105 .
  • the active material layer 106 is formed on the surface of the base material 105, which is a porous body, rather than on the surface of the foil-like base material, in terms of the area where the active material and the solid electrolyte can contact.
  • the area of the active material layer 106 becomes larger. Therefore, in the battery 2000, when the same amount of active material is provided on the substrate, the active material layer 106 can be formed thinner than when provided on the foil-shaped substrate.
  • load characteristics due to diffusion of Li ions in the solid phase are improved, for example, load characteristics during discharge are improved. Therefore, the battery 2000 according to the present embodiment can improve the charge/discharge characteristics, particularly the initial efficiency.
  • the battery 2000 according to this embodiment has a structure suitable for improving charge/discharge characteristics.
  • the active material layer 106 is formed in the form of a thin film on the inner walls of the pores of the substrate 105, and the region inside the active material layer 106 is the second solid electrolyte 107. is almost filled with In this way, the first electrode 101 may be such that the inside of the pores of the substrate 105 is substantially filled with the active material layer 106 and the second solid electrolyte 107, and the porosity is low. Even when the first electrode 101 has such a structure, the boundary between the substrate 105 and the active material layer 106 can be clearly confirmed, and in the first electrode 101, the substrate 105 is porous. , the active material layer 106 can be said to be formed on the surface of the substrate 105 .
  • the active material layer 106 may be formed on a part of the inner walls of the plurality of holes, or may be formed on almost all of them.
  • the batteries 1000 and 2000 are, for example, lithium secondary batteries.
  • lithium ions are intercalated and released in the active material layer 106 of the first electrode 101 and the second electrode 103 during charging and discharging of the batteries 1000 and 2000 will be described as an example.
  • the base material 105 is a porous body, as described above.
  • the term "porous body” means a structure having a plurality of pores and including open pores that are open to the outside.
  • Porous bodies herein include, for example, meshes and porous structures.
  • the porous structure is a structure composed of a porous material provided with a plurality of pores, and the size of the pores is not particularly limited. Examples of porous structures include foams.
  • the porous structure may be a three-dimensional network structure in which pores communicate with each other.
  • the term "pore" includes both holes filled with, for example, an active material layer and holes not filled with the active material layer. In other words, a hole filled with, for example, an active material layer is also regarded as a "hole”.
  • the base material 105 has conductivity, for example.
  • the base material 105 may be made of a conductive material such as metal, or a conductive film made of a conductive material may be formed on the surface of a porous body (for example, foamed resin) made of a non-conductive material such as resin. It may be provided.
  • Substrate 105 can be, for example, metal mesh and porous metal.
  • the base material 105 can function as a current collector for the first electrode 101 . That is, when the first current collector 100 is provided, for example, the first current collector 100 and the substrate 105 function as current collectors for the first electrode 101 . If the first current collector 100 is not provided, the substrate 105 functions as a current collector for the first electrode 101, for example.
  • the base material 105 may contain Ni, for example.
  • Substrate 105 may be, for example, nickel mesh or porous nickel.
  • the active material layer 106 contains, for example, BiNi as an alloy containing Bi and Ni.
  • the active material layer 106 may contain BiNi as a main component.
  • the active material layer 106 contains BiNi as a main component is defined as "the content of BiNi in the active material layer 106 is 50% by mass or more”.
  • the content ratio of BiNi in the active material layer 106 is determined by confirming that Bi and Ni are contained in the active material layer 106 by, for example, elemental analysis using EDX (energy dispersive X-ray analysis). It can be obtained by calculating the ratio of the compounds contained by Rietveld analysis of the X-ray diffraction results.
  • the active material layer 106 containing BiNi as a main component may be composed of, for example, a thin film of BiNi (hereinafter referred to as "BiNi thin film").
  • the active material layer 106 composed of a BiNi thin film can be produced using electroplating, for example.
  • a method of manufacturing the first electrode 101 by forming the active material layer 106 using electroplating is, for example, as follows.
  • a substrate for electroplating is prepared.
  • a substrate for electroplating for example, a porous body that can constitute the substrate 105 when the first electrode 101 is formed is used.
  • a substrate for electroplating for example, a metal mesh or porous metal is used.
  • a substrate for electroplating for example, nickel mesh or porous nickel may be used.
  • the structure of the porous body used as the base material for electroplating is not particularly limited as long as it can constitute the base material 105 when the first electrode is formed through processes such as electroplating and pressure treatment. However, it can be appropriately selected according to the target structure of the first electrode 101 .
  • a porous body used as a substrate for electroplating may have a specific surface area of, for example, 0.014 m 2 /cm 3 or more and 0.036 m 2 /cm 3 or less.
  • a nickel mesh is prepared as a base material for electroplating. After preliminarily degreasing the nickel mesh with an organic solvent, it is degreased by immersing it in an acidic solvent to activate the surface of the nickel mesh. The activated nickel mesh is connected to a power source so that current can be applied. A nickel mesh connected to a power supply is immersed in a bismuth plating bath. As the bismuth plating bath, for example, an organic acid bath containing Bi 3+ ions and an organic acid is used. Thereafter, the surface of the nickel mesh is electroplated with Bi by applying a current to the nickel mesh while controlling the current density and application time.
  • the bismuth plating bath for example, an organic acid bath containing Bi 3+ ions and an organic acid is used.
  • the bismuth plating bath used for producing the Bi plating layer is not particularly limited, and can be appropriately selected from known bismuth plating baths capable of depositing a simple Bi thin film.
  • organic sulfonic acid baths, gluconic acid and ethylenediaminetetraacetic acid (EDTA) baths, or citric acid and EDTA baths can be used as organic acid baths.
  • EDTA ethylenediaminetetraacetic acid
  • a sulfuric acid bath for example, may be used as the bismuth plating bath.
  • Additives may also be added to the bismuth plating bath.
  • a Bi-plated layer can be produced in the same manner as described above even when, for example, porous nickel is used as the base material for electroplating.
  • Table 1 shows the plating mass of Bi produced by the above method when nickel foil, nickel mesh, and porous nickel are used as base materials for electroplating.
  • nickel foil When nickel foil is used as the base material for electroplating, the nickel foil is preliminarily degreased with an organic solvent, masked on one side, and immersed in an acidic solvent for degreasing and activating the nickel foil surface. rice field. The nickel foil was then immersed in a bismuth plating bath to electroplate the unmasked surface of the nickel foil with Bi.
  • the nickel mesh and the Bi plating layer produced on the nickel mesh are heated.
  • Ni is allowed to diffuse in the solid phase from the base nickel mesh to the Bi plating layer, and an active material layer composed of a BiNi thin film can be produced.
  • a sample obtained by electroplating Bi on a nickel mesh is subjected to heat treatment at a temperature of 250 ° C. or higher in a non-oxidizing atmosphere for 30 minutes or more and less than 100 hours, so that the nickel mesh is converted to a Bi plating layer. diffuses in the solid phase, and an active material layer composed of a BiNi thin film can be produced.
  • the sample obtained by electroplating Bi on the nickel mesh was heat-treated at a temperature of 400°C for 60 hours in an argon atmosphere to prepare an active material layer composed of a BiNi thin film.
  • the surface structural analysis was also performed by surface X-ray diffraction measurement for the active material layer composed of the BiNi thin film produced on the nickel mesh.
  • FIG. 4 is a graph showing an example of an X-ray diffraction pattern of an active material layer composed of a BiNi thin film produced on a nickel mesh.
  • the X-ray diffraction pattern was obtained from the surface of the active material layer, that is, from the thickness direction of the active material layer using an X-ray diffractometer (MiNi Flex manufactured by RIGAKU) with Cu-K ⁇ rays having wavelengths of 1.5405 ⁇ and 1.5444 ⁇ . It was measured by the ⁇ -2 ⁇ method using X-rays. From the X-ray diffraction pattern shown in FIG. 4, BiNi whose crystal structure has a space group belonging to C2/m, and a nickel mesh as a base material and a Ni phase contained in the active material layer were identified. .
  • BiNi formed when a porous material such as porous nickel is used as a substrate similarly, it is possible to synthesize BiNi whose space group belongs to C2/m by electroplating and heat treatment. be. That is, in the battery 1000 according to the present embodiment, the BiNi-containing active material layer 106 contained in the first electrode 101 may be, for example, a heat-treated plated layer produced as described above. Furthermore, in the battery 1000 according to the present embodiment, BiNi contained in the active material layer 106 of the first electrode 101 has, for example, a crystal structure in which the space group belongs to C2/m.
  • the active material layer 106 containing BiNi located on the surface of the substrate 105 is formed, a second solid electrolyte 107 is formed in contact with the active material layer 106 .
  • the second solid electrolyte 107 is not particularly limited as long as it can be formed so as to be in contact with the active material layer 106 .
  • the second solid electrolyte 107 may be formed by a liquid phase method.
  • the second solid electrolyte 107 may be formed by, for example, filling a powdery solid electrolyte in the inner region of the active material layer 106 formed in the form of a thin film on the inner walls of the pores of the substrate 105.
  • the second solid electrolyte 107 is formed by a liquid phase method, for example, a solution in which the raw material of the second solid electrolyte 107 is dispersed or dissolved in a solvent is prepared, and a substrate having the active material layer 106 formed in the solution is prepared.
  • a second solid electrolyte 107 is formed by soaking the material 105 and then removing the solvent. A heat treatment may be performed after the solvent is removed.
  • each configuration of the battery 1000 and the battery 2000 of this embodiment will be described in more detail, taking as an example the case where the first electrode 101 is the negative electrode and the second electrode 103 is the positive electrode.
  • the battery 1000 and the battery 2000 of this embodiment are simply referred to as the battery of this embodiment.
  • first electrode 101 has substrate 105 which is a porous body, and active material layer 106 located on the surface of substrate 105 .
  • a second solid electrolyte 107 may be further provided in contact with the active material layer 106 .
  • the configurations of base material 105, active material layer 106, and second solid electrolyte 107 are as described above, but will be described in more detail below.
  • the first electrode 101 functions, for example, as a negative electrode. Therefore, the active material layer 106 includes a negative electrode active material that has the property of intercalating and deintercalating lithium ions.
  • the active material layer 106 contains an alloy containing Bi and Ni, and this alloy containing Bi and Ni functions as a negative electrode active material.
  • the active material layer 106 contains, for example, BiNi as an active material. BiNi in the active material layer 106 has, for example, a crystal structure in which the space group belongs to C2/m.
  • Bi is a metal element that alloys with lithium.
  • an alloy containing Ni reduces the load on the crystal structure of the negative electrode active material when lithium atoms are desorbed and inserted during charge and discharge, and the capacity retention rate of the battery is reduced. It is presumed that the decrease in When BiNi functions as a negative electrode active material, lithium is occluded by forming an alloy with lithium during charging. That is, a lithium-bismuth alloy is generated in the active material layer 106 during charging of the battery of this embodiment.
  • the produced lithium-bismuth alloy contains, for example, at least one selected from the group consisting of LiBi and Li 3 Bi.
  • the active material layer 106 contains at least one selected from the group consisting of LiBi and Li 3 Bi, for example.
  • BiNi as the negative electrode active material reacts, for example, as follows during charging and discharging of the battery of this embodiment. Note that the following reaction example is an example in which the lithium-bismuth alloy produced during charging is Li 3 Bi. Charging: BiNi+3Li + +3e ⁇ ⁇ Li 3 Bi+Ni Discharge: Li 3 Bi+Ni ⁇ BiNi+3Li + +3e ⁇
  • the active material layer 106 may substantially contain only BiNi as an active material.
  • the battery of this embodiment can have enhanced capacity and improved cycling characteristics.
  • the active material layer 106 substantially contains only BiNi as an active material means that, for example, in the active material contained in the active material layer 106, the active material other than BiNi is 1% by mass or less. is.
  • the active material layer 106 may contain only BiNi as an active material.
  • the active material layer 106 may not contain an electrolyte.
  • the active material layer 106 may be a layer of BiNi and/or a lithium-bismuth alloy and nickel that is produced during charging.
  • the electrolyte referred to herein is a liquid or solid electrolyte having lithium ion conductivity.
  • the active material layer 106 may be arranged in direct contact with the surface of the substrate 105 . Furthermore, when the battery of this embodiment includes the first current collector 100 , the substrate 105 may be arranged in contact with the first current collector 100 .
  • the active material layer 106 may be in the form of a thin film.
  • the active material layer 106 may be a heat-treated plated layer.
  • the active material layer 106 may be a heat-treated plated layer provided in direct contact with the surface of the substrate 105 . That is, as described above, the active material layer 106 may be a layer formed by heat-treating a Bi-plated layer formed on the surface of the base material 105 containing Ni.
  • the active material layer 106 When the active material layer 106 is a heat-treated plated layer provided in direct contact with the surface of the substrate 105, the active material layer 106 firmly adheres to the substrate 105. This makes it possible to further suppress the deterioration of the current collection characteristics of the first electrode 101 that occurs when the active material layer 106 repeats expansion and contraction. Therefore, the charge/discharge characteristics of the battery of this embodiment are further improved. Further, when the active material layer 106 is a heat-treated plated layer, the active material layer 106 contains Bi alloying with lithium at a high density, so that the capacity can be further increased.
  • the active material layer 106 may contain materials other than alloys containing Bi and Ni.
  • the active material layer 106 may further contain a conductive material.
  • Conductive materials include carbon materials, metals, inorganic compounds, and conductive polymers.
  • Carbon materials include graphite, acetylene black, carbon black, ketjen black, carbon whiskers, needle coke, and carbon fibers.
  • Graphite includes natural graphite and artificial graphite.
  • Natural graphite includes massive graphite and flake graphite.
  • Metals include copper, nickel, aluminum, silver, and gold.
  • Inorganic compounds include tungsten carbide, titanium carbide, tantalum carbide, molybdenum carbide, titanium boride, and titanium nitride. These materials may be used alone, or a mixture of multiple types may be used.
