WO2023017736A1 - 電池 - Google Patents
電池 Download PDFInfo
- Publication number
- WO2023017736A1 WO2023017736A1 PCT/JP2022/028979 JP2022028979W WO2023017736A1 WO 2023017736 A1 WO2023017736 A1 WO 2023017736A1 JP 2022028979 W JP2022028979 W JP 2022028979W WO 2023017736 A1 WO2023017736 A1 WO 2023017736A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- active material
- material layer
- battery
- lithium
- Prior art date
Links
- 239000011149 active material Substances 0.000 claims abstract description 106
- 239000000463 material Substances 0.000 claims abstract description 50
- 239000003792 electrolyte Substances 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 32
- 239000000758 substrate Substances 0.000 claims description 28
- 239000008151 electrolyte solution Substances 0.000 claims description 24
- 238000007747 plating Methods 0.000 claims description 19
- 229910003002 lithium salt Inorganic materials 0.000 claims description 18
- 159000000002 lithium salts Chemical class 0.000 claims description 18
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 claims description 17
- 239000000010 aprotic solvent Substances 0.000 claims description 11
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 claims description 7
- 229910013107 LiBi Inorganic materials 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000010410 layer Substances 0.000 description 77
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 69
- 210000004027 cell Anatomy 0.000 description 47
- 229910052744 lithium Inorganic materials 0.000 description 43
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 40
- 239000007784 solid electrolyte Substances 0.000 description 31
- 229910052751 metal Inorganic materials 0.000 description 30
- 239000002184 metal Substances 0.000 description 28
- 239000007774 positive electrode material Substances 0.000 description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 17
- 229910045601 alloy Inorganic materials 0.000 description 17
- 239000000956 alloy Substances 0.000 description 17
- 238000009713 electroplating Methods 0.000 description 17
- 239000002904 solvent Substances 0.000 description 17
- 239000010409 thin film Substances 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 11
- 239000011888 foil Substances 0.000 description 11
- 229910002804 graphite Inorganic materials 0.000 description 11
- 239000010439 graphite Substances 0.000 description 11
- 239000011148 porous material Substances 0.000 description 11
- -1 graphite Chemical compound 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 229910052797 bismuth Inorganic materials 0.000 description 9
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 238000007599 discharging Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 239000007773 negative electrode material Substances 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 229910052718 tin Inorganic materials 0.000 description 8
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229910001152 Bi alloy Inorganic materials 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 6
- JYPVGDJNZGAXBB-UHFFFAOYSA-N bismuth lithium Chemical compound [Li].[Bi] JYPVGDJNZGAXBB-UHFFFAOYSA-N 0.000 description 6
- 239000004020 conductor Substances 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 150000004820 halides Chemical class 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 239000002203 sulfidic glass Substances 0.000 description 6
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 239000011245 gel electrolyte Substances 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 4
- 239000003125 aqueous solvent Substances 0.000 description 4
- 230000001351 cycling effect Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000004210 ether based solvent Substances 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 239000002608 ionic liquid Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 229910000314 transition metal oxide Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000001621 bismuth Chemical class 0.000 description 3
- MNMKEULGSNUTIA-UHFFFAOYSA-K bismuth;methanesulfonate Chemical compound [Bi+3].CS([O-])(=O)=O.CS([O-])(=O)=O.CS([O-])(=O)=O MNMKEULGSNUTIA-UHFFFAOYSA-K 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000009831 deintercalation Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 150000002484 inorganic compounds Chemical class 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 238000009830 intercalation Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229940098779 methanesulfonic acid Drugs 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 239000011255 nonaqueous electrolyte Substances 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical group O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 2
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000005676 cyclic carbonates Chemical class 0.000 description 2
- 150000004292 cyclic ethers Chemical class 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 239000003759 ester based solvent Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 229910001547 lithium hexafluoroantimonate(V) Inorganic materials 0.000 description 2
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 2
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 2
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 150000002815 nickel Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920000447 polyanionic polymer Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- QIJNJJZPYXGIQM-UHFFFAOYSA-N 1lambda4,2lambda4-dimolybdacyclopropa-1,2,3-triene Chemical compound [Mo]=C=[Mo] QIJNJJZPYXGIQM-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- 229910017008 AsF 6 Inorganic materials 0.000 description 1
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 239000002227 LISICON Substances 0.000 description 1
- 229910018111 Li 2 S-B 2 S 3 Inorganic materials 0.000 description 1
- 229910018127 Li 2 S-GeS 2 Inorganic materials 0.000 description 1
- 229910018133 Li 2 S-SiS 2 Inorganic materials 0.000 description 1
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 1
- 229910003548 Li(Ni,Co,Mn)O2 Inorganic materials 0.000 description 1
- 229910007860 Li3.25Ge0.25P0.75S4 Inorganic materials 0.000 description 1
- 229910013184 LiBO Inorganic materials 0.000 description 1
- 229910013375 LiC Inorganic materials 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910013131 LiN Inorganic materials 0.000 description 1
- 229910013392 LiN(SO2CF3)(SO2C4F9) Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910012465 LiTi Inorganic materials 0.000 description 1
- 229910039444 MoC Inorganic materials 0.000 description 1
- 239000002228 NASICON Substances 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical group CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- 229910018286 SbF 6 Inorganic materials 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229920006125 amorphous polymer Polymers 0.000 description 1
- 239000003011 anion exchange membrane Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229940006487 lithium cation Drugs 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- MHAIQPNJLRLFLO-UHFFFAOYSA-N methyl 2-fluoropropanoate Chemical compound COC(=O)C(C)F MHAIQPNJLRLFLO-UHFFFAOYSA-N 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- PYLWMHQQBFSUBP-UHFFFAOYSA-N monofluorobenzene Chemical compound FC1=CC=CC=C1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 description 1
- 239000011331 needle coke Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 150000003839 salts Chemical group 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920005608 sulfonated EPDM Polymers 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 1
- 125000005497 tetraalkylphosphonium group Chemical group 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910021561 transition metal fluoride Inorganic materials 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
- H01M4/405—Alloys based on lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/80—Porous plates, e.g. sintered carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0034—Fluorinated solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- This disclosure relates to batteries.
- lithium secondary batteries have been actively researched and developed, and battery characteristics such as charge/discharge voltage, charge/discharge cycle life characteristics, and storage characteristics are greatly affected by the electrodes used. For this reason, improvements in battery characteristics have been attempted by improving electrode active materials.
- Patent Literature 1 discloses a lithium secondary battery comprising a negative electrode, a positive electrode, and an electrolyte including a negative electrode material made of an alloy containing silicon, tin, and a transition metal.
- Patent Document 2 discloses a lithium secondary battery including a negative electrode using a silicon thin film provided on a current collector as an active material, a positive electrode, and an electrolyte.
- Non-Patent Document 1 discloses a negative electrode containing Bi as a negative electrode active material, which is manufactured using Bi powder.
- the present disclosure provides batteries with improved cycling characteristics.
- the battery of the present disclosure includes a first electrode, a second electrode, and an electrolytic solution, wherein the first electrode is a porous base material, an active material layer located on the surface of the base material, and the active material layer contains Bi.
- a battery with improved cycle characteristics can be provided.
- FIG. 1 is a cross-sectional view schematically showing a configuration example of a battery according to an embodiment of the present disclosure.
- FIG. 2 is a partially enlarged cross-sectional view schematically showing a configuration example of the first electrode in the battery according to the embodiment of the present disclosure.
- 3 is a graph showing the relationship between the number of cycles and discharge capacity density of test cells according to Examples 1, 2, Reference Examples 1, and 2.
- FIG. 4 is a graph showing the relationship between the number of cycles and discharge capacity density of test cells according to Example 1 and Examples 3 to 7.
- FIG. 1 is a cross-sectional view schematically showing a configuration example of a battery according to an embodiment of the present disclosure.
- FIG. 2 is a partially enlarged cross-sectional view schematically showing a configuration example of the first electrode in the battery according to the embodiment of the present disclosure.
- 3 is a graph showing the relationship between the number of cycles and discharge capacity density of test cells according to Examples 1, 2, Reference Examples 1, and 2.
