WO2023017736A1 - 電池 - Google Patents

電池 Download PDF

Info

Publication number
WO2023017736A1
WO2023017736A1 PCT/JP2022/028979 JP2022028979W WO2023017736A1 WO 2023017736 A1 WO2023017736 A1 WO 2023017736A1 JP 2022028979 W JP2022028979 W JP 2022028979W WO 2023017736 A1 WO2023017736 A1 WO 2023017736A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
active material
material layer
battery
lithium
Prior art date
Application number
PCT/JP2022/028979
Other languages
English (en)
French (fr)
Inventor
正久 藤本
貴司 大戸
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280052171.1A priority Critical patent/CN117716531A/zh
Priority to US18/294,194 priority patent/US20240347715A1/en
Priority to EP22855799.7A priority patent/EP4386894A1/en
Priority to JP2023541399A priority patent/JPWO2023017736A1/ja
Publication of WO2023017736A1 publication Critical patent/WO2023017736A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to batteries.
  • lithium secondary batteries have been actively researched and developed, and battery characteristics such as charge/discharge voltage, charge/discharge cycle life characteristics, and storage characteristics are greatly affected by the electrodes used. For this reason, improvements in battery characteristics have been attempted by improving electrode active materials.
  • Patent Literature 1 discloses a lithium secondary battery comprising a negative electrode, a positive electrode, and an electrolyte including a negative electrode material made of an alloy containing silicon, tin, and a transition metal.
  • Patent Document 2 discloses a lithium secondary battery including a negative electrode using a silicon thin film provided on a current collector as an active material, a positive electrode, and an electrolyte.
  • Non-Patent Document 1 discloses a negative electrode containing Bi as a negative electrode active material, which is manufactured using Bi powder.
  • the present disclosure provides batteries with improved cycling characteristics.
  • the battery of the present disclosure includes a first electrode, a second electrode, and an electrolytic solution, wherein the first electrode is a porous base material, an active material layer located on the surface of the base material, and the active material layer contains Bi.
  • a battery with improved cycle characteristics can be provided.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of a battery according to an embodiment of the present disclosure.
  • FIG. 2 is a partially enlarged cross-sectional view schematically showing a configuration example of the first electrode in the battery according to the embodiment of the present disclosure.
  • 3 is a graph showing the relationship between the number of cycles and discharge capacity density of test cells according to Examples 1, 2, Reference Examples 1, and 2.
  • FIG. 4 is a graph showing the relationship between the number of cycles and discharge capacity density of test cells according to Example 1 and Examples 3 to 7.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of a battery according to an embodiment of the present disclosure.
  • FIG. 2 is a partially enlarged cross-sectional view schematically showing a configuration example of the first electrode in the battery according to the embodiment of the present disclosure.
  • 3 is a graph showing the relationship between the number of cycles and discharge capacity density of test cells according to Examples 1, 2, Reference Examples 1, and 2.
  • FIG. 4 is a graph showing the relationship between the number
  • lithium metal When lithium metal is used as the negative electrode active material, a lithium secondary battery having high energy density per weight and per volume can be obtained.
  • lithium deposits in the form of dendrites during charging. Since part of the deposited lithium metal reacts with the electrolytic solution, the charge/discharge efficiency is low and the cycle characteristics are poor.
  • carbon especially graphite
  • a negative electrode using carbon is charged and discharged by intercalation and deintercalation of lithium into and from carbon.
  • lithium metal does not deposit in a dendrite form due to the charge/discharge mechanism.
  • the reaction is topotactic, so the reversibility is very good, and the charge/discharge efficiency is almost 100%.
  • lithium secondary batteries employing negative electrodes using carbon, particularly graphite have been put to practical use.
  • the theoretical capacity density of graphite is 372 mAh/g, which is about 1/10 of the theoretical capacity density of lithium metal, 3884 mAh/g. Therefore, the active material capacity density of the negative electrode using graphite is low. Furthermore, since the actual capacity density of graphite has almost reached the theoretical capacity density, there is a limit to increasing the capacity of negative electrodes using graphite.
  • lithium secondary batteries using electrodes such as aluminum, silicon, and tin that electrochemically alloy with lithium during charging have long been proposed.
  • the capacity density of metals alloyed with lithium is much higher than that of graphite.
  • the theoretical capacity density of silicon is large. Therefore, electrodes using aluminum, silicon, tin, etc., which are alloyed with lithium, are promising as negative electrodes for batteries exhibiting high capacity, and various secondary batteries using these as negative electrodes have been proposed (Patent Documents 1).
  • a negative electrode that uses a metal that alloys with lithium as described above expands when it absorbs lithium and contracts when it releases lithium. If such expansion and contraction are repeated during charging and discharging, the alloy itself, which is the electrode active material, will be pulverized due to charging and discharging, and the current collection characteristics of the negative electrode will deteriorate, so sufficient cycle characteristics have not been obtained.
  • the following attempts have been made to improve such drawbacks. For example, attempts have been made to deposit silicon on a roughened current collector by sputtering or evaporation, or to deposit tin by electroplating (Patent Document 2). In this trial, the active material, that is, the metal that alloys with lithium forms a thin film and adheres to the current collector. not decrease.
  • the active material is formed by sputtering or vapor deposition as described above, the manufacturing cost is high and it is not practical. Although it is practical to form the active material by electroplating, which is inexpensive to manufacture, silicon is very difficult to electroplate. In addition, tin, which is easily electroplated, has poor discharge flatness and is difficult to use as a battery electrode.
  • Bi bismuth
  • LiBi lithium
  • LiBi lithium
  • Li 3 Bi Li 3 Bi
  • the potential of LiBi and the potential of Li 3 Bi are almost the same.
  • tin which has poor discharge flatness
  • Bi does not have the property that different types of compounds formed with lithium have different potentials, unlike tin. Therefore, an electrode containing Bi as an active material has a flat electric potential, and is therefore excellent in discharge flatness. Therefore, an electrode containing Bi as an active material is considered suitable as a battery electrode.
  • Bi has poor malleability and ductility, and is difficult to produce in the form of a metal plate or metal foil, and the obtained form is globules or powder. Therefore, as an electrode containing Bi as an active material, an electrode manufactured by coating a current collector with Bi powder has been studied. However, an electrode manufactured using such a Bi powder is pulverized by repeated charging and discharging, resulting in deterioration of current collection characteristics, and sufficient cycle characteristics have not been obtained. For example, in Non-Patent Document 1, an electrode containing Bi as an active material is produced using Bi powder and PVdF (polyvinylidene fluoride) or PI (polyimide) as a binder.
  • PVdF polyvinylidene fluoride
  • PI polyimide
  • Non-Patent Document 1 charging and discharging of a battery produced using this electrode are performed.
  • both the initial charge/discharge curve and cycle characteristics of the fabricated electrode are very poor.
  • the initial charge/discharge efficiency is low and the cycle deterioration is severe, so it cannot be put to practical use.
  • this cycle deterioration in Non-Patent Document 1, as the Bi active material expands when Li is inserted and the Bi active material contracts when Li is desorbed, the active material becomes finer and an electron conduction path cannot be taken, resulting in a decrease in capacity. is believed to occur.
  • the present inventors have focused on Bi, which does not have the property that the potential differs greatly between the multiple types of compounds formed with Li, and has excellent discharge flatness, and can improve cycle characteristics.
  • the present inventors have found that the cycle characteristics of a battery are improved when Bi is used as an active material and formed on the surface of a porous substrate, and have completed the present disclosure.
  • a battery according to a first aspect of the present disclosure includes a first electrode, a second electrode, and an electrolytic solution, wherein the first electrode is a porous substrate and is located on the surface of the substrate. and an active material layer, wherein the active material layer contains Bi.
  • a battery according to the first aspect includes an electrode having a substrate that is a porous body and an active material layer containing Bi located on the surface of the substrate. Therefore, the battery according to the first aspect has improved cycling characteristics.
  • the active material layer may contain Bi alone.
  • the battery according to the second aspect has improved capacity and improved cycle characteristics.
  • the active material layer may contain the Bi as a main component of the active material.
  • the battery according to the third aspect has improved capacity and improved cycle characteristics.
  • the active material layer may substantially contain only the Bi as an active material.
  • the battery according to the fourth aspect has improved capacity and improved cycle characteristics.
  • the active material layer may contain at least one selected from the group consisting of LiBi and Li 3 Bi good.
  • the battery according to the fifth aspect has improved capacity and improved cycle characteristics.
  • the base material may contain at least one selected from the group consisting of Cu and Ni.
  • the battery according to the sixth aspect has improved capacity and improved cycle characteristics.
  • the active material layer may be a plating layer.
  • the battery according to the seventh aspect has improved capacity and improved cycle characteristics.
  • the electrolytic solution contains an aprotic solvent and a lithium salt dissolved in the aprotic solvent. may contain.
  • the battery according to the eighth aspect can realize a lithium ion battery with improved capacity and improved cycle characteristics.
  • the aprotic solvent may contain at least one selected from the group consisting of vinylene carbonate and fluoroethylene carbonate.
  • the battery according to the ninth aspect has improved capacity and improved cycle characteristics.
  • the first electrode may be a negative electrode and the second electrode may be a positive electrode.
  • the battery according to the tenth aspect has improved capacity and improved cycle characteristics.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of a battery 1000 according to an embodiment of the present disclosure.
  • the battery 1000 includes a first electrode 101, a second electrode 103, and an electrolytic solution 102.
  • FIG. 2 is a partially enlarged cross-sectional view schematically showing a configuration example of the first electrode 101 in the battery 1000 according to the embodiment of the present disclosure.
  • the first electrode 101 has a base material 108 that is a porous body and an active material layer 109 located on the surface of the base material 108 .
  • Active material layer 109 contains Bi.
  • the active material layer 109 contains, for example, simple Bi as Bi.
  • the battery 1000 according to this embodiment may further include a first current collector 104 in contact with the first electrode 101, for example.
  • the battery 1000 according to this embodiment may further include a second current collector 105 in contact with the second electrode 103, for example.
  • the battery 1000 further includes a separator 106 and an exterior 107, for example.
  • a separator 106 is arranged between the first electrode 101 and the second electrode 103 .
  • the first electrode 101 and the second electrode 103 face each other with the separator 106 interposed therebetween.
  • the first electrode 101 , the second electrode 103 , the separator 106 and the electrolytic solution 102 are housed in the exterior 107 .
  • the electrolytic solution 102 is, for example, an electrolytic solution impregnated in the first electrode 101 , the second electrode 103 and the separator 106 .
  • the electrolyte 102 may fill the internal space of the exterior 107 .
  • the active material layer 109 containing Bi is formed on the surface of the substrate 108, which is a porous body.
  • the active material layer 109 is also formed on the inner walls of the pores of the substrate 108, for example, as shown in FIG. Therefore, in the battery 1000, the active material layer 109 is formed on the surface of the porous substrate 108 rather than on the surface of the foil-shaped substrate in terms of the area where the active material and the electrolytic solution can contact. The area of the active material layer 109 becomes larger. Therefore, the battery 1000 according to this embodiment can improve the capacity.
  • the active material layer 109 is formed as a thin film on the inner walls of the pores of the substrate 108, and the pores are present with a relatively high porosity.
  • the first electrode 101 is not limited to this configuration.
  • the first electrode 101 may have, for example, an active material layer 109 that substantially fills the interior of the pores of the base material 108 and has a low porosity. Even when the first electrode 101 has such a structure, the boundary between the base material 108 and the active material layer 109 can be clearly confirmed, and in the first electrode 101, the base material 108 is porous. , it can be said that the active material layer 109 is formed on the surface of the substrate 108 .
  • the active material layer 109 may be formed on a part of the inner walls of the plurality of holes, or may be formed on almost all of them.
  • the battery 1000 is, for example, a lithium secondary battery.
  • a case in which lithium ions are intercalated and deintercalated in the active material layer 109 of the first electrode 101 and the second electrode 103 during charging and discharging of the battery 1000 will be described as an example.
  • the base material 108 is a porous body, as described above.
  • the term "porous body” means a structure having a plurality of pores and including open pores that are open to the outside.
  • Porous bodies herein include, for example, meshes and porous structures.
  • the porous structure is a structure composed of a porous material provided with a plurality of pores, and the size of the pores is not particularly limited. Examples of porous structures include foams.
  • the porous structure may be a three-dimensional network structure in which pores communicate with each other.
  • the term "pore" includes both holes filled with, for example, an active material layer and holes not filled with the active material layer. In other words, a hole filled with, for example, an active material layer is also regarded as a "hole”.
  • the base material 108 has conductivity, for example.
  • the base material 108 may be formed of a conductive material such as metal, or a conductive film made of a conductive material may be formed on the surface of a porous body (for example, foamed resin) made of a non-conductive material such as resin. It may be provided.
