WO2022255003A1 - 電池 - Google Patents

電池 Download PDF

Info

Publication number
WO2022255003A1
WO2022255003A1 PCT/JP2022/018781 JP2022018781W WO2022255003A1 WO 2022255003 A1 WO2022255003 A1 WO 2022255003A1 JP 2022018781 W JP2022018781 W JP 2022018781W WO 2022255003 A1 WO2022255003 A1 WO 2022255003A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
solid electrolyte
battery
negative electrode
electrolyte
Prior art date
Application number
PCT/JP2022/018781
Other languages
English (en)
French (fr)
Inventor
唯未 宮本
正久 藤本
貴司 大戸
好政 名嘉真
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023525664A priority Critical patent/JPWO2022255003A1/ja
Priority to CN202280039144.0A priority patent/CN117413395A/zh
Publication of WO2022255003A1 publication Critical patent/WO2022255003A1/ja
Priority to US18/526,790 priority patent/US20240097133A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/36Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 halogen being the only anion, e.g. NaYF4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/002Compounds containing, besides titanium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/52Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [Mn2O4]2-, e.g. Li2(NixMn2-x)O4, Li2(MyNixMn2-x-y)O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to batteries.
  • Patent Document 1 discloses an all-solid secondary battery containing a solid electrolyte composed of a compound containing indium as a cation and a halogen element as an anion.
  • this all-solid secondary battery it is desirable that the average potential of the positive electrode active material versus Li is 3.9 V or less, thereby preventing the formation of a film composed of decomposition products due to oxidative decomposition of the solid electrolyte. It is mentioned that it is suppressed and good charge/discharge characteristics are obtained.
  • a layered transition metal oxide positive electrode such as LiCoO 2 or LiNi 0.8 Co 0.15 Al 0.05 O 2 is disclosed as a positive electrode active material having an average potential versus Li of 3.9 V or less.
  • the present disclosure provides novel operable batteries using cathode active materials comprising oxides of Li, Ni, Mn, and O.
  • the battery of the present disclosure is a positive electrode; a negative electrode; an electrolyte layer positioned between the positive electrode and the negative electrode; with the positive electrode comprises a positive electrode material;
  • the positive electrode material includes a positive electrode active material and a first solid electrolyte material,
  • the positive electrode active material contains an oxide composed of Li, Ni, Mn, and O,
  • the first solid electrolyte material contains Li, at least one selected from the group consisting of metal elements other than Li and metalloid elements, and at least one selected from the group consisting of F, Cl, and Br.
  • the negative electrode contains Bi as a main component of the negative electrode active material.
  • novel operable batteries using cathode active materials comprising oxides of Li, Ni, Mn, and O are provided.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view showing a schematic configuration of battery 3000 according to the second embodiment.
  • 3 is a graph showing charge-discharge curves of the battery of Example 1.
  • FIG. 4 is a graph showing charge-discharge curves of the battery of Example 2.
  • the battery according to the first aspect of the present disclosure includes a positive electrode; a negative electrode; an electrolyte layer positioned between the positive electrode and the negative electrode; with the positive electrode comprises a positive electrode material;
  • the positive electrode material includes a positive electrode active material and a first solid electrolyte material, the positive electrode active material includes an oxide composed of Li, Ni, Mn, and O;
  • the first solid electrolyte material contains Li, at least one selected from the group consisting of metal elements other than Li and metalloid elements, and at least one selected from the group consisting of F, Cl, and Br.
  • the negative electrode contains Bi as a main component of the negative electrode active material.
  • Bi is included as a main component of the negative electrode active material. Bi does not have the property that different types of compounds formed with lithium have different potentials, unlike tin. Therefore, an electrode containing Bi as an active material is excellent in discharge flatness.
  • the positive electrode active material contains an oxide composed of Li, Ni, Mn, and O, and has a relatively high potential.
  • the first solid electrolyte material may cover at least part of the surface of the positive electrode active material.
  • the battery according to the second aspect since at least part of the surface of the positive electrode active material is covered with the first solid electrolyte material, formation of an oxidative decomposition layer by the halide solid electrolyte is suppressed, and an increase in internal resistance is suppressed. can be done. As a result, the battery according to the second aspect has improved charge/discharge capacity.
  • the positive electrode material further includes a second electrolyte material that is a material having a composition different from that of the first solid electrolyte material. good too.
  • the battery according to the third aspect has improved charge/discharge characteristics.
  • the positive electrode active material may contain a material represented by the following compositional formula (1).
  • LiNi x Mn 2-x O 4 Formula (1) Here, x satisfies 0 ⁇ x ⁇ 2.
  • the battery according to the fourth aspect can operate at a high potential.
  • the composition formula (1) may satisfy 0 ⁇ x ⁇ 1.
  • the battery according to the fifth aspect can operate at a higher potential.
  • the battery according to the sixth aspect can operate at a higher potential.
  • the oxide may have a spinel structure.
  • the battery according to the seventh aspect can operate at a high potential.
  • the first solid electrolyte material may contain Li, Ti, Al, and F.
  • the first solid electrolyte material has high oxidation resistance. Therefore, it is possible to suppress a decrease in charge/discharge capacity due to oxidative decomposition of the first solid electrolyte material.
  • the negative electrode may contain Bi simple substance as the negative electrode active material.
  • the battery according to the ninth aspect has improved charge/discharge characteristics.
  • the negative electrode may be a plated layer.
  • the battery according to the tenth aspect has improved capacity.
  • the second electrolyte material may contain a material represented by the following compositional formula (3).
  • Li ⁇ 3 M ⁇ 3 X ⁇ 3 O ⁇ 3 Formula (3) ⁇ 3, ⁇ 3, and ⁇ 3 are values greater than 0, ⁇ 3 is a value of 0 or more, and M is at least one selected from the group consisting of metal elements other than Li and metalloid elements. and X is at least one element selected from the group consisting of F, Cl, Br, and I;
  • the battery according to the eleventh aspect has improved charge/discharge characteristics.
  • the composition formula (3) is 1 ⁇ 3 ⁇ 4, 0 ⁇ 3 ⁇ 2, 3 ⁇ 3 ⁇ 7, and 0 ⁇ 3 ⁇ 2, may be satisfied.
  • the ionic conductivity of the second electrolyte material can be increased. As a result, the resistance resulting from movement of Li ions can be further reduced.
  • the ionic conductivity of the second electrolyte material can be increased. As a result, the resistance resulting from movement of Li ions can be further reduced.
  • the electrolyte layer may contain a sulfide solid electrolyte.
  • the battery according to the fourteenth aspect has more improved charge-discharge characteristics.
  • the sulfide solid electrolyte may be Li 6 PS 5 Cl.
  • the battery according to the fifteenth aspect has more improved charge-discharge characteristics.
  • the electrolyte layer is selected from the group consisting of Li, metal elements other than Li, and metalloid elements
  • a material containing at least one and at least one selected from the group consisting of F, Cl and Br may be included.
  • the battery according to the sixteenth aspect has more improved charge-discharge characteristics.
  • the electrolyte layer may contain Li3YBr2Cl4 .
  • the battery according to the seventeenth aspect has more improved charge-discharge characteristics.
  • the electrolyte layer includes a first electrolyte layer and a second electrolyte layer, and the first electrolyte layer is It may be located between the positive electrode and the negative electrode, and the second electrolyte layer may be located between the first electrolyte layer and the negative electrode.
  • the battery according to the eighteenth aspect can suppress an increase in internal resistance during charging.
  • the positive electrode material further includes a second electrolyte material that is a material having a composition different from that of the first solid electrolyte material, and the first electrolyte
  • the layer may comprise a material having the same composition as said second electrolyte material.
  • the battery according to the nineteenth aspect can further suppress an increase in internal resistance during charging.
  • a battery of the present disclosure comprises a positive electrode, a negative electrode, and an electrolyte layer positioned between the positive and negative electrodes.
  • a positive electrode includes a positive electrode material.
  • the positive electrode material includes a positive electrode active material and a first solid electrolyte material.
  • the positive electrode active material contains an oxide composed of Li, Ni, Mn, and O.
  • the first solid electrolyte material contains Li, at least one selected from the group consisting of metal elements other than Li and metalloid elements, and at least one selected from the group consisting of F, Cl, and Br. .
  • the negative electrode contains Bi as a main component of the negative electrode active material.
  • the negative electrode contains Bi as the main component of the negative electrode active material means that "in the negative electrode, the component contained in the negative electrode in the largest molar ratio as the negative electrode active material is Bi.”
  • the first solid electrolyte material may cover at least part of the surface of the positive electrode active material.
  • the positive electrode material may further contain a second electrolyte material, which is a material having a composition different from that of the first solid electrolyte material.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 1.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a battery 2000 according to Embodiment 1.
  • a battery 2000 includes a positive electrode 201 , a negative electrode 203 , and an electrolyte layer 202 positioned between the positive electrode 201 and the negative electrode 203 .
  • Cathode 201 includes cathode material 1000 .
  • Cathode material 1000 includes a cathode active material 110 and a first solid electrolyte material 111 .
  • the positive electrode active material 110 includes an oxide made of Li, Ni, Mn, and O.
  • the first solid electrolyte material 111 contains Li, at least one selected from the group consisting of metal elements other than Li and metalloid elements, and at least one selected from the group consisting of F, Cl, and Br. include.
  • the negative electrode 203 contains Bi as a main component of the negative electrode active material.
  • the first solid electrolyte material 111 covers at least part of the surface of the positive electrode active material 110, and the positive electrode material 1000 further includes the second electrolyte material 100. .
  • cathode 201 includes cathode material 1000 .
  • Cathode material 1000 includes a cathode active material 110 and a first solid electrolyte material 111 .
  • the positive electrode active material 110 includes an oxide made of Li, Ni, Mn, and O.
  • the first solid electrolyte material 111 contains Li, at least one selected from the group consisting of metal elements other than Li and metalloid elements, and at least one selected from the group consisting of F, Cl, and Br. include.
  • Simetallic elements are B, Si, Ge, As, Sb, and Te.
  • Metallic element means all elements contained in Groups 1 to 12 of the periodic table except hydrogen, and B, Si, Ge, As, Sb, Te, C, N, P, O, S, and It is an element contained in all Groups 13 to 16 except Se. In other words, it is a group of elements that can become cations when a halogen compound and an inorganic compound are formed.
  • the positive electrode material 1000 has high oxidation resistance. Therefore, the positive electrode material 1000 can suppress an increase in the internal resistance of the battery during charging. Also, the first solid electrolyte material 111 has high ionic conductivity. Therefore, in the positive electrode material 1000, low interfacial resistance between the first solid electrolyte material 111 and the positive electrode active material 110 can be achieved.
  • the first solid electrolyte material 111 may cover at least part of the surface of the positive electrode active material 110 .
  • the positive electrode active material 110 may contain a material represented by the following compositional formula (1). LiNi x Mn 2-x O 4 Formula (1) Here, 0 ⁇ x ⁇ 2 is satisfied.
  • composition formula (1) 0 ⁇ x ⁇ 1 may be satisfied.
  • oxides represented by these chemical formulas are materials obtained by substituting Ni for a portion of Mn in LiMn 2 O 4 having a spinel structure, and are suitable for improving the operating voltage of batteries.
  • Oxides composed of Li, Ni, Mn, and O can also have a spinel structure.
  • Oxides composed of Li, Ni, Mn and O means that elements other than Li, Ni, Mn and O are not intentionally added except for unavoidable impurities.
  • the material represented by the compositional formula (1) is inexpensive because it does not contain Co. With the configuration described above, the cost of the battery 2000 can be reduced.
  • An oxide composed of Li, Ni, Mn, and O may have a spinel structure.
  • the positive electrode active material 110 may consist of LiNi 0.5 Mn 1.5 O 4 only.
  • the first solid electrolyte material 111 may contain Li, Ti, Al, and F.
  • the first solid electrolyte material 111 may consist essentially of Li, Ti, Al, and F. "The first solid electrolyte material 111 consists essentially of Li, Ti, Al, and F" means that Li, Ti, Al , and F have a total molar ratio (ie, molar fraction) of 90% or more. As an example, the molar ratio may be 95% or more.
  • the first solid electrolyte material 111 may consist of Li, Ti, Al, and F only.
  • the first solid electrolyte material 111 may contain a material represented by the following compositional formula (2A).
  • ⁇ 1, ⁇ 1, ⁇ 1, and ⁇ 1 are values greater than zero.
  • ⁇ 1 may be a value larger than ⁇ 1.
  • ⁇ 1 may be a value greater than each of ⁇ 1, ⁇ 1, and ⁇ 1.
  • composition formula (2A) 1.7 ⁇ 1 ⁇ 3.7, 0 ⁇ 1 ⁇ 1.5, 0 ⁇ 1 ⁇ 1.5, and 5 ⁇ 1 ⁇ 7 may be satisfied.
  • the first solid electrolyte material 111 may contain a material represented by the compositional formula (2A) as a main component.
  • the first solid electrolyte material 111 contains the material represented by the compositional formula (2A) as a main component means that "the first solid electrolyte material 111 is composed of a material that is contained in the highest mass ratio. It means that it is a material represented by the formula (2A).
  • the first solid electrolyte material 111 may include a material represented by the following compositional formula (2B). Li ⁇ 2 Ti ⁇ 2 Al ⁇ 2 F 6 Formula (2B) where ⁇ 2, ⁇ 2, and ⁇ 2 are values greater than zero.
  • the first solid electrolyte material 111 may contain the material represented by the compositional formula (2B) as a main component.
  • the first solid electrolyte material 111 contains the material represented by the compositional formula (2B) as a main component means that "the first solid electrolyte material 111 is composed of a material that is contained in the largest amount in terms of mass ratio. It means that it is a material represented by the formula (2B).
  • the first solid electrolyte material 111 may contain Li2.7Ti0.3Al0.7F6 as a main component .
  • the first solid electrolyte material 111 may consist only of Li2.7Ti0.3Al0.7F6 .
  • the first solid electrolyte material 111 exhibits higher ionic conductivity. Therefore, in the positive electrode material 1000, a low interfacial resistance between the first solid electrolyte material 111 and the positive electrode active material 110 can be achieved, and the charging/discharging efficiency of the battery 2000 can be improved.
  • the first solid electrolyte material 111 may contain elements other than F as anions. Examples of elements included as such anions are Cl, Br, I, O, S, or Se. Also, the first solid electrolyte material 111 may not contain sulfur.
  • the positive electrode material 1000 may further contain a second electrolyte material 100 that is a material having a composition different from that of the first solid electrolyte material 111 .
  • the second electrolyte material 100 may be represented by the following compositional formula (3).
  • ⁇ 3, ⁇ 3, and ⁇ 3 are values greater than 0, ⁇ 3 is a value of 0 or more, and M is at least one selected from the group consisting of metal elements other than Li and metalloid elements. and X is at least one element selected from the group consisting of F, Cl, Br, and I;
  • the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
  • M may contain at least one selected from the group consisting of Y and Ta. That is, the second electrolyte material 100 may contain at least one selected from the group consisting of Y and Ta as a metal element.
  • the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
  • composition formula (3) 1 ⁇ 3 ⁇ 4, 0 ⁇ 3 ⁇ 2, 3 ⁇ 3 ⁇ 7, and 0 ⁇ 3 ⁇ 2 may be satisfied.
  • the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
  • the second electrolyte material 100 containing Y may be, for example , a compound represented by the composition formula LiaMebYcX6 .
  • Me is at least one element selected from the group consisting of metal elements excluding Li and Y and metalloid elements.
  • m' is the valence of Me.
  • At least one element selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta, and Nb may be used as Me.
  • the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
  • the second electrolyte material 100 may be a material represented by the following compositional formula (A1). Li 6-3d Y d X 6 Formula (A1) Here, in the composition formula (A1), X is a halogen element and contains Cl. Also, 0 ⁇ d ⁇ 2 is satisfied.
  • the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
