WO2022163039A1 - 電池 - Google Patents

電池 Download PDF

Info

Publication number
WO2022163039A1
WO2022163039A1 PCT/JP2021/038855 JP2021038855W WO2022163039A1 WO 2022163039 A1 WO2022163039 A1 WO 2022163039A1 JP 2021038855 W JP2021038855 W JP 2021038855W WO 2022163039 A1 WO2022163039 A1 WO 2022163039A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode
solid electrolyte
battery according
battery
Prior art date
Application number
PCT/JP2021/038855
Other languages
English (en)
French (fr)
Inventor
貴司 大戸
正久 藤本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180090459.3A priority Critical patent/CN116848664A/zh
Priority to JP2022578050A priority patent/JPWO2022163039A1/ja
Priority to EP21923045.5A priority patent/EP4287319A1/en
Publication of WO2022163039A1 publication Critical patent/WO2022163039A1/ja
Priority to US18/342,770 priority patent/US20230343998A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to batteries.
  • lithium secondary batteries have been actively researched and developed, and battery characteristics such as charge/discharge voltage, charge/discharge cycle life characteristics, and storage characteristics are greatly affected by the electrodes used. For this reason, improvements in battery characteristics have been attempted by improving electrode active materials.
  • Patent Document 1 discloses a lithium secondary battery comprising a negative electrode, a positive electrode, and an electrolyte made of an alloy containing silicon, tin, and a transition metal.
  • Patent Document 2 discloses a lithium secondary battery including a negative electrode using a silicon thin film provided on a current collector as an active material, a positive electrode, and an electrolyte.
  • the present disclosure provides a battery with good cycle characteristics.
  • the battery of the present disclosure is a first electrode; a second electrode; a solid electrolyte layer positioned between the first electrode and the second electrode; with
  • the first electrode has a current collector and an active material layer positioned between the current collector and the solid electrolyte layer,
  • the active material layer contains Bi as a main component of the active material.
  • a battery with good cycle characteristics can be provided.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of a battery 1000 according to an embodiment of the present disclosure.
  • FIG. 2 is a graph showing the relationship between the thickness of an active material layer made of a Bi-plated layer and the density of the active material.
  • FIG. 3 is a graph showing an example of X-ray diffraction patterns of an active material layer made of a Bi-plated layer formed on a copper foil and Bi powder.
  • 4 is a graph showing the results of a charge/discharge test of the test cell according to Example 1.
  • FIG. 5 is a graph showing the results of a charge-discharge cycle test of the test cell according to Example 1.
  • FIG. 6 is a graph showing the results of a charge/discharge test of the test cell according to Example 2.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of a battery 1000 according to an embodiment of the present disclosure.
  • FIG. 2 is a graph showing the relationship between the thickness of an active material layer made
  • FIG. 7 is a graph showing the results of a charge-discharge cycle test of the test cell according to Example 2.
  • FIG. 8 is a graph showing the results of a charge/discharge test of the test cell according to Example 3.
  • FIG. 9 is a graph showing the results of a charge-discharge cycle test of the test cell according to Example 3.
  • FIG. 10 is a graph showing the results of a charge/discharge test of the test cell according to Example 4.
  • FIG. 11 is a graph showing the results of a charge-discharge cycle test of test cells according to Example 4.
  • FIG. 12 is a graph showing the results of a charge/discharge test of the test cell according to Example 5.
  • FIG. 13 is a graph showing the results of a charge-discharge cycle test of test cells according to Example 5.
  • FIG. 14 is a graph showing the results of a charge/discharge test of the test cell according to Example 6.
  • FIG. 15 is a graph showing the results of a charge-discharge cycle test of the test cell according to Example 6.
  • FIG. 16 is a graph showing the results of a charge/discharge test of the test cell according to Example 7.
  • FIG. 17 is a graph showing the results of a charge-discharge cycle test of test cells according to Example 7.
  • FIG. 18 is a graph showing the results of a charge-discharge cycle test of test cells according to Reference Examples 1 and 2.
  • lithium metal When lithium metal is used as the negative electrode active material, a lithium secondary battery having high energy density per weight and per volume can be obtained.
  • lithium deposits in the form of dendrites during charging. Since part of the deposited lithium metal reacts with the electrolytic solution, the charge/discharge efficiency is low and the cycle characteristics are poor.
  • carbon especially graphite
  • a negative electrode using carbon is charged and discharged by intercalation and deintercalation of lithium into and from carbon.
  • lithium metal does not deposit in a dendrite form due to the charge/discharge mechanism.
  • the reaction is topotactic, so the reversibility is very good, and the charge/discharge efficiency is almost 100%.
  • lithium secondary batteries employing negative electrodes using carbon, particularly graphite have been put to practical use.
  • the theoretical capacity density of graphite is 372 mAh/g, which is about 1/10 of the theoretical capacity density of lithium metal, 3884 mAh/g. Therefore, the active material capacity density of the negative electrode using graphite is low. Furthermore, since the actual capacity density of graphite has almost reached the theoretical capacity density, there is a limit to increasing the capacity of negative electrodes using graphite.
  • lithium secondary batteries using electrodes such as aluminum, silicon, and tin that electrochemically alloy with lithium during charging have long been proposed.
  • the capacity density of metals alloyed with lithium is much higher than that of graphite.
  • the theoretical capacity density of silicon is large. Therefore, electrodes using aluminum, silicon, tin, etc., which are alloyed with lithium, are promising as negative electrodes for batteries exhibiting high capacity, and various secondary batteries using these as negative electrodes have been proposed (Patent Documents 1).
  • a negative electrode that uses a metal that alloys with lithium as described above expands when it absorbs lithium and contracts when it releases lithium. If such expansion and contraction are repeated during charging and discharging, the alloy itself, which is the electrode active material, will be pulverized due to charging and discharging, and the current collection characteristics of the negative electrode will deteriorate, so sufficient cycle characteristics have not been obtained.
  • the following attempts have been made to improve such drawbacks. For example, attempts have been made to deposit silicon on a roughened current collector by sputtering or evaporation, or to deposit tin by electroplating (Patent Document 2). In this trial, the active material, that is, the metal that alloys with lithium forms a thin film and adheres to the current collector. not decrease.
  • the active material is formed by sputtering or vapor deposition as described above, the manufacturing cost is high and it is not practical. Although it is practical to form the active material by electroplating, which is inexpensive to manufacture, silicon is very difficult to electroplate. In addition, tin, which is easily electroplated, has poor discharge flatness and is difficult to use as a battery electrode.
  • Bi bismuth
  • LiBi lithium
  • LiBi lithium
  • Li 3 Bi Li 3 Bi
  • the potential of LiBi and the potential of Li 3 Bi are almost the same.
  • tin which has poor discharge flatness
  • Bi does not have the property that different types of compounds formed with lithium have different potentials, unlike tin. Therefore, an electrode containing Bi as an active material has a flat electric potential, and is therefore excellent in discharge flatness. Therefore, an electrode containing Bi as an active material is considered suitable as a battery electrode.
  • a battery with an electrode including an active material layer containing Bi as the main component of the active material sometimes decreased to 1/3 or less of the initial capacity after about 20 cycles of repeated charging and discharging.
  • the battery according to the first aspect of the present disclosure includes a first electrode; a second electrode; a solid electrolyte layer positioned between the first electrode and the second electrode; with The first electrode has a current collector and an active material layer positioned between the current collector and the solid electrolyte layer, The active material layer contains Bi as a main component of the active material.
  • the electrolyte layer is a solid electrolyte layer. Therefore, even if the active material layer containing Bi as the main component of the active material repeatedly expands and shrinks due to charging and discharging, the electrolyte does not enter the active material layer, so that the reduction of the electron conduction path in the active material layer can be suppressed. . Therefore, the battery according to the first aspect has good cycle characteristics.
  • the solid electrolyte layer may contain a halide solid electrolyte, and the halide solid electrolyte does not contain sulfur.
  • the battery according to the second aspect has good cycle characteristics.
  • the halide solid electrolyte may be a compound composed of Li, M1, and X1.
  • M1 is at least one selected from the group consisting of metal elements other than Li and metalloid elements
  • X1 is at least one selected from the group consisting of F, Cl, Br, and I.
  • the battery according to the third aspect has higher capacity and better cycle characteristics.
  • M1 may contain Y and X1 may contain Cl and Br.
  • the battery according to the fourth aspect has higher capacity and better cycle characteristics.
  • the solid electrolyte layer may contain a sulfide solid electrolyte.
  • the battery according to the fifth aspect has good cycle characteristics.
  • the solid electrolyte layer may consist essentially of a sulfide solid electrolyte.
  • the battery according to the sixth aspect has higher capacity and better cycle characteristics.
  • the sulfide solid electrolyte may have an aldirodite-type crystal structure.
  • the battery according to the seventh aspect has higher capacity and better cycle characteristics.
  • the composition formula of the sulfide solid electrolyte is Li 7-a AS 6-a X2 a good.
  • A is at least one selected from the group consisting of P and As
  • X2 is at least one selected from the group consisting of Cl, Br, and I
  • a is 0 ⁇ a ⁇ 1 Sufficient.
  • the battery according to the eighth aspect has higher capacity and better cycle characteristics.
  • the composition formula of the sulfide solid electrolyte may be Li 6 PS 5 Cl.
  • the battery according to the ninth aspect has higher capacity and better cycle characteristics.
  • the density of the active material is 6.0 g/cm 3 or more and 9.8 g/cm 3 or less.
  • the density of the active material is the density of the active material when the battery is in a fully discharged state when the first electrode is a negative electrode, and the density of the active material when the first electrode is a positive electrode. , is the density of the active material when the battery is in a fully charged state.
  • the battery according to the tenth aspect has high capacity and good cycle characteristics.
  • the density of the active material may be 7.5 g/cm 3 or more and 9.8 g/cm 3 or less.
  • the battery according to the eleventh aspect has higher capacity and better cycle characteristics.
  • an X-ray diffraction pattern of the active material layer obtained by surface X-ray diffraction measurement using Cu—K ⁇ rays the height of the maximum peak present in the range of diffraction angles 2 ⁇ of 26° or more and 28° or less is defined as I(1), and the height of the maximum peak present in the range of diffraction angles 2 ⁇ of 37° or more and 39° or less.
  • I(2), I(2)/I(1), which is the ratio of I(2) to I(1) may be 0.29 or more.
  • the battery according to the twelfth aspect has higher capacity and better cycle characteristics.
  • I(2)/I(1) may be 0.57 or less.
  • the battery according to the thirteenth aspect has higher capacity and better cycle characteristics.
  • the active material layer may contain Bi alone.
  • the battery according to the fourteenth aspect has higher capacity and better cycle characteristics.
  • the active material layer may contain at least one selected from the group consisting of LiBi and Li 3 Bi good.
  • the battery according to the fifteenth aspect has higher capacity and better cycle characteristics.
  • the active material layer may contain only Bi as an active material.
  • the battery according to the sixteenth aspect has higher capacity and better cycle characteristics.
  • the active material layer may not contain an electrolyte.
  • a battery having higher capacity per volume and good cycle characteristics can be obtained.
  • the current collector may contain Cu.
  • the battery according to the eighteenth aspect has higher capacity and better cycle characteristics.
  • the active material layer may be a plating layer.
  • a battery having a higher capacity per volume and good cycle characteristics can be obtained.
  • the first electrode may be a negative electrode and the second electrode may be a positive electrode.
  • the battery according to the twentieth aspect has higher capacity and better cycle characteristics.
  • the second electrode may contain a compound represented by the following compositional formula (1): .
  • x satisfies 0 ⁇ x ⁇ 1
  • Me is at least one element selected from the group consisting of Mn, Co, and Al.
  • the battery according to the twenty-first aspect can reduce the manufacturing cost of the second electrode, can increase the average discharge voltage, and has a higher capacity and good cycle characteristics.
  • x may satisfy 0.5 ⁇ x ⁇ 1.
  • the battery according to the 22nd aspect has a higher capacity and good cycle characteristics.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of a battery 1000 according to an embodiment of the present disclosure.
  • a battery 1000 includes a first electrode 101 , a second electrode 103 , and a solid electrolyte layer 102 located between the first electrode 101 and the second electrode 103 .
  • the first electrode 101 has a current collector 100 and an active material layer 104 located between the current collector 100 and the solid electrolyte layer 102 .
  • Active material layer 104 contains Bi as a main component of the active material.
  • the electrolyte layer is the solid electrolyte layer 102. Therefore, even if the active material layer 104 containing Bi as a main component of the active material repeatedly expands and contracts due to charging and discharging, the electrolyte does not enter the active material layer 104 . Therefore, reduction in electron conduction paths in the active material layer 104 due to repeated charging and discharging is suppressed. Therefore, battery 1000 has good cycle characteristics.
  • the battery 1000 is, for example, a lithium secondary battery.
  • a case in which lithium ions are intercalated and deintercalated in the active material layer 104 of the first electrode 101 and the second electrode 103 during charging and discharging of the battery 1000 will be described as an example.
  • the active material layer 104 contains Bi as the main component of the active material means that "In the active material layer 104, the component contained in the active material in the largest molar ratio is Bi.”
  • the density of the active material contained in active material layer 104 may be 6.0 g/cm 3 or more and 9.8 g/cm 3 or less.
  • the density of the active material contained in the active material layer 104 of the first electrode 101 refers to the density of the active material layer when the battery 1000 is in a completely discharged state when the first electrode 101 is a negative electrode. 104, and when the first electrode 101 is the positive electrode, it is the density of the active material contained in the active material layer 104 when the battery 1000 is fully charged. That is, the density of the active material contained in the active material layer 104 of the first electrode 101 specified in this specification refers to the active material density when lithium ions are released from the active material layer 104 by full charge or full discharge. It is the density of the active material contained in the material layer 104 .
  • the “fully charged state” in the battery of the present disclosure is a constant current (e.g., 0.05 C with respect to the theoretical capacity) and a predetermined voltage (e.g., the negative electrode potential is 0 V based on the lithium reference electrode). This refers to the state in which the battery has been charged.
  • the “completely discharged state” in the battery of the present disclosure is a constant current (e.g., 0.05 C with respect to the theoretical capacity) and a predetermined voltage (e.g., the negative electrode potential is 2 V based on the lithium reference electrode).
  • the density of the active material contained in the active material layer 104 can be obtained, for example, by extracting the active material from the active material layer 104 and calculating the density of the extracted active material using, for example, the Archimedes method.
  • the active material layer 104 is composed of a thin film substantially made of an active material
  • at least part of the thin film is taken out as a sample, and the density of the sample is calculated using, for example, the Archimedes method.
  • the density of the active material is obtained.
  • a thin film substantially composed of an active material means a thin film having an active material content of 90% by mass or more.
  • the active material layer 104 in which the main component of the active material is Bi and the density of the active material is 6.0 g/cm 3 or more and 9.8 g/cm 3 or less, is, for example, Bi formed in a thin film (hereinafter referred to as Bi). , “Bi thin film”).
  • Bi a thin film
  • the active material layer 104 composed of a high-density Bi thin film that satisfies the above density range can have high adhesion to the current collector 100 when provided in contact with the current collector 100 .
  • the active material that is, the metal that alloys with lithium, Bi, is in close contact with the current collector 100 in the form of a thin film.
  • the electronic conduction path can be maintained.
  • the density of the active material contained in the active material layer 104 of the first electrode 101 in the present disclosure is 6.0 g/cm 3 or more and 9.8 g/cm 3 or less, the active material layer Even if the expansion and contraction of 104 are repeated, the current collecting property is unlikely to deteriorate. Therefore, when the active material contained in the active material layer 104 of the first electrode 101 satisfies a density of 6.0 g/cm 3 or more and 9.8 g/cm 3 or less, the battery 1000 can have good cycle characteristics. can.
  • the active material layer 104 composed of a Bi thin film satisfying the above density range is an active material layer with a high active material density, and can provide a sufficient electron conduction path. Therefore, the first electrode 101 having the active material layer 104 made of a Bi thin film can achieve a higher capacity than an electrode having an active material layer made of Bi powder. Therefore, when the active material contained in the active material layer 104 of the first electrode 101 satisfies a density of 6.0 g/cm 3 or more and 9.8 g/cm 3 or less, the battery 1000 of the present disclosure exhibits good cycle characteristics. In addition, high capacity can also be achieved.
  • the density of the active material contained in the active material layer 104 may be 6.5 g/cm 3 or more and 9.8 g/cm 3 or less, and may be 7.0 g/cm 3 or more and 9.8 g/cm 3 or less. There may be.
  • the battery 1000 can have better cycle characteristics and higher capacity.
  • the density of the active material contained in active material layer 104 may be 7.5 g/cm 3 or more and 9.8 g/cm 3 or less.
  • first electrode 101 including active material layer 104 containing an active material with a high density of 7.5 g/cm 3 or more can further improve the cycle characteristics and capacity of battery 1000 .
  • I (2) 1
  • I (2)/I(1) 1
  • the maximum peak present in the diffraction angle 2 ⁇ range of 26° or more and 28° or less corresponds to the peak derived from the (1,0,-1,2) plane of single Bi.
  • the maximum peak present in the range of diffraction angles 2 ⁇ from 37° to 39° in the X-ray diffraction pattern corresponds to the peak derived from the (1,0, ⁇ 1,4) plane of single Bi.
  • the fact that the peak intensity ratio I(2)/I(1) is 0.29 or more means that, on the surface of the active material layer 104, the (1 , 0, ⁇ 1, 2) to (1,0, ⁇ 1,4) planes.
  • the orientation of the (1,0,-1,4) plane on the surface of the active material layer 104 is stronger.
  • the active material layer 104 having such orientation in the crystal structure of single Bi on the surface can have high adhesion to the current collector 100 . Therefore, since the active material layer 104 has such a surface orientation, even if the active material layer 104 repeatedly expands and contracts due to charging and discharging, the current collecting property hardly deteriorates. Therefore, the battery 1000 of the present disclosure can have better cycling characteristics and higher capacity.