- FIG. 4 is a graph showing the relationship between the number
- lithium metal When lithium metal is used as the negative electrode active material, a lithium secondary battery having high energy density per weight and per volume can be obtained.
- lithium deposits in the form of dendrites during charging. Since part of the deposited lithium metal reacts with the electrolytic solution, the charge/discharge efficiency is low and the cycle characteristics are poor.
- carbon especially graphite
- a negative electrode using carbon is charged and discharged by intercalation and deintercalation of lithium into and from carbon.
- lithium metal does not deposit in a dendrite form due to the charge/discharge mechanism.
- the reaction is topotactic, so the reversibility is very good, and the charge/discharge efficiency is almost 100%.
- lithium secondary batteries employing negative electrodes using carbon, particularly graphite have been put to practical use.
- the theoretical capacity density of graphite is 372 mAh/g, which is about 1/10 of the theoretical capacity density of lithium metal, 3884 mAh/g. Therefore, the active material capacity density of the negative electrode using graphite is low. Furthermore, since the actual capacity density of graphite has almost reached the theoretical capacity density, there is a limit to increasing the capacity of negative electrodes using graphite.
- lithium secondary batteries using electrodes such as aluminum, silicon, and tin that electrochemically alloy with lithium during charging have long been proposed.
- the capacity density of metals alloyed with lithium is much higher than that of graphite.
- the theoretical capacity density of silicon is large. Therefore, electrodes using aluminum, silicon, tin, etc., which are alloyed with lithium, are promising as negative electrodes for batteries exhibiting high capacity, and various secondary batteries using these as negative electrodes have been proposed (Patent Documents 1).
- a negative electrode that uses a metal that alloys with lithium as described above expands when it absorbs lithium and contracts when it releases lithium. If such expansion and contraction are repeated during charging and discharging, the alloy itself, which is the electrode active material, will be pulverized due to charging and discharging, and the current collection characteristics of the negative electrode will deteriorate, so sufficient cycle characteristics have not been obtained.
- the following attempts have been made to improve such drawbacks. For example, attempts have been made to deposit silicon on a roughened current collector by sputtering or evaporation, or to deposit tin by electroplating (Patent Document 2). In this trial, the active material, that is, the metal that alloys with lithium forms a thin film and adheres to the current collector. not decrease.
- the active material is formed by sputtering or vapor deposition as described above, the manufacturing cost is high and it is not practical. Although it is practical to form the active material by electroplating, which is inexpensive to manufacture, silicon is very difficult to electroplate. In addition, tin, which is easily electroplated, has poor discharge flatness and is difficult to use as a battery electrode.
- Bi bismuth
- LiBi lithium
- LiBi lithium
- Li 3 Bi Li 3 Bi
- the potential of LiBi and the potential of Li 3 Bi are almost the same.
- tin which has poor discharge flatness
- Bi does not have the property that different types of compounds formed with lithium have different potentials, unlike tin. Therefore, an electrode containing Bi as an active material has a flat electric potential, and is therefore excellent in discharge flatness. Therefore, an electrode containing Bi as an active material is considered suitable as a battery electrode.
- Bi has poor malleability and ductility, and is difficult to produce in the form of a metal plate or metal foil, and the obtained form is globules or powder. Therefore, as an electrode containing Bi as an active material, an electrode manufactured by coating a current collector with Bi powder has been studied. However, an electrode manufactured using such a Bi powder is pulverized by repeated charging and discharging, resulting in deterioration of current collection characteristics, and sufficient cycle characteristics have not been obtained. For example, in Non-Patent Document 1, an electrode containing Bi as an active material is produced using Bi powder and PVdF (polyvinylidene fluoride) or PI (polyimide) as a binder.
- PVdF polyvinylidene fluoride
- PI polyimide
- Non-Patent Document 1 charging and discharging of a battery produced using this electrode are performed.
- both the initial charge/discharge curve and cycle characteristics of the fabricated electrode are very poor.
- the initial charge/discharge efficiency is low and the cycle deterioration is severe, so it cannot be put to practical use.
- this cycle deterioration in Non-Patent Document 1, as the Bi active material expands when Li is inserted and the Bi active material contracts when Li is desorbed, the active material becomes finer and an electron conduction path cannot be taken, resulting in a decrease in capacity. is believed to occur.
- the present inventors have focused on Bi, which does not have the property that the potential differs greatly between the multiple types of compounds formed with Li, and has excellent discharge flatness, and can improve cycle characteristics.
- the present inventors have found that the cycle characteristics of a battery are improved when Bi is used as an active material and formed on the surface of a porous substrate, and have completed the present disclosure.
- a battery according to a first aspect of the present disclosure includes a first electrode, a second electrode, and an electrolytic solution, wherein the first electrode is a porous substrate and is located on the surface of the substrate. and an active material layer, wherein the active material layer contains Bi.
- a battery according to the first aspect includes an electrode having a substrate that is a porous body and an active material layer containing Bi located on the surface of the substrate. Therefore, the battery according to the first aspect has improved cycling characteristics.
- the active material layer may contain Bi alone.
- the battery according to the second aspect has improved capacity and improved cycle characteristics.
- the active material layer may contain the Bi as a main component of the active material.
- the battery according to the third aspect has improved capacity and improved cycle characteristics.
- the active material layer may substantially contain only the Bi as an active material.
- the battery according to the fourth aspect has improved capacity and improved cycle characteristics.
- the active material layer may contain at least one selected from the group consisting of LiBi and Li 3 Bi good.
- the battery according to the fifth aspect has improved capacity and improved cycle characteristics.
- the base material may contain at least one selected from the group consisting of Cu and Ni.
- the battery according to the sixth aspect has improved capacity and improved cycle characteristics.
- the active material layer may be a plating layer.
- the battery according to the seventh aspect has improved capacity and improved cycle characteristics.
- the electrolytic solution contains an aprotic solvent and a lithium salt dissolved in the aprotic solvent. may contain.
- the battery according to the eighth aspect can realize a lithium ion battery with improved capacity and improved cycle characteristics.
- the aprotic solvent may contain at least one selected from the group consisting of vinylene carbonate and fluoroethylene carbonate.
- the battery according to the ninth aspect has improved capacity and improved cycle characteristics.
- the first electrode may be a negative electrode and the second electrode may be a positive electrode.
- the battery according to the tenth aspect has improved capacity and improved cycle characteristics.
- FIG. 1 is a cross-sectional view schematically showing a configuration example of a battery 1000 according to an embodiment of the present disclosure.
- the battery 1000 includes a first electrode 101, a second electrode 103, and an electrolytic solution 102.
- FIG. 2 is a partially enlarged cross-sectional view schematically showing a configuration example of the first electrode 101 in the battery 1000 according to the embodiment of the present disclosure.
- the first electrode 101 has a base material 108 that is a porous body and an active material layer 109 located on the surface of the base material 108 .
- Active material layer 109 contains Bi.
- the active material layer 109 contains, for example, simple Bi as Bi.
- the battery 1000 according to this embodiment may further include a first current collector 104 in contact with the first electrode 101, for example.
- the battery 1000 according to this embodiment may further include a second current collector 105 in contact with the second electrode 103, for example.
- the battery 1000 further includes a separator 106 and an exterior 107, for example.
- a separator 106 is arranged between the first electrode 101 and the second electrode 103 .
- the first electrode 101 and the second electrode 103 face each other with the separator 106 interposed therebetween.
- the first electrode 101 , the second electrode 103 , the separator 106 and the electrolytic solution 102 are housed in the exterior 107 .
- the electrolytic solution 102 is, for example, an electrolytic solution impregnated in the first electrode 101 , the second electrode 103 and the separator 106 .
- the electrolyte 102 may fill the internal space of the exterior 107 .
- the active material layer 109 containing Bi is formed on the surface of the substrate 108, which is a porous body.
- the active material layer 109 is also formed on the inner walls of the pores of the substrate 108, for example, as shown in FIG. Therefore, in the battery 1000, the active material layer 109 is formed on the surface of the porous substrate 108 rather than on the surface of the foil-shaped substrate in terms of the area where the active material and the electrolytic solution can contact. The area of the active material layer 109 becomes larger. Therefore, the battery 1000 according to this embodiment can improve the capacity.