  • Substrate 108 can be, for example, metal mesh and porous metal.
  • Base material 108 can function as a current collector for first electrode 101 . That is, when the first current collector 104 is provided, for example, the first current collector 104 and the base material 108 function as the current collector of the first electrode 101 . If the first current collector 104 is not provided, for example, the base material 108 functions as a current collector for the first electrode 101 .
  • the base material 108 may contain, for example, at least one selected from the group consisting of Cu and Ni.
  • Substrate 108 may be, for example, nickel mesh or porous nickel.
  • the active material layer 109 contains only Bi.
  • the active material layer 109 may contain Bi as a main component.
  • the active material layer 109 contains Bi as a main component is defined as "the content ratio of Bi in the active material layer 109 is 50% by mass or more".
  • the content ratio of Bi in the active material layer 109 can be determined by, for example, confirming that Bi is contained in the active material layer 109 by elemental analysis using EDX (energy dispersive X-ray analysis). It can be obtained by calculating the ratio of the compounds contained by Rietveld analysis of the diffraction results.
  • EDX energy dispersive X-ray analysis
  • the active material layer 109 containing Bi as a main component may be composed of, for example, a thin film of Bi (hereinafter referred to as "Bi thin film").
  • the active material layer 109 composed of a Bi thin film can be produced, for example, by electroplating.
  • a method of manufacturing the first electrode 101 by forming the active material layer 109 by electroplating is, for example, as follows.
  • a substrate for electroplating is prepared.
  • a substrate for electroplating for example, a porous body that can constitute the substrate 108 when the first electrode 101 is formed is used.
  • a substrate for electroplating for example, a metal mesh or porous metal is used.
  • a substrate for electroplating for example, nickel mesh or porous nickel may be used.
  • the structure of the porous body used as the base material for electroplating is not particularly limited as long as it can constitute the base material 108 when the first electrode is formed through processes such as electroplating and pressure treatment. However, it can be appropriately selected according to the target structure of the first electrode 101 .
  • a porous body used as a substrate for electroplating may have a specific surface area of, for example, 0.014 m 2 /cm 3 or more and 0.036 m 2 /cm 3 or less.
  • a nickel mesh is prepared as a base material for electroplating. After preliminarily degreasing the nickel mesh with an organic solvent, it is degreased by immersing it in an acidic solvent to activate the surface of the nickel mesh. The activated nickel mesh is connected to a power source so that current can be applied. A nickel mesh connected to a power supply is immersed in a bismuth plating bath. As the bismuth plating bath, for example, an organic acid bath containing Bi 3+ ions and an organic acid is used. Thereafter, the surface of the nickel mesh is electroplated with Bi by applying a current to the nickel mesh while controlling the current density and application time.
  • the bismuth plating bath for example, an organic acid bath containing Bi 3+ ions and an organic acid is used.
  • the bismuth plating bath used for producing the Bi plating layer is not particularly limited, and can be appropriately selected from known bismuth plating baths capable of depositing a simple Bi thin film.
  • organic sulfonic acid baths, gluconic acid and ethylenediaminetetraacetic acid (EDTA) baths, or citric acid and EDTA baths can be used as organic acid baths.
  • EDTA ethylenediaminetetraacetic acid
  • a sulfuric acid bath for example, may be used as the bismuth plating bath.
  • Additives may also be added to the bismuth plating bath.
  • a Bi-plated layer can be produced in the same manner as described above even when, for example, porous nickel is used as the base material for electroplating.
  • An active material composed of a Bi thin film has a density of, for example, 6.0 g/cm 3 or more and 9.8 g/cm 3 or less.
  • the density of the active material composed of the Bi thin film may be 6.5 g/cm 3 or more and 9.8 g/cm 3 or less, or 7.0 g/cm 3 or more and 9.8 g/cm 3 or less.
  • the density of the active material composed of the Bi thin film can be obtained by calculation using, for example, the Archimedes method.
  • the active material layer 109 is composed of a thin film substantially made of an active material, at least part of the thin film is taken out as a sample, and the density of the sample is calculated using, for example, the Archimedes method. , the density of the active material is obtained.
  • first electrode 101 has substrate 108 which is a porous body, and active material layer 109 located on the surface of substrate 108 .
  • the configurations of base material 108 and active material layer 109 are as described above.
  • the first electrode 101 functions as a negative electrode. Therefore, the active material layer 109 contains a negative electrode active material that has the property of intercalating and deintercalating lithium ions.
  • the active material layer 109 contains Bi, and this Bi functions as a negative electrode active material.
  • Bi is a metal element that alloys with lithium.
  • Bi functions as a negative electrode active material
  • lithium is occluded by forming an alloy with lithium during charging. That is, a lithium-bismuth alloy is generated in the active material layer 109 when the battery 1000 is charged.
  • the produced lithium-bismuth alloy contains, for example, at least one selected from the group consisting of LiBi and Li 3 Bi. That is, when the battery 1000 is charged, the active material layer 109 contains at least one selected from the group consisting of LiBi and Li 3 Bi, for example.
  • Bi as a negative electrode active material reacts, for example, as follows during charging and discharging of the battery 1000 .
  • the lithium-bismuth alloy produced during charging is Li 3 Bi.
  • the active material layer 109 may substantially contain only Bi as an active material. In this case, battery 1000 can have increased capacity and improved cycling characteristics.
  • the active material layer 109 substantially contains only Bi as an active material means, for example, that the active material other than Bi in the active material contained in the active material layer 109 is 1% by mass or less. is.
  • the active material layer 109 may contain only Bi as an active material.
  • the active material layer 109 may not contain a solid electrolyte.
  • the active material layer 109 may be arranged in direct contact with the surface of the base material 108 . Furthermore, if the battery 1000 includes a first current collector 104 , the substrate 108 may be placed in contact with the first current collector 104 .
  • the active material layer 109 may be in the form of a thin film.
  • the active material layer 109 may be a plated layer.
  • the active material layer 109 may be a plated layer provided in direct contact with the surface of the substrate 108 . That is, as described above, active material layer 109 may be a Bi-plated layer formed on the surface of substrate 108 .
  • the active material layer 109 When the active material layer 109 is a plated layer provided in direct contact with the surface of the base material 108, the active material layer 109 firmly adheres to the base material 108. This makes it possible to further suppress the deterioration of the current collection characteristics of the first electrode 101 that occurs when the active material layer 109 repeatedly expands and contracts. Therefore, the charge/discharge characteristics of the battery 1000 are further improved. Further, when the active material layer 109 is a plated layer, the active material layer 109 contains Bi alloying with lithium at a high density, so that the capacity can be further increased.
  • the active material layer 109 may contain materials other than Bi or an alloy containing Bi.
  • the alloy containing Bi is, for example, a lithium-bismuth alloy (eg, LiBi and Li 3 Bi) generated by charging reaction.
  • the active material layer 109 may further contain a conductive material.
  • Conductive materials include carbon materials, metals, inorganic compounds, and conductive polymers.
  • Carbon materials include graphite, acetylene black, carbon black, ketjen black, carbon whiskers, needle coke, and carbon fibers.
  • Graphite includes natural graphite and artificial graphite.
  • Natural graphite includes massive graphite and flake graphite.
  • Metals include copper, nickel, aluminum, silver, and gold.
  • Inorganic compounds include tungsten carbide, titanium carbide, tantalum carbide, molybdenum carbide, titanium boride, and titanium nitride. These materials may be used alone, or a mixture of multiple types may be used.
  • the active material layer 109 may further contain a binder.
  • Binders include fluorine-containing resins, thermoplastic resins, ethylene propylene diene monomer (EPDM) rubber, sulfonated EPDM rubber, and natural butyl rubber (NBR).
  • Fluorine-containing resins include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and fluororubber.
  • Thermoplastic resins include polypropylene and polyethylene. These materials may be used alone, or a mixture of multiple types may be used.
  • the thickness of the active material layer 109 is not particularly limited, and may be, for example, 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the material of the base material 108 is, for example, a single metal or alloy. More specifically, it may be a single metal or alloy containing at least one selected from the group consisting of copper, chromium, nickel, titanium, platinum, gold, aluminum, tungsten, iron, and molybdenum. Substrate 100 may be stainless steel.
  • the base material 108 may contain nickel (Ni).
  • Substrate 108 may be considered a current collector or part of a current collector for first electrode 101 .
  • the thickness of the first electrode 101 may be 10 ⁇ m or more and 2000 ⁇ m or less. That is, the entire thickness of the porous base material 108 on which the active material layer 109 is provided may be 10 ⁇ m or more and 2000 ⁇ m or less. Having such a thickness of the first electrode 101 allows the battery to operate at high output.
  • the first current collector 104 may or may not be provided.
  • the first current collector 104 is provided in contact with the first electrode 101, for example.
  • the first current collector 104 is provided, for example, in contact with the base material 108 of the first electrode 101 .
  • the material of the first current collector 104 is, for example, a single metal or alloy. More specifically, it may be a single metal or alloy containing at least one selected from the group consisting of copper, chromium, nickel, titanium, platinum, gold, aluminum, tungsten, iron, and molybdenum.
  • the first current collector 104 may be stainless steel.
  • the first current collector 104 may contain nickel (Ni).
  • the first current collector 104 may be plate-shaped or foil-shaped.
  • the first current collector 104 may be a metal foil from the viewpoint of easily ensuring high conductivity.
  • the thickness of the first current collector 104 may be, for example, 5 ⁇ m or more and 20 ⁇ m or less.
  • the first current collector 104 may be a laminated film.
  • Electrolyte solution 102 includes, for example, an aprotic solvent and a lithium salt dissolved in the aprotic solvent.
  • the aprotic solvent is not particularly limited.
  • aprotic solvents are cyclic carbonate solvents, linear carbonate solvents, cyclic ether solvents, linear ether solvents, cyclic ester solvents, linear ester solvents, or fluorosolvents.
  • cyclic carbonate solvents are vinylene carbonate, fluoroethylene carbonate, ethylene carbonate, propylene carbonate, or butylene carbonate.
  • linear carbonate solvents are dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate.
  • cyclic ether solvents are tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, or 1,3-dioxolane.
  • linear ether solvents are 1,2-dimethoxyethane or 1,2-diethoxyethane.
  • An example of a cyclic ester solvent is ⁇ -butyrolactone.
  • An example of a linear ester solvent is methyl acetate.
  • fluorosolvents are methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, or fluorodimethylene carbonate.
  • the electrolytic solution 102 may contain one solvent selected from these, or may contain a mixture of two or more non-aqueous solvents selected from these.
  • the electrolyte solution 102 may contain at least one selected from the group consisting of vinylene carbonate and fluoroethylene carbonate as an aprotic solvent. By containing these solvents in electrolyte solution 102, battery 1000 has more improved cycle characteristics.
  • lithium salts are LiPF6 , LiBF4 , LiSbF6, LiAsF6 , LiSO3CF3 , LiN ( SO2CF3 ) 2 , LiN( SO2C2F5 ) 2 , LiN( SO2CF3 ) . ( SO2C4F9 ) , or LiC ( SO2CF3 )3 .
  • One lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used.
  • the second electrode 103 functions as a positive electrode.
  • the second electrode 103 contains a material capable of intercalating and deintercalating metal ions such as lithium ions.
  • the material is, for example, a positive electrode active material.
  • the second electrode 103 contains a positive electrode active material.
  • the second electrode 103 may be arranged on the surface of the second current collector 105 in direct contact with the second current collector 105 .
  • positive electrode active materials examples include lithium-containing transition metal oxides, transition metal fluorides, polyanion materials, fluorinated polyanion materials, transition metal sulfides, transition metal oxysulfides, or transition metal oxynitrides.
  • lithium-containing transition metal oxides include LiNi1- xyCoxAlyO2 ( ( x +y) ⁇ 1), LiNi1- xyCoxMnyO2 ( (x+y) ⁇ 1) or LiCoO2 , etc.
  • the positive electrode active material may include Li(Ni,Co,Mn) O2 .
  • the second electrode 103 may contain a solid electrolyte.
  • a solid electrolyte known solid electrolytes used for lithium secondary batteries can be used.
  • halide solid electrolytes, sulfide solid electrolytes, oxide solid electrolytes, polymer solid electrolytes, or complex hydride solid electrolytes may be used.
  • a halide solid electrolyte means a solid electrolyte containing a halogen element.
  • the halide solid electrolyte may contain not only halogen elements but also oxygen.
  • Halide solid electrolytes do not contain sulfur (S).
  • the halide solid electrolyte may be, for example, a material represented by the following compositional formula (1).
  • Li ⁇ M ⁇ X ⁇ Formula (1)
  • ⁇ , ⁇ , and ⁇ are values greater than 0
  • M is at least one selected from the group consisting of metal elements other than Li and metalloid elements
  • X is F, Cl, Br , and at least one selected from the group consisting of I.
  • Simetallic elements are B, Si, Ge, As, Sb, and Te.
  • Metallic element means all elements contained in Groups 1 to 12 of the periodic table except hydrogen, and B, Si, Ge, As, Sb, Te, C, N, P, O, S, and It is an element contained in all Groups 13 to 16 except Se. That is, it is an element group that can become a cation when forming an inorganic compound with a halogen element.
  • M may contain Y, and X may contain Cl and Br.
  • a sulfide solid electrolyte means a solid electrolyte containing sulfur (S).
  • the sulfide solid electrolyte may contain not only sulfur but also halogen elements.
  • Examples of sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , Alternatively, Li 10 GeP 2 S 12 or the like may be used.
  • oxide solid electrolytes examples include NASICON solid electrolytes typified by LiTi 2 (PO 4 ) 3 and element-substituted products thereof, (LaLi)TiO 3 -based perovskite solid electrolytes, Li 14 ZnGe 4 O 16 , Li LISICON solid electrolytes typified by 4 SiO 4 , LiGeO 4 and elemental substitutions thereof, garnet type solid electrolytes typified by Li 7 La 3 Zr 2 O 12 and elemental substitutions thereof, Li 3 PO 4 and its N substitutions glass or glass-ceramics based on Li—BO compounds such as LiBO 2 and Li 3 BO 3 , with additions of Li 2 SO 4 , Li 2 CO 3 , etc., and the like can be used.