  • the peak intensity ratio I(2)/I(1) may be 0.57 or less.
  • the X-ray diffraction pattern of the active material layer 104 was obtained by X-ray diffraction measurement by the ⁇ -2 ⁇ method using Cu-K ⁇ rays with wavelengths of 1.5405 ⁇ and 1.5444 ⁇ , that is, wavelengths of 0.15405 nm and 0.15444 nm. can be obtained.
  • the diffraction angle of the peak in the X-ray diffraction pattern is the maximum of the mountain-shaped portion having a signal-to-noise ratio (that is, the ratio of the signal S to the background noise N) of 1.3 or more and a half-value width of 10° or less. Defined as the angle of intensity.
  • the half-value width is the width represented by the difference between two diffraction angles at which the intensity is half the value of IMAX , where IMAX is the maximum intensity of the X-ray diffraction peak.
  • the active material layer 104 containing Bi as the main component of the active material and composed of a Bi thin film that satisfies the above density range and surface orientation can be produced, for example, by electroplating.
  • a method of manufacturing the first electrode 101 by forming the active material layer 104 by electroplating is, for example, as follows.
  • the current collector 100 serves as a base material, for example.
  • a copper foil is prepared as the current collector 100 .
  • the copper foil is preliminarily degreased with an organic solvent, one side is masked and immersed in an acid solvent for degreasing, thereby activating the copper foil surface.
  • the activated copper foil is connected to a power source so that current can be applied.
  • a copper foil connected to a power supply is immersed in a bismuth plating bath.
  • the bismuth plating bath for example, an organic acid bath containing Bi 3+ ions and an organic acid is used.
  • Bi is electroplated on the unmasked copper foil surface.
  • the copper foil is recovered from the plating bath, removed from the masking, washed with pure water, and dried.
  • the bismuth plating bath used for forming the active material layer 104 is not particularly limited, and can be appropriately selected from known bismuth plating baths capable of depositing a simple Bi thin film.
  • organic sulfonic acid baths In bismuth plating baths, organic sulfonic acid baths, gluconic acid and ethylenediaminetetraacetic acid (EDTA) baths, or citric acid and EDTA baths can be used as organic acid baths.
  • EDTA ethylenediaminetetraacetic acid
  • a sulfuric acid bath for example, may be used as the bismuth plating bath.
  • Additives may also be added to the bismuth plating bath.
  • the active material layer 104 produced by electroplating Bi may be described as "an active material layer made of a Bi-plated layer.”
  • FIG. 2 is a graph showing the relationship between the thickness of an active material layer made of a Bi-plated layer and the density of the active material.
  • the density of the active material in this case can be obtained by obtaining the density of the active material layer made of the Bi plating layer.
  • a sample of the active material layer composed of the Bi-plated layer was produced in the same manner as in Example 1, which will be described later. However, the application time of the current to the copper foil, which is the plating base material, was adjusted aiming at plating thicknesses of 1 ⁇ m, 3 ⁇ m, 5 ⁇ m, and 10 ⁇ m, and four samples of the active material layer were produced. The relationship between the thickness of the active material layer and the density of the active material was obtained from the mass, area, and thickness of the active material layer.
  • the thickness of the obtained Bi plating layer was measured using a fluorescent X-ray analyzer (SEA6000VX, manufactured by Seiko Instruments Inc.).
  • the thickness of the active material layer in the four samples was 1.5 ⁇ m, 4.5 ⁇ m, 6.2 ⁇ m, and 10 ⁇ m.
  • the density of the active material ranges from 7.5 g/cm 3 to 9.8 g/cm 3 .
  • FIG. 3 is a graph showing an example of X-ray diffraction patterns of an active material layer made of a Bi-plated layer produced on a copper foil and Bi powder.
  • the X-ray diffraction pattern was obtained from the surface of the Bi plating layer, that is, from the thickness direction of the active material layer 104 using an X-ray diffractometer (MiNi Flex manufactured by RIGAKU) with Cu-K ⁇ rays having wavelengths of 1.5405 ⁇ and 1.5444 ⁇ . is measured by the ⁇ -2 ⁇ method using X-rays.
  • Table 1 shows the X-ray diffraction patterns of the Bi plating layer and the Bi powder obtained by surface X-ray diffraction measurement using Cu-K ⁇ rays. Calculation results of the intensity ratio I(2)/I(1) between the height intensity I(1) and the height intensity I(2) of the maximum peak existing in the range of the diffraction angle 2 ⁇ of 37° or more and 39° or less is a table showing Table 1 shows the measurement results of Bi plating layers with various thicknesses and the results of three measurements of Bi powder.
  • the ratio I(2)/I(1) is 0.29 or more. Therefore, on the surface of the active material layer 104 produced by electroplating Bi, the (1, 0, -1, 2) plane of Bi simple substance having a trigonal crystal structure in the space group R-3m It can be seen that the ratio of (1,0,-1,4) planes is high. That is, it can be seen that the orientation of the (1,0,-1,4) plane is stronger on the surface of the active material layer 104 . Further, in the X-ray diffraction pattern shown in FIG.
  • first electrode 101 has current collector 100 and active material layer 104 .
  • the configuration of the active material layer 104 is as described above.
  • the first electrode 101 functions as a negative electrode. Therefore, the active material layer 104 includes a negative electrode active material that has the property of intercalating and deintercalating lithium ions.
  • Bi contained in the active material layer 104 functions as a negative electrode active material.
  • the active material layer 104 contains, for example, Bi alone.
  • Bi is an active material that absorbs and releases lithium ions at 0.8 V with respect to lithium.
  • Bi is a metal that alloys with lithium. Lithium is occluded when Bi forms an alloy with lithium during charging. That is, a lithium-bismuth alloy is produced at the first electrode 101 when the battery 1000 is charged.
  • the produced lithium-bismuth alloy contains, for example, at least one selected from the group consisting of LiBi and Li 3 Bi. That is, when the battery 1000 is charged, the active material layer 104 contains at least one selected from the group consisting of LiBi and Li 3 Bi, for example.
  • the lithium bismuth alloy returns to Bi.
  • the active material layer 104 may contain only Bi as an active material.
  • the active material layer 104 may not contain an electrolyte.
  • the active material layer 104 may be a layer made of Bi alone and/or a lithium-bismuth alloy produced during charging.
  • the active material layer 104 may be arranged in direct contact with the surface of the current collector 100 .
  • the active material layer 104 may be in the form of a thin film.
  • the active material layer 104 may be a plated layer formed by depositing Bi by plating.
  • the active material layer 104 may be a Bi-plated layer provided in direct contact with the surface of the current collector 100 .
  • the active material layer 104 When the active material layer 104 is a plated layer provided in direct contact with the surface of the current collector 100 , the active material layer 104 adheres to the current collector 100 . As a result, it is possible to suppress the deterioration of the current collection characteristics of the first electrode 101 that occurs when the active material layer 104 repeatedly expands and contracts. Therefore, the cycle characteristics of battery 1000 are further improved. Furthermore, when the active material layer 104 is a plated layer, the active material layer 104 contains Bi, which is an active material, at a high density, so that the capacity can be further increased.
  • the active material layer 104 may contain materials other than Bi.
  • the active material layer 104 may further contain a conductive material.
  • Conductive materials include carbon materials, metals, inorganic compounds, and conductive polymers.
  • Carbon materials include graphite, acetylene black, carbon black, ketjen black, carbon whiskers, needle coke, and carbon fibers.
  • Graphite includes natural graphite and artificial graphite.
  • Natural graphite includes massive graphite and flake graphite.
  • Metals include copper, nickel, aluminum, silver, and gold.
  • Inorganic compounds include tungsten carbide, titanium carbide, tantalum carbide, molybdenum carbide, titanium boride, and titanium nitride. These materials may be used alone, or a mixture of multiple types may be used.
  • the active material layer 104 may further contain a binder.
  • Binders include fluorine-containing resins, thermoplastic resins, ethylene propylene diene monomer (EPDM) rubber, sulfonated EPDM rubber, and natural butyl rubber (NBR).
  • Fluorine-containing resins include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluororubber.
  • Thermoplastic resins include polypropylene and polyethylene. These materials may be used alone, or a mixture of multiple types may be used.
  • the thickness of the active material layer 104 is not particularly limited, and may be, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the material of the current collector 100 is, for example, a single metal or alloy. More specifically, it may be a single metal or alloy containing at least one selected from the group consisting of copper, chromium, nickel, titanium, platinum, gold, aluminum, tungsten, iron, and molybdenum. Current collector 100 may be stainless steel.
  • the current collector 100 may contain copper (Cu).
  • the current collector 100 may be plate-shaped or foil-shaped. From the viewpoint of easily ensuring high conductivity, the negative electrode current collector may be a metal foil or a metal foil containing copper. Metal foils containing copper include, for example, copper foils and copper alloy foils. The content of copper in the metal foil may be 50% by mass or more, or may be 80% by mass or more. In particular, the metal foil may be a copper foil containing substantially only copper as metal. The thickness of the current collector 100 may be, for example, 5 ⁇ m or more and 20 ⁇ m or less.
  • the current collector 100 may be a laminated film.
  • Solid electrolyte layer As the solid electrolyte contained in the solid electrolyte layer 102, a halide solid electrolyte, a sulfide solid electrolyte, an oxide solid electrolyte, a polymer solid electrolyte, or a complex hydride solid electrolyte may be used.
  • the solid electrolyte layer 102 may contain a halide solid electrolyte.
  • a halide solid electrolyte means a solid electrolyte containing a halogen element.
  • the halide solid electrolyte may contain not only halogen elements but also oxygen.
  • Halide solid electrolytes do not contain sulfur (S).
  • the halide solid electrolyte may be a compound consisting of Li, M1 and X1. That is, the halide solid electrolyte may be, for example, a material represented by the following compositional formula (2).
  • ⁇ , ⁇ , and ⁇ are values greater than 0
  • M1 is at least one selected from the group consisting of metal elements other than Li and metalloid elements
  • X1 is F, Cl, Br , and at least one selected from the group consisting of I.
  • Simetallic elements are B, Si, Ge, As, Sb, and Te.
  • Metallic element means all elements contained in Groups 1 to 12 of the periodic table except hydrogen, and B, Si, Ge, As, Sb, Te, C, N, P, O, S, and It is an element contained in all Groups 13 to 16 except Se. In other words, it is a group of elements that can become cations when a halogen compound and an inorganic compound are formed.
  • M1 may contain Y, and X1 may contain Cl and Br.
  • Halide solid electrolytes include, for example, Li3 (Ca, Y, Gd)X16, Li2MgX4 , Li2FeX14 , Li ( Al, Ga, In )X14, Li3 ( Al, Ga, In ) X1 6 , LiI, etc. may be used.
  • the element X1 is at least one selected from the group consisting of F, Cl, Br and I.
  • this notation indicates at least one element selected from the parenthesized element group. That is, "(Al, Ga, In)” is synonymous with "at least one selected from the group consisting of Al, Ga and In". The same is true for other elements.
  • halide solid electrolyte is the compound represented by LiaM2bYcX16 .
  • M2 is at least one selected from the group consisting of metal elements other than Li and Y and metalloid elements.
  • m represents the valence of M2.
  • Semimetallic elements are B, Si, Ge, As, Sb, and Te.
  • Metallic element means all elements contained in Groups 1 to 12 of the periodic table (excluding hydrogen), and all elements contained in Groups 13 to 16 of the periodic table (however, B , Si, Ge, As, Sb, Te, C, N, P, O, S, and Se).
  • M2 is a group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta, and Nb to enhance the ionic conductivity of the halide solid electrolyte material. It may be at least one more selected.
  • the halide solid electrolyte may be Li3YCl6 , Li3YBr6 , or Li3YBrpCl6 - p . Note that p satisfies 0 ⁇ p ⁇ 6.
  • the ionic conductivity of the solid electrolyte layer 102 can be increased. This can reduce the decrease in the energy density of the battery.
  • the solid electrolyte layer 102 may consist essentially of a halide solid electrolyte. In this specification, the term “substantially” means that the content of impurities is allowed to be less than 0.1% by mass.
  • the solid electrolyte layer 102 may consist only of a halide solid electrolyte.
  • the solid electrolyte layer 102 may contain a sulfide solid electrolyte.
  • a sulfide solid electrolyte means a solid electrolyte containing sulfur (S).
  • the sulfide solid electrolyte may contain not only sulfur but also halogen elements.
  • Examples of sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Alternatively, Li 10 GeP 2 S 12 or the like may be used.
  • the sulfide solid electrolyte may have an aldirodite crystal structure.
  • the sulfide solid electrolyte may be Li7 - a AS6 -a X2a.
  • A is at least one selected from the group consisting of P and As
  • X2 is at least one selected from the group consisting of Cl, Br, and I
  • a is 0 ⁇ a ⁇ 1 Sufficient.
  • Li 7-a AS 6-a X a is a sulfide solid electrolyte having an aldirodite-type crystal structure.
  • the sulfide solid electrolyte may be Li3PS5Cl .
  • Li 3 PS 5 Cl is a sulfide solid electrolyte having an aldirodite-type crystal structure.
  • the ionic conductivity of the solid electrolyte layer 102 can be increased. This can reduce the decrease in the energy density of the battery.
  • the solid electrolyte layer 102 may consist essentially of a sulfide solid electrolyte.
  • the solid electrolyte layer 102 may consist only of a sulfide solid electrolyte.
  • the solid electrolyte layer 102 may contain an oxide solid electrolyte.
  • oxide solid electrolytes include NASICON solid electrolytes typified by LiTi 2 (PO 4 ) 3 and element-substituted products thereof, (LaLi)TiO 3 -based perovskite solid electrolytes, Li 14 ZnGe 4 O 16 , Li LISICON solid electrolytes typified by 4 SiO 4 , LiGeO 4 and elemental substitutions thereof, garnet type solid electrolytes typified by Li 7 La 3 Zr 2 O 12 and elemental substitutions thereof, Li 3 PO 4 and its N substitutions glass or glass-ceramics based on Li—BO compounds such as LiBO 2 and Li 3 BO 3 , with additions of Li 2 SO 4 , Li 2 CO 3 , etc., and the like can be used.
  • the solid electrolyte layer 102 may contain a polymeric solid electrolyte.
  • a compound of a polymer compound and a lithium salt can be used as the polymer solid electrolyte.
  • the polymer compound may have an ethylene oxide structure.
  • a polymer compound having an ethylene oxide structure can contain a large amount of lithium salt. Therefore, the ionic conductivity can be further increased.
  • Lithium salts include LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiSO3CF3, LiN(SO2CF3)2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 ) ( SO2C4F9 ), and LiC ( SO2CF3 ) 3 , etc. may be used.
  • One lithium salt selected from the exemplified lithium salts can be used alone. Alternatively, mixtures of two or more lithium salts selected from the exemplified lithium salts can be used.
  • the solid electrolyte layer 102 may contain a complex hydride solid electrolyte.
  • complex hydride solid electrolytes for example, LiBH 4 --LiI, LiBH 4 --P 2 S 5 , etc. can be used.
  • the solid electrolyte layer 102 may further contain a binder.
  • a binder the same material as the material that can be used for the active material layer 104 may be used.
  • the solid electrolyte layer 102 may have a thickness of 1 ⁇ m or more and 500 ⁇ m or less. When solid electrolyte layer 102 has a thickness of 1 ⁇ m or more, first electrode 101 and second electrode 103 are less likely to short-circuit. When the solid electrolyte layer 102 has a thickness of 500 ⁇ m or less, the battery can operate at high output.
  • the shape of the solid electrolyte is not particularly limited.
  • its shape may be, for example, acicular, spherical, ellipsoidal, or the like.
  • the shape of the solid electrolyte may be particulate.
  • the median diameter of the solid electrolyte may be 100 ⁇ m or less, or 10 ⁇ m or less.
  • volume diameter means the particle size when the cumulative volume in the volume-based particle size distribution is equal to 50%.
  • the volume-based particle size distribution is measured by, for example, a laser diffraction measurement device or an image analysis device.
  • the solid electrolyte contained in the solid electrolyte layer 102 can be manufactured by the following method.
  • Raw material powder is prepared so that it has the desired composition.
  • Examples of raw powders are oxides, hydroxides, halides or acid halides.
  • the solid electrolyte is a halide solid electrolyte and the desired composition is Li3YBr4Cl2
  • the molar ratio of LiBr, YCl, and YBr is approximately 3 :0.66:0.33.
  • the raw material powders may be mixed in pre-adjusted molar ratios to compensate for possible compositional changes in the synthesis process.
  • the raw material powders are mechanochemically reacted with each other in a mixing device such as a planetary ball mill (that is, using the method of mechanochemical milling) to obtain a reactant.
  • the reactants may be fired in vacuum or in an inert atmosphere.
  • a mixture of raw material powders may be fired in vacuum or in an inert atmosphere to obtain a reactant. Firing is preferably performed at, for example, 100° C. or higher and 300° C. or lower for 1 hour or longer.
  • the raw material powder is desirably fired in a sealed container such as a quartz tube.
  • the solid electrolyte of the solid electrolyte layer 102 is obtained.
  • the sulfide solid electrolyte can be produced by the following method.
  • Raw material powder is prepared so that it has the desired composition.
  • the desired composition is Li 6 PS 5 Cl
  • Li 2 S, P 2 S 5 and LiCl are mixed in a molar ratio on the order of 2.5:0.5:1.
  • the raw material powders may be mixed in pre-adjusted molar ratios to compensate for possible compositional changes in the synthesis process.
  • the raw material powder is pulverized and mixed in a mixing device such as a planetary ball mill, bead mill or homogenizer. After drying the mixture, it is fired at 350° C. or higher and 550° C. or lower in an inert atmosphere or hydrogen sulfide gas (H 2 S) atmosphere. Firing is desirably performed for, for example, 8 hours or longer.
  • the raw material powder is desirably fired in a sealed container such as a quartz tube.
  • a sulfide solid electrolyte is obtained by pulverizing or pulverizing the fired product to a predetermined particle size.
  • the second electrode 103 functions as a positive electrode.
  • the second electrode 103 contains a material capable of intercalating and deintercalating metal ions such as lithium ions.
  • the material is, for example, a positive electrode active material.
  • the second electrode 103 may have a current collector 105 and an active material layer 106 .
  • Active material layer 106 includes a positive electrode active material.
  • the active material layer 106 is arranged, for example, between the current collector 105 and the solid electrolyte layer 102 .
  • the active material layer 106 may be arranged on the surface of the current collector 105 in direct contact with the current collector 105 .
  • positive electrode active materials examples include lithium-containing transition metal oxides, transition metal fluorides, polyanion materials, fluorinated polyanion materials, transition metal sulfides, transition metal oxysulfides, or transition metal oxynitrides.
  • lithium-containing transition metal oxides include LiNi1 -xyCoxAlyO2 ( ( x + y ) ⁇ 1), LiNi1 -xyCoxMnyO2 ( ( x + y ) ⁇ 1 ) or LiCoO2, etc.
  • the positive electrode active material may include Li(Ni,Co,Mn) O2 .
  • the second electrode 103 may contain a compound represented by the following compositional formula (1).
  • x satisfies 0 ⁇ x ⁇ 1
  • Me is at least one element selected from the group consisting of Mn, Co, and Al.
  • x may satisfy 0.5 ⁇ x ⁇ 1.
  • the compound represented by the above compositional formula (1) can function, for example, as a positive electrode active material.
  • Materials for the current collector 105 include, for example, metal materials.
  • Metal materials include copper, stainless steel, iron, and aluminum.
  • the second electrode 103 may contain a solid electrolyte.
  • the solid electrolyte the solid electrolyte exemplified as the material forming the solid electrolyte layer 102 may be used.
  • the positive electrode active material may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the positive electrode active material and the solid electrolyte can form a good dispersion state. This improves the charge/discharge characteristics of the battery.