- the active material layer 109 is formed as a thin film on the inner walls of the pores of the substrate 108, and the pores are present with a relatively high porosity.
- the first electrode 101 is not limited to this configuration.
- the first electrode 101 may have, for example, an active material layer 109 that substantially fills the interior of the pores of the base material 108 and has a low porosity. Even when the first electrode 101 has such a structure, the boundary between the base material 108 and the active material layer 109 can be clearly confirmed, and in the first electrode 101, the base material 108 is porous. , it can be said that the active material layer 109 is formed on the surface of the substrate 108 .
- the active material layer 109 may be formed on a part of the inner walls of the plurality of holes, or may be formed on almost all of them.
- the battery 1000 is, for example, a lithium secondary battery.
- a case in which lithium ions are intercalated and deintercalated in the active material layer 109 of the first electrode 101 and the second electrode 103 during charging and discharging of the battery 1000 will be described as an example.
- the base material 108 is a porous body, as described above.
- the term "porous body” means a structure having a plurality of pores and including open pores that are open to the outside.
- Porous bodies herein include, for example, meshes and porous structures.
- the porous structure is a structure composed of a porous material provided with a plurality of pores, and the size of the pores is not particularly limited. Examples of porous structures include foams.
- the porous structure may be a three-dimensional network structure in which pores communicate with each other.
- the term "pore" includes both holes filled with, for example, an active material layer and holes not filled with the active material layer. In other words, a hole filled with, for example, an active material layer is also regarded as a "hole”.
- the base material 108 has conductivity, for example.
- the base material 108 may be formed of a conductive material such as metal, or a conductive film made of a conductive material may be formed on the surface of a porous body (for example, foamed resin) made of a non-conductive material such as resin. It may be provided.
- Substrate 108 can be, for example, metal mesh and porous metal.
- Base material 108 can function as a current collector for first electrode 101 . That is, when the first current collector 104 is provided, for example, the first current collector 104 and the base material 108 function as the current collector of the first electrode 101 . If the first current collector 104 is not provided, for example, the base material 108 functions as a current collector for the first electrode 101 .
- the base material 108 may contain, for example, at least one selected from the group consisting of Cu and Ni.
- Substrate 108 may be, for example, nickel mesh or porous nickel.
- the active material layer 109 contains only Bi.
- the active material layer 109 may contain Bi as a main component.
- the active material layer 109 contains Bi as a main component is defined as "the content ratio of Bi in the active material layer 109 is 50% by mass or more".
- the content ratio of Bi in the active material layer 109 can be determined by, for example, confirming that Bi is contained in the active material layer 109 by elemental analysis using EDX (energy dispersive X-ray analysis). It can be obtained by calculating the ratio of the compounds contained by Rietveld analysis of the diffraction results.
- EDX energy dispersive X-ray analysis
- the active material layer 109 containing Bi as a main component may be composed of, for example, a thin film of Bi (hereinafter referred to as "Bi thin film").
- the active material layer 109 composed of a Bi thin film can be produced, for example, by electroplating.
- a method of manufacturing the first electrode 101 by forming the active material layer 109 by electroplating is, for example, as follows.
- a substrate for electroplating is prepared.
- a substrate for electroplating for example, a porous body that can constitute the substrate 108 when the first electrode 101 is formed is used.
- a substrate for electroplating for example, a metal mesh or porous metal is used.
- a substrate for electroplating for example, nickel mesh or porous nickel may be used.
- the structure of the porous body used as the base material for electroplating is not particularly limited as long as it can constitute the base material 108 when the first electrode is formed through processes such as electroplating and pressure treatment. However, it can be appropriately selected according to the target structure of the first electrode 101 .
- a porous body used as a substrate for electroplating may have a specific surface area of, for example, 0.014 m 2 /cm 3 or more and 0.036 m 2 /cm 3 or less.
- a nickel mesh is prepared as a base material for electroplating. After preliminarily degreasing the nickel mesh with an organic solvent, it is degreased by immersing it in an acidic solvent to activate the surface of the nickel mesh. The activated nickel mesh is connected to a power source so that current can be applied. A nickel mesh connected to a power supply is immersed in a bismuth plating bath. As the bismuth plating bath, for example, an organic acid bath containing Bi 3+ ions and an organic acid is used. Thereafter, the surface of the nickel mesh is electroplated with Bi by applying a current to the nickel mesh while controlling the current density and application time.
- the bismuth plating bath for example, an organic acid bath containing Bi 3+ ions and an organic acid is used.
- the bismuth plating bath used for producing the Bi plating layer is not particularly limited, and can be appropriately selected from known bismuth plating baths capable of depositing a simple Bi thin film.
- organic sulfonic acid baths, gluconic acid and ethylenediaminetetraacetic acid (EDTA) baths, or citric acid and EDTA baths can be used as organic acid baths.
- EDTA ethylenediaminetetraacetic acid
- a sulfuric acid bath for example, may be used as the bismuth plating bath.
- Additives may also be added to the bismuth plating bath.
- a Bi-plated layer can be produced in the same manner as described above even when, for example, porous nickel is used as the base material for electroplating.
- An active material composed of a Bi thin film has a density of, for example, 6.0 g/cm 3 or more and 9.8 g/cm 3 or less.
- the density of the active material composed of the Bi thin film may be 6.5 g/cm 3 or more and 9.8 g/cm 3 or less, or 7.0 g/cm 3 or more and 9.8 g/cm 3 or less.
- the density of the active material composed of the Bi thin film can be obtained by calculation using, for example, the Archimedes method.
- the active material layer 109 is composed of a thin film substantially made of an active material, at least part of the thin film is taken out as a sample, and the density of the sample is calculated using, for example, the Archimedes method. , the density of the active material is obtained.
- first electrode 101 has substrate 108 which is a porous body, and active material layer 109 located on the surface of substrate 108 .
- the configurations of base material 108 and active material layer 109 are as described above.
- the first electrode 101 functions as a negative electrode. Therefore, the active material layer 109 contains a negative electrode active material that has the property of intercalating and deintercalating lithium ions.
- the active material layer 109 contains Bi, and this Bi functions as a negative electrode active material.
- Bi is a metal element that alloys with lithium.
- Bi functions as a negative electrode active material
- lithium is occluded by forming an alloy with lithium during charging. That is, a lithium-bismuth alloy is generated in the active material layer 109 when the battery 1000 is charged.
- the produced lithium-bismuth alloy contains, for example, at least one selected from the group consisting of LiBi and Li 3 Bi. That is, when the battery 1000 is charged, the active material layer 109 contains at least one selected from the group consisting of LiBi and Li 3 Bi, for example.
- Bi as a negative electrode active material reacts, for example, as follows during charging and discharging of the battery 1000 .
- the lithium-bismuth alloy produced during charging is Li 3 Bi.
- the active material layer 109 may substantially contain only Bi as an active material. In this case, battery 1000 can have increased capacity and improved cycling characteristics.
- the active material layer 109 substantially contains only Bi as an active material means, for example, that the active material other than Bi in the active material contained in the active material layer 109 is 1% by mass or less. is.
- the active material layer 109 may contain only Bi as an active material.
- the active material layer 109 may not contain a solid electrolyte.
- the active material layer 109 may be arranged in direct contact with the surface of the base material 108 . Furthermore, if the battery 1000 includes a first current collector 104 , the substrate 108 may be placed in contact with the first current collector 104 .
- the active material layer 109 may be in the form of a thin film.
- the active material layer 109 may be a plated layer.
- the active material layer 109 may be a plated layer provided in direct contact with the surface of the substrate 108 . That is, as described above, active material layer 109 may be a Bi-plated layer formed on the surface of substrate 108 .
- the active material layer 109 When the active material layer 109 is a plated layer provided in direct contact with the surface of the base material 108, the active material layer 109 firmly adheres to the base material 108. This makes it possible to further suppress the deterioration of the current collection characteristics of the first electrode 101 that occurs when the active material layer 109 repeatedly expands and contracts. Therefore, the charge/discharge characteristics of the battery 1000 are further improved. Further, when the active material layer 109 is a plated layer, the active material layer 109 contains Bi alloying with lithium at a high density, so that the capacity can be further increased.