  • NASICON solid electrolytes typified by LiTi 2 (PO 4 ) 3 and element-substituted products thereof
  • (LaLi)TiO 3 -based perovskite solid electrolytes Li 14 ZnG
  • a compound of a polymer compound and a lithium salt can be used.
  • the polymer compound may have an ethylene oxide structure.
  • a polymer compound having an ethylene oxide structure can contain a large amount of lithium salt. Therefore, the ionic conductivity can be further increased.
  • Lithium salts include LiPF6 , LiBF4 , LiSbF6, LiAsF6 , LiSO3CF3 , LiN( SO2CF3 ) 2 , LiN ( SO2C2F5 ) 2 , LiN( SO2CF3 ) ( SO2C4F9 ), and LiC( SO2CF3 ) 3 , etc. may be used .
  • One lithium salt selected from the exemplified lithium salts can be used alone. Alternatively, mixtures of two or more lithium salts selected from the exemplified lithium salts can be used.
  • LiBH 4 --LiI LiBH 4 --P 2 S 5 , etc.
  • LiBH 4 --P 2 S 5 LiBH 4 --P 2 S 5 , etc.
  • the positive electrode active material may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the positive electrode active material and the solid electrolyte can form a good dispersion state. This improves the charge/discharge characteristics of the battery.
  • the positive electrode active material has a median diameter of 100 ⁇ m or less, the lithium diffusion rate is improved. This allows the battery to operate at high output.
  • the positive electrode active material may have a larger median diameter than the solid electrolyte. Thereby, the positive electrode active material and the solid electrolyte can form a good dispersion state.
  • the ratio of the volume of the positive electrode active material to the sum of the volume of the positive electrode active material and the volume of the solid electrolyte is 0.30 or more and 0.95 or less. good too.
  • a coating layer may be formed on the surface of the positive electrode active material in order to prevent the solid electrolyte from reacting with the positive electrode active material. Thereby, an increase in the reaction overvoltage of the battery can be suppressed.
  • coating materials contained in the coating layer are sulfide solid electrolytes, oxide solid electrolytes or halide solid electrolytes.
  • the thickness of the second electrode 103 may be 10 ⁇ m or more and 500 ⁇ m or less. When the thickness of the second electrode 103 is 10 ⁇ m or more, a sufficient energy density of the battery can be secured. When the thickness of the second electrode 103 is 500 ⁇ m or less, the battery can operate at high output.
  • the second electrode 103 may contain a conductive material for the purpose of enhancing electronic conductivity.
  • the second electrode 103 may contain a binder.
  • the same materials that can be used for the first electrode 101 may be used as the conductive material and the binder.
  • the second electrode 103 may contain a non-aqueous electrolyte, a gel electrolyte, or an ionic liquid for the purpose of facilitating the transfer of lithium ions and improving the output characteristics of the battery.
  • the non-aqueous electrolyte contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • the non-aqueous solvent and lithium salt are the same as the examples of the solvent and lithium salt given in the description of the electrolytic solution.
  • the lithium salt concentration is, for example, in the range of 0.5 mol/liter or more and 2 mol/liter or less.
  • a polymer material impregnated with a non-aqueous electrolyte can be used as the gel electrolyte.
  • examples of polymeric materials are polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, or polymers with ethylene oxide linkages.
  • ionic liquids examples include (i) aliphatic chain quaternary salts such as tetraalkylammonium or tetraalkylphosphonium, (ii) pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums , piperaziniums, or piperidiniums, or (iii) nitrogen-containing heterocyclic aromatic cations, such as pyridiniums or imidazoliums.
  • aliphatic chain quaternary salts such as tetraalkylammonium or tetraalkylphosphonium
  • pyrrolidiniums morpholiniums, imidazoliniums, tetrahydropyrimidiniums , piperaziniums, or piperidiniums
  • nitrogen-containing heterocyclic aromatic cations such as pyridiniums or imidazoliums.
  • Examples of anions contained in the ionic liquid are PF 6 ⁇ , BF 4 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ , SO 3 CF 3 ⁇ , N(SO 2 CF 3 ) 2 ⁇ , N(SO 2 C 2 F 5 ) 2- , N ( SO2CF3 ) ( SO2C4F9 )- , or C( SO2CF3 ) 3- .
  • the ionic liquid may contain a lithium salt.
  • the second current collector 105 may or may not be provided.
  • the second current collector 105 is provided in contact with the second electrode 103, for example. By providing the second current collector 105, electricity can be extracted from the battery 1000 with high efficiency.
  • the material of the second current collector 105 is, for example, a single metal or alloy. More specifically, it may be a single metal or alloy containing at least one selected from the group consisting of copper, chromium, nickel, titanium, platinum, gold, aluminum, tungsten, iron, and molybdenum.
  • the second current collector 105 may be stainless steel.
  • the second current collector 105 may contain nickel (Ni).
  • the second current collector 105 may be plate-shaped or foil-shaped.
  • the second current collector 105 may be a metal foil from the viewpoint of easily ensuring high conductivity.
  • the thickness of the second current collector 105 may be, for example, 5 ⁇ m or more and 20 ⁇ m or less.
  • the separator 106 has lithium ion conductivity.
  • the material of the separator 106 is not particularly limited as long as the passage of lithium ions is allowed.
  • the material of the separator 106 may be at least one selected from the group consisting of solid electrolytes, gel electrolytes, ion exchange resin membranes such as lithium cation exchange resins, semipermeable membranes, and porous membranes. If the separator 106 is made of these materials, the safety of the battery 1000 can be sufficiently ensured.
  • Solid electrolytes include sulfide solid electrolytes such as Li 2 SP 2 S 5 and oxide solid electrolytes such as Li 7 La 3 Zr 2 O 12 (LLZ).
  • Gel electrolytes include gel electrolytes containing fluororesins such as PVdF.
  • ion-exchange resin membranes include cation-exchange membranes and anion-exchange membranes.
  • porous membrane examples include a porous membrane made of polyolefin resin, a porous membrane made of glass paper obtained by weaving glass fibers into a non-woven fabric, and the like.
  • the exterior 107 is made of, for example, a material obtained by laminating a metal foil such as an aluminum foil with a resin film such as a polyethylene terephthalate (PET) film.
  • the exterior 107 may be a container made of resin or metal.
  • the configuration example in which the first electrode 101 is the negative electrode and the second electrode 103 is the positive electrode has been described. good too.
  • the active material layer 109 is a positive electrode active material layer. That is, Bi contained in the active material layer 109 functions as a positive electrode active material.
  • the second electrode 103 which is the negative electrode, is made of lithium metal, for example.
  • a battery 1000 has a basic configuration of a first electrode 101, an electrolytic solution 102, and a second electrode 103, and is enclosed in a sealed container so as to prevent air and moisture from entering.
  • the shape of the battery 1000 includes a coin shape, a cylindrical shape, a square shape, a sheet shape, a button shape, a flat shape, a laminate shape, and the like.
  • Example 1 ⁇ Production of first electrode>
  • a nickel mesh (2 cm ⁇ 2 cm, thickness: 50 ⁇ m, "NI-318200" manufactured by Nilaco Co., Ltd.) is preliminarily degreased with an organic solvent, and then degreased by immersion in an acidic solvent to activate the nickel mesh surface.
  • a plating bath was prepared by adding bismuth methanesulfonate as a soluble bismuth salt to 1.0 mol/L of methanesulfonic acid so that Bi 3+ ions became 0.18 mol/L.
  • the activated nickel mesh was immersed in the plating bath after being connected to a power source so that an electric current could be applied. After that, one side of the nickel mesh was electroplated with Bi to a thickness of approximately 1 ⁇ m by controlling the current density to 2 A/dm 2 . After electroplating, the nickel mesh was recovered from the acid bath, washed with pure water, and dried.
  • a first electrode was used as the working electrode.
  • Li metal was used as the counter electrode.
  • the working electrode corresponds to the negative electrode of the secondary battery.
  • the Li metal was double coated with a microporous separator (Asahi Kasei Corp., Celgard 3401).
  • As an electrolytic solution a solution was prepared by dissolving LiPF 6 in vinylene carbonate (VC) at a concentration of 1.0 mol/L.
  • VC vinylene carbonate
  • a battery as a test cell of Example 1 was assembled using such a working electrode, a counter electrode, and an electrolytic solution.
  • the test cell produced here is a unipolar test cell using a working electrode and a counter electrode, and is used to test the performance of one of the electrodes in a secondary battery.
  • the working electrode is the electrode under test and the counter electrode is a suitable active material in sufficient quantity to cover the reaction of the working electrode. Since this test cell tests the performance of the first electrode as a negative electrode, a large excess of Li metal was used as the counter electrode, as is commonly used.
  • the negative electrode whose performance has been tested using such a test cell is, for example, combined with a positive electrode containing a positive electrode active material, such as a transition metal oxide containing Li, as described in the above-described embodiment. It can be used as a secondary battery.
  • a charge-discharge cycle test was performed on the test cell. At a constant current value of 0.6 mA (0.15 mA/cm 2 ) (equivalent to 0.5 IT), charging was performed to 0 V and discharging was performed to 2 V. Charging and discharging were repeated as one cycle, and the cycle characteristics were evaluated.
  • a charge-discharge cycle test was performed at 25°C. 3 is a graph showing the relationship between the number of cycles and the discharge capacity density of the test cell according to Example 1. FIG. In the cell of Example 1, although the capacity retention rate decreased to about 50% at 20 cycles, it gradually decreased thereafter, and maintained a capacity retention rate of about 30% even at 100 cycles.
  • porous nickel (2 cm ⁇ 2 cm, thickness: 1.6 mm, "NI-318161” manufactured by Nilaco Co., Ltd.) is preliminarily degreased with an organic solvent, and then degreased by immersing it in an acidic solvent.
  • the nickel surface was activated.
  • a plating bath was prepared by adding bismuth methanesulfonate as a soluble bismuth salt to 1.0 mol/L of methanesulfonic acid so that Bi 3+ ions would be 0.18 mol/L.
  • the activated porous nickel was immersed in the plating bath after being connected to a power source so that an electric current could be applied.
  • the porous nickel surface was electroplated with Bi to a thickness of approximately 1 ⁇ m by controlling the current density to 2 A/dm 2 .
  • the porous nickel was recovered from the acid bath, washed with pure water, and dried.
  • Example 2 The first electrode of Example 2 was used as the working electrode.
  • a test cell was prepared in the same manner as in Example 1 except for this point.
  • FIG. 3 is a graph showing the relationship between the cycle number and the discharge capacity density of the test cell according to Example 2.
  • the Ni foil was preliminarily degreased with an organic solvent, masked on one side, and immersed in an acidic solvent for degreasing and activation of the Ni foil surface.
  • a plating bath was prepared by adding bismuth methanesulfonate as a soluble bismuth salt to 1.0 mol/L of methanesulfonic acid so that Bi 3+ ions would be 0.18 mol/L.
  • the activated copper foil was immersed in the plating bath after being connected to a power source so that current could be applied.
  • the unmasked Ni foil surface was electroplated with Bi to a thickness of about 1 ⁇ m.
  • the Ni foil was recovered from the acid bath, washed with pure water after removing the masking, dried, and punched out to a size of 2 cm ⁇ 2 cm to obtain a first electrode. That is, the first electrode of Reference Example 1 had a configuration in which an active material layer made of a Bi plating layer was provided on a current collector made of Ni foil.
  • a charge-discharge cycle test was performed on the test cell.
  • a charge-discharge cycle test was performed in the same manner as in Example 1.
  • 3 is a graph showing the relationship between the number of cycles and the discharge capacity density of the test cell according to Reference Example 1.
  • test cell was produced in the same manner as in Example 1 except for this point.
  • a charge-discharge cycle test was performed on the test cell.
  • a charge-discharge cycle test was performed in the same manner as in Example 1.
  • 3 is a graph showing the relationship between the number of cycles and discharge capacity density of a test cell according to Reference Example 2.
  • Example 3 Preparation of test cell> A test cell was prepared in the same manner as in Example 1, except that the solvent of the electrolytic solution was changed from vinylene carbonate (VC) to fluoroethylene carbonate (FEC).
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • FIG. 4 is a graph showing the relationship between the number of cycles and the discharge capacity density of the test cells of Examples 1 and 3.
  • FIG. 4 As shown in FIG. 4, when FEC was used as a solvent, better cycling characteristics were obtained than VC.
  • Example 4 ⁇ Preparation of test cell> A test cell was prepared in the same manner as in Example 1, except that the solvent of the electrolytic solution was changed from vinylene carbonate (VC) to ethylene carbonate (EC).
  • VC vinylene carbonate
  • EC ethylene carbonate
  • Example 4 Using the test cell of Example 4, a charge-discharge cycle test was conducted in the same manner as in Example 1. However, the constant current value was changed to 0.05mA. In this example, a charge/discharge cycle test was also conducted with a discharge voltage of up to 1.4V. 4 is a graph showing the relationship between the number of cycles of the test cell of Example 4 and the discharge capacity density.
  • Example 5 Preparation of test cell> A test cell was prepared in the same manner as in Example 1, except that the solvent of the electrolytic solution was changed from vinylene carbonate (VC) to propylene carbonate (PC).
  • VC vinylene carbonate
  • PC propylene carbonate
  • Example 6 Preparation of test cell> A test cell was produced in the same manner as in Example 1, except that the solvent of the electrolytic solution was changed from vinylene carbonate (VC) to methyl ethyl carbonate (MEC).
  • VC vinylene carbonate
  • MEC methyl ethyl carbonate
  • Example 6 Using the test cell of Example 6, a charge-discharge cycle test was conducted in the same manner as in Example 1. However, the constant current value was changed to 0.05mA. 4 is a graph showing the relationship between the number of cycles and the discharge capacity density of the test cell of Example 6. FIG.
  • VC vinylene carbonate
  • MEC MEC
  • Example 7 Using the test cell of Example 7, a charge-discharge cycle test was conducted in the same manner as in Example 1. However, the constant current value was changed to 0.05mA and the discharge voltage was up to 1.4V. 4 is a graph showing the relationship between the number of cycles and discharge capacity density of the test cell of Example 7. FIG.
  • the battery of the present disclosure can be used, for example, as a lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本開示による電池(1000)は、第一電極(101)と、第二電極(103)と、電解液(102)と、を備える。第一電極(101)は、多孔体である基材と、基材の表面に位置する活物質層と、を有する。活物質層は、Biを含む。活物質層は、Biを活物質の主成分として含んでいてもよい。電池(1000)において、例えば、第一電極(101)が負極であって、第二電極(102)が正極であってもよい。