  • the positive electrode active material has a median diameter of 100 ⁇ m or less, the lithium diffusion rate is improved. This allows the battery to operate at high output.
  • the positive electrode active material may have a larger median diameter than the solid electrolyte. Thereby, the positive electrode active material and the solid electrolyte can form a good dispersion state.
  • the ratio of the volume of the positive electrode active material to the sum of the volume of the positive electrode active material and the volume of the solid electrolyte is 0.30 or more and 0.95 or less. good too.
  • a coating layer may be formed on the surface of the positive electrode active material in order to prevent the solid electrolyte from reacting with the positive electrode active material. Thereby, an increase in the reaction overvoltage of the battery can be suppressed.
  • coating materials contained in the coating layer are sulfide solid electrolytes, oxide solid electrolytes or halide solid electrolytes.
  • the thickness of the second electrode 103 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the second electrode 103 is 10 ⁇ m or more, a sufficient energy density of the battery can be secured. When the thickness of the second electrode 103 is 500 ⁇ m or less, the battery can operate at high output.
  • the second electrode 103 may contain a conductive material for the purpose of enhancing electronic conductivity.
  • the second electrode 103 may contain a binder.
  • the same materials that can be used for the active material layer 104 may be used as the conductive material and the binder.
  • the second electrode 103 may contain a non-aqueous electrolyte, a gel electrolyte, or an ionic liquid for the purpose of facilitating the transfer of lithium ions and improving the output characteristics of the battery.
  • the non-aqueous electrolyte contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • non-aqueous solvents are cyclic carbonate solvents, chain carbonate solvents, cyclic ether solvents, chain ether solvents, cyclic ester solvents, chain ester solvents, or fluorine solvents.
  • cyclic carbonate solvents are ethylene carbonate, propylene carbonate, or butylene carbonate.
  • linear carbonate solvents are dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate.
  • Examples of cyclic ether solvents are tetrahydrofuran, 1,4-dioxane, or 1,3-dioxolane.
  • Examples of linear ether solvents are 1,2-dimethoxyethane or 1,2-diethoxyethane.
  • An example of a cyclic ester solvent is ⁇ -butyrolactone.
  • An example of a linear ester solvent is methyl acetate.
  • Examples of fluorosolvents are fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, or fluorodimethylene carbonate.
  • One non-aqueous solvent selected from these may be used alone. Alternatively, a mixture of two or more non-aqueous solvents selected from these may be used.
  • lithium salts are LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiSO3CF3, LiN(SO2CF3)2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 ). ( SO2C4F9 ) , or LiC ( SO2CF3 ) 3 .
  • One lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used.
  • the lithium salt concentration is, for example, in the range of 0.5 mol/liter or more and 2 mol/liter or less.
  • a polymer material impregnated with a non-aqueous electrolyte can be used as the gel electrolyte.
  • examples of polymeric materials are polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, or polymers with ethylene oxide linkages.
  • ionic liquids examples include (i) aliphatic chain quaternary salts such as tetraalkylammonium or tetraalkylphosphonium; (ii) aliphatic cyclic ammoniums such as pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums, or piperidiniums; or (iii) nitrogen-containing heteroatoms such as pyridiniums or imidazoliums. It is a ring aromatic cation.
  • Examples of anions contained in the ionic liquid are PF 6 ⁇ , BF 4 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ , SO 3 CF 3 ⁇ , N(SO 2 CF 3 ) 2 ⁇ , N(SO 2 C 2 F 5 ) 2- , N( SO2CF3 ) ( SO2C4F9 ) - , or C ( SO2CF3 ) 3- .
  • the ionic liquid may contain a lithium salt.
  • the configuration example in which the first electrode 101 is the negative electrode and the second electrode 103 is the positive electrode has been described. good too.
  • the active material layer 104 is a positive electrode active material layer. That is, Bi contained in the active material layer 104 functions as a positive electrode active material.
  • the second electrode 103 which is the negative electrode, is made of lithium metal, for example.
  • a battery 1000 has a basic configuration of a first electrode 101, a solid electrolyte layer 102, and a second electrode 103, and is enclosed in a sealed container so as to prevent air and moisture from entering.
  • the shape of the battery 1000 includes a coin shape, a cylindrical shape, a square shape, a sheet shape, a button shape, a flat shape, a laminate shape, and the like.
  • Example 1 ⁇ Production of first electrode>
  • a copper foil (10 cm x 10 cm, thickness: 12 ⁇ m) was preliminarily degreased with an organic solvent, masked on one side, and immersed in an acidic solvent for degreasing and activation of the copper foil surface.
  • a plating bath was prepared by adding bismuth methanesulfonate as a soluble bismuth salt to 1.0 mol/L of methanesulfonic acid so that Bi 3+ ions would be 0.18 mol/L.
  • the activated copper foil was immersed in the plating bath after being connected to a power source so that current could be applied.
  • the unmasked copper foil surface was electroplated with Bi to a thickness of about 1 ⁇ m.
  • the copper foil was recovered from the acid bath, washed with pure water after removing the masking, dried, and punched out to a size of 2 cm ⁇ 2 cm to obtain a first electrode. That is, the first electrode of Example 1 had a configuration in which an active material layer made of a Bi-plated layer was provided on a current collector made of copper foil.
  • the density of the active material contained in the active material layer made of the Bi-plated layer can be obtained from the graph of FIG. 2 and was 7.5 g/cm 3 .
  • the X-ray diffraction pattern obtained by surface X-ray diffraction measurement of the active material layer made of the Bi-plated layer is shown in FIG. 3, and the peak intensity ratio I(2)/I(1) is shown in Table 1. ing. In the active material layer of the battery according to Example 1, the peak intensity ratio I(2)/I(1) was 0.29 or more.
  • current collectors made of stainless steel were attached to the working electrode and the counter electrode, and current collecting leads were attached to the current collectors.
  • the test cell of Example 1 was obtained, in which the first electrode, which is an electrode having an active material layer made of a Bi-plated layer, was used as the working electrode, and the lithium-indium alloy was used as the counter electrode.
  • the test cell produced here is a unipolar test cell using a working electrode and a counter electrode, and is used to test the performance of one of the electrodes in a secondary battery.
  • the working electrode is the electrode under test and the counter electrode is a suitable active material in sufficient quantity to cover the reaction of the working electrode. Since this test cell tests the performance of the first electrode as a negative electrode, a large excess of lithium-indium alloy was used as the counter electrode, as is commonly used.
  • the negative electrode whose performance has been tested using such a test cell is, for example, combined with a positive electrode containing a positive electrode active material, such as a transition metal oxide containing Li, as described in the above-described embodiment. It can be used as a secondary battery.
  • a positive electrode active material such as a transition metal oxide containing Li
  • ⁇ Charge-discharge cycle test> The prepared test cell was subjected to a charge/discharge cycle test under the same conditions as in the charge/discharge test, with charging and discharging as one cycle, and the cycle characteristics were evaluated.
  • 5 is a graph showing the results of a charge-discharge cycle test of the test cell according to Example 1. FIG. From FIG. 5, it can be seen that the charge/discharge capacity of 300 mAh/g or more is maintained even after 300 cycles. This charge/discharge capacity corresponds to 78% or more of 384 mAh/g, which is the theoretical capacity of Bi.
  • Example 2 (Example 2) ⁇ Preparation of test cell> The test cell of Example 2 was obtained in the same manner as the test cell of Example 1.
  • FIG. 6 shows the results of a charge/discharge test of the test cell according to Example 2.
  • the initial charge capacity was about 380 mAh/g.
  • the subsequent discharge capacity and charge capacity were about 370 mAh/g.
  • ⁇ Charge-discharge cycle test> A charge-discharge cycle test was performed on the prepared test cell under the same conditions as in the charge-discharge test, with charging and discharging as one cycle. 7 shows the results of a charge-discharge cycle test of the test cell according to Example 2. FIG. It can be seen that even after 30 cycles, a charge/discharge capacity of 350 mAh/g or more, which is 90% or more of the theoretical capacity of Bi of 384 mAh/g, is maintained.
  • Example 3 ⁇ Preparation of test cell> The battery of Example 3 was prepared in the same manner as the battery of Example 1, except that the solid electrolyte Li 3 YBr 4 Cl 2 (80 mg) was replaced with a sulfide solid electrolyte Li 6 PS 5 Cl (manufactured by Ampcera, 80 mg). A test cell was obtained.
  • Example 4 The test cell of Example 4 was obtained in the same manner as the test cell of Example 3.
  • Example 5 ⁇ Production of first electrode (negative electrode)>
  • a copper foil (10 cm ⁇ 10 cm, thickness: 10 ⁇ m) was preliminarily degreased with an organic solvent, masked on one side, and immersed in an acidic solvent for degreasing to activate the copper foil surface.
  • a plating bath was prepared by adding bismuth methanesulfonate as a soluble bismuth salt to 1.0 mol/L of methanesulfonic acid so that Bi 3+ ions would be 0.18 mol/L.
  • the activated copper foil was immersed in the plating bath after being connected to a power source so that current could be applied.
  • the unmasked copper foil surface was electroplated with Bi to a thickness of approximately 5 ⁇ m.
  • the copper foil was recovered from the acid bath, removed from the masking, washed with pure water, and dried. After that, the laminate of the obtained copper foil and Bi-plated layer was punched into a size of ⁇ 0.92 cm to obtain a negative electrode as a first electrode.
  • a positive electrode as a second electrode was produced as follows.
  • a positive electrode active material was produced by a coprecipitation method.
  • the hydroxide represented by [Ni 0.60 Co 0.20 Mn 0.20 ](OH) 2 obtained by the coprecipitation method was calcined at 500° C. to obtain a nickel-cobalt-manganese composite oxide.
  • the ratio of elements in the composition of the fired mixture was derived using an inductively coupled plasma emission spectrometer CIROS120 (manufactured by SPECTRO).
  • a positive electrode was prepared by coating an aluminum foil with a slurry containing the positive electrode active material in an argon atmosphere.
  • a slurry containing a positive electrode active material was prepared by mixing a positive electrode active material with a solid electrolyte, a conductive aid, and a binder in an argon atmosphere, and dissolving the obtained mixture in a tetralin solvent.
  • Li 3 YBr 4 Cl 2 was used as the solid electrolyte.
  • Carbon nanofiber VGCF (registered trademark) manufactured by Showa Denko K.K. was used as a conductive aid.
  • SEBS Hydrogenated styrenic thermoplastic elastomer
  • the above slurry was applied to one side of a 10 ⁇ m thick aluminum foil as a positive electrode current collector.
  • the positive electrode sheet in which the slurry was applied to the positive electrode current collector was dried and then pressed. After that, the obtained positive electrode sheet was punched into a size of ⁇ 0.92 cm to obtain a positive electrode.
  • the obtained positive electrode and negative electrode of ⁇ 0.92 cm face each other with the surfaces on which the layer containing the active material is formed, and the layer containing the positive electrode active material and the layer containing the negative electrode active material, the solid electrolyte Li 3 YBr 4 Cl 2 (80 mg) was laminated.
  • a pressure of 360 MPa was applied to the obtained laminate in the stacking direction to form a laminate comprising the positive electrode, the solid electrolyte layer and the negative electrode.
  • the thickness of the positive electrode was 22 ⁇ m
  • the thickness of the solid electrolyte layer was 400 ⁇ m
  • the thickness of the negative electrode was 16.5 ⁇ m.
  • current collectors made of stainless steel were attached to the positive and negative electrodes, and current collecting leads were attached to the current collectors.
  • the test cell of Example 5 was obtained, in which the first electrode, which is an electrode having an active material layer made of a Bi-plated layer, was used as a negative electrode, and the second electrode was used as a positive electrode.
  • the first electrode which is an electrode having an active material layer made of a Bi-plated layer
  • the second electrode was used as a positive electrode.
  • FIG. 13 shows the results of the charge-discharge cycle test of the test cell according to Example 5.
  • FIG. 13 shows the discharge capacity retention rate up to 5 cycles with respect to the initial discharge capacity in the charge/discharge cycle test.
  • the cell of Example 5 maintained 89% or more of the initial discharge capacity even after 5 cycles.
  • Example 6 ⁇ Production of first electrode (negative electrode)> A negative electrode as a first electrode was produced in the same manner as in Example 5.
  • Solid electrolyte A sulfide solid electrolyte Li 6 PS 5 Cl from Ampcera was used as the solid electrolyte.
  • the obtained positive electrode and negative electrode of ⁇ 0.92 cm face each other with the surfaces on which the layer containing the active material is formed, and the layer containing the positive electrode active material and the layer containing the negative electrode active material, the solid electrolyte Li 6 PS 5 Cl (80 mg) was laminated.
  • a pressure of 360 MPa was applied to the obtained laminate in the stacking direction to form a laminate comprising the positive electrode, the solid electrolyte layer and the negative electrode.
  • the thickness of the positive electrode was 22 ⁇ m
  • the thickness of the solid electrolyte layer was 400 ⁇ m
  • the thickness of the negative electrode was 16.5 ⁇ m.
  • current collectors made of stainless steel were attached to the positive and negative electrodes, and current collecting leads were attached to the current collectors.
  • Example 6 As described above, a test cell of Example 6 was obtained in which the first electrode, which is an electrode having an active material layer made of a Bi-plated layer, was used as a negative electrode, and the second electrode was used as a positive electrode.
  • the first electrode which is an electrode having an active material layer made of a Bi-plated layer
  • the second electrode was used as a positive electrode.
  • FIG. 15 shows the results of the charge-discharge cycle test of the test cell according to Example 6.
  • FIG. 15 shows the discharge capacity maintenance rate up to 5 cycles with respect to the initial discharge capacity in the charge-discharge cycle test.
  • the cell of Example 6 maintained 93% or more of the initial discharge capacity even after 5 cycles.
  • Example 7 ⁇ Production of first electrode (negative electrode)> A negative electrode as a first electrode was produced in the same manner as in Example 5.
  • a positive electrode as a second electrode was produced as follows.
  • a positive electrode active material was produced by a coprecipitation method.
  • the hydroxide represented by [Ni 0.80 Co 0.15 Mn 0.05 ](OH) 2 obtained by the coprecipitation method was calcined at 500° C. to obtain a nickel-cobalt-manganese composite oxide.
  • the ratio of elements in the composition of the fired mixture was derived using an inductively coupled plasma emission spectrometer CIROS120 (manufactured by SPECTRO).
  • Niobium ethoxide manufactured by Sigma-Aldrich
  • lithium ethoxide manufactured by Sigma-Aldrich
  • Niobium ethoxide manufactured by Sigma-Aldrich
  • lithium ethoxide manufactured by Sigma-Aldrich
  • a coating solution prepared by a coating solution.
  • the prepared lithium-nickel-cobalt-manganese composite oxide was placed in a mortar, the above coating solution was added thereto, and after mixing, ethanol was evaporated to obtain a powder.
  • the obtained powder was sintered at 350° C. for 3 hours to obtain a lithium-nickel-cobalt-manganese composite oxide coated with lithium niobate.
  • This lithium-nickel-cobalt-manganese composite oxide coated with lithium niobate was used as a positive electrode active material.
  • a positive electrode was prepared by coating an aluminum foil with a slurry containing the positive electrode active material in an argon atmosphere.
  • a slurry containing a positive electrode active material was prepared by mixing a positive electrode active material with a solid electrolyte, a conductive aid, and a binder in an argon atmosphere, and dissolving the obtained mixture in a tetralin solvent.
  • Li 3 YBr 4 Cl 2 was used as the solid electrolyte.
  • Carbon nanofiber VGCF (registered trademark) manufactured by Showa Denko K.K. was used as a conductive aid.
  • SEBS Hydrogenated styrenic thermoplastic elastomer
  • the above slurry was applied to one side of a 10 ⁇ m thick aluminum foil as a positive electrode current collector.
  • the positive electrode sheet in which the slurry was applied to the positive electrode current collector was dried and then pressed. After that, the obtained positive electrode sheet was punched into a size of ⁇ 0.92 cm to obtain a positive electrode.
  • the obtained positive electrode and negative electrode of ⁇ 0.92 cm face each other with the surfaces on which the layer containing the active material is formed, and the layer containing the positive electrode active material and the layer containing the negative electrode active material, the solid electrolyte Li 3 YBr 4 Cl 2 (80 mg) was laminated.
  • a pressure of 360 MPa was applied to the obtained laminate in the stacking direction to form a laminate comprising the positive electrode, the solid electrolyte layer and the negative electrode.
  • the thickness of the positive electrode was 22 ⁇ m
  • the thickness of the solid electrolyte layer was 400 ⁇ m
  • the thickness of the negative electrode was 16.5 ⁇ m.
  • current collectors made of stainless steel were attached to the positive and negative electrodes, and current collecting leads were attached to the current collectors.
  • Example 7 a test cell of Example 7 was obtained in which the first electrode, which is an electrode having an active material layer made of a Bi-plated layer, was used as a negative electrode, and the second electrode was used as a positive electrode.
  • the first electrode which is an electrode having an active material layer made of a Bi-plated layer
  • the second electrode was used as a positive electrode.
  • FIG. 17 shows the results of the charge-discharge cycle test of the test cell according to Example 7.
  • FIG. 17 shows the discharge capacity retention rate up to 10 cycles with respect to the initial discharge capacity in the charge-discharge cycle test.
  • the cell of Example 7 maintained 80% or more of the initial discharge capacity even after 10 cycles.
  • a first electrode was prepared in the same manner as in Example 1, in which one side of a copper foil (2 cm ⁇ 2 cm, thickness: 12 ⁇ m) was plated with Bi to a thickness of 1 ⁇ m.
  • ⁇ Preparation of test cell> A first electrode was used as the working electrode. Li metal with a thickness of 0.34 ⁇ m was used as the counter electrode. The Li metal was double coated with a microporous separator (Asahi Kasei Celgard 3401). As an electrolytic solution, a solution was prepared by dissolving LiPF 6 in vinylene carbonate (VC) at a concentration of 1.0 mol/L. Thus, a test cell of Reference Example 1 was obtained.
  • VC vinylene carbonate
  • ⁇ Charge-discharge cycle test> The test cell of Reference Example 1 was charged to 0 V (vs Li + /Li) at a constant current of 0.6 mA, and then discharged to 2.0 V (vs Li + /Li). Taking this as one cycle, a charge/discharge cycle test was conducted up to 25 cycles. The battery was tested in a constant temperature bath at 25°C. A constant current value of 0.6 mA (0.15 mA/cm 2 ) corresponds to 0.5 IT.
  • test cell of Reference Example 2 was obtained in the same manner as the test cell of Reference Example 1, except that the solvent of the electrolytic solution was changed to fluoroethylene carbonate (FEC).
  • FEC fluoroethylene carbonate
  • FIG. 18 shows the results of the charge-discharge cycle test of the batteries according to Reference Examples 1 and 2.
  • the capacity decreased to 1 ⁇ 3 or less of the initial capacity after about 20 cycles. This is because when the Bi plating layer repeatedly expands and contracts due to repeated charging and discharging, the non-aqueous electrolyte enters into the cavities generated in the active material layer made of the Bi plating layer, thereby resulting in the structure of the active material layer. It is considered that the electron conduction path in the active material layer is reduced due to the destruction of the .
  • the battery of the present disclosure can be used, for example, as an all-solid lithium secondary battery.

