WO2019230279A1 - リチウム二次電池 - Google Patents

リチウム二次電池 Download PDF

Info

Publication number
WO2019230279A1
WO2019230279A1 PCT/JP2019/017412 JP2019017412W WO2019230279A1 WO 2019230279 A1 WO2019230279 A1 WO 2019230279A1 JP 2019017412 W JP2019017412 W JP 2019017412W WO 2019230279 A1 WO2019230279 A1 WO 2019230279A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium
active material
alloy
electrode active
Prior art date
Application number
PCT/JP2019/017412
Other languages
English (en)
French (fr)
Inventor
藤本 正久
伊藤 修二
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019547733A priority Critical patent/JP6902742B2/ja
Priority to EP19811321.9A priority patent/EP3806221A4/en
Priority to CN201980013318.4A priority patent/CN111727525A/zh
Publication of WO2019230279A1 publication Critical patent/WO2019230279A1/ja
Priority to US16/935,205 priority patent/US20200350629A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/44Alloys based on cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/463Aluminium based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This disclosure relates to a lithium secondary battery.
  • lithium secondary batteries vary depending on the type of active material. For example, when lithium metal is used as the negative electrode active material, a high energy density lithium secondary battery can be obtained. However, when lithium metal is used as the negative electrode active material, the lithium metal may be deposited in a dendrite shape when the lithium secondary battery is charged, thereby causing an internal short circuit. Since the deposited lithium metal is generated by atomic groups, it is very active. The deposited lithium metal reacts with the electrolyte solvent and becomes an inactive organolithium compound, so that there is a problem that the charge / discharge efficiency is lowered. Various types of solvents have been studied in order to suppress the reactivity with the solvent, but an excellent solvent notable has not been found.
  • lithium metal when graphite is used as the negative electrode active material, lithium metal can be prevented from precipitating in a dendrite state during charging.
  • the reaction in which lithium ions are inserted between the graphite layers and the reaction in which lithium ions are desorbed from the graphite layers are topotactic reactions and are excellent in reversibility. Because of these advantages, lithium secondary batteries using graphite as a negative electrode active material have been put into practical use.
  • Lithium secondary batteries generally use a carbonate as a solvent because of the wide potential window (reduction resistance, oxidation resistance), viscosity, and ionic conductivity when a lithium salt is dissolved.
  • the solvent is decomposed and lithium ions are not inserted.
  • insertion of lithium ions is possible in unsubstituted ethylene carbonate, chloroethylene carbonate substituted with halogen, fluoroethylene carbonate, and chain carbonate.
  • the theoretical capacity density of lithium metal is 3884 mAh / g.
  • the theoretical capacity density of graphite is 372 mAh / g, which is about 1/10 of the theoretical capacity density of lithium metal.
  • the capacity density of graphite in an actual lithium secondary battery is also close to the theoretical capacity density, and it is difficult to further increase the capacity of a lithium secondary battery using graphite as a negative electrode active material.
  • Materials that form an alloy with lithium are attracting attention as negative electrode active materials that can replace graphite.
  • materials for forming an alloy with lithium aluminum, silicon, tin and the like are known.
  • the theoretical capacity density of these materials is much larger than the theoretical capacity density of graphite.
  • lithium secondary batteries using these materials have a problem of low charge / discharge reversibility.
  • the present disclosure provides a lithium secondary battery having excellent reversibility using a material that forms an alloy with lithium.
  • the negative electrode includes a material that forms an alloy with lithium during charging,
  • the electrolytic solution contains lithium ions and their counter anions,
  • the electrolytic solution contains at least one selected from the group consisting of phenanthrene, biphenyl, triphenylene, acenaphthene, acenaphthylene, fluoranthene, and benzyl,
  • the electrolytic solution contains, as a solvent, at least one selected from the group consisting of cyclic ether, glyme and sulfolane.
  • a lithium secondary battery is provided.
  • a lithium secondary battery having excellent reversibility can be provided.
  • FIG. 1 is a schematic cross-sectional view of a lithium secondary battery according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view of a potential measurement cell according to an embodiment of the present disclosure.
  • FIG. 3 is a graph showing the relationship between the ratio of the volume of triglyme to the volume of the solvent of the electrolytic solution and the value of the potential of the potential measuring cell in the potential measuring cells 1 to 9.
  • FIG. 4A is a graph showing the charge / discharge characteristics of the battery 10.
  • FIG. 4B is an image of aluminum before being put into the battery 10.
  • FIG. 4C is an image of aluminum after being put into the battery 10.
  • FIG. 5 is a graph showing the charge / discharge characteristics of the battery 18.
  • An anode using an alloying material expands when lithium is occluded and contracts when lithium is released. When the expansion and contraction are repeated, the alloying material is pulverized and peeled off from the negative electrode current collector. Even if the alloying material stays in the negative electrode, electrical contact between the alloying material and the negative electrode current collector cannot be obtained, and charging / discharging becomes difficult. That is, when the battery expands during charging, almost all of the active material portion is separated from the current collector at that time, and almost no discharge is possible. This phenomenon is the main cause of the poor reversibility of lithium secondary batteries using alloyed materials.
  • the inventor has intensively studied a technique for overcoming the above-described problems caused by the charging / discharging mechanism of the alloying material. As a result, the following lithium secondary battery of the present disclosure has been completed.
  • the lithium secondary battery according to one embodiment of the present disclosure has the following configuration.
  • the negative electrode current collector includes a material that forms an alloy with lithium during charging,
  • the electrolytic solution contains lithium ions and their counter anions,
  • the electrolytic solution contains at least one selected from the group consisting of phenanthrene, biphenyl, triphenylene, acenaphthene, acenaphthylene, fluoranthene, and benzyl,
  • the electrolytic solution contains at least one selected from the group consisting of cyclic ether, glyme and sulfolane as a solvent.
  • charging and discharging of the lithium secondary battery is performed through at least one selected from the group consisting of phenanthrene, biphenyl, triphenylene, acenaphthene, acenaphthylene, fluoranthene, and benzyl. It can be done reliably.
  • a lithium secondary battery having a high energy density and excellent reversibility can be provided while using a high-capacity alloying material as the negative electrode active material.
  • the cyclic ether may contain at least one selected from the group consisting of 2-methyltetrahydrofuran, tetrahydrofuran, 1,3-dioxolane and 4-methyl-1,3-dioxolane.
  • the glyme may include at least one selected from the group consisting of monoglyme, diglyme, triglyme, tetraglyme and polyethylene glycol dimethyl ether. Thereby, a lithium secondary battery having excellent reversibility can be provided.
  • the sulfolane may contain 3-methyl sulfolane. Thereby, a lithium secondary battery having excellent reversibility can be provided.
  • the negative electrode active material may contain Al, a LiAl alloy may be generated during charging, and the composition of the LiAl alloy is at least one selected from the group consisting of LiAl, Li 2 Al 3 and Li 4 Al 5. It may be one.
  • the negative electrode active material may contain Zn, and a LiZn alloy may be generated during charging, and the composition of the LiZn alloy is made of Li 2 Zn 3 , LiZn 2 , Li 2 Zn 5 , LiZn 4 and LiZn. It may be at least one selected from the group.
  • the negative electrode active material may contain Si, and a LiSi alloy may be generated during charging.
  • the composition of the LiSi alloy is Li 22 Si 5 , Li 13 Si 4 , Li 7 Si 3, and Li 12 Si 7. It may be at least one selected from the group consisting of
  • the negative electrode active material may contain Sn, and a LiSn alloy may be generated during charging.
  • the composition of the LiSn alloy is Li 22 Sn 5 , Li 7 Sn 2 , Li 13 Sn 5 , Li 7 Sn 3.
  • Li 5 Sn 2 , LiSn and Li 2 Sn 5 may be at least one selected from the group consisting of Li 5 Sn 2 and Li 2 Sn 5 .
  • the negative electrode active material may contain Ge, a LiGe alloy may be generated during charging, and the composition of the LiGe alloy is at least one selected from the group consisting of Li 5 Ge 22 and Li 3 Ge. May be.
  • the negative electrode active material may contain Cd, a LiCd alloy may be generated during charging, and the composition of the LiCd alloy may be at least one selected from the group consisting of LiCd 3 and Li 3 Cd. Good.
  • the negative electrode active material may contain Bi, a LiBi alloy may be generated during charging, and the composition of the LiBi alloy may be at least one selected from the group consisting of LiBi and Li 3 Bi. .
  • a lithium secondary battery having a high energy density can be obtained.
  • the separator may include at least one selected from the group consisting of a solid electrolyte, a gel electrolyte, an ion exchange resin membrane, a semipermeable membrane, and a porous membrane.
  • the negative electrode active material may be disposed away from the negative electrode current collector. This increases the degree of freedom in designing the shape and dimensions of the negative electrode current collector and the negative electrode active material.
  • FIG. 1 shows a cross section of a lithium secondary battery according to an embodiment of the present disclosure.
  • the lithium secondary battery 10 includes a positive electrode 20, a negative electrode 30, a separator 40, and a first electrolytic solution 50.
  • the separator 40 is disposed between the positive electrode 20 and the negative electrode 30.
  • the first electrolytic solution 50 includes a solvent and a negative electrode mediator, and is in contact with the negative electrode 30.
  • the negative electrode mediator is dissolved in the solvent of the first electrolytic solution 50.
  • the negative electrode 30 includes a negative electrode current collector 31 and a negative electrode active material 32. The redox reaction of the negative electrode active material 32 in the negative electrode 30 proceeds via the negative electrode mediator.
  • the lithium secondary battery 10 can be reliably charged and discharged through the negative electrode mediator even if the negative electrode active material 32 is pulverized.
  • the lithium secondary battery 10 having a high energy density and excellent cycle characteristics can be provided while using a high-capacity alloying material as the negative electrode active material 32.
  • an active material having a relatively low equilibrium potential (vs. Li / Li + ) as the negative electrode active material 32, a material having a relatively low equilibrium potential (vs. Li / Li + ) can be used as the negative electrode mediator.
  • An active material having a relatively low equilibrium potential as the negative electrode active material 32 is, for example, aluminum.
  • a substance having a relatively low equilibrium potential as the negative electrode mediator is, for example, a condensed aromatic compound.
  • the compound of lithium and the negative electrode active material 32 may be an alloy or a graphite intercalation compound such as C 6 Li.
  • lithium may be dissolved in the first electrolytic solution 50.
  • the negative electrode active material 32 may be a material having a property of inserting and extracting lithium.
  • the negative electrode mediator When the lithium secondary battery 10 is charged, the negative electrode mediator is reduced on the surface of the negative electrode current collector 31. The reduced negative electrode mediator is oxidized by the negative electrode active material 32. The negative electrode active material 32 occludes lithium.
  • the negative electrode active material 32 that occludes lithium reduces the negative electrode mediator and releases lithium.
  • the reduced negative electrode mediator is oxidized on the surface of the negative electrode current collector 31.
  • the negative electrode active material 32 has a property of reversibly occluding and releasing lithium and / or lithium ions, for example. Thereby, the material design of the negative electrode active material 32 becomes easier. Moreover, higher capacity can be realized.
  • the negative electrode mediator may be reduced on the surface of the negative electrode current collector 31.
  • the negative electrode mediator When the lithium secondary battery 10 of the present embodiment is discharged, the negative electrode mediator may be oxidized on the surface of the negative electrode current collector 31.
  • the lithium secondary battery 10 of this embodiment can realize a higher energy density and a higher capacity. That is, by reducing the negative electrode mediator with the negative electrode current collector 31 during charging, the amount of the negative electrode mediator oxidized by the negative electrode current collector 31 during discharging can be increased. Furthermore, the amount of the negative electrode mediator reduced by the negative electrode current collector 31 during charging can be increased by oxidizing the negative electrode mediator with the negative electrode current collector 31 during discharging. Thereby, the capacity
  • the negative electrode mediator is oxidized or reduced by the negative electrode current collector 31.
  • the negative electrode active material 32 when the first electrolytic solution 50 comes into contact with the negative electrode active material 32, a reduction reaction of the negative electrode mediator by the negative electrode active material 32 occurs or an oxidation reaction of the negative electrode mediator by the negative electrode active material 32 occurs.
  • the negative electrode mediator is a compound that dissolves in the solvent of the first electrolytic solution 50 together with lithium, it gives the first electrolytic solution 50 an equilibrium potential equal to or lower than the upper limit potential at which the compound of lithium and the negative electrode active material 32 is formed.
  • the negative electrode mediator may be a condensed aromatic compound.
  • the first electrolytic solution 50 in which the condensed aromatic compound is dissolved has a property of releasing lithium solvated electrons and dissolving lithium as a cation.
  • the condensed aromatic compound has a property of receiving electrons emitted when lithium is dissolved in the solvent of the first electrolytic solution 50 as solvated electrons and dissolving it in the solvent of the first electrolytic solution 50.
  • the lithium secondary battery 10 of the present embodiment can realize a negative electrode mediator having a base property in terms of potential.
  • the solution containing the condensed aromatic compound has an ability to dissolve lithium.
  • the solution containing the condensed aromatic compound may be, for example, an ether solution. Lithium tends to release electrons and become cations. For this reason, electrons are transferred to the condensed aromatic compound in the solution to become a cation and dissolve in the solution. At this time, the condensed aromatic compound that has received the electrons solvates with the electrons. By solvating with electrons, the condensed aromatic compound behaves as an anion. For this reason, the solution itself containing the condensed aromatic compound has ionic conductivity.
  • an equivalent amount of Li cations and electrons exist in the solution containing the condensed aromatic compound. For this reason, the solution itself containing the condensed aromatic compound can have a highly reducing property, in other words, a potential-potential property.