  • the second electrolyte material 100 may be a material represented by the following compositional formula (A2). Li 3 YX 6 Formula (A2) Here, in the composition formula (A2), X is a halogen element and contains Cl.
  • the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
  • the second electrolyte material 100 may be a material represented by the following compositional formula (A3). Li 3-3 ⁇ Y 1+ ⁇ Cl 6 Formula (A3) Here, 0 ⁇ 0.15 is satisfied in the composition formula (A3).
  • the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
  • the second electrolyte material 100 may be a material represented by the following compositional formula (A4).
  • Me is at least one element selected from the group consisting of Mg, Ca, Sr, Ba, and Zn.
  • ⁇ 1 ⁇ 2, 0 ⁇ a4 ⁇ 3, 0 ⁇ (3 ⁇ 3 ⁇ +a4), 0 ⁇ (1+ ⁇ a4), and 0 ⁇ x4 ⁇ 6 are satisfied.
  • the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
  • the second electrolyte material 100 may be a material represented by the following compositional formula (A5).
  • Me is at least one element selected from the group consisting of Al, Sc, Ga, and Bi.
  • ⁇ 1 ⁇ 1, 0 ⁇ a5 ⁇ 2, 0 ⁇ (1+ ⁇ a5), and 0 ⁇ x5 ⁇ 6 are satisfied.
  • the ionic conductivity of the second electrolyte material 100 can be further increased. Thereby, the resistance resulting from movement of Li ions in the positive electrode material 1000 can be further reduced.
  • the second electrolyte material 100 may be a material represented by the following compositional formula (A6).
  • Me is at least one element selected from the group consisting of Zr, Hf, and Ti.
  • ⁇ 1 ⁇ 1, 0 ⁇ a6 ⁇ 1.5, 0 ⁇ (3 ⁇ 3 ⁇ a6), 0 ⁇ (1+ ⁇ a6), and 0 ⁇ x6 ⁇ 6 are satisfied.
  • the second electrolyte material 100 may be a material represented by the following compositional formula (A7).
  • Me is at least one element selected from the group consisting of Ta and Nb.
  • ⁇ 1 ⁇ 1, 0 ⁇ a7 ⁇ 1.2, 0 ⁇ (3 ⁇ 3 ⁇ 2a7), 0 ⁇ (1+ ⁇ a7), and 0 ⁇ x7 ⁇ 6 are satisfied.
  • the second electrolyte material 100 for example, Li3YX6 , Li2MgX4 , Li2FeX4 , Li(Al, Ga, In) X4 , Li3 (Al, Ga, In ) X6 , etc. are used .
  • X includes Cl.
  • this notation indicates at least one element selected from the parenthesized element group. That is, "(Al, Ga, In)” is synonymous with "at least one selected from the group consisting of Al, Ga and In". The same is true for other elements. Note that the second electrolyte material 100 does not have to contain sulfur.
  • the second electrolyte material 100 may contain a sulfide solid electrolyte.
  • sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Li 10 GeP 2 S 12 , Li 6 PS 5 Cl, etc. may be used.
  • LiX, Li2O , MOq , LipMOq , etc. may be added to these.
  • X is at least one element selected from the group consisting of F, Cl, Br and I.
  • M is at least one element selected from the group consisting of P, Si, Ge, B, Al, Ga, In, Fe, and Zn.
  • p and q are each independently a natural number.
  • the second electrolyte material 100 may include lithium sulfide and phosphorus sulfide.
  • the sulfide solid electrolyte may be at least one selected from the group consisting of Li 2 SP 2 S 5 and Li 6 PS 5 Cl.
  • the second electrolyte material 100 may be a sulfide solid electrolyte.
  • the second electrolyte material 100 may further contain an electrolytic solution.
  • the electrolyte contains water or a non-aqueous solvent and a lithium salt dissolved in the solvent.
  • solvents examples include water, cyclic carbonate solvents, chain carbonate solvents, cyclic ether solvents, chain ether solvents, cyclic ester solvents, chain ester solvents, fluorine solvents, and the like.
  • Examples of cyclic carbonate solvents include ethylene carbonate, propylene carbonate, or butylene carbonate.
  • linear carbonate solvents are dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate, and the like.
  • Examples of cyclic ether solvents are tetrahydrofuran, 1,4-dioxane, or 1,3-dioxolane, and the like.
  • Examples of linear ether solvents are 1,2-dimethoxyethane, or 1,2-diethoxyethane, and the like.
  • Examples of cyclic ester solvents are ⁇ -butyrolactone, and the like.
  • Examples of linear ester solvents are methyl acetate, and the like.
  • Examples of fluorosolvents are fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethylmethyl carbonate, or fluorodimethylene carbonate, and the like.
  • one solvent selected from these may be used alone.
  • a combination of two or more solvents selected from these may be used as the solvent.
  • the electrolytic solution may contain at least one fluorine solvent selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethylmethyl carbonate, and fluorodimethylene carbonate.
  • fluorine solvent selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethylmethyl carbonate, and fluorodimethylene carbonate.
  • Lithium salts include LiPF6 , LiBF4 , LiSbF6, LiAsF6 , LiSO3CF3 , LiN( SO2CF3 ) 2 , LiN ( SO2C2F5 ) 2 , LiN( SO2CF3 ) ( SO2C4F9 ), LiC ( SO2CF3 ) 3 , etc. may be used.
  • the lithium salt one lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used as the lithium salt.
  • the lithium salt concentration is, for example, in the range from 0.1 mol/liter to 15 mol/liter.
  • the positive electrode material 1000 may further contain a positive electrode active material other than the positive electrode active material 110 which is an oxide composed of Li, Ni, Mn, and O.
  • a positive electrode active material includes a material that has the property of absorbing and releasing metal ions (eg, lithium ions).
  • positive electrode active materials other than the positive electrode active material 110 include lithium-containing transition metal oxides, transition metal fluorides, polyanion materials, fluorinated polyanion materials, transition metal sulfides, transition metal oxysulfides, or transition metal oxysulfides. nitrides, etc. may be used.
  • Examples of lithium-containing transition metal oxides include Li(Ni, Co, Al) O2 , Li(Ni, Co, Mn) O2 , LiCoO2 , and the like. In particular, when a lithium-containing transition metal oxide is used, the manufacturing cost of the positive electrode material 1000 can be reduced, and the average discharge voltage can be increased.
  • a first solid electrolyte material 111 may be provided between the positive electrode active material 110 and the second electrolyte material 100 .
  • the first solid electrolyte material 111 having high oxidation resistance is interposed between the positive electrode active material 110 and the second electrolyte material 100, thereby suppressing oxidative decomposition of the second electrolyte material 100. Therefore, it is possible to suppress the decrease in the capacity of the battery 2000 during charging.
  • first solid electrolyte material 111 covers at least part of the surface of positive electrode active material 110
  • the thickness of first solid electrolyte material 111 covering at least part of the surface of positive electrode active material 110 is 1 nm or more and 500 nm or less.
  • the thickness of the first solid electrolyte material 111 is 1 nm or more, direct contact between the positive electrode active material 110 and the second electrolyte material 100 can be suppressed, and oxidative decomposition of the second electrolyte material 100 can be suppressed. Therefore, the charge/discharge efficiency of the battery using the positive electrode material 1000 can be improved.
  • the thickness of the first solid electrolyte material 111 is 500 nm or less, the thickness of the first solid electrolyte material 111 does not become too thick. Therefore, the internal resistance of the battery using the positive electrode material 1000 can be sufficiently reduced, and the energy density of the battery can be increased.
  • the method for measuring the thickness of the first solid electrolyte material 111 is not particularly limited, it can be obtained, for example, by directly observing the thickness of the first solid electrolyte material 111 using a transmission electron microscope.
  • the mass ratio of the first solid electrolyte material 111 to the positive electrode active material 110 may be 0.01% or more and 30% or less.
  • the mass ratio of the first solid electrolyte material 111 to the positive electrode active material 110 is 0.01% or more, direct contact between the positive electrode active material 110 and the second electrolyte material 100 is suppressed, and the second electrolyte material 100 is suppressed. Oxidative decomposition can be suppressed. Therefore, the charge/discharge efficiency of the battery can be improved.
  • the mass ratio of the first solid electrolyte material 111 to the positive electrode active material 110 is 30% or less, the thickness of the first solid electrolyte material 111 does not become too thick. Therefore, the internal resistance of the battery can be sufficiently reduced, and the energy density of the battery can be increased.
  • the first solid electrolyte material 111 may evenly cover the surface of the positive electrode active material 110 .
  • direct contact between the positive electrode active material 110 and the second electrolyte material 100 can be suppressed, and side reactions of the second electrolyte material 100 can be suppressed. Therefore, it is possible to improve the charge/discharge characteristics of the battery and suppress the decrease in capacity.
  • the first solid electrolyte material 111 may partially cover the surface of the positive electrode active material 110 . Electron conductivity between the plurality of positive electrode active materials 110 is improved by direct contact between the plurality of positive electrode active materials 110 via portions not having the first solid electrolyte material 111 . Therefore, it is possible to operate the battery at a high output.
  • the first solid electrolyte material 111 may cover 30% or more, 60% or more, or 90% or more of the surface of the positive electrode active material 110 .
  • the first solid electrolyte material 111 may substantially cover the entire surface of the positive electrode active material 110 .
  • At least part of the surface of the positive electrode active material 110 may be covered with a coating material different from the first solid electrolyte material 111 .
  • Coating materials include sulfide solid electrolytes, oxide solid electrolytes, fluoride solid electrolytes, and the like.
  • sulfide solid electrolyte used for the coating material, the same materials as those exemplified for the second electrolyte material 100 may be used.
  • the oxide solid electrolyte used as the coating material includes Li--Nb--O compounds such as LiNbO 3 , Li--B--O compounds such as LiBO 2 and Li 3 BO 3 , Li--Al--O compounds such as LiAlO 2 , Li—Si—O compounds such as Li 4 SiO 4 , Li—Ti—O compounds such as Li 2 SO 4 and Li 4 Ti 5 O 12 , Li—Zr—O compounds such as Li 2 ZrO 3 , Li 2 MoO 3 Li-Mo-O compounds such as LiV 2 O 5 Li-VO compounds such as Li-WO compounds such as Li 2 WO 4 Li-P-O compounds such as Li 3 PO 4 .
  • the fluoride solid electrolyte used for the coating material contains Li, Ti, M1, and F, and M1 is at least one element selected from the group consisting of Ca, Mg, Al, Y, and Zr. A solid electrolyte is mentioned.
  • the oxidation resistance of the positive electrode material 1000 can be further improved. As a result, the decrease in capacity of the battery 2000 during charging can be suppressed.
  • the positive electrode active material 110 and the first solid electrolyte material 111 may be separated by a coating material and may not be in direct contact.
  • the oxidation resistance of the positive electrode material 1000 can be further improved. As a result, it is possible to suppress the decrease in the capacity of the battery during charging.
  • the shape of the second electrolyte material 100 is not particularly limited.
  • its shape may be, for example, acicular, spherical, ellipsoidal, or the like.
  • the shape of the second electrolyte material 100 may be particulate.
  • the median diameter of the second electrolyte material 100 may be 100 ⁇ m or less.
  • the positive electrode active material 110 and the second electrolyte material 100 can form a good dispersion state in the positive electrode material 1000 . Therefore, the charge/discharge characteristics of the battery using the positive electrode material 1000 are improved.
  • the median diameter of the second electrolyte material 100 may be 10 ⁇ m or less. According to the above configuration, in the positive electrode material 1000, the positive electrode active material 110 and the second electrolyte material 100 can form a good dispersed state.
  • the median diameter of the second electrolyte material 100 may be smaller than the median diameter of the positive electrode active material 110 . According to the above configuration, in the positive electrode, the second electrolyte material 100 and the positive electrode active material 110 can form a better dispersed state.
  • the median diameter of the positive electrode active material 110 may be 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the median diameter of the positive electrode active material 110 is 0.1 ⁇ m or more, the positive electrode active material 110 and the second electrolyte material 100 can form a good dispersion state in the positive electrode material 1000 . Therefore, the charge/discharge characteristics of the battery using the positive electrode material 1000 are improved.
  • the median diameter of the positive electrode active material 110 is 100 ⁇ m or less, the diffusion rate of lithium in the positive electrode active material 110 is improved. Therefore, a battery using the positive electrode material 1000 can operate at high output.
  • the median diameter of the positive electrode active material 110 may be larger than the median diameter of the second electrolyte material 100 . Thereby, the positive electrode active material 110 and the second electrolyte material 100 can form a good dispersed state.
  • volume diameter means the particle size when the cumulative volume in the volume-based particle size distribution is equal to 50%.
  • the volume-based particle size distribution is measured by, for example, a laser diffraction measurement device or an image analysis device.
  • the second electrolyte material 100 and the first solid electrolyte material 111 may be in contact with each other as shown in FIG. At this time, the first solid electrolyte material 111 and the positive electrode active material 110 are in contact with each other.
  • the positive electrode material 1000 may include multiple second electrolyte materials 100 and multiple positive electrode active materials 110 .
  • the content of the second electrolyte material 100 and the content of the positive electrode active material 110 in the positive electrode material 1000 may be the same or different.
  • the volume ratio "v1:100-v1" of the positive electrode active material 110 and the first solid electrolyte material 111 and the second electrolyte material 100 contained in the positive electrode 201 may satisfy 30 ⁇ v1 ⁇ 98.
  • v1 is the positive electrode active material 110 and the first solid electrolyte material 111 when the total volume of the positive electrode active material 110, the first solid electrolyte material 111, and the second electrolyte material 100 contained in the positive electrode 201 is 100. represents the volume ratio of When 30 ⁇ v1 is satisfied, a sufficient battery energy density can be ensured. When v1 ⁇ 98 is satisfied, battery 2000 can operate at high output.
  • the thickness of the positive electrode 201 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the positive electrode 201 is 10 ⁇ m or more, a sufficient energy density of the battery can be secured. When the thickness of positive electrode 201 is 500 ⁇ m or less, battery 2000 can operate at high output.
  • the positive electrode material 1000 contained in the battery 2000 in Embodiment 1 can be produced, for example, by the following method.
  • the first solid electrolyte material 111 is produced.
  • a raw material powder of a binary halide is prepared so as to achieve a compounding ratio of a desired composition.
  • the compounding ratio may be adjusted in advance so as to offset the changes.
  • the raw material powders are mixed and pulverized using the mechanochemical milling method and allowed to react. After that, it may be fired in vacuum or in an inert atmosphere. Alternatively, after mixing the raw material powders well, the mixture may be fired in a vacuum or in an inert atmosphere. As for the firing conditions, it is preferable to perform firing for one hour or more within the range of 100° C. to 300° C., for example. Moreover, in order to suppress a change in the composition during the firing process, it is preferable that the raw material powder is sealed in a sealed container such as a quartz tube and then fired.
  • a sealed container such as a quartz tube
  • the first solid electrolyte material 111 having the composition as described above is obtained.
  • positive electrode active material 110 and first solid electrolyte material 111 having a predetermined mass ratio are prepared.
  • LiNi 0.5 Mn 1.5 O 4 is prepared as the positive electrode active material 110 and Li 2.7 Ti 0.3 Al 0.7 F 6 as the first solid electrolyte material 111 .
  • These two materials are put into the same reaction vessel, and a rotating blade is used to apply a shearing force to the two materials, or a jet stream causes the two materials to collide.
  • At least part of the surface of the substance LiNi 0.5 Mn 1.5 O 4 can be covered with Li 2.7 Ti 0.3 Al 0.7 F 6 as the first solid electrolyte material 111 .
  • a cathode active material is manufactured in which at least part of the surface of LiNi 0.5 Mn 1.5 O 4 as cathode active material 110 is coated with Li 2.7 Ti 0.3 Al 0.7 F 6 as first solid electrolyte material 111. be able to.
  • a second electrolyte material 100 is produced.
  • the second electrolyte material 100 made of Li, Y, Cl, and Br
  • LiCl raw powder, LiBr raw powder, YBr3 raw powder, and YCl3 raw powder are mixed.
  • the raw powders may be mixed in pre-adjusted molar ratios to compensate for possible compositional variations in the synthesis process.
  • the second electrolyte material 100 is obtained.
  • the positive electrode material 1000 can be manufactured.
  • Negative electrode 203 includes a material that has the property of intercalating and deintercalating metal ions (eg, lithium ions). That is, the negative electrode 203 contains a negative electrode active material. The negative electrode 203 contains Bi as a main component of the negative electrode active material.
  • Bi is an active material that absorbs and releases lithium ions at 0.8 V with respect to lithium.
  • Bi is a metal that alloys with lithium. Lithium is occluded when Bi forms an alloy with lithium during charging. That is, a lithium-bismuth alloy is produced in the negative electrode 203 when the battery 2000 is charged.