  • the active material layer 106 may further contain a binder.
  • Binders include fluorine-containing resins, thermoplastic resins, ethylene propylene diene monomer (EPDM) rubber, sulfonated EPDM rubber, and natural butyl rubber (NBR).
  • Fluorine-containing resins include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluororubber.
  • Thermoplastic resins include polypropylene and polyethylene. These materials may be used alone, or a mixture of multiple types may be used.
  • the thickness of the active material layer 106 is not particularly limited, and may be, for example, 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the material of the base material 105 is, for example, a single metal or alloy. More specifically, it may be a single metal or alloy containing at least one selected from the group consisting of copper, chromium, nickel, titanium, platinum, gold, aluminum, tungsten, iron, and molybdenum. Substrate 105 may be stainless steel.
  • the base material 105 may contain nickel (Ni).
  • the structure of the base material 105 is as described above.
  • the substrate 105 may be considered the current collector or part of the current collector of the first electrode 101 .
  • the second solid electrolyte 107 may contain a second halide solid electrolyte.
  • the second halide solid electrolyte is substantially free of sulfur.
  • a halide solid electrolyte means a solid electrolyte containing a halogen element.
  • the halide solid electrolyte may contain not only halogen elements but also oxygen.
  • Halide solid electrolytes do not contain sulfur (S).
  • the second halide solid electrolyte is composed of Li, M, and X, where M contains at least one selected from the group consisting of metal elements other than Li and metalloid elements, and X is F, Cl, It may be at least one selected from the group consisting of Br and I.
  • the second solid electrolyte 107 may consist essentially of Li, M, and X.
  • the second solid electrolyte 107 consists essentially of Li, M, and X means that in the second solid electrolyte 107, Li, It means that the ratio of the total amount of substances of M and X (that is, the molar fraction) is 90% or more. As an example, the ratio (ie, mole fraction) may be 95% or greater.
  • the second solid electrolyte may consist of Li, M, and X only.
  • the second halide solid electrolyte may be, for example, a material represented by the following compositional formula (1).
  • Li ⁇ M ⁇ X ⁇ Formula (1) ⁇ , ⁇ , and ⁇ are values greater than 0, M is at least one selected from the group consisting of metal elements other than Li and metalloid elements, and X is F, Cl, Br , and at least one selected from the group consisting of I.
  • Simetallic elements are B, Si, Ge, As, Sb, and Te.
  • Metallic element means all elements contained in Groups 1 to 12 of the periodic table except hydrogen, and B, Si, Ge, As, Sb, Te, C, N, P, O, S, and It is an element contained in all Groups 13 to 16 except Se. That is, it is an element group that can become a cation when forming an inorganic compound with a halogen element.
  • M may contain at least one element selected from the group consisting of Group 1 elements, Group 2 elements, Group 3 elements, Group 4 elements, and lanthanide elements.
  • Group 1 elements are Na, K, Rb, or Cs.
  • group 2 elements are Mg, Ca, Sr or Ba.
  • group 3 elements are Sc or Y.
  • group 4 elements are Ti, Zr or Hf.
  • lanthanide elements are La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu.
  • M may contain Group 5 elements, Group 12 elements, Group 13 elements, and Group 14 elements.
  • Group 5 elements are Nb or Ta.
  • An example of a Group 12 element is Zn.
  • Examples of group 13 elements are Al, Ga, In.
  • An example of a Group 14 element is Sn.
  • M may be Na, K, Mg, Ca, Sr, Ba, Sc, Y, Zr, Hf, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, At least one element selected from the group consisting of Ho, Er, Tm, Yb, and Lu may be included.
  • M may contain at least one element selected from the group consisting of Mg, Ca, Sr, Y, Sm, Gd, Dy, and Hf.
  • M may contain Y in order to further increase the ionic conductivity.
  • X may contain at least one selected from the group consisting of Br, Cl and I in order to further increase the ionic conductivity.
  • X may contain Br, Cl and I to further increase the ionic conductivity.
  • M may include Y, and X may include Cl and Br.
  • the second halide solid electrolyte may be, for example , at least one selected from the group consisting of Li3YBr3Cl3 and Li3YBr2Cl4 . That is, the second solid electrolyte 107 may contain at least one selected from the group consisting of Li3YBr3Cl3 and Li3YBr2Cl4 .
  • Examples of the second halide solid electrolyte include Li3 (Ca, Y, Gd) X6 , Li2MgX4 , Li2FeX4 , Li(Al, Ga, In) X4 , Li3 (Al, Ga , In)X 6 , LiI, and the like may also be used.
  • the element X is at least one selected from the group consisting of F, Cl, Br and I.
  • this notation indicates at least one element selected from the parenthesized element group. That is, "(Al, Ga, In)" is synonymous with "at least one selected from the group consisting of Al, Ga and In". The same is true for other elements.
  • a second halide solid electrolyte is the compound represented by LiaMebYcX6 .
  • Me is at least one selected from the group consisting of metal elements other than Li and Y and metalloid elements.
  • m represents the valence of Me.
  • "Semimetallic element" and "metallic element” are as described above.
  • Me is selected from Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta, and Nb. It may be at least one selected from the group consisting of:
  • the halide solid electrolyte may be Li3YCl6 , Li3YBr6 , or Li3YBrpCl6 -p . Note that p satisfies 0 ⁇ p ⁇ 6.
  • the second solid electrolyte 107 may contain a second sulfide solid electrolyte.
  • the sulfide solid electrolyte means a solid electrolyte containing sulfur (S).
  • the sulfide solid electrolyte may contain not only sulfur but also halogen elements.
  • Examples of the second sulfide solid electrolyte include Li 2 SP 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , or Li10GeP2S12 , etc. may be used.
  • the second solid electrolyte 107 may contain an oxide solid electrolyte, a polymer solid electrolyte, or a complex hydride solid electrolyte.
  • the thickness of the first electrode 101 may be 10 ⁇ m or more and 2000 ⁇ m or less. That is, the entire thickness of the porous substrate 105 having the active material layer 106 provided thereon may be 10 ⁇ m or more and 2000 ⁇ m or less. Having such a thickness of the first electrode 101 allows the battery to operate at high output.
  • the first current collector 100 may or may not be provided.
  • the first current collector 100 is provided, for example, in contact with the first electrode 101 .
  • the first current collector 100 is provided, for example, in contact with the substrate 105 of the first electrode 101 .
  • the material of the first current collector 100 is, for example, a single metal or alloy. More specifically, it may be a single metal or alloy containing at least one selected from the group consisting of copper, chromium, nickel, titanium, platinum, gold, aluminum, tungsten, iron, and molybdenum.
  • the first current collector 100 may be stainless steel.
  • the first current collector 100 may contain nickel (Ni).
  • the first current collector 100 may be plate-shaped or foil-shaped.
  • the first current collector 100 may be a metal foil from the viewpoint of easily ensuring high conductivity.
  • the thickness of the first current collector 100 may be, for example, 5 ⁇ m or more and 20 ⁇ m or less.
  • the first current collector 100 may be a laminated film.
  • Solid electrolyte layer As the first solid electrolyte contained in the solid electrolyte layer 102, a halide solid electrolyte (that is, a first halide solid electrolyte), a sulfide solid electrolyte (that is, a first sulfide solid electrolyte), an oxide solid electrolyte, a polymer A solid electrolyte, or a complex hydride solid electrolyte may be used.
  • the first solid electrolyte may contain a first halide solid electrolyte.
  • Examples of the first halide solid electrolyte are the same as the examples of the second halide solid electrolyte described above.
  • the first solid electrolyte may contain a first sulfide solid electrolyte.
  • Examples of the first sulfide solid electrolyte are the same as the examples of the second sulfide solid electrolyte described above.
  • oxide solid electrolytes examples include NASICON solid electrolytes typified by LiTi 2 (PO 4 ) 3 and element-substituted products thereof, (LaLi)TiO 3 -based perovskite solid electrolytes, Li 14 ZnGe 4 O 16 , Li LISICON solid electrolytes typified by 4 SiO 4 , LiGeO 4 and elemental substitutions thereof, garnet type solid electrolytes typified by Li 7 La 3 Zr 2 O 12 and elemental substitutions thereof, Li 3 PO 4 and its N substitutions glass or glass-ceramics based on Li—BO compounds such as LiBO 2 and Li 3 BO 3 , with additions of Li 2 SO 4 , Li 2 CO 3 , etc., and the like can be used.
  • NASICON solid electrolytes typified by LiTi 2 (PO 4 ) 3 and element-substituted products thereof
  • (LaLi)TiO 3 -based perovskite solid electrolytes Li 14 ZnG
  • a compound of a polymer compound and a lithium salt can be used.
  • the polymer compound may have an ethylene oxide structure.
  • a polymer compound having an ethylene oxide structure can contain a large amount of lithium salt. Therefore, the ionic conductivity can be further increased.
  • Lithium salts include LiPF6 , LiBF4 , LiSbF6, LiAsF6 , LiSO3CF3 , LiN( SO2CF3 ) 2 , LiN ( SO2C2F5 ) 2 , LiN( SO2CF3 ) ( SO2C4F9 ), and LiC( SO2CF3 ) 3 , etc. may be used .
  • One lithium salt selected from the exemplified lithium salts can be used alone. Alternatively, mixtures of two or more lithium salts selected from the exemplified lithium salts can be used.
  • LiBH 4 --LiI LiBH 4 --P 2 S 5 , etc.
  • LiBH 4 --P 2 S 5 LiBH 4 --P 2 S 5 , etc.
  • the solid electrolyte layer 102 may consist essentially of a halide solid electrolyte. In this specification, the term “substantially” means that the content of impurities is allowed to be less than 0.1%.
  • the solid electrolyte layer 102 may consist only of a halide solid electrolyte.
  • the ionic conductivity of the solid electrolyte layer 102 can be increased. This can reduce the decrease in the energy density of the battery.
  • the solid electrolyte layer 102 may further contain a binder.
  • a binder the same material as that usable for the active material layer 106 may be used.
  • the solid electrolyte layer 102 may have a thickness of 1 ⁇ m or more and 500 ⁇ m or less. When solid electrolyte layer 102 has a thickness of 1 ⁇ m or more, first electrode 101 and second electrode 103 are less likely to short-circuit. When the solid electrolyte layer 102 has a thickness of 500 ⁇ m or less, the battery can operate at high output.
  • the shape of the solid electrolyte is not particularly limited.
  • its shape may be, for example, acicular, spherical, ellipsoidal, or the like.
  • the shape of the solid electrolyte may be particulate.
  • the median diameter of the solid electrolyte may be 100 ⁇ m or less, or 10 ⁇ m or less.
  • volume diameter means the particle size when the cumulative volume in the volume-based particle size distribution is equal to 50%.
  • the volume-based particle size distribution is measured by, for example, a laser diffraction measurement device or an image analysis device.
  • the solid electrolyte contained in the solid electrolyte layer 102 can be manufactured by the following method.
  • Raw material powder is prepared so that it has the desired composition.
  • Examples of raw powders are oxides, hydroxides, halides or acid halides.
  • the desired composition is Li 3 YBr 4 Cl 2
  • LiBr, YCl, and YBr are mixed in a molar ratio on the order of 3:0.66:0.33.
  • the raw material powders may be mixed in pre-adjusted molar ratios to compensate for possible compositional changes in the synthesis process.
  • the raw material powders are mechanochemically reacted with each other in a mixing device such as a planetary ball mill (that is, using the method of mechanochemical milling) to obtain a reactant.
  • the reactants may be fired in vacuum or in an inert atmosphere.
  • a mixture of raw material powders may be fired in vacuum or in an inert atmosphere to obtain a reactant. Firing is preferably performed at, for example, 100° C. or higher and 300° C. or lower for 1 hour or longer.
  • the raw material powder is desirably fired in a sealed container such as a quartz tube.
  • the solid electrolyte of the solid electrolyte layer 102 is obtained.
  • the second electrode 103 functions, for example, as a positive electrode.
  • the second electrode 103 contains a material capable of intercalating and deintercalating metal ions such as lithium ions.
  • the material is, for example, a positive electrode active material.
  • the second electrode 103 contains a positive electrode active material.
  • the second electrode 103 is arranged, for example, between the second current collector 104 and the solid electrolyte layer 102. .
  • the second electrode 103 may be arranged on the surface of the second current collector 104 in direct contact with the second current collector 104 .
  • positive electrode active materials examples include lithium-containing transition metal oxides, transition metal fluorides, polyanion materials, fluorinated polyanion materials, transition metal sulfides, transition metal oxysulfides, or transition metal oxynitrides.
  • lithium-containing transition metal oxides include LiNi1- xyCoxAlyO2 ( (x+ y ) ⁇ 1), LiNi1- xyCoxMnyO2 ( (x+y) ⁇ 1) or LiCoO2 , etc.
  • the positive electrode active material may include Li(Ni,Co,Mn) O2 .
  • the second electrode 103 may contain a solid electrolyte.
  • the solid electrolyte the solid electrolyte exemplified as the material forming the solid electrolyte layer 102 may be used.
  • the positive electrode active material may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the positive electrode active material and the solid electrolyte can form a good dispersion state. This improves the charge/discharge characteristics of the battery.
  • the positive electrode active material has a median diameter of 100 ⁇ m or less, the lithium diffusion rate is improved. This allows the battery to operate at high output.
  • the positive electrode active material may have a larger median diameter than the solid electrolyte. Thereby, the positive electrode active material and the solid electrolyte can form a good dispersion state.
  • the ratio of the volume of the positive electrode active material to the sum of the volume of the positive electrode active material and the volume of the solid electrolyte is 0.30 or more and 0.95 or less. good too.
  • a coating layer may be formed on the surface of the positive electrode active material in order to prevent the solid electrolyte from reacting with the positive electrode active material. Thereby, an increase in the reaction overvoltage of the battery can be suppressed.
  • coating materials contained in the coating layer are sulfide solid electrolytes, oxide solid electrolytes or halide solid electrolytes.
  • the thickness of the second electrode 103 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the second electrode 103 is 10 ⁇ m or more, a sufficient energy density of the battery can be secured. When the thickness of the second electrode 103 is 500 ⁇ m or less, the battery can operate at high output.
  • the second electrode 103 may contain a conductive material for the purpose of enhancing electronic conductivity.
  • the second electrode 103 may contain a binder.
  • the same materials that can be used for the active material layer 106 may be used as the conductive material and the binder.
  • the second electrode 103 may contain a non-aqueous electrolyte, a gel electrolyte, or an ionic liquid for the purpose of facilitating the transfer of lithium ions and improving the output characteristics of the battery.
  • the non-aqueous electrolyte contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • non-aqueous solvents are cyclic carbonate solvents, chain carbonate solvents, cyclic ether solvents, chain ether solvents, cyclic ester solvents, chain ester solvents, or fluorine solvents.
  • cyclic carbonate solvents are ethylene carbonate, propylene carbonate, or butylene carbonate.
  • linear carbonate solvents are dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate.
  • Examples of cyclic ether solvents are tetrahydrofuran, 1,4-dioxane, or 1,3-dioxolane.
  • Examples of linear ether solvents are 1,2-dimethoxyethane or 1,2-diethoxyethane.
  • An example of a cyclic ester solvent is ⁇ -butyrolactone.
  • An example of a linear ester solvent is methyl acetate.
  • Examples of fluorosolvents are fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, or fluorodimethylene carbonate.
  • One non-aqueous solvent selected from these may be used alone. Alternatively, a mixture of two or more non-aqueous solvents selected from these may be used.
  • lithium salts are LiPF6 , LiBF4 , LiSbF6, LiAsF6 , LiSO3CF3 , LiN ( SO2CF3 ) 2 , LiN( SO2C2F5 ) 2 , LiN( SO2CF3 ) . ( SO2C4F9 ) , or LiC ( SO2CF3 )3 .