  • an electrode that is chemically inert to lithium is immersed in the solvent of the first electrolyte solution 50 in which the condensed aromatic compound is dissolved, and the potential of the electrode with respect to lithium metal is measured, a fairly base potential is observed. Is done. The observed potential is determined by the degree of solvation of the condensed aromatic compound and the electron, that is, the type of the condensed aromatic compound.
  • the configuration of the lithium secondary battery 10 will be described in detail.
  • the lithium secondary battery 10 includes a container 60.
  • the container 60 is sealed.
  • the container 60 is made of a material having insulating properties and corrosion resistance.
  • the positive electrode 20, the negative electrode 30, the separator 40, and the first electrolyte solution 50 are disposed inside the container 60.
  • the inside of the container 60 is divided into two regions 60 a and 60 b by a separator 40.
  • the positive electrode 20 is disposed in one region 60a of the two regions 60a and 60b, and the negative electrode 30 is disposed in the other region 60b.
  • the positive electrode 20 has a positive electrode current collector 21 and a positive electrode active material layer 22.
  • the positive electrode active material layer 22 is disposed on the positive electrode current collector 21.
  • the positive electrode current collector 21 and the positive electrode active material layer 22 are in electrical contact.
  • the positive electrode current collector 21 is made of, for example, a material having electronic conductivity such as stainless steel, copper, nickel, or carbon.
  • the shape of the positive electrode current collector 21 is not particularly limited, and is, for example, a plate shape.
  • the positive electrode active material layer 22 is a layer containing a positive electrode active material.
  • the positive electrode active material may be a material having a property of reversibly occluding and releasing lithium ions.
  • Examples of the positive electrode active material include transition metal oxides, fluorides, polyanions, fluorinated polyanions, transition metal sulfides, and phosphorus oxides having an olivine structure.
  • Examples of the transition metal oxide include LiCoO 2 , LiNiO 2 , and Li 2 Mn 2 O 4 .
  • Examples of the phosphorus oxide include LiFePO 4 , LiNiPO 4 , and LiCoPO 4 .
  • the positive electrode active material layer 22 may include a plurality of types of positive electrode active materials. When the positive electrode active material layer 22 contains lithium beforehand, the negative electrode active material 32 does not need to contain lithium. When the positive electrode active material 22 does not contain lithium, the negative electrode active material 32 should just contain lithium previously.
  • the positive electrode active material layer 22 may contain additives such as a conductive agent, an ion conduction auxiliary agent, and a binder as necessary.
  • the positive electrode 20 may be made of lithium metal. When lithium metal is used as the positive electrode 20, it is easy to control dissolution and precipitation as a metal positive electrode, and a high capacity can be realized.
  • the negative electrode 30 has a negative electrode current collector 31 and a negative electrode active material 32. Both the negative electrode current collector 31 and the negative electrode active material 32 are immersed in the first electrolytic solution 50. In the present embodiment, the negative electrode active material 32 is disposed away from the negative electrode current collector 31. According to such a configuration, the degree of freedom in designing the shapes and dimensions of the negative electrode current collector 31 and the negative electrode active material 32 is increased. Between the negative electrode current collector 31 and the negative electrode active material 32, there is a first electrolytic solution 50 including a negative electrode mediator. That is, the negative electrode active material 32 is not in direct contact with the negative electrode current collector 31, but the negative electrode active material 32 may be in contact with the negative electrode current collector 31.
  • the negative electrode current collector 31 has a surface that acts as a reaction field for the negative electrode mediator.
  • a material that is stable with respect to the first electrolyte solution 50 can be used as the negative electrode current collector 31.
  • a material that is stable against an electrochemical reaction that is an electrode reaction can be used as the negative electrode current collector 31.
  • a material having electronic conductivity such as metal or carbon can be used as the negative electrode current collector 31.
  • the metal include stainless steel, iron, copper, and nickel.
  • the negative electrode current collector 31 may have a structure with an increased surface area.
  • Examples of the structure having an increased surface area include a mesh, a nonwoven fabric, a surface roughened plate, and a sintered porous body. When the negative electrode current collector 31 has these structures, an oxidation reaction or a reduction reaction of the negative electrode mediator easily proceeds.
  • the negative electrode active material 32 includes, for example, a material that forms an alloy with lithium during charging. According to the alloying material shown below, the lithium secondary battery 10 having a high energy density is obtained.
  • the negative electrode active material 32 may contain Al.
  • a LiAl alloy is generated when the lithium secondary battery 10 is charged.
  • the composition of the LiAl alloy may be at least one selected from the group consisting of LiAl, Li 2 Al 3 and Li 4 Al 5 .
  • the negative electrode active material 32 may contain Zn.
  • a LiZn alloy is generated when the lithium secondary battery 10 is charged.
  • the composition of the LiZn alloy may be at least one selected from the group consisting of Li 2 Zn 3 , LiZn 2 , Li 2 Zn 5 , LiZn 4 and LiZn.
  • the negative electrode active material 32 may contain Si.
  • a LiSi alloy is generated when the lithium secondary battery 10 is charged.
  • the composition of the LiSi alloy may be at least one selected from the group consisting of Li 22 Si 5 , Li 13 Si 4 , Li 7 Si 3 and Li 12 Si 7 .
  • the negative electrode active material 32 may contain Sn.
  • a LiSn alloy is generated when the lithium secondary battery 10 is charged.
  • the composition of the LiSn alloy may be at least one selected from the group consisting of Li 22 Sn 5 , Li 7 Sn 2 , Li 13 Sn 5 , Li 7 Sn 3 , Li 5 Sn 2 , LiSn, and Li 2 Sn 5 .
  • the negative electrode active material 32 may contain Ge.
  • a LiGe alloy is generated when the lithium secondary battery 10 is charged.
  • the composition of the LiGe alloy may be at least one selected from the group consisting of Li 5 Ge 22 and Li 3 Ge.
  • the negative electrode active material 32 may contain Cd.
  • a LiCd alloy is generated when the lithium secondary battery 10 is charged.
  • the composition of the LiCd alloy may be at least one selected from the group consisting of LiCd 3 and Li 3 Cd.
  • the negative electrode active material 32 may contain Bi.
  • a LiBi alloy is generated when the lithium secondary battery 10 is charged.
  • the composition of the LiBi alloy may be at least one selected from the group consisting of LiBi and Li 3 Bi.
  • the negative electrode active material 32 may include at least one selected from the group consisting of Al, Zn, Si, Sn, Ge, Cd, and Bi.
  • the negative electrode active material 32 may include a carbon material such as graphite.
  • the shape of the negative electrode active material 32 is not particularly limited.
  • the negative electrode active material 32 may be in a powder form or a pellet form.
  • the negative electrode active material 32 may be hardened with a binder.
  • the binder include resins such as polyvinylidene fluoride, polypropylene, polyethylene, and polyimide.
  • the negative electrode active material 32 may be a material that is insoluble in the first electrolytic solution 50.
  • the separator 40 electrically isolates the positive electrode 20 and the negative electrode 30.
  • the separator 40 has lithium ion conductivity.
  • the separator 40 may be composed of at least one selected from the group consisting of a solid electrolyte, a gel electrolyte, an ion exchange resin membrane, a semipermeable membrane, and a porous membrane. When the separator 40 is made of these materials, the safety of the lithium secondary battery 10 can be sufficiently ensured.
  • Examples of the solid electrolyte include sulfide solid electrolytes such as Li 2 S—P 2 S 5 and oxide solid electrolytes such as Li 7 La 3 Zr 2 O 12 (LLZ).
  • Examples of the gel electrolyte include a gel electrolyte containing a fluorine resin such as PVdF.
  • Examples of the ion exchange resin membrane include a cation exchange membrane and an anion exchange membrane.
  • Examples of the porous membrane include a porous membrane made of polyolefin resin, and a porous membrane made of glass paper obtained by weaving glass fibers into a nonwoven fabric.
  • the separator 40 has a property of prohibiting passage of the negative electrode mediator included in the first electrolytic solution 50. Thereby, transfer of electrons between the positive electrode 20 and the negative electrode 30 via the negative electrode mediator can be prevented.
  • the first electrolytic solution 50 includes a solvent and a negative electrode mediator.
  • the first electrolytic solution 50 fills the region 60b where the negative electrode 30 is disposed.
  • the first electrolytic solution 50 may contain an electrolyte salt.
  • the electrolyte salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) ( SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiClO 4 , lithium bisoxalate borate and the like.
  • the lithium secondary battery 10 further includes a second electrolytic solution 52.
  • the second electrolytic solution 52 includes a solvent and an electrolyte salt.
  • the second electrolytic solution 52 fills the region 60a where the positive electrode 20 is disposed.
  • the positive electrode 20 is in contact with the second electrolytic solution 52.
  • the positive electrode 20a may be immersed in the second electrolytic solution 52.
  • the composition of the second electrolytic solution 52 is not particularly limited. It is not necessary that the second electrolytic solution 52 contains a mediator.
  • the composition of the second electrolytic solution 52 may be the same as the composition of the first electrolytic solution 50 except that no mediator is included.
  • a material that can be used as the solvent of the first electrolytic solution 50 can be used as the solvent of the second electrolytic solution 52.
  • a material that can be used as the electrolyte salt of the first electrolyte solution 50 can be used as the electrolyte salt of the second electrolyte solution 52.
  • the second electrolytic solution 52 may be replaced with a solid electrolyte having lithium ion conductivity.
  • the solid electrolyte having lithium ion conductivity include sulfide solid electrolytes such as Li 2 S—P 2 S 5 .
  • the separator 40 can be omitted.
  • the solvent of the first electrolytic solution 52 and the negative electrode mediator will be described in detail.
  • the mediator type negative electrode 30 can be configured.
  • the upper limit potential at which the LiAl alloy is formed is, for example, 0.18 Vvs. Li / Li + .
  • the negative electrode mediator is dissolved in a solvent of the first electrolytic solution 50 together with lithium, thereby allowing 0.18 Vvs. It is a compound that gives the first electrolytic solution 50 an equilibrium potential equal to or lower than Li / Li + .
  • the mediator-type negative electrode 30 can be configured.
  • the upper limit potential at which the LiSn alloy is formed is, for example, 0.25 Vvs. Li / Li + .
  • the negative electrode mediator is dissolved in a solvent of the first electrolytic solution 50 together with lithium, for example, so that 0.25 Vvs. It is a compound that gives the first electrolytic solution 50 an equilibrium potential equal to or lower than Li / Li + .
  • the negative electrode active material 32 contains graphite
  • the graphite contained in the negative electrode active material 32 reacts with lithium and is reduced to C 6 Li when the lithium secondary battery 10 is charged. Therefore, if a condensed aromatic compound showing a potential equal to or lower than the upper limit potential at which C 6 Li is formed is used as the negative electrode mediator, the mediator type negative electrode 30 can be configured.
  • the upper limit potential at which C 6 Li is formed is, for example, 0.15 Vvs. Li / Li + .
  • the negative electrode mediator is dissolved in a solvent of the first electrolytic solution 50 together with lithium, for example, so that 0.15 Vvs. It is a compound that gives the first electrolytic solution 50 an equilibrium potential equal to or lower than Li / Li + .
  • the above explanation regarding aluminum, tin and graphite also applies to Zn, Si, Ge, Cd, Pb, Bi and Sb.
  • the negative electrode mediator can be appropriately selected according to the upper limit potential at which LiZn, LiSi, LiGe, LiCd, LiPb, LiBi, and LiSb are formed.
  • Condensed aromatic compounds that generate a base potential include phenanthrene, biphenyl, o-terphenyl, triphenylene, acenaphthene, acenaphthylene, fluoranthene, 2,2′-bipyridyl, trans-stilbene, 2,4′-bipyridyl, 2,3 Examples include '-bipyridyl, cis-stilbene, propiophenone, butyrophenone, valerophenone, ethylenediamine, benzyl, and tetraphenylcyclopentadienone.
  • the condensed aromatic compound exhibiting a sufficiently low potential examples include phenanthrene, biphenyl, o-terphenyl, triphenylene, acenaphthene, acenaphthylene, fluoranthene and benzyl.
  • the negative electrode mediator includes at least one selected from the group consisting of phenanthrene, biphenyl, o-terphenyl, triphenylene, acenaphthene, acenaphthylene, fluoranthene, and benzyl.
  • the concentration of the negative electrode mediator in the first electrolytic solution 50 may be 0.001 mol / L or more and 2 mol / L or less.
  • the first electrolytic solution 50 may include at least one selected from the group consisting of cyclic ether, glyme, and sulfolane.
  • the first electrolytic solution 50 may be an ether solution.
  • ethers include cyclic ethers and glycol ethers.
  • the glycol ether may be a glyme represented by the composition formula CH 3 (OCH 2 CH 2 ) n OCH 3 . In the above composition formula, n is an integer of 1 or more.
  • the first electrolytic solution 50 may contain a mixture of cyclic ether and glyme or cyclic ether as a solvent.
  • an electrolyte containing a negative electrode mediator can be realized as the first electrolyte 50. That is, since the solution containing the negative electrode mediator is an ether solution having no electron conductivity, the ether solution itself can have properties as an electrolyte.
  • cyclic ether examples include tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), 1,3-dioxolane (1,3DO), 4-methyl-1,3-dioxolane (4Me1,3DO) and the like.
  • glyme examples include monoglyme (1,2-dimethoxyethane), diglyme (diethylene glycol dimethyl ether), triglyme (triethylene glycol dimethyl ether), tetraglyme (tetraethylene glycol dimethyl ether), pentaethylene glycol dimethyl ether, polyethylene glycol dimethyl ether, and the like.
  • the glyme may be a mixture of tetraglyme and pentaethylene glycol dimethyl ether.
  • Sulfolane includes 3-methylsulfolane.
  • the ratio between the volume of cyclic ether and the volume of glyme in the solvent of the first electrolytic solution 50 may be 10: 0 to 7: 3.
  • the negative electrode mediator solvated on the negative electrode current collector 31 is reduced to form a complex containing solvated electrons and Li cations.
  • the negative electrode active material 32 receives Li cations and solvated electrons, and a compound of lithium and the negative electrode active material 32 is formed.
  • the solvated negative electrode mediator is reduced again on the negative electrode current collector 31.
  • the negative electrode active material 32 is reduced to a compound of lithium and the negative electrode active material 32, and the solvated negative electrode mediator in the first electrolytic solution 50 is reduced. Thereby, charge of the lithium secondary battery 10 is complete
  • the solvated reductant of the negative electrode mediator in the first electrolytic solution 50 releases solvated electrons and Li cations on the negative electrode current collector 31.