Abstract

電池は、第一電極と、第二電極と、前記第一電極と前記第二電極との間に位置する固体電解質層と、を備え、前記第一電極は、集電体と、前記集電体と前記固体電解質層との間に位置する活物質層と、を有し、前記活物質層は、活物質の主成分としてBiを含む。

Description

電池
 本開示は、電池に関する。
 近年、研究開発が盛んに行われているリチウム二次電池では、用いられる電極により、充放電電圧、充放電サイクル寿命特性、保存特性などの電池特性が大きく左右される。このことから、電極活物質を改善することにより、電池特性の向上が図られている。
 例えば、充電の際に電気化学的にリチウムと合金化するアルミニウム、シリコン、錫などを電極として用いるリチウム二次電池が古くから提案されている。特許文献1は、シリコンと錫と遷移金属とを有する合金からなる負極、正極、および電解質を備えたリチウム二次電池を開示している。特許文献2は、活物質として集電体上に設けられたシリコン薄膜を用いた負極と、正極と、電解質とを備えるリチウム二次電池を開示している。
特許第4898737号公報 特許第3733065号公報
 本開示は、良好なサイクル特性を有する電池を提供する。
 本開示の電池は、
 第一電極と、
 第二電極と、
 前記第一電極と前記第二電極との間に位置する固体電解質層と、
を備え、
 前記第一電極は、集電体と、前記集電体と前記固体電解質層との間に位置する活物質層と、を有し、
 前記活物質層は、活物質の主成分としてBiを含む。
 本開示によれば、良好なサイクル特性を有する電池を提供できる。
図1は、本開示の実施形態に係る電池1000の構成例を模式的に示す断面図である。 図2は、Biめっき層からなる活物質層の厚みと、活物質の密度との関係を示すグラフである。 図3は、銅箔上に作製されたBiめっき層からなる活物質層およびBi粉体のX線回折パターンの一例を示すグラフである。 図4は、実施例1に係る試験セルの充放電試験の結果を示すグラフである。 図5は、実施例1に係る試験セルの充放電サイクル試験の結果を示すグラフである。 図6は、実施例2に係る試験セルの充放電試験の結果を示すグラフである。 図7は、実施例2に係る試験セルの充放電サイクル試験の結果を示すグラフである。 図8は、実施例3に係る試験セルの充放電試験の結果を示すグラフである。 図9は、実施例3に係る試験セルの充放電サイクル試験の結果を示すグラフである。 図10は、実施例4に係る試験セルの充放電試験の結果を示すグラフである。 図11は、実施例4に係る試験セルの充放電サイクル試験の結果を示すグラフである。 図12は、実施例5に係る試験セルの充放電試験の結果を示すグラフである。 図13は、実施例5に係る試験セルの充放電サイクル試験の結果を示すグラフである。 図14は、実施例6に係る試験セルの充放電試験の結果を示すグラフである。 図15は、実施例6に係る試験セルの充放電サイクル試験の結果を示すグラフである。 図16は、実施例7に係る試験セルの充放電試験の結果を示すグラフである。 図17は、実施例7に係る試験セルの充放電サイクル試験の結果を示すグラフである。 図18は、参考例1および参考例2に係る試験セルの充放電サイクル試験の結果を示すグラフである。
 (本開示の基礎となった知見)
 [背景技術]の欄に記載したとおり、リチウム二次電池では、電極活物質の改善によって電池特性の向上が図られている。
 負極活物質としてリチウム金属が用いられる場合、重量当りおよび体積当りともに高いエネルギー密度を有するリチウム二次電池が得られる。しかし、このような構成を有するリチウム二次電池では、充電時にリチウムがデンドライト状に析出する。析出したリチウム金属の一部が電解液と反応するため、充放電効率が低く、サイクル特性が劣るという問題があった。
 これに対し、炭素、特に黒鉛が負極として使用されることが提案されている。炭素が使用された負極では、炭素へのリチウムの挿入および離脱によって、充電および放電が行われる。このような構成を有する負極では、充放電機構上、リチウム金属がデンドライト状に析出しない。また、このような構成を有する負極が採用されたリチウム二次電池では、反応がトポタクティックなため可逆性が非常に良好であり、充放電効率がほぼ100%である。これらのことから、炭素、特に黒鉛が使用された負極が採用されたリチウム二次電池が実用化されている。しかし、黒鉛の理論容量密度は372mAh/gであり、これはリチウム金属の理論容量密度3884mAh/gの1/10程度である。したがって、黒鉛が使用された負極の活物質容量密度は低い。さらに、黒鉛の実容量密度がほぼ理論容量密度まで達しているため、黒鉛が使用された負極においては、高容量化が限界にきている。
 これらに対し、充電の際に電気化学的にリチウムと合金化するアルミニウム、シリコン、錫などを電極として用いるリチウム二次電池が古くから提案されている。リチウムと合金化する金属の容量密度は、黒鉛の容量密度より格段に大きい。特にシリコンの理論容量密度は大きい。したがって、リチウムと合金化するアルミニウム、シリコン、錫などが用いられた電極は、高い容量を示す電池用負極として有望であり、これを負極とする種々の二次電池が提案されている(特許文献1)。
 しかし、上記のようなリチウムと合金化する金属が用いられた負極は、リチウムを吸蔵すると膨張し、リチウムを放出すると収縮する。充放電においてこのような膨張および収縮を繰り返すと、電極活物質である合金自体が充放電により微粉化し負極の集電特性が悪化することから、十分なサイクル特性が得られていなかった。このような欠点を改良しようと、次のようないくつかの試みがなされている。例えば、表面を荒らした集電体上にシリコンをスパッタリングまたは蒸着で堆積させる、あるいは錫を電気めっきで堆積させる試みがなされている(特許文献2)。この試みでは、活物質、すなわちリチウムと合金化する金属が薄膜となって集電体と密着しているので、リチウムの吸蔵および放出により負極が膨張および収縮を繰り返しても、集電性がほとんど低下しない。
 しかし、上記のようにスパッタリングまたは蒸着で活物質を形成した場合は、製造コストが高く、実用的ではない。製造コストの安価な電気めっきで活物質を形成するのが実用的であるが、シリコンは電気めっきが非常に困難である。また、電気めっきの安易な錫には、放電平坦性が乏しく、電池の電極として使いにくいという問題があった。
 また、リチウムと合金化する金属として、ビスマス(Bi)が挙げられる。Biは、リチウム(Li)と、LiBiおよびLi3Biという化合物を作る。LiBiの電位およびLi3Biの電位は、互いにほとんど差がない。一方、放電平坦性が乏しい錫では、リチウムと形成される化合物が数種あり、それぞれの化合物の電位が互いにかなり異なる。すなわち、Biは、錫のような、リチウムと形成される複数種の化合物間で電位が大きく異なるという性質を持たない。このため、Biを活物質として含む電極は、電位がフラットであるため放電平坦性に優れている。したがって、Biを活物質として含む電極は、電池の電極として適していると考えられる。
 しかし、活物質の主成分としてBiを含む活物質層を含む電極を備えた電池は、充放電を繰り返すと、20サイクル程度で初期容量の1/3以下に低下する場合があった。
 本発明者らはさらに検討を行った結果、充放電を繰り返すことによって、活物質の主成分としてBiを含む活物質層が膨張および収縮を繰り返すと、活物質層内に生成される空洞内に非水電解液が入り込み、それにより活物質層の構造が破壊されることによって活物質層内の電子伝導経路が低減することが判明した。
 本発明者らは、上記の課題を克服するため鋭意検討した結果、以下に示す本開示の電池を完成させるに至った。
 (本開示に係る一態様の概要)
 本開示の第1態様に係る電池は、
 第一電極と、
 第二電極と、
 前記第一電極と前記第二電極との間に位置する固体電解質層と、
を備え、
 前記第一電極は、集電体と、前記集電体と前記固体電解質層との間に位置する活物質層と、を有し、
 前記活物質層は、活物質の主成分としてBiを含む。
 第1態様に係る電池では、電解質層が固体電解質層である。このため、活物質の主成分としてBiを含む活物質層が充放電により膨張収縮を繰り返しても、活物質層内に電解質が入り込まないため、活物質層内の電子伝導経路の低減を抑制できる。したがって、第1態様に係る電池は、良好なサイクル特性を有する。
 本開示の第2態様において、例えば、第1態様に係る電池では、前記固体電解質層はハロゲン化物固体電解質を含んでもよく、前記ハロゲン化物固体電解質は、硫黄を含まない。
 第2態様に係る電池は、良好なサイクル特性を有する。
 本開示の第3態様において、例えば、第2態様に係る電池では、前記ハロゲン化物固体電解質は、Li、M1、およびX1からなる化合物であってもよい。M1は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、X1は、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。
 第3態様に係る電池は、より高容量で良好なサイクル特性を有する。
 本開示の第4態様において、例えば、第3態様に係る電池では、M1は、Yを含み、X1は、ClおよびBrを含んでもよい。
 第4態様に係る電池は、より高容量で良好なサイクル特性を有する。
 本開示の第5態様において、例えば、第1態様に係る電池では、前記固体電解質層は、硫化物固体電解質を含んでもよい。
 第5態様に係る電池は、良好なサイクル特性を有する。
 本開示の第6態様において、例えば、第5態様に係る電池では、前記固体電解質層は、実質的に硫化物固体電解質のみからなっていてもよい。
 第6態様に係る電池は、より高容量で良好なサイクル特性を有する。
 本開示の第7態様において、例えば、第5または第6態様のいずれか1つに係る電池では、前記硫化物固体電解質は、アルジロダイト型結晶構造を有してもよい。
 第7態様に係る電池は、より高容量で良好なサイクル特性を有する。
 本開示の第8態様において、例えば、第5から第7態様のいずれか1つに係る電池では、前記硫化物固体電解質の組成式は、Li7-aAS6-aX2aであってもよい。ここで、AはPおよびAsからなる群より選択される少なくとも一つであり、X2はCl、Br、およびIからなる群より選択される少なくとも一つであり、aは0≦a≦1を充足する。
 第8態様に係る電池は、より高容量で良好なサイクル特性を有する。
 本開示の第9態様において、例えば、第5から第8態様のいずれか1つに係る電池では、前記硫化物固体電解質の組成式は、Li6PS5Clでもよい。
 第9態様に係る電池は、より高容量で良好なサイクル特性を有する。
 本開示の第10態様において、例えば、第1から第9態様のいずれか1つに係る電池では、前記活物質の密度は、6.0g/cm3以上かつ9.8g/cm3以下であってもよい。ここで、前記活物質の前記密度とは、前記第一電極が負極である場合は、前記電池が完全放電状態のときの前記活物質の密度であり、前記第一電極が正極である場合は、前記電池が満充電状態のときの前記活物質の密度である。
 第10態様に係る電池は、高容量で良好なサイクル特性を有する。
 本開示の第11態様において、例えば、第10態様に係る電池では、前記活物質の密度は、7.5g/cm3以上かつ9.8g/cm3以下であってもよい。
 第11態様に係る電池は、より高容量で良好なサイクル特性を有する。
 本開示の第12態様において、例えば、第1から第11態様のいずれか1つに係る電池では、Cu-Kα線を用いた表面X線回折測定によって得られる前記活物質層のX線回折パターンにおいて、26°以上28°以下の回折角2θの範囲に存在する最大ピークの高さ強度をI(1)とし、37°以上39°以下の回折角2θの範囲に存在する最大ピークの高さ強度をI(2)としたとき、前記I(1)に対する前記I(2)の比であるI(2)/I(1)は0.29以上であってもよい。
 第12態様に係る電池は、より高容量で良好なサイクル特性を有する。
 本開示の第13態様において、例えば、第12態様に係る電池では、前記I(2)/I(1)は0.57以下であってもよい。
 第13態様に係る電池は、より高容量で良好なサイクル特性を有する。
 本開示の第14態様において、例えば、第1から第13態様のいずれか1つに係る電池では、前記活物質層は、Bi単体を含んでもよい。
 第14態様に係る電池は、より高容量で良好なサイクル特性を有する。
 本開示の第15態様において、例えば、第1から第14態様のいずれか1つに係る電池では、前記活物質層は、LiBiおよびLi3Biからなる群より選択される少なくとも1つを含んでもよい。
 第15態様に係る電池は、より高容量で良好なサイクル特性を有する。
 本開示の第16態様において、例えば、第1から第15態様のいずれか1つに係る電池では、前記活物質層は活物質としてBi単体のみを含んでもよい。
 第16態様に係る電池は、より高容量で良好なサイクル特性を有する。
 本開示の第17態様において、例えば第1から第16態様のいずれか1つに係る電池では、前記活物質層は電解質を含まなくてもよい。
 第17態様によれば、より高い体積当たりの容量を有し、かつ良好なサイクル特性を有する電池が得られる。
 本開示の第18態様において、例えば、第1から第17態様のいずれか1つに係る電池では、前記集電体は、Cuを含んでもよい。
 第18態様に係る電池は、より高容量で良好なサイクル特性有する。
 本開示の第19態様において、例えば、第1から第18態様のいずれか1つに係る電池では、前記活物質層は、めっき層であってもよい。
 第19態様によれば、より高い体積当たりの容量を有し、かつ良好なサイクル特性を有する電池が得られる。
 本開示の第20態様において、例えば、第1から第19態様のいずれか1つに係る電池では、前記第一電極は、負極であり、前記第二電極は、正極であってもよい。
 第20態様に係る電池は、より高容量で良好なサイクル特性を有する。
 本開示の第21態様において、例えば、第1から第20態様のいずれか1つに係る電池では、前記第二電極は、下記の組成式(1)により表される化合物を含んでいてもよい。
 LiNixMe1-x2 ・・・(1)
 ここで、xは0<x≦1を満たし、MeはMn、Co、およびAlからなる群より選択される少なくとも1つの元素である。
 第21態様に係る電池は、第二電極の製造コストを安くでき、平均放電電圧を高めることができるとともに、より高容量で良好なサイクル特性を有する。
 本開示の第22態様において、例えば、第21態様の電池では、xは、0.5≦x≦1を満たしてもよい。
 第22態様に係る電池は、より高容量で良好なサイクル特性を有する。
 (本開示の実施形態)
 以下、本開示の実施形態が、図面を参照しながら説明される。以下の説明は、いずれも包括的または具体的な例を示すものである。以下に示される数値、組成、形状、膜厚、電気特性、二次電池の構造などは、一例であり、本開示を限定する主旨ではない。
 図1は、本開示の実施形態に係る電池1000の構成例を模式的に示す断面図である。
 電池1000は、第一電極101と、第二電極103と、第一電極101と第二電極103との間に位置する固体電解質層102と、を備える。第一電極101は、集電体100と、集電体100と固体電解質層102との間に位置する活物質層104と、を有する。活物質層104は、活物質の主成分としてBiを含む。
 電池1000では、電解質層が固体電解質層102である。このため、充放電によりBiを活物質の主成分として含む活物質層104が膨張収縮を繰り返しても、活物質層104内に電解質が入り込まない。このため、充放電が繰り返されることによる活物質層104内の電子伝導経路の低減が抑制される。したがって、電池1000は、良好なサイクル特性を有する。
 電池1000は、例えば、リチウム二次電池である。以下、電池1000の充放電時に、第一電極101の活物質層104および第二電極103において吸蔵および放出される金属イオンがリチウムイオンである場合を例に挙げて説明する。
 「活物質層104が活物質の主成分としてBiを含む」とは、「活物質層104において、活物質としてモル比で最も多く含まれる成分がBiである」という意味である。
 以上の構成によれば、良好な充放電サイクル特性を得られる。
 活物質層104に含まれる活物質の密度は、6.0g/cm3以上かつ9.8g/cm3以下であってもよい。
 以上の構成によれば、より良好な充放電サイクル特性を得られる。
 ここで、本明細書において、第一電極101の活物質層104に含まれる活物質の密度とは、第一電極101が負極である場合は、電池1000が完全放電状態のときの活物質層104に含まれる活物質の密度であり、第一電極101が正極である場合は、電池1000が満充電状態のときの活物質層104に含まれる活物質の密度である。すなわち、本明細書において特定される第一電極101の活物質層104に含まれる活物質の密度とは、満充電または完全放電により活物質層104からリチウムイオンが放出された状態のときの活物質層104に含まれる活物質の密度である。ここで、本開示の電池における「満充電状態」とは、一定の電流(例えば、理論容量に対し、0.05C)で、所定の電圧(例えば、負極電位がリチウム参照電極基準で0V)まで充電を行なった状態をいう。また、本開示の電池における「完全放電状態」とは、一定の電流(例えば、理論容量に対し、0.05C)で、所定の電圧(例えば、負極電位がリチウム参照電極基準で2V)まで放電を行なった状態をいう。活物質層104に含まれる活物質の密度は、例えば、活物質層104から活物質を取り出し、取り出された活物質の密度を例えばアルキメデス法を用いて算出することによって求めることができる。一例として、活物質層104が実質的に活物質からなる薄膜によって構成されている場合、当該薄膜の少なくとも一部をサンプルとして取り出して、そのサンプルの密度を例えばアルキメデス法を用いて算出することによって、活物質の密度が得られる。ここで、実質的に活物質からなる薄膜とは、活物質の含有割合が90質量%以上である薄膜のことを意味する。