  • One lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used.
  • the lithium salt concentration is, for example, in the range of 0.5 mol/liter or more and 2 mol/liter or less.
  • a polymer material impregnated with a non-aqueous electrolyte can be used as the gel electrolyte.
  • examples of polymeric materials are polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, or polymers with ethylene oxide linkages.
  • ionic liquids examples include (i) aliphatic chain quaternary salts such as tetraalkylammonium or tetraalkylphosphonium; (ii) aliphatic cyclic ammoniums such as pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums, or piperidiniums; or (iii) nitrogen-containing heteroatoms such as pyridiniums or imidazoliums. It is a ring aromatic cation.
  • Examples of anions contained in the ionic liquid are PF 6 ⁇ , BF 4 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ , SO 3 CF 3 ⁇ , N(SO 2 CF 3 ) 2 ⁇ , N(SO 2 C 2 F 5 ) 2- , N ( SO2CF3 ) ( SO2C4F9 )- , or C( SO2CF3 ) 3- .
  • the ionic liquid may contain a lithium salt.
  • the configuration example in which the first electrode 101 is the negative electrode and the second electrode 103 is the positive electrode has been described. good too.
  • the active material layer 106 is a positive electrode active material layer. That is, Bi contained in the active material layer 106 functions as a positive electrode active material.
  • the second electrode 103 which is the negative electrode, is made of lithium metal, for example.
  • the second current collector 104 may or may not be provided.
  • the second current collector 104 is provided in contact with the second electrode 103, for example. By providing the second current collector 104, electricity can be extracted from the battery of the present embodiment with high efficiency.
  • the material of the second current collector 104 is, for example, a single metal or alloy. More specifically, it may be a single metal or alloy containing at least one selected from the group consisting of copper, chromium, nickel, titanium, platinum, gold, aluminum, tungsten, iron, and molybdenum.
  • the second current collector 104 may be stainless steel.
  • the second current collector 104 may contain nickel (Ni).
  • the second current collector 104 may be plate-shaped or foil-shaped.
  • the second current collector 104 may be a metal foil from the viewpoint of easily ensuring high conductivity.
  • the thickness of the second current collector 104 may be, for example, 5 ⁇ m or more and 20 ⁇ m or less.
  • the second current collector 104 may be a laminated film.
  • the battery of this embodiment has a basic configuration of a first electrode 101, a solid electrolyte layer 102, and a second electrode 103, and is enclosed in a sealed container to prevent contamination by the air and moisture.
  • Shapes of the battery of the present embodiment include coin type, cylindrical type, square type, sheet type, button type, flat type, laminated type, and the like.
  • Example 1 ⁇ Production of first electrode>
  • nickel mesh (10 cm ⁇ 10 cm, thickness: 50 ⁇ m, "NI-318200" manufactured by Nilaco Co., Ltd.) is preliminarily degreased with an organic solvent, and then degreased by immersion in an acidic solvent to activate the nickel mesh surface.
  • a plating bath was prepared by adding bismuth methanesulfonate as a soluble bismuth salt to 1.0 mol/L of methanesulfonic acid so that Bi 3+ ions became 0.18 mol/L.
  • the activated nickel mesh was immersed in the plating bath after being connected to a power source so that an electric current could be applied.
  • the surface of the nickel mesh was electroplated with Bi to a thickness of approximately 5 ⁇ m.
  • the nickel mesh was recovered from the acid bath, washed with pure water, and dried.
  • the plating mass of Bi produced on the nickel mesh was as shown in Table 1.
  • the nickel mesh electroplated with Bi was heat-treated at 400°C for 60 hours in an electric furnace with an argon atmosphere.
  • the first electrode was obtained by punching into a size of ⁇ 0.92 cm. That is, the first electrode of Example 1 had a structure in which the active material layer 106 made of BiNi was provided on the base material 105 made of nickel mesh. Surface X-ray diffraction measurement was performed on the obtained active material layer 106 made of BiNi.
  • FIG. 4 is a graph showing an example of an X-ray diffraction pattern of an active material layer composed of a BiNi thin film formed on a nickel mesh.
  • An indium-lithium alloy was made by pressing a piece of lithium foil against an indium foil and diffusing the lithium into the indium. A pressure of 360 MPa was applied to this laminate to form a working electrode, a solid electrolyte layer and a counter electrode.
  • the thickness of the first electrode as the working electrode was 65 ⁇ m
  • the thickness of the solid electrolyte layer was 400 ⁇ m
  • the thickness of the counter electrode was 15 ⁇ m.
  • current collectors made of stainless steel were attached to the working electrode and the counter electrode, and current collecting leads were attached to the current collectors.
  • the electrode obtained by forming the active material layer made of BiNi on the nickel mesh (that is, the first electrode) is used as the working electrode, and the lithium-indium alloy is used as the counter electrode.
  • the test cell produced here is a unipolar test cell using a working electrode and a counter electrode, and is used to test the performance of one of the electrodes in a secondary battery.
  • the working electrode is the electrode under test and the counter electrode is a suitable active material in sufficient quantity to cover the reaction of the working electrode. Since this test cell tests the performance of the first electrode as a negative electrode, a large excess of lithium-indium alloy was used as the counter electrode, as is commonly used.
  • the negative electrode whose performance has been tested using such a test cell is, for example, combined with a positive electrode containing a positive electrode active material, such as a transition metal oxide containing Li, as described in the above-described embodiment. It can be used as a secondary battery.
  • a positive electrode active material such as a transition metal oxide containing Li
  • the initial charge capacity was 272.7 mAh/g in terms of BiNi active material (theoretical capacity 300 mAh/g).
  • the subsequent discharge capacity was 227.1 mAh/g, and the initial efficiency was 83.3%. Also, the initial charge capacity and the initial discharge capacity were 90.9% and 75.7% of the theoretical capacity, respectively.
  • porous nickel (10 cm ⁇ 10 cm, thickness: 1.6 mm, "NI-318161” manufactured by Nilaco Co., Ltd.) is preliminarily degreased with an organic solvent, and then degreased by being immersed in an acidic solvent.
  • the nickel surface was activated.
  • a plating bath was prepared by adding bismuth methanesulfonate as a soluble bismuth salt to 1.0 mol/L of methanesulfonic acid so that Bi 3+ ions would be 0.18 mol/L.
  • the activated porous nickel was immersed in the plating bath after being connected to a power source so that an electric current could be applied.
  • the porous nickel surface was electroplated with Bi to a thickness of approximately 1 ⁇ m by controlling the current density to 2 A/dm 2 .
  • the porous nickel was recovered from the acid bath, washed with pure water, and dried.
  • the plating mass of Bi produced on porous nickel was as shown in Table 1.
  • the porous nickel electroplated with Bi was heat-treated at 400°C for 60 hours in an electric furnace with an argon atmosphere. After the heat treatment, after confirming the formation of BiNi by X-ray diffraction, the first electrode was obtained by punching into a size of ⁇ 0.92 cm. That is, the first electrode of Example 2 had a structure in which the active material layer 106 made of BiNi was provided on the substrate 105 made of porous nickel. Surface X-ray diffraction measurement was performed on the obtained active material layer 106 made of BiNi.
  • FIG. 6 is a graph showing an example of an X-ray diffraction pattern of an active material layer composed of a BiNi thin film formed on porous nickel.
  • the first electrode of Example 2 having a structure in which an active material layer 106 made of BiNi was provided on a substrate 105 made of porous nickel was used.
  • a test cell of Example 2 was obtained in the same manner as the test cell of Example 1 except for this point.
  • the thickness of the first electrode, which is the working electrode, was 400 ⁇ m
  • the thickness of the solid electrolyte layer was 400 ⁇ m
  • the thickness of the counter electrode was 15 ⁇ m.
  • Example 7 is a graph showing the results of a charge/discharge test of the test cell according to Example 2.
  • the initial charge capacity was 300.0 mAh/g in terms of BiNi active material (theoretical capacity 300 mAh/g).
  • the subsequent discharge capacity was 249.7 mAh/g, and the initial efficiency was 83.2%.
  • the initial charge capacity and the initial discharge capacity were 100.0% and 83.2% of the theoretical capacity, respectively.
  • porous nickel (10 cm ⁇ 10 cm, thickness: 1.6 mm, "NI-318161” manufactured by Nilaco Co., Ltd.) is preliminarily degreased with an organic solvent, and then degreased by being immersed in an acidic solvent.
  • the nickel surface was activated.
  • a plating bath was prepared by adding bismuth methanesulfonate as a soluble bismuth salt to 1.0 mol/L of methanesulfonic acid so that Bi 3+ ions would be 0.18 mol/L.
  • the activated porous nickel was immersed in the plating bath after being connected to a power source so that an electric current could be applied.
  • the porous nickel surface was electroplated with Bi to a thickness of approximately 1 ⁇ m by controlling the current density to 2 A/dm 2 .
  • the porous nickel was recovered from the acid bath, washed with pure water, and dried.
  • porous nickel electroplated with Bi was heat-treated at 400°C for 60 hours in an electric furnace with an argon atmosphere.
  • the heat-treated porous nickel was put into a 10% by mass solution of Li 3 YBr 2 Cl 4 dissolved and dispersed in acetonitrile, and impregnated with the solution at 0.5 atm for 5 minutes. After drying the solution at 80° C., heat treatment was performed at 400° C. for 1 hour in an argon atmosphere.
  • a first electrode was obtained by punching the obtained porous nickel into a size of ⁇ 0.92 cm. That is, the first electrode of Example 1 has a structure in which an active material layer made of BiNi and a second solid electrolyte made of Li 3 YBr 2 Cl 4 are provided on a substrate made of porous nickel.
  • FIG. 8 is a graph showing an example of an X-ray diffraction pattern of an active material layer composed of a BiNi thin film formed on porous nickel.
  • An indium-lithium alloy was made by pressing a piece of lithium foil against an indium foil and diffusing the lithium into the indium. A pressure of 360 MPa was applied to this laminate to form a working electrode, a solid electrolyte layer and a counter electrode.
  • the thickness of the first electrode as the working electrode was 600 ⁇ m
  • the thickness of the solid electrolyte layer was 400 ⁇ m
  • the thickness of the counter electrode was 15 ⁇ m.
  • current collectors made of stainless steel were attached to the working electrode and the counter electrode, and current collecting leads were attached to the current collectors.
  • the electrode that is, the first electrode obtained by forming the active material layer made of BiNi and the second solid electrolyte made of Li 3 YBr 4 Cl 2 on the porous nickel is used as the working electrode.
  • the test cells of Example 3 were obtained.
  • the test cell produced here is a unipolar test cell using a working electrode and a counter electrode, and is used to test the performance of one of the electrodes in a secondary battery.
  • the working electrode is the electrode under test and the counter electrode is a suitable active material in sufficient quantity to cover the reaction of the working electrode.
  • the negative electrode whose performance has been tested using such a test cell is, for example, combined with a positive electrode containing a positive electrode active material, such as a transition metal oxide containing Li, as described in the above-described embodiment. It can be used as a secondary battery.
  • a charge/discharge test was performed on the prepared test cell under the following conditions. Taking the theoretical capacity of Bi as 384 mAh/g from the mass of the electroplated Bi, the battery was charged to ⁇ 0.42 V (0.2 V vs. Li + /Li) at a constant current value at a rate of 0.5 IT based on Bi. It was discharged to 38V (2.0V vs Li + /Li) and then charged to -0.42V (0.2V vs Li+/Li). A charge/discharge test was performed on the test cells in a constant temperature bath at 25°C. 9 is a graph showing the results of a charge/discharge test of the test cell according to Example 1. FIG. The initial charge capacity was about 300.2 mAh/g in terms of BiNi active material (theoretical capacity 300 mAh/g). The subsequent discharge capacity and charge capacity were about 271.5 mAh/g.
  • a nickel foil (10 cm ⁇ 10 cm, thickness: 10 ⁇ m) was preliminarily degreased with an organic solvent, masked on one side, and immersed in an acidic solvent for degreasing and activation of the nickel foil surface.
  • a plating bath was prepared by adding bismuth methanesulfonate as a soluble bismuth salt to 1.0 mol/L of methanesulfonic acid so that Bi 3+ ions would be 0.18 mol/L.
  • the activated nickel foil was immersed in the plating bath after being connected to a power source so that current could be applied.
  • FIG. 10 is a graph showing an example of an X-ray diffraction pattern of an active material layer composed of a BiNi thin film formed on a nickel foil.
  • the first electrode of Reference Example 1 having a structure in which an active material layer 106 made of BiNi was provided on a base material 105 made of nickel foil was used.
  • a test cell of Reference Example 1 was obtained in the same manner as the test cell of Example 1 except for this point.
  • the thickness of the first electrode, which is the working electrode, was 1.5 ⁇ m
  • the thickness of the solid electrolyte layer was 500 ⁇ m
  • the thickness of the counter electrode was 15 ⁇ m.
  • Example 7 is a graph showing the results of a charge/discharge test of the test cell according to Example 2.
  • the initial charge capacity was 203.9 mAh/g in terms of BiNi active material (theoretical capacity 300 mAh/g).
  • the subsequent discharge capacity was 162.8 mAh/g, and the initial efficiency was 79.8%.
  • the initial charge capacity and the initial discharge capacity were 68.0% and 54.3% of the theoretical capacity, respectively.
  • the battery of the present disclosure which includes a substrate that is a porous body and a first electrode that includes an active material layer containing BiNi located on the surface of the substrate, is a battery having a structure suitable for improving charge-discharge characteristics. It was confirmed that In this example, the halide solid electrolyte Li 3 YBr 4 Cl 2 was used, but it can be expected that similar effects can be obtained with other general solid electrolytes.
  • Example 3 when comparing Example 3 with Example 2, it can be seen that, as in Example 3, by using the electrode provided with the second solid electrolyte in contact with the active material layer located on the surface of the substrate which is a porous body, , the charge/discharge characteristics of the battery are further improved.
  • the halide solid electrolyte Li 3 YBr 4 Cl 2 was used as the second solid electrolyte, but it can be expected that similar effects can be obtained with other general solid electrolytes. .
  • the test cell used at this time was a test cell using an electrolytic solution, unlike the test cell of Example 1.
  • the first electrode prepared in Example 1 was used as the working electrode, Li metal was used as the counter electrode, and a solution of LiPF 6 dissolved in vinylene carbonate at a concentration of 1.0 mol/L was used as the electrolyte.
  • the Li metal used as the working electrode was double coated with a microporous separator (Asahi Kasei Corp., Celgard 3401).
  • FIG. 12 is a graph showing an example of X-ray diffraction patterns of the first electrode used in Example 1 before charging, after charging, and after discharging.
  • BiNi and Ni could be identified, and compounds derived from the active material and base material, respectively, could be identified.
  • LiBi, Li 3 Bi and Ni could be identified. That is, it was found that LiBi and Li 3 Bi were generated after charging. Furthermore, after discharge, BiNi and Ni could be identified.
  • the substance present in the first electrode after charging was confirmed. It is considered that at least one selected from the group consisting of LiBi and Li 3 Bi is generated in the first electrode of .
  • the battery of the present disclosure can be used, for example, as an all-solid lithium secondary battery.