  • the lithium-bismuth alloy produced contains, for example, at least one selected from the group consisting of LiBi and Li 3 Bi. That is, when the battery 2000 is charged, the negative electrode 203 contains at least one selected from the group consisting of LiBi and Li 3 Bi, for example.
  • the negative electrode 203 containing Bi as a negative electrode active material has excellent discharge flatness.
  • the negative electrode 203 may contain at least one selected from the group consisting of LiBi and Li 3 Bi.
  • the negative electrode 203 may contain Bi simple substance as a negative electrode active material.
  • the negative electrode 203 may contain only Bi alone as a negative electrode active material.
  • the negative electrode 203 may contain a material other than Bi as a negative electrode active material.
  • a metal material, a carbon material, an oxide, a nitride, a tin compound, a silicon compound, or the like can be used as the negative electrode active material.
  • the metal material may be a single metal.
  • the metal material may be an alloy.
  • metallic materials include lithium metal or lithium alloys.
  • Examples of carbon materials include natural graphite, coke, ungraphitized carbon, carbon fiber, spherical carbon, artificial graphite, or amorphous carbon. From the point of view of capacity density, silicon, tin, silicon compounds, or tin compounds can be used.
  • the negative electrode 203 may not contain an electrolyte.
  • the negative electrode 203 may be a layer made of at least one selected from the group consisting of Bi alone and a lithium-bismuth alloy produced during charging.
  • the negative electrode 203 may be in the form of a thin film.
  • the negative electrode 203 may be a plated layer.
  • the negative electrode 203 may be a plated layer formed by depositing Bi by plating.
  • the thickness of the negative electrode 203 is not particularly limited, and may be, for example, 1 ⁇ m or more and 500 ⁇ m or less.
  • the thickness of the negative electrode 203 may be, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the negative electrode 203 is 1 ⁇ m or more, a sufficient energy density of the battery 2000 can be secured.
  • the thickness of negative electrode 203 is 500 ⁇ m or less, battery 2000 can operate at high output.
  • the negative electrode 203 may further contain a conductive material.
  • Conductive materials include carbon materials, metals, inorganic compounds, and conductive polymers.
  • Carbon materials include graphite, acetylene black, carbon black, ketjen black, carbon whiskers, needle coke, and carbon fibers.
  • Graphite includes natural graphite and artificial graphite.
  • Natural graphite includes massive graphite and flake graphite.
  • Metals include copper, nickel, aluminum, silver, and gold.
  • Inorganic compounds include tungsten carbide, titanium carbide, tantalum carbide, molybdenum carbide, titanium boride, and titanium nitride. These materials may be used alone, or a mixture of multiple types may be used.
  • a current collector electrically connected to the positive electrode 201 or the negative electrode 203 may be provided. That is, the battery 2000 may further include a positive current collector and a negative current collector.
  • the negative electrode 203 may be arranged in direct contact with the surface of the negative electrode current collector.
  • the negative electrode 203 may be a plated layer formed by depositing Bi on the negative electrode current collector by plating.
  • the negative electrode 203 may be a Bi-plated layer provided in direct contact with the surface of the negative electrode current collector.
  • the negative electrode 203 When the negative electrode 203 is a plated layer provided in direct contact with the surface of the negative electrode current collector, the negative electrode 203 adheres to the negative electrode current collector. As a result, it is possible to suppress the deterioration of the current collection characteristics of the negative electrode 203 that occurs when the negative electrode 203 repeatedly expands and contracts. Therefore, the charge/discharge characteristics of battery 2000 are further improved. Furthermore, when the negative electrode 203 is a plated layer, the negative electrode 203 contains Bi, which is an active material, at a high density, so that even higher capacity can be achieved.
  • the material of the negative electrode current collector is, for example, a single metal or alloy. More specifically, it may be a single metal or alloy containing at least one selected from the group consisting of copper, chromium, nickel, titanium, platinum, gold, aluminum, tungsten, iron, and molybdenum.
  • the current collector may be stainless steel. These materials can also be used as materials for the positive electrode current collector.
  • the negative electrode current collector may contain copper (Cu).
  • the negative electrode current collector may be a metal foil or a metal foil containing copper.
  • Metal foils containing copper include, for example, copper foils and copper alloy foils.
  • the content of copper in the metal foil may be 50% by mass or more, or may be 80% by mass or more.
  • the metal foil may be a copper foil containing substantially only copper as metal.
  • Electrolyte layer 202 is positioned between positive electrode 201 and negative electrode 203 .
  • the electrolyte layer 202 contains an electrolyte material.
  • the electrolyte material is, for example, a solid electrolyte material.
  • the electrolyte layer 202 may be a solid electrolyte layer.
  • electrolyte layer 202 As the solid electrolyte material contained in the electrolyte layer 202, the same material as the first solid electrolyte material 111 or the second electrolyte material 100 may be used. That is, electrolyte layer 202 may include the same material as first solid electrolyte material 111 or second electrolyte material 100 .
  • the electrolyte layer 202 contains a material containing Li, at least one selected from the group consisting of metal elements other than Li and metalloid elements, and at least one selected from the group consisting of F, Cl and Br. It's okay.
  • the electrolyte layer 202 may contain the material represented by the compositional formula (3) above.
  • the output density and charge/discharge characteristics of the battery 2000 can be further improved.
  • the same material as the first solid electrolyte material 111 may be used as the solid electrolyte material contained in the electrolyte layer 202 . That is, the electrolyte layer 202 may contain the same material as the first solid electrolyte material 111 .
  • an increase in the internal resistance of the battery 2000 due to oxidation of the electrolyte layer 202 can be suppressed, and the output density and charge/discharge characteristics of the battery 2000 can be further improved.
  • a halide solid electrolyte As the solid electrolyte material contained in the electrolyte layer 202, a halide solid electrolyte, a sulfide solid electrolyte, an oxide solid electrolyte, a polymer solid electrolyte, or a complex hydride solid electrolyte may be used.
  • the oxide solid electrolyte contained in the electrolyte layer 202 includes, for example, a NASICON solid electrolyte represented by LiTi 2 (PO 4 ) 3 and its element-substituted products, a (LaLi)TiO 3 -based perovskite solid electrolyte, Li 14 LISICON solid electrolytes typified by ZnGe 4 O 16 , Li 4 SiO 4 , LiGeO 4 and element-substituted products thereof, garnet-type solid electrolytes typified by Li 7 La 3 Zr 2 O 12 and element-substituted products thereof, and Li 3 glasses or glass - ceramics based on PO4 and its N-substituted products, and Li--B--O compounds such as LiBO2 and Li3BO3 , to which Li2SO4 , Li2CO3 , etc. are added; can be used.
  • NASICON solid electrolyte represented by LiTi 2 (PO 4 ) 3 and its element
  • a compound of a polymer compound and a lithium salt can be used as the polymer solid electrolyte contained in the electrolyte layer 202.
  • the polymer compound may have an ethylene oxide structure.
  • a polymer compound having an ethylene oxide structure can contain a large amount of lithium salt. Therefore, the ionic conductivity can be further increased.
  • Lithium salts include LiPF6 , LiBF4 , LiSbF6, LiAsF6 , LiSO3CF3 , LiN( SO2CF3 ) 2 , LiN ( SO2C2F5 ) 2 , LiN( SO2CF3 ) ( SO2C4F9 ), and LiC( SO2CF3 ) 3 , etc. may be used .
  • One lithium salt selected from the exemplified lithium salts can be used alone. Alternatively, mixtures of two or more lithium salts selected from the exemplified lithium salts can be used.
  • the complex hydride solid electrolyte contained in the electrolyte layer 202 for example, LiBH 4 --LiI, LiBH 4 --P 2 S 5 or the like can be used.
  • the electrolyte layer 202 may contain a solid electrolyte material as a main component. That is, the electrolyte layer 202 may contain a solid electrolyte material, for example, at a mass ratio of 50% or more (that is, 50% by mass or more) with respect to the entire electrolyte layer 202 .
  • the charge/discharge characteristics of the battery 2000 can be further improved.
  • the electrolyte layer 202 may contain a solid electrolyte material, for example, at a mass ratio of 70% or more (that is, 70% by mass or more) with respect to the entire electrolyte layer 202 .
  • the charge/discharge characteristics of the battery 2000 can be further improved.
  • the electrolyte layer 202 contains a solid electrolyte material as a main component, and may further contain unavoidable impurities, starting materials, by-products, decomposition products, etc. used when synthesizing the solid electrolyte material. good.
  • the electrolyte layer 202 may contain a solid electrolyte material, for example, 100% by mass (ie, 100% by mass) of the entire electrolyte layer 202, excluding impurities that are unavoidably mixed.
  • the charge/discharge characteristics of the battery 2000 can be further improved.
  • the electrolyte layer 202 may be composed only of the solid electrolyte material.
  • the electrolyte layer 202 may contain two or more of the materials listed as solid electrolyte materials.
  • electrolyte layer 202 may include a halide solid electrolyte and a sulfide solid electrolyte.
  • the electrolyte layer 202 may contain Li6PS5Cl .
  • the electrolyte layer 202 may contain Li3YBr2Cl4 .
  • the thickness of the electrolyte layer 202 may be 1 ⁇ m or more and 300 ⁇ m or less. When the thickness of the electrolyte layer 202 is 1 ⁇ m or more, the short circuit between the positive electrode 201 and the negative electrode 203 is less likely to occur. When the thickness of electrolyte layer 202 is 300 ⁇ m or less, battery 2000 can operate at high output.
  • the electrolyte material contained in the electrolyte layer 202 may be an electrolytic solution.
  • the electrolyte layer 202 may be composed of a separator and an electrolytic solution impregnated in the separator.
  • At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 may contain a binder for the purpose of improving adhesion between particles.
  • a binder is used to improve the binding properties of the material that constitutes the electrode.
  • Binders include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, poly Acrylate hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene-butadiene rubber, and carboxymethyl cellulose, and the like.
  • Binders include tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and Copolymers of two or more materials selected from the group consisting of hexadiene can be used. A mixture of two or more selected from these may also be used.
  • At least one of the positive electrode 201 and the negative electrode 203 may contain a conductive aid for the purpose of increasing electronic conductivity.
  • conductive aids include graphites such as natural graphite or artificial graphite, carbon blacks such as acetylene black and Ketjen black, conductive fibers such as carbon fibers and metal fibers, carbon fluoride, metals such as aluminum Powders, conductive whiskers such as zinc oxide and potassium titanate, conductive metal oxides such as titanium oxide, and conductive polymeric compounds such as polyaniline, polypyrrole, and polythiophene, and the like can be used. Cost reduction can be achieved when a carbon conductive aid is used as the conductive aid.
  • Shapes of the battery 2000 in Embodiment 1 include, for example, a coin shape, a cylindrical shape, a rectangular shape, a sheet shape, a button shape, a flat shape, and a laminated shape.
  • a material for forming a positive electrode, a material for forming an electrolyte layer, and a material for forming a negative electrode are prepared, and the positive electrode, the electrolyte layer, and the negative electrode are arranged in this order by a known method. It may also be manufactured by making laminated laminates.
  • Embodiment 2 (Embodiment 2) Embodiment 2 will be described below. Descriptions overlapping those of the first embodiment are omitted as appropriate.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a battery 3000 according to Embodiment 2.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a battery 3000 according to Embodiment 2.
  • a battery 3000 according to Embodiment 2 includes a positive electrode 201 , an electrolyte layer 202 and a negative electrode 203 .
  • Electrolyte layer 202 is positioned between positive electrode 201 and negative electrode 203 .
  • Electrolyte layer 202 includes first electrolyte layer 301 and second electrolyte layer 302 .
  • the first electrolyte layer 301 is positioned between the positive electrode 201 and the negative electrode 203
  • the second electrolyte layer 302 is positioned between the first electrolyte layer 301 and the negative electrode 203 .
  • FIG. 2 shows an example of a configuration of a battery 3000 in which a first electrolyte layer 301 is in contact with a positive electrode 201 and a second electrolyte layer 302 is in contact with a negative electrode 203 .
  • the first electrolyte layer 301 may contain a material having the same composition as the second electrolyte material 100 .
  • the first electrolyte layer 301 may contain a material having the same composition as the first solid electrolyte material 111 .
  • the first solid electrolyte material 111 having excellent oxidation resistance in the first electrolyte layer 301 By including the first solid electrolyte material 111 having excellent oxidation resistance in the first electrolyte layer 301, oxidative decomposition of the first electrolyte layer 301 can be suppressed, and an increase in the internal resistance of the battery 3000 during charging can be suppressed. .
  • the second electrolyte layer 302 may contain a material having a composition different from that of the first solid electrolyte material 111 .
  • the reduction potential of the solid electrolyte material included in the second electrolyte layer 302 may be lower than the reduction potential of the solid electrolyte material included in the first electrolyte layer 301 .
  • the solid electrolyte material contained in the first electrolyte layer 301 is less likely to be reduced. Thereby, the charge/discharge efficiency of the battery 3000 can be improved.
  • the second electrolyte layer 302 may contain a sulfide solid electrolyte.
  • the reduction potential of the sulfide solid electrolyte contained in the second electrolyte layer 302 may be lower than the reduction potential of the solid electrolyte material contained in the first electrolyte layer 301 .
  • the solid electrolyte material contained in the first electrolyte layer 301 is less likely to be reduced. Thereby, the charge/discharge efficiency of the battery 3000 can be improved.
  • the thickness of the first electrolyte layer 301 and the second electrolyte layer 302 may be 1 ⁇ m or more and 300 ⁇ m or less. When the thickness of first electrolyte layer 301 and second electrolyte layer 302 is 1 ⁇ m or more, short circuit between positive electrode 201 and negative electrode 203 is less likely to occur. When the thickness of first electrolyte layer 301 and second electrolyte layer 302 is 300 ⁇ m or less, battery 3000 can operate at high output.
  • a planetary ball mill manufactured by Fritsch, model P-7
  • the positive electrode active material whose surface is coated with the first solid electrolyte material of Example 1, the second electrolyte material, and vapor-grown carbon fiber (VGCF (manufactured by Showa Denko KK)) as a conductive aid are coated.
  • VGCF is a registered trademark of Showa Denko K.K.
  • a copper foil (10 cm ⁇ 10 cm, thickness: 10 ⁇ m) was preliminarily degreased with an organic solvent, masked on one side, and immersed in an acidic solvent for degreasing to activate the copper foil surface.
  • a plating bath was prepared by adding bismuth methanesulfonate as a soluble bismuth salt to 1.0 mol/L of methanesulfonic acid so that Bi 3+ ions would be 0.18 mol/L.
  • the activated copper foil was immersed in the plating bath after being connected to a power source so that current could be applied.
  • the unmasked copper foil surface was electroplated with Bi to a thickness of about 3 ⁇ m.
  • the copper foil was recovered from the acid bath, removed from the masking, washed with pure water, and dried. After that, a negative electrode, which is a plated layer deposited on the current collector, was obtained by punching to a size of ⁇ 0.92 cm.
  • a battery of Example 1 was produced by the following procedure.
  • the negative electrode was laminated so that the Bi-plated surface was in contact with the solid electrolyte layer.
  • a pressure of 720 MPa a laminate composed of a positive electrode, a solid electrolyte layer, and a negative electrode was produced.
  • Example 2 A battery of Example 2 was fabricated in the same manner as in Example 1, except that Li6PS5Cl was used in the solid electrolyte layer instead of Li3YBr2Cl4 .
  • the battery was placed in a constant temperature bath at 85°C.
  • Constant current charging was performed at a current value of 6.8 ⁇ A, which is 0.01C rate (20 hour rate) with respect to the theoretical capacity of the battery.
  • the charge termination voltage was set to 4.5V.
  • constant current discharge was performed with a final discharge voltage of 2.5V.
  • FIG. 3 is a graph showing charge-discharge curves of the battery of Example 1.
  • FIG. 4 is a graph showing charge-discharge curves of the battery of Example 2.
  • FIG. The batteries of Examples 1 and 2 were charged and discharged as shown in FIGS.
  • the battery of the present disclosure can be used, for example, as an all-solid lithium ion secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Composite Materials (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本開示による電池2000は、正極201と、負極203と、正極201と負極203との間に位置する電解質層202と、を備える。正極201は、正極材料1000を含む。正極材料1000は、正極活物質110と、第1固体電解質材料111とを含む。正極活物質110は、Li、Ni、Mn、およびOからなる酸化物を含む。第1固体電解質材料111は、Liと、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種と、F、Cl、およびBrからなる群より選択される少なくとも1種とを含む。負極203は、負極活物質の主成分としてBiを含む。