- the active material layer 109 may contain materials other than Bi or an alloy containing Bi.
- the alloy containing Bi is, for example, a lithium-bismuth alloy (eg, LiBi and Li 3 Bi) generated by charging reaction.
- the active material layer 109 may further contain a conductive material.
- Conductive materials include carbon materials, metals, inorganic compounds, and conductive polymers.
- Carbon materials include graphite, acetylene black, carbon black, ketjen black, carbon whiskers, needle coke, and carbon fibers.
- Graphite includes natural graphite and artificial graphite.
- Natural graphite includes massive graphite and flake graphite.
- Metals include copper, nickel, aluminum, silver, and gold.
- Inorganic compounds include tungsten carbide, titanium carbide, tantalum carbide, molybdenum carbide, titanium boride, and titanium nitride. These materials may be used alone, or a mixture of multiple types may be used.
- the active material layer 109 may further contain a binder.
- Binders include fluorine-containing resins, thermoplastic resins, ethylene propylene diene monomer (EPDM) rubber, sulfonated EPDM rubber, and natural butyl rubber (NBR).
- Fluorine-containing resins include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluororubber.
- Thermoplastic resins include polypropylene and polyethylene. These materials may be used alone, or a mixture of multiple types may be used.
- the thickness of the active material layer 109 is not particularly limited, and may be, for example, 0.1 ⁇ m or more and 100 ⁇ m or less.
- the material of the base material 108 is, for example, a single metal or alloy. More specifically, it may be a single metal or alloy containing at least one selected from the group consisting of copper, chromium, nickel, titanium, platinum, gold, aluminum, tungsten, iron, and molybdenum. Substrate 100 may be stainless steel.
- the base material 108 may contain nickel (Ni).
- Substrate 108 may be considered a current collector or part of a current collector for first electrode 101 .
- the thickness of the first electrode 101 may be 10 ⁇ m or more and 2000 ⁇ m or less. That is, the entire thickness of the porous base material 108 on which the active material layer 109 is provided may be 10 ⁇ m or more and 2000 ⁇ m or less. Having such a thickness of the first electrode 101 allows the battery to operate at high output.
- the first current collector 104 may or may not be provided.
- the first current collector 104 is provided in contact with the first electrode 101, for example.
- the first current collector 104 is provided, for example, in contact with the base material 108 of the first electrode 101 .
- the material of the first current collector 104 is, for example, a single metal or alloy. More specifically, it may be a single metal or alloy containing at least one selected from the group consisting of copper, chromium, nickel, titanium, platinum, gold, aluminum, tungsten, iron, and molybdenum.
- the first current collector 104 may be stainless steel.
- the first current collector 104 may contain nickel (Ni).
- the first current collector 104 may be plate-shaped or foil-shaped.
- the first current collector 104 may be a metal foil from the viewpoint of easily ensuring high conductivity.
- the thickness of the first current collector 104 may be, for example, 5 ⁇ m or more and 20 ⁇ m or less.
- the first current collector 104 may be a laminated film.
- Electrolyte solution 102 includes, for example, an aprotic solvent and a lithium salt dissolved in the aprotic solvent.
- the aprotic solvent is not particularly limited.
- aprotic solvents are cyclic carbonate solvents, linear carbonate solvents, cyclic ether solvents, linear ether solvents, cyclic ester solvents, linear ester solvents, or fluorosolvents.
- cyclic carbonate solvents are vinylene carbonate, fluoroethylene carbonate, ethylene carbonate, propylene carbonate, or butylene carbonate.
- linear carbonate solvents are dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate.
- cyclic ether solvents are tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, or 1,3-dioxolane.
- linear ether solvents are 1,2-dimethoxyethane or 1,2-diethoxyethane.
- An example of a cyclic ester solvent is ⁇ -butyrolactone.
- An example of a linear ester solvent is methyl acetate.
- fluorosolvents are methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, or fluorodimethylene carbonate.
- the electrolytic solution 102 may contain one solvent selected from these, or may contain a mixture of two or more non-aqueous solvents selected from these.
- the electrolyte solution 102 may contain at least one selected from the group consisting of vinylene carbonate and fluoroethylene carbonate as an aprotic solvent. By containing these solvents in electrolyte solution 102, battery 1000 has more improved cycle characteristics.
- lithium salts are LiPF6 , LiBF4 , LiSbF6, LiAsF6 , LiSO3CF3 , LiN ( SO2CF3 ) 2 , LiN( SO2C2F5 ) 2 , LiN( SO2CF3 ) . ( SO2C4F9 ) , or LiC ( SO2CF3 )3 .
- One lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used.
- the second electrode 103 functions as a positive electrode.
- the second electrode 103 contains a material capable of intercalating and deintercalating metal ions such as lithium ions.
- the material is, for example, a positive electrode active material.
- the second electrode 103 contains a positive electrode active material.
- the second electrode 103 may be arranged on the surface of the second current collector 105 in direct contact with the second current collector 105 .
- positive electrode active materials examples include lithium-containing transition metal oxides, transition metal fluorides, polyanion materials, fluorinated polyanion materials, transition metal sulfides, transition metal oxysulfides, or transition metal oxynitrides.
- lithium-containing transition metal oxides include LiNi1- xyCoxAlyO2 ( ( x +y) ⁇ 1), LiNi1- xyCoxMnyO2 ( (x+y) ⁇ 1) or LiCoO2 , etc.
- the positive electrode active material may include Li(Ni,Co,Mn) O2 .
- the second electrode 103 may contain a solid electrolyte.
- a solid electrolyte known solid electrolytes used for lithium secondary batteries can be used.
- halide solid electrolytes, sulfide solid electrolytes, oxide solid electrolytes, polymer solid electrolytes, or complex hydride solid electrolytes may be used.
- a halide solid electrolyte means a solid electrolyte containing a halogen element.
- the halide solid electrolyte may contain not only halogen elements but also oxygen.
- Halide solid electrolytes do not contain sulfur (S).
- the halide solid electrolyte may be, for example, a material represented by the following compositional formula (1).
- Li ⁇ M ⁇ X ⁇ Formula (1)
- ⁇ , ⁇ , and ⁇ are values greater than 0
- M is at least one selected from the group consisting of metal elements other than Li and metalloid elements
- X is F, Cl, Br , and at least one selected from the group consisting of I.
- Simetallic elements are B, Si, Ge, As, Sb, and Te.
- Metallic element means all elements contained in Groups 1 to 12 of the periodic table except hydrogen, and B, Si, Ge, As, Sb, Te, C, N, P, O, S, and It is an element contained in all Groups 13 to 16 except Se. That is, it is an element group that can become a cation when forming an inorganic compound with a halogen element.
- M may contain Y, and X may contain Cl and Br.
- a sulfide solid electrolyte means a solid electrolyte containing sulfur (S).
- the sulfide solid electrolyte may contain not only sulfur but also halogen elements.
- Examples of sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Alternatively, Li 10 GeP 2 S 12 or the like may be used.
- oxide solid electrolytes examples include NASICON solid electrolytes typified by LiTi 2 (PO 4 ) 3 and element-substituted products thereof, (LaLi)TiO 3 -based perovskite solid electrolytes, Li 14 ZnGe 4 O 16 , Li LISICON solid electrolytes typified by 4 SiO 4 , LiGeO 4 and elemental substitutions thereof, garnet type solid electrolytes typified by Li 7 La 3 Zr 2 O 12 and elemental substitutions thereof, Li 3 PO 4 and its N substitutions glass or glass-ceramics based on Li—BO compounds such as LiBO 2 and Li 3 BO 3 , with additions of Li 2 SO 4 , Li 2 CO 3 , etc., and the like can be used.
- NASICON solid electrolytes typified by LiTi 2 (PO 4 ) 3 and element-substituted products thereof
- (LaLi)TiO 3 -based perovskite solid electrolytes Li 14 ZnG
- a compound of a polymer compound and a lithium salt can be used.