 活物質の主成分がBiであり、かつ活物質の密度が6.0g/cm3以上かつ9.8g/cm3以下である活物質層104は、例えば、薄膜状に形成されたBi(以下、「Bi薄膜」という)によって構成され得る。上記の密度範囲を満たす高密度なBi薄膜で構成された活物質層104は、集電体100に接して設けられた場合、集電体100と高い密着性を有することができる。この構成によれば、活物質、すなわちリチウムと合金化する金属であるBiが、薄膜状の形態で集電体100と密着しているので、リチウムの吸蔵および放出によりBiが膨張および収縮を繰り返しても、電子伝導経路を維持することができる。したがって、本開示における第一電極101の活物質層104に含まれる活物質の密度が6.0g/cm3以上かつ9.8g/cm3以下である場合、Liの吸蔵および放出によって活物質層104が膨張および収縮を繰り返しても、集電性の低下が生じにくい。したがって、第一電極101の活物質層104に含まれる活物質が6.0g/cm3以上かつ9.8g/cm3以下の密度を満たす場合、電池1000は、良好なサイクル特性を有することができる。
 また、上記の密度範囲を満たすBi薄膜で構成された活物質層104は、活物質密度が高い活物質層であり、十分な電子伝導経路をとることができる。したがって、Bi薄膜で構成された活物質層104を備えている第一電極101は、Bi粉末によって活物質層が形成された電極と比較して、より高容量を実現することができる。したがって、第一電極101の活物質層104に含まれる活物質が6.0g/cm3以上かつ9.8g/cm3以下の密度を満たす場合、本開示の電池1000は、良好なサイクル特性に加えて、高容量化も実現できる。
 活物質層104に含まれる活物質の密度は、6.5g/cm3以上かつ9.8g/cm3以下であってもよく、7.0g/cm3以上かつ9.8g/cm3以下であってもよい。第一電極101が、このようなより高密度の活物質を含む活物質層104を備えることにより、電池1000は、より良好なサイクル特性と、より高い容量とを有することができる。
 活物質層104に含まれる活物質の密度は、7.5g/cm3以上かつ9.8g/cm3以下であってもよい。特に、7.5g/cm3以上の高密度の活物質を含む活物質層104を備える第一電極101は、電池1000のサイクル特性および容量をより一層向上させることができる。
 Cu-Kα線を用いた表面X線回折測定によって得られる活物質層104のX線回折パターンにおいて、26°以上28°以下の回折角2θの範囲に存在する最大ピークの高さ強度をI(1)とし、37°以上39°以下の回折角2θの範囲に存在する最大ピークの高さ強度をI(2)としたとき、前記I(1)に対する前記I(2)の比であるI(2)/I(1)は0.29以上であってもよい。
 ここで、X線回折パターンにおいて26°以上28°以下の回折角2θの範囲に存在する最大ピークは、Bi単体の(1,0,-1,2)面に由来するピークに相当する。また、X線回折パターンにおいて37°以上39°以下の回折角2θの範囲に存在する最大ピークは、Bi単体の(1,0,-1,4)面に由来するピークに相当する。ピーク強度比I(2)/I(1)が0.29以上であることは、活物質層104の表面において、空間群R-3mである三方晶系の結晶構造を有するBi単体の(1,0,-1,2)面に対する(1,0,-1,4)面の割合が高いことを意味する。すなわち、活物質層104の表面において(1,0,-1,4)面の配向性がより強いことを意味する。表面に、このようなBi単体の結晶構造における配向性を有する活物質層104は、集電体100と高い密着性を有することができる。したがって、活物質層104がこのような表面配向性を有することにより、充電および放電によって活物質層104が膨張および収縮を繰り返しても、集電性の低下が生じにくい。したがって、本開示の電池1000は、より良好なサイクル特性およびより高い容量を有することができる。
 ピーク強度比I(2)/I(1)は、0.57以下であってもよい。
 以上の構成によれば、より良好な充放電サイクル特性が得られる。
 活物質層104のX線回折パターンは、波長1.5405Åおよび1.5444Å、すなわち、波長0.15405nmおよび0.15444nmであるCu-Kα線を用いて、θ-2θ法によるX線回折測定によって取得され得る。
 X線回折パターンにおけるピークの回折角は、SN比(すなわち、バックグラウンドノイズNに対する信号Sの比)の値が1.3以上で、かつ半値幅が10°以下である山状の部分の最大強度を示す角度と定義される。半値幅とは、X線回折ピークの最大強度をIMAXとしたとき、強度がIMAXの半分の値となる2つの回折角の差で表わされる幅のことである。
 活物質の主成分としてBiを含み、かつ上記の密度範囲および表面配向性を満たすBi薄膜で構成された活物質層104は、例えば、電気めっきによって作製することができる。活物質層104を電気めっきによって作製することによって第一電極101を製造する方法は、例えば以下のとおりである。
 まず、電気めっきの基材を準備する。第一電極101においては、例えば集電体100が基材となる。一例として、集電体100として銅箔を用意する。銅箔を有機溶剤により予備脱脂した後、片面をマスキングして酸性溶剤に浸漬することで脱脂を行い、銅箔表面を活性化させる。活性化させた銅箔は、電流が印加できるように電源と接続される。電源と接続された銅箔は、ビスマスめっき浴に浸漬される。ビスマスめっき浴として、例えば、Bi3+イオンと有機酸とを含む有機酸浴が用いられる。その後、電流密度および印加時間を制御して銅箔に電流を印加することにより、マスキングをしていない銅箔表面にBiを電気めっきする。電気めっき後に、銅箔をめっき浴から回収し、マスキングを外した後に純水により洗浄、乾燥する。これらの方法により、Biを電気めっきすることによって作製された活物質層104を備えた第一電極101が得られる。なお、活物質層104の作製に用いられるビスマスめっき浴は、特には限定されず、Bi単体薄膜を析出させることが可能な公知のビスマスめっき浴の中から適宜選択することができる。ビスマスめっき浴では、有機酸浴として、有機スルホン酸浴、グルコン酸およびエチレンジアミン四酢酸(EDTA)浴、またはクエン酸およびEDTA浴が用いられ得る。また、ビスマスめっき浴には、例えば硫酸浴が用いられてもよい。また、ビスマスめっき浴には添加剤が加えられていてもよい。
 ここで、Biを電気めっきすることによって作製された活物質層の厚みと、活物質の密度との関係を確認する。以下、Biを電気めっきすることによって作製された活物質層104が、「Biめっき層からなる活物質層」と記載されることがある。
 図2は、Biめっき層からなる活物質層の厚みと、活物質の密度との関係を示すグラフである。なお、この場合の活物質の密度は、Biめっき層からなる活物質層の密度を求めることによって求められる。Biめっき層からなる活物質層のサンプルは、後述の実施例1と同様の方法で作製された。ただし、めっき基材である銅箔に対する電流の印加時間を、めっき厚み1μm、3μm、5μm、および10μmを狙って調整し、4つの活物質層のサンプルを作製した。活物質層の質量、面積、および厚みから、活物質層の厚みと活物質の密度との関係を求めた。なお、得られたBiめっき層の厚みは、蛍光X線分析装置(セイコーインスツル株式会社製、SEA6000VX)を用いて測定された。4つのサンプルにおける活物質層の厚さは、1.5μm、4.5μm、6.2μm、および10μmであった。図2のグラフに示されているように、活物質層がBiめっき層である場合、活物質の密度は7.5g/cm3から9.8g/cm3になることがわかる。
 また、Biめっき層からなる活物質層について、表面X線回折測定により表面の構造解析も行われた。表面X線回折測定に用いられたBiめっき層からなる活物質層のサンプルは、活物質層の厚みと活物質の密度との関係を確認するために用いられたサンプルと同様の方法で準備された。比較のために、Bi粉体についてのX線回折測定も行われた。
 図3は、銅箔上に作製されたBiめっき層からなる活物質層およびBi粉体のX線回折パターンの一例を示すグラフである。X線回折パターンは、Biめっき層の表面、つまり活物質層104の厚み方向よりX線回折装置(RIGAKU製、MiNi Flex)を用いて、波長1.5405Åおよび1.5444ÅであるCu-Kα線をX線として用いたθ-2θ法で測定したものである。
 表1は、Cu-Kα線を用いた表面X線回折測定によって得られるBiめっき層およびBi粉末のX線回折パターンにおいて、26°以上28°以下の回折角2θの範囲に存在する最大ピークの高さ強度I(1)と、37°以上39°以下の回折角2θの範囲に存在する最大ピークの高さ強度I(2)との強度比I(2)/I(1)の算出結果を示す表である。表1には、様々な厚さのBiめっき層の測定結果およびBi粉末の3回の測定結果が示されている。
Figure JPOXMLDOC01-appb-T000001
 表1に示す様に、Biを電気めっきすることにより作製された活物質層104では、比I(2)/I(1)が0.29以上となることがわかる。したがって、Biを電気めっきすることにより作製された活物質層104の表面では、空間群R-3mである三方晶系の結晶構造を有するBi単体の(1,0,-1,2)面に対する(1,0,-1,4)面の割合が高いことがわかる。すなわち、活物質層104の表面において(1,0,-1,4)面の配向性がより強いことがわかる。また、図3に示すX線回折パターンにおいて、Biめっき層とBi粉体とを比較すると、厚み3μm以上のBiめっき層では、回折角2θ=40°付近のピーク強度I(3)のピーク強度が大きくなっている。このことから、Biめっき層では、空間群R-3mである三方晶系の結晶構造を有するBi単体の(2,-1,-1,0)面が表面となるように、配向することを見出した。厚み3μm未満のBiめっき層については、基材である銅箔の表面粗さ等の影響もあり、配向によるBi粉末とのX線回折パターンの差異は十分に確認できていないと考えられる。
 以下、第一電極101が負極であり、かつ第二電極103が正極である場合を例に挙げて、本実施形態の電池1000の各構成についてより詳しく説明する。
 [第一電極]
 上述のとおり、第一電極101は、集電体100および活物質層104を有する。活物質層104の構成は、上述したとおりである。第一電極101は、負極として機能する。したがって、活物質層104は、リチウムイオンを吸蔵かつ放出する特性を有する負極活物質を含む。活物質層104に含まれるBiは、負極活物質として機能する。活物質層104は、例えばBi単体を含む。
 Biは、リチウムに対して0.8Vで、リチウムイオンを吸蔵かつ放出する活物質である。Biは、リチウムと合金化する金属である。充電時にBiがリチウムと合金を形成することによって、リチウムが吸蔵される。すなわち、第一電極101において、電池1000の充電時に、リチウムビスマス合金が生成される。生成されるリチウムビスマス合金は、例えば、LiBiおよびLi3Biからなる群より選ばれる少なくとも1つを含む。すなわち、電池1000の充電時に、活物質層104は、例えばLiBiおよびLi3Biからなる群より選ばれる少なくとも1つを含む。電池1000の放電時に、リチウムビスマス合金からリチウムが放出され、リチウムビスマス合金がBiに戻る。
 活物質層104は、活物質としてBi単体のみを含んでもよい。
 活物質層104は、電解質を含んでいなくてもよい。例えば、活物質層104は、Bi単体および/または充電時に生成されるリチウムビスマス合金からなる層であってもよい。
 活物質層104は、集電体100の表面に直接接して配置されていてもよい。
 活物質層104は、薄膜状であってもよい。
 活物質層104は、めっきによりBiが堆積されることによって形成されためっき層であってもよい。活物質層104は、集電体100の表面に直接接して設けられるBiめっき層であってもよい。
 活物質層104が集電体100の表面に直接接して設けられるめっき層であると、活物質層104が集電体100に密着する。これにより、活物質層104が膨張および収縮を繰り返した場合に起こる第一電極101の集電特性の悪化を抑制することができる。したがって、電池1000のサイクル特性がより向上する。さらに、活物質層104がめっき層であると、活物質層104に活物質であるBiが高密度で含まれるため、さらなる高容量化も実現できる。
 活物質層104は、Bi以外の他の材料を含んでいてもよい。
 活物質層104は、導電材をさらに含んでいてもよい。
 導電材として、炭素材料、金属、無機化合物、および導電性高分子が挙げられる。炭素材料として、黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、および炭素繊維が挙げられる。黒鉛として、天然黒鉛および人造黒鉛が挙げられる。天然黒鉛として、塊状黒鉛および鱗片状黒鉛が挙げられる。金属として、銅、ニッケル、アルミニウム、銀、および金が挙げられる。無機化合物として、タングステンカーバイド、炭化チタン、炭化タンタル、炭化モリブデン、ホウ化チタン、およびチッ化チタンが挙げられる。これらの材料は単独で用いられてもよいし、複数種が混合されて用いられてもよい。
 活物質層104は、結着剤をさらに含んでいてもよい。
 結着剤として、含フッ素樹脂、熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、および天然ブチルゴム(NBR)が挙げられる。含フッ素樹脂として、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、およびフッ素ゴムが挙げられる。熱可塑性樹脂として、ポリプロピレンおよびポリエチレンが挙げられる。これらの材料は単独で用いられてもよいし、複数種が混合されて用いられてもよい。
 活物質層104の厚みは、特に限定されず、例えば、1μm以上、100μm以下であってもよい。
 集電体100の材料は、例えば、単体の金属または合金である。より具体的には、銅、クロム、ニッケル、チタン、白金、金、アルミニウム、タングステン、鉄、およびモリブデンからなる群より選ばれる少なくとも1つを含む単体の金属または合金であってもよい。集電体100は、ステンレス鋼であってもよい。
 集電体100は、銅(Cu)を含んでもよい。
 集電体100は、板状または箔状であってもよい。高い導電性を確保しやすい観点から、負極集電体は、金属箔であってもよく、銅を含む金属箔であってもよい。銅を含む金属箔としては、例えば、銅箔および銅合金箔が挙げられる。金属箔における銅の含有率は、50質量%以上であってもよく、80質量%以上であってもよい。特に、金属箔は、金属として実質的に銅のみを含む銅箔であってもよい。集電体100の厚みは、例えば、5μm以上20μm以下であってもよい。
 集電体100は、積層膜であってもよい。
 [固体電解質層]
 固体電解質層102に含まれる固体電解質として、ハロゲン化物固体電解質、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、または錯体水素化物固体電解質が用いられてもよい。
 固体電解質層102は、ハロゲン化物固体電解質を含んでいてもよい。
 ハロゲン化物固体電解質は、ハロゲン元素を含有する固体電解質を意味する。ハロゲン化物固体電解質は、ハロゲン元素だけでなく、酸素を含有していてもよい。ハロゲン化物固体電解質は、硫黄(S)を含まない。
 ハロゲン化物固体電解質は、Li、M1、およびX1からなる化合物であってもよい。すなわち、ハロゲン化物固体電解質は、例えば、下記の組成式(2)により、表される材料であってもよい。
 LiαM1βX1γ ・・・式(2)
 ここでα、β、およびγは、0より大きい値であり、M1は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、X1は、F、Cl、Br、およびIからなる群より選ばれる少なくとも1つである。
 「半金属元素」とは、B、Si、Ge、As、Sb、およびTeである。
 「金属元素」とは、水素を除く周期表1族から12族中に含まれるすべての元素、ならびに、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く全ての第13族から第16族中に含まれる元素である。すなわち、ハロゲン化合物と無機化合物を形成した際に、カチオンとなりうる元素群である。
 組成式(2)において、M1は、Yを含み、X1は、ClおよびBrを含んでもよい。
 ハロゲン化物固体電解質としては、例えば、Li3(Ca,Y,Gd)X16、Li2MgX4、Li2FeX14、Li(Al,Ga,In)X14、Li3(Al,Ga,In)X16、LiI、などが用いられてもよい。ここで、これらの固体電解質において、元素X1は、F、Cl、Br、およびIからなる群より選択される少なくとも1種である。なお、本開示において、式中の元素を「(Al,Ga,In)」のように表すとき、この表記は、括弧内の元素群より選択される少なくとも1種の元素を示す。すなわち、「(Al,Ga,In)」は、「Al、Ga、およびInからなる群より選択される少なくとも1種」と同義である。他の元素の場合でも同様である。
 ハロゲン化物固体電解質の他の例は、LiaM2bcX16により表される化合物である。ここで、a+mb+3c=6、およびc>0が充足される。M2は、LiおよびY以外の金属元素と半金属元素とからなる群より選択される少なくとも1つである。mは、M2の価数を表す。「半金属元素」とは、B、Si、Ge、As、Sb、およびTeである。「金属元素」とは、周期表第1族から第12族中に含まれるすべての元素(ただし、水素を除く)、および、周期表13族から16族に含まれるすべての元素(ただし、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く)である。
 ハロゲン化物固体電解質材料のイオン伝導性を高めるために、M2は、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Zr、Hf、Ti、Sn、Ta、およびNbからなる群より選択されるすくなくとも1つであってもよい。ハロゲン化物固体電解質は、Li3YCl6、Li3YBr6、またはLi3YBrpCl6-pであってもよい。なお、pは、0<p<6を充足する。
 以上の構成によれば、固体電解質層102のイオン導電率を高めることができる。これにより、電池のエネルギー密度の低下を低減できる。
 固体電解質層102は、実質的にハロゲン化物固体電解質のみからなっていてもよい。なお、本明細書において「実質的になる」とは、含有率にして0.1質量%未満の不純物の含有を許容する趣旨である。固体電解質層102は、ハロゲン化物固体電解質のみからなっていてもよい。
 固体電解質層102は、硫化物固体電解質を含んでいてもよい。
 硫化物固体電解質は、硫黄(S)を含有する固体電解質を意味する。硫化物固体電解質は、硫黄だけでなく、ハロゲン元素を含有していてもよい。