  • the electrons move to the positive electrode 20 through an external circuit.
  • Li cations move to the positive electrode 20 through the separator 40.
  • the concentration of the negative electrode mediator that releases solvated electrons and Li cations increases in the first electrolytic solution 50. Thereby, the electric potential of the 1st electrolyte solution 50 rises.
  • Li cations and solvated electrons are supplied from the compound of lithium and the negative electrode active material 32 to the negative electrode mediator, and again the Li cations. Is formed. Discharge of the lithium secondary battery 10 is sustained by the composite containing the Li cation. When a Li cation and a solvated electron are released from a compound of lithium and the negative electrode active material 32, and a complex containing the Li cation in the first electrolyte solution 50 releases a Li cation and a solvated electron, a lithium secondary battery is obtained. 10 discharge is completed.
  • alkali metals such as lithium have a property of being dissolved in a specific solvent or solution.
  • solvents include amines such as ammonia, methylamine, and ethylamine.
  • aromatic ketones such as acetophenone and butyrophenone and solutions thereof, and certain aromatic ether solutions also have lithium metal solubility.
  • the lithium metal separates itself in the form of solvating the electrons on its 2S orbit with the solvent and dissolves as lithium ions. Electrons solvated with the solvent are called solvated electrons and behave like anions.
  • a single solvent such as amines, particularly ammonia, simply forms solvated electrons with the solvent, but in the case of aromatic ketone solutions or certain aromatic ether solutions, the solution components and solvated electrons. In order to dissolve lithium metal, all solution components are required.
  • the potential can be measured by placing the above-described solution between electrodes made of a stable transition metal (Cu, Fe, Ni, etc.) that does not react with lithium metal.
  • a stable transition metal Cu, Fe, Ni, etc.
  • Table 1 shows the results of potential measurement using copper foil as the transition metal, 2-methyltetrahydrofuran as the ether, and various substances dissolved in the ether.
  • the aromatic compound species is left as it is, and instead of ether, vinylene carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, fluoroethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate Lithium metal does not dissolve when lactones such as carbonate esters and ⁇ -butyrolactone are used. Such a solution therefore has no potential.
  • the negative electrode active material can be lithiated, that is, charged, by immersing the negative electrode active material in the lithium metal solution. It is.
  • the equilibrium potential of the negative electrode active material varies depending on the negative electrode active material species, it is necessary to select a suitable lithium metal solution potential according to the negative electrode active material species. That is, it is necessary to select components of the aromatic ether solution according to the negative electrode active material species.
  • Table 3 shows the results of measuring the potential of 2-methyltetrahydrofuran solutions of various aromatic compounds in which lithium metal was dissolved in the same manner as in Table 1.
  • lithium metal is generated, and at the same time, lithium is dissolved to form a lithium metal solution.
  • a lithium metal solution having a potential of less than 0.1 V is required.
  • a lithium metal solution include a 2-methyltetrahydrofuran solution of phenanthrene, biphenyl, triphenyl, acenaphthene, acenaphthyl, and fluoranthene, a dibutoxyethane solution of biphenyl, a triglyme solution of biphenyl, and the like.
  • lithium metal solution having a potential of less than 0.1 V is required.
  • the lithium metal solution include biphenyl diglyme solution and biphenyl tetraglyme solution in addition to the above solution.
  • the lithium alloying reaction proceeds if the potential of the lithium metal solution is sufficiently low relative to the equilibrium potential of the metal alloying with lithium, Lithium in the lithium metal solution is absorbed by the alloy metal.
  • the alloying reaction of lithium proceeds, and the lithium in the lithium metal solution is absorbed by the alloy metal.
  • the reaction in which a lithium metal solution is electrochemically generated by electrolytic reduction and the reaction in which lithium in the lithium metal solution is chemically absorbed by the alloy metal reach an equilibrium, and are constant.
  • the reaction proceeds at the potential of the lithium metal solution. Since lithiation of the alloy metal occurs chemically, the alloy metal only needs to be in contact with the lithium metal solution (if it is immersed), and it needs to be in contact with the electrode like a conventional lithium alloy negative electrode active material. There is no.
  • the alloy metal When the alloy metal absorbs lithium to the saturation composition, the alloy metal is fully charged. If charging (electrolytic reduction) continues further, lithium is absorbed up to the saturation concentration of the lithium metal solution, but when the saturation concentration is exceeded, lithium metal is deposited on the electrode, so the battery is fully charged at this point.
  • the charge capacity of the negative electrode is the sum of the charge capacity of the alloy metal and the charge capacity of the lithium metal solution, and the charge capacity is simply increased as compared with a conventional battery using the alloy metal as the negative electrode. However, the charge capacity of the alloy metal is overwhelmingly larger than the charge capacity of the lithium metal solution.
  • the potential of the lithium metal solution is determined based on the Nernst equation from the activity of solvated electrons.
  • discharging electrolytic oxidation
  • the activity of solvated electrons decreases, and the potential shifts in the noble direction.
  • the potential exceeds the equilibrium potential of the lithium alloy the lithium metal solution is chemically reduced by the lithium alloy, the potential of the lithium metal solution is shifted in a base direction, and the lithium alloy is oxidized. By repeating this, lithium is released from the alloy metal, and the alloy metal is oxidized.
  • the discharge capacity of the negative electrode is the sum of the discharge capacity of the alloy metal + the discharge capacity of the lithium metal solution, and the discharge capacity increases as compared with the conventional battery using the alloy metal as the negative electrode.
  • the discharge capacity of the alloy metal is overwhelmingly larger than the discharge capacity of the lithium metal solution.
  • the lithium secondary battery of the present disclosure charges and discharges the alloy metal by interposing a lithium metal solution.
  • the conventional lithium alloy negative electrode active material it expands at the time of charging and contracts at the time of discharging, so that it cannot be discharged without contact with the electrode (current collector) at the time of discharging.
  • the alloy metal can be charged and discharged without contact with the electrode (current collector). That is, it is possible to suppress a decrease in current collection due to volume expansion and contraction due to charge and discharge, which is a defect of the alloy negative electrode.
  • the lithium secondary battery of the present disclosure can be charged / discharged even if the negative electrode active material is pulverized, and reversibility that cannot be obtained satisfactorily with an alloy negative electrode is realized.
  • the negative electrode current collector 31 is made of stainless steel.
  • the first electrolytic solution 50 is an ether solution in which the negative electrode mediator is dissolved.
  • the negative electrode mediator is one type of condensed aromatic compound (hereinafter referred to as Md).
  • the negative electrode active material 32 is aluminum.
  • the positive electrode 20 includes a positive electrode current collector 21 made of stainless steel and a positive electrode active material layer 22 containing lithium iron phosphate (LiFePO 4 ) as a positive electrode active material.
  • Charging is performed by applying a voltage between the positive electrode current collector 21 and the negative electrode current collector 31.
  • reaction on the positive electrode side By applying voltage, the positive electrode 20 undergoes an oxidation reaction of the positive electrode active material. That is, lithium ions are released from the positive electrode active material. As a result, electrons are emitted from the positive electrode 20 to the outside of the lithium secondary battery 10.
  • LiFePO 4 ⁇ FePO 4 + Li + + e ⁇ A part of the generated lithium ions (Li + ) can move to the first electrolytic solution 50 through the separator 40.
  • the reduced negative electrode mediator is oxidized by the negative electrode active material 32. That is, the negative electrode active material 32 is reduced by the negative electrode mediator. Thereby, the negative electrode active material 32 reacts with lithium to become LiAl.
  • the negative electrode mediator does not change when viewed from the total reaction.
  • the negative electrode active material 32 located away from the negative electrode current collector 31 is in a charged state.
  • the above charging reaction can proceed until either the negative electrode active material 32 is in a charged state or the positive electrode active material is in a charged state.
  • the negative electrode active material 32 and the positive electrode active material are in a charged state.
  • Electrons are supplied to the positive electrode 20 from the outside of the lithium secondary battery 10 by the discharge of the lithium secondary battery 10. Thereby, in the positive electrode 20, a reduction reaction of the positive electrode active material occurs.
  • Li + + e ⁇ ⁇ LiFePO 4 Part of the lithium ions (Li + ) can be supplied from the first electrolytic solution 50 through the separator 40.
  • the discharge of the lithium secondary battery 10 causes an oxidation reaction of the negative electrode mediator on the negative electrode current collector 31. Thereby, electrons are emitted from the negative electrode current collector 31 to the outside of the lithium secondary battery 10.
  • the oxidized negative electrode mediator is reduced by the negative electrode active material 32. That is, the negative electrode active material 32 is oxidized by the negative electrode mediator. Thereby, the negative electrode active material 32 releases lithium.
  • the negative electrode mediator does not change when viewed from the total reaction.
  • the negative electrode active material 32 located away from the negative electrode current collector 31 is in a discharged state.
  • the above discharge reaction can proceed until either the negative electrode active material 32 is in a discharged state or the positive electrode active material is in a discharged state.
  • the solvent of the ether solution contained 2 methyltetrahydrofuran as the cyclic ether and further contained triglyme as glyme.
  • the ratio of the triglyme volume to the solvent volume of the ether solution was 0.2. In other words, the ratio of the volume of 2methyltetrahydrofuran to the volume of triglyme was 8: 2.
  • 1 mol / L LiPF 6 was dissolved as a supporting salt. In this way, a potential measuring cell 1 was produced.
  • FIG. 3 shows the potential (V vs. Li / Li + ) measured on the basis of lithium metal using this potential measuring cell.
  • the value of the potential immediately after producing the potential measurement cell is about 0.24 V vs. Li / Li + .
  • the potential value after 100 hours from the preparation of the potential measurement cell is about 0.15 Vvs. Li / Li + .
  • FIG. 3 shows the relationship between the ratio of the volume of triglyme to the volume of the solvent of the ether solution and the potential value of the potential measurement cell.
  • the broken line indicates the value of the potential immediately after producing the potential measurement cell.
  • the solid line indicates the potential value after 100 hours have elapsed since the preparation of the potential measurement cell.
  • a battery 10-1 was prepared.
  • a stainless steel foil was used as a working electrode current collector (negative electrode current collector).
  • Li 7 La 3 Zr 2 O 12 (LLZ) was used as a separator.
  • As the working electrode side electrolyte solution negative electrode electrolyte solution
  • an ether solution in which 0.1 mol / L lithium biphenyl in which Li was previously dissolved and 1 mol / L LiPF 6 was dissolved was used as the working electrode side electrolyte solution.
  • the solvent of the ether solution contained 2 methyltetrahydrofuran and triglyme.
  • FIG. 4A is a graph showing the charge / discharge characteristics of battery 10-1. As can be seen from FIG. 4A, the capacity of the battery 10-1 increased by 0.8 mAh by the introduction of aluminum. Thus, it can be seen that the capacity of the battery 10-1 is increased by using the charged aluminum for charging and discharging.
  • FIG. 4B is an image of aluminum before being inserted into the battery 10-1.
  • FIG. 4C is an image of aluminum after being put into battery 10-1. As can be seen from FIG. 4B and FIG. 4C, the aluminum immersed in the working electrode side electrolyte was discolored to black, and it was confirmed that a LiAl alloy was formed.
  • Li / Li + Li / Li + ) measured on the basis of lithium metal using this potential measuring cell 11.
  • the value of the potential immediately after manufacturing the potential measurement cell was 2.016 V vs. Li / Li + .
  • the value of the potential after 100 hours from the production of the potential measurement cell is 0.28 V vs. Li / Li + .
  • potential measurement cells 12 to 17 were produced by the same method as described above except that the concentration of biphenyl in the triglyme solution was changed. For these potential measurement cells, the potential value immediately after the potential measurement cell was produced, the potential value 20 hours after the potential measurement cell was produced, and the potential measurement cell were produced. The potential value after 100 hours was measured. The measurement results are shown in Table 5 IV.
  • tin was put into each triglyme solution of the potential measuring cells 11 to 17.
  • the tin surface was observed 100 hours after the tin was introduced.
  • tin was changed to a LiSn alloy in the potential measuring cells 13 to 17.
  • the potential of the triglyme solution was 0.25 V vs.. It can be seen that a LiSn alloy is formed if Li / Li + or less.
  • Such a triglyme solution can be used as a solvent for the first electrolyte solution of the lithium secondary battery.
  • a potential measurement cell 18 was produced.
  • the value of the potential immediately after manufacturing the potential measuring cell 18 is about 0.06 Vvs. Li / Li + .
  • the value of the potential after 100 hours from the preparation of the potential measurement cell 18 is about 0 Vvs. Li / Li + .
  • a battery 10-2 was prepared.
  • a stainless steel foil was used as a working electrode current collector (negative electrode current collector).
  • Li 7 La 3 Zr 2 O 12 (LLZ) was used as a separator.
  • As the working electrode side electrolyte solution negative electrode electrolyte solution
  • an ether solution in which 0.1 mol / L lithium biphenyl in which Li was previously dissolved and 1 mol / L LiPF 6 was dissolved was used.
  • the solvent of the ether solution contained 2 methyltetrahydrofuran.
  • metal Li was used as a counter electrode (positive electrode).
  • FIG. 5 is a graph showing the charge / discharge characteristics of the battery 10-2. As can be seen from FIG. 5, the capacity of the battery 10-2 was increased by 0.3 mAh by introducing silicon. Thus, it can be seen that the capacity of the battery 10-2 has increased due to the charged silicon being used for charging and discharging.
  • the lithium secondary battery of the present disclosure can be suitably used as, for example, an electricity storage device or an electricity storage system.
  • lithium secondary battery 20 positive electrode 21 positive electrode current collector 22 positive electrode active material layer 30 negative electrode 31 negative electrode current collector 32 negative electrode active material 40 separator 50 first electrolytic solution 52 second electrolytic solution 60 container 60a region 60b region