- the polymer compound may have an ethylene oxide structure.
- a polymer compound having an ethylene oxide structure can contain a large amount of lithium salt. Therefore, the ionic conductivity can be further increased.
- Lithium salts include LiPF6 , LiBF4 , LiSbF6, LiAsF6 , LiSO3CF3 , LiN( SO2CF3 ) 2 , LiN ( SO2C2F5 ) 2 , LiN( SO2CF3 ) ( SO2C4F9 ), and LiC( SO2CF3 ) 3 , etc. may be used .
- One lithium salt selected from the exemplified lithium salts can be used alone. Alternatively, mixtures of two or more lithium salts selected from the exemplified lithium salts can be used.
- LiBH 4 --LiI LiBH 4 --P 2 S 5 , etc.
- LiBH 4 --P 2 S 5 LiBH 4 --P 2 S 5 , etc.
- the positive electrode active material may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less.
- the positive electrode active material and the solid electrolyte can form a good dispersion state. This improves the charge/discharge characteristics of the battery.
- the positive electrode active material has a median diameter of 100 ⁇ m or less, the lithium diffusion rate is improved. This allows the battery to operate at high output.
- the positive electrode active material may have a larger median diameter than the solid electrolyte. Thereby, the positive electrode active material and the solid electrolyte can form a good dispersion state.
- the ratio of the volume of the positive electrode active material to the sum of the volume of the positive electrode active material and the volume of the solid electrolyte is 0.30 or more and 0.95 or less. good too.
- a coating layer may be formed on the surface of the positive electrode active material in order to prevent the solid electrolyte from reacting with the positive electrode active material. Thereby, an increase in the reaction overvoltage of the battery can be suppressed.
- coating materials contained in the coating layer are sulfide solid electrolytes, oxide solid electrolytes or halide solid electrolytes.
- the thickness of the second electrode 103 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the second electrode 103 is 10 ⁇ m or more, a sufficient energy density of the battery can be secured. When the thickness of the second electrode 103 is 500 ⁇ m or less, the battery can operate at high output.
- the second electrode 103 may contain a conductive material for the purpose of enhancing electronic conductivity.
- the second electrode 103 may contain a binder.
- the same materials that can be used for the first electrode 101 may be used as the conductive material and the binder.
- the second electrode 103 may contain a non-aqueous electrolyte, a gel electrolyte, or an ionic liquid for the purpose of facilitating the transfer of lithium ions and improving the output characteristics of the battery.
- the non-aqueous electrolyte contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
- the non-aqueous solvent and lithium salt are the same as the examples of the solvent and lithium salt given in the description of the electrolytic solution.
- the lithium salt concentration is, for example, in the range of 0.5 mol/liter or more and 2 mol/liter or less.
- a polymer material impregnated with a non-aqueous electrolyte can be used as the gel electrolyte.
- examples of polymeric materials are polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, or polymers with ethylene oxide linkages.
- ionic liquids examples include (i) aliphatic chain quaternary salts such as tetraalkylammonium or tetraalkylphosphonium, (ii) pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums , piperaziniums, or piperidiniums, or (iii) nitrogen-containing heterocyclic aromatic cations, such as pyridiniums or imidazoliums.
- aliphatic chain quaternary salts such as tetraalkylammonium or tetraalkylphosphonium
- pyrrolidiniums morpholiniums, imidazoliniums, tetrahydropyrimidiniums , piperaziniums, or piperidiniums
- nitrogen-containing heterocyclic aromatic cations such as pyridiniums or imidazoliums.
- Examples of anions contained in the ionic liquid are PF 6 ⁇ , BF 4 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ , SO 3 CF 3 ⁇ , N(SO 2 CF 3 ) 2 ⁇ , N(SO 2 C 2 F 5 ) 2- , N ( SO2CF3 ) ( SO2C4F9 )- , or C( SO2CF3 ) 3- .
- the ionic liquid may contain a lithium salt.
- the second current collector 105 may or may not be provided.
- the second current collector 105 is provided in contact with the second electrode 103, for example. By providing the second current collector 105, electricity can be extracted from the battery 1000 with high efficiency.
- the material of the second current collector 105 is, for example, a single metal or alloy. More specifically, it may be a single metal or alloy containing at least one selected from the group consisting of copper, chromium, nickel, titanium, platinum, gold, aluminum, tungsten, iron, and molybdenum.
- the second current collector 105 may be stainless steel.
- the second current collector 105 may contain nickel (Ni).
- the second current collector 105 may be plate-shaped or foil-shaped.
- the second current collector 105 may be a metal foil from the viewpoint of easily ensuring high conductivity.
- the thickness of the second current collector 105 may be, for example, 5 ⁇ m or more and 20 ⁇ m or less.
- the separator 106 has lithium ion conductivity.
- the material of the separator 106 is not particularly limited as long as the passage of lithium ions is allowed.
- the material of the separator 106 may be at least one selected from the group consisting of solid electrolytes, gel electrolytes, ion exchange resin membranes such as lithium cation exchange resins, semipermeable membranes, and porous membranes. If the separator 106 is made of these materials, the safety of the battery 1000 can be sufficiently ensured.
- Solid electrolytes include sulfide solid electrolytes such as Li 2 SP 2 S 5 and oxide solid electrolytes such as Li 7 La 3 Zr 2 O 12 (LLZ).
- Gel electrolytes include gel electrolytes containing fluororesins such as PVdF.
- ion-exchange resin membranes include cation-exchange membranes and anion-exchange membranes.
- porous membrane examples include a porous membrane made of polyolefin resin, a porous membrane made of glass paper obtained by weaving glass fibers into a non-woven fabric, and the like.
- the exterior 107 is made of, for example, a material obtained by laminating a metal foil such as an aluminum foil with a resin film such as a polyethylene terephthalate (PET) film.
- the exterior 107 may be a container made of resin or metal.
- the configuration example in which the first electrode 101 is the negative electrode and the second electrode 103 is the positive electrode has been described. good too.
- the active material layer 109 is a positive electrode active material layer. That is, Bi contained in the active material layer 109 functions as a positive electrode active material.
- the second electrode 103 which is the negative electrode, is made of lithium metal, for example.
- a battery 1000 has a basic configuration of a first electrode 101, an electrolytic solution 102, and a second electrode 103, and is enclosed in a sealed container so as to prevent air and moisture from entering.
- the shape of the battery 1000 includes a coin shape, a cylindrical shape, a square shape, a sheet shape, a button shape, a flat shape, a laminate shape, and the like.
- Example 1 ⁇ Production of first electrode>
- a nickel mesh (2 cm ⁇ 2 cm, thickness: 50 ⁇ m, "NI-318200" manufactured by Nilaco Co., Ltd.) is preliminarily degreased with an organic solvent, and then degreased by immersion in an acidic solvent to activate the nickel mesh surface.
- a plating bath was prepared by adding bismuth methanesulfonate as a soluble bismuth salt to 1.0 mol/L of methanesulfonic acid so that Bi 3+ ions became 0.18 mol/L.
- the activated nickel mesh was immersed in the plating bath after being connected to a power source so that an electric current could be applied. After that, one side of the nickel mesh was electroplated with Bi to a thickness of approximately 1 ⁇ m by controlling the current density to 2 A/dm 2 . After electroplating, the nickel mesh was recovered from the acid bath, washed with pure water, and dried.
- a first electrode was used as the working electrode.
- Li metal was used as the counter electrode.
- the working electrode corresponds to the negative electrode of the secondary battery.
- the Li metal was double coated with a microporous separator (Asahi Kasei Corp., Celgard 3401).
- As an electrolytic solution a solution was prepared by dissolving LiPF 6 in vinylene carbonate (VC) at a concentration of 1.0 mol/L.
- VC vinylene carbonate
- a battery as a test cell of Example 1 was assembled using such a working electrode, a counter electrode, and an electrolytic solution.
- the test cell produced here is a unipolar test cell using a working electrode and a counter electrode, and is used to test the performance of one of the electrodes in a secondary battery.