 硫化物固体電解質としては、例えば、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、またはLi10GeP212などが用いられうる。
 硫化物固体電解質は、アルジロダイト型結晶構造を有していてもよい。
 硫化物固体電解質は、Li7-aAS6-aX2aであってもよい。ここで、AはPおよびAsからなる群より選択される少なくとも一つであり、X2はCl、Br、およびIからなる群より選択される少なくとも一つであり、aは0≦a≦1を充足する。Li7-aAS6-aaは、アルジロダイト型結晶構造を有する硫化物固体電解質である。
 硫化物固体電解質は、Li3PS5Clであってもよい。Li3PS5Clは、アルジロダイト型結晶構造を有する硫化物固体電解質である。
 以上の構成によれば、固体電解質層102のイオン導電率を高めることができる。これにより、電池のエネルギー密度の低下を低減できる。
 固体電解質層102は、実質的に硫化物固体電解質のみからなっていてもよい。固体電解質層102は、硫化物固体電解質のみからなっていてもよい。
 固体電解質層102は、酸化物固体電解質を含んでいてもよい。酸化物固体電解質としては、例えば、LiTi2(PO43およびその元素置換体を代表とするNASICON型固体電解質、(LaLi)TiO3系のペロブスカイト型固体電解質、Li14ZnGe416、Li4SiO4、LiGeO4およびその元素置換体を代表とするLISICON型固体電解質、Li7La3Zr212およびその元素置換体を代表とするガーネット型固体電解質、Li3PO4およびそのN置換体、ならびに、LiBO2およびLi3BO3などのLi-B-O化合物をベースとして、Li2SO4、Li2CO3などが添加されたガラスまたはガラスセラミックス、などが用いられうる。
 固体電解質層102は、高分子型固体電解質を含んでいてもよい。高分子固体電解質としては、例えば、高分子化合物と、リチウム塩との化合物が用いられうる。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子化合物は、リチウム塩を多く含有することができる。このため、イオン導電率をより高めることができる。リチウム塩としては、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、およびLiC(SO2CF33、などが使用されうる。例示されたリチウム塩から選択される1種のリチウム塩が、単独で使用されうる。もしくは、例示されたリチウム塩から選択される2種以上のリチウム塩の混合物が使用されうる。
 固体電解質層102は、錯体水素化物固体電解質を含んでいてもよい。錯体水素化物固体電解質としては、例えば、LiBH4-LiI、LiBH4-P25、などが用いられうる。
 固体電解質層102は、さらに結着剤を含んでもよい。結着剤として、活物質層104に使用可能な材料と同じ材料が使用されてもよい。
 固体電解質層102は、1μm以上かつ500μm以下の厚みを有していてもよい。固体電解質層102が1μm以上の厚みを有する場合、第一電極101および第二電極103が短絡しにくくなる。固体電解質層102が500μm以下の厚みを有する場合、電池が高出力で動作し得る。
 固体電解質の形状は、特に限定されない。固体電解質が粉体材料である場合、その形状は、例えば、針状、球状、楕円球状、などであってもよい。例えば、固体電解質の形状は、粒子状であってもよい。
 例えば、固体電解質の形状が、粒子状(例えば、球状)である場合、固体電解質のメジアン径は、100μm以下であってもよく、10μm以下であってもよい。
 本開示において、「メジアン径」は、体積基準の粒度分布における累積体積が50%に等しい場合の粒径を意味する。体積基準の粒度分布は、例えば、レーザー回折式測定装置または画像解析装置により測定される。
 固体電解質層102に含まれる固体電解質は、下記の方法により、製造され得る。
 目的の組成を有するように、原料粉が用意される。原料粉の例は、酸化物、水酸化物、ハロゲン化物、または酸ハロゲン化物である。
 一例として、固体電解質がハロゲン化物固体電解質であり、目的とされる組成がLi3YBr4Cl2である場合、LiBr、YCl、およびYBrが、3:0.66:0.33程度のモル比で混合される。合成プロセスにおいて生じ得る組成変化を相殺するように、あらかじめ調整されたモル比で原料粉が混合されてもよい。
 原料粉を、遊星型ボールミルのような混合装置内でメカノケミカル的に(すなわち、メカノケミカルミリングの方法を用いて)互いに反応させ、反応物を得る。反応物は、真空中または不活性雰囲気中で焼成されてもよい。あるいは、原料粉の混合物を真空中または不活性雰囲気中で焼成し、反応物を得てもよい。焼成は、例えば、100℃以上かつ300℃以下で、1時間以上行われることが望ましい。焼成における組成変化を抑制するために、原料粉は石英管のような密閉容器内で焼成されることが望ましい。
 これらの方法により、固体電解質層102の固体電解質が得られる。
 固体電解質が硫化物固体電解質である場合、硫化物固体電解質は、下記の方法により、製造され得る。
 目的の組成を有するように、原料粉が用意される。
 一例として、目的とされる組成がLi6PS5Clである場合、Li2S、P25、およびLiClが、2.5:0.5:1程度のモル比で混合される。合成プロセスにおいて生じ得る組成変化を相殺するように、あらかじめ調整されたモル比で原料粉が混合されてもよい。
 原料粉を、遊星型ボールミル、ビーズミルまたはホモジナイザーのような混合装置内で粉砕混合する。混合物を乾燥後、不活性雰囲気もしくは硫化水素ガス(H2S)雰囲気において350℃以上かつ550℃以下で焼成する。焼成は、例えば、8時間以上行われることが望ましい。焼成における組成変化を抑制するために、原料粉は石英管のような密閉容器内で焼成されることが望ましい。焼成物を、解砕ないし粉砕し、所定の粒度とすることにより、硫化物固体電解質が得られる。
 [第二電極]
 第二電極103は、正極として機能する。第二電極103は、リチウムイオンのような金属イオンを吸蔵および放出可能な材料を含有する。当該材料は、例えば、正極活物質である。
 第二電極103は、集電体105と活物質層106とを有していてもよい。活物質層106は、正極活物質を含む。活物質層106は、例えば、集電体105と固体電解質層102との間に配置されている。
 活物質層106は、集電体105の表面に、集電体105に直接接して配置されていてもよい。
 正極活物質として、例えば、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシ硫化物、または遷移金属オキシ窒化物、などが用いられうる。リチウム含有遷移金属酸化物の例としては、LiNi1-x-yCoxAly2((x+y)<1)、LiNi1-x-yCoxMny2((x+y)<1)またはLiCoO2、などが挙げられる。特に、正極活物質として、リチウム含有遷移金属酸化物を用いた場合には、電極の製造コストを安くでき、電池の平均放電電圧を高めることができる。例えば、正極活物質は、Li(Ni,Co,Mn)O2を含んでもよい。
 第二電極103は、下記の組成式(1)により表される化合物を含んでいてもよい。
 LiNixMe1-x2 ・・・(1)
 ここで、xは0<x≦1を満たし、MeはMn、Co、およびAlからなる群より選択される少なくとも1つの元素である。xは、0.5≦x≦1を満たしていてもよい。
 上記組成式(1)により表される化合物は、例えば正極活物質として機能し得る。
 集電体105の材料としては、例えば、金属材料が挙げられる。金属材料としては、銅、ステンレス鋼、鉄、アルミニウムなどが挙げられる。
 第二電極103は、固体電解質を含んでもよい。固体電解質としては、固体電解質層102を構成する材料として例示された固体電解質を用いてもよい。
 正極活物質は、0.1μm以上かつ100μm以下のメジアン径を有していてもよい。正極活物質が0.1μm以上のメジアン径を有する場合、正極活物質および固体電解質が良好な分散状態を形成できる。これにより、電池の充放電特性が向上する。正極活物質が100μm以下のメジアン径を有する場合、リチウム拡散速度が向上する。これにより、電池が高出力で動作し得る。
 正極活物質は、固体電解質よりも大きいメジアン径を有していてもよい。これにより、正極活物質および固体電解質が良好な分散状態を形成できる。
 電池のエネルギー密度および出力の観点から、第二電極103において、正極活物質の体積および固体電解質の体積の合計に対する正極活物質の体積の比は、0.30以上かつ0.95以下であってもよい。
 固体電解質が正極活物質と反応するのを防ぐために、正極活物質の表面には、被覆層が形成されてもよい。これにより、電池の反応過電圧の上昇を抑制できる。被覆層に含まれる被覆材料の例は、硫化物固体電解質、酸化物固体電解質、またはハロゲン化物固体電解質である。
 第二電極103の厚みは、10μm以上かつ500μm以下であってもよい。第二電極103の厚みが10μm以上である場合、十分な電池のエネルギー密度を確保し得る。第二電極103の厚みが500μm以下である場合、電池が高出力で動作し得る。
 第二電極103は、電子導電性を高める目的で、導電材を含んでもよい。
 第二電極103は、結着剤を含んでもよい。
 導電材および結着剤として、活物質層104に使用可能な材料と同じ材料が使用されてもよい。
 第二電極103は、リチウムイオンの授受を容易にし、電池の出力特性を向上する目的で、非水電解液、ゲル電解質、またはイオン液体を含有していてもよい。
 非水電解液は、非水溶媒および当該非水溶媒に溶けたリチウム塩を含む。非水溶媒の例は、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、またはフッ素溶媒である。環状炭酸エステル溶媒の例は、エチレンカーボネート、プロピレンカーボネート、またはブチレンカーボネートである。鎖状炭酸エステル溶媒の例は、ジメチルカーボネート、エチルメチルカーボネート、またはジエチルカーボネートである。環状エーテル溶媒の例は、テトラヒドロフラン、1,4-ジオキサン、または1,3-ジオキソランである。鎖状エーテル溶媒の例は、1,2-ジメトキシエタン、または1,2-ジエトキシエタンである。環状エステル溶媒の例は、γ-ブチロラクトンである。鎖状エステル溶媒の例は、酢酸メチルである。フッ素溶媒の例は、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、またはフルオロジメチレンカーボネートである。これらから選択される1種の非水溶媒が単独で使用されてもよい。あるいは、これらから選択される2種以上の非水溶媒の混合物が使用されてもよい。
 リチウム塩の例は、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、またはLiC(SO2CF33である。これらから選択される1種のリチウム塩が単独で使用されてもよい。あるいは、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。リチウム塩の濃度は、例えば、0.5mol/リットル以上2mol/リットル以下の範囲にある。
 ゲル電解質として、非水電解液を含浸させたポリマー材料が使用され得る。ポリマー材料の例は、ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビニリデン、ポリメチルメタクリレート、またはエチレンオキシド結合を有するポリマーである。
 イオン液体に含まれるカチオンの例は、
(i)テトラアルキルアンモニウムまたはテトラアルキルホスホニウムのような脂肪族鎖状4級塩類、
(ii)ピロリジニウム類、モルホリニウム類、イミダゾリニウム類、テトラヒドロピリミジニウム類、ピペラジニウム類、またはピペリジニウム類のような脂肪族環状アンモニウム、または
(iii)ピリジニウム類またはイミダゾリウム類のような含窒素ヘテロ環芳香族カチオンである。
 イオン液体に含まれるアニオンの例は、PF6 -、BF4 -、SbF6 -、AsF6 -、SO3CF3 -、N(SO2CF32 -、N(SO2252 -、N(SO2CF3)(SO249-、またはC(SO2CF33 -である。
 イオン液体はリチウム塩を含有してもよい。
 上記においては、第一電極101が負極であって、第二電極103が正極である構成例について説明したが、第一電極101が正極であってもよく、第二電極103は負極であってもよい。
 第一電極101が正極であり、第二電極103が負極である場合、活物質層104は、正極活物質層である。すなわち、活物質層104に含まれるBiが、正極活物質として機能する。この場合、負極である第二電極103は、例えばリチウム金属から構成される。
 電池1000は、第一電極101、固体電解質層102、第二電極103を基本構成として、大気や水分が混入しないように密閉容器内に封入する。電池1000の形状は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、および積層型、などが挙げられる。
 以下、実施例および参考例を用いて、本開示の詳細が開示される。以下の実施例は一例であって、本開示は以下の実施例のみに限定されない。
 (実施例1)
 <第一電極の作製>
 前処理として、銅箔(10cm×10cm、厚み:12μm)を有機溶剤により予備脱脂した後、片面をマスキングして酸性溶剤に浸漬することで脱脂を行い、銅箔表面を活性化させた。メタンスルホン酸1.0mol/Lに、可溶性ビスマス塩としてメタンスルホン酸ビスマスをBi3+イオンが0.18mol/Lとなるように加えて、めっき浴が作製された。活性化させた銅箔は、電流を印加できるように電源に接続した後、めっき浴内に浸漬させた。その後、電流密度を2A/dm2に制御することにより、マスキングをしていない銅箔表面に、およそ1μmの厚みとなるようにBiを電気めっきした。電気めっき後に、銅箔を酸性浴から回収し、マスキングを外した後に純水により洗浄、乾燥し、2cm×2cmの大きさに打ち抜くことによって、第一電極が得られた。すなわち、実施例1の第一電極は、銅箔からなる集電体上に、Biめっき層からなる活物質層が設けられた構成を有していた。実施例1の第一電極において、Biめっき層からなる活物質層に含まれる活物質の密度は、図2のグラフより求めることができ、7.5g/cm3であった。また、Biめっき層からなる活物質層の表面X線回折測定によって得られるX線回折パターンは図3に示されており、ピーク強度比I(2)/I(1)は表1に示されている。実施例1に係る電池の活物質層において、ピーク強度比I(2)/I(1)は0.29以上であった。
 <固体電解質の作製>
 -60℃以下の露点を有するアルゴン雰囲気(以下、「乾燥アルゴン雰囲気」と称する)中で、原料粉としてLiBr、YCl3、およびYBr3が、LiBr:YCl3:YBr3=3:2/3:1/3のモル比となるように用意された。これらの原料粉が乳鉢中で粉砕および混合されて、混合粉が得られた。次いで、得られた原料粉の混合物は、乾燥アルゴン雰囲気中で、電気炉を用い、500℃で3時間焼成され、焼成物を得た。得られた焼成物は、乳鉢中で乳棒を用いて粉砕された。このようにして、Li3YBr4Cl2の組成を有する固体電解質が得られた。
 <試験セルの作製>
 9.4mmの内径を有する絶縁性外筒の中で、得られた第一電極を作用極とし、当該作用極のBiめっき面上に、固体電解質Li3YBr4Cl2(80mg)が積層され、次に、インジウム-リチウム合金(モル比In:Li=1:1)(200mg)が対極として積層され、積層体が得られた。インジウム-リチウム合金は、インジウム箔にリチウム箔の小片を圧接し、インジウム中にリチウムを拡散させることによって作製された。この積層体に360MPaの圧力が印加され、作用極、固体電解質層および対極が形成された。積層体において、作用極である第一電極の厚みは1.5μmであり、固体電解質層の厚みは500μmであり、対極の厚みは15μmであった。
 次に、ステンレス鋼から形成された集電体が作用極および対極に取り付けられ、当該集電体に集電リードが取り付けられた。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部が外気雰囲気から遮断され、当該筒の内部が密閉された。
 以上により、Biめっき層からなる活物質層を有する電極である第一電極を作用極とし、リチウム-インジウム合金を対極とする、実施例1の試験セルが得られた。なお、ここで作製された試験セルは、作用極および対極を使用した単極試験セルであり、二次電池における電極の一方の極の性能を試験するために用いられる。詳しくは、作用極には試験対象の電極が用いられ、対極には作用極の反応を賄うに十分な量の適切な活物質が用いられる。本試験セルは、第一電極の負極としての性能を試験するものなので、通常用いられているように大過剰のリチウム-インジウム合金が対極として用いられた。このような試験セルを用いて性能が試験された負極は、例えば、上述の実施形態において説明したような正極活物質、例えばLiを含有した遷移金属酸化物等を含む正極と組み合わせることによって、二次電池として使用され得る。
 <充放電試験>
 以下の条件で、作製した試験セルの充放電試験を行った。Biの理論容量は384mAh/gとして、電極重量からレートが0.5ITとなる定電流値で、0V(0.62VvsLi+/Li)まで充電し、その後、1.38V(2.0VvsLi+/Li)まで放電し、その後、0V(0.62VvsLi+/Li)まで充電した。試験セルは恒温槽内で25℃として試験を行った。図4は、実施例1に係る試験セルの充放電試験の結果を示すグラフである。初期充電容量は380mAh/g程度であった。その後の放電容量と充電容量とは300mAh/g程度であった。
 <充放電サイクル試験>
 作製した試験セルについて、充放電試験における条件と同様の条件で、充電および放電を1サイクルとして、充放電サイクル試験を行い、サイクル特性を評価した。図5は、実施例1に係る試験セルの充放電サイクル試験の結果を示すグラフである。図5から、300サイクルを経過しても、300mAh/g以上の充放電容量が維持されていることが分かる。この充放電容量は、Biの理論容量である384mAh/gの78%以上に相当する。
 (実施例2)
 <試験セルの作製>
 実施例1の試験セルと同様にして、実施例2の試験セルを得た。
 <充放電試験>