Abstract

本開示による電池は、第一電極と、第二電極と、前記第一電極と前記第二電極との間に位置する固体電解質層と、を備え、前記固体電解質層は、第一固体電解質を含み、前記第一電極は、多孔体である基材と、前記基材の表面に位置する活物質層と、を有し、前記活物質層は、BiおよびNiを含む合金を含む。

Description

電池
 本開示は、電池に関する。
 近年、研究開発が盛んに行われているリチウム二次電池では、用いられる電極により、充放電電圧、充放電サイクル寿命特性、保存特性などの電池特性が大きく左右される。このことから、電極活物質を改善することにより、電池特性の向上が図られている。
 例えば、充電の際に電気化学的にリチウムと合金化するアルミニウム、シリコン、錫などを電極として用いるリチウム二次電池が古くから提案されている。特許文献1は、シリコンと錫と遷移金属とを有する合金からなる負極材料を含む負極、正極、および電解質を備えたリチウム二次電池を開示している。
 特許文献2は、活物質として集電体上に設けられたシリコン薄膜を用いた負極と、正極と、電解質とを備えるリチウム二次電池を開示している。
 リチウムと合金化する金属として、ビスマス(Bi)が挙げられる。非特許文献1には、Bi粉末を用いて作製された、Biを負極活物質として含む負極が開示されている。
特許第4898737号公報 特許第3733065号公報
山口裕之著「ポリアクリル酸と金属酸化物の反応物からなるリチウム電池用非晶質高分子負極活物質の合成とその電気化学的特性」三重大学、博士論文、2015年
 本開示は、充放電特性の改善に適した構造を有する電池を提供する。
 本開示の電池は、
 第一電極と、
 第二電極と、
 前記第一電極と前記第二電極との間に位置する固体電解質層と、
を備え、
 前記固体電解質層は、第一固体電解質を含み、
 前記第一電極は、
  多孔体である基材と、
  前記基材の表面に位置する活物質層と、を有し、
 前記活物質層は、BiおよびNiを含む合金を含む。
 本開示によれば、充放電特性の改善に適した構造を有する電池を提供できる。
図1は、本開示の実施形態に係る電池の構成例を模式的に示す断面図である。 図2は、本開示の実施形態に係る電池における第一電極の構成例を模式的に示す部分拡大断面図である。 図3は、本開示の実施形態に係る電池の変形例を模式的に示す断面図である。 図4は、ニッケルメッシュ上に作製されたBiNi薄膜で構成された活物質層のX線回折パターンの一例を示すグラフである。 図5は、実施例1に係る試験セルの充放電試験の結果を示すグラフである。 図6は、実施例2において多孔質ニッケル上に作製されたBiNi薄膜で構成された活物質層のX線回折パターンの一例を示すグラフである。 図7は、実施例2に係る試験セルの充放電試験の結果を示すグラフである。 図8は、実施例3において多孔質ニッケル上に作製されたBiNi薄膜で構成された活物質層のX線回折パターンの一例を示すグラフである。 図9は、実施例3に係る試験セルの充放電試験の結果を示すグラフである。 図10は、ニッケル箔上に作製されたBiNi薄膜で構成された活物質層のX線回折パターンの一例を示すグラフである。 図11は、参考例1に係る試験セルの充放電試験の結果を示すグラフである。 図12は、実施例1で用いた第一電極について、充電前、充電後、放電後の第一電極のX線回折パターンの一例を示すグラフである。
 (本開示の基礎となった知見)
 [背景技術]の欄に記載したとおり、リチウム二次電池では、電極活物質の改善によって電池特性の向上が図られている。
 負極活物質としてリチウム金属が用いられる場合、重量当りおよび体積当りともに高いエネルギー密度を有するリチウム二次電池が得られる。しかし、このような構成を有するリチウム二次電池では、充電時にリチウムがデンドライト状に析出する。析出したリチウム金属の一部が電解液と反応するため、充放電効率が低く、サイクル特性が劣るという問題があった。
 これに対し、炭素、特に黒鉛が負極として使用されることが提案されている。炭素が使用された負極では、炭素へのリチウムの挿入および離脱によって、充電および放電が行われる。このような構成を有する負極では、充放電機構上、リチウム金属がデンドライト状に析出しない。また、このような構成を有する負極が採用されたリチウム二次電池では、反応がトポタクティックなため可逆性が非常に良好であり、充放電効率がほぼ100%である。これらのことから、炭素、特に黒鉛が使用された負極が採用されたリチウム二次電池が実用化されている。しかし、黒鉛の理論容量密度は372mAh/gであり、これはリチウム金属の理論容量密度3884mAh/gの1/10程度である。したがって、黒鉛が使用された負極の活物質容量密度は低い。さらに、黒鉛の実容量密度がほぼ理論容量密度まで達しているため、黒鉛が使用された負極においては、高容量化が限界にきている。
 これらに対し、充電の際に電気化学的にリチウムと合金化するアルミニウム、シリコン、錫などを電極として用いるリチウム二次電池が古くから提案されている。リチウムと合金化する金属の容量密度は、黒鉛の容量密度より格段に大きい。特にシリコンの理論容量密度は大きい。したがって、リチウムと合金化するアルミニウム、シリコン、錫などが用いられた電極は、高い容量を示す電池用負極として有望であり、これを負極とする種々の二次電池が提案されている(特許文献1)。
 しかし、上記のようなリチウムと合金化する金属が用いられた負極は、リチウムを吸蔵すると膨張し、リチウムを放出すると収縮する。充放電においてこのような膨張および収縮を繰り返すと、電極活物質である合金自体が充放電により微粉化し負極の集電特性が悪化することから、十分なサイクル特性が得られていなかった。このような欠点を改良しようと、次のようないくつかの試みがなされている。例えば、表面を荒らした集電体上にシリコンをスパッタリングまたは蒸着で堆積させる、あるいは錫を電気めっきで堆積させる試みがなされている(特許文献2)。この試みでは、活物質、すなわちリチウムと合金化する金属が薄膜となって集電体と密着しているので、リチウムの吸蔵および放出により負極が膨張および収縮を繰り返しても、集電性がほとんど低下しない。
 しかし、上記のようにスパッタリングまたは蒸着で活物質を形成した場合は、製造コストが高く、実用的ではない。製造コストの安価な電気めっきで活物質を形成するのが実用的であるが、シリコンは電気めっきが非常に困難である。また、電気めっきの安易な錫には、放電平坦性が乏しく、電池の電極として使いにくいという問題があった。
 また、リチウムと合金化する金属として、ビスマス(Bi)が挙げられる。Biは、リチウム(Li)と、LiBiおよびLi3Biという化合物を作る。LiBiの電位およびLi3Biの電位は、互いにほとんど差がない。一方、放電平坦性が乏しい錫では、リチウムと形成される化合物が数種あり、それぞれの化合物の電位が互いにかなり異なる。すなわち、Biは、錫のような、リチウムと形成される複数種の化合物間で電位が大きく異なるという性質を持たない。このため、Biを活物質として含む電極は、電位がフラットであるため放電平坦性に優れている。したがって、Biを活物質として含む電極は、電池の電極として適していると考えられる。
 しかし、Biは、展性延性に乏しく、金属板または金属箔という形態での製造は困難であり、得られる形態は小球または粉末となる。このため、Biを活物質として含む電極としては、Bi粉末を集電体上に塗布することによって製造される電極が検討されている。しかし、このようなBi粉末を用いて製造された電極は、充放電を繰り返すことによって微粉化し集電特性が悪化することから、十分なサイクル特性は得られていなかった。例えば、非特許文献1では、Bi粉末を用い、かつPVdF(ポリフッ化ビニリデン)またはPI(ポリイミド)を結着剤として用いてBiを活物質として含む電極が作製されている。非特許文献1では、この電極を用いて作製された電池の充放電がなされている。しかし、作製された電極の初期充放電カーブとサイクル特性の結果はいずれも非常に劣悪である。0.042IT相当という非常に低いレートで測定されているが、初期の充放電効率は低く、サイクル劣化も激しいことより実用に供せるものではない。このサイクル劣化については、非特許文献1に、Li挿入時にBi活物質が膨張、Li脱離時にBi活物質が収縮するにしたがって、活物質が微細化して電子伝導パスがとれなくなり容量の低下が起きると考えられる、と示されている。
 本発明者らは、上述のように、Liと形成される複数種の化合物間で電位が大きく異なるという性質を持たず、放電平坦性に優れているBiに着目し、サイクル特性を向上し得る電池について鋭意検討を行った。その結果、本発明者らは、BiおよびNiを含む合金を活物質として用いた場合、電池のサイクル特性が向上するという新たな技術思想に到達した。
 本発明者らは、BiおよびNiを含む合金が活物質として用いられる電池について、さらに詳しく検討を進めた。
 例えば、Ni箔にBiを電気めっきしてBi電気めっき層を作製し、これを熱処理することでNi箔よりBi電気めっき層へNiを固相内拡散させる。これにより、金属間化合物であるBiおよびNiを含む合金(例えば、BiNi)が合成され得る。このBiおよびNiを含む合金は、Ni箔よりBi電気めっき層へとNiを熱処理により固相拡散させることによって得られている。これにより、集電体として機能し得るNi箔と、活物質であるBiNiとの界面が強固に結着し、電池電極として充放電する際の活物質の膨張収縮による集電体と活物質層界面での剥離によるサイクル特性の低下を改善することができる。
 しかし、本発明者らがさらに検討を進めたところ、上記のようにNi箔上に形成されたBi電気めっき層を利用してBiおよびNiを含む合金が合成され、これによって得られた電極には、充放電特性、例えば初期効率について、改善の余地があることが判明した。本発明者らは、Ni箔にBi電気めっきし、これを熱処理することによってBiNiが合成された、Ni箔上にBiおよびNiを含む合金が設けられた構成を有する電極の充放電特性について、具体的な検討を行った。詳しくは、Ni箔上にBiおよびNiを含む合金としてBiNiが設けられた構成を有する電極を作用極として用い、対極としてインジウム-リチウム金属を用い、電解質層に固体電解質であるLi3YBr4Cl2を用いた電池について、充放電を行った。その結果、BiNiの理論容量である300mAh/gに対して、初期充電容量は70%以下であり、放電容量は60%以下であり、初期効率は79.8%であった。
 本発明者らは、さらに検討を進め、Ni箔上にBiおよびNiを含む合金が設けられた構成を有する電極を用いた場合に、電池の充放電容量および初期効率が低い原因を、以下のようにつきとめた。
 理論容量に対して充放電容量が低く、初期効率も低い原因は、活物質であるBiおよびNiを含む合金、例えばBiNiが元来持つ固相内拡散が遅いという性質と、Ni箔上へのBiの電気めっき層から熱処理により合成したBiおよびNiを含む合金では、活物質層と電解質との界面量が少ないこととにより、Liイオン伝導における抵抗が大きいことによるものと考えられる。
 本発明者らは、鋭意研究の結果、BiおよびNiを含む合金を活物質として含む電極について、多孔体を基材として、この基材表面にBiおよびNiを含む合金を形成し、形成したBiおよびNiを含む合金を含む層を活物質層とすることで、充放電特性を改善できることを見出し、本開示を完成するに至った。
 (本開示に係る一態様の概要)
 本開示の第1態様に係る電池は、
 第一電極と、
 第二電極と、
 前記第一電極と前記第二電極との間に位置する固体電解質層と、
を備え、
 前記固体電解質層は、第一固体電解質を含み、
 前記第一電極は、
  多孔体である基材と、
  前記基材の表面に位置する活物質層と、を有し、
 前記活物質層は、BiおよびNiを含む合金を含む。
 活物質と固体電解質とが接し得る面積に関して、活物質層が、箔状の基材の表面上に形成されるよりも、多孔体である基材の表面上に形成される方が、活物質層の面積が大きくなる。したがって、第1態様に係る電池では、同量の活物質を基材上に設ける場合に、箔状の基材上に設ける場合よりも、活物質層を薄く形成できる。これにより、BiおよびNiを含む合金を含む活物質層において、Liイオンの固相内拡散に起因する負荷特性が改善され、特に放電時の負荷特性が改善される。したがって、第1態様に係る電池は、充放電特性を改善することができ、例えば初期効率を改善することができる。このように、第1態様に係る電池は、充放電特性の改善に適した構造を有する。
 本開示の第2態様において、例えば、第1態様に係る電池では、前記活物質層は、BiNiを含んでいてもよい。
 第2態様に係る電池は、充放電特性をより改善することができる。
 本開示の第3態様において、例えば、第2態様に係る電池では、前記活物質層は、前記BiNiを活物質の主成分として含んでもよい。
 第3態様に係る電池は、より高容量で、かつ改善された充放電特性を有する。
 本開示の第4態様において、例えば、第3態様に係る電池では、前記活物質層は、活物質として実質的に前記BiNiのみを含んでもよい。
 第4態様に係る電池は、より高容量で、かつ改善された充放電特性を有する。
 本開示の第5態様において、例えば、第2から第4態様のいずれか1つに係る電池では、前記BiNiは、空間群がC2/mに帰属する結晶構造を有していてもよい。
 第5態様に係る電池は、より高容量で、かつ改善された充放電特性を有する。
 本開示の第6態様において、例えば、第1から第5態様のいずれか1つに係る電池では、前記活物質層は、LiBiおよびLi3Biからなる群より選択される少なくとも1つを含んでもよい。
 第6態様に係る電池は、より高容量で、かつ改善された充放電特性を有する。
 本開示の第7態様において、例えば、第1から第6態様のいずれか1つに係る電池では、前記活物質層は電解質を含まなくてもよい。
 第7態様に係る電池は、より高容量で、かつ改善された充放電特性を有する。
 本開示の第8態様において、例えば、第1から第7態様のいずれか1つに係る電池では、前記基材は、Niを含んでもよい。
 第8態様に係る電池は、より高容量で、かつ改善された充放電特性を有する。
 本開示の第9態様において、例えば、第1から第8態様のいずれか1つに係る電池では、前記活物質層は、熱処理されためっき層であってもよい。
 第9態様に係る電池は、より高容量で、かつ改善された充放電特性を有する。
 本開示の第10態様において、例えば、第1から第9態様のいずれか1つに係る電池では、前記第一固体電解質は、第一ハロゲン化物固体電解質を含んでもよく、前記第一ハロゲン化物固体電解質は、硫黄を実質的に含まなくてもよい。
 第10態様に係る電池は、より高容量で、かつ改善された充放電特性を有する。
 本開示の第11態様において、例えば、第1から第10態様のいずれか1つに係る電池では、前記第一固体電解質は、第一硫化物固体電解質を含んでもよい。
 第11態様に係る電池は、より高容量で、かつ改善された充放電特性を有する。
 本開示の第12態様において、例えば、第1から第11態様のいずれか1つに係る電池では、前記第一電極は、前記活物質層に接する第二固体電解質をさらに有していてもよい。
 第12態様に係る電池では、第一電極において、多孔体である基材の表面に活物質層が位置しており、かつその活物質層に接して固体電解質(すなわち、第二固体電解質)が設けられている。この構成により、第一電極において、活物質と固体電解質との界面の面積が上がるので、活物質と固体電解質との界面抵抗を低減できる。したがって、第12態様に係る電池は、良好な充放電特性を有する。このように、第12態様に係る電池は、充放電特性の改善に適した構造を有する。
 本開示の第13態様において、例えば、第12態様に係る電池では、前記第二固体電解質は、第二ハロゲン化物固体電解質を含んでもよく、前記第二ハロゲン化物固体電解質は、硫黄を実質的に含まなくてもよい。
 第13態様に係る電池は、より安全であって、かつ改善され充放電特性を有する。
 本開示の第14態様において、例えば、第13態様に係る電池では、前記第二ハロゲン化物固体電解質は、下記の組成式(1)により表されてもよい。
 Liαβγ ・・・式(1)
 ここで、
 α、β、およびγは、0より大きい値であり、
 Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、
 Xは、F、Cl、Br、およびIからなる群より選ばれる少なくとも1つである。
 第14態様に係る電池は、より改善され充放電特性を有する。
 本開示の第15態様において、例えば、第14態様に係る電池では、前記組成式(1)において、前記MはYを含んでいてもよい。
 第15態様に係る電池は、より改善され充放電特性を有する。
 本開示の第16態様において、例えば、第14または第15態様に係る電池では、前記組成式(1)において、前記Xは、Cl、Br、およびIからなる群より選ばれる少なくとも1つであってもよい。
 第16態様に係る電池は、より改善され充放電特性を有する。
 本開示の第17態様において、例えば、第14から第16態様のいずれか1つに係る電池では、前記第二固体電解質は、Li3YBr3Cl3およびLi3YBr2Cl4からなる群より選ばれる少なくとも1つであってもよい。
 第17態様に係る電池は、より改善された充放電特性を有する。
 本開示の第18態様において、例えば、第12から第17態様のいずれか1つに係る電池では、前記第二固体電解質は、第二硫化物固体電解質を含んでもよい。
 第18態様に係る電池は、より高容量で、かつ改善された充放電特性を有する。
 本開示の第19態様において、例えば、第12から第18態様のいずれか1つに係る電池では、前記基材の孔の中に、前記第二固体電解質が含まれていてもよい。
 第19態様に係る電池では、第二固体電解質が第一電極における基材の孔、すなわち多孔体の孔に内包される。この構成により、第19態様に係る電池は、より高容量で、かつ改善され充放電特性を有する。
 本開示の第20態様において、例えば、第1から第19態様のいずれか1つに係る電池では、前記第一電極は、負極であり、前記第二電極は、正極であってもよい。
 第20態様に係る電池は、より高容量で、かつ改善された充放電特性を有する。
 (本開示の実施形態)
 以下、本開示の実施形態が、図面を参照しながら説明される。以下の説明は、いずれも包括的又は具体的な例を示すものである。以下に示される数値、組成、形状、膜厚、電気特性、二次電池の構造などは、一例であり、本開示を限定する主旨ではない。
 図1は、本開示の実施形態に係る電池1000の構成例を模式的に示す断面図である。
 電池1000は、第一電極101と、第二電極103と、第一電極101と第二電極103との間に位置する固体電解質層102と、を備える。図2は、本開示の実施形態に係る電池1000における第一電極101の構成例を模式的に示す部分拡大断面図である。図2に示すように、第一電極101は、多孔体である基材105と、基材105の表面に位置する活物質層106と、を有する。活物質層106は、BiおよびNiを含む合金を含む。活物質層106は、BiおよびNiを含む合金として、例えばBiNiを含む。
 図1に示されているように、本実施形態に係る電池1000は、例えば第一電極101と接する第一集電体100をさらに備えていてもよい。また、本実施形態に係る電池1000は、例えば第二電極103と接する第二集電体104をさらに備えていてもよい。第一集電体100および第二集電体104が設けられることにより、電池1000から高い効率で電気を取り出すことができる。