- the working electrode is the electrode under test and the counter electrode is a suitable active material in sufficient quantity to cover the reaction of the working electrode. Since this test cell tests the performance of the first electrode as a negative electrode, a large excess of Li metal was used as the counter electrode, as is commonly used.
- the negative electrode whose performance has been tested using such a test cell is, for example, combined with a positive electrode containing a positive electrode active material, such as a transition metal oxide containing Li, as described in the above-described embodiment. It can be used as a secondary battery.
- a charge-discharge cycle test was performed on the test cell. At a constant current value of 0.6 mA (0.15 mA/cm 2 ) (equivalent to 0.5 IT), charging was performed to 0 V and discharging was performed to 2 V. Charging and discharging were repeated as one cycle, and the cycle characteristics were evaluated.
- a charge-discharge cycle test was performed at 25°C. 3 is a graph showing the relationship between the number of cycles and the discharge capacity density of the test cell according to Example 1. FIG. In the cell of Example 1, although the capacity retention rate decreased to about 50% at 20 cycles, it gradually decreased thereafter, and maintained a capacity retention rate of about 30% even at 100 cycles.
- porous nickel (2 cm ⁇ 2 cm, thickness: 1.6 mm, "NI-318161” manufactured by Nilaco Co., Ltd.) is preliminarily degreased with an organic solvent, and then degreased by immersing it in an acidic solvent.
- the nickel surface was activated.
- a plating bath was prepared by adding bismuth methanesulfonate as a soluble bismuth salt to 1.0 mol/L of methanesulfonic acid so that Bi 3+ ions would be 0.18 mol/L.
- the activated porous nickel was immersed in the plating bath after being connected to a power source so that an electric current could be applied.
- the porous nickel surface was electroplated with Bi to a thickness of approximately 1 ⁇ m by controlling the current density to 2 A/dm 2 .
- the porous nickel was recovered from the acid bath, washed with pure water, and dried.
- Example 2 The first electrode of Example 2 was used as the working electrode.
- a test cell was prepared in the same manner as in Example 1 except for this point.
- FIG. 3 is a graph showing the relationship between the cycle number and the discharge capacity density of the test cell according to Example 2.
- the Ni foil was preliminarily degreased with an organic solvent, masked on one side, and immersed in an acidic solvent for degreasing and activation of the Ni foil surface.
- a plating bath was prepared by adding bismuth methanesulfonate as a soluble bismuth salt to 1.0 mol/L of methanesulfonic acid so that Bi 3+ ions would be 0.18 mol/L.
- the activated copper foil was immersed in the plating bath after being connected to a power source so that current could be applied.
- the unmasked Ni foil surface was electroplated with Bi to a thickness of about 1 ⁇ m.
- the Ni foil was recovered from the acid bath, washed with pure water after removing the masking, dried, and punched out to a size of 2 cm ⁇ 2 cm to obtain a first electrode. That is, the first electrode of Reference Example 1 had a configuration in which an active material layer made of a Bi plating layer was provided on a current collector made of Ni foil.
- a charge-discharge cycle test was performed on the test cell.
- a charge-discharge cycle test was performed in the same manner as in Example 1.
- 3 is a graph showing the relationship between the number of cycles and the discharge capacity density of the test cell according to Reference Example 1.
- test cell was produced in the same manner as in Example 1 except for this point.
- a charge-discharge cycle test was performed on the test cell.
- a charge-discharge cycle test was performed in the same manner as in Example 1.
- 3 is a graph showing the relationship between the number of cycles and discharge capacity density of a test cell according to Reference Example 2.
- Example 3 Preparation of test cell> A test cell was prepared in the same manner as in Example 1, except that the solvent of the electrolytic solution was changed from vinylene carbonate (VC) to fluoroethylene carbonate (FEC).
- VC vinylene carbonate
- FEC fluoroethylene carbonate
- FIG. 4 is a graph showing the relationship between the number of cycles and the discharge capacity density of the test cells of Examples 1 and 3.
- FIG. 4 As shown in FIG. 4, when FEC was used as a solvent, better cycling characteristics were obtained than VC.
- Example 4 ⁇ Preparation of test cell> A test cell was prepared in the same manner as in Example 1, except that the solvent of the electrolytic solution was changed from vinylene carbonate (VC) to ethylene carbonate (EC).
- VC vinylene carbonate
- EC ethylene carbonate
- Example 4 Using the test cell of Example 4, a charge-discharge cycle test was conducted in the same manner as in Example 1. However, the constant current value was changed to 0.05mA. In this example, a charge/discharge cycle test was also conducted with a discharge voltage of up to 1.4V. 4 is a graph showing the relationship between the number of cycles of the test cell of Example 4 and the discharge capacity density.
- Example 5 Preparation of test cell> A test cell was prepared in the same manner as in Example 1, except that the solvent of the electrolytic solution was changed from vinylene carbonate (VC) to propylene carbonate (PC).
- VC vinylene carbonate
- PC propylene carbonate
- Example 6 Preparation of test cell> A test cell was produced in the same manner as in Example 1, except that the solvent of the electrolytic solution was changed from vinylene carbonate (VC) to methyl ethyl carbonate (MEC).
- VC vinylene carbonate
- MEC methyl ethyl carbonate
- Example 6 Using the test cell of Example 6, a charge-discharge cycle test was conducted in the same manner as in Example 1. However, the constant current value was changed to 0.05mA. 4 is a graph showing the relationship between the number of cycles and the discharge capacity density of the test cell of Example 6. FIG.
- VC vinylene carbonate
- MEC MEC
- Example 7 Using the test cell of Example 7, a charge-discharge cycle test was conducted in the same manner as in Example 1. However, the constant current value was changed to 0.05mA and the discharge voltage was up to 1.4V. 4 is a graph showing the relationship between the number of cycles and discharge capacity density of the test cell of Example 7. FIG.