 以下の条件で、作製した試験セルの充放電試験を行った。Biの理論容量は384mAh/gとして、電極重量からレートが0.037ITとなる定電流値で、0V(0.62VvsLi+/Li)まで充電し、その後、1.38V(2.0VvsLi+/Li)まで放電し、さらにその後、0V(0.62VvsLi+/Li)まで充電した。試験セルは恒温槽内で25℃として試験を行った。図6は、実施例2に係る試験セルの充放電試験の結果を示す。初期充電容量は380mAh/g程度であった。その後の放電容量と充電容量とは370mAh/g程度であった。
 <充放電サイクル試験>
 作製した試験セルについて、充放電試験における条件と同様の条件で、充電と放電とを1サイクルとして、充放電サイクル試験を行った。図7は、実施例2に係る試験セルの充放電サイクル試験の結果を示す。30サイクルを経過しても、Biの理論容量である384mAh/gの90%以上である350mAh/g以上の充放電容量が維持されていることが分かる。
 (実施例3)
 <試験セルの作製>
 固体電解質Li3YBr4Cl2(80mg)の代わりに硫化物固体電解質Li6PS5Cl(Ampcera製、80mg)を用いた点以外は、実施例1の電池と同様にして、実施例3の試験セルを得た。
 <充放電試験>
 以下の条件で、作製した試験セルの充放電試験を行った。Biの理論容量を384mAh/gとして、電極重量からレートが0.5ITとなる定電流値で、0V(0.62VvsLi+/Li)まで充電し、その後、1.38V(2.0VvsLi+/Li)まで放電し、その後、0V(0.62VvsLi+/Li)まで充電した。試験セルは恒温槽内で25℃として試験を行った。図8は、実施例3に係る試験セルの充放電試験の結果を示すグラフである。初期充電容量は378mAh/g程度であった。その後の放電容量と充電容量とは300mAh/g程度であった。
 <充放電サイクル試験>
 作製した試験セルについて、充放電試験における条件と同様の条件で、充電および放電を1サイクルとして、充放電サイクル試験を行い、サイクル特性を評価した。図9は、実施例3に係る試験セルの充放電サイクル試験の結果を示すグラフである。図9から、200サイクルを経過しても、375mAh/g以上の充放電容量が維持されていることが分かる。この充放電容量は、Biの理論容量である384mAh/gの97%以上に相当する。
 (実施例4)
 実施例3の試験セルと同様にして、実施例4の試験セルを得た。
 <充放電試験>
 以下の条件で、作製した試験セルの充放電試験を行った。Biの理論容量は384mAh/gとして、電極重量からレートが0.037ITとなる定電流値で、0V(0.62VvsLi+/Li)まで充電し、その後、1.38V(2.0VvsLi+/Li)まで放電し、さらにその後、0V(0.62VvsLi+/Li)まで充電した。試験セルは恒温槽内で25℃として試験を行った。図10は、実施例4に係る試験セルの充放電試験の結果を示す。初期充電容量は384mAh/g程度であった。その後の放電容量と充電容量とは370mAh/g程度であった。
 <充放電サイクル試験>
 作製した試験セルについて、充放電試験における条件と同様の条件で、充電と放電とを1サイクルとして、充放電サイクル試験を行った。図11は、実施例4に係る試験セルの充放電サイクル試験の結果を示す。20サイクルを経過しても、Biの理論容量である384mAh/gの97%以上である375mAh/g以上の充放電容量が維持されていることが分かる。
 (実施例5)
 <第一電極(負極)の作製>
 前処理として、銅箔(10cm×10cm、厚み:10μm)を有機溶剤により予備脱脂した後、片面をマスキングして酸性溶剤に浸漬することで脱脂を行い、銅箔表面を活性化させた。メタンスルホン酸1.0mol/Lに、可溶性ビスマス塩としてメタンスルホン酸ビスマスをBi3+イオンが0.18mol/Lとなるように加えて、めっき浴が作製された。活性化させた銅箔は、電流を印加できるように電源に接続した後、めっき浴内に浸漬させた。その後、電流密度を2A/dm2に制御することにより、マスキングをしていない銅箔表面に、およそ5μmの厚みとなるようにBiを電気めっきした。電気めっき後に、銅箔を酸性浴から回収し、マスキングを外した後に純水により洗浄、乾燥した。その後、得られた銅箔およびBiめっき層の積層体をφ0.92cmの大きさに打ち抜くことによって、第一電極としての負極が得られた。
 <固体電解質の作製>
 実施例1と同様の方法で、Li3YBr4Cl2の組成を有する固体電解質が作製された。
 <第二電極(正極)の作製>
 第二電極としての正極が、以下のように作製された。
 正極活物質が、共沈法により作製された。共沈法により得られた[Ni0.60Co0.20Mn0.20](OH)2で表される水酸化物を500℃で焼成して、ニッケルコバルトマンガン複合酸化物を得た。共沈法で得られた複合酸化物と水酸化リチウムLiOHとを、Li/Me=1.1(モル比)となるように乾式で混合し、酸素雰囲気下で1000℃まで昇温し、混合物を10時間焼成した。焼成した混合物は、誘導結合プラズマ発光分光分析装置CIROS120(SPECTRO社製)にて、組成における元素比率が導出された。導出された元素比率は、Li:Ni:Co:Mn=1.04:0.59:0.20:0.19であった。
 正極は、アルゴン雰囲気中でアルミニウム箔に正極活物質を含むスラリーを塗工することによって作製された。正極活物質を含むスラリーは、アルゴン雰囲気中で、正極活物質に、固体電解質、導電助剤、および結着剤を混合し、得られた混合物をテトラリン溶媒に溶解させることによって作製された。固体電解質としてLi3YBr4Cl2が用いられた。導電助剤として、昭和電工株式会社製のカーボン・ナノファイバーVGCF(登録商標)が用いられた。結着剤として、旭化成株式会社製の水添スチレン系熱可塑性エラストマー(SEBS)タフテック(登録商標)N504が用いられた。スラリーにおいて、正極活物質、固体電解質、導電助剤、および結着剤は、質量比で、正極活物質:固体電解質:導電助剤:結着剤=75.8:21.4:0.8:2.0となるように混合された。
 正極集電体としての厚み10μmのアルミニウム箔の片面に、上記のスラリーを塗布した。正極集電体にスラリーが塗布された正極シートは、乾燥の後、プレスされた。その後、得られた正極シートをφ0.92cmの大きさに打ち抜くことによって、正極が得られた。
 <試験セルの作製>
 9.4mmの内径を有する絶縁性外筒の中で、得られたφ0.92cmの正極と負極とが、活物質を含む層が形成されている面が対向し、かつ正極活物質を含む層と負極活物質を含む層との間に固体電解質Li3YBr4Cl2(80mg)が配置されるように積層された。得られた積層体に対し、積層方向に360MPaの圧力が印加され、正極、固体電解質層および負極からなる積層体が形成された。この積層体において、正極の厚みは22μmであり、固体電解質層の厚みは400μmであり、負極の厚みは16.5μmであった。
 次に、ステンレス鋼から形成された集電体が正極および負極に取り付けられ、当該集電体に集電リードが取り付けられた。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部が外気雰囲気から遮断され、当該筒の内部が密閉された。
 以上により、Biめっき層からなる活物質層を有する電極である第一電極を負極とし、第二電極を正極とする、実施例5の試験セルが得られた。
 <充放電試験>
 以下の条件で、作製した試験セルの充放電試験を行った。試験セルにおいて、正極における正極活物質の容量を200mAh/gと仮定し、正極活物質で規定した充放電レートIT=0.01となる電流値を一定として充放電試験を実施した。充放電試験では、試験セルを3.9Vまで充電し、その後、1.5Vまで放電することによって行われた。この充放電試験は、85℃の恒温槽内で行われた。図12は、実施例5に係る試験セルの充放電試験の結果を示すグラフである。
 <充放電サイクル試験>
 作製した試験セルについて、充放電試験における条件と同様の条件で、充電と放電とを1サイクルとして、充放電サイクル試験を行った。図13は、実施例5に係る試験セルの充放電サイクル試験の結果を示す。なお、図13には、充放電サイクル試験における初期の放電容量に対する5サイクルまでの放電容量維持率が示されている。実施例5のセルでは、5サイクル後でも初期の89%以上の放電容量を維持していた。
 (実施例6)
 <第一電極(負極)の作製>
 実施例5と同様の方法で、第一電極としての負極が作製された。
 <固体電解質>
 Ampcera社製の硫化物固体電解質Li6PS5Clが固体電解質として用いられた。
 <第二電極(正極)の作製>
 正極活物質を含むスラリーにおいて、正極活物質、固体電解質、導電助剤、および結着剤は、質量比で、正極活物質:固体電解質:導電助剤:結着剤=81.0:16.2:0.8:2.0となるように混合された。この点以外は、実施例5と同様の方法で、第二電極としての正極が作製された。
 <試験セルの作製>
 9.4mmの内径を有する絶縁性外筒の中で、得られたφ0.92cmの正極と負極とが、活物質を含む層が形成されている面が対向し、かつ正極活物質を含む層と負極活物質を含む層との間に固体電解質Li6PS5Cl(80mg)が配置されるように積層された。得られた積層体に対し、積層方向に360MPaの圧力が印加され、正極、固体電解質層および負極からなる積層体が形成された。この積層体において、正極の厚みは22μmであり、固体電解質層の厚みは400μmであり、負極の厚みは16.5μmであった。
 次に、ステンレス鋼から形成された集電体が正極および負極に取り付けられ、当該集電体に集電リードが取り付けられた。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部が外気雰囲気から遮断され、当該筒の内部が密閉された。
 以上により、Biめっき層からなる活物質層を有する電極である第一電極を負極とし、第二電極を正極とする、実施例6の試験セルが得られた。
 <充放電サイクル試験>
 以下の条件で、作製した試験セルの充放電試験を行った。試験セルにおいて、正極における正極活物質の容量を200mAh/gと仮定し、正極活物質で規定した充放電レートIT=0.01となる電流値を一定として充放電試験を実施した。充放電試験では、試験セルを3.9Vまで充電し、その後、1.5Vまで放電することによって行われた。この充放電試験は、85℃の恒温槽内で行われた。図14は、実施例6に係る試験セルの充放電試験の結果を示すグラフである。
 <充放電サイクル試験>
 作製した試験セルについて、充放電試験における条件と同様の条件で、充電と放電とを1サイクルとして、充放電サイクル試験を行った。図15は、実施例6に係る試験セルの充放電サイクル試験の結果を示す。なお、図15には、充放電サイクル試験における初期の放電容量に対する5サイクルまでの放電容量維持率が示されている。実施例6のセルでは、5サイクル後でも初期の93%以上の放電容量を維持していた。
 (実施例7)
 <第一電極(負極)の作製>
 実施例5と同様の方法で、第一電極としての負極が作製された。
 <固体電解質の作製>
 実施例1と同様の方法で、Li3YBr4Cl2の組成を有する固体電解質が作製された。
 <第二電極(正極)の作製>
 第二電極としての正極が、以下のように作製された。
 正極活物質が、共沈法により作製された。共沈法により得られた[Ni0.80Co0.15Mn0.05](OH)2で表される水酸化物を500℃で焼成して、ニッケルコバルトマンガン複合酸化物を得た。共沈法で得られた複合酸化物と水酸化リチウムLiOHとを、Li/Me=1.1(モル比)となるように乾式で混合し、酸素雰囲気下で1000℃まで昇温し、混合物を10時間焼成した。焼成した混合物は、誘導結合プラズマ発光分光分析装置CIROS120(SPECTRO社製)にて、組成における元素比率が導出された。導出された元素比率は、Li:Ni:Co:Mn=1.04:0.81:0.15:0.04であった。
 アルゴングローブボックス中で、作製したリチウムニッケルコバルトマンガン複合酸化物に対し、ニオブエトキシド(シグマアルドリッチ製)およびリチウムエトキシド(シグマアルドリッチ製)を混合し、得られた混合物を超脱水エタノール(富士フィルム和光純薬製)に溶解させ、被覆溶液を作製した。被覆溶液において、リチウムニッケルコバルトマンガン複合酸化物、ニオブエトキシド、およびリチウムエトキシドの質量比は、リチウムニッケルコバルトマンガン複合酸化物:ニオブエトキシド:リチウムエトキシド=6.1:1であった。
 作製したリチウムニッケルコバルトマンガン複合酸化物を乳鉢に入れ、そこに上記の被覆溶液を加え、混合した後、エタノールを蒸発させ、粉末を得た。得られた粉末を350℃で3時間焼成することで、ニオブ酸リチウムに被覆されたリチウムニッケルコバルトマンガン複合酸化物を得た。このニオブ酸リチウムに被覆されたリチウムニッケルコバルトマンガン複合酸化物が、正極活物質として用いられた。
 正極は、アルゴン雰囲気中でアルミニウム箔に正極活物質を含むスラリーを塗工することによって作製された。正極活物質を含むスラリーは、アルゴン雰囲気中で、正極活物質に、固体電解質、導電助剤、および結着剤を混合し、得られた混合物をテトラリン溶媒に溶解させることによって作製された。固体電解質としてLi3YBr4Cl2が用いられた。導電助剤として、昭和電工株式会社製のカーボン・ナノファイバーVGCF(登録商標)が用いられた。結着剤として、旭化成株式会社製の水添スチレン系熱可塑性エラストマー(SEBS)タフテック(登録商標)N504が用いられた。スラリーにおいて、正極活物質、固体電解質、導電助剤、および結着剤は、質量比で、正極活物質:固体電解質:導電助剤:結着剤=80.4:16.8:0.8:2.0となるように混合された。
 正極集電体としての厚み10μmのアルミニウム箔の片面に、上記のスラリーを塗布した。正極集電体にスラリーが塗布された正極シートは、乾燥の後、プレスされた。その後、得られた正極シートをφ0.92cmの大きさに打ち抜くことによって、正極が得られた。
 <試験セルの作製>
 9.4mmの内径を有する絶縁性外筒の中で、得られたφ0.92cmの正極と負極とが、活物質を含む層が形成されている面が対向し、かつ正極活物質を含む層と負極活物質を含む層との間に固体電解質Li3YBr4Cl2(80mg)が配置されるように積層された。得られた積層体に対し、積層方向に360MPaの圧力が印加され、正極、固体電解質層および負極からなる積層体が形成された。この積層体において、正極の厚みは22μmであり、固体電解質層の厚みは400μmであり、負極の厚みは16.5μmであった。
 次に、ステンレス鋼から形成された集電体が正極および負極に取り付けられ、当該集電体に集電リードが取り付けられた。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部が外気雰囲気から遮断され、当該筒の内部が密閉された。
 以上により、Biめっき層からなる活物質層を有する電極である第一電極を負極とし、第二電極を正極とする、実施例7の試験セルが得られた。
 <充放電試験>
 以下の条件で、作製した試験セルの充放電試験を行った。試験セルにおいて、正極における正極活物質の容量を200mAh/gと仮定し、正極活物質で規定した充放電レートIT=0.01となる電流値を一定として充放電試験を実施した。充放電試験では、試験セルを3.9Vまで充電し、その後、1.5Vまで放電することによって行われた。この充放電試験は、85℃の恒温槽内で行われた。図16は、実施例7に係る試験セルの充放電試験の結果を示すグラフである。
 <充放電サイクル試験>
 作製した試験セルについて、充放電試験における条件と同様の条件で、充電と放電とを1サイクルとして、充放電サイクル試験を行った。図17は、実施例7に係る試験セルの充放電サイクル試験の結果を示す。なお、図17には、充放電サイクル試験における初期の放電容量に対する10サイクルまでの放電容量維持率が示されている。実施例7のセルでは、10サイクル後でも初期の80%以上の放電容量を維持していた。
 (参考例1)
 <第一電極の作製>
 実施例1と同様にして、銅箔(2cm×2cm、厚み:12μm)の片面にBiが1μmの厚みでめっきされた第一電極が作製された。
 <試験セルの作製>
 作用極として第一電極が用いられた。対極として厚さ0.34μmのLi金属が用いられた。Li金属は、微多孔性セパレータ(旭化成製、セルガード3401)で二重に被覆された。電解液として、LiPF6を1.0モル/Lの濃度でビニレンカーボネート(VC)に溶解させた溶液を準備した。このようにして、参考例1の試験セルが得られた。
 <充放電サイクル試験>
 参考例1の試験セルを、0.6mAの定電流で、0V(vsLi+/Li)まで充電し、その後、2.0V(vsLi+/Li)まで放電した。これを1サイクルとして、25サイクルまで充放電サイクル試験を行った。電池は25℃の恒温槽内で試験を行った。なお、0.6mA(0.15mA/cm2)の定電流値は、0.5ITに相当する。
 (参考例2)
 <試験セルの作製>
 電解液の溶媒をフルオロエチレンカーボネート(FEC)に変更した以外は、参考例1の試験セルと同様にして、参考例2の試験セルが得られた。
 <充放電サイクル試験>
 参考例1と同様にして、参考例2の試験セルについて充放電サイクル試験を実施した。
 図18は、参考例1および参考例2に係る電池の充放電サイクル試験の結果を示す。図18に示すように、参考例1および参考例2の電池では、20サイクル程度で、容量が初期容量の1/3以下に低下した。これは、充放電を繰り返すことによってBiめっき層が膨張および収縮を繰り返すと、Biめっき層からなる活物質層内に生成される空洞内に非水電解液が入り込み、それにより活物質層の構造が破壊されることによって、活物質層内の電子伝導経路が低減するためであると考えられる。
 以上の結果から、電解質層に固体電解質を用いることで、電池のサイクル特性が顕著に向上することがわかる。今回の実施例では、ハロゲン化物固体電解質Li3YBr4Cl2を用いたが、一般的な他の固体電解質であっても同様の効果を得られることが期待できる。
 本開示の電池は、例えば、全固体リチウム二次電池などとして、利用されうる。
 1000 電池
 100 集電体
 101 第一電極
 102 固体電解質層
 103 第二電極
 104 活物質層
 105 集電体
 106 活物質層