Abstract

本開示のリチウム二次電池(10)は、次の要件(i)及び(ii)からなる群より選ばれる少なくとも1つの要件を満たす。(i)電解液(50)は、リチウムと負極活物質(52)との化合物が形成される上限電位以下の平衡電位を、リチウムとともに電解液(50)の溶媒に溶解することによって、電解液(50)に与える負極メディエータを含み、かつ、上限電位より高い平衡電位をリチウムとともに電解液(50)の溶媒に溶解することによって、電解液(50)に与える化合物を含まない。(ii)電解液(50)は、リチウムと負極活物質(52)との化合物が形成される上限電位以下の平衡電位を、リチウムとともに電解液(50)の溶媒に溶解することによって、電解液(50)に与える化合物のみを負極メディエータとして含む。

Description

リチウム二次電池
 本開示は、リチウム二次電池に関する。
 リチウム二次電池の特性は、活物質の種類に応じて変化する。例えば、負極活物質としてリチウム金属を用いると、高いエネルギー密度のリチウム二次電池が得られる。ただし、負極活物質としてリチウム金属を用いると、リチウム二次電池の充電時にリチウム金属がデンドライト状に析出し、内部短絡を引き起こすことがある。析出するリチウム金属は原子団で生成するため、非常に活性である。析出したリチウム金属は電解液溶媒と反応し、一部が不活性な有機リチウム化合物となるため、充放電効率が低くなるという課題がある。溶媒との反応性を抑制するために様々な溶媒種が検討されてきたが、特筆すべき優れた溶媒は見出されていない。
 一方、黒鉛を負極活物質として使用すると、充電時にリチウム金属がデンドライト状に析出することを防止できる。黒鉛の層間にリチウムイオンが挿入される反応、及び、黒鉛の層間からリチウムイオンが脱離する反応は、トポタクティックな反応であり、可逆性に優れている。このような利点があるため、負極活物質として黒鉛を用いたリチウム二次電池が実用化されている。
 但し、黒鉛層間へのリチウムイオン挿入反応は電解液溶媒の影響を大きく受ける。リチウム二次電池には電位窓の広さ(耐還元性、耐酸化性)、粘度、リチウム塩を溶解した場合のイオン導電性などから一般的に炭酸エステルが溶媒として使用される、しかしながら、プロピレンカーボネート、ブチレンカーボネートなどの水素原子の1つをアルキル基で置換した環状炭酸エステルでは溶媒の分解が生じ、リチウムイオンの挿入はなされない。一方、無置換のエチレンカーボネートや、ハロゲンで置換したクロロエチレンカーボネート、フルオロエチレンカーボネート、鎖状カーボネートでは、リチウムイオンの挿入が可能である。
特許第4898737号公報 特許第3733065号公報
 リチウム金属の理論容量密度は3884mAh/gである。これに対し、黒鉛の理論容量密度は、372mAh/gであり、リチウム金属の理論容量密度の約1/10である。実際のリチウム二次電池における黒鉛の容量密度も理論容量密度に近づいており、黒鉛を負極活物質として用いたリチウム二次電池の容量を更に増加させることは困難である。
 黒鉛に代わる負極活物質として、リチウムと合金を形成する材料が注目を浴びている。リチウムと合金を形成する材料としては、アルミニウム、シリコン、スズなどが知られている。これらの材料の理論容量密度は、黒鉛の理論容量密度よりも格段に大きい。しかし、これらの材料を用いたリチウム二次電池は、充放電の可逆性が低いという課題がある。
 本開示は、これらのリチウムと合金を形成する材料を用い、優れた可逆性を有するリチウム二次電池を提供する。
 本開示は、
 正極と、
 負極集電体及び負極活物質を有する負極と、
 前記正極と前記負極との間に配置されたセパレータと、
 前記負極に接している電解液と、
を備え、
 前記正極は、正極集電体と、前記正極集電体の上に配置された正極活物質層とを有し、
 前記負極は、充電時にリチウムと合金を形成する材料を含み、
 前記電解液は、リチウムイオンおよびそのカウンターアニオンを含有し、
 前記電解液は、フェナントレン、ビフェニル、トリフェニレン、アセナフテン、アセナフチレン、フルオランテン及びベンジルからなる群より選ばれる少なくとも1つを含有し、
 前記電解液は、環状エーテル、グライム及びスルフォランからなる群より選ばれる少なくとも1つを溶媒として含む、
 リチウム二次電池を提供する。
 本開示によれば、優れた可逆性を有するリチウム二次電池を提供できる。
図1は、本開示の一実施形態に係るリチウム二次電池の概略断面図である。 図2は、本開示の実施例に係る電位測定用セルの概略断面図である。 図3は、電位測定用セル1~9において、電解液の溶媒の体積に対するトリグライムの体積の割合と、電位測定用セルの電位の値との関係を示すグラフである。 図4Aは、電池10の充放電特性を示すグラフである。 図4Bは、電池10に投入される前のアルミニウムの画像である。 図4Cは、電池10に投入された後のアルミニウムの画像である。 図5は、電池18の充放電特性を示すグラフである。
 (本開示の基礎となった知見)
 アルミニウム、シリコン、スズなどの材料をリチウム二次電池の負極活物質として使用すると、これらの材料は、充電時に電気化学的にリチウムと合金を形成する。本明細書において、リチウムと合金を形成するこれらの材料を「合金化材料(alloying material)」とも称する。
 合金化材料を用いた負極は、リチウムを吸蔵すると膨張し、リチウムを放出すると収縮する。膨張と収縮とを繰り返すと、合金化材料は微粉化し、負極集電体から剥離する。仮に、合金化材料が負極内にとどまっていたとしても、合金化材料と負極集電体との電気的接触が取れず、充放電が困難となる。つまり、充電時に膨張するとその時点でほぼすべての活物質の部位が集電体から離れてしまい、ほとんど放電ができなくなる。この現象が合金化材料を用いたリチウム二次電池の可逆性が劣悪となる主たる原因である。
 この現象は電解液溶媒とは全く関係していないため、溶媒種を変えても、可逆性の向上は見られない。
 本発明者は、合金化材料の充放電機構に起因する上記の課題を克服するための技術について鋭意検討した。その結果、以下に示す本開示のリチウム二次電池を完成させるに至った。
 (本開示に係る一態様の概要)
 本開示の一態様にかかるリチウム二次電池は、以下の構成を有している。
 正極と、
 負極集電体及び負極活物質を有する負極と、
 前記正極と前記負極との間に配置されたセパレータと、
 前記正極および負極に接している電解液と、
を備え、
 前記正極は、正極集電体と、前記正極集電体の上に配置された正極活物質層とを有し、
 前記負極集電体は、充電時にリチウムと合金を形成する材料を含み、
 前記電解液は、リチウムイオンおよびそのカウンターアニオンを含有し、
 前記電解液は、フェナントレン、ビフェニル、トリフェニレン、アセナフテン、アセナフチレン、フルオランテン及びベンジルからなる群より選ばれる少なくとも1つを含有し、
 前記電解液は、環状エーテル、グライム及びスルフォランからなる群より選ばれる少なくとも1つを溶媒として含む。
 以上の態様によれば、負極活物質が微粉化したとしても、フェナントレン、ビフェニル、トリフェニレン、アセナフテン、アセナフチレン、フルオランテン及びベンジルからなる群より選ばれる少なくとも1つを介してリチウム二次電池の充放電を確実に行うことができる。例えば、負極活物質として高容量の合金化材料を使用しつつ、高いエネルギー密度及び優れた可逆性を有するリチウム二次電池を提供できる。
 前記環状エーテルは、2-メチルテトラヒドロフラン、テトラヒドロフラン、1,3-ジオキソラン及び4-メチル-1,3-ジオキソランからなる群より選ばれる少なくとも1つを含んでいてもよい。これにより、優れた可逆性を有するリチウム二次電池を提供できる。
 前記グライムは、モノグライム、ジグライム、トリグライム、テトラグライム及びポリエチレングリコールジメチルエーテルからなる群より選ばれる少なくとも1つを含んでいてもよい。これにより、優れた可逆性を有するリチウム二次電池を提供できる。
 前記スルフォランが、3-メチルスルフォランを含んでいてもよい。これにより、優れた可逆性を有するリチウム二次電池を提供できる。
 前記負極活物質がAlを含んでいてもよく、充電時にLiAl合金が生成されてもよく、前記LiAl合金の組成が、LiAl、Li2Al3及びLi4Al5からなる群より選ばれる少なくとも1つであってもよい。
 前記負極活物質がZnを含んでいてもよく、充電時にLiZn合金が生成されてもよく、前記LiZn合金の組成が、Li2Zn3、LiZn2、Li2Zn5、LiZn4及びLiZnからなる群より選ばれる少なくとも1つであってもよい。
 前記負極活物質がSiを含んでいてもよく、充電時にLiSi合金が生成されてもよく、前記LiSi合金の組成が、Li22Si5、Li13Si4、Li7Si3及びLi12Si7からなる群より選ばれる少なくとも1つであってもよい。
 前記負極活物質がSnを含んでいてもよく、充電時にLiSn合金が生成されてもよく、前記LiSn合金の組成が、Li22Sn5、Li7Sn2、Li13Sn5、Li7Sn3、Li5Sn2、LiSn及びLi2Sn5からなる群より選ばれる少なくとも1つであってもよい。
 前記負極活物質がGeを含んでいてもよく、充電時にLiGe合金が生成されてもよく、前記LiGe合金の組成が、Li5Ge22及びLi3Geからなる群より選ばれる少なくとも1つであってもよい。
 前記負極活物質がCdを含んでいてもよく、充電時にLiCd合金が生成されてもよく、前記LiCd合金の組成が、LiCd3及びLi3Cdからなる群より選ばれる少なくとも1つであってもよい。
 前記負極活物質がBiを含んでいてもよく、充電時にLiBi合金が生成されてもよく、前記LiBi合金の組成が、LiBi及びLi3Biからなる群より選ばれる少なくとも1つであってもよい。
 以上の態様によれば、高いエネルギー密度を有するリチウム二次電池が得られる。
 前記セパレータは、固体電解質、ゲル電解質、イオン交換樹脂膜、半透膜及び多孔質膜からなる群より選ばれる少なくとも1つを含んでいてもよい。これにより、リチウム二次電池の安全性を十分に担保できる。
 前記負極活物質が前記負極集電体から離れて配置されていてもよい。これにより、負極集電体及び負極活物質の形状及び寸法などを設計するうえでの自由度が高まる。
 以下、本開示の実施形態について、図面を参照しながら説明する。本開示は、以下の実施形態に限定されない。
 (実施形態)
 図1は、本開示の一実施形態に係るリチウム二次電池の断面を示している。リチウム二次電池10は、正極20、負極30、セパレータ40及び第1電解液50を備えている。セパレータ40は、正極20と負極30との間に配置されている。第1電解液50は、溶媒及び負極メディエータを含み、負極30に接している。第1電解液50の溶媒に負極メディエータが溶解している。負極30は、負極集電体31及び負極活物質32を有する。負極30における負極活物質32の酸化還元反応は、負極メディエータを介して進行する。
 リチウム二次電池10は、負極活物質32が微粉化したとしても、負極メディエータを介して充放電を確実に行うことができる。例えば、負極活物質32として高容量の合金化材料を使用しつつ、高いエネルギー密度及び優れたサイクル特性を有するリチウム二次電池10を提供できる。
 負極活物質32として平衡電位(vs.Li/Li+)が比較的低い活物質を用いることで、平衡電位(vs.Li/Li+)が比較的低い物質を負極メディエータとして用いることができる。負極活物質32として平衡電位が比較的低い活物質は、例えば、アルミニウムである。負極メディエータとして平衡電位が比較的低い物質は、例えば、縮合芳香族化合物である。これにより、より電位の低いリチウム二次電池10の負極30を実現できる。このため、高い電池電圧を有するリチウム二次電池10を実現できる。