Description

電池
 本開示は、電池に関する。
 近年、研究開発が盛んに行われているリチウム二次電池では、用いられる電極により、充放電電圧、充放電サイクル寿命特性、保存特性などの電池特性が大きく左右される。このことから、電極活物質を改善することにより、電池特性の向上が図られている。
 例えば、充電の際に電気化学的にリチウムと合金化するアルミニウム、シリコン、錫などを電極として用いるリチウム二次電池が古くから提案されている。特許文献1は、シリコンと錫と遷移金属とを有する合金からなる負極材料を含む負極、正極、および電解質を備えたリチウム二次電池を開示している。
 特許文献2は、活物質として集電体上に設けられたシリコン薄膜を用いた負極と、正極と、電解質とを備えるリチウム二次電池を開示している。
 リチウムと合金化する金属として、ビスマス(Bi)が挙げられる。非特許文献1には、Bi粉末を用いて作製された、Biを負極活物質として含む負極が開示されている。
特許第4898737号公報 特許第3733065号公報
山口裕之著「ポリアクリル酸と金属酸化物の反応物からなるリチウム電池用非晶質高分子負極活物質の合成とその電気化学的特性」三重大学、博士論文、2015年
 本開示は、改善されたサイクル特性を有する電池を提供する。
 本開示の電池は、第一電極と、第二電極と、電解液と、を備え、前記第一電極は、多孔体である基材と、前記基材の表面に位置する活物質層と、を有し、前記活物質層は、Biを含む。
 本開示によれば、改善されたサイクル特性を有する電池を提供できる。
図1は、本開示の実施形態に係る電池の構成例を模式的に示す断面図である。 図2は、本開示の実施形態に係る電池における第一電極の構成例を模式的に示す部分拡大断面図である。 図3は、実施例1、実施例2、参考例1、および参考例2に係る試験セルのサイクル数と放電容量密度との関係を示すグラフである。 図4は、実施例1および実施例3から7に係る試験セルのサイクル数と放電容量密度との関係を示すグラフである。
 (本開示の基礎となった知見)
 [背景技術]の欄に記載したとおり、リチウム二次電池では、電極活物質の改善によって電池特性の向上が図られている。
 負極活物質としてリチウム金属が用いられる場合、重量当りおよび体積当りともに高いエネルギー密度を有するリチウム二次電池が得られる。しかし、このような構成を有するリチウム二次電池では、充電時にリチウムがデンドライト状に析出する。析出したリチウム金属の一部が電解液と反応するため、充放電効率が低く、サイクル特性が劣るという問題があった。
 これに対し、炭素、特に黒鉛が負極として使用されることが提案されている。炭素が使用された負極では、炭素へのリチウムの挿入および離脱によって、充電および放電が行われる。このような構成を有する負極では、充放電機構上、リチウム金属がデンドライト状に析出しない。また、このような構成を有する負極が採用されたリチウム二次電池では、反応がトポタクティックなため可逆性が非常に良好であり、充放電効率がほぼ100%である。これらのことから、炭素、特に黒鉛が使用された負極が採用されたリチウム二次電池が実用化されている。しかし、黒鉛の理論容量密度は372mAh/gであり、これはリチウム金属の理論容量密度3884mAh/gの1/10程度である。したがって、黒鉛が使用された負極の活物質容量密度は低い。さらに、黒鉛の実容量密度がほぼ理論容量密度まで達しているため、黒鉛が使用された負極においては、高容量化が限界にきている。
 これらに対し、充電の際に電気化学的にリチウムと合金化するアルミニウム、シリコン、錫などを電極として用いるリチウム二次電池が古くから提案されている。リチウムと合金化する金属の容量密度は、黒鉛の容量密度より格段に大きい。特にシリコンの理論容量密度は大きい。したがって、リチウムと合金化するアルミニウム、シリコン、錫などが用いられた電極は、高い容量を示す電池用負極として有望であり、これを負極とする種々の二次電池が提案されている(特許文献1)。
 しかし、上記のようなリチウムと合金化する金属が用いられた負極は、リチウムを吸蔵すると膨張し、リチウムを放出すると収縮する。充放電においてこのような膨張および収縮を繰り返すと、電極活物質である合金自体が充放電により微粉化し負極の集電特性が悪化することから、十分なサイクル特性が得られていなかった。このような欠点を改良しようと、次のようないくつかの試みがなされている。例えば、表面を荒らした集電体上にシリコンをスパッタリングまたは蒸着で堆積させる、あるいは錫を電気めっきで堆積させる試みがなされている(特許文献2)。この試みでは、活物質、すなわちリチウムと合金化する金属が薄膜となって集電体と密着しているので、リチウムの吸蔵および放出により負極が膨張および収縮を繰り返しても、集電性がほとんど低下しない。
 しかし、上記のようにスパッタリングまたは蒸着で活物質を形成した場合は、製造コストが高く、実用的ではない。製造コストの安価な電気めっきで活物質を形成するのが実用的であるが、シリコンは電気めっきが非常に困難である。また、電気めっきの安易な錫には、放電平坦性が乏しく、電池の電極として使いにくいという問題があった。
 また、リチウムと合金化する金属として、ビスマス(Bi)が挙げられる。Biは、リチウム(Li)と、LiBiおよびLi3Biという化合物を作る。LiBiの電位およびLi3Biの電位は、互いにほとんど差がない。一方、放電平坦性が乏しい錫では、リチウムと形成される化合物が数種あり、それぞれの化合物の電位が互いにかなり異なる。すなわち、Biは、錫のような、リチウムと形成される複数種の化合物間で電位が大きく異なるという性質を持たない。このため、Biを活物質として含む電極は、電位がフラットであるため放電平坦性に優れている。したがって、Biを活物質として含む電極は、電池の電極として適していると考えられる。
 しかし、Biは、展性延性に乏しく、金属板または金属箔という形態での製造は困難であり、得られる形態は小球または粉末となる。このため、Biを活物質として含む電極としては、Bi粉末を集電体上に塗布することによって製造される電極が検討されている。しかし、このようなBi粉末を用いて製造された電極は、充放電を繰り返すことによって微粉化し集電特性が悪化することから、十分なサイクル特性は得られていなかった。例えば、非特許文献1では、Bi粉末を用い、かつPVdF(ポリフッ化ビニリデン)またはPI(ポリイミド)を結着剤として用いてBiを活物質として含む電極が作製されている。非特許文献1では、この電極を用いて作製された電池の充放電がなされている。しかし、作製された電極の初期充放電カーブとサイクル特性の結果はいずれも非常に劣悪である。0.042C相当という非常に低いレートで測定されているが、初期の充放電効率は低く、サイクル劣化も激しいことから、実用に供せるものではない。このサイクル劣化については、非特許文献1に、Li挿入時にBi活物質が膨張、Li脱離時にBi活物質が収縮するにしたがって、活物質が微細化して電子伝導パスがとれなくなり容量の低下が起きると考えられる、と示されている。
 本発明者らは、上述のように、Liと形成される複数種の化合物間で電位が大きく異なるという性質を持たず、放電平坦性に優れているBiに着目し、サイクル特性を向上し得る電池について鋭意検討を行った。その結果、本発明者らは、Biを活物質として多孔体基材の表面に形成した場合、電池のサイクル特性が向上することを見出し、本開示を完成するに至った。
 (本開示に係る一態様の概要)
 本開示の第1態様に係る電池は、第一電極と、第二電極と、電解液と、を備え、前記第一電極は、多孔体である基材と、前記基材の表面に位置する活物質層と、を有し、前記活物質層は、Biを含む。
 第1態様に係る電池は、多孔体である基材と、当該基材の表面に位置する、Biを含む活物質層と、を有する電極を備えている。したがって、第1態様に係る電池は、改善されたサイクル特性を有する。
 本開示の第2態様において、例えば、第1態様に係る電池では、前記活物質層は、Bi単体を含んでいてもよい。
 第2態様に係る電池は、より向上した容量および改善されたサイクル特性を有する。
 本開示の第3態様において、例えば、第1または第2態様に係る電池では、前記活物質層は、前記Biを活物質の主成分として含んでもよい。
 第3態様に係る電池は、より向上した容量および改善されたサイクル特性を有する。
 本開示の第4態様において、例えば、第3態様に係る電池では、前記活物質層は、活物質として実質的に前記Biのみを含んでもよい。
 第4態様に係る電池は、より向上した容量および改善されたサイクル特性を有する。
 本開示の第5態様において、例えば、第1から第4態様のいずれか1つに係る電池では、前記活物質層は、LiBiおよびLi3Biからなる群より選択される少なくとも1つを含んでもよい。
 第5態様に係る電池は、より向上した容量および改善されたサイクル特性を有する。
 本開示の第6態様において、例えば、第1から第5態様のいずれか1つに係る電池では、前記基材は、CuおよびNiからなる群より選択される少なくとも1つを含んでもよい。
 第6態様に係る電池は、より向上した容量および改善されたサイクル特性有する。
 本開示の第7態様において、例えば、第1から第6態様のいずれか1つに係る電池では、前記活物質層は、めっき層であってもよい。
 第7態様に係る電池は、より向上した容量および改善されたサイクル特性を有する。
 本開示の第8態様において、例えば、第1から第7態様のいずれか1つに係る電池では、前記電解液は、非プロトン性溶媒と、前記非プロトン性溶媒に溶解したリチウム塩と、を含んでもよい。
 第8態様に係る電池は、向上した容量および改善されたサイクル特性を有するリチウムイオン電池を実現し得る。
 本開示の第9態様において、例えば、第8態様に係る電池では、前記非プロトン性溶媒は、ビニレンカーボネートおよびフルオロエチレンカーボネートからなる群より選択される少なくとも1つを含んでもよい。
 第9態様に係る電池は、より向上した容量および改善されたサイクル特性を有する。
 本開示の第10態様において、例えば、第1から第9態様のいずれか1つに係る電池では、前記第一電極は、負極であり、前記第二電極は、正極であってもよい。
 第10態様に係る電池は、より向上した容量および改善されたサイクル特性を有する。
 (本開示の実施形態)
 以下、本開示の実施形態が、図面を参照しながら説明される。以下の説明は、いずれも包括的または具体的な例を示すものである。以下に示される数値、組成、形状、膜厚、電気特性、二次電池の構造などは、一例であり、本開示を限定する主旨ではない。
 図1は、本開示の実施形態に係る電池1000の構成例を模式的に示す断面図である。
 電池1000は、第一電極101と、第二電極103と、電解液102と、を備える。図2は、本開示の実施形態に係る電池1000における第一電極101の構成例を模式的に示す部分拡大断面図である。図2に示すように、第一電極101は、多孔体である基材108と、基材108の表面に位置する活物質層109と、を有する。活物質層109は、Biを含む。活物質層109は、Biとして、例えばBi単体を含む。
 図1に示されているように、本実施形態に係る電池1000は、例えば第一電極101と接する第一集電体104をさらに備えていてもよい。また、本実施形態に係る電池1000は、例えば第二電極103と接する第二集電体105をさらに備えていてもよい。第一電極101および第二集電体105が設けられることにより、電池1000から高い効率で電気を取り出すことができる。
 電池1000は、例えば、セパレータ106および外装107をさらに備える。セパレータ106は、第一電極101と第二電極103との間に配置されている。セパレータ106を介して、第一電極101と第二電極103とが互いに向かい合っている。第一電極101、第二電極103、セパレータ106、および電解液102は、外装107に収められている。電解液102は、例えば、第一電極101、第二電極103、およびセパレータ106に含浸された電解液である。電解液102は、外装107の内部空間を満たしていてもよい。