 電池1000では、第一電極101において、BiおよびNiを含む合金を含む活物質層106が、多孔体である基材105の表面上に形成されている。活物質層106は、例えば、図2に示されているように、基材105の孔の内壁上にも形成される。このため、電池1000では、活物質と固体電解質とが接し得る面積に関して、活物質層106が、箔状の基材の表面上よりも、多孔体である基材105の表面上に形成される方が、活物質層106の面積が大きくなる。したがって、電池1000では、同量の活物質を基材上に設ける場合に、箔状の基材上に設ける場合よりも、活物質層106を薄く形成できる。これにより、BiおよびNiを含む合金を含む活物質層106において、Liイオンの固相内拡散に起因する負荷特性が改善され、例えば放電時の負荷特性が改善される。したがって、本実施形態に係る電池は、充放電特性を改善することができ、特に初期効率を改善することができる。このように、本実施形態に係る電池1000は、充放電特性の改善に適した構造を有する。
 なお、図2に示された第一電極101においては、基材105の孔の内壁上に活物質層106が薄膜状に形成されており、空隙率が比較的高い状態で孔が存在している。しかし、第一電極101は、この構成に限定されない。第一電極101は、例えば、活物質層106が基材105の孔の内部をほぼ満たしており、空隙率が低くなっているものであってもよい。第一電極101がこのような構造を有する場合であっても、基材105と活物質層106との境界は明確に確認可能であり、第一電極101において、基材105は多孔体であり、活物質層106は基材105の表面上に形成されているといえる。活物質層106は、複数の孔の内壁の一部に形成されていてもよく、ほぼ全部に形成されていてもよい。
 本開示の実施形態に係る電池1000の変形例について説明する。図3は、本開示の実施形態に係る電池の変形例を模式的に示す断面図である。
 図3に示された電池2000は、活物質層106に接する第二固体電解質107がさらに設けられた点が電池1000と異なるが、第二固体電解質107以外の構成は電池1000と同じである。
 電池2000は、第一電極101と、第二電極103と、第一電極101と第二電極103との間に位置する固体電解質層102と、を備える。第一電極101は、多孔体である基材105と、基材105の表面に位置する活物質層106と、活物質層106に接する第二固体電解質107とを有する。活物質層106は、BiおよびNiを含む合金を含む。活物質層106は、BiおよびNiを含む合金として、例えばBiNiを含む。
 図3に示されているように、電池2000は、本開示の実施形態に係る電池1000と同様に、例えば第一電極101と接する第一集電体100をさらに備えていてもよい。また、電池2000は、本開示の実施形態に係る電池1000と同様に、例えば第二電極103と接する第二集電体104をさらに備えていてもよい。第一集電体100および第二集電体104が設けられることにより、電池2000から高い効率で電気を取り出すことができる。
 電池2000では、第一電極101において、BiおよびNiを含む合金を含む活物質層106が、多孔体である基材105の表面上に形成されている。活物質層106は、例えば、図3に示されているように、基材105の孔の内壁上にも形成される。さらに、電池2000では、第一電極101は、活物質層106に接する第二固体電解質107をさらに有している。例えば、第二固体電解質107は、基材105の孔の中に含まれていてもよい。このため、電池2000では、活物質と固体電解質とが接し得る面積に関して、活物質層106が、箔状の基材の表面上よりも、多孔体である基材105の表面上に形成される方が、活物質層106の面積が大きくなる。したがって、電池2000では、同量の活物質を基材上に設ける場合に、箔状の基材上に設ける場合よりも、活物質層106を薄く形成できる。これにより、BiおよびNiを含む合金を含む活物質層106において、Liイオンの固相内拡散に起因する負荷特性が改善され、例えば放電時の負荷特性が改善される。したがって、本実施形態に係る電池2000は、充放電特性を改善することができ、特に初期効率を改善することができる。このように、本実施形態に係る電池2000は、充放電特性の改善に適した構造を有する。
 なお、図3に示された第一電極101においては、基材105の孔の内壁上に活物質層106が薄膜状に形成され、かつ活物質層106の内側の領域が第二固体電解質107でほぼ満たされている。このように、第一電極101は、基材105の孔の内部が活物質層106および第二固体電解質107でほぼ満たされており、空隙率が低くなっているものであってもよい。第一電極101がこのような構造を有する場合であっても、基材105と活物質層106との境界は明確に確認可能であり、第一電極101において、基材105は多孔体であり、活物質層106は基材105の表面上に形成されているといえる。活物質層106は、複数の孔の内壁の一部に形成されていてもよく、ほぼ全部に形成されていてもよい。
 電池1000および電池2000は、例えば、リチウム二次電池である。以下、電池1000および電池2000の充放電時に、第一電極101の活物質層106および第二電極103において吸蔵および放出される金属イオンがリチウムイオンである場合を例に挙げて説明する。
 基材105は、上述のとおり、多孔体である。本明細書において、多孔体とは、複数の孔を有しており、かつそれらの孔が外部に開口した開放孔を含む構造体のことを意味する。本明細書における多孔体として、例えば、メッシュおよび多孔質構造体が挙げられる。多孔質構造体は、複数の細孔が設けられている多孔質材料で構成された構造体であって、細孔の大きさは特には限定されない。多孔質構造体の例として、発泡体が挙げられる。また、多孔質構造体は、細孔が互いに連通している三次元網目構造体であってもよい。なお、本明細書において、「孔」とは、その内部に例えば活物質層が詰まっているものも、詰まっていないものも、両方を含む。すなわち、その内部に例えば活物質層が詰まっているものも、「孔」とみなす。
 基材105は、例えば導電性を有する。基材105は、金属等の導電性材料で形成されていてもよいし、例えば樹脂のような非導電性材料からなる多孔体(例えば、発泡樹脂)の表面に導電性材料からなる導電膜が設けられているものであってもよい。基材105は、例えば、金属メッシュおよび多孔質金属であってもよい。基材105は、第一電極101の集電体として機能し得る。すなわち、第一集電体100が設けられている場合は、例えば、第一集電体100および基材105が第一電極101の集電体として機能する。第一集電体100が設けられない場合は、例えば、基材105が第一電極101の集電体として機能する。
 基材105は、例えばNiを含んでいてもよい。基材105は、例えば、ニッケルメッシュまたは多孔質ニッケルであってもよい。
 上述のとおり、活物質層106は、BiおよびNiを含む合金として、例えばBiNiを含む。活物質層106は、BiNiを主成分として含んでいてもよい。ここで、「活物質層106がBiNiを主成分として含む」とは、「活物質層106におけるBiNiの含有割合が50質量%以上である」と定義する。なお、活物質層106におけるBiNiの含有割合は、例えば、EDX(エネルギー分散型X線分析)による元素分析によってBiおよびNiが活物質層106含まれていることを確認し、活物質層106のX線回折結果をリートベルト解析することで含まれる化合物の比率を算出することによって、求めることができる。
 以上の構成によれば、改善された充放電特性が得られる。
 BiNiを主成分として含む活物質層106は、例えば、薄膜状に形成されたBiNi(以下、「BiNi薄膜」という)によって構成されてもよい。
 BiNi薄膜で構成された活物質層106は、例えば、電気めっきを利用して作製することができる。活物質層106を電気めっきを利用して作製することによって第一電極101を製造する方法は、例えば以下のとおりである。
 まず、電気めっきの基材が準備される。電気めっきの基材としては、例えば、第一電極101が形成された際に基材105を構成し得る多孔体が用いられる。電気めっきの基材として、例えば、金属メッシュまたは多孔質金属が用いられる。電気めっきの基材として、例えば、ニッケルメッシュまたは多孔質ニッケルが用いられてもよい。電気めっきの基材として用いられる多孔体は、例えば、電気めっきおよび加圧処理等のプロセスを経て第一電極が形成された際に基材105を構成できればよいため、その構造は特には限定されず、目的とする第一電極101の構造に応じて適宜選択され得る。一例として、電気めっきの基材として用いられる多孔体は、例えば0.014m2/cm3以上0.036m2/cm3以下の比表面積を有していてもよい。
 一例として、電気めっきの基材として、ニッケルメッシュを準備する。ニッケルメッシュを有機溶剤により予備脱脂した後、酸性溶剤に浸漬することで脱脂を行い、ニッケルメッシュ表面を活性化させる。活性化させたニッケルメッシュは、電流が印加できるように電源と接続される。電源と接続されたニッケルメッシュは、ビスマスめっき浴に浸漬される。ビスマスめっき浴として、例えば、Bi3+イオンと有機酸とを含む有機酸浴が用いられる。その後、電流密度および印加時間を制御してニッケルメッシュに電流を印加することにより、ニッケルメッシュ表面にBiを電気めっきする。電気めっき後に、ニッケルメッシュをめっき浴から回収し、マスキングを外した後に純水により洗浄、乾燥する。これらの方法により、ニッケルメッシュ表面にBiめっき層が作製される。なお、Biめっき層の作製に用いられるビスマスめっき浴は、特には限定されず、Bi単体薄膜を析出させることが可能な公知のビスマスめっき浴の中から適宜選択することができる。ビスマスめっき浴では、有機酸浴として、有機スルホン酸浴、グルコン酸およびエチレンジアミン四酢酸(EDTA)浴、またはクエン酸およびEDTA浴が用いられ得る。また、ビスマスめっき浴には、例えば硫酸浴が用いられてもよい。また、ビスマスめっき浴には添加剤が加えられていてもよい。
 電気めっきの基材として例えば多孔質ニッケルが用いられる場合であっても、上記と同様の方法でBiめっき層が作製され得る。
 ここで、ニッケル箔、ニッケルメッシュ、および多孔質ニッケルを電気めっきの基材として用いた場合に、上述の方法で作製されたBiのめっき質量を表1に示す。なお、電気めっきの基材としてニッケル箔を用いた場合は、ニッケル箔を有機溶剤により予備脱脂した後、片面をマスキングして酸性溶剤に浸漬することで脱脂を行い、ニッケル箔表面を活性化させた。そして、ニッケル箔をビスマスめっき浴に浸漬して、マスキングをしていないニッケル箔表面にBiを電気めっきした。
Figure JPOXMLDOC01-appb-T000001
 次に、ニッケルメッシュおよびニッケルメッシュ上に作製されたBiめっき層が、加熱される。この熱処理により、基材であるニッケルメッシュからBiめっき層へとNiを固相内拡散させて、BiNi薄膜で構成された活物質層を作製できる。ここでは、ニッケルメッシュにBiを電気めっきしたサンプルに、例えば、非酸化雰囲気で250℃以上の温度で30分以上100時間未満の熱処理が施されることによって、ニッケルメッシュからBiめっき層へとNiが固相内拡散し、BiNi薄膜で構成された活物質層が作製され得る。
 上記ニッケルメッシュにBiを電気めっきした上記サンプルについては、アルゴン雰囲気で400℃の温度で60時間の熱処理をすることによって、BiNi薄膜で構成された活物質層が作製された。
 また、ニッケルメッシュ上に作製されたBiNi薄膜で構成された活物質層について、表面X線回折測定により表面の構造解析も行われた。
 図4は、ニッケルメッシュ上に作製されたBiNi薄膜で構成された活物質層のX線回折パターンの一例を示すグラフである。X線回折パターンは、活物質層の表面、つまり活物質層の厚み方向よりX線回折装置(RIGAKU製、MiNi Flex)を用いて、波長1.5405Åおよび1.5444ÅであるCu-Kα線をX線として用いたθ-2θ法で測定したものである。図4に示されたX線回折パターンより、結晶構造として空間群がC2/mに帰属するBiNiと、基材としてのニッケルメッシュ及び活物質層内に含まれているNiの相が同定された。
 多孔質ニッケルのような多孔体を基材として用いた場合に形成されるBiNiについても、同様に、電気めっきおよび熱処理することにより空間群がC2/mに帰属するBiNiを合成することが可能である。すなわち、本実施形態に係る電池1000において、第一電極101に含まれるBiNiを含む活物質層106は、例えば上述のようにして作製された、熱処理されためっき層であってもよい。さらに、本実施形態に係る電池1000において、第一電極101の活物質層106に含まれるBiNiは、例えば、空間群がC2/mに帰属する結晶構造を有する。
 電池2000における第一電極101、すなわち第二固体電解質107が設けられる構成を有する第一電極101を製造する場合は、以上のように、基材105の表面に位置するBiNiを含む活物質層106が形成された後、活物質層106に接する第二固体電解質107が形成される。第二固体電解質107は、活物質層106に接するように形成できればよく、その作製方法は特には限定されない。例えば、第二固体電解質107は、液相法で形成されてもよい。また、基材105の孔の内壁上に薄膜状に形成された活物質層106の内側の領域に、例えば粉末状の固体電解質を充填することによって、第二固体電解質107が形成されてもよい。第二固体電解質107が液相法で形成される場合は、例えば、第二固体電解質107の原料が溶媒に分散または溶解した溶液を準備し、当該溶液に、活物質層106が形成された基材105を浸漬して、その後溶媒を除去することによって、第二固体電解質107が形成される。溶媒が除去された後に、熱処理が実施されてもよい。
 以下、第一電極101が負極であり、かつ第二電極103が正極である場合を例に挙げて、本実施形態の電池1000および電池2000の各構成についてより詳しく説明する。以下、本実施形態の電池1000および電池2000を、単に、本実施形態の電池と記載する。
 [第一電極]
 上述のとおり、第一電極101は、多孔体である基材105と、基材105の表面に位置する活物質層106とを有する。活物質層106に接する第二固体電解質107がさらに設けられていてもよい。基材105、活物質層106、および第二固体電解質107の構成は、上述したとおりであるが、以下により詳しく説明される。
 第一電極101は、例えば負極として機能する。したがって、活物質層106は、リチウムイオンを吸蔵かつ放出する特性を有する負極活物質を含む。活物質層106はBiおよびNiを含む合金を含んでおり、このBiおよびNiを含む合金は負極活物質として機能する。活物質層106は、例えばBiNiを活物質として含む。活物質層106におけるBiNiは、例えば空間群がC2/mに帰属する結晶構造を有する。
 Biは、リチウムと合金化する金属元素である。一方、Niは、リチウムと合金化しないため、Niを含む合金は、充放電に伴うリチウム原子の脱離および挿入の際、負極活物質の結晶構造への負荷が低減され、電池の容量維持率の低下が抑えられると推測される。BiNiが負極活物質として機能する場合は、充電時にBiがリチウムと合金を形成することによって、リチウムが吸蔵される。すなわち、活物質層106において、本実施形態の電池の充電時に、リチウムビスマス合金が生成される。生成されるリチウムビスマス合金は、例えば、LiBiおよびLi3Biからなる群より選ばれる少なくとも1つを含む。すなわち、本実施形態の電池の充電時に、活物質層106は、例えばLiBiおよびLi3Biからなる群より選ばれる少なくとも1つを含む。本実施形態の電池の放電時に、リチウムビスマス合金からリチウムが放出され、リチウムビスマス合金がBiNiに戻る。
 負極活物質としてのBiNiは、本実施形態の電池の充電時および放電時に、例えば以下のように反応する。なお、以下の反応の例は、充電時に生成されるリチウムビスマス合金がLi3Biである場合の例である。
充電:BiNi+3Li++3e-→Li3Bi+Ni
放電:Li3Bi+Ni→BiNi+3Li++3e-
 活物質層106は、活物質として実質的にBiNiのみを含んでもよい。この場合、本実施形態の電池は、向上した容量および改善されたサイクル特性を有することができる。なお、「活物質層106が活物質として実質的にBiNiのみを含む」とは、例えば、活物質層106に含まれる活物質において、BiNi以外の他の活物質が1質量%以下であることである。活物質層106は、活物質としてBiNiのみを含んでもよい。
 活物質層106は、電解質を含んでいなくてもよい。例えば、活物質層106は、BiNiおよび/または充電時に生成されるリチウムビスマス合金およびニッケルからなる層であってもよい。ここでいう電解質は、リチウムイオン伝導性を有する液体または固体の電解質である。
 活物質層106は、基材105の表面に直接接して配置されていてもよい。さらに、本実施形態の電池が第一集電体100を備えている場合、基材105は、第一集電体100に接して配置されていてもよい。
 活物質層106は、薄膜状であってもよい。
 活物質層106は、熱処理されためっき層であってもよい。活物質層106は、基材105の表面に直接接して設けられた、熱処理されためっき層であってもよい。すなわち、上述のように、活物質層106は、Niを含む基材105の表面上に形成されたBiめっき層に熱処理を施すことによって形成された層であってもよい。
 活物質層106が、基材105の表面に直接接して設けられた、熱処理されためっき層であると、活物質層106が基材105に強固に密着する。これにより、活物質層106が膨張および収縮を繰り返した場合に起こる第一電極101の集電特性の悪化をさらに抑制することができる。したがって、本実施形態の電池の充放電特性がより向上する。さらに、活物質層106が熱処理されためっき層であると、活物質層106にリチウムと合金化するBiが高密度で含まれるため、さらなる高容量化も実現できる。
 活物質層106は、BiおよびNiを含む合金以外の他の材料を含んでいてもよい。
 活物質層106は、導電材をさらに含んでいてもよい。
 導電材として、炭素材料、金属、無機化合物、および導電性高分子が挙げられる。炭素材料として、黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、および炭素繊維が挙げられる。黒鉛として、天然黒鉛および人造黒鉛が挙げられる。天然黒鉛として、塊状黒鉛および鱗片状黒鉛が挙げられる。金属として、銅、ニッケル、アルミニウム、銀、および金が挙げられる。無機化合物として、タングステンカーバイド、炭化チタン、炭化タンタル、炭化モリブデン、ホウ化チタン、およびチッ化チタンが挙げられる。これらの材料は単独で用いられてもよいし、複数種が混合されて用いられてもよい。
 活物質層106は、結着剤をさらに含んでいてもよい。
 結着剤として、含フッ素樹脂、熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、および天然ブチルゴム(NBR)が挙げられる。含フッ素樹脂として、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、およびフッ素ゴムが挙げられる。熱可塑性樹脂として、ポリプロピレンおよびポリエチレンが挙げられる。これらの材料は単独で用いられてもよいし、複数種が混合されて用いられてもよい。