Description

電池
 本開示は、電池に関する。
 特許文献1は、インジウムをカチオンとして含み、かつハロゲン元素をアニオンとして含む化合物からなる固体電解質を含む全固体二次電池を開示している。特許文献1では、この全固体二次電池において、正極活物質の対Li電位が平均で3.9V以下であることが望ましく、これにより固体電解質の酸化分解による分解生成物からなる皮膜の形成が抑制されて、良好な充放電特性が得られると言及されている。また、対Li電位が平均で3.9V以下の正極活物質として、LiCoO2、またはLiNi0.8Co0.15Al0.052などの層状遷移金属酸化物正極が開示されている。
特開2006-244734号公報
 本開示は、Li、Ni、Mn、およびOからなる酸化物を含む正極活物質を使用した、動作可能な新規の電池を提供する。
 本開示の電池は、
 正極と、
 負極と、
 前記正極と前記負極との間に位置する電解質層と、
を備え、
 前記正極は、正極材料を含み、
 前記正極材料は、正極活物質と、第1固体電解質材料と、を含み、
 前記正極活物質は、Li、Ni、Mn、およびOからなる酸化物を含み、
 前記第1固体電解質材料は、Liと、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種と、F、Cl、およびBrからなる群より選択される少なくとも1種とを含み、
 前記負極は、負極活物質の主成分としてBiを含む。
 本開示によれば、Li、Ni、Mn、およびOからなる酸化物を含む正極活物質を使用した、動作可能な新規の電池が提供される。
図1は、実施の形態1における電池2000の概略構成を示す断面図である。 図2は、実施の形態2における電池3000の概略構成を示す断面図である。 図3は、実施例1の電池の充放電曲線を示すグラフである。 図4は、実施例2の電池の充放電曲線を示すグラフである。
 (本開示に係る一態様の概要)
 本開示の第1態様に係る電池は、
 正極と、
 負極と、
 前記正極と前記負極との間に位置する電解質層と、
を備え、
 前記正極は、正極材料を含み、
 前記正極材料は、正極活物質と、第1固体電解質材料と、を含み、
 前記正極活物質はLi、Ni、Mn、およびOからなる酸化物を含み、
 前記第1固体電解質材料は、Liと、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種と、F、Cl、およびBrからなる群より選択される少なくとも1種とを含み、
 前記負極は、負極活物質の主成分としてBiを含む。
 第1態様によれば、Li、Ni、Mn、およびOからなる酸化物を含む正極活物質を使用した、動作可能な新規の電池が提供される。また、第1態様に係る電池における負極において、負極活物質の主成分としてBiが含まれる。Biは、錫のような、リチウムと形成される複数種の化合物間で電位が大きく異なるという性質を持たない。このため、Biを活物質として含む電極は、放電平坦性に優れている。また、第1態様に係る電池における正極において、正極活物質は、Li、Ni、Mn、およびOからなる酸化物を含み、比較的電位が高い。
 本開示の第2態様において、例えば、第1態様に係る電池では、前記第1固体電解質材料は、前記正極活物質の表面の少なくとも一部を被覆してもよい。
 第2態様によれば、正極活物質の表面の少なくとも一部が第1固体電解質材料によって被覆されているため、ハロゲン化物固体電解質による酸化分解層の形成が抑制され、内部抵抗の上昇が抑えることができる。これにより第2態様に係る電池は向上した充放電容量を有する。
 本開示の第3態様において、例えば、第1または第2態様に係る電池では、前記正極材料は、前記第1固体電解質材料とは異なる組成を有する材料である第2電解質材料をさらに含んでいてもよい。
 第3態様に係る電池は、向上した充放電特性を有する。
 本開示の第4態様において、例えば、第1から第3態様のいずれか一つに係る電池では、前記正極活物質は、下記の組成式(1)で表される材料を含んでもよい。
 LiNixMn2-x4・・・式(1)
 ここで、xは0<x<2を満たす。
 第4態様に係る電池は、高電位で動作可能である。
 本開示の第5態様において、例えば、第4態様に係る電池では、前記組成式(1)は、0<x<1を満たしてもよい。
 第5態様に係る電池は、より高電位で動作可能である。
 本開示の第6態様において、例えば、第5態様に係る電池では、前記組成式(1)は、x=0.5を満たしてもよい。
 第6態様に係る電池は、より高電位で動作可能である。
 本開示の第7態様において、例えば、第1から第6態様のいずれか一つに係る電池では、前記酸化物は、スピネル構造を有してもよい。
 第7態様に係る電池は、高電位で動作可能である。
 本開示の第8態様において、例えば、第1から第7態様のいずれか一つに係る電池では、前記第1固体電解質材料は、Li、Ti、Al、およびFを含んでもよい。
 第8態様に係る電池は、第1固体電解質材料が高い酸化耐性を有する。そのため、第1固体電解質材料の酸化分解による充放電容量の低下を抑制することができる。
 本開示の第9態様において、例えば、第1から第8態様のいずれか一つに係る電池では、前記負極は、前記負極活物質としてBi単体を含んでもよい。
 第9態様に係る電池は、向上した充放電特性を有する。
 本開示の第10態様において、例えば、第1から第10態様のいずれか一つに係る電池では、前記負極は、めっき層であってもよい。
 第10態様に係る電池は、向上した容量を有する。
 本開示の第11態様において、例えば、第3態様に係る電池では、前記第2電解質材料は、下記の組成式(3)により表される材料を含んでもよい。
 Liα3β3γ3δ3・・・式(3)
 ここで、α3、β3、およびγ3は、0より大きい値であり、δ3は0以上の値であり、Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種であり、Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1種の元素である。
 第11態様に係る電池は、向上した充放電特性を有する。
 本開示の第12態様において、例えば、第11態様に係る電池では、前記組成式(3)は、
 1≦α3≦4、
 0<β3≦2、
 3≦γ3<7、および
 0≦δ3≦2、
 を満たしてもよい。
 第12態様に係る電池では、前記第2電解質材料のイオン導電率を高めることができる。これにより、Liイオンの移動に由来する抵抗をより低減することができる。
 本開示の第13態様において、例えば、第12態様に係る電池では、前記組成式(3)は、
 2.5≦α3≦3、
 1≦β3≦1.1、
 γ3=6、および
 δ3=0、
 を満たしてもよい。
 第13態様に係る電池では、前記第2電解質材料のイオン導電率を高めることができる。これにより、Liイオンの移動に由来する抵抗をより低減することができる。
 本開示の第14態様において、例えば、第1から第13態様のいずれか1つに係る電池では、前記電解質層は、硫化物固体電解質を含んでもよい。
 第14態様に係る電池は、より向上した充放電特性を有する。
 本開示の第15態様において、例えば、第14態様に係る電池では、前記硫化物固体電解質は、Li6PS5Clであってもよい。
 第15態様に係る電池は、より向上した充放電特性を有する。
 本開示の第16態様において、例えば、第1から第15態様のいずれか1つに係る電池では、前記電解質層は、Liと、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種と、F、ClおよびBrからなる群より選択される少なくとも1種とを含む材料を含んでもよい。
 第16態様に係る電池は、より向上した充放電特性を有する。
 本開示の第17態様において、例えば、第16態様に係る電池では、前記電解質層は、Li3YBr2Cl4を含んでもよい。
 第17態様に係る電池は、より向上した充放電特性を有する。
 本開示の第18態様において、例えば、第1から第17態様のいずれか1つに係る電池では、前記電解質層は、第1電解質層および第2電解質層を含み、前記第1電解質層は、前記正極と前記負極との間に位置し、前記第2電解質層は、前記第1電解質層と前記負極との間に位置していてもよい。
 第18態様に係る電池は、充電時の内部抵抗上昇を抑制できる。
 本開示の第19態様において、例えば、第18態様に係る電池では、前記正極材料は、前記第1固体電解質材料とは異なる組成を有する材料である第2電解質材料をさらに含み、前記第1電解質層は、前記第2電解質材料と同じ組成を有する材料を含んでもよい。
 第19態様に係る電池は、充電時の内部抵抗上昇をさらに抑制できる。
 以下、本開示の実施形態が、図面を参照しながら説明される。以下の説明は、いずれも包括的または具体的な例を示すものである。以下に示される数値、組成、形状、膜厚、電気特性、電池の構造などは、一例であり、本開示を限定する主旨ではない。
 (実施の形態1)
 本開示の電池は、正極と、負極と、正極と負極との間に位置する電解質層と、を備える。正極は、正極材料を含む。正極材料は、正極活物質と、第1固体電解質材料とを含む。正極活物質は、Li、Ni、Mn、およびOからなる酸化物を含む。第1固体電解質材料は、Liと、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種と、F、Cl、およびBrからなる群より選択される少なくとも1種とを含む。負極は、負極活物質の主成分としてBiを含む。
 「負極が負極活物質の主成分としてBiを含む」とは、「負極において、負極活物質としてモル比で最も多く含まれる成分がBiである」という意味である。
 第1固体電解質材料は、正極活物質の表面の少なくとも一部を被覆していてもよい。
 正極材料は、第1固体電解質材料とは異なる組成を有する材料である第2電解質材料をさらに含んでもよい。
 図1は、実施の形態1における電池2000の概略構成を示す断面図である。
 電池2000は、正極201と、負極203と、正極201と負極203との間に位置する電解質層202と、を備える。正極201は、正極材料1000を含む。正極材料1000は、正極活物質110と、第1固体電解質材料111と、を含む。正極活物質110は、Li、Ni、Mn、およびOからなる酸化物を含む。第1固体電解質材料111は、Liと、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種と、F、Cl、およびBrからなる群より選択される少なくとも1種とを含む。負極203は、負極活物質の主成分としてBiを含む。図1では、電池2000の構成例として、第1固体電解質材料111が正極活物質110の表面の少なくとも一部を被覆し、正極材料1000がさらに第2電解質材料100を含む例が示されている。
 以下、本実施形態の電池2000の各構成について説明する。
 [正極201]
 上述のとおり、正極201は、正極材料1000を含む。正極材料1000は、正極活物質110と、第1固体電解質材料111と、を含む。正極活物質110は、Li、Ni、Mn、およびOからなる酸化物を含む。第1固体電解質材料111は、Liと、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種と、F、Cl、およびBrからなる群より選択される少なくとも1種とを含む。
 「半金属元素」とは、B、Si、Ge、As、Sb、およびTeである。
 「金属元素」とは、水素を除く周期表1族から12族中に含まれるすべての元素、ならびに、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く全ての第13族から第16族中に含まれる元素である。すなわち、ハロゲン化合物と無機化合物を形成した際に、カチオンとなりうる元素群である。
 以上の構成によれば、正極材料1000が高い酸化耐性を有する。そのため、正極材料1000は、充電時の電池の内部抵抗上昇を抑制することができる。また、第1固体電解質材料111が高いイオン導電率を有する。そのため、正極材料1000において、第1固体電解質材料111と正極活物質110との低い界面抵抗を実現できる。
 第1固体電解質材料111は、正極活物質110の表面の少なくとも一部を被覆していてもよい。
 正極活物質110は、下記の組成式(1)で表される材料を含んでもよい。
 LiNixMn2-x4・・・式(1)
 ここで、0<x<2を満たす。
 組成式(1)において、0<x<1が満たされてもよい。
 組成式(1)において、x=0.5が満たされてもよい。すなわち、正極活物質110は、LiNi0.5Mn1.54を含んでもよい。
 これらの化学式で表される酸化物は、スピネル構造を持つLiMn24のMnの一部をNiで置換することによって得られる材料であり、電池の動作電圧を向上させるのに適している。Li、Ni、Mn、およびOからなる酸化物もスピネル構造を有しうる。「Li、Ni、Mn、およびOからなる酸化物」とは、不可避不純物を除き、Li、Ni、Mn、およびO以外の元素が意図的に加えられていないことを意味する。
 以上の構成によれば、電池の充放電容量の低下を抑制できる。また、組成式(1)で表される材料は、Coを含まないため、安価である。以上の構成によれば、電池2000の低コスト化を図ることができる。
 Li、Ni、Mn、およびOからなる酸化物は、スピネル構造を有してもよい。
 正極活物質110は、LiNi0.5Mn1.54のみからなっていてもよい。
 以上の構成によれば、電池の充放電容量の低下を抑制できる。
 第1固体電解質材料111は、Li、Ti、Al、およびFを含んでもよい。
 第1固体電解質材料111は、実質的に、Li、Ti、Al、およびFからなっていてもよい。「第1固体電解質材料111は、実質的に、Li、Ti、Al、およびFからなる」とは、第1固体電解質材料111を構成する全元素の物質量の合計に対する、Li、Ti、Al、およびFの物質量の合計のモル比(すなわち、モル分率)が、90%以上であることを意味する。一例として、当該モル比は、95%以上であってもよい。
 第1固体電解質材料111は、Li、Ti、Al、およびFのみからなっていてもよい。
 第1固体電解質材料111は、下記の組成式(2A)により表される材料を含んでいてもよい。ここで、α1、β1、γ1、およびδ1は、0より大きい値である。
 Liα1Tiβ1Alγ1δ1・・・式(2A)