 また、電池1000では、第一電極101において、Biを含む活物質層109が、多孔体である基材108の表面上に形成されている。活物質層109は、例えば、図2に示されているように、基材108の孔の内壁上にも形成される。このため、電池1000では、活物質と電解液とが接し得る面積に関して、活物質層109が、箔状の基材の表面上よりも、多孔体である基材108の表面上に形成される方が、活物質層109の面積が大きくなる。したがって、本実施形態に係る電池1000は、容量を向上させることができる。
 なお、図2に示された第一電極101においては、基材108の孔の内壁上に活物質層109が薄膜状に形成されており、空隙率が比較的高い状態で孔が存在している。しかし、第一電極101は、この構成に限定されない。第一電極101は、例えば、活物質層109が基材108の孔の内部をほぼ満たしており、空隙率が低くなっているものであってもよい。第一電極101がこのような構造を有する場合であっても、基材108と活物質層109との境界は明確に確認可能であり、第一電極101において、基材108は多孔体であり、活物質層109は基材108の表面上に形成されているといえる。活物質層109は、複数の孔の内壁の一部に形成されていてもよく、ほぼ全部に形成されていてもよい。
 電池1000は、例えば、リチウム二次電池である。以下、電池1000の充放電時に、第一電極101の活物質層109および第二電極103において吸蔵および放出される金属イオンがリチウムイオンである場合を例に挙げて説明する。
 基材108は、上述のとおり、多孔体である。本明細書において、多孔体とは、複数の孔を有しており、かつそれらの孔が外部に開口した開放孔を含む構造体のことを意味する。本明細書における多孔体として、例えば、メッシュおよび多孔質構造体が挙げられる。多孔質構造体は、複数の細孔が設けられている多孔質材料で構成された構造体であって、細孔の大きさは特には限定されない。多孔質構造体の例として、発泡体が挙げられる。また、多孔質構造体は、細孔が互いに連通している三次元網目構造体であってもよい。なお、本明細書において、「孔」とは、その内部に例えば活物質層が詰まっているものも、詰まっていないものも、両方を含む。すなわち、その内部に例えば活物質層が詰まっているものも、「孔」とみなす。
 基材108は、例えば導電性を有する。基材108は、金属等の導電性材料で形成されていてもよいし、例えば樹脂のような非導電性材料からなる多孔体(例えば、発泡樹脂)の表面に導電性材料からなる導電膜が設けられているものであってもよい。基材108は、例えば、金属メッシュおよび多孔質金属であってもよい。基材108は、第一電極101の集電体として機能し得る。すなわち、第一集電体104が設けられている場合は、例えば、第一集電体104および基材108が第一電極101の集電体として機能する。第一集電体104が設けられない場合は、例えば、基材108が第一電極101の集電体として機能する。
 基材108は、例えばCuおよびNiからなる群より選択される少なくとも1つを含んでいてもよい。基材108は、例えば、ニッケルメッシュまたは多孔質ニッケルであってもよい。
 上述のとおり、活物質層109は、Bi単体を含む。活物質層109は、Biを主成分として含んでいてもよい。ここで、「活物質層109がBiを主成分として含む」とは、「活物質層109におけるBiの含有割合が50質量%以上である」と定義する。なお、活物質層109におけるBiの含有割合は、例えば、EDX(エネルギー分散型X線分析)による元素分析によってBiが活物質層109含まれていることを確認し、活物質層109のX線回折結果をリートベルト解析することで含まれる化合物の比率を算出することによって、求めることができる。
 以上の構成によれば、改善された充放電サイクル特性を得られる。
 Biを主成分として含む活物質層109は、例えば、薄膜状に形成されたBi(以下、「Bi薄膜」という)によって構成されてもよい。
 Bi薄膜で構成された活物質層109は、例えば、電気めっきによって作製することができる。活物質層109を電気めっきによって作製することによって第一電極101を製造する方法は、例えば以下のとおりである。
 まず、電気めっきの基材が準備される。電気めっきの基材としては、例えば、第一電極101が形成された際に基材108を構成し得る多孔体が用いられる。電気めっきの基材として、例えば、金属メッシュまたは多孔質金属が用いられる。電気めっきの基材として、例えば、ニッケルメッシュまたは多孔質ニッケルが用いられてもよい。電気めっきの基材として用いられる多孔体は、例えば、電気めっきおよび加圧処理等のプロセスを経て第一電極が形成された際に基材108を構成できればよいため、その構造は特には限定されず、目的とする第一電極101の構造に応じて適宜選択され得る。一例として、電気めっきの基材として用いられる多孔体は、例えば0.014m2/cm3以上0.036m2/cm3以下の比表面積を有していてもよい。
 一例として、電気めっきの基材として、ニッケルメッシュを準備する。ニッケルメッシュを有機溶剤により予備脱脂した後、酸性溶剤に浸漬することで脱脂を行い、ニッケルメッシュ表面を活性化させる。活性化させたニッケルメッシュは、電流が印加できるように電源と接続される。電源と接続されたニッケルメッシュは、ビスマスめっき浴に浸漬される。ビスマスめっき浴として、例えば、Bi3+イオンと有機酸とを含む有機酸浴が用いられる。その後、電流密度および印加時間を制御してニッケルメッシュに電流を印加することにより、ニッケルメッシュ表面にBiを電気めっきする。電気めっき後に、ニッケルメッシュをめっき浴から回収し、マスキングを外した後に純水により洗浄、乾燥する。これらの方法により、ニッケルメッシュ表面にBiめっき層が作製される。なお、Biめっき層の作製に用いられるビスマスめっき浴は、特には限定されず、Bi単体薄膜を析出させることが可能な公知のビスマスめっき浴の中から適宜選択することができる。ビスマスめっき浴では、有機酸浴として、有機スルホン酸浴、グルコン酸およびエチレンジアミン四酢酸(EDTA)浴、またはクエン酸およびEDTA浴が用いられ得る。また、ビスマスめっき浴には、例えば硫酸浴が用いられてもよい。また、ビスマスめっき浴には添加剤が加えられていてもよい。
 電気めっきの基材として例えば多孔質ニッケルが用いられる場合であっても、上記と同様の方法でBiめっき層が作製され得る。
 Bi薄膜で構成された活物質は、例えば、6.0g/cm3以上かつ9.8g/cm3以下の密度を有する。Bi薄膜で構成された活物質の密度は、6.5g/cm3以上かつ9.8g/cm3以下であってもよく、7.0g/cm3以上かつ9.8g/cm3以下であってもよい。なお、Bi薄膜で構成された活物質の密度は、例えばアルキメデス法を用いて算出することによって求めることができる。一例として、活物質層109が実質的に活物質からなる薄膜によって構成されている場合、当該薄膜の少なくとも一部をサンプルとして取り出して、そのサンプルの密度を例えばアルキメデス法を用いて算出することによって、活物質の密度が得られる。
 以下、第一電極101が負極であり、かつ第二電極103が正極である場合を例に挙げて、本実施形態の電池1000の各構成についてより詳しく説明する。
 [第一電極]
 上述のとおり、第一電極101は、多孔体である基材108と、基材108の表面に位置する活物質層109とを有する。基材108および活物質層109の構成は、上述したとおりである。
 第一電極101は、負極として機能する。したがって、活物質層109は、リチウムイオンを吸蔵かつ放出する特性を有する負極活物質を含む。活物質層109はBiを含んでおり、このBiは負極活物質として機能する。
 Biは、リチウムと合金化する金属元素である。Biが負極活物質として機能する場合は、充電時にBiがリチウムと合金を形成することによって、リチウムが吸蔵される。すなわち、活物質層109において、電池1000の充電時に、リチウムビスマス合金が生成される。生成されるリチウムビスマス合金は、例えば、LiBiおよびLi3Biからなる群より選ばれる少なくとも1つを含む。すなわち、電池1000の充電時に、活物質層109は、例えばLiBiおよびLi3Biからなる群より選ばれる少なくとも1つを含む。電池1000の放電時に、リチウムビスマス合金からリチウムが放出され、リチウムビスマス合金がBiに戻る。
 負極活物質としてのBiは、電池1000の充電時および放電時に、例えば以下のように反応する。なお、以下の反応の例は、充電時に生成されるリチウムビスマス合金がLi3Biである場合の例である。
充電:Bi+3Li++3e-→Li3Bi
放電:Li3Bi→Bi+3Li++3e-
 活物質層109は、活物質として実質的にBiのみを含んでもよい。この場合、電池1000は、向上した容量および改善されたサイクル特性を有することができる。なお、「活物質層109が活物質として実質的にBiのみを含む」とは、例えば、活物質層109に含まれる活物質において、Bi以外の他の活物質が1質量%以下であることである。活物質層109は、活物質としてBiのみを含んでもよい。
 活物質層109は、固体電解質を含んでいなくてもよい。
 活物質層109は、基材108の表面に直接接して配置されていてもよい。さらに、電池1000が第一集電体104を備えている場合、基材108は、第一集電体104に接して配置されていてもよい。
 活物質層109は、薄膜状であってもよい。
 活物質層109は、めっき層であってもよい。活物質層109は、基材108の表面に直接接して設けられた、めっき層であってもよい。すなわち、上述のように、活物質層109は、基材108の表面上に形成されたBiめっき層であってもよい。
 活物質層109が、基材108の表面に直接接して設けられた、めっき層であると、活物質層109が基材108に強固に密着する。これにより、活物質層109が膨張および収縮を繰り返した場合に起こる第一電極101の集電特性の悪化をさらに抑制することができる。したがって、電池1000の充放電特性がより向上する。さらに、活物質層109がめっき層であると、活物質層109にリチウムと合金化するBiが高密度で含まれるため、さらなる高容量化も実現できる。
 活物質層109は、BiまたはBiを含む合金以外の他の材料を含んでいてもよい。なお、ここでのBiを含む合金とは、例えば、充電反応で生成するリチウムビスマス合金(例えば、LiBiおよびLi3Bi)である。
 活物質層109は、導電材をさらに含んでいてもよい。
 導電材として、炭素材料、金属、無機化合物、および導電性高分子が挙げられる。炭素材料として、黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、および炭素繊維が挙げられる。黒鉛として、天然黒鉛および人造黒鉛が挙げられる。天然黒鉛として、塊状黒鉛および鱗片状黒鉛が挙げられる。金属として、銅、ニッケル、アルミニウム、銀、および金が挙げられる。無機化合物として、タングステンカーバイド、炭化チタン、炭化タンタル、炭化モリブデン、ホウ化チタン、およびチッ化チタンが挙げられる。これらの材料は単独で用いられてもよいし、複数種が混合されて用いられてもよい。
 活物質層109は、結着剤をさらに含んでいてもよい。
 結着剤として、含フッ素樹脂、熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、および天然ブチルゴム(NBR)が挙げられる。含フッ素樹脂として、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、およびフッ素ゴムが挙げられる。熱可塑性樹脂として、ポリプロピレンおよびポリエチレンが挙げられる。これらの材料は単独で用いられてもよいし、複数種が混合されて用いられてもよい。