 活物質層106の厚みは、特に限定されず、例えば、0.1μm以上、100μm以下であってもよい。
 基材105の材料は、例えば、単体の金属または合金である。より具体的には、銅、クロム、ニッケル、チタン、白金、金、アルミニウム、タングステン、鉄、およびモリブデンからなる群より選ばれる少なくとも1つを含む単体の金属又は合金であってもよい。基材105は、ステンレス鋼であってもよい。
 基材105は、ニッケル(Ni)を含んでもよい。
 基材105の構造については、上述のとおりである。基材105は、第一電極101の集電体または集電体の一部とみなされてもよい。
 第二固体電解質107は、第二ハロゲン化物固体電解質を含んでもよい。第二ハロゲン化物固体電解質は、硫黄を実質的に含まない。
 ここで、本明細書において、ハロゲン化物固体電解質は、ハロゲン元素を含有する固体電解質を意味する。ハロゲン化物固体電解質は、ハロゲン元素だけでなく、酸素を含有していてもよい。ハロゲン化物固体電解質は、硫黄(S)を含まない。
 第二ハロゲン化物固体電解質は、Li、M、およびXで構成され、Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つを含み、Xは、F、Cl、BrおよびIからなる群より選択される少なくとも1つであってもよい。
 第二固体電解質107は、実質的に、Li、M、およびXからなっていてもよい。「第二固体電解質107が、実質的に、Li、M、およびXからなる」とは、第二固体電解質107において、第二固体電解質107を構成する全元素の物質量の合計に対する、Li、M、およびXの物質量の合計の比(すなわち、モル分率)が、90%以上であることを意味する。一例として、当該比(すなわち、モル分率)は95%以上であってもよい。第二固体電解質は、Li、M、およびXのみからなっていてもよい。
 第二ハロゲン化物固体電解質は、例えば、下記の組成式(1)により、表される材料であってもよい。
 Liαβγ ・・・式(1)
 ここでα、β、およびγは、0より大きい値であり、Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、Xは、F、Cl、Br、およびIからなる群より選ばれる少なくとも1つである。
 「半金属元素」とは、B、Si、Ge、As、Sb、およびTeである。
 「金属元素」とは、水素を除く周期表1族から12族中に含まれるすべての元素、ならびに、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く全ての第13族から第16族中に含まれる元素である。すなわち、ハロゲン元素と無機化合物を形成した際に、カチオンとなりうる元素群である。
 イオン伝導度を高めるために、Mは、第1族元素、第2族元素、第3族元素、第4族元素、およびランタノイド元素からなる群より選択される少なくとも一種の元素を含んでもよい。
 第1族元素の例は、Na、K、Rb、またはCsである。第2族元素の例は、Mg、Ca、Sr、またはBaである。第3族元素の例は、ScまたはYである。第4族元素の例は、Ti、ZrまたはHfである。ランタノイド元素の例は、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、またはLuである。
 また、イオン伝導度を高めるために、Mは、第5族元素、第12族元素、第13族元素、第14族元素を含んでもよい。
 第5族元素の例は、NbまたはTaである。第12族元素の例は、Znである。第13族元素の例は、Al、Ga、Inである。第14族元素の例は、Snである。
 イオン伝導度をさらに高めるために、Mは、Na、K、Mg、Ca、Sr、Ba、Sc、Y、Zr、Hf、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、およびLuからなる群より選択される少なくとも一種の元素を含んでもよい。
 イオン伝導度をさらに高めるために、Mは、Mg、Ca、Sr、Y、Sm、Gd、Dy、およびHfからなる群より選択される少なくとも一種の元素を含んでもよい。
 イオン伝導度をさらに高めるために、Mは、Yを含んでもよい。
 イオン伝導度をさらに高めるために、Xは、Br、ClおよびIからなる群より選択される少なくとも1つを含んでもよい。
 イオン伝導度をさらに高めるために、Xは、Br、ClおよびIを含んでもよい。
 組成式(1)において、Mは、Yを含み、Xは、ClおよびBrを含んでもよい。第二ハロゲン化物固体電解質は、例えば、Li3YBr3Cl3およびLi3YBr2Cl4からなる群より選択される少なくとも1つであってもよい。すなわち、第二固体電解質107は、Li3YBr3Cl3およびLi3YBr2Cl4からなる群より選択される少なくとも1つを含んでもよい。
 第二ハロゲン化物固体電解質としては、例えば、Li3(Ca,Y,Gd)X6、Li2MgX4、Li2FeX4、Li(Al,Ga,In)X4、Li3(Al,Ga,In)X6、LiI、などが用いられてもよい。ここで、これらの固体電解質において、元素Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1種である。なお、本開示において、式中の元素を「(Al,Ga,In)」のように表すとき、この表記は、括弧内の元素群より選択される少なくとも1種の元素を示す。すなわち、「(Al,Ga,In)」は、「Al、Ga、およびInからなる群より選択される少なくとも1種」と同義である。他の元素の場合でも同様である。
 第二ハロゲン化物固体電解質の他の例は、LiaMebc6により表される化合物である。ここで、a+mb+3c=6、およびc>0が充足される。Meは、LiおよびY以外の金属元素と半金属元素とからなる群より選択される少なくとも1つである。mは、Meの価数を表す。「半金属元素」および「金属元素」は、上述のとおりである。
 第二ハロゲン化物固体電解質材料のイオン伝導度を高めるために、Meは、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Zr、Hf、Ti、Sn、Ta、およびNbからなる群より選択される少なくとも1つであってもよい。ハロゲン化物固体電解質は、Li3YCl6、Li3YBr6、またはLi3YBrpCl6-pであってもよい。なお、pは、0<p<6を充足する。
 第二固体電解質107は、第二硫化物固体電解質を含んでもよい。
 ここで、硫化物固体電解質とは、硫黄(S)を含有する固体電解質を意味する。硫化物固体電解質は、硫黄だけでなく、ハロゲン元素を含有していてもよい。
 第二硫化物固体電解質としては、例えば、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、またはLi10GeP212などが用いられうる。
 第二固体電解質107は、酸化物固体電解質、高分子固体電解質、または錯体水素化物固体電解質を含んでいてもよい。
 第一電極101の厚みは、10μm以上かつ2000μm以下であってもよい。すなわち、表面上に活物質層106が設けられた、多孔体である基材105の全体の厚みが、10μm以上かつ2000μm以下であってもよい。第一電極101がこのような厚みを有することにより、電池が高出力で動作し得る。
 [第一集電体]
 本実施形態の電池において、第一集電体100は、設けられていてもよいし、設けられていなくてもよい。第一集電体100は、例えば、第一電極101と接して設けられる。第一集電体100は、例えば、第一電極101の基材105と接して設けられる。第一集電体100が設けられることにより、本実施形態の電池から高い効率で電気を取り出すことができる。
 第一集電体100の材料は、例えば、単体の金属または合金である。より具体的には、銅、クロム、ニッケル、チタン、白金、金、アルミニウム、タングステン、鉄、およびモリブデンからなる群より選ばれる少なくとも1つを含む単体の金属又は合金であってもよい。第一集電体100は、ステンレス鋼であってもよい。
 第一集電体100は、ニッケル(Ni)を含んでもよい。
 第一集電体100は、板状又は箔状であってもよい。高い導電性を確保しやすい観点から、第一集電体100は、金属箔であってもよい。第一集電体100の厚みは、例えば、5μm以上20μm以下であってもよい。
 第一集電体100は、積層膜であってもよい。
 [固体電解質層]
 固体電解質層102に含まれる第一固体電解質として、ハロゲン化物固体電解質(すなわち、第一ハロゲン化物固体電解質)、硫化物固体電解質(すなわち、第一硫化物固体電解質)、酸化物固体電解質、高分子固体電解質、または錯体水素化物固体電解質が用いられてもよい。
 第一固体電解質は、第一ハロゲン化物固体電解質を含んでもよい。第一ハロゲン化物固体電解質の例は、上述の第二ハロゲン化物固体電解質の例と同じである。
 第一固体電解質は、第一硫化物固体電解質を含んでもよい。第一硫化物固体電解質の例は、上述の第二硫化物固体電解質の例と同じである。
 酸化物固体電解質としては、例えば、LiTi2(PO43およびその元素置換体を代表とするNASICON型固体電解質、(LaLi)TiO3系のペロブスカイト型固体電解質、Li14ZnGe416、Li4SiO4、LiGeO4およびその元素置換体を代表とするLISICON型固体電解質、Li7La3Zr212およびその元素置換体を代表とするガーネット型固体電解質、Li3PO4およびそのN置換体、ならびに、LiBO2およびLi3BO3などのLi-B-O化合物をベースとして、Li2SO4、Li2CO3などが添加されたガラスまたはガラスセラミックス、などが用いられうる。
 高分子固体電解質としては、例えば、高分子化合物と、リチウム塩との化合物が用いられうる。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子化合物は、リチウム塩を多く含有することができる。このため、イオン導電率をより高めることができる。リチウム塩としては、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、およびLiC(SO2CF33、などが使用されうる。例示されたリチウム塩から選択される1種のリチウム塩が、単独で使用されうる。もしくは、例示されたリチウム塩から選択される2種以上のリチウム塩の混合物が使用されうる。
 錯体水素化物固体電解質としては、例えば、LiBH4-LiI、LiBH4-P25、などが用いられうる。
 固体電解質層102は、実質的にハロゲン化物固体電解質のみからなっていてもよい。なお、本明細書において「実質的になる」とは、含有率にして0.1%未満の不純物の含有を許容する趣旨である。固体電解質層102は、ハロゲン化物固体電解質のみからなっていてもよい。
 以上の構成によれば、固体電解質層102のイオン導電率を高めることができる。これにより、電池のエネルギー密度の低下を低減できる。
 固体電解質層102は、さらに結着剤を含んでもよい。結着剤として、活物質層106に使用可能な材料と同じ材料が使用されてもよい。
 固体電解質層102は、1μm以上かつ500μm以下の厚みを有していてもよい。固体電解質層102が1μm以上の厚みを有する場合、第一電極101および第二電極103が短絡しにくくなる。固体電解質層102が500μm以下の厚みを有する場合、電池が高出力で動作し得る。
 固体電解質の形状は、特に限定されない。固体電解質が粉体材料である場合、その形状は、例えば、針状、球状、楕円球状、などであってもよい。例えば、固体電解質の形状は、粒子状であってもよい。
 例えば、固体電解質の形状が、粒子状(例えば、球状)である場合、固体電解質のメジアン径は、100μm以下であってもよく、10μm以下であってもよい。
 本開示において、「メジアン径」は、体積基準の粒度分布における累積体積が50%に等しい場合の粒径を意味する。体積基準の粒度分布は、例えば、レーザー回折式測定装置または画像解析装置により測定される。
 固体電解質層102に含まれる固体電解質は、下記の方法により、製造され得る。
 目的の組成を有するように、原料粉が準備される。原料粉の例は、酸化物、水酸化物、ハロゲン化物、または酸ハロゲン化物である。
 一例として、目的とされる組成がLi3YBr4Cl2である場合、LiBr、YCl、およびYBrが、3:0.66:0.33程度のモル比で混合される。合成プロセスにおいて生じ得る組成変化を相殺するように、あらかじめ調整されたモル比で原料粉が混合されてもよい。
 原料粉を、遊星型ボールミルのような混合装置内でメカノケミカル的に(すなわち、メカノケミカルミリングの方法を用いて)互いに反応させ、反応物を得る。反応物は、真空中または不活性雰囲気中で焼成されてもよい。あるいは、原料粉の混合物を真空中または不活性雰囲気中で焼成し、反応物を得てもよい。焼成は、例えば、100℃以上かつ300℃以下で、1時間以上行われることが望ましい。焼成における組成変化を抑制するために、原料粉は石英管のような密閉容器内で焼成されることが望ましい。
 これらの方法により、固体電解質層102の固体電解質が得られる。
 [第二電極]
 第二電極103は、例えば正極として機能する。第二電極103は、リチウムイオンのような金属イオンを吸蔵および放出可能な材料を含有する。当該材料は、例えば、正極活物質である。
 第二電極103は、正極活物質を含む。本実施形態に係る本実施形態の電池が第二集電体104を備えている場合、第二電極103は、例えば、第二集電体104と固体電解質層102との間に配置されている。
 第二電極103は、第二集電体104の表面に、第二集電体104に直接接して配置されていてもよい。
 正極活物質として、例えば、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシ硫化物、または遷移金属オキシ窒化物、などが用いられうる。リチウム含有遷移金属酸化物の例としては、LiNi1-x-yCoxAly2((x+y)<1)、LiNi1-x-yCoxMny2((x+y)<1)またはLiCoO2、などが挙げられる。特に、正極活物質として、リチウム含有遷移金属酸化物を用いた場合には、電極の製造コストを安くでき、電池の平均放電電圧を高めることができる。例えば、正極活物質は、Li(Ni,Co,Mn)O2を含んでもよい。
 第二電極103は、固体電解質を含んでもよい。固体電解質としては、固体電解質層102を構成する材料として例示された固体電解質を用いてもよい。
 正極活物質は、0.1μm以上かつ100μm以下のメジアン径を有していてもよい。正極活物質が0.1μm以上のメジアン径を有する場合、正極活物質および固体電解質が良好な分散状態を形成できる。これにより、電池の充放電特性が向上する。正極活物質が100μm以下のメジアン径を有する場合、リチウム拡散速度が向上する。これにより、電池が高出力で動作し得る。
 正極活物質は、固体電解質よりも大きいメジアン径を有していてもよい。これにより、正極活物質および固体電解質が良好な分散状態を形成できる。
 電池のエネルギー密度および出力の観点から、第二電極103において、正極活物質の体積および固体電解質の体積の合計に対する正極活物質の体積の比は、0.30以上かつ0.95以下であってもよい。
 固体電解質が正極活物質と反応するのを防ぐために、正極活物質の表面には、被覆層が形成されてもよい。これにより、電池の反応過電圧の上昇を抑制できる。被覆層に含まれる被覆材料の例は、硫化物固体電解質、酸化物固体電解質、またはハロゲン化物固体電解質である。
 第二電極103の厚みは、10μm以上かつ500μm以下であってもよい。第二電極103の厚みが10μm以上である場合、十分な電池のエネルギー密度を確保し得る。第二電極103の厚みが500μm以下である場合、電池が高出力で動作し得る。
 第二電極103は、電子導電性を高める目的で、導電材を含んでもよい。
 第二電極103は、結着剤を含んでもよい。
 導電材および結着剤として、活物質層106に使用可能な材料と同じ材料が使用されてもよい。
 第二電極103は、リチウムイオンの授受を容易にし、電池の出力特性を向上する目的で、非水電解液、ゲル電解質、またはイオン液体を含有していてもよい。
 非水電解液は、非水溶媒および当該非水溶媒に溶けたリチウム塩を含む。非水溶媒の例は、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、またはフッ素溶媒である。環状炭酸エステル溶媒の例は、エチレンカーボネート、プロピレンカーボネート、またはブチレンカーボネートである。鎖状炭酸エステル溶媒の例は、ジメチルカーボネート、エチルメチルカーボネート、またはジエチルカーボネートである。環状エーテル溶媒の例は、テトラヒドロフラン、1,4-ジオキサン、または1,3-ジオキソランである。鎖状エーテル溶媒の例は、1,2-ジメトキシエタン、または1,2-ジエトキシエタンである。環状エステル溶媒の例は、γ-ブチロラクトンである。鎖状エステル溶媒の例は、酢酸メチルである。フッ素溶媒の例は、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、またはフルオロジメチレンカーボネートである。これらから選択される1種の非水溶媒が単独で使用されてもよい。あるいは、これらから選択される2種以上の非水溶媒の混合物が使用されてもよい。
 リチウム塩の例は、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、またはLiC(SO2CF33である。これらから選択される1種のリチウム塩が単独で使用されてもよい。あるいは、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。リチウム塩の濃度は、例えば、0.5mol/リットル以上2mol/リットル以下の範囲にある。
 ゲル電解質として、非水電解液を含浸させたポリマー材料が使用され得る。ポリマー材料の例は、ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビニリデン、ポリメチルメタクリレート、またはエチレンオキシド結合を有するポリマーである。
 イオン液体に含まれるカチオンの例は、
(i)テトラアルキルアンモニウムまたはテトラアルキルホスホニウムのような脂肪族鎖状4級塩類、
(ii)ピロリジニウム類、モルホリニウム類、イミダゾリニウム類、テトラヒドロピリミジニウム類、ピペラジニウム類、またはピペリジニウム類のような脂肪族環状アンモニウム、または
(iii)ピリジニウム類またはイミダゾリウム類のような含窒素ヘテロ環芳香族カチオン
である。
 イオン液体に含まれるアニオンの例は、PF6 -、BF4 -、SbF6 -、AsF6 -、SO3CF3 -、N(SO2CF32 -、N(SO2252 -、N(SO2CF3)(SO249-、またはC(SO2CF33 -である。
 イオン液体はリチウム塩を含有してもよい。
 上記においては、第一電極101が負極であって、第二電極103が正極である構成例について説明したが、第一電極101が正極であってもよく、第二電極103は負極であってもよい。
 第一電極101が正極であり、第二電極103が負極である場合、活物質層106は、正極活物質層である。すなわち、活物質層106に含まれるBiが、正極活物質として機能する。この場合、負極である第二電極103は、例えばリチウム金属から構成される。
 [第二集電体]
 本実施形態の電池において、第二集電体104は、設けられていてもよいし、設けられていなくてもよい。第二集電体104は、例えば、第二電極103と接して設けられる。第二集電体104が設けられることにより、本実施形態の電池から高い効率で電気を取り出すことができる。