 組成式(2A)において、δ1は、α1よりも大きい値であってもよい。δ1は、α1、β1、およびγ1それぞれよりも大きい値であってもよい。
 組成式(2A)において、1.7≦α1≦3.7、0<β1<1.5、0<γ1<1.5を、および5≦δ1≦7が満たされてもよい。
 組成式(2A)において、2.5≦α1≦3、0.1≦β1≦0.6、0.4≦γ1≦0.9、およびδ1=6が満たされてもよい。
 第1固体電解質材料111は、組成式(2A)により表される材料を主成分として含んでいてもよい。ここで、「第1固体電解質材料111は、組成式(2A)により表される材料を主成分として含む」とは、「第1固体電解質材料111は、質量比で最も多く含まれる材料が組成式(2A)により表される材料である」という意味である。
 第1固体電解質材料111は、下記の組成式(2B)により表される材料を含んでもよい。
 Liα2Tiβ2Alγ26・・・式(2B)
 ここで、α2、β2、およびγ2は、0より大きい値である。
 組成式(2B)において、α2+4β2+3γ2=6が満たされてもよい。
 組成式(2B)において、α2、β2、およびγ2は、α2=2.7、β2=0.3、および、γ2=0.7が満たされてもよい。すなわち、第1固体電解質材料111は、Li2.7Ti0.3Al0.76を含んでもよい。
 第1固体電解質材料111は、組成式(2B)により表される材料を主成分として含んでいてもよい。ここで、「第1固体電解質材料111は、組成式(2B)により表される材料を主成分として含む」とは、「第1固体電解質材料111は、質量比で最も多く含まれる材料が組成式(2B)により表される材料である」という意味である。
 第1固体電解質材料111は、Li2.7Ti0.3Al0.76を主成分として含んでいてもよい。
 第1固体電解質材料111は、Li2.7Ti0.3Al0.76のみからなっていてもよい。
 以上の構成によれば、第1固体電解質材料111がより高いイオン導電率を発現する。そのため、正極材料1000において、第1固体電解質材料111と正極活物質110との低い界面抵抗を実現でき、電池2000の充放電効率を向上できる。
 第1固体電解質材料111のイオン導電率をさらに高めるために、第1固体電解質材料111は、F以外の元素をアニオンとして含んでもよい。当該アニオンとして含まれる元素の例は、Cl、Br、I、O、S、またはSeである。また、第1固体電解質材料111は硫黄を含んでいなくてもよい。
 正極材料1000は、第1固体電解質材料111と異なる組成を有する材料である第2電解質材料100をさらに含んでいてもよい。
 第2電解質材料100は、下記の組成式(3)により表されてもよい。
 Liα3β3γ3δ3 ・・・式(3)
 ここで、α3、β3、およびγ3は、0より大きい値であり、δ3は0以上の値であり、Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種であり、Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1種の元素である。
 以上の構成によれば、第2電解質材料100のイオン導電率をより高めることができる。これにより、正極材料1000のLiイオンの移動に由来する抵抗をより低減することができる。
 組成式(3)において、Mは、YおよびTaからなる群より選択される少なくとも1種を含んでいてもよい。すなわち、第2電解質材料100は、金属元素としてYおよびTaからなる群より選択される少なくとも一つを含んでいてもよい。
 以上の構成によれば、第2電解質材料100のイオン導電率をより高めることができる。これにより、正極材料1000のLiイオンの移動に由来する抵抗をより低減することができる。
 組成式(3)において、1≦α3≦4、0<β3≦2、3≦γ3<7、および0≦δ3≦2が満たされてもよい。
 以上の構成によれば、第2電解質材料100のイオン導電率をより高めることができる。これにより、正極材料1000のLiイオンの移動に由来する抵抗をより低減することができる。
 組成式(3)において、2.5≦α3≦3、1≦β3≦1.1、γ3=6、およびδ3=0が満たされてもよい。
 Yを含む第2電解質材料100は、例えば、LiaMebc6の組成式で表される化合物であってもよい。ここで、a+m’b+3c=6、かつ、c>0が満たされる。Meは、LiおよびYを除く金属元素と半金属元素とからなる群より選択される少なくとも1つの元素である。また、m’は、Meの価数である。
 Meとして、Mg、Ca、Sr、Ba、Zn、Sc、Al、Ga、Bi、Zr、Hf、Ti、Sn、Ta、およびNbからなる群より選択される少なくとも1つの元素を用いてもよい。
 以上の構成によれば、第2電解質材料100のイオン導電率をより高めることができる。これにより、正極材料1000のLiイオンの移動に由来する抵抗をより低減することができる。
 第2電解質材料100は、下記の組成式(A1)により表される材料であってもよい。
 Li6-3dd6・・・式(A1)
 ここで、組成式(A1)において、Xは、ハロゲン元素であり、かつ、Clを含む。また、0<d<2、が満たされる。
 以上の構成によれば、第2電解質材料100のイオン導電率をより高めることができる。これにより、正極材料1000のLiイオンの移動に由来する抵抗をより低減することができる。
 第2電解質材料100は、下記の組成式(A2)により表される材料であってもよい。
 Li3YX6・・・式(A2)
 ここで、組成式(A2)において、Xは、ハロゲン元素であり、かつ、Clを含む。
 以上の構成によれば、第2電解質材料100のイオン導電率をより高めることができる。これにより、正極材料1000のLiイオンの移動に由来する抵抗をより低減することができる。
 第2電解質材料100は、下記の組成式(A3)により表される材料であってもよい。
 Li3-3δ1+δCl6・・・式(A3)
 ここで、組成式(A3)において、0<δ≦0.15、が満たされる。
 以上の構成によれば、第2電解質材料100のイオン導電率をより高めることができる。これにより、正極材料1000のLiイオンの移動に由来する抵抗をより低減することができる。
 第2電解質材料100は、下記の組成式(A4)により表される材料であってもよい。
 Li3-3δ+a41+δ-a4Mea4Cl6-x4Brx4・・・式(A4)
ここで、組成式(A4)において、Meは、Mg、Ca、Sr、Ba、およびZnからなる群より選択される少なくとも1つの元素である。また、-1<δ<2、0<a4<3、0<(3-3δ+a4)、0<(1+δ-a4)、および0≦x4<6、が満たされる。
 以上の構成によれば、第2電解質材料100のイオン導電率をより高めることができる。これにより、正極材料1000のLiイオンの移動に由来する抵抗をより低減することができる。
 第2電解質材料100は、下記の組成式(A5)により表される材料であってもよい。
 Li3-3δ1+δ-a5Mea5Cl6-x5Brx5・・・式(A5)
 ここで、組成式(A5)において、Meは、Al、Sc、Ga、およびBiからなる群より選択される少なくとも1つの元素である。また、-1<δ<1、0<a5<2、0<(1+δ-a5)、および0≦x5<6、が満たされる。
 以上の構成によれば、第2電解質材料100のイオン導電率をより高めることができる。これにより、正極材料1000のLiイオンの移動に由来する抵抗をより低減することができる。
 第2電解質材料100は、下記の組成式(A6)により表される材料であってもよい。
 Li3-3δ-a61+δ-a6Mea6Cl6-x6Brx6・・・式(A6)
 ここで、組成式(A6)において、Meは、Zr、Hf、およびTiからなる群より選択される少なくとも1つの元素である。また、-1<δ<1、0<a6<1.5、0<(3-3δ-a6)、0<(1+δ-a6)、および0≦x6<6、が満たされる。
 第2電解質材料100は、下記の組成式(A7)により表される材料であってもよい。
 Li3-3δ-2a71+δ-a7Mea7Cl6-x7Brx7・・・式(A7)
 ここで、組成式(A7)において、Meは、Ta、およびNbからなる群より選択される少なくとも1つの元素である。また、-1<δ<1、0<a7<1.2、0<(3-3δ-2a7)、0<(1+δ-a7)、および0≦x7<6、が満たされる。
 第2電解質材料100として、例えば、Li3YX6、Li2MgX4、Li2FeX4、Li(Al、Ga、In)X4、Li3(Al、Ga、In)X6、などが用いられうる。ここで、Xは、Clを含む。なお、本開示において、式中の元素を「(Al、Ga、In)」のように表すとき、この表記は、括弧内の元素群より選択される少なくとも1種の元素を示す。すなわち、「(Al、Ga、In)」は、「Al、Ga、およびInからなる群より選択される少なくとも1種」と同義である。他の元素の場合でも同様である。なお、第2電解質材料100は硫黄を含んでいなくてもよい。
 第2電解質材料100は、硫化物固体電解質を含んでもよい。硫化物固体電解質としては、例えば、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、Li10GeP212、Li6PS5Cl、などが用いられうる。また、これらに、LiX、Li2O、MOq、LipMOq、などが添加されてもよい。ここで、Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1つの元素である。Mは、P、Si、Ge、B、Al、Ga、In、Fe、およびZnからなる群より選択される少なくとも1つの元素である。pおよびqは、それぞれ独立に、自然数である。
 第2電解質材料100は、硫化リチウムと硫化リンを含んでもよい。硫化物固体電解質は、Li2S-P25およびLi6PS5Clからなる群より選択される少なくとも一つであってもよい。
 第2電解質材料100は、硫化物固体電解質であってもよい。
 第2電解質材料100は、さらに電解液を含んでもよい。
 電解液は、水、もしくは非水の溶媒と、溶媒に溶けたリチウム塩と、を含む。
 溶媒の例は、水、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、またはフッ素溶媒、などである。
 環状炭酸エステル溶媒の例は、エチレンカーボネート、プロピレンカーボネート、またはブチレンカーボネートなどである。鎖状炭酸エステル溶媒の例は、ジメチルカーボネート、エチルメチルカーボネート、またはジエチルカーボネートなどである。環状エーテル溶媒の例は、テトラヒドロフラン、1,4-ジオキサン、または1,3-ジオキソラン、などである。鎖状エーテル溶媒の例は、1,2-ジメトキシエタン、または1,2-ジエトキシエタン、などである。環状エステル溶媒の例は、γ-ブチロラクトン、などである。鎖状エステル溶媒の例は、酢酸メチル、などである。フッ素溶媒の例は、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、またはフルオロジメチレンカーボネート、などである。
 溶媒として、これらから選択される1種の溶媒が、単独で、使用されうる。もしくは、溶媒として、これらから選択される2種以上の溶媒の組み合わせが、使用されうる。
 電解液には、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、およびフルオロジメチレンカーボネートからなる群より選択される少なくとも1種のフッ素溶媒が含まれていてもよい。
 リチウム塩としては、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、LiC(SO2CF33、などが使用されうる。リチウム塩として、これらから選択される1種のリチウム塩が、単独で、使用されうる。もしくは、リチウム塩として、これらから選択される2種以上のリチウム塩の混合物が、使用されうる。リチウム塩の濃度は、例えば、0.1mol/リットルから15mol/リットルの範囲にある。
 正極材料1000は、Li、Ni、Mn、およびOからなる酸化物である正極活物質110以外の他の正極活物質をさらに含んでいてもよい。
 正極活物質は、金属イオン(例えば、リチウムイオン)を吸蔵かつ放出する特性を有する材料を含む。正極活物質110以外の他の正極活物質として、例えば、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシ硫化物、または遷移金属オキシ窒化物、などが用いられうる。リチウム含有遷移金属酸化物の例としては、Li(Ni、Co、Al)O2、Li(Ni、Co、Mn)O2、LiCoO2、などが挙げられる。特に、リチウム含有遷移金属酸化物を用いた場合には、正極材料1000の製造コストを安くでき、平均放電電圧を高めることができる。
 正極活物質110と第2電解質材料100との間に、第1固体電解質材料111が設けられていてもよい。
 以上の構成によれば、高い酸化耐性を有する第1固体電解質材料111が、正極活物質110および第2電解質材料100の間に介在することで、第2電解質材料100の酸化分解を抑制できる。このため、電池2000の充電時の容量低下を抑制することができる。
 第1固体電解質材料111が正極活物質110の表面の少なくとも一部を覆う場合、正極活物質110の表面の少なくとも一部を覆う第1固体電解質材料111の厚みは、1nm以上かつ500nm以下であってもよい。
 第1固体電解質材料111の厚みが1nm以上である場合、正極活物質110および第2電解質材料100の直接接触を抑制し、第2電解質材料100の酸化分解を抑制できる。このため、正極材料1000が用いられた電池の充放電効率を向上することができる。第1固体電解質材料111の厚みが500nm以下である場合、第1固体電解質材料111の厚みが厚くなり過ぎない。このため、正極材料1000が用いられた電池の内部抵抗を十分に小さくすることができ、電池のエネルギー密度を高めることができる。
 なお、第1固体電解質材料111の厚みを測定する手法は特に限定されないが、例えば、透過型電子顕微鏡を用い、第1固体電解質材料111の厚みを直接観察することで、求めることができる。
 正極活物質110に対する第1固体電解質材料111の質量比率は、0.01%以上かつ30%以下であっても良い。