 活物質層109の厚みは、特に限定されず、例えば、0.1μm以上、100μm以下であってもよい。
 基材108の材料は、例えば、単体の金属または合金である。より具体的には、銅、クロム、ニッケル、チタン、白金、金、アルミニウム、タングステン、鉄、およびモリブデンからなる群より選ばれる少なくとも1つを含む単体の金属または合金であってもよい。基材100は、ステンレス鋼であってもよい。
 基材108は、ニッケル(Ni)を含んでもよい。
 基材108の構造については、上述のとおりである。基材108は、第一電極101の集電体または集電体の一部とみなされてもよい。
 第一電極101の厚みは、10μm以上かつ2000μm以下であってもよい。すなわち、表面上に活物質層109が設けられた、多孔体である基材108の全体の厚みが、10μm以上かつ2000μm以下であってもよい。第一電極101がこのような厚みを有することにより、電池が高出力で動作し得る。
 [第一集電体]
 本実施形態に係る電池1000において、第一集電体104は、設けられていてもよいし、設けられていなくてもよい。第一集電体104は、例えば、第一電極101と接して設けられる。第一集電体104は、例えば、第一電極101の基材108と接して設けられる。第一集電体104が設けられることにより、電池1000から高い効率で電気を取り出すことができる。
 第一集電体104の材料は、例えば、単体の金属または合金である。より具体的には、銅、クロム、ニッケル、チタン、白金、金、アルミニウム、タングステン、鉄、およびモリブデンからなる群より選ばれる少なくとも1つを含む単体の金属または合金であってもよい。第一集電体104は、ステンレス鋼であってもよい。
 第一集電体104は、ニッケル(Ni)を含んでもよい。
 第一集電体104は、板状または箔状であってもよい。高い導電性を確保しやすい観点から、第一集電体104は、金属箔であってもよい。第一集電体104の厚みは、例えば、5μm以上20μm以下であってもよい。
 第一集電体104は、積層膜であってもよい。
 [電解液]
 電解液102は、例えば、非プロトン性溶媒と、当該非プロトン性溶媒に溶解したリチウム塩とを含む。
 非プロトン性溶媒は、特には限定されない。非プロトン性溶媒の例は、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、またはフッ素溶媒である。環状炭酸エステル溶媒の例は、ビニレンカーボネート、フルオロエチレンカーボネート、エチレンカーボネート、プロピレンカーボネート、またはブチレンカーボネートである。鎖状炭酸エステル溶媒の例は、ジメチルカーボネート、エチルメチルカーボネート、またはジエチルカーボネートである。環状エーテル溶媒の例は、テトラヒドロフラン、2メチルテトラヒドロフラン、1,4-ジオキサン、または1,3-ジオキソランである。鎖状エーテル溶媒の例は、1,2-ジメトキシエタン、または1,2-ジエトキシエタンである。環状エステル溶媒の例は、γ-ブチロラクトンである。鎖状エステル溶媒の例は、酢酸メチルである。フッ素溶媒の例は、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、またはフルオロジメチレンカーボネートである。電解液102は、これらから選択される1種の溶媒を含んでいてもよいし、これらから選択される2種以上の非水溶媒の混合物を含んでいてもよい。
 電解液102は、非プロトン性溶媒として、ビニレンカーボネートおよびフルオロエチレンカーボネートからなる群より選択される少なくとも1つを含んでいてもよい。電解液102がこれらの溶媒を含むことにより、電池1000は、より改善されたサイクル特性を有する。
 リチウム塩の例は、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、またはLiC(SO2CF33である。これらから選択される1種のリチウム塩が単独で使用されてもよい。あるいは、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。
 [第二電極]
 第二電極103は、正極として機能する。第二電極103は、リチウムイオンのような金属イオンを吸蔵および放出可能な材料を含有する。当該材料は、例えば、正極活物質である。
 第二電極103は、正極活物質を含む。
 第二電極103は、第二集電体105の表面に、第二集電体105に直接接して配置されていてもよい。
 正極活物質として、例えば、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシ硫化物、または遷移金属オキシ窒化物、などが用いられうる。リチウム含有遷移金属酸化物の例としては、LiNi1-x-yCoxAly2((x+y)<1)、LiNi1-x-yCoxMny2((x+y)<1)またはLiCoO2、などが挙げられる。特に、正極活物質として、リチウム含有遷移金属酸化物を用いた場合には、電極の製造コストを安くでき、電池の平均放電電圧を高めることができる。例えば、正極活物質は、Li(Ni,Co,Mn)O2を含んでもよい。
 第二電極103は、固体電解質を含んでもよい。固体電解質としては、リチウム二次電池に用いられる公知の固体電解質が使用可能である。例えば、ハロゲン化物固体電解質、硫化物固体電解質、酸化物固体電解質、高分子固体電解質、または錯体水素化物固体電解質が用いられてもよい。
 ハロゲン化物固体電解質は、ハロゲン元素を含有する固体電解質を意味する。ハロゲン化物固体電解質は、ハロゲン元素だけでなく、酸素を含有していてもよい。ハロゲン化物固体電解質は、硫黄(S)を含まない。
 ハロゲン化物固体電解質は、例えば、下記の組成式(1)により、表される材料であってもよい。
 Liαβγ ・・・式(1)
 ここでα、β、およびγは、0より大きい値であり、Mは、Li以外の金属元素および半金属元素からなる群より選択される少なくとも1つであり、Xは、F、Cl、Br、およびIからなる群より選ばれる少なくとも1つである。
 「半金属元素」とは、B、Si、Ge、As、Sb、およびTeである。
 「金属元素」とは、水素を除く周期表1族から12族中に含まれるすべての元素、ならびに、B、Si、Ge、As、Sb、Te、C、N、P、O、S、およびSeを除く全ての第13族から第16族中に含まれる元素である。すなわち、ハロゲン元素と無機化合物を形成した際に、カチオンとなりうる元素群である。
 組成式(1)において、Mは、Yを含み、Xは、ClおよびBrを含んでもよい。
 硫化物固体電解質は、硫黄(S)を含有する固体電解質を意味する。硫化物固体電解質は、硫黄だけでなく、ハロゲン元素を含有していてもよい。
 硫化物固体電解質としては、例えば、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、またはLi10GeP212などが用いられうる。
 酸化物固体電解質としては、例えば、LiTi2(PO43およびその元素置換体を代表とするNASICON型固体電解質、(LaLi)TiO3系のペロブスカイト型固体電解質、Li14ZnGe416、Li4SiO4、LiGeO4およびその元素置換体を代表とするLISICON型固体電解質、Li7La3Zr212およびその元素置換体を代表とするガーネット型固体電解質、Li3PO4およびそのN置換体、ならびに、LiBO2およびLi3BO3などのLi-B-O化合物をベースとして、Li2SO4、Li2CO3などが添加されたガラスまたはガラスセラミックス、などが用いられうる。
 高分子固体電解質としては、例えば、高分子化合物と、リチウム塩との化合物が用いられうる。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子化合物は、リチウム塩を多く含有することができる。このため、イオン導電率をより高めることができる。リチウム塩としては、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、およびLiC(SO2CF33、などが使用されうる。例示されたリチウム塩から選択される1種のリチウム塩が、単独で使用されうる。もしくは、例示されたリチウム塩から選択される2種以上のリチウム塩の混合物が使用されうる。
 錯体水素化物固体電解質としては、例えば、LiBH4-LiI、LiBH4-P25、などが用いられうる。
 正極活物質は、0.1μm以上かつ100μm以下のメジアン径を有していてもよい。正極活物質が0.1μm以上のメジアン径を有する場合、正極活物質および固体電解質が良好な分散状態を形成できる。これにより、電池の充放電特性が向上する。正極活物質が100μm以下のメジアン径を有する場合、リチウム拡散速度が向上する。これにより、電池が高出力で動作し得る。
 正極活物質は、固体電解質よりも大きいメジアン径を有していてもよい。これにより、正極活物質および固体電解質が良好な分散状態を形成できる。
 電池のエネルギー密度および出力の観点から、第二電極103において、正極活物質の体積および固体電解質の体積の合計に対する正極活物質の体積の比は、0.30以上かつ0.95以下であってもよい。
 固体電解質が正極活物質と反応するのを防ぐために、正極活物質の表面には、被覆層が形成されてもよい。これにより、電池の反応過電圧の上昇を抑制できる。被覆層に含まれる被覆材料の例は、硫化物固体電解質、酸化物固体電解質、またはハロゲン化物固体電解質である。
 第二電極103の厚みは、10μm以上かつ500μm以下であってもよい。第二電極103の厚みが10μm以上である場合、十分な電池のエネルギー密度を確保し得る。第二電極103の厚みが500μm以下である場合、電池が高出力で動作し得る。
 第二電極103は、電子導電性を高める目的で、導電材を含んでもよい。
 第二電極103は、結着剤を含んでもよい。
 導電材および結着剤として、第一電極101に使用可能な材料と同じ材料が使用されてもよい。
 第二電極103は、リチウムイオンの授受を容易にし、電池の出力特性を向上する目的で、非水電解液、ゲル電解質、またはイオン液体を含有していてもよい。
 非水電解液は、非水溶媒および当該非水溶媒に溶けたリチウム塩を含む。非水溶媒の例およびリチウム塩の例は、電解液の説明において例示した溶媒およびリチウム塩の例と同じである。リチウム塩の濃度は、例えば、0.5mol/リットル以上2mol/リットル以下の範囲にある。
 ゲル電解質として、非水電解液を含浸させたポリマー材料が使用され得る。ポリマー材料の例は、ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビニリデン、ポリメチルメタクリレート、またはエチレンオキシド結合を有するポリマーである。
 イオン液体に含まれるカチオンの例は、(i)テトラアルキルアンモニウムまたはテトラアルキルホスホニウムのような脂肪族鎖状4級塩類、(ii)ピロリジニウム類、モルホリニウム類、イミダゾリニウム類、テトラヒドロピリミジニウム類、ピペラジニウム類、またはピペリジニウム類のような脂肪族環状アンモニウム、または(iii)ピリジニウム類またはイミダゾリウム類のような含窒素ヘテロ環芳香族カチオンである。
 イオン液体に含まれるアニオンの例は、PF6 -、BF4 -、SbF6 -、AsF6 -、SO3CF3 -、N(SO2CF32 -、N(SO2252 -、N(SO2CF3)(SO249-、またはC(SO2CF33 -である。
 イオン液体はリチウム塩を含有してもよい。
 [第二集電体]
 本実施形態に係る電池1000において、第二集電体105は、設けられていてもよいし、設けられていなくてもよい。第二集電体105は、例えば、第二電極103と接して設けられる。第二集電体105が設けられることにより、電池1000から高い効率で電気を取り出すことができる。