Claims (22)

  1.  第一電極と、
     第二電極と、
     前記第一電極と前記第二電極との間に位置する固体電解質層と、
    を備え、
     前記第一電極は、集電体と、前記集電体と前記固体電解質層との間に位置する活物質層と、を有し、
     前記活物質層は、活物質の主成分としてBiを含む、
    電池。
  2.  前記固体電解質層は、ハロゲン化物固体電解質を含み、
     前記ハロゲン化物固体電解質は、硫黄を含まない、
    請求項1に記載の電池。
  3.  前記ハロゲン化物固体電解質は、Li、M1、およびX1からなる化合物であり、
     M1は、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、
     X1は、F、Cl、Br、およびIからなる群より選択される少なくとも1つである、請求項2に記載の電池。
  4.  M1は、Yを含み、
     X1は、ClおよびBrを含む、
    請求項3に記載の電池。
  5.  前記固体電解質層は、硫化物固体電解質を含む、
    請求項1に記載の電池。
  6.  前記固体電解質層は、実質的に硫化物固体電解質のみからなる、
    請求項5に記載の電池。
  7.  前記硫化物固体電解質が、アルジロダイト型結晶構造を有する、
    請求項5または6に記載の電池。
  8.  前記硫化物固体電解質の組成式は、Li7-aAS6-aX2aである、
    請求項5から7のいずれか一項に記載の電池。
     ここで、前記AはPおよびAsからなる群より選択される少なくとも一つであり、前記X2はCl、Br、およびIからなる群より選択される少なくとも一つであり、前記aは0≦a≦1を充足する。
  9.  前記硫化物固体電解質の組成式が、Li6PS5Clである、
    請求項5から8のいずれか一項に記載の電池。
  10.  前記活物質の密度は、6.0g/cm3以上かつ9.8g/cm3以下である、
    請求項1から9のいずれか一項に記載の電池。
     ここで、前記活物質の前記密度とは、前記第一電極が負極である場合は、前記電池が完全放電状態のときの前記活物質の密度であり、前記第一電極が正極である場合は、前記電池が満充電状態のときの前記活物質の密度である。
  11.  前記活物質の密度は、7.5g/cm3以上かつ9.8g/cm3以下である、
     請求項10に記載の電池。
  12.  Cu-Kα線を用いた表面X線回折測定によって得られる前記活物質層のX線回折パターンにおいて、26°以上28°以下の回折角2θの範囲に存在する最大ピークの高さ強度をI(1)とし、37°以上39°以下の回折角2θの範囲に存在する最大ピークの高さ強度をI(2)としたとき、前記I(1)に対する前記I(2)の比であるI(2)/I(1)は0.29以上である、
    請求項1から11のいずれか一項に記載の電池。
  13.  前記I(2)/I(1)は0.57以下である、
    請求項12に記載の電池。
  14.  前記活物質層は、Bi単体を含む、
    請求項1から13のいずれか一項に記載の電池。
  15.  前記活物質層は、LiBiおよびLi3Biからなる群より選択される少なくとも1つを含む、
    請求項1から14のいずれか一項に記載の電池。
  16.  前記活物質層は、活物質としてBi単体のみを含む、
    請求項1から15のいずれか一項に記載の電池。
  17.  前記活物質層は、電解質を含まない、
    請求項1から16のいずれか一項に記載の電池。
  18.  前記集電体は、Cuを含む、
    請求項1から17のいずれか一項に記載の電池。
  19.  前記活物質層は、めっき層である、
    請求項1から18のいずれか一項に記載の電池。
  20.  前記第一電極は、負極であり、
     前記第二電極は、正極である、
    請求項1から19のいずれか一項に記載の電池。
  21.  前記第二電極は、下記の組成式(1)により表される化合物を含む、
    請求項1から20のいずれか一項に記載の電池。
     LiNixMe1-x2 ・・・(1)
     ここで、xは0<x≦1を満たし、MeはMn、Co、およびAlからなる群より選択される少なくとも1つの元素である。
  22.  xは、0.5≦x≦1を満たす、
    請求項21に記載の電池。
PCT/JP2021/038855 2021-01-26 2021-10-21 電池 WO2022163039A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180090459.3A CN116848664A (zh) 2021-01-26 2021-10-21 电池
JP2022578050A JPWO2022163039A1 (ja) 2021-01-26 2021-10-21
EP21923045.5A EP4287319A1 (en) 2021-01-26 2021-10-21 Battery
US18/342,770 US20230343998A1 (en) 2021-01-26 2023-06-28 Battery

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021010655 2021-01-26
JP2021-010655 2021-01-26
JP2021010654 2021-01-26
JP2021-010654 2021-01-26
JP2021-139376 2021-08-27
JP2021139376 2021-08-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/342,770 Continuation US20230343998A1 (en) 2021-01-26 2023-06-28 Battery

Publications (1)

Publication Number Publication Date
WO2022163039A1 true WO2022163039A1 (ja) 2022-08-04

Family

ID=82654323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038855 WO2022163039A1 (ja) 2021-01-26 2021-10-21 電池

Country Status (4)

Country Link
US (1) US20230343998A1 (ja)
EP (1) EP4287319A1 (ja)
JP (1) JPWO2022163039A1 (ja)
WO (1) WO2022163039A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068095A (ja) * 1999-08-25 2001-03-16 Hyogo Prefecture リチウム二次電池用負極及びこれを用いたリチウム二次電池
JP2001236955A (ja) * 2000-02-22 2001-08-31 Sanyo Electric Co Ltd リチウム二次電池
JP3733065B2 (ja) 1999-10-22 2006-01-11 三洋電機株式会社 リチウム電池用電極及びリチウム二次電池
JP2011090932A (ja) * 2009-10-23 2011-05-06 Toyota Central R&D Labs Inc リチウム二次電池用負極およびリチウム二次電池
JP4898737B2 (ja) 2001-11-20 2012-03-21 キヤノン株式会社 リチウム二次電池用の負極材料、負極構造体及び二次電池
WO2018025582A1 (ja) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
JP2018129159A (ja) * 2017-02-07 2018-08-16 三星電子株式会社Samsung Electronics Co.,Ltd. 全固体型二次電池用負極及び全固体型二次電池
JP2019140054A (ja) * 2018-02-15 2019-08-22 Tdk株式会社 正極及び非水電解液二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068095A (ja) * 1999-08-25 2001-03-16 Hyogo Prefecture リチウム二次電池用負極及びこれを用いたリチウム二次電池
JP3733065B2 (ja) 1999-10-22 2006-01-11 三洋電機株式会社 リチウム電池用電極及びリチウム二次電池
JP2001236955A (ja) * 2000-02-22 2001-08-31 Sanyo Electric Co Ltd リチウム二次電池
JP4898737B2 (ja) 2001-11-20 2012-03-21 キヤノン株式会社 リチウム二次電池用の負極材料、負極構造体及び二次電池
JP2011090932A (ja) * 2009-10-23 2011-05-06 Toyota Central R&D Labs Inc リチウム二次電池用負極およびリチウム二次電池
WO2018025582A1 (ja) * 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
JP2018129159A (ja) * 2017-02-07 2018-08-16 三星電子株式会社Samsung Electronics Co.,Ltd. 全固体型二次電池用負極及び全固体型二次電池
JP2019140054A (ja) * 2018-02-15 2019-08-22 Tdk株式会社 正極及び非水電解液二次電池

Also Published As

Publication number Publication date
US20230343998A1 (en) 2023-10-26
JPWO2022163039A1 (ja) 2022-08-04
EP4287319A1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
JP7253706B2 (ja) 固体電解質材料、および、電池
WO2019146218A1 (ja) 固体電解質材料、および、電池
WO2019135345A1 (ja) 固体電解質材料、および、電池
JP5614307B2 (ja) 非水電解質二次電池
US8377591B2 (en) Anode material for secondary battery, anode for secondary battery and secondary battery therewith
KR20060087003A (ko) 리튬 이차 전지용 음극활물질 및 그의 제조 방법
WO2019135341A1 (ja) 固体電解質材料、および、電池
WO2019135342A1 (ja) 固体電解質材料、および、電池
KR20160049337A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
US20240030418A1 (en) Battery and method for manufacturing electrode
US20240030419A1 (en) Battery and method for manufacturing electrode
WO2022163039A1 (ja) 電池
WO2023145426A1 (ja) 電池および電極の製造方法
WO2022163037A1 (ja) 電池
WO2023074590A1 (ja) 電池
WO2023017672A1 (ja) 電池
WO2022163038A1 (ja) 電池
WO2022224571A1 (ja) 電池
US20240162486A1 (en) Battery
WO2023106126A1 (ja) 電池
WO2023017673A1 (ja) 電池
WO2022255002A1 (ja) 電池
WO2023017735A1 (ja) 電池
WO2022255003A1 (ja) 電池
WO2023017736A1 (ja) 電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923045

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578050

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180090459.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021923045

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021923045

Country of ref document: EP

Effective date: 20230828