 リチウムと負極活物質32との化合物は、合金であってもよく、C6Liのような黒鉛層間化合物であってもよい。
 本実施形態のリチウム二次電池10において、第1電解液50には、リチウムが溶解されていてもよい。
 負極活物質32は、リチウムを吸蔵及び放出する性質を有する物質であってもよい。
 リチウム二次電池10の充電時において、負極メディエータは、負極集電体31の表面上において還元される。還元された負極メディエータは、負極活物質32によって酸化される。負極活物質32は、リチウムを吸蔵する。
 リチウム二次電池10の放電時において、リチウムを吸蔵した負極活物質32は、負極メディエータを還元するとともに、リチウムを放出する。還元された負極メディエータは、負極集電体31の表面上において酸化される。
 負極活物質32は、例えば、リチウム及び/又はリチウムイオンを可逆的に吸蔵及び放出する性質を有する。これにより、負極活物質32の材料設計がより容易となる。その上、より高い容量を実現できる。
 本実施形態のリチウム二次電池10の充電時において、負極メディエータは、負極集電体31の表面上において還元されてもよい。
 本実施形態のリチウム二次電池10の放電時において、負極メディエータは、負極集電体31の表面上において酸化されてもよい。
 本実施形態のリチウム二次電池10は、より高いエネルギー密度及びより高い容量を実現できる。すなわち、充電時において負極メディエータを負極集電体31により還元することで、放電時において負極集電体31により酸化される負極メディエータの量を増加させることができる。さらに、放電時において負極メディエータを負極集電体31により酸化することで、充電時において負極集電体31により還元される負極メディエータの量を増加させることができる。これにより、充放電の容量を増加させることができる。
 例えば、第1電解液50が負極集電体31に接触すると、負極メディエータは、負極集電体31により、酸化又は還元される。
 例えば、第1電解液50が負極活物質32に接触すると、負極活物質32による負極メディエータの還元反応が生じる、又は、負極活物質32による負極メディエータの酸化反応が生じる。
 負極メディエータは、リチウムとともに第1電解液50の溶媒に溶解することによって、リチウムと負極活物質32との化合物が形成される上限電位以下の平衡電位を第1電解液50に与える化合物であれば、特に限定されない。負極メディエータは、縮合芳香族化合物であってもよい。
 縮合芳香族化合物が溶解した第1電解液50は、リチウムの溶媒和電子を放出させ、リチウムをカチオンとして溶解する性質を有する。言い換えると、縮合芳香族化合物は、リチウムが第1電解液50の溶媒に溶解するときに放出される電子を溶媒和電子として受け取るとともに、第1電解液50の溶媒に溶解する性質を有する。
 本実施形態のリチウム二次電池10は、電位的に卑な性質を有する負極メディエータを実現できる。縮合芳香族化合物を含む溶液は、リチウムを溶解する能力を有する。縮合芳香族化合物を含む溶液は、例えば、エーテル溶液であってもよい。リチウムは、電子を離して、カチオンとなり易い。このため、溶液中の縮合芳香族化合物に電子を渡して、カチオンとなり、当該溶液に溶解する。このとき、電子を受け取った縮合芳香族化合物は電子と溶媒和する。電子と溶媒和することで、縮合芳香族化合物は、アニオンとして振る舞う。このため、縮合芳香族化合物を含む溶液そのものがイオン導電性を有する。ここで、縮合芳香族化合物を含む溶液中には、Liカチオンと電子が当量存在する。このため、縮合芳香族化合物を含む溶液自体には、還元性の強い性質、言い換えれば、電位的に卑な性質を持たせることができる。
 例えば、縮合芳香族化合物が溶解した第1電解液50の溶媒に、リチウムに対して化学的に不活性な電極を浸漬し、リチウム金属に対する電極の電位を測定すれば、かなり卑な電位が観測される。観測される電位は、縮合芳香族化合物と電子の溶媒和の程度、すなわち、縮合芳香族化合物の種類によって決定される。
 リチウム二次電池10の構成を詳しく説明する。
 リチウム二次電池10は、容器60を備えている。容器60は、密閉されている。容器60は、絶縁性及び耐食性を有する材料でできている。正極20、負極30、セパレータ40及び第1電解液50は容器60の内部に配置されている。容器60の内部は、セパレータ40によって2つの領域60a及び60bに仕切られている。2つの領域60a及び60bにおける一方の領域60aに正極20が配置され、他方の領域60bに負極30が配置されている。
 正極20は、正極集電体21及び正極活物質層22を有する。正極活物質層22は、正極集電体21の上に配置されている。正極集電体21と正極活物質層22とが電気的に接触している。
 正極集電体21は、例えば、ステンレス鋼、銅、ニッケル、カーボンなどの電子伝導性を有する材料で作られている。正極集電体21の形状は特に限定されず、例えば、板状である。
 正極活物質層22は、正極活物質を含む層である。正極活物質は、リチウムイオンを可逆的に吸蔵及び放出する特性を有する物質でありうる。正極活物質としては、遷移金属酸化物、フッ化物、ポリアニオン、フッ素化ポリアニオン、遷移金属硫化物、オリビン構造を有するリン酸化物などが挙げられる。遷移金属酸化物としては、LiCoO2、LiNiO2、Li2Mn24などが挙げられる。リン酸化物としては、LiFePO4、LiNiPO4、LiCoPO4などが挙げられる。正極活物質層22は、複数の種類の正極活物質を含んでいてもよい。正極活物質層22が予め、リチウムを含有している場合、負極活物質32はリチウムを含んでいる必要はない。正極活物質22がリチウムを含有していない場合は、負極活物質32は予めリチウムを含んでいればよい。
 正極活物質層22は、必要に応じて、導電剤、イオン伝導補助剤、結着剤などの添加剤を含んでいてもよい。
 正極20は、リチウム金属で構成されていてもよい。正極20として、リチウム金属を用いた場合、金属正極としての溶解析出の制御が容易となり、かつ、高容量を実現できる。
 負極30は、負極集電体31及び負極活物質32を有する。負極集電体31及び負極活物質32の両方が第1電解液50に浸漬されている。本実施形態において、負極活物質32は、負極集電体31から離れて配置されている。このような構成によれば、負極集電体31及び負極活物質32の形状及び寸法などを設計するうえでの自由度が高まる。負極集電体31と負極活物質32との間には、負極メディエータを含む第1電解液50が存在する。すなわち、負極活物質32は負極集電体31に直接接していないが、負極活物質32が負極集電体31に接していてもよい。
 負極集電体31は、負極メディエータの反応場として作用する表面を有する。負極集電体31として、第1電解液50に対して安定な材料が使用されうる。さらに、負極集電体31として、電極反応である電気化学反応に対して安定な材料が使用されうる。例えば、負極集電体31として、金属、カーボンなどの電子伝導性を有する材料が使用されうる。金属としては、ステンレス鋼、鉄、銅、ニッケルなどが挙げられる。
 負極集電体31は、その表面積を増大させた構造を有していてもよい。表面積を増大させた構造としては、メッシュ、不織布、表面粗化処理板、焼結多孔体などが挙げられる。負極集電体31がこれらの構造を有している場合、負極メディエータの酸化反応又は還元反応が進行しやすい。
 負極活物質32は、例えば、充電時にリチウムと合金を形成する材料を含む。以下に示す合金化材料によれば、高いエネルギー密度を有するリチウム二次電池10が得られる。
 負極活物質32は、Alを含んでいてもよい。この場合、リチウム二次電池10の充電時にLiAl合金が生成される。LiAl合金の組成は、LiAl、Li2Al3及びLi4Al5からなる群より選ばれる少なくとも1つでありうる。
 負極活物質32は、Znを含んでいてもよい。この場合、リチウム二次電池10の充電時にLiZn合金が生成される。LiZn合金の組成は、Li2Zn3、LiZn2、Li2Zn5、LiZn4及びLiZnからなる群より選ばれる少なくとも1つでありうる。
 負極活物質32は、Siを含んでいてもよい。この場合、リチウム二次電池10の充電時にLiSi合金が生成される。LiSi合金の組成は、Li22Si5、Li13Si4、Li7Si3及びLi12Si7からなる群より選ばれる少なくとも1つでありうる。
 負極活物質32は、Snを含んでいてもよい。この場合、リチウム二次電池10の充電時にLiSn合金が生成される。LiSn合金の組成は、Li22Sn5、Li7Sn2、Li13Sn5、Li7Sn3、Li5Sn2、LiSn及びLi2Sn5からなる群より選ばれる少なくとも1つでありうる。
 負極活物質32は、Geを含んでいてもよい。この場合、リチウム二次電池10の充電時にLiGe合金が生成される。LiGe合金の組成は、Li5Ge22及びLi3Geからなる群より選ばれる少なくとも1つでありうる。
 負極活物質32は、Cdを含んでいてもよい。この場合、リチウム二次電池10の充電時にLiCd合金が生成される。LiCd合金の組成は、LiCd3及びLi3Cdからなる群より選ばれる少なくとも1つでありうる。
 負極活物質32は、Biを含んでいてもよい。この場合、リチウム二次電池10の充電時にLiBi合金が生成される。LiBi合金の組成は、LiBi及びLi3Biからなる群より選ばれる少なくとも1つでありうる。
 負極活物質32は、Al、Zn、Si、Sn、Ge、Cd、及びBiからなる群より選ばれる少なくとも1つを含んでいてもよい。負極活物質32は、黒鉛などの炭素材料を含んでいてもよい。
 負極活物質32の形状は特に限定されない。負極活物質32は、粉末状であってもよく、ペレット状であってもよい。負極活物質32は、バインダによって固められていてもよい。バインダとしては、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリイミドなどの樹脂が挙げられる。
 負極活物質32は、第1電解液50に不溶性の物質であってもよい。
 リチウム金属溶液中の溶媒和電子が正極に触れると短絡することになるため、この短絡を防止する必要がある。そのためには溶媒和電子を透さない機能を有するセパレータが必要となる。但し、電荷担体であるリチウムイオンはセパレータを通過する必要がある。セパレータ40は、正極20と負極30とを電気的に隔離している。セパレータ40は、リチウムイオン伝導性を有している。セパレータ40は、固体電解質、ゲル電解質、イオン交換樹脂膜、半透膜及び多孔質膜からなる群より選ばれる少なくとも1つによって構成されていてもよい。これらの材料でセパレータ40が作られていると、リチウム二次電池10の安全性を十分に確保できる。固体電解質としては、Li2S-P25などの硫化物固体電解質、Li7La3Zr212(LLZ)などの酸化物固体電解質などが挙げられる。ゲル電解質としては、PVdFなどのフッ素樹脂を含むゲル電解質が挙げられる。イオン交換樹脂膜としては、カチオン交換膜、アニオン交換膜などが挙げられる。多孔質膜としては、ポリオレフィン樹脂製の多孔質膜、ガラス繊維を不織布に織り込むことによって得られたガラスペーパーからなる多孔質膜などが挙げられる。
 本実施形態において、セパレータ40は、第1電解液50に含まれた負極メディエータの通過を禁止する性質を有する。これにより、負極メディエータを介して正極20と負極30との間で電子の授受が行われることを防止できる。