 第二集電体104の材料は、例えば、単体の金属または合金である。より具体的には、銅、クロム、ニッケル、チタン、白金、金、アルミニウム、タングステン、鉄、およびモリブデンからなる群より選ばれる少なくとも1つを含む単体の金属又は合金であってもよい。第二集電体104は、ステンレス鋼であってもよい。
 第二集電体104は、ニッケル(Ni)を含んでもよい。
 第二集電体104は、板状又は箔状であってもよい。高い導電性を確保しやすい観点から、第二集電体104は、金属箔であってもよい。第二集電体104の厚みは、例えば、5μm以上20μm以下であってもよい。
 第二集電体104は、積層膜であってもよい。
 本実施形態の電池は、第一電極101、固体電解質層102、第二電極103を基本構成として、大気および水分が混入しないように密閉容器内に封入する。本実施形態の電池の形状は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、および積層型、などが挙げられる。
 以下、実施例および参考例を用いて、本開示の詳細が開示される。以下の実施例は一例であって、本開示は以下の実施例のみに限定されない。
 (実施例1)
 <第一電極の作製>
 前処理として、ニッケルメッシュ(10cm×10cm、厚み:50μm、株式会社ニラコ製「NI-318200」)を有機溶剤により予備脱脂した後、酸性溶剤に浸漬することで脱脂を行い、ニッケルメッシュ表面を活性化させた。メタンスルホン酸1.0mol/Lに、可溶性ビスマス塩としてメタンスルホン酸ビスマスをBi3+イオンが0.18mol/Lとなる様に加えて、めっき浴が作製された。活性化させたニッケルメッシュは、電流を印加できるように電源に接続した後、めっき浴内に浸漬させた。その後、電流密度を2A/dm2に制御することにより、ニッケルメッシュ表面に、およそ5μmの厚みとなるようにBiを電気めっきした。電気めっき後に、ニッケルメッシュを酸性浴から回収した後に純水により洗浄、乾燥した。ここで、ニッケルメッシュに作製されたBiのめっき質量は、表1に示されたとおりであった。
 その後、アルゴン雰囲気とした電気炉内でBiを電気めっきしたニッケルメッシュを400℃で60時間熱処理した。熱処理後、X線回折でBiNiが生成していることを確認した後、φ0.92cmの大きさに打ち抜くことによって、第一電極が得られた。すなわち、実施例1の第一電極は、ニッケルメッシュからなる基材105上に、BiNiからなる活物質層106が設けられた構成を有していた。得られたBiNiからなる活物質層106について、表面X線回折測定を行った。図4は、ニッケルメッシュ上に作製されたBiNi薄膜で構成された活物質層のX線回折パターンの一例を示すグラフである。
 <固体電解質の作製>
 -60℃以下の露点を有するアルゴン雰囲気(以下、「乾燥アルゴン雰囲気」と称する)中で、原料粉としてLiBr、YCl3、およびYBr3が、LiBr:YCl3:YBr3=3:2/3:1/3のモル比となるように準備された。これらの原料粉が乳鉢中で粉砕および混合されて、混合粉が得られた。次いで、得られた原料粉の混合物は、乾燥アルゴン雰囲気中で、電気炉を用い、500℃で3時間焼成され、焼成物を得た。得られた焼成物は、乳鉢中で乳棒を用いて粉砕された。このようにして、Li3YBr4Cl2の組成を有する固体電解質が得られた。
 <試験セルの作製>
 9.4mmの内径を有する絶縁性外筒の中で、得られた第一電極を作用極とし、当該作用極上に、固体電解質Li3YBr4Cl2(80mg)が積層され、次に、インジウム-リチウム合金(モル比In:Li=1:1)(200mg)が対極として積層され、積層体が得られた。インジウム-リチウム合金は、インジウム箔にリチウム箔の小片を圧接し、インジウム中にリチウムを拡散させることによって作製された。この積層体に360MPaの圧力が印加され、作用極、固体電解質層および対極が形成された。積層体において、作用極である第一電極の厚みは65μmであり、固体電解質層の厚みは400μmであり、対極の厚みは15μmであった。
 次に、ステンレス鋼から形成された集電体が作用極および対極に取り付けられ、当該集電体に集電リードが取り付けられた。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部が外気雰囲気から遮断され、当該筒の内部が密閉された。
 以上により、ニッケルメッシュ上にBiNiからなる活物質層を形成することによって得られた電極(すなわち、第一電極)を作用極とし、リチウム-インジウム合金を対極とする、実施例1の試験セルが得られた。なお、ここで作製された試験セルは、作用極および対極を使用した単極試験セルであり、二次電池における電極の一方の極の性能を試験するために用いられる。詳しくは、作用極には試験対象の電極が用いられ、対極には作用極の反応を賄うに十分な量の適切な活物質が用いられる。本試験セルは、第一電極の負極としての性能を試験するものなので、通常用いられているように大過剰のリチウム-インジウム合金が対極として用いられた。このような試験セルを用いて性能が試験された負極は、例えば、上述の実施形態において説明したような正極活物質、例えばLiを含有した遷移金属酸化物等を含む正極と組み合わせることによって、二次電池として使用され得る。
 <充放電試験>
 以下の条件で、作製した試験セルの充放電試験を行った。電気めっきしたBi質量からBi理論容量を384mAh/gとして、レートがBi基準で0.5ITとなる定電流値で、-0.42V(0.2VvsLi+/Li)まで充電し、その後、1.38V(2.0VvsLi+/Li)まで放電した。25℃の恒温槽内で、試験セルの充放電試験が行われた。図5は、実施例1に係る試験セルの充放電試験の結果を示すグラフである。BiNi活物質(理論容量300mAh/g)換算で、初期充電容量は272.7mAh/gであった。その後の放電容量は227.1mAh/gであり、初期効率は83.3%となった。また、初期充電容量および初期放電容量は、理論容量の、それぞれ90.9%および75.7%となった。
 (実施例2)
 <第一電極の作製>
 前処理として、多孔質ニッケル(10cm×10cm、厚み:1.6mm、株式会社ニラコ製「NI-318161」)を有機溶剤により予備脱脂した後、酸性溶剤に浸漬することで脱脂を行い、多孔質ニッケルの表面を活性化させた。メタンスルホン酸1.0mol/Lに、可溶性ビスマス塩としてメタンスルホン酸ビスマスをBi3+イオンが0.18mol/Lとなるように加えて、めっき浴が作製された。活性化させた多孔質ニッケルは、電流を印加できるように電源に接続した後、めっき浴内に浸漬させた。その後、電流密度を2A/dm2に制御することにより、多孔質ニッケル表面に、およそ1μmの厚みとなるようにBiを電気めっきした。電気めっき後に、多孔質ニッケルを酸性浴から回収した後に純水により洗浄、乾燥した。ここで、多孔質ニッケルに作製されたBiのめっき質量は、表1に示されたとおりであった。
 その後、アルゴン雰囲気とした電気炉内でBiを電気めっきした多孔質ニッケルを400℃で60時間熱処理した。熱処理後、X線回折でBiNiが生成していることを確認した後、φ0.92cmの大きさに打ち抜くことによって、第一電極が得られた。すなわち、実施例2の第一電極は、多孔質ニッケルからなる基材105上に、BiNiからなる活物質層106が設けられた構成を有していた。得られたBiNiからなる活物質層106について、表面X線回折測定を行った。図6は、多孔質ニッケル上に作製されたBiNi薄膜で構成された活物質層のX線回折パターンの一例を示すグラフである。
 <固体電解質の作製>
 実施例1と同様の方法により、Li3YBr4Cl2の組成を有する固体電解質が作製された。
 <試験セルの作製>
 第一電極として、多孔質ニッケルからなる基材105上に、BiNiからなる活物質層106が設けられた構成を有する実施例2の第一電極を用いた。この点を除き、実施例1の試験セルと同様にして、実施例2の試験セルを得た。作用極である第一電極の厚みは400μmであり、固体電解質層の厚みは400μmであり、対極の厚みは15μmであった。
 <充放電試験>
 実施例1と同様の条件で、作製した実施例2の試験セルの充放電試験を行った。図7は、実施例2に係る試験セルの充放電試験の結果を示すグラフである。BiNi活物質(理論容量300mAh/g)換算で、初期充電容量は300.0mAh/gであった。その後の放電容量は249.7mAh/gであり、初期効率は83.2%となった。また、初期充電容量および初期放電容量は、理論容量の、それぞれ100.0%および83.2%となった。
 (実施例3)
 <第一電極の作製>
 前処理として、多孔質ニッケル(10cm×10cm、厚み:1.6mm、株式会社ニラコ製「NI-318161」)を有機溶剤により予備脱脂した後、酸性溶剤に浸漬することで脱脂を行い、多孔質ニッケルの表面を活性化させた。メタンスルホン酸1.0mol/Lに、可溶性ビスマス塩としてメタンスルホン酸ビスマスをBi3+イオンが0.18mol/Lとなるように加えて、めっき浴が作製された。活性化させた多孔質ニッケルは、電流を印加できるように電源に接続した後、めっき浴内に浸漬させた。その後、電流密度を2A/dm2に制御することにより、多孔質ニッケル表面に、およそ1μmの厚みとなるようにBiを電気めっきした。電気めっき後に、多孔質ニッケルを酸性浴から回収した後に純水により洗浄、乾燥した。
 その後、アルゴン雰囲気とした電気炉内でBiを電気めっきした多孔質ニッケルを400℃で60時間熱処理した。
 その後、Li3YBr2Cl4をアセトニトリル中に溶解および分散させた10質量%溶液中に、熱処理後の多孔質ニッケルを投入し、0.5気圧で5分間溶液を含浸させた。80℃で溶液を乾燥させた後、アルゴン雰囲気中で400℃1時間の熱処理を行った。
 得られた多孔質ニッケルをφ0.92cmの大きさに打ち抜くことによって、第一電極が得られた。すなわち、実施例1の第一電極は、多孔質ニッケルからなる基材上に、BiNiからなる活物質層と、Li3YBr2Cl4からなる第二固体電解質とが設けられた構成を有していた。図8は、多孔質ニッケル上に作製されたBiNi薄膜で構成された活物質層のX線回折パターンの一例を示すグラフである。
 <固体電解質の作製>
 -60℃以下の露点を有するアルゴン雰囲気(以下、「乾燥アルゴン雰囲気」と称する)中で、原料粉としてLiBr、YCl3、およびYBr3が、LiBr:YCl3:YBr3=3:2/3:1/3のモル比となるように準備された。これらの原料粉が乳鉢中で粉砕および混合されて、混合粉が得られた。次いで、得られた原料粉の混合物は、乾燥アルゴン雰囲気中で、電気炉を用い、500℃で3時間焼成され、焼成物を得た。得られた焼成物は、乳鉢中で乳棒を用いて粉砕された。このようにして、Li3YBr4Cl2の組成を有する固体電解質が得られた。
 <試験セルの作製>
 9.4mmの内径を有する絶縁性外筒の中で、得られた第一電極を作用極とし、当該作用極上に、固体電解質Li3YBr4Cl2(80mg)が積層され、次に、インジウム-リチウム合金(モル比In:Li=1:1)(200mg)が対極として積層され、積層体が得られた。インジウム-リチウム合金は、インジウム箔にリチウム箔の小片を圧接し、インジウム中にリチウムを拡散させることによって作製された。この積層体に360MPaの圧力が印加され、作用極、固体電解質層および対極が形成された。積層体において、作用極である第一電極の厚みは600μmであり、固体電解質層の厚みは400μmであり、対極の厚みは15μmであった。
 次に、ステンレス鋼から形成された集電体が作用極および対極に取り付けられ、当該集電体に集電リードが取り付けられた。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部が外気雰囲気から遮断され、当該筒の内部が密閉された。
 以上により、多孔質ニッケル上に、BiNiからなる活物質層と、Li3YBr4Cl2からなる第二固体電解質とを形成することによって得られた電極(すなわち、第一電極)を作用極とし、リチウム-インジウム合金を対極とする、実施例3の試験セルが得られた。なお、ここで作製された試験セルは、作用極および対極を使用した単極試験セルであり、二次電池における電極の一方の極の性能を試験するために用いられる。詳しくは、作用極には試験対象の電極が用いられ、対極には作用極の反応を賄うに十分な量の適切な活物質が用いられる。本試験セルは、第一電極の負極としての性能を試験するものなので、通常用いられているように大過剰のリチウム-インジウム合金が対極として用いられた。このような試験セルを用いて性能が試験された負極は、例えば、上述の実施形態において説明したような正極活物質、例えばLiを含有した遷移金属酸化物等を含む正極と組み合わせることによって、二次電池として使用され得る。
 <充放電試験>
 以下の条件で、作製した試験セルの充放電試験を行った。電気めっきしたBi質量からBi理論容量を384mAh/gとして、レートがBi基準で0.5ITとなる定電流値で、-0.42V(0.2VvsLi+/Li)まで充電し、その後、1.38V(2.0VvsLi+/Li)まで放電し、その後、-0.42V(0.2VvsLi+/Li)まで充電した。25℃の恒温槽内で、試験セルの充放電試験が行われた。図9は、実施例1に係る試験セルの充放電試験の結果を示すグラフである。BiNi活物質(理論容量300mAh/g)換算で、初期充電容量は300.2mAh/g程度であった。その後の放電容量と充電容量とは271.5mAh/g程度であった。
 (参考例1)
 <第一電極の作製>
 前処理として、ニッケル箔(10cm×10cm、厚み:10μm)を有機溶剤により予備脱脂した後、片面をマスキングして酸性溶剤に浸漬することで脱脂を行い、ニッケル箔表面を活性化させた。メタンスルホン酸1.0mol/Lに、可溶性ビスマス塩としてメタンスルホン酸ビスマスをBi3+イオンが0.18mol/Lとなるように加えて、めっき浴が作製された。活性化させたニッケル箔は、電流を印加できるように電源に接続した後、めっき浴内に浸漬させた。その後、電流密度を2A/dm2に制御することにより、マスキングをしていないニッケル箔表面に、およそ5μmの厚みとなるようにBiを電気めっきした。電気めっき後に、ニッケル箔を酸性浴から回収し、マスキングを外した後に純水により洗浄、乾燥した。その後、アルゴン雰囲気とした電気炉内でBiを電気めっきしたニッケル箔を400℃で60時間熱処理した。熱処理後、ニッケル箔上のBiめっき層について、表面X線回折測定を行った。図10は、ニッケル箔上に作製されたBiNi薄膜で構成された活物質層のX線回折パターンの一例を示すグラフである。
 <固体電解質の作製>
 実施例1と同様の方法により、Li3YBr4Cl2の組成を有する固体電解質が作製された。
 <試験セルの作製>
 第一電極として、ニッケル箔からなる基材105上に、BiNiからなる活物質層106が設けられた構成を有する参考例1の第一電極を用いた。この点を除き、実施例1の試験セルと同様にして、参考例1の試験セルを得た。作用極である第一電極の厚みは1.5μmであり、固体電解質層の厚みは500μmであり、対極の厚みは15μmであった。
 <充放電試験>
 実施例1と同様の条件で、作製した実施例2の試験セルの充放電試験を行った。図7は、実施例2に係る試験セルの充放電試験の結果を示すグラフである。BiNi活物質(理論容量300mAh/g)換算で、初期充電容量は203.9mAh/gであった。その後の放電容量は162.8mAh/gであり、初期効率は79.8%となった。また、初期充電容量および初期放電容量は、理論容量の、それぞれ68.0%および54.3%となった。
 以上、ニッケル箔上にBiを電気めっきして熱処理により合成したBiNi電極(参考例1)、ニッケルメッシュ上にBiを電気めっきして熱処理により合成したBiNi電極(実施例1)、多孔質ニッケル上にBiを電気めっきして熱処理により合成したBiNi電極(実施例2)、および多孔質ニッケル上にBiを電気めっきして熱処理によりBiNiを合成し、さらに第二固体電解質を設けたBiNi電極(実施例3)の充放電試験結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、多孔体である基材、すなわち実施例1のニッケルメッシュならびに実施例2および3の多孔質メッシュを基材として利用することで、BiNiを活物質とした電極は初期効率が向上し、負荷特性も向上した。
 以上の結果から、多孔体を基材として利用することで、BiNiを活物質とした電極は初期効率が顕著に向上し、負荷特性も顕著に向上することがわかる。すなわち、多孔体である基材と、当該基材の表面に位置するBiNiを含む活物質層を含む第一電極を備えた本開示の電池は、充放電特性の改善に適した構造を有する電池であることが確認された。なお、今回の実施例では、ハロゲン化物固体電解質Li3YBr4Cl2を用いたが、一般的な他の固体電解質であっても同様の効果を得られることが期待できる。
 また、実施例3を実施例2と比較すると、実施例3のように、多孔体である基材の表面に位置する活物質層に接して第二固体電解質が設けられた電極を用いることで、電池の充放電特性がより向上することがわかる。なお、本願の実施例3では、第二固体電解質としてハロゲン化物固体電解質Li3YBr4Cl2を用いたが、一般的な他の固体電解質であっても同様の効果を得られることが期待できる。
 なお、実施例1で作製した第一電極について、充電された状態の第一電極に存在する物質が、Cu-Kα線を用いた表面X線回折測定により確認された。なお、この際に用いた試験セルは、実施例1の試験セルとは異なり、電解液を用いた試験セルであった。具体的には、実施例1で作製した第一電極を作用極として用い、対極としてLi金属を用い、LiPF6を1.0モル/Lの濃度でビニレンカーボネートに溶解させた溶液を電解液として用いた。作用極として用いたLi金属は、微多孔性セパレータ(旭化成株式会社、セルガード3401)で二重に被覆された。この試験セルに対する充放電は、0.6mA(0.15mA/cm2)の定電流値で、充電は0Vまで、放電は2Vまで実施した。X線回折パターンは、X線回折装置(RIGAKU製、MiNi Flex)を用いて、波長1.5405Åおよび1.5444ÅであるCu-Kα線をX線として用いたθ-2θ法で測定した。図12は、実施例1で用いた第一電極について、充電前、充電後、放電後の第一電極のX線回折パターンの一例を示すグラフである。得られたX線回折パターンによれば、充電前は、BiNiとNiとを同定することができ、それぞれ活物質と基材に由来する化合物が同定できた。充電後は、LiBiとLi3BiとNiと同定することができた。すなわち、充電後にLiBiとLi3Biが生成していることが分かった。さらに放電後は、BiNiとNiとを同定することができた。なお、ここでは、電解液を用いた試験セルについて、充電後における第一電極に存在する物質が確認されたが、電解質層に固体電解質が用いられた実施例1のセルの場合でも、充電後の第一電極には、LiBiおよびLi3Biからなる群より選択される少なくとも1つが生成していると考えられる。
 本開示の電池は、例えば、全固体リチウム二次電池などとして、利用されうる。
 1000 電池
 2000 電池
 100 第一集電体
 101 第一電極
 102 固体電解質層
 103 第二電極
 104 第二集電体
 105 基材
 106 活物質層
 107 第二固体電解質