- the battery of the present disclosure can be used, for example, as a lithium secondary battery.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
[背景技術]の欄に記載したとおり、リチウム二次電池では、電極活物質の改善によって電池特性の向上が図られている。
本開示の第1態様に係る電池は、第一電極と、第二電極と、電解液と、を備え、前記第一電極は、多孔体である基材と、前記基材の表面に位置する活物質層と、を有し、前記活物質層は、Biを含む。
以下、本開示の実施形態が、図面を参照しながら説明される。以下の説明は、いずれも包括的または具体的な例を示すものである。以下に示される数値、組成、形状、膜厚、電気特性、二次電池の構造などは、一例であり、本開示を限定する主旨ではない。
上述のとおり、第一電極101は、多孔体である基材108と、基材108の表面に位置する活物質層109とを有する。基材108および活物質層109の構成は、上述したとおりである。
充電:Bi+3Li++3e-→Li3Bi
放電:Li3Bi→Bi+3Li++3e-
活物質層109は、活物質として実質的にBiのみを含んでもよい。この場合、電池1000は、向上した容量および改善されたサイクル特性を有することができる。なお、「活物質層109が活物質として実質的にBiのみを含む」とは、例えば、活物質層109に含まれる活物質において、Bi以外の他の活物質が1質量%以下であることである。活物質層109は、活物質としてBiのみを含んでもよい。
本実施形態に係る電池1000において、第一集電体104は、設けられていてもよいし、設けられていなくてもよい。第一集電体104は、例えば、第一電極101と接して設けられる。第一集電体104は、例えば、第一電極101の基材108と接して設けられる。第一集電体104が設けられることにより、電池1000から高い効率で電気を取り出すことができる。
電解液102は、例えば、非プロトン性溶媒と、当該非プロトン性溶媒に溶解したリチウム塩とを含む。
第二電極103は、正極として機能する。第二電極103は、リチウムイオンのような金属イオンを吸蔵および放出可能な材料を含有する。当該材料は、例えば、正極活物質である。
ここでα、β、およびγは、0より大きい値であり、Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、Xは、F、Cl、Br、およびIからなる群より選ばれる少なくとも1つである。
本実施形態に係る電池1000において、第二集電体105は、設けられていてもよいし、設けられていなくてもよい。第二集電体105は、例えば、第二電極103と接して設けられる。第二集電体105が設けられることにより、電池1000から高い効率で電気を取り出すことができる。
セパレータ106は、リチウムイオン伝導性を有している。リチウムイオンの通過が許容される限り、セパレータ106の材料は特に限定されない。セパレータ106の材料は、固体電解質、ゲル電解質、リチウムカチオン交換樹脂などのイオン交換樹脂膜、半透膜及び多孔質膜からなる群より選ばれる少なくとも1つでありうる。これらの材料でセパレータ106が作られていると、電池1000の安全性を十分に確保できる。固体電解質としては、Li2S-P2S5などの硫化物固体電解質、Li7La3Zr2O12(LLZ)などの酸化物固体電解質などが挙げられる。ゲル電解質としては、PVdFなどのフッ素樹脂を含むゲル電解質が挙げられる。イオン交換樹脂膜としては、カチオン交換膜、アニオン交換膜などが挙げられる。多孔質膜としては、ポリオレフィン樹脂製の多孔質膜、ガラス繊維を不織布に織り込むことによって得られたガラスペーパーからなる多孔質膜などが挙げられる。
外装107は、例えば、アルミニウム箔などの金属箔をポリエチレンテレフタレート(PET)フィルムなどの樹脂フィルムでラミネートすることによって得られた材料で作られている。外装107は、樹脂製または金属製の容器であってもよい。
<第一電極の作製>
前処理として、ニッケルメッシュ(2cm×2cm、厚み:50μm、株式会社ニラコ製「NI-318200」)を有機溶剤により予備脱脂した後、酸性溶剤に浸漬することで脱脂を行い、ニッケルメッシュ表面を活性化させた。メタンスルホン酸1.0mol/Lに、可溶性ビスマス塩としてメタンスルホン酸ビスマスをBi3+イオンが0.18mol/Lとなる様に加えて、めっき浴が作製された。活性化させたニッケルメッシュは、電流を印加できるように電源に接続した後、めっき浴内に浸漬させた。その後、電流密度を2A/dm2に制御することにより、ニッケルメッシュの片面に、およそ1μmの厚みとなるようにBiを電気めっきした。電気めっき後に、ニッケルメッシュを酸性浴から回収した後に純水により洗浄、乾燥した。
作用極として第一電極が用いられた。対極としてLi金属が用いられた。作用極は、二次電池の負極に対応する。Li金属は、微多孔性セパレータ(旭化成株式会社、セルガード3401)で二重に被覆された。電解液として、LiPF6を1.0モル/Lの濃度でビニレンカーボネート(VC)に溶解させた溶液を準備した。このような作用極、対極、および電解液を用いて、実施例1の試験セルとしての電池を組み立てた。なお、ここで作製された試験セルは、作用極および対極を使用した単極試験セルであり、二次電池における電極の一方の極の性能を試験するために用いられる。詳しくは、作用極には試験対象の電極が用いられ、対極には作用極の反応を賄うに十分な量の適切な活物質が用いられる。本試験セルは、第一電極の負極としての性能を試験するものなので、通常用いられているように大過剰のLi金属が対極として用いられた。このような試験セルを用いて性能が試験された負極は、例えば、上述の実施形態において説明したような正極活物質、例えばLiを含有した遷移金属酸化物等を含む正極と組み合わせることによって、二次電池として使用され得る。
試験セルに対し、充放電サイクル試験を行った。0.6mA(0.15mA/cm2)(0.5IT相当)の定電流値で、充電は0Vまで、放電は2Vまで実施した。充電および放電を1サイクルとして充放電が繰り返し行われ、サイクル特性が評価された。充放電サイクル試験は、25℃で実施された。図3は、実施例1に係る試験セルのサイクル数と放電容量密度との関係を示すグラフである。実施例1のセルは、サイクル数20で容量維持率が50%程度に低下したものの、その後は緩やかに低下し、サイクル数100でも容量維持率30%程度を維持していた。
<第一電極の作製>
前処理として、多孔質ニッケル(2cm×2cm、厚み:1.6mm、株式会社ニラコ製「NI-318161」)を有機溶剤により予備脱脂した後、酸性溶剤に浸漬することで脱脂を行い、多孔質ニッケルの表面を活性化させた。メタンスルホン酸1.0mol/Lに、可溶性ビスマス塩としてメタンスルホン酸ビスマスをBi3+イオンが0.18mol/Lとなるように加えて、めっき浴が作製された。活性化させた多孔質ニッケルは、電流を印加できるように電源に接続した後、めっき浴内に浸漬させた。その後、電流密度を2A/dm2に制御することにより、多孔質ニッケル表面に、およそ1μmの厚みとなるようにBiを電気めっきした。電気めっき後に、多孔質ニッケルを酸性浴から回収した後に純水により洗浄、乾燥した。
実施例2の第一電極が作用極として用いられた。これ点以外は、実施例1と同様の方法で試験セルが作製された。
試験セルに対し、充放電サイクル試験を行った。放電試験は、実施例1と同様の方法で行われた。図3は、実施例2に係る試験セルのサイクル数と放電容量密度との関係を示すグラフである。実施例2のセルは、サイクル数20で容量維持率が50%程度に低下したものの、その後は緩やかに低下し、サイクル数50でも容量維持率20%程度を維持していた。
<第一電極の作製>
前処理として、Ni箔を有機溶剤により予備脱脂した後、片面をマスキングして酸性溶剤に浸漬することで脱脂を行いNi箔表面を活性化させた。メタンスルホン酸1.0mol/Lに、可溶性ビスマス塩としてメタンスルホン酸ビスマスをBi3+イオンが0.18mol/Lとなるように加えて、めっき浴が作製された。活性化させた銅箔は、電流を印加できるように電源に接続した後、めっき浴内に浸漬させた。その後、電流密度を2A/dm2に制御することにより、マスキングをしていないNi箔表面に、およそ1μmの厚みとなるようにBiを電気めっきした。電気めっき後に、Ni箔を酸性浴から回収し、マスキングを外した後に純水により洗浄、乾燥し、2cm×2cmの大きさに打ち抜くことによって、第一電極が得られた。すなわち、参考例1の第一電極は、Ni箔からなる集電体上に、Biめっき層からなる活物質層が設けられた構成を有していた。
参考例1の第一電極が作用極として用いられた。この点以外は、実施例1と同様の方法で試験セルが作製された。
試験セルに対し、充放電サイクル試験を行った。充放電サイクル試験は、実施例1と同様の方法で行われた。図3は、参考例1に係る試験セルのサイクル数と放電容量密度との関係を示すグラフである。参考例1のセルでは、サイクル数20で容量維持率が大きく低下した。
<第一電極の作製>
Ni箔の代わりにCu箔を用いたこと以外は、参考例1と同様の方法で第一電極が作製された。
参考例2の第一電極が作用極として用いられた。この点以外は、実施例1と同様の方法で試験セルが作製された。
試験セルに対し、充放電サイクル試験を行った。充放電サイクル試験は、実施例1と同様の方法で行われた。図3は、参考例2に係る試験セルのサイクル数と放電容量密度との関係を示すグラフである。参考例2のセルでは、サイクル数20で容量維持率が大きく低下した。
<試験セルの作製>
電解液の溶媒をビニレンカーボネート(VC)からフルオロエチレンカーボネート(FEC)に変更した点を除き、実施例1と同様の方法で試験セルを作製した。
実施例3の試験セルを用いて、実施例1と同様の方法で充放電サイクル試験を行った。ただし、定電流値は0.05mAに変更された。なお、同じ条件で実施例1の試験セルについても充放電サイクル試験を行った。図4は、実施例1および実施例3の試験セルのサイクル数と放電容量密度との関係を示すグラフである。図4に示されているように、FECを溶媒に用いた場合、VCよりも優れたサイクル特性が得られた。
<試験セルの作製>
電解液の溶媒をビニレンカーボネート(VC)からエチレンカーボネート(EC)に変更した点を除き、実施例1と同様の方法で試験セルを作製した。
実施例4の試験セルを用いて、実施例1と同様の方法で充放電サイクル試験を行った。ただし、定電流値は0.05mAに変更された。なお、本実施例では、放電電圧を1.4Vまでとした充放電サイクル試験も行った。図4は、実施例4の試験セルのサイクル数と放電容量密度との関係を示すグラフである。
<試験セルの作製>
電解液の溶媒をビニレンカーボネート(VC)からプロピレンカーボネート(PC)に変更した点を除き、実施例1と同様の方法で試験セルを作製した。
実施例5の試験セルを用いて、実施例1と同様の方法で充放電サイクル試験を行った。ただし、定電流値は0.05mAに変更された。図4は、実施例5の試験セルのサイクル数と放電容量密度との関係を示すグラフである。
<試験セルの作製>
電解液の溶媒をビニレンカーボネート(VC)からメチルエチルカーボネート(MEC)に変更した点を除き、実施例1と同様の方法で試験セルを作製した。
実施例6の試験セルを用いて、実施例1と同様の方法で充放電サイクル試験を行った。ただし、定電流値は0.05mAに変更された。図4は、実施例6の試験セルのサイクル数と放電容量密度との関係を示すグラフである。