 第1電解液50は、溶媒及び負極メディエータを含む。第1電解液50は、負極30が配置された領域60bを満たしている。
 第1電解液50は、電解質塩を含んでいてもよい。電解質塩としては、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、LiC(SO2CF33、LiClO4、リチウムビスオキサレートボレートなどが挙げられる。
 本実施形態において、リチウム二次電池10は、第2電解液52をさらに備えている。第2電解液52は、溶媒及び電解質塩を含む。第2電解液52は、正極20が配置された領域60aを満たしている。正極20は、第2電解液52に接している。正極20aは、第2電解液52に浸漬されていてもよい。
 第2電解液52の組成は特に限定されない。第2電解液52にメディエータが含まれていることは必要ではない。メディエータが含まれていないことを除き、第2電解液52の組成は、第1電解液50の組成と同一であってもよい。第1電解液50の溶媒として使用できる材料を第2電解液52の溶媒として使用できる。第1電解液50の電解質塩として使用できる材料を第2電解液52の電解質塩として使用できる。
 第2電解液52は、リチウムイオン伝導性を有する固体電解質に置き換えられてもよい。リチウムイオン伝導性を有する固体電解質としては、Li2S-P25などの硫化物固体電解質が挙げられる。第2電解液52が固体電解質で置き換えられた場合、セパレータ40は省略されうる。
 第1電解液52の溶媒及び負極メディエータについて詳しく説明する。
 例えば、負極活物質32がアルミニウムを含む場合、リチウム二次電池10の充電時において、負極活物質32に含まれたアルミニウムは、リチウムと反応してLiAl合金へと還元される。そのため、負極メディエータとして、LiAl合金が形成される上限電位以下の電位を示す縮合芳香族化合物を用いれば、メディエータ型の負極30を構成することができる。LiAl合金が形成される上限電位は、例えば、0.18Vvs.Li/Li+である。負極メディエータは、例えば、リチウムとともに第1電解液50の溶媒に溶解することによって、0.18Vvs.Li/Li+以下の平衡電位を第1電解液50に与える化合物である。
 例えば、負極活物質32がスズを含む場合、リチウム二次電池10の充電時において、負極活物質32に含まれたスズは、リチウムと反応してLiSn合金へと還元される。そのため、負極メディエータとして、LiSn合金が形成される上限電位以下の電位を示す縮合芳香族化合物を用いれば、メディエータ型の負極30を構成することができる。LiSn合金が形成される上限電位は、例えば、0.25Vvs.Li/Li+である。負極メディエータは、例えば、リチウムとともに第1電解液50の溶媒に溶解することによって、0.25Vvs.Li/Li+以下の平衡電位を第1電解液50に与える化合物である。
 例えば、負極活物質32が黒鉛を含む場合、リチウム二次電池10の充電時において、負極活物質32に含まれた黒鉛は、リチウムと反応してC6Liへと還元される。そのため、負極メディエータとして、C6Liが形成される上限電位以下の電位を示す縮合芳香族化合物を用いれば、メディエータ型の負極30を構成することができる。C6Liが形成される上限電位は、例えば、0.15Vvs.Li/Li+である。負極メディエータは、例えば、リチウムとともに第1電解液50の溶媒に溶解することによって、0.15Vvs.Li/Li+以下の平衡電位を第1電解液50に与える化合物である。
 アルミニウム、スズ及び黒鉛に関する上記の説明は、Zn、Si、Ge、Cd、Pb、Bi及びSbにも当て嵌まる。LiZn、LiSi、LiGe、LiCd、LiPb、LiBi及びLiSbのそれぞれが形成される上限電位に応じて、負極メディエータが適切に選択されうる。
 卑な電位を生じる縮合芳香族化合物としては、フェナントレン、ビフェニル、o-ターフェニル、トリフェニレン、アセナフテン、アセナフチレン、フルオランテン、2,2’-ビピリジル、trans-スチルベン、2,4’-ビピリジル、2,3’-ビピリジル、cis-スチルベン、プロピオフェノン、ブチロフェノン、バレロフェノン、エチレンジアミン、ベンジル、テトラフェニルシクロペンタジエノンなどが挙げられる。
 十分に卑な電位を示す縮合芳香族化合物としては、例えば、フェナントレン、ビフェニル、o-ターフェニル、トリフェニレン、アセナフテン、アセナフチレン、フルオランテン及びベンジルが挙げられる。すなわち、負極メディエータは、フェナントレン、ビフェニル、o-ターフェニル、トリフェニレン、アセナフテン、アセナフチレン、フルオランテン及びベンジルからなる群より選ばれる少なくとも1種を含む。第1電解液50における負極メディエータの濃度は、0.001mol/L以上2mol/L以下であってもよい。
 本実施形態のリチウム二次電池10において、第1電解液50は、環状エーテル、グライム及びスルフォランからなる群より選ばれる少なくとも1つを含んでいてもよい。第1電解液50は、エーテル溶液であってもよい。エーテルとしては、例えば、環状エーテル及びグリコールエーテルが挙げられる。グリコールエーテルは、組成式CH3(OCH2CH2nOCH3で表されるグライムであってもよい。上記の組成式において、nは1以上の整数である。第1電解液50は、環状エーテルとグライムとの混合物又は環状エーテルを溶媒として含んでいてもよい。
 以上の構成によれば、第1電解液50として、負極メディエータを含んだ電解液を実現できる。すなわち、負極メディエータを含む溶液が電子伝導性を持たないエーテル溶液であるので、当該エーテル溶液自体が電解液としての性質を有することができる。
 環状エーテルとしては、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2MeTHF)、1,3-ジオキソラン(1,3DO)、4-メチル-1,3-ジオキソラン(4Me1,3DO)などが挙げられる。
 グライムとしては、モノグライム(1,2-ジメトキシエタン)、ジグライム(ジエチレングリコールジメチルエーテル)、トリグライム(トリエチレングリコールジメチルエーテル)、テトラグライム(テトラエチレングリコールジメチルエーテル)、ペンタエチレングリコールジメチルエーテル、ポリエチレングリコールジメチルエーテルなどが挙げられる。グライムは、テトラグライム及びペンタエチレングリコールジメチルエーテルの混合物であってもよい。
 スルフォランとしては、3-メチルスルフォランが挙げられる。
 縮合芳香族化合物のエーテル溶液にリチウムを溶解させた場合、エーテル溶液の電位は、溶媒の種類によってわずかに異なる。環状エーテルは沸点が低いため、容易に揮発する。そのため、環状エーテルと、比較的高い沸点を有するグライムとを混合して使用してもよい。エーテル溶液の溶媒として環状エーテルを用いる場合、環状エーテルとしてTHF又は2MeTHFを用いると、エーテル溶液の電位がより低下する傾向がある。エーテル溶液の溶媒としてグライムを用いる場合、グライムとしてトリグライムを用いると、エーテル溶液の電位が最も低下する。したがって、エーテル溶液の溶媒として、THF又は2MeTHFと、トリグライムとを混合したものを用いてもよい。エーテル溶液の溶媒におけるグライムの比率が高いほど、エーテル溶液の電位は高い傾向にある。そのため、第1電解液50の溶媒における環状エーテルの体積とグライムの体積との比率は、10:0~7:3であってもよい。
 充電時は、負極集電体31の上で溶媒和した負極メディエータが還元されることによって、溶媒和電子及びLiカチオンを含む複合体が形成される。この複合体が負極活物質32と接触すると、負極活物質32がLiカチオン及び溶媒和電子を受け取り、リチウムと負極活物質32との化合物が形成される。複合体がLiカチオン及び溶媒和電子を放出した後、溶媒和した負極メディエータは再び負極集電体31の上で還元される。この循環によって、負極活物質32がリチウムと負極活物質32との化合物へと還元され、第1電解液50の中の溶媒和した負極メディエータが還元される。これにより、リチウム二次電池10の充電が終了する。
 放電時は、まず、第1電解液50の中の溶媒和した負極メディエータの還元体が負極集電体31の上で、溶媒和電子及びLiカチオンを放出する。電子は、外部回路を通じて、正極20に移動する。Liカチオンは、セパレータ40を通じて、正極20に移動する。放電の進行に伴い、溶媒和電子及びLiカチオンを放出した負極メディエータの濃度が第1電解液50の中で増加する。これにより、第1電解液50の電位が上昇する。第1電解液50の電位がリチウムと負極活物質32との化合物の平衡電位を上回ると、リチウムと負極活物質32との化合物からLiカチオン及び溶媒和電子が負極メディエータに供給され、再びLiカチオンを含む複合体が形成される。Liカチオンを含む複合体によって、リチウム二次電池10の放電が持続する。リチウムと負極活物質32との化合物からLiカチオン及び溶媒和電子が放出され、第1電解液50の中のLiカチオンを含む複合体がLiカチオン及び溶媒和電子を放出したとき、リチウム二次電池10の放電が終了する。
 リチウムなどのアルカリ金属が、特定の溶媒や溶液に溶解する性質を有することは古くから知られている。このような溶媒としてアンモニア、メチルアミン、エチルアミンなどのアミン類が挙げられる。他にもアセトフェノン、ブチロフェノンなどの芳香族ケトン及びそれらの溶液や、ある種の芳香族のエーテル溶液もリチウム金属溶解能を有している。
 これらの液中ではリチウム金属は自らもっていた2S軌道上の電子を溶媒と溶媒和させる形で手離し、リチウムイオンとなって溶解する。溶媒と溶媒和した電子は溶媒和電子と呼ばれ、アニオンのようにふるまう。アミン類、特にアンモニアのような単独溶媒の場合は単にその溶媒と溶媒和電子を形成するだけであるが、芳香族ケトン溶液やある種の芳香族のエーテル溶液の場合は溶液成分と溶媒和電子を形成する複雑な構成をとり、リチウム金属が溶解するには溶液成分全てが必要となる。
 これらの溶媒和電子はリチウムイオンの極近傍に存在し、互いに相互作用をする。その相互作用が強ければ溶液電位は卑になり、弱ければ貴となる。相互作用の強さは溶液(溶媒)種とその濃度で決まるが、溶液(溶媒)種が非常に支配的である。芳香族ケトン溶液の場合は相互作用が弱く、ある種の芳香族のエーテル溶液の場合は相互作用が非常に強い。またアミン類でその中間程度の相互作用となる。
 その電位はリチウム金属とリチウムと反応しない安定な遷移金属(Cu,Fe,Niなど)からなる電極間に上述した溶液を配置することで測定可能である。
 実際に、遷移金属として銅箔を用い、エーテルとして2メチルテトラヒドロフランを使用し、当該エーテルに各種物質を溶解させた電位測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 リチウム金属溶解能を有する芳香族のエーテル溶液において芳香族化合物種はそのままにして、エーテルの代わりにビニレンカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、フルオロエチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの炭酸エステルやγブチロラクトンなどのラクトン類を用いた場合はリチウム金属は溶解しない。従ってその種の溶液は電位をもたない。
 同様に芳香族化合物種はそのままにして、エーテルの代わりに炭酸エステルとしてメチルエチルカーボネートを用いた場合にはリチウム金属溶解能がみられるが、表2に示すように電位(vs.Li/Li+)が1V以上と高い。
Figure JPOXMLDOC01-appb-T000002