Claims (20)

  1.  第一電極と、
     第二電極と、
     前記第一電極と前記第二電極との間に位置する固体電解質層と、
    を備え、
     前記固体電解質層は、第一固体電解質を含み、
     前記第一電極は、
      多孔体である基材と、
      前記基材の表面に位置する活物質層と、
    を有し、
     前記活物質層は、BiおよびNiを含む合金を含む、
    電池。
  2.  前記活物質層は、BiNiを含む、
    請求項1に記載の電池。
  3.  前記活物質層は、前記BiNiを活物質の主成分として含む、
    請求項2に記載の電池。
  4.  前記活物質層は、活物質として実質的に前記BiNiのみを含む、
    請求項3に記載の電池。
  5.  前記BiNiは、空間群がC2/mに帰属する結晶構造を有する、
    請求項2に記載の電池。
  6.  前記活物質層は、LiBiおよびLi3Biからなる群より選択される少なくとも1つを含む、
    請求項1に記載の電池。
  7.  前記活物質層は、電解質を含まない、
    請求項1に記載の電池。
  8.  前記基材は、Niを含む、
    請求項1に記載の電池。
  9.  前記活物質層は、熱処理されためっき層である、
    請求項1に記載の電池。
  10.  前記第一固体電解質は、第一ハロゲン化物固体電解質を含み、
     前記第一ハロゲン化物固体電解質は、硫黄を実質的に含まない、
    請求項1に記載の電池。
  11.  前記第一固体電解質は、第一硫化物固体電解質を含む、
    請求項1に記載の電池。
  12.  前記第一電極は、前記活物質層に接する第二固体電解質をさらに有する、
    請求項1に記載の電池。
  13.  前記第二固体電解質は、第二ハロゲン化物固体電解質を含み、
     前記第二ハロゲン化物固体電解質は、硫黄を実質的に含まない、
    請求項12に記載の電池。
  14.  前記第二ハロゲン化物固体電解質は、下記の組成式(1)により表され、
     Liαβγ・・・式(1)
     ここで、
     α、β、およびγは、0より大きい値であり、
     Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、
     Xは、F、Cl、Br、およびIからなる群より選ばれる少なくとも1つである、
    請求項13に記載の電池。
  15.  前記組成式(1)において、前記MはYを含む、
    請求項14に記載の電池。
  16.  前記組成式(1)において、前記Xは、Cl、Br、およびIからなる群より選ばれる少なくとも1つである、
    請求項14に記載の電池。
  17.  前記第二固体電解質は、Li3YBr3Cl3およびLi3YBr2Cl4からなる群より選択される少なくとも1つを含む、
    請求項14に記載の電池。
  18. 前記第二固体電解質は、第二硫化物固体電解質を含む、
    請求項12に記載の電池。
  19.  前記基材の孔の中に、前記第二固体電解質が含まれている、
    請求項12に記載の電池。
  20.  前記第一電極は、負極であり、
     前記第二電極は、正極である、
    請求項1に記載の電池。
PCT/JP2022/023790 2021-08-10 2022-06-14 電池 WO2023017673A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280042456.7A CN117501472A (zh) 2021-08-10 2022-06-14 电池

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021130969 2021-08-10
JP2021-130968 2021-08-10
JP2021130968 2021-08-10
JP2021-130969 2021-08-10
JP2022069727 2022-04-20
JP2022-069727 2022-04-20

Publications (1)

Publication Number Publication Date
WO2023017673A1 true WO2023017673A1 (ja) 2023-02-16

Family

ID=85199922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023790 WO2023017673A1 (ja) 2021-08-10 2022-06-14 電池

Country Status (1)

Country Link
WO (1) WO2023017673A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733065B2 (ja) 1999-10-22 2006-01-11 三洋電機株式会社 リチウム電池用電極及びリチウム二次電池
JP2009054484A (ja) * 2007-08-28 2009-03-12 Seiko Epson Corp 全固体リチウム二次電池およびその製造方法
JP4898737B2 (ja) 2001-11-20 2012-03-21 キヤノン株式会社 リチウム二次電池用の負極材料、負極構造体及び二次電池
JP2014049198A (ja) * 2012-08-29 2014-03-17 Toyota Motor Corp 電池用焼結体、全固体リチウム電池および電池用焼結体の製造方法
JP2016039006A (ja) * 2014-08-06 2016-03-22 三星電子株式会社Samsung Electronics Co.,Ltd. リチウムイオン二次電池
JP2019164961A (ja) * 2018-03-20 2019-09-26 株式会社Gsユアサ 合金、負極活物質、負極及び非水電解質蓄電素子
WO2019230279A1 (ja) * 2018-05-30 2019-12-05 パナソニックIpマネジメント株式会社 リチウム二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733065B2 (ja) 1999-10-22 2006-01-11 三洋電機株式会社 リチウム電池用電極及びリチウム二次電池
JP4898737B2 (ja) 2001-11-20 2012-03-21 キヤノン株式会社 リチウム二次電池用の負極材料、負極構造体及び二次電池
JP2009054484A (ja) * 2007-08-28 2009-03-12 Seiko Epson Corp 全固体リチウム二次電池およびその製造方法
JP2014049198A (ja) * 2012-08-29 2014-03-17 Toyota Motor Corp 電池用焼結体、全固体リチウム電池および電池用焼結体の製造方法
JP2016039006A (ja) * 2014-08-06 2016-03-22 三星電子株式会社Samsung Electronics Co.,Ltd. リチウムイオン二次電池
JP2019164961A (ja) * 2018-03-20 2019-09-26 株式会社Gsユアサ 合金、負極活物質、負極及び非水電解質蓄電素子
WO2019230279A1 (ja) * 2018-05-30 2019-12-05 パナソニックIpマネジメント株式会社 リチウム二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMAGUCHI, HIROYUKI: "Amorphous Polymeric Anode Materials from Poly(acrylic acid) and Metal Oxide for Lithium Ion Batteries", 2015, MIE UNIVERSITY

Similar Documents

Publication Publication Date Title
KR20190088477A (ko) 리튬 고체 상태 전해질 계면 처리
JP7140812B2 (ja) 全固体二次電池用負極層、それを含む全固体二次電池、及びその製造方法
KR20040026207A (ko) 리튬-설퍼 전지용 양극 활물질 및 그 제조방법
JP7283657B2 (ja) 硫黄正極合材およびその製造方法、硫黄正極、リチウム硫黄固体電池
US7781099B2 (en) Non-aqueous electrolyte secondary cell
EP3819964A1 (en) Solid electrolyte, electrochemical cell including solid electrolyte, and method of preparing solid electrolyte
KR20140089244A (ko) 리튬 이차 전지용 양극 조성물, 이를 포함하는 양극, 및 상기 양극을 채용한 리튬 이차 전지
JP2002251992A (ja) 非水溶媒二次電池用電極材料、電極および二次電池
US20240030419A1 (en) Battery and method for manufacturing electrode
US20240030418A1 (en) Battery and method for manufacturing electrode
WO2023017673A1 (ja) 電池
WO2023017672A1 (ja) 電池
WO2023145426A1 (ja) 電池および電極の製造方法
WO2023017735A1 (ja) 電池
KR101885906B1 (ko) 리튬 이차 전지용 양극 조성물, 이를 포함하는 양극, 및 상기 양극을 채용한 리튬 이차 전지
WO2022224571A1 (ja) 電池
WO2023074590A1 (ja) 電池
WO2022163037A1 (ja) 電池
WO2022163039A1 (ja) 電池
WO2023017736A1 (ja) 電池
WO2023106126A1 (ja) 電池
WO2022163038A1 (ja) 電池
CN117501472A (zh) 电池
WO2022255002A1 (ja) 電池
WO2022254975A1 (ja) 電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855737

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023541231

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022855737

Country of ref document: EP

Effective date: 20240311