 正極活物質110に対する第1固体電解質材料111の質量比率が0.01%以上である場合、正極活物質110と、第2電解質材料100との、直接接触を抑制し、第2電解質材料100の酸化分解を抑制できる。このため、電池の充放電効率を向上することができる。正極活物質110に対する第1固体電解質材料111の質量比率が30%以下である場合、第1固体電解質材料111の厚みが厚くなり過ぎない。このため、電池の内部抵抗を十分に小さくすることができ、電池のエネルギー密度を高めることができる。
 第1固体電解質材料111は、正極活物質110の表面を一様に被覆してもよい。これにより、正極活物質110と、第2電解質材料100との、直接接触を抑制し、第2電解質材料100の副反応を抑制できる。このため、電池の充放電特性をより高め、かつ、容量低下を抑制することができる。
 第1固体電解質材料111は、正極活物質110の表面の一部を被覆してもよい。第1固体電解質材料111を有しない部分を介して、複数の正極活物質110同士が直接接触することで、複数の正極活物質110間での電子伝導性が向上する。このため、電池の高出力での動作が可能となる。
 第1固体電解質材料111は、正極活物質110表面の30%以上を覆ってもよく、60%以上を覆ってもよく、90%以上を覆ってもよい。第1固体電解質材料111は、実質的に正極活物質110表面すべてを覆ってもよい。
 正極活物質110は、第1固体電解質材料111とは異なる被覆材料によって、表面の少なくとも一部を覆われていてもよい。
 被覆材料は、硫化物固体電解質、酸化物固体電解質、およびフッ化物固体電解質、などが挙げられる。被覆材料に用いられる硫化物固体電解質として、第2電解質材料100に例示されたものと同じ材料を用いてもよい。被覆材料に用いられる酸化物固体電解質としては、LiNbO3などのLi-Nb-O化合物、LiBO2、Li3BO3などのLi-B-O化合物、LiAlO2などのLi-Al-O化合物、Li4SiO4などのLi-Si-O化合物、Li2SO4、Li4Ti512などのLi-Ti-O化合物、Li2ZrO3などのLi-Zr-O化合物、Li2MoO3などのLi-Mo-O化合物、LiV25などのLi-V-O化合物、Li2WO4などのLi-W-O化合物、Li3PO4などのLi-P-O化合物が挙げられる。被覆材料に用いられるフッ化物固体電解質としては、Li、Ti、M1、およびFを含み、M1は、Ca、Mg、Al、Y、およびZrからなる群より選択される少なくとも1種の元素である固体電解質が挙げられる。
 以上の構成によれば、正極材料1000の耐酸化性をより向上できる。これにより、充電時の電池2000の容量低下を抑制できる。
 正極活物質110と第1固体電解質材料111とは、被覆材料により隔てられ直接接しなくてもよい。
 以上の構成によれば、正極材料1000の耐酸化性をより向上できる。これにより、充電時の電池の容量低下を抑制できる。
 第2電解質材料100の形状は、特に限定されない。第2電解質材料100が粉体材料である場合、その形状は、例えば、針状、球状、楕円球状、などであってもよい。例えば、第2電解質材料100の形状は、粒子状であってもよい。
 例えば、第2電解質材料100の形状が、粒子状(例えば、球状)である場合、第2電解質材料100のメジアン径は、100μm以下であってもよい。第2電解質材料100のメジアン径が100μm以下である場合、正極活物質110と第2電解質材料100とが、正極材料1000において、良好な分散状態を形成し得る。このため、正極材料1000が用いられた電池の充放電特性が向上する。
 第2電解質材料100のメジアン径は、10μm以下であってもよい。以上の構成によれば、正極材料1000において、正極活物質110と第2電解質材料100とが、良好な分散状態を形成できる。
 実施の形態1においては、第2電解質材料100のメジアン径は、正極活物質110のメジアン径より小さくてもよい。以上の構成によれば、正極において、第2電解質材料100と正極活物質110とが、より良好な分散状態を形成できる。
 正極活物質110のメジアン径は、0.1μm以上かつ100μm以下であってもよい。
 正極活物質110のメジアン径が0.1μm以上である場合、正極材料1000において、正極活物質110と第2電解質材料100とが、良好な分散状態を形成し得る。このため、正極材料1000が用いられた電池の充放電特性が向上する。正極活物質110のメジアン径が100μm以下である場合、正極活物質110内のリチウム拡散速度が向上する。このため、正極材料1000が用いられた電池が高出力で動作し得る。
 正極活物質110のメジアン径は、第2電解質材料100のメジアン径より大きくてもよい。これにより、正極活物質110と第2電解質材料100とが、良好な分散状態を形成できる。
 本開示において、「メジアン径」は、体積基準の粒度分布における累積体積が50%に等しい場合の粒径を意味する。体積基準の粒度分布は、例えば、レーザー回折式測定装置または画像解析装置により測定される。
 正極材料1000においては、第2電解質材料100と第1固体電解質材料111とは、図1に示されるように、互いに、接触していてもよい。このとき、第1固体電解質材料111と正極活物質110とは、互いに、接触する。
 正極材料1000は、複数の第2電解質材料100と、複数の正極活物質110と、を含んでもよい。
 正極材料1000における、第2電解質材料100の含有量と正極活物質110の含有量とは、互いに、同じであってもよいし、異なってもよい。
 正極201に含まれる、正極活物質110および第1固体電解質材料111と第2電解質材料100の体積比率「v1:100-v1」について、30≦v1≦98が満たされてもよい。ここで、v1は、正極201に含まれる、正極活物質110、第1固体電解質材料111、および第2電解質材料100の合計体積を100としたときの正極活物質110および第1固体電解質材料111の体積比率を表す。30≦v1を満たす場合、十分な電池のエネルギー密度を確保し得る。v1≦98を満たす場合、電池2000が高出力で動作し得る。
 正極201の厚みは、10μm以上かつ500μm以下であってもよい。正極201の厚みが10μm以上である場合、十分な電池のエネルギー密度を確保し得る。正極201の厚みが500μm以下である場合、電池2000が高出力で動作し得る。
 <正極材料1000の製造方法>
 実施の形態1における電池2000に含まれる正極材料1000は、例えば、下記の方法により、製造されうる。
 まず、第1固体電解質材料111を作製する。目的とする組成の配合比となるような二元系ハロゲン化物の原料粉を用意する。例えば、Li2.7Ti0.3Al0.76を作製する場合には、LiFとTiF4とAlF3を、LiF:TiF4:AlF3=2.7:0.3:0.7程度のモル比で用意する。合成プロセスにおける組成の変化を考慮して、変化分を相殺するようにあらかじめ配合比を調整しても良い。
 原料粉をよく混合した後、メカノケミカルミリングの方法を用いて原料粉同士を混合および粉砕し、反応させる。その後、真空中や不活性雰囲気中で焼成してもよい。もしくは、原料粉をよく混合した後、真空中や不活性雰囲気中で焼成してもよい。焼成条件は、例えば、100℃から300℃の範囲内で、1時間以上の焼成を行うことが好ましい。また、焼成過程における組成の変化を抑えるべく、石英管等の密閉容器に原料粉を封入させて焼成をおこなうことが好ましい。
 これにより、前述したような組成を含む第1固体電解質材料111が得られる。
 次に、所定の質量比率の正極活物質110と第1固体電解質材料111とを用意する。例えば、正極活物質110としてLiNi0.5Mn1.54、第1固体電解質材料111としてLi2.7Ti0.3Al0.76を用意する。これら2種の材料を同一の反応容器に投入し、回転するブレードを利用し2種の材料にせん断力を加える、もしくは、ジェット気流により2種の材料を衝突させる、などの手法により、正極活物質LiNi0.5Mn1.54の表面の少なくとも一部に第1固体電解質材料111であるLi2.7Ti0.3Al0.76を被覆することができる。例えば、乾式粒子複合化装置ノビルタ(ホソカワミクロン製)、高速気流中衝撃装置(奈良機械製作所製)、およびジェットミルなどの装置を用いることができる。このようにして、正極活物質110であるLiNi0.5Mn1.54の表面の少なくとも一部を第1固体電解質材料111であるLi2.7Ti0.3Al0.76が被覆した、正極活物質を製造することができる。
 次に、第2電解質材料100を作製する。一例として、Li、Y、Cl、およびBrからなる第2電解質材料100を合成する場合、LiCl原料粉、LiBr原料粉、YBr3原料粉、およびYCl3原料粉が混合される。合成プロセスにおいて生じ得る組成変化を相殺するように、あらかじめ調整されたモル比で原料粉は混合されてもよい。このようにして、第2電解質材料100が得られる。
 第1固体電解質材料111によって表面が被覆された正極活物質110と、第2電解質材料100とを混合することによって、正極材料1000を製造することができる。
 [負極203]
 負極203は、金属イオン(例えば、リチウムイオン)を吸蔵かつ放出する特性を有する材料を含む。すなわち、負極203は、負極活物質を含む。負極203は、負極活物質の主成分としてBiを含む。
 Biは、リチウムに対して0.8Vで、リチウムイオンを吸蔵かつ放出する活物質である。Biは、リチウムと合金化する金属である。充電時にBiがリチウムと合金を形成することによって、リチウムが吸蔵される。すなわち、負極203において、電池2000の充電時に、リチウムビスマス合金が生成される。生成されるリチウムビスマス合金は、例えば、LiBiおよびLi3Biからなる群より選択される少なくとも1つを含む。すなわち、電池2000の充電時に、負極203は、例えばLiBiおよびLi3Biからなる群より選択される少なくとも1つを含む。電池2000の放電時に、リチウムビスマス合金からリチウムが放出され、リチウムビスマス合金がBiに戻る。
 Biは、例えば錫と違って、リチウムと形成される複数種の化合物間で電位が大きく異なるという性質を持たない。このため、Biを負極活物質として含む負極203は、放電平坦性に優れている。
 負極203は、LiBiおよびLi3Biからなる群より選択される少なくとも1つを含んでもよい。
 負極203は、負極活物質としてBi単体を含んでもよい。
 負極203は、負極活物質としてBi単体のみを含んでもよい。
 負極203は、負極活物質としてBi以外の他の材料を含んでいてもよい。
 負極活物質には、金属材料、炭素材料、酸化物、窒化物、錫化合物、または珪素化合物などが使用されうる。金属材料は、単体の金属であってもよい。もしくは、金属材料は、合金であってもよい。金属材料の例として、リチウム金属またはリチウム合金などが挙げられる。炭素材料の例として、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、または非晶質炭素などが挙げられる。容量密度の観点から、珪素、錫、珪素化合物、または錫化合物が使用され得る。
 負極203は、電解質を含んでいなくてもよい。例えば、負極203は、Bi単体および充電時に生成されるリチウムビスマス合金からなる群より選択される少なくとも一つからなる層であってもよい。
 負極203は、薄膜状であってもよい。
 負極203は、めっき層であってもよい。
 負極203は、めっきによりBiが堆積されることによって形成されためっき層であってもよい。
 負極203の厚みは、特に限定されず、例えば、1μm以上かつ500μm以下であってもよい。例えば、負極203が、めっきによりBiが堆積されることによって形成されためっき層である場合は、負極203の厚みは、例えば1μm以上かつ100μm以下であってもよい。負極203の厚みが1μm以上である場合、十分な電池2000のエネルギー密度を確保し得る。負極203の厚みが500μm以下である場合、電池2000が高出力で動作し得る。
 負極203は、導電材をさらに含んでいてもよい。導電材として、炭素材料、金属、無機化合物、および導電性高分子が挙げられる。炭素材料として、黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、および炭素繊維が挙げられる。黒鉛として、天然黒鉛および人造黒鉛が挙げられる。天然黒鉛として、塊状黒鉛および鱗片状黒鉛が挙げられる。金属として、銅、ニッケル、アルミニウム、銀、および金が挙げられる。無機化合物として、タングステンカーバイド、炭化チタン、炭化タンタル、炭化モリブデン、ホウ化チタン、およびチッ化チタンが挙げられる。これらの材料は単独で用いられてもよいし、複数種が混合されて用いられてもよい。
 実施の形態1の電池2000において、正極201または負極203に電気的に接続された集電体が設けられていてもよい。すなわち、電池2000は正極集電体および負極集電体をさらに含んでもよい。
 負極203は、負極集電体の表面に直接接して配置されていてもよい。
 負極203は、めっきによりBiが負極集電体上に堆積されることによって形成されためっき層であってもよい。負極203は、負極集電体の表面に直接接して設けられるBiめっき層であってもよい。
 負極203が負極集電体の表面に直接接して設けられるめっき層であると、負極203が負極集電体に密着する。これにより、負極203が膨張および収縮を繰り返した場合に起こる負極203の集電特性の悪化を抑制することができる。したがって、電池2000の充放電特性がより向上する。さらに、負極203がめっき層であると、負極203に活物質であるBiが高密度で含まれるため、さらなる高容量化も実現できる。
 負極集電体の材料は、例えば、単体の金属または合金である。より具体的には、銅、クロム、ニッケル、チタン、白金、金、アルミニウム、タングステン、鉄、およびモリブデンからなる群より選択される少なくとも1つを含む単体の金属、または合金であってもよい。集電体は、ステンレス鋼であってもよい。なお、これらの材料は、正極集電体の材料としても使用され得る。
 負極集電体は、銅(Cu)を含んでもよい。
 高い導電性を確保しやすい観点から、負極集電体は、金属箔であってもよく、銅を含む金属箔であってもよい。銅を含む金属箔としては、例えば、銅箔および銅合金箔が挙げられる。金属箔における銅の含有率は、50質量%以上であってもよく、80質量%以上であってもよい。特に、金属箔は、金属として実質的に銅のみを含む銅箔であってもよい。
 [電解質層202]
 電解質層202は、正極201と負極203との間に配置される。
 電解質層202は、電解質材料を含有する。当該電解質材料は、例えば、固体電解質材料である。電解質層202は、固体電解質層であってもよい。