 
 リチウム金属溶液の電位が卑で、特に、負極活物質の平衡電位より十分に卑であれば、リチウム金属溶液に負極活物質を浸漬することで負極活物質をリチウム化、即ち充電することが可能である。
 ただし、負極活物質の平衡電位は負極活物質種により異なるから、負極活物質種に応じて適したリチウム金属溶液の電位を選択する必要がある。つまり、負極活物質種に応じて、芳香族のエーテル溶液の成分を選択する必要がある。
 リチウム金属を溶解した、種々の芳香族化合物の2メチルテトラヒドロフラン溶液の電位を表1の測定時と同じ方法で測定した結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 これらの溶液中で電解還元するとリチウム金属が生成し、この生成と同時にリチウムが溶解してリチウム金属溶液を生成する。
 ところで、リチウムと合金化する金属として、ビスマス、スズ、ゲルマニウム、アルミニウム、珪素、亜鉛、カドミウムなどがあるが、リチウムと合金化した場合の平衡電位はそれぞれ異なっている。表4にそれぞれの平衡電位を示す。
Figure JPOXMLDOC01-appb-T000004
 例えば、亜鉛、カドミウムといった卑な電位をもつ合金金属を使用するには、0.1V未満の電位をもつリチウム金属溶液が必要となる。そのようなリチウム金属溶液として、フェナントレン、ビフェニル、トリフェニル、アセナフテン、アセナフチル、フルオランテンの2メチルテトラヒドロフラン溶液やビフェニルのジブトキシエタン溶液、ビフェニルのトリグライム溶液などが挙げられる。
 アルミニウム、ケイ素を用いるには0.1V未満の電位をもつリチウム金属溶液が必要となる。リチウム金属溶液として、上記溶液に加えて、ビフェニルのジグライム溶液、ビフェニルにテトラグライム溶液が挙げられる。
 リチウムと合金化する上述した金属をリチウム金属溶液に浸漬した場合、リチウム金属溶液の電位がリチウムと合金化する金属の平衡電位に対して十分卑であれば、リチウムの合金化反応が進行し、リチウム金属溶液中のリチウムは合金金属に吸収される。
 従って、電解還元により生成したリチウム金属溶液中にリチウムと合金化する金属が存在する場合と同様に、リチウムの合金化反応が進行し、リチウム金属溶液中のリチウムは合金金属に吸収される。
 電解還元を連続的に実施すると、電解還元により電気化学的にリチウム金属溶液が生成される反応と、リチウム金属溶液中のリチウムが合金金属に化学的に吸収される反応とは平衡に達し、一定のリチウム金属溶液の電位にて反応が進行する。合金金属のリチウム化は化学的に生じるため、合金金属は、リチウム金属溶液と接していれば(浸漬されていれば)よく、従来のリチウム合金負極活物質のように電極と接触している必要はない。
 合金金属が飽和組成までリチウムを吸収すると合金金属は満充電状態となる。さらに充電(電解還元)を続けると、リチウム金属溶液の飽和濃度までリチウムを吸収するが、飽和濃度を超えると電極上にリチウム金属が析出するため、電池としてはこの時点で満充電となる。負極の充電容量は、合金金属の充電容量とリチウム金属溶液の充電容量との合計となり、単純に合金金属を負極とする従来の電池に比べて充電容量が増加することになる。但し、リチウム金属溶液の充電容量に対し、合金金属の充電容量の方が圧倒的に大きい。
 リチウム金属溶液の電位は溶媒和電子の活量からネルンスト式に基づいて決定される。放電(電解酸化)すると溶媒和電子の活量が減少するため、電位は貴方向にシフトする。その電位がリチウム合金の平衡電位を上回るとリチウム合金によって化学的にリチウム金属溶液が還元され、リチウム金属溶液の電位が卑な方向にシフトしてリチウム合金は酸化される。この繰り返しにより、合金金属からリチウムが放たれ、合金金属は酸化されていく。
 合金金属が完全にリチウムを放出すると合金金属は完全放電状態となる。さらに放電(電解酸化)を続けると、リチウム金属溶液が完全にリチウムを離すまで放電が続く。負極の放電容量は合金金属の放電容量+リチウム金属溶液の放電容量の合計となり、合金金属を負極とする従来の電池に比べて放電容量が増加することになる。但し、リチウム金属溶液の放電容量に対し、合金金属の放電容量の方が圧倒的に大きい。
 以上の説明から明らかなように、本開示のリチウム二次電池は、リチウム金属溶液が介在することで合金金属の充放電を行うことになる。従来のリチウム合金負極活物質では、充電時に膨張し、放電時に収縮するために、放電時に電極(集電体)との接触がとれずに放電不可となるが、本開示のリチウム二次電池は、電極(集電体)との接触がなくとも合金金属が充放電可能となる。即ち、合金負極の欠点である、充放電に基づく体積の膨張と収縮による集電性の低下を抑制することが可能になる。
 したがって、本開示のリチウム二次電池は、負極活物質が微粉化したとしても、充放電が可能になり、合金負極では満足に得られなかった可逆性が実現される。
 <充放電プロセスの説明>
 本実施形態のリチウム二次電池10の充放電プロセスが、以下に説明される。
 具体的に、下記の構成である動作例が例示されながら、充放電プロセスが説明される。
 すなわち、本動作例では、負極集電体31は、ステンレス鋼で作られている。
 本動作例では、第1電解液50は、負極メディエータが溶解したエーテル溶液である。
 本動作例では、負極メディエータは、1種の縮合芳香族化合物(以下、Mdと表記される)である。
 本動作例では、負極活物質32は、アルミニウムである。
 本動作例では、正極20は、ステンレス鋼で作られた正極集電体21と、リン酸鉄リチウム(LiFePO4)を正極活物質として含む正極活物質層22とを備えている。
 [充電プロセスの説明]
 まず、充電反応が説明される。
 正極集電体21と負極集電体31との間に、電圧が印加されることにより、充電が行われる。
 (正極側の反応)
 電圧の印加により、正極20では、正極活物質の酸化反応が起こる。すなわち、正極活物質から、リチウムイオンが放出される。これにより、正極20からリチウム二次電池10の外部に電子が放出される。
 例えば、本動作例では、下記の反応が生じる。
 LiFePO4 → FePO4 + Li+ + e-
 発生したリチウムイオン(Li+)の一部は、セパレータ40を通じて、第1電解液50に移動しうる。
 (負極側の反応)
 電圧の印加により、負極集電体31にリチウム二次電池10の外部から電子が供給される。これにより、負極集電体31の上では、負極メディエータの還元反応が起こる。
 例えば、本動作例では、下記の反応が生じる。
 Md + Li+ + e- → Md・Li
 還元された負極メディエータは、負極活物質32により酸化される。すなわち、負極活物質32は、負極メディエータによって還元される。これにより、負極活物質32はリチウムと反応して、LiAlとなる。
 例えば、本動作例では、下記の反応が生じる。
 Al + Md・Li → LiAl + Md
 以上のように、負極メディエータは、トータル反応で見ると変化していない。
 一方で、負極集電体31と離れた場所に位置する負極活物質32は、充電状態となる。
 以上の充電反応は、負極活物質32が充電状態となる、又は、正極活物質が充電状態となる、のどちらかに到達するまで進行しうる。
 [放電プロセスの説明]
 次に、満充電からの放電反応が説明される。
 満充電では、負極活物質32と正極活物質とは、充電状態となっている。
 放電反応では、正極集電体21と負極集電体31との間から電力が取り出される。
 (正極側の反応)
 リチウム二次電池10の放電により、正極20にリチウム二次電池10の外部から電子が供給される。これにより、正極20では、正極活物質の還元反応が起こる。
 例えば、本動作例では、下記の反応が生じる。
 FePO4 + Li+ + e- → LiFePO4
 リチウムイオン(Li+)の一部は、セパレータ40を通じて、第1電解液50から供給されうる。
 (負極側の反応)
 リチウム二次電池10の放電により、負極集電体31の上では、負極メディエータの酸化反応が起こる。これにより、負極集電体31からリチウム二次電池10の外部に電子が放出される。
 例えば、本動作例では、下記の反応が生じる。
 Md・Li → Md + Li+ + e-
 酸化された負極メディエータは、負極活物質32により還元される。すなわち、負極活物質32は、負極メディエータによって酸化される。これにより、負極活物質32はリチウムを放出する。
 例えば、本動作例では、下記の反応が生じる。
 LiAl + Md → Al + Md・Li
 以上のように、負極メディエータは、トータル反応で見ると変化していない。
 一方で、負極集電体31と離れた場所に位置する負極活物質32が、放電状態となる。
 以上の放電反応は、負極活物質32が放電状態となる、又は、正極活物質が放電状態となる、のどちらかに到達するまで進行しうる。
 (実施例)
 本開示を実施例に基づき、具体的に説明する。ただし、本開示は、以下の実施例によって何ら限定されるものではない。
 (電位の測定1)
 2×2cmの銅箔70をポリプロピレン製微多孔性セパレータ71で包んだものの全体を多量のリチウム金属箔72で包んだ。次いで、銅箔70とリチウム金属箔72の各々にタブ75、76を取り付けた。その後、これをラミネート外装73の中に収納し、0.1mol/Lでビフェニルを溶かしたエーテル溶液74を注液した後、ラミネート外装73に開口部を熱融着して密閉し、図2に示す電位測定用セルを作製した。
 エーテル溶液の溶媒は、環状エーテルとして2メチルテトラヒドロフランを含み、さらに、グライムとしてトリグライムを含んでいた。エーテル溶液の溶媒の体積に対するトリグライムの体積の割合は、0.2であった。言い換えると、2メチルテトラヒドロフランの体積とトリグライムの体積との比率は、8:2であった。エーテル溶液には、支持塩として1mol/LのLiPF6が溶解していた。以上により電位測定用セル1を作製した。
 この電位測定用セルを用いてリチウム金属基準で測定された電位(V vs.Li/Li+)を図3に示す。電位測定用セルを作製した直後の電位の値は、約0.24Vvs.Li/Li+であった。電位測定用セルを作製してから100時間経過後の電位の値は、約0.15Vvs.Li/Li+であった。
 次に、エーテル溶液の溶媒の体積に対するトリグライムの体積の割合を変更したことを除き、上記と同じ方法によって、の電位測定用セル2~9を作製した。の電位測定用セル2~9において、エーテル溶液の溶媒の体積に対するトリグライムの体積の割合は、それぞれ、0.3、0.4、0.5、0.6、0.7、0.8、0.9及び1.0であった。これらの電位測定用セルについて、電位測定用セルを作製した直後の電位の値及び電位測定用セルを作製してから100時間経過後の電位の値を測定した。エーテル溶液の溶媒の体積に対するトリグライムの体積の割合と、電位測定用セルの電位の値との関係を図3に示す。図3において、破線は、電位測定用セルを作製した直後の電位の値を示している。実線は、電位測定用セルを作製してから100時間経過後の電位の値を示している。
 次に、電位測定用セル1~9のそれぞれのエーテル溶液にアルミニウムを投入した。アルミニウムを投入してから100時間経過後に、アルミニウムの表面を観察した。その結果、2メチルテトラヒドロフランの体積とトリグライムの体積との比率が8:2である電位測定用セル1に投入されたアルミニウム、及び、2メチルテトラヒドロフランの体積とトリグライムの体積との比率が7:3である電位測定用セル2に投入されたアルミニウムは、粉末状のLiAl合金に変化していたことが確認された。2メチルテトラヒドロフランの体積とトリグライムの体積との比率が6:4である電位測定用セル3に投入されたアルミニウムは、表面のみが粗く、その一部がLiAl合金に変化していたことが確認された。このアルミニウムは、エーテル溶液に投入されたときの形状を維持していた。2メチルテトラヒドロフランの体積とトリグライムの体積との比率が5:5~0:10である電位測定用セル4~9に投入されたアルミニウムからは、変化が確認されず、LiAl合金が形成されていなかった。以上の結果から、エーテル溶液の電位が0.18Vvs.Li/Li+以下であれば、LiAl合金が形成されることがわかる。このようなエーテル溶液は、リチウム二次電池の第1電解液の溶媒として利用できる。
 (充放電特性の測定)
 充放電特性を測定するために、電池10-1を準備した。電池10-1では、作用極集電体(負極集電体)としてステンレス箔を用いた。セパレータとしてLi7La3Zr212(LLZ)を用いた。作用極側電解液(負極電解液)として、あらかじめLiを溶解させた0.1mol/Lのリチウムビフェニル及び1mol/LのLiPF6が溶解したエーテル溶液を用いた。エーテル溶液の溶媒は、2メチルテトラヒドロフラン及びトリグライムを含んでいた。エーテル溶液の溶媒において、2メチルテトラヒドロフランの体積とトリグライムの体積との比率は、7:3であった。電池10-1では、対極(正極)として金属Liを用いた。対極側電解液(正極電解液)として1mol/LのLiPF6が溶解したトリグライム溶液を用いた。この電池10-1を用いて、充放電を実施した。さらに、この電池10-1の作用極側電解液に、電池10-1の容量を0.8mAh増加させる量のアルミニウムを投入して、充放電を実施した。これにより、電池10-1の充放電特性を測定した。図4Aは電池10-1の充放電特性を示すグラフである。図4Aからわかるとおり、アルミニウムの投入により、電池10-1の容量が0.8mAh増加した。これにより、投入されたアルミニウムが充放電に利用されたことによって、電池10-1の容量が増加したことがわかる。
 図4Bは、電池10-1に投入される前のアルミニウムの画像である。図4Cは、電池10-1に投入された後のアルミニウムの画像である。図4B及び図4Cからわかるとおり、作用極側電解液に浸漬させたアルミニウムは、黒色に変色しており、LiAl合金が形成されたことが確認された。
 実施形態に記載の他の負極活物質についても同様の測定を行い、リチウムと負極活物質との化合物(合金又はC6Li)が形成されることを確認した。
 (電位の測定2)
 2×2cmの銅箔70をポリプロピレン製微多孔性セパレータ71で包んだものの全体を多量のリチウム金属箔72で包んだ。次いで、銅箔70とリチウム金属箔72の各々にタブ75、76を取り付けた。その後、これにラミネート外装73を取り付けた。これに、0.00625mol/Lでビフェニルを溶かしたトリグライム溶液74を注液した後、ラミネート外装73を熱融着して密閉した。トリグライム溶液には、支持塩として1mol/LのLiPF6 が溶解していた。以上により電位測定用セル11を作製した。この電位測定用セル11を用いてリチウム金属基準で測定された電位(V vs. Li/Li)を表2に示す。電位測定用セルを作製した直後の電位の値は、2.016V vs. Li/Liであった。電位測定用セルを作製してから100時間経過後の電位の値は、0.28V vs. Li/Liであった。
 次に、トリグライム溶液におけるビフェニルの濃度を変更したことを除き、上記と同じ方法によって、電位測定用セル12~17を作製した。これらの電位測定用セルについて、電位測定用セルを作製した直後の電位の値、電位測定用セルを作製してから20時間経過後の電位の値、及び、電位測定用セルを作製してから100時間経過後の電位の値を測定した。その測定結果を表5 に示す。
Figure JPOXMLDOC01-appb-T000005
 次に、電位測定用セル11~17のそれぞれのトリグライム溶液にスズを投入した。スズを投入してから100時間経過後に、スズの表面を観察した。その結果、電位測定用セル13~17において、スズがLiSn合金に変化していたことが確認された。以上の結果から、トリグライム溶液の電位が0.25 V vs .Li/Li以下であれば、LiSn合金が形成されることがわかる。このようなトリグライム溶液は、リチウム二次電池の第1電解液の溶媒として利用できる。
 (電位の測定3)
 2×2cmの銅箔70をポリプロピレン製微多孔性セパレータで包んだものの全体を多量のリチウム金属箔72で包んだ。次いで、銅箔70とリチウム金属箔72の各々にタブ75、76を取り付けた。その後、これにラミネート外装73を取り付けた。これに、0.1mol/Lでビフェニルを溶かしたエーテル溶液74を注液した後、ラミネート外装73を熱融着して密閉した。エーテル溶液の溶媒は、環状エーテルとして2メチルテトラヒドロフランを用い、支持塩として1mol/LのLiPF6が溶解していた。以上により電位測定用セル18を作製した。電位測定用セル18を作製した直後の電位の値は、約0.06Vvs.Li/Li+であった。電位測定用セル18を作製してから100時間経過後の電位の値は、約0Vvs.Li/Li+であった。
 (充放電特性の測定)
 充放電特性を測定するために、電池10-2を準備した。電池10-2では、作用極集電体(負極集電体)としてステンレス箔を用いた。セパレータとしてLi7La3Zr212(LLZ)を用いた。作用極側電解液(負極電解液)として、あらかじめLiを溶解させた0.1mol/Lのリチウムビフェニル及び1mol/LのLiPF6が溶解したエーテル溶液を用いた。エーテル溶液の溶媒は、2メチルテトラヒドロフランを含んでいた。電池10-2では、対極(正極)として金属Liを用いた。対極側電解液(正極電解液)として1mol/LのLiPF6が溶解した2メチルテトラヒドロフラン溶液を用いた。この電池10-2を用いて、充放電を実施した。さらに、この電池10-2の作用極側電解液に、Siを投入して、充放電を実施した。これにより、電池10-2の充放電特性を測定した。図5は電池10-2の充放電特性を示すグラフである。図5からわかるとおり、シリコンの投入により、電池10-2の容量が0.3mAh増加した。これにより、投入されたシリコンが充放電に利用されたことによって、電池10-2の容量が増加したことがわかる。
 <比較例1>
 ビフェニル-カーボネート、γBL溶液へのリチウム金属の溶解試験を行った。
0.1mol/Lでビフェニルを溶かした各種のカーボネート溶液、具体的には、ジメチルカーボネート溶液、ジエチルカーボネート溶液、メチルエチルカーボネート溶液、プロピレンカーボネート溶液、エチレンカーボネート溶液、及び0.1mol/Lでビフェニルを溶かしたγBL溶液を調製した。これらの溶液にリチウム金属を投入し、溶液を観察した。リチウム金属が溶解すれば溶媒和電子が発生し、それに応じて溶液色が変化するはずだが、溶液は無色透明のまま変化せず、リチウム金属は溶解しなかった。リチウム金属溶液が生成できなかったため、その電位を測定することは不可能だった。
 <比較例2>
 実施例の充放電特性の測定と同様の構成で、0.1mol/Lのリチウムビフェニル及び1mol/LのLiPF6が溶解したエーテル溶液の代わりに、0.1mol/Lのリチウムビフェニル及び1mol/LのLiPF6が溶解したジメチルカーボネート溶液、及び0.1mol/Lのリチウムビフェニル及び1mol/LのLiPF6が溶解したγBL溶液を用いて同様の試験を実施した。しかしながら、充電時に即座に負極電位が0Vになり、全く充電できなかった。これらの溶液にはリチウム金属が溶解しないため、電気化学的にリチウム金属溶液が生成されないためと考えられる。
 <比較例3>
 2×2cmの銅箔をポリプロピレン製微多孔性セパレータで包んだものの全体を多量のリチウム金属箔で包み対極とした。次いで、アルミニウム箔を置いた銅箔を作用極として、これらの電極群をラミネート外装に挿入し、0.1mol/Lでビフェニルを溶かしたエーテル溶液を注液した後、ラミネート外装を熱融着して密閉した。このセルを電圧が0になるまで充電し、1Vまで放電する試験を実施した。充電は可能だったが、放電時はすぐに電圧が1Vに達し、全く放電できなかった。試験終了後、セルを分解して負極を観察すると銅箔上にほとんどアルミニウムは残っておらず、セパレータ側にリチウムアルミニウム合金と思われる黒色粉末が多数付着していた。アルミニウムが充電によってリチウムアルミニウム合金になると約2倍に体積が膨張する。ここまで膨張すると集電体との接触がとれなくなるため、放電できなかったものと考えられる、このように合金金属をそのまま使用すると可逆性がほとんど見られなかった。
 本開示のリチウム二次電池は、例えば、蓄電デバイス又は蓄電システムとして好適に使用できる。
10 リチウム二次電池
20 正極
21 正極集電体
22 正極活物質層
30 負極
31 負極集電体
32 負極活物質
40 セパレータ
50 第1電解液
52 第2電解液
60 容器
60a 領域
60b 領域