 第二集電体105の材料は、例えば、単体の金属または合金である。より具体的には、銅、クロム、ニッケル、チタン、白金、金、アルミニウム、タングステン、鉄、およびモリブデンからなる群より選ばれる少なくとも1つを含む単体の金属または合金であってもよい。第二集電体105は、ステンレス鋼であってもよい。
 第二集電体105は、ニッケル(Ni)を含んでもよい。
 第二集電体105は、板状または箔状であってもよい。高い導電性を確保しやすい観点から、第二集電体105は、金属箔であってもよい。第二集電体105の厚みは、例えば、5μm以上20μm以下であってもよい。
 [セパレータ]
 セパレータ106は、リチウムイオン伝導性を有している。リチウムイオンの通過が許容される限り、セパレータ106の材料は特に限定されない。セパレータ106の材料は、固体電解質、ゲル電解質、リチウムカチオン交換樹脂などのイオン交換樹脂膜、半透膜及び多孔質膜からなる群より選ばれる少なくとも1つでありうる。これらの材料でセパレータ106が作られていると、電池1000の安全性を十分に確保できる。固体電解質としては、Li2S-P25などの硫化物固体電解質、Li7La3Zr212(LLZ)などの酸化物固体電解質などが挙げられる。ゲル電解質としては、PVdFなどのフッ素樹脂を含むゲル電解質が挙げられる。イオン交換樹脂膜としては、カチオン交換膜、アニオン交換膜などが挙げられる。多孔質膜としては、ポリオレフィン樹脂製の多孔質膜、ガラス繊維を不織布に織り込むことによって得られたガラスペーパーからなる多孔質膜などが挙げられる。
 [外装]
 外装107は、例えば、アルミニウム箔などの金属箔をポリエチレンテレフタレート(PET)フィルムなどの樹脂フィルムでラミネートすることによって得られた材料で作られている。外装107は、樹脂製または金属製の容器であってもよい。
 上記においては、第一電極101が負極であって、第二電極103が正極である構成例について説明したが、第一電極101が正極であってもよく、第二電極103は負極であってもよい。
 第一電極101が正極であり、第二電極103が負極である場合、活物質層109は、正極活物質層である。すなわち、活物質層109に含まれるBiが、正極活物質として機能する。この場合、負極である第二電極103は、例えばリチウム金属から構成される。
 電池1000は、第一電極101、電解液102、第二電極103を基本構成として、大気および水分が混入しないように密閉容器内に封入する。電池1000の形状は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、および積層型、などが挙げられる。
 以下、実施例および参考例を用いて、本開示の詳細が開示される。以下の実施例は一例であって、本開示は以下の実施例のみに限定されない。
 (実施例1)
 <第一電極の作製>
 前処理として、ニッケルメッシュ(2cm×2cm、厚み:50μm、株式会社ニラコ製「NI-318200」)を有機溶剤により予備脱脂した後、酸性溶剤に浸漬することで脱脂を行い、ニッケルメッシュ表面を活性化させた。メタンスルホン酸1.0mol/Lに、可溶性ビスマス塩としてメタンスルホン酸ビスマスをBi3+イオンが0.18mol/Lとなる様に加えて、めっき浴が作製された。活性化させたニッケルメッシュは、電流を印加できるように電源に接続した後、めっき浴内に浸漬させた。その後、電流密度を2A/dm2に制御することにより、ニッケルメッシュの片面に、およそ1μmの厚みとなるようにBiを電気めっきした。電気めっき後に、ニッケルメッシュを酸性浴から回収した後に純水により洗浄、乾燥した。
 <試験セルの作製>
 作用極として第一電極が用いられた。対極としてLi金属が用いられた。作用極は、二次電池の負極に対応する。Li金属は、微多孔性セパレータ(旭化成株式会社、セルガード3401)で二重に被覆された。電解液として、LiPF6を1.0モル/Lの濃度でビニレンカーボネート(VC)に溶解させた溶液を準備した。このような作用極、対極、および電解液を用いて、実施例1の試験セルとしての電池を組み立てた。なお、ここで作製された試験セルは、作用極および対極を使用した単極試験セルであり、二次電池における電極の一方の極の性能を試験するために用いられる。詳しくは、作用極には試験対象の電極が用いられ、対極には作用極の反応を賄うに十分な量の適切な活物質が用いられる。本試験セルは、第一電極の負極としての性能を試験するものなので、通常用いられているように大過剰のLi金属が対極として用いられた。このような試験セルを用いて性能が試験された負極は、例えば、上述の実施形態において説明したような正極活物質、例えばLiを含有した遷移金属酸化物等を含む正極と組み合わせることによって、二次電池として使用され得る。
 <充放電サイクル試験>
 試験セルに対し、充放電サイクル試験を行った。0.6mA(0.15mA/cm2)(0.5IT相当)の定電流値で、充電は0Vまで、放電は2Vまで実施した。充電および放電を1サイクルとして充放電が繰り返し行われ、サイクル特性が評価された。充放電サイクル試験は、25℃で実施された。図3は、実施例1に係る試験セルのサイクル数と放電容量密度との関係を示すグラフである。実施例1のセルは、サイクル数20で容量維持率が50%程度に低下したものの、その後は緩やかに低下し、サイクル数100でも容量維持率30%程度を維持していた。
 (実施例2)
 <第一電極の作製>
 前処理として、多孔質ニッケル(2cm×2cm、厚み:1.6mm、株式会社ニラコ製「NI-318161」)を有機溶剤により予備脱脂した後、酸性溶剤に浸漬することで脱脂を行い、多孔質ニッケルの表面を活性化させた。メタンスルホン酸1.0mol/Lに、可溶性ビスマス塩としてメタンスルホン酸ビスマスをBi3+イオンが0.18mol/Lとなるように加えて、めっき浴が作製された。活性化させた多孔質ニッケルは、電流を印加できるように電源に接続した後、めっき浴内に浸漬させた。その後、電流密度を2A/dm2に制御することにより、多孔質ニッケル表面に、およそ1μmの厚みとなるようにBiを電気めっきした。電気めっき後に、多孔質ニッケルを酸性浴から回収した後に純水により洗浄、乾燥した。
 <試験セルの作製>
 実施例2の第一電極が作用極として用いられた。これ点以外は、実施例1と同様の方法で試験セルが作製された。
 <充放電サイクル試験>
 試験セルに対し、充放電サイクル試験を行った。放電試験は、実施例1と同様の方法で行われた。図3は、実施例2に係る試験セルのサイクル数と放電容量密度との関係を示すグラフである。実施例2のセルは、サイクル数20で容量維持率が50%程度に低下したものの、その後は緩やかに低下し、サイクル数50でも容量維持率20%程度を維持していた。
 (参考例1)
 <第一電極の作製>
 前処理として、Ni箔を有機溶剤により予備脱脂した後、片面をマスキングして酸性溶剤に浸漬することで脱脂を行いNi箔表面を活性化させた。メタンスルホン酸1.0mol/Lに、可溶性ビスマス塩としてメタンスルホン酸ビスマスをBi3+イオンが0.18mol/Lとなるように加えて、めっき浴が作製された。活性化させた銅箔は、電流を印加できるように電源に接続した後、めっき浴内に浸漬させた。その後、電流密度を2A/dm2に制御することにより、マスキングをしていないNi箔表面に、およそ1μmの厚みとなるようにBiを電気めっきした。電気めっき後に、Ni箔を酸性浴から回収し、マスキングを外した後に純水により洗浄、乾燥し、2cm×2cmの大きさに打ち抜くことによって、第一電極が得られた。すなわち、参考例1の第一電極は、Ni箔からなる集電体上に、Biめっき層からなる活物質層が設けられた構成を有していた。
 <試験セルの作製>
 参考例1の第一電極が作用極として用いられた。この点以外は、実施例1と同様の方法で試験セルが作製された。
 <充放電サイクル試験>
 試験セルに対し、充放電サイクル試験を行った。充放電サイクル試験は、実施例1と同様の方法で行われた。図3は、参考例1に係る試験セルのサイクル数と放電容量密度との関係を示すグラフである。参考例1のセルでは、サイクル数20で容量維持率が大きく低下した。
 (参考例2)
 <第一電極の作製>
 Ni箔の代わりにCu箔を用いたこと以外は、参考例1と同様の方法で第一電極が作製された。
 <試験セルの作製>
 参考例2の第一電極が作用極として用いられた。この点以外は、実施例1と同様の方法で試験セルが作製された。
 <充放電サイクル試験>
 試験セルに対し、充放電サイクル試験を行った。充放電サイクル試験は、実施例1と同様の方法で行われた。図3は、参考例2に係る試験セルのサイクル数と放電容量密度との関係を示すグラフである。参考例2のセルでは、サイクル数20で容量維持率が大きく低下した。
 (実施例3)
 <試験セルの作製>
 電解液の溶媒をビニレンカーボネート(VC)からフルオロエチレンカーボネート(FEC)に変更した点を除き、実施例1と同様の方法で試験セルを作製した。
 <充放電サイクル試験>
 実施例3の試験セルを用いて、実施例1と同様の方法で充放電サイクル試験を行った。ただし、定電流値は0.05mAに変更された。なお、同じ条件で実施例1の試験セルについても充放電サイクル試験を行った。図4は、実施例1および実施例3の試験セルのサイクル数と放電容量密度との関係を示すグラフである。図4に示されているように、FECを溶媒に用いた場合、VCよりも優れたサイクル特性が得られた。
 (実施例4)
 <試験セルの作製>
 電解液の溶媒をビニレンカーボネート(VC)からエチレンカーボネート(EC)に変更した点を除き、実施例1と同様の方法で試験セルを作製した。
 <充放電サイクル試験>
 実施例4の試験セルを用いて、実施例1と同様の方法で充放電サイクル試験を行った。ただし、定電流値は0.05mAに変更された。なお、本実施例では、放電電圧を1.4Vまでとした充放電サイクル試験も行った。図4は、実施例4の試験セルのサイクル数と放電容量密度との関係を示すグラフである。
 (実施例5)
 <試験セルの作製>
 電解液の溶媒をビニレンカーボネート(VC)からプロピレンカーボネート(PC)に変更した点を除き、実施例1と同様の方法で試験セルを作製した。
 <充放電サイクル試験>
 実施例5の試験セルを用いて、実施例1と同様の方法で充放電サイクル試験を行った。ただし、定電流値は0.05mAに変更された。図4は、実施例5の試験セルのサイクル数と放電容量密度との関係を示すグラフである。
 (実施例6)
 <試験セルの作製>
 電解液の溶媒をビニレンカーボネート(VC)からメチルエチルカーボネート(MEC)に変更した点を除き、実施例1と同様の方法で試験セルを作製した。
 <充放電サイクル試験>
 実施例6の試験セルを用いて、実施例1と同様の方法で充放電サイクル試験を行った。ただし、定電流値は0.05mAに変更された。図4は、実施例6の試験セルのサイクル数と放電容量密度との関係を示すグラフである。
 (実施例7)
 <試験セルの作製>
 電解液の溶媒をビニレンカーボネート(VC)から、ECおよびMECの混合溶媒(EC:MEC=1:1(体積比))に変更した点を除き、実施例1と同様の方法で試験セルを作製した。
 <充放電サイクル試験>
 実施例7の試験セルを用いて、実施例1と同様の方法で充放電サイクル試験を行った。ただし、定電流値は0.05mAに変更され、かつ放電電圧は1.4Vまでとされた。図4は、実施例7の試験セルのサイクル数と放電容量密度との関係を示すグラフである。
 本開示の電池は、例えば、リチウム二次電池などとして、利用されうる。
 1000 電池
 101 第一電極
 102 電解液
 103 第二電極
 104 第一集電体
 105 第二集電体
 106 セパレータ
 107 外装
 108 基材
 109 活物質層