 電解質層202に含まれる固体電解質材料として、第1固体電解質材料111または第2電解質材料100と同じ材料を用いてもよい。すなわち、電解質層202は、第1固体電解質材料111または第2電解質材料100と同じ材料を含んでもよい。電解質層202は、Liと、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種と、F、ClおよびBrからなる群より選択される少なくとも1種とを含む材料を含んでもよい。電解質層202は、上述の組成式(3)により示される材料を含んでもよい。
 以上の構成によれば、電池2000の出力密度および充放電特性を、より向上させることができる。
 電解質層202に含まれる固体電解質材料として、第1固体電解質材料111と同じ材料を用いてもよい。すなわち、電解質層202は、第1固体電解質材料111と同じ材料を含んでもよい。
 以上の構成によれば、電解質層202の酸化に伴う電池2000の内部抵抗上昇を抑制し、電池2000の出力密度および充放電特性を、より向上させることができる。
 電解質層202に含まれる固体電解質材料として、ハロゲン化物固体電解質、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、または錯体水素化物固体電解質が用いられてもよい。
 電解質層202に含まれる酸化物固体電解質としては、例えば、LiTi2(PO43およびその元素置換体を代表とするNASICON型固体電解質、(LaLi)TiO3系のペロブスカイト型固体電解質、Li14ZnGe416、Li4SiO4、LiGeO4およびその元素置換体を代表とするLISICON型固体電解質、Li7La3Zr212およびその元素置換体を代表とするガーネット型固体電解質、Li3PO4およびそのN置換体、ならびに、LiBO2およびLi3BO3などのLi-B-O化合物をベースとして、Li2SO4、Li2CO3などが添加されたガラスまたはガラスセラミックス、などが用いられうる。
 電解質層202に含まれる高分子固体電解質としては、例えば、高分子化合物と、リチウム塩との化合物が用いられうる。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子化合物は、リチウム塩を多く含有することができる。このため、イオン導電率をより高めることができる。リチウム塩としては、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、およびLiC(SO2CF33、などが使用されうる。例示されたリチウム塩から選択される1種のリチウム塩が、単独で使用されうる。もしくは、例示されたリチウム塩から選択される2種以上のリチウム塩の混合物が使用されうる。
 電解質層202に含まれる錯体水素化物固体電解質としては、例えば、LiBH4-LiI、LiBH4-P25、などが用いられうる。
 電解質層202は、固体電解質材料を、主成分として含んでもよい。すなわち、電解質層202は、固体電解質材料を、例えば、電解質層202の全体に対する質量割合で50%以上(すなわち、50質量%以上)、含んでもよい。
 以上の構成によれば、電池2000の充放電特性を、より向上させることができる。
 電解質層202は、固体電解質材料を、例えば、電解質層202の全体に対する質量割合で70%以上(すなわち、70質量%以上)、含んでもよい。
 以上の構成によれば、電池2000の充放電特性を、より向上させることができる。
 電解質層202は、固体電解質材料を主成分として含みながら、さらに、不可避的な不純物、または、固体電解質材料を合成する際に用いられる出発原料および副生成物および分解生成物などを含んでいてもよい。
 電解質層202は、固体電解質材料を、例えば、混入が不可避的な不純物を除いて、電解質層202の全体に対する質量割合で100%(すなわち、100質量%)、含んでもよい。
 以上の構成によれば、電池2000の充放電特性を、より向上させることができる。
 以上のように、電解質層202は、固体電解質材料のみから構成されていてもよい。
 電解質層202は、固体電解質材料として挙げられた材料のうちの2種以上を含んでもよい。例えば、電解質層202は、ハロゲン化物固体電解質と硫化物固体電解質とを含んでもよい。
 電解質層202は、Li6PS5Clを含んでもよい。
 電解質層202は、Li3YBr2Cl4を含んでもよい。
 電解質層202の厚みは、1μm以上かつ300μm以下であってもよい。電解質層202の厚みが1μm以上である場合、正極201と負極203とが短絡しにくくなる。電解質層202の厚みが300μm以下である場合、電池2000が高出力で動作し得る。
 なお、ここでは、電解質層202が固体電解質材料を含む固体電解質層である場合について主に説明したが、電解質層202に含まれる電解質材料は、電解液であってもよい。例えば、電解質層202は、セパレータおよびセパレータに含浸された電解液によって構成されていてもよい。
 正極201、電解質層202、および負極203からなる群より選択される少なくとも1つには、粒子同士の密着性を向上する目的で、結着剤が含まれてもよい。結着剤は、電極を構成する材料の結着性を向上するために用いられる。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、およびカルボキシメチルセルロース、などが挙げられる。また、結着剤としては、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、およびヘキサジエンからなる群より選択される2種以上の材料の共重合体が用いられうる。また、これらのうちから選択された2種以上の混合物が用いられてもよい。
 正極201および負極203の少なくとも一方は、電子導電性を高める目的で、導電助剤を含んでもよい。導電助剤としては、例えば、天然黒鉛または人造黒鉛などのグラファイト類、アセチレンブラックおよびケッチェンブラックなどのカーボンブラック類、炭素繊維および金属繊維などの導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛およびチタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物、ならびに、ポリアニリン、ポリピロール、およびポリチオフェンなどの導電性高分子化合物、などが用いられ得る。導電助剤として炭素導電助剤を用いた場合、低コスト化を図ることができる。
 実施の形態1における電池2000の形状は、例えば、コイン型、円筒型、角型、シート型、ボタン型、扁平型、および積層型、などが挙げられる。
 実施の形態1における電池2000は、例えば、正極形成用の材料、電解質層形成用の材料、負極形成用の材料をそれぞれ準備し、公知の方法で、正極、電解質層、および負極がこの順に配置された積層体を作製することによって製造してもよい。
 (実施の形態2)
 以下、実施の形態2が説明される。実施の形態1と重複する説明は、適宜、省略される。
 図2は、実施の形態2における電池3000の概略構成を示す断面図である。
 実施の形態2における電池3000は、正極201と、電解質層202と、負極203と、を備える。電解質層202は、正極201と負極203との間に配置される。電解質層202は、第1電解質層301、および第2電解質層302を含む。第1電解質層301は、正極201と負極203との間に位置し、第2電解質層302は、第1電解質層301と負極203との間に位置する。図2では、電池3000の構成例として、第1電解質層301が正極201に接し、第2電解質層302が負極203に接している例が示されている。
 以上の構成によれば、充電時の電池3000の内部抵抗上昇を抑制することができる。
 第1電解質層301は、第2電解質材料100と同じ組成を有する材料を含んでもよい。
 第1電解質層301は、第1固体電解質材料111と同じ組成を有する材料を含んでもよい。
 第1電解質層301に、耐酸化性に優れる第1固体電解質材料111を含むことで、第1電解質層301の酸化分解を抑制し、充電時の電池3000の内部抵抗上昇を抑制することができる。
 なお、第2電解質層302は、第1固体電解質材料111とは異なる組成を有する材料を含んでもよい。
 例えば、第2電解質層302に含まれる固体電解質材料の還元電位は、第1電解質層301に含まれる固体電解質材料の還元電位よりも低くてもよい。以上の構成によれば、第1電解質層301に含まれる固体電解質材料が還元しにくくなる。これにより、電池3000の充放電効率を向上させ得る。
 例えば、第2電解質層302は硫化物固体電解質を含んでもよい。ここで、第2電解質層302に含まれる硫化物固体電解質の還元電位は、第1電解質層301に含まれる固体電解質材料の還元電位よりも、卑であってもよい。以上の構成によれば、第1電解質層301に含まれる固体電解質材料が還元しにくくなる。これにより、電池3000の充放電効率を向上させ得る。
 第1電解質層301、および第2電解質層302の厚みは、1μm以上かつ300μm以下であってもよい。第1電解質層301、および第2電解質層302の厚みが1μm以上である場合、正極201と負極203とが短絡しにくくなる。第1電解質層301、および第2電解質層302の厚みが300μm以下である場合、電池3000が高出力で動作し得る。
 以下、実施例を参照しながら、本開示がより詳細に説明される。
 <実施例1>
 [第1固体電解質材料の作製]
 アルゴン雰囲気中で、原料粉としてLiF、TiF4、およびAlF3を、LiF:TiF4:AlF3=2.7:0.3:0.7のモル比となるように、秤量した。その後、遊星型ボールミル(フリッチュ製、P-7型)を用い、12時間、500rpmでミリング処理することで、実施例1の第1固体電解質材料としてLi2.7Ti0.3Al0.76の粉末を得た。
 [第1固体電解質材料によって表面が被覆された正極活物質の作製]
 アルゴン雰囲気中で、正極活物質であるLiNi0.5Mn1.54と、実施例1の第1固体電解質材料とを、LiNi0.5Mn1.54:第1固体電解質材料=100:3の質量比率となるように秤量した。これら材料を乾式粒子複合化装置ノビルタ(ホソカワミクロン製)に投入し、6000rpm、30分の条件で複合化処理を実施することで、実施例1の第1固体電解質材料によって表面が被覆された正極活物質を得た。
 [第2電解質材料の作製]
 -30℃以下の露点を有するドライ雰囲気(以下、「ドライ雰囲気」と呼ばれる)中で、原料粉としてLi22およびTaCl5が、Li22:TaCl5=1.2:2のモル比となるように用意された。これらの原料粉が乳鉢中で粉砕して混合され、混合粉が得られた。得られた混合粉は、遊星型ボールミルを用い、24時間、600rpmでミリング処理された。次いで、200℃で6時間、混合粉は焼成された。このようにして、Li-Ta-O-Cl系の第2電解質材料の粉末が得られた。
 [正極材料の作製]
 実施例1の第1固体電解質材料によって表面が被覆された正極活物質と、第2電解質材料と、導電助剤としての気相法炭素繊維(VGCF(昭和電工株式会社製))とを、被覆正極活物質:第2電解質材料:VGCF=72.8:26.2:1.0の質量比率となるように秤量し、乳鉢で混合することで、実施例1の正極材料が作製された。なお、VGCFは、昭和電工株式会社の登録商標である。
 [電解質層用の固体電解質材料の作製]
 アルゴン雰囲気中で、原料粉LiBr、YBr3、LiCl、およびYCl3を、モル比でLiBr:YBr3:LiCl:YCl3=1:1:5:1となるように、秤量した。その後、遊星型ボールミル(フリッチュ製、P-7型)を用い、25時間、600rpmでミリング処理することで、Li3YBr2Cl4の粉末を得た。
 [負極の作製]
 前処理として、銅箔(10cm×10cm、厚み:10μm)を有機溶剤により予備脱脂した後、片面をマスキングして酸性溶剤に浸漬することで脱脂を行い、銅箔表面を活性化させた。メタンスルホン酸1.0mol/Lに、可溶性ビスマス塩としてメタンスルホン酸ビスマスをBi3+イオンが0.18mol/Lとなるように加えて、めっき浴が作製された。活性化させた銅箔は、電流を印加できるように電源に接続した後、めっき浴内に浸漬させた。その後、電流密度を2A/dm2に制御することにより、マスキングをしていない銅箔表面におよそ3μmの厚みとなるようにBiを電気めっきした。電気めっき後に、銅箔を酸性浴から回収し、マスキングを外した後に純水により洗浄、乾燥した。その後、φ0.92cmの大きさに打ち抜くことによって、集電体上に堆積されためっき層である負極が得られた。
 [電池の作製]
 実施例1の電池を以下の手順で作製した。
 まず、絶縁性外筒の中に、Li3YBr2Cl480mgを投入し、これを2MPaの圧力で加圧成型した。次に、実施例1の正極材料に使用した第2電解質材料20mgを投入し、2MPaの圧力で加圧成型した。さらに、そこに正極材料を8.2mg投入し、これを2MPaの圧力で加圧成型した。これにより、正極および固体電解質層からなる積層体を得た。
 次に、固体電解質層の正極と接する側とは反対側に、Biがめっきされた表面が固体電解質層と接する向きで負極を積層した。これを720MPaの圧力で加圧成型することで、正極、固体電解質層、および負極からなる積層体を作製した。
 次に、積層体の上下にステンレス鋼集電体を配置し、集電体に集電リードを付設した。
 最後に、絶縁性フェルールを用いて、絶縁性外筒内部を外気雰囲気から遮断し、かつ密閉することで、電池を作製した。
 以上により、上述の実施例1の電池が作製された。
 <実施例2>
 Li3YBr2Cl4の代わりにLi6PS5Clを固体電解質層に用いたこと以外、実施例1と同様にして実施例2の電池が作製された。
 [充電試験]
 上述の実施例1および実施例2の電池をそれぞれ用いて、以下の条件で、充電試験が実施された。
 電池を85℃の恒温槽に配置した。
 電池の理論容量に対して0.01Cレート(20時間率)となる電流値6.8μAで定電流充電した。充電終止電圧は4.5Vとした。次に、放電終止電圧は2.5Vとし、定電流放電した。
 図3は、実施例1の電池の充放電曲線を示すグラフである。図4は、実施例2の電池の充放電曲線を示すグラフである。図3および図4に示されるように、実施例1および2の電池は充電および放電された。
 本開示の電池は、例えば、全固体リチウムイオン二次電池などとして、利用されうる。