<試験セルの作製>
電解液の溶媒をビニレンカーボネート(VC)から、ECおよびMECの混合溶媒(EC:MEC=1:1(体積比))に変更した点を除き、実施例1と同様の方法で試験セルを作製した。
実施例7の試験セルを用いて、実施例1と同様の方法で充放電サイクル試験を行った。ただし、定電流値は0.05mAに変更され、かつ放電電圧は1.4Vまでとされた。図4は、実施例7の試験セルのサイクル数と放電容量密度との関係を示すグラフである。
101 第一電極
102 電解液
103 第二電極
104 第一集電体
105 第二集電体
106 セパレータ
107 外装
108 基材
109 活物質層
Claims (10)
- 第一電極と、
第二電極と、
電解液と、
を備え、
前記第一電極は、
多孔体である基材と、
前記基材の表面に位置する活物質層と、を有し、
前記活物質層は、Biを含む、
電池。 - 前記活物質層は、Bi単体を含む、
請求項1に記載の電池。 - 前記活物質層は、前記Biを活物質の主成分として含む、
請求項1または2に記載の電池。 - 前記活物質層は、活物質として実質的に前記Biのみを含む、
請求項3に記載の電池。 - 前記活物質層は、LiBiおよびLi3Biからなる群より選択される少なくとも1つを含む、
請求項1から4のいずれか一項に記載の電池。 - 前記基材は、CuおよびNiからなる群より選択される少なくとも1つを含む、
請求項1から5のいずれか一項に記載の電池。 - 前記活物質層は、めっき層である、
請求項1から6のいずれか一項に記載の電池。 - 前記電解液は、非プロトン性溶媒と、前記非プロトン性溶媒に溶解したリチウム塩と、を含む、
請求項1から7のいずれか一項に記載の電池。 - 前記非プロトン性溶媒は、ビニレンカーボネートおよびフルオロエチレンカーボネートからなる群より選択される少なくとも1つを含む、
請求項8に記載の電池。 - 前記第一電極は、負極であり、
前記第二電極は、正極である、
請求項1から9のいずれか一項に記載の電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280052171.1A CN117716531A (zh) | 2021-08-10 | 2022-07-27 | 电池 |
US18/294,194 US20240347715A1 (en) | 2021-08-10 | 2022-07-27 | Battery |
EP22855799.7A EP4386894A1 (en) | 2021-08-10 | 2022-07-27 | Battery |
JP2023541399A JPWO2023017736A1 (ja) | 2021-08-10 | 2022-07-27 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-130970 | 2021-08-10 | ||
JP2021130970 | 2021-08-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023017736A1 true WO2023017736A1 (ja) | 2023-02-16 |
Family
ID=85199959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/028979 WO2023017736A1 (ja) | 2021-08-10 | 2022-07-27 | 電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240347715A1 (ja) |
EP (1) | EP4386894A1 (ja) |
JP (1) | JPWO2023017736A1 (ja) |
CN (1) | CN117716531A (ja) |
WO (1) | WO2023017736A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002061863A1 (en) * | 2001-01-31 | 2002-08-08 | Korea Institute Of Science And Technology | A lithium electrode dispersed in porous 3-dimensional current collector, its fabrication method and lithium battery comprising the same |
JP3733065B2 (ja) | 1999-10-22 | 2006-01-11 | 三洋電機株式会社 | リチウム電池用電極及びリチウム二次電池 |
JP4898737B2 (ja) | 2001-11-20 | 2012-03-21 | キヤノン株式会社 | リチウム二次電池用の負極材料、負極構造体及び二次電池 |
JP2013062114A (ja) * | 2011-09-13 | 2013-04-04 | Panasonic Corp | 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池 |
JP2019164961A (ja) * | 2018-03-20 | 2019-09-26 | 株式会社Gsユアサ | 合金、負極活物質、負極及び非水電解質蓄電素子 |
-
2022
- 2022-07-27 JP JP2023541399A patent/JPWO2023017736A1/ja active Pending
- 2022-07-27 WO PCT/JP2022/028979 patent/WO2023017736A1/ja active Application Filing
- 2022-07-27 CN CN202280052171.1A patent/CN117716531A/zh active Pending
- 2022-07-27 EP EP22855799.7A patent/EP4386894A1/en active Pending
- 2022-07-27 US US18/294,194 patent/US20240347715A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3733065B2 (ja) | 1999-10-22 | 2006-01-11 | 三洋電機株式会社 | リチウム電池用電極及びリチウム二次電池 |
WO2002061863A1 (en) * | 2001-01-31 | 2002-08-08 | Korea Institute Of Science And Technology | A lithium electrode dispersed in porous 3-dimensional current collector, its fabrication method and lithium battery comprising the same |
JP4898737B2 (ja) | 2001-11-20 | 2012-03-21 | キヤノン株式会社 | リチウム二次電池用の負極材料、負極構造体及び二次電池 |
JP2013062114A (ja) * | 2011-09-13 | 2013-04-04 | Panasonic Corp | 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池 |
JP2019164961A (ja) * | 2018-03-20 | 2019-09-26 | 株式会社Gsユアサ | 合金、負極活物質、負極及び非水電解質蓄電素子 |
Also Published As
Publication number | Publication date |
---|---|
EP4386894A1 (en) | 2024-06-19 |
US20240347715A1 (en) | 2024-10-17 |
JPWO2023017736A1 (ja) | 2023-02-16 |
CN117716531A (zh) | 2024-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9065139B2 (en) | Fiber electrode for lithium secondary battery, fabrication method therefor, and lithium secondary battery including fiber electrode | |
JP7140812B2 (ja) | 全固体二次電池用負極層、それを含む全固体二次電池、及びその製造方法 | |
JP7551169B2 (ja) | リチウム2次電池 | |
US20240030419A1 (en) | Battery and method for manufacturing electrode | |
US20240030418A1 (en) | Battery and method for manufacturing electrode | |
US20230343998A1 (en) | Battery | |
WO2022224571A1 (ja) | 電池 | |
WO2023017736A1 (ja) | 電池 | |
WO2023017735A1 (ja) | 電池 | |
WO2023017672A1 (ja) | 電池 | |
WO2022163038A1 (ja) | 電池 | |
WO2022163037A1 (ja) | 電池 | |
WO2023106126A1 (ja) | 電池 | |
WO2023145426A1 (ja) | 電池および電極の製造方法 | |
WO2023017673A1 (ja) | 電池 | |
WO2023074590A1 (ja) | 電池 | |
CN115548342B (zh) | 一种3D TiC复合材料及其制备方法和应用 | |
WO2012097456A1 (en) | Ion-exchange battery with a plate configuration | |
US20220181613A1 (en) | Anti-dendrite negative electrodes, and the electrochemical cells containing them | |
Chen | Surface and Structure Engineering for Next Generation Lithium Metal Batteries | |
CN117121231A (zh) | 电池 | |
CN117501472A (zh) | 电池 | |
CN116848664A (zh) | 电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22855799 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023541399 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280052171.1 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022855799 Country of ref document: EP Effective date: 20240311 |