Claims (10)

  1.  第一電極と、
     第二電極と、
     電解液と、
    を備え、
     前記第一電極は、
      多孔体である基材と、
      前記基材の表面に位置する活物質層と、を有し、
     前記活物質層は、Biを含む、
    電池。
  2.  前記活物質層は、Bi単体を含む、
    請求項1に記載の電池。
  3.  前記活物質層は、前記Biを活物質の主成分として含む、
    請求項1または2に記載の電池。
  4.  前記活物質層は、活物質として実質的に前記Biのみを含む、
    請求項3に記載の電池。
  5.  前記活物質層は、LiBiおよびLi3Biからなる群より選択される少なくとも1つを含む、
    請求項1から4のいずれか一項に記載の電池。
  6.  前記基材は、CuおよびNiからなる群より選択される少なくとも1つを含む、
    請求項1から5のいずれか一項に記載の電池。
  7.  前記活物質層は、めっき層である、
    請求項1から6のいずれか一項に記載の電池。
  8.  前記電解液は、非プロトン性溶媒と、前記非プロトン性溶媒に溶解したリチウム塩と、を含む、
    請求項1から7のいずれか一項に記載の電池。
  9.  前記非プロトン性溶媒は、ビニレンカーボネートおよびフルオロエチレンカーボネートからなる群より選択される少なくとも1つを含む、
    請求項8に記載の電池。
  10.  前記第一電極は、負極であり、
     前記第二電極は、正極である、
    請求項1から9のいずれか一項に記載の電池。
PCT/JP2022/028979 2021-08-10 2022-07-27 電池 WO2023017736A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280052171.1A CN117716531A (zh) 2021-08-10 2022-07-27 电池
US18/294,194 US20240347715A1 (en) 2021-08-10 2022-07-27 Battery
EP22855799.7A EP4386894A1 (en) 2021-08-10 2022-07-27 Battery
JP2023541399A JPWO2023017736A1 (ja) 2021-08-10 2022-07-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-130970 2021-08-10
JP2021130970 2021-08-10

Publications (1)

Publication Number Publication Date
WO2023017736A1 true WO2023017736A1 (ja) 2023-02-16

Family

ID=85199959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028979 WO2023017736A1 (ja) 2021-08-10 2022-07-27 電池

Country Status (5)

Country Link
US (1) US20240347715A1 (ja)
EP (1) EP4386894A1 (ja)
JP (1) JPWO2023017736A1 (ja)
CN (1) CN117716531A (ja)
WO (1) WO2023017736A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002061863A1 (en) * 2001-01-31 2002-08-08 Korea Institute Of Science And Technology A lithium electrode dispersed in porous 3-dimensional current collector, its fabrication method and lithium battery comprising the same
JP3733065B2 (ja) 1999-10-22 2006-01-11 三洋電機株式会社 リチウム電池用電極及びリチウム二次電池
JP4898737B2 (ja) 2001-11-20 2012-03-21 キヤノン株式会社 リチウム二次電池用の負極材料、負極構造体及び二次電池
JP2013062114A (ja) * 2011-09-13 2013-04-04 Panasonic Corp 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池
JP2019164961A (ja) * 2018-03-20 2019-09-26 株式会社Gsユアサ 合金、負極活物質、負極及び非水電解質蓄電素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733065B2 (ja) 1999-10-22 2006-01-11 三洋電機株式会社 リチウム電池用電極及びリチウム二次電池
WO2002061863A1 (en) * 2001-01-31 2002-08-08 Korea Institute Of Science And Technology A lithium electrode dispersed in porous 3-dimensional current collector, its fabrication method and lithium battery comprising the same
JP4898737B2 (ja) 2001-11-20 2012-03-21 キヤノン株式会社 リチウム二次電池用の負極材料、負極構造体及び二次電池
JP2013062114A (ja) * 2011-09-13 2013-04-04 Panasonic Corp 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池
JP2019164961A (ja) * 2018-03-20 2019-09-26 株式会社Gsユアサ 合金、負極活物質、負極及び非水電解質蓄電素子

Also Published As

Publication number Publication date
EP4386894A1 (en) 2024-06-19
US20240347715A1 (en) 2024-10-17
JPWO2023017736A1 (ja) 2023-02-16
CN117716531A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
US9065139B2 (en) Fiber electrode for lithium secondary battery, fabrication method therefor, and lithium secondary battery including fiber electrode
JP7140812B2 (ja) 全固体二次電池用負極層、それを含む全固体二次電池、及びその製造方法
JP7551169B2 (ja) リチウム2次電池
US20240030419A1 (en) Battery and method for manufacturing electrode
US20240030418A1 (en) Battery and method for manufacturing electrode
US20230343998A1 (en) Battery
WO2022224571A1 (ja) 電池
WO2023017736A1 (ja) 電池
WO2023017735A1 (ja) 電池
WO2023017672A1 (ja) 電池
WO2022163038A1 (ja) 電池
WO2022163037A1 (ja) 電池
WO2023106126A1 (ja) 電池
WO2023145426A1 (ja) 電池および電極の製造方法
WO2023017673A1 (ja) 電池
WO2023074590A1 (ja) 電池
CN115548342B (zh) 一种3D TiC复合材料及其制备方法和应用
WO2012097456A1 (en) Ion-exchange battery with a plate configuration
US20220181613A1 (en) Anti-dendrite negative electrodes, and the electrochemical cells containing them
Chen Surface and Structure Engineering for Next Generation Lithium Metal Batteries
CN117121231A (zh) 电池
CN117501472A (zh) 电池
CN116848664A (zh) 电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855799

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023541399

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280052171.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022855799

Country of ref document: EP

Effective date: 20240311