Claims (19)

  1.  正極と、
     負極と、
     前記正極と前記負極との間に位置する電解質層と、
    を備え、
     前記正極は、正極材料を含み、
     前記正極材料は、正極活物質と、第1固体電解質材料と、を含み、
     前記正極活物質は、Li、Ni、Mn、およびOからなる酸化物を含み、
     前記第1固体電解質材料は、Liと、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種と、F、ClおよびBrからなる群より選択される少なくとも1種とを含み、
     前記負極は、負極活物質の主成分としてBiを含む、
    電池。
  2.  前記第1固体電解質材料は、前記正極活物質の表面の少なくとも一部を被覆する、
    請求項1に記載の電池。
  3.  前記正極材料は、前記第1固体電解質材料とは異なる組成を有する材料である第2電解質材料をさらに含む、
    請求項1または2に記載の電池。
  4.  前記正極活物質は、下記の組成式(1)で表される材料を含む、
    請求項1から3のいずれか一項に記載の電池。
     LiNixMn2-x4・・・式(1)
     ここで、xは0<x<2を満たす。
  5.  前記組成式(1)は、0<x<1を満たす、
    請求項4に記載の電池。
  6.  前記組成式(1)は、x=0.5を満たす、
    請求項5に記載の電池。
  7.  前記酸化物は、スピネル構造を有する、
    請求項1から6のいずれか一項に記載の電池。
  8.  前記第1固体電解質材料は、Li、Ti、Al、およびFを含む、
    請求項1から7のいずれか一項に記載の電池。
  9.  前記負極は、前記負極活物質としてBi単体を含む、
    請求項1から8のいずれか一項に記載の電池。
  10.  前記負極は、めっき層である、
    請求項1から9のいずれか一項に記載の電池。
  11.  前記第2電解質材料は、下記の組成式(3)により表される材料を含む、
    請求項3に記載の電池。
     Liα3β3γ3δ3・・・式(3)
     ここで、α3、β3、およびγ3は、0より大きい値であり、δ3は0以上の値であり、
     Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種であり、
     Xは、F、Cl、Br、およびIからなる群より選択される少なくとも1種の元素である。
  12.  前記組成式(3)は、
     1≦α3≦4、
     0<β3≦2、
     3≦γ3<7、および
     0≦δ3≦2
     を満たす、
    請求項11に記載の電池。
  13.  前記組成式(3)は、
     2.5≦α3≦3、
     1≦β3≦1.1、
     γ3=6、および
     δ3=0
     を満たす、
    請求項12に記載の電池。
  14.  前記電解質層は硫化物固体電解質を含む、
    請求項1から13のいずれか一項に記載の電池。
  15.  前記硫化物固体電解質は、Li6PS5Clである、
    請求項14に記載の電池。
  16.  前記電解質層は、Liと、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1種と、F、ClおよびBrからなる群より選択される少なくとも1種とを含む材料を含む、
    請求項1から15のいずれか一項に記載の電池。
  17.  前記電解質層は、Li3YBr2Cl4を含む、
    請求項16に記載の電池。
  18.  前記電解質層は、第1電解質層および第2電解質層を含み、
     前記第1電解質層は、前記正極と前記負極との間に位置し、
     前記第2電解質層は、前記第1電解質層と前記負極との間に位置する、
    請求項1から17のいずれか一項に記載の電池。
  19.  前記正極材料は、前記第1固体電解質材料とは異なる組成を有する材料である第2電解質材料をさらに含み、
     前記第1電解質層は、前記第2電解質材料と同じ組成を有する材料を含む、
    請求項18に記載の電池。
PCT/JP2022/018781 2021-06-03 2022-04-25 電池 WO2022255003A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023525664A JPWO2022255003A1 (ja) 2021-06-03 2022-04-25
CN202280039144.0A CN117413395A (zh) 2021-06-03 2022-04-25 电池
US18/526,790 US20240097133A1 (en) 2021-06-03 2023-12-01 Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021093944 2021-06-03
JP2021-093944 2021-06-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/526,790 Continuation US20240097133A1 (en) 2021-06-03 2023-12-01 Battery

Publications (1)

Publication Number Publication Date
WO2022255003A1 true WO2022255003A1 (ja) 2022-12-08

Family

ID=84324282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018781 WO2022255003A1 (ja) 2021-06-03 2022-04-25 電池

Country Status (4)

Country Link
US (1) US20240097133A1 (ja)
JP (1) JPWO2022255003A1 (ja)
CN (1) CN117413395A (ja)
WO (1) WO2022255003A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024185316A1 (ja) * 2023-03-07 2024-09-12 パナソニックホールディングス株式会社 正極材料、正極および電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244734A (ja) * 2005-02-28 2006-09-14 National Univ Corp Shizuoka Univ 全固体型リチウム二次電池
JP2012160435A (ja) * 2011-01-12 2012-08-23 Toyota Motor Corp リチウムイオン二次電池
JP2015035334A (ja) * 2013-08-09 2015-02-19 株式会社日立製作所 固体電解質および全固体リチウムイオン二次電池
JP2016081822A (ja) * 2014-10-21 2016-05-16 トヨタ自動車株式会社 硫化物全固体電池用の正極複合材の製造方法
JP2019164961A (ja) * 2018-03-20 2019-09-26 株式会社Gsユアサ 合金、負極活物質、負極及び非水電解質蓄電素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244734A (ja) * 2005-02-28 2006-09-14 National Univ Corp Shizuoka Univ 全固体型リチウム二次電池
JP2012160435A (ja) * 2011-01-12 2012-08-23 Toyota Motor Corp リチウムイオン二次電池
JP2015035334A (ja) * 2013-08-09 2015-02-19 株式会社日立製作所 固体電解質および全固体リチウムイオン二次電池
JP2016081822A (ja) * 2014-10-21 2016-05-16 トヨタ自動車株式会社 硫化物全固体電池用の正極複合材の製造方法
JP2019164961A (ja) * 2018-03-20 2019-09-26 株式会社Gsユアサ 合金、負極活物質、負極及び非水電解質蓄電素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024185316A1 (ja) * 2023-03-07 2024-09-12 パナソニックホールディングス株式会社 正極材料、正極および電池

Also Published As

Publication number Publication date
JPWO2022255003A1 (ja) 2022-12-08
CN117413395A (zh) 2024-01-16
US20240097133A1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
JP7182196B2 (ja) 電池
JP7199038B2 (ja) 負極材料およびそれを用いた電池
JP7281672B2 (ja) 電池
JP7316564B2 (ja) 電池
JP7182114B2 (ja) 固体電解質材料、および、電池
JP7145439B6 (ja) 電池
WO2019135322A1 (ja) 正極材料、および、電池
JP7249562B2 (ja) 電池
WO2019146308A1 (ja) 電極材料、および、電池
US20220216509A1 (en) Battery
WO2022224505A1 (ja) 正極材料および電池
WO2019146296A1 (ja) 正極材料およびそれを用いた電池
JP7486092B2 (ja) 正極材料、および、電池
WO2021157361A1 (ja) 正極材料および電池
WO2023286614A1 (ja) 正極材料および電池
WO2022244445A1 (ja) 被覆正極活物質、正極材料および電池
US20240097133A1 (en) Battery
US20240234716A9 (en) Battery
WO2022224506A1 (ja) 電池
WO2022163039A1 (ja) 電池
JP7507385B2 (ja) 正極材料、および、電池
WO2022254974A1 (ja) 電池
WO2022254975A1 (ja) 電池
WO2023106127A1 (ja) 電池
WO2022224611A1 (ja) 正極材料および電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815758

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525664

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280039144.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22815758

Country of ref document: EP

Kind code of ref document: A1