Claims (13)

  1.  正極と、
     負極集電体及び負極活物質を有する負極と、
     前記正極と前記負極との間に配置されたセパレータと、
     前記正極および負極に接している電解液と、
    を備え、
     前記正極は、正極集電体と、前記正極集電体の上に配置された正極活物質層とを有し、
     前記負極は、充電時にリチウムと合金を形成する材料を含み、
     前記電解液は、リチウムイオンおよびそのカウンターアニオンを含有し、
     前記電解液は、フェナントレン、ビフェニル、トリフェニレン、アセナフテン、アセナフチレン、フルオランテン及びベンジルからなる群より選ばれる少なくとも1つを含有し、
     前記電解液は、環状エーテル、グライム及びスルフォランからなる群より選ばれる少なくとも1つを溶媒として含む
     リチウム二次電池。
  2.  前記環状エーテルは、2-メチルテトラヒドロフラン、テトラヒドロフラン、1,3-ジオキソラン及び4-メチル-1,3-ジオキソランからなる群より選ばれる少なくとも1つを含む、請求項1に記載のリチウム二次電池。
  3.  前記グライムは、モノグライム、ジグライム、トリグライム、テトラグライム、及びポリエチレングリコールジメチルエーテルからなる群より選ばれる少なくとも1つを含む、請求項1に記載のリチウム二次電池。
  4.  前記スルフォランが、3-メチルスルフォランを含む、請求項1に記載のリチウム二次電池。
  5.  前記負極活物質がAlを含み、
     充電時にLiAl合金が生成され、
     前記LiAl合金の組成が、LiAl、Li2Al3及びLi4Al5からなる群より選ばれる少なくとも1つである、請求項1から4のいずれか1項に記載のリチウム二次電池。
  6.  前記負極活物質がZnを含み、
     充電時にLiZn合金が生成され、
     前記LiZn合金の組成が、Li2Zn3、LiZn2、Li2Zn5、LiZn4及びLiZnからなる群より選ばれる少なくとも1つである、請求項1から4のいずれか1項に記載のリチウム二次電池。
  7.  前記負極活物質がSiを含み、
     充電時にLiSi合金が生成され、
     前記LiSi合金の組成が、Li22Si5、Li13Si4、Li7Si3及びLi12Si7
    からなる群より選ばれる少なくとも1つである、請求項1から4のいずれか1項に記載のリチウム二次電池。
  8.  前記負極活物質がSnを含み、
     充電時にLiSn合金が生成され、
     前記LiSn合金の組成が、Li22Sn5、Li7Sn2、Li13Sn5、Li7Sn3、Li5Sn2、LiSn及びLi2Sn5からなる群より選ばれる少なくとも1つである、請求項1から4のいずれか1項に記載のリチウム二次電池。
  9.  前記負極活物質がGeを含み、
     充電時にLiGe合金が生成され、
     前記LiGe合金の組成が、Li5Ge22及びLi3Geからなる群より選ばれる少なくとも1つである、請求項1から4のいずれか1項に記載のリチウム二次電池。
  10.  前記負極活物質がCdを含み、
     充電時にLiCd合金が生成され、
     前記LiCd合金の組成が、LiCd3及びLi3Cdからなる群より選ばれる少なくとも1つである、請求項1から4のいずれか1項に記載のリチウム二次電池。
  11.  前記負極活物質がBiを含み、
     充電時にLiBi合金が生成され、
     前記LiBi合金の組成が、LiBi及びLi3Biからなる群より選ばれる少なくと
    も1つである、請求項1から4のいずれか1項に記載のリチウム二次電池。
  12.  前記セパレータは、固体電解質、ゲル電解質、イオン交換樹脂膜、半透膜及び多孔質膜からなる群より選ばれる少なくとも1つを含む、請求項1から11のいずれか1項に記載のリチウム二次電池。
  13.  前記負極活物質が前記負極集電体から離れて配置されている、請求項1から12のいずれか1項に記載のリチウム二次電池。
PCT/JP2019/017412 2018-05-30 2019-04-24 リチウム二次電池 WO2019230279A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019547733A JP6902742B2 (ja) 2018-05-30 2019-04-24 リチウム二次電池
EP19811321.9A EP3806221A4 (en) 2018-05-30 2019-04-24 LITHIUM SECONDARY BATTERY
CN201980013318.4A CN111727525A (zh) 2018-05-30 2019-04-24 锂二次电池
US16/935,205 US20200350629A1 (en) 2018-05-30 2020-07-22 Lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018103971 2018-05-30
JP2018-103971 2018-05-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/935,205 Continuation US20200350629A1 (en) 2018-05-30 2020-07-22 Lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2019230279A1 true WO2019230279A1 (ja) 2019-12-05

Family

ID=68697529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017412 WO2019230279A1 (ja) 2018-05-30 2019-04-24 リチウム二次電池

Country Status (5)

Country Link
US (1) US20200350629A1 (ja)
EP (1) EP3806221A4 (ja)
JP (1) JP6902742B2 (ja)
CN (1) CN111727525A (ja)
WO (1) WO2019230279A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100224A1 (ja) * 2019-11-22 2021-05-27 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2023017672A1 (ja) * 2021-08-10 2023-02-16 パナソニックIpマネジメント株式会社 電池
WO2023017673A1 (ja) * 2021-08-10 2023-02-16 パナソニックIpマネジメント株式会社 電池
WO2023145426A1 (ja) * 2022-01-25 2023-08-03 パナソニックIpマネジメント株式会社 電池および電極の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3813175A4 (en) * 2018-06-19 2021-09-01 Panasonic Intellectual Property Management Co., Ltd. SECONDARY LITHIUM BATTERY
KR20220163578A (ko) * 2021-06-03 2022-12-12 주식회사 엘지에너지솔루션 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
CN114388889B (zh) * 2021-12-30 2024-03-26 复旦大学 一种适用高容量微米合金负极的锂离子电池电解液及电池和电子装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257496A (ja) * 2001-12-28 2003-09-12 Tdk Corp リチウム二次電池
JP3733065B2 (ja) 1999-10-22 2006-01-11 三洋電機株式会社 リチウム電池用電極及びリチウム二次電池
JP4898737B2 (ja) 2001-11-20 2012-03-21 キヤノン株式会社 リチウム二次電池用の負極材料、負極構造体及び二次電池
JP2015032447A (ja) * 2013-08-02 2015-02-16 尾池工業株式会社 負極材料、及びリチウム二次電池
US20150229005A1 (en) * 2014-02-07 2015-08-13 Samsung Sdi Co., Ltd. Electrolyte for lithium battery for solid state drive backup power and lithium battery for solid state drive backup power including the same
JP2016139457A (ja) * 2015-01-26 2016-08-04 パナソニックIpマネジメント株式会社 負極活物質、負極、および、電池
JP2016207557A (ja) * 2015-04-27 2016-12-08 パナソニックIpマネジメント株式会社 リチウム二次電池
JP2017183182A (ja) * 2016-03-31 2017-10-05 株式会社Gsユアサ 蓄電池
WO2018016249A1 (ja) * 2016-07-19 2018-01-25 パナソニックIpマネジメント株式会社 フロー電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4695748B2 (ja) * 2000-10-12 2011-06-08 パナソニック株式会社 非水系電池用電解液および非水系二次電池
JP4248258B2 (ja) * 2003-01-16 2009-04-02 三洋電機株式会社 リチウム二次電池
WO2012029578A1 (ja) * 2010-09-02 2012-03-08 日本電気株式会社 二次電池
JP5590418B2 (ja) * 2011-08-06 2014-09-17 株式会社デンソー 非水電解質二次電池
US9362583B2 (en) * 2012-12-13 2016-06-07 24M Technologies, Inc. Semi-solid electrodes having high rate capability
US9859583B2 (en) * 2014-03-04 2018-01-02 National Technology & Engineering Solutions Of Sandia, Llc Polyarene mediators for mediated redox flow battery
CN106159322A (zh) * 2015-04-14 2016-11-23 宁波维科电池股份有限公司 一种硅负极锂电池电解液

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733065B2 (ja) 1999-10-22 2006-01-11 三洋電機株式会社 リチウム電池用電極及びリチウム二次電池
JP4898737B2 (ja) 2001-11-20 2012-03-21 キヤノン株式会社 リチウム二次電池用の負極材料、負極構造体及び二次電池
JP2003257496A (ja) * 2001-12-28 2003-09-12 Tdk Corp リチウム二次電池
JP2015032447A (ja) * 2013-08-02 2015-02-16 尾池工業株式会社 負極材料、及びリチウム二次電池
US20150229005A1 (en) * 2014-02-07 2015-08-13 Samsung Sdi Co., Ltd. Electrolyte for lithium battery for solid state drive backup power and lithium battery for solid state drive backup power including the same
JP2016139457A (ja) * 2015-01-26 2016-08-04 パナソニックIpマネジメント株式会社 負極活物質、負極、および、電池
JP2016207557A (ja) * 2015-04-27 2016-12-08 パナソニックIpマネジメント株式会社 リチウム二次電池
JP2017183182A (ja) * 2016-03-31 2017-10-05 株式会社Gsユアサ 蓄電池
WO2018016249A1 (ja) * 2016-07-19 2018-01-25 パナソニックIpマネジメント株式会社 フロー電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3806221A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100224A1 (ja) * 2019-11-22 2021-05-27 パナソニックIpマネジメント株式会社 非水電解質二次電池
JP7466112B2 (ja) 2019-11-22 2024-04-12 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2023017672A1 (ja) * 2021-08-10 2023-02-16 パナソニックIpマネジメント株式会社 電池
WO2023017673A1 (ja) * 2021-08-10 2023-02-16 パナソニックIpマネジメント株式会社 電池
WO2023145426A1 (ja) * 2022-01-25 2023-08-03 パナソニックIpマネジメント株式会社 電池および電極の製造方法

Also Published As

Publication number Publication date
JPWO2019230279A1 (ja) 2020-06-11
US20200350629A1 (en) 2020-11-05
EP3806221A1 (en) 2021-04-14
JP6902742B2 (ja) 2021-07-14
CN111727525A (zh) 2020-09-29
EP3806221A4 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
WO2019230279A1 (ja) リチウム二次電池
Yao et al. Design principle, optimization strategies, and future perspectives of anode-free configurations for high-energy rechargeable metal batteries
US11374249B2 (en) Flow battery
JP2018060783A (ja) フロー電池
WO2006059085A1 (en) Electrolyte for lithium-sulphur batteries and lithium-sulphur batteries using the same
JPWO2010073978A1 (ja) リチウム二次電池
JP2018060782A (ja) フロー電池
KR101225941B1 (ko) 표면 피복된 전극활물질
WO2020202844A1 (ja) リチウム二次電池
US20230246240A1 (en) Lithium secondary battery
JP3287376B2 (ja) リチウム二次電池とその製造方法
US11322769B2 (en) Flow battery
JP6902743B2 (ja) リチウム二次電池
US20210367256A1 (en) Flow battery
JP2016131081A (ja) 二次電池
JP2020191157A (ja) リチウム二次電池
JP2019212616A (ja) フロー電池
WO2024038571A1 (ja) リチウム金属二次電池用電解液およびリチウム金属二次電池
US20230187649A1 (en) Lithium Ion Battery and Method for Manufacturing Such a Lithium Ion Battery
EP4160734A1 (en) Lithium secondary cell and non-aqueous electrolyte used for same
US20220344699A1 (en) Nonaqueous electrolyte secondary battery
WO2021039241A1 (ja) リチウム二次電池
CN114556617A (zh) 锂离子电池以及用于制造锂离子电池的方法
CN114586194A (zh) 锂离子电池以及用于制造锂离子电池的方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019547733

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019811321

Country of ref document: EP

Effective date: 20210111