WO2020202844A1 - リチウム二次電池 - Google Patents

リチウム二次電池 Download PDF

Info

Publication number
WO2020202844A1
WO2020202844A1 PCT/JP2020/006117 JP2020006117W WO2020202844A1 WO 2020202844 A1 WO2020202844 A1 WO 2020202844A1 JP 2020006117 W JP2020006117 W JP 2020006117W WO 2020202844 A1 WO2020202844 A1 WO 2020202844A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
secondary battery
negative electrode
lithium secondary
Prior art date
Application number
PCT/JP2020/006117
Other languages
English (en)
French (fr)
Inventor
倫久 岡崎
聡 蚊野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080023839.0A priority Critical patent/CN113632259A/zh
Priority to US17/599,358 priority patent/US20220190379A1/en
Priority to JP2021511198A priority patent/JPWO2020202844A1/ja
Publication of WO2020202844A1 publication Critical patent/WO2020202844A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a lithium secondary battery using a lithium metal as a negative electrode active material.
  • the non-aqueous electrolyte secondary battery is used, for example, for ICT such as personal computers and smartphones, for in-vehicle use, and for storing electricity. In such applications, the non-aqueous electrolyte secondary battery is required to have a higher capacity.
  • a lithium ion battery is known as a high-capacity non-aqueous electrolyte secondary battery. However, increasing the capacity of lithium-ion batteries is reaching its limit.
  • a lithium secondary battery is promising as a high-capacity non-aqueous electrolyte secondary battery that exceeds the lithium ion battery (Patent Document 1).
  • a lithium metal is deposited on the negative electrode during charging, and this lithium metal is dissolved in a non-aqueous electrolyte during discharging.
  • the lithium secondary battery is also referred to as a lithium metal secondary battery.
  • One of the objects of the present disclosure is to provide a lithium secondary battery having excellent cycle characteristics.
  • One aspect of the present disclosure is a positive electrode including a positive electrode mixture containing a positive electrode active material and a positive electrode additive, a negative electrode including a negative electrode current collector, a separator arranged between the positive electrode and the negative electrode, and electrolysis.
  • the positive electrode additive is derived from the first compound represented by the general formula (1): Li a1 Fe x1 M1 y1 O z1 and the second compound represented by the general formula (2): Li a2 Ni x2 M2 y2 O z2.
  • the general formula (1) satisfies 0 ⁇ a1 ⁇ 5, 0 ⁇ x1 ⁇ 5, 0 ⁇ y1 ⁇ 1 and 0 ⁇ z1 ⁇ 4. At least two of a1, x1, y1 and z1 are greater than 0, M1 comprises at least one selected from the group consisting of Co, Cu, Mg, Ni, Mn, Zn, Al, Ga, Ge, Ti, Si, Sn, Ce, Y, Zr, S and Na.
  • the general formula (2) satisfies 0 ⁇ a2 ⁇ 2, 0 ⁇ x2 ⁇ 1, 0 ⁇ y2 ⁇ 1 and 1 ⁇ z2 ⁇ 2.
  • M2 comprises at least one selected from the group consisting of Co, Cu, Mg, Fe, Mn, Zn, Al, Ga, Ge, Ti, Si, Sn, Ce, Y, Zr, S and Na.
  • the electrolytic solution relates to a lithium secondary battery containing an oxalate complex salt having an oxalate complex anion and a lithium ion.
  • the lithium secondary battery according to the present disclosure includes a positive electrode having a positive electrode mixture containing a positive electrode active material and a positive electrode additive, a negative electrode having a negative electrode current collector, and a separator arranged between the positive electrode and the negative electrode. It is provided with an electrolytic solution containing an oxalate complex salt, and at the negative electrode, lithium metal is precipitated during charging, and the lithium metal is dissolved in the electrolytic solution during discharging. In a lithium secondary battery, for example, 50% or more, more than 80% or substantially 100% of the reversible capacity is expressed by precipitation and dissolution of lithium metal.
  • the negative electrode current collector can be a copper foil or a copper alloy foil.
  • the electrolytic solution contains an oxalate complex salt having an oxalate complex anion and a lithium ion
  • the precipitation form of the lithium metal is controlled by the action of the oxalate complex anion, and the precipitation of the dendrite-like lithium metal is suppressed.
  • the surface area of the precipitated lithium metal is reduced, side reactions are suppressed, and the cycle characteristics are improved.
  • the side reaction between the lithium metal and the electrolytic solution proceeds remarkably in the vicinity of the negative electrode current collector, especially at the end of the discharge. It has also been found that even when an electrolytic solution containing an oxalate complex salt is used, it is insufficient to suppress side reactions at the end of discharge.
  • the positive electrode mixture contains a predetermined positive electrode additive, lithium metal is supplied from the positive electrode additive to the surface of the negative electrode current collector at the time of initial charging. At least a part of the positive electrode additive from which lithium has been removed decomposes and does not occlude lithium ions, so that an irreversible charge capacity can be obtained.
  • the positive electrode additive comprises a first compound represented by the general formula (1): Li a1 Fe x1 M1 y1 O z1 and a second compound represented by the general formula (2): Li a2 Ni x2 M2 y2 O z2. Includes at least one selected from the group.
  • the first compound typically has the composition formula of Li 5 FeO 4
  • the second compound typically has the composition formula of Li 2 NiO 2 .
  • the general formula (1) indicates that the first compound contains a lithium iron-containing oxide and / or a decomposition product thereof.
  • the lithium iron-containing oxide may have an inverted fluorite-type crystal structure.
  • lithium ions are released from the lithium iron-containing oxide.
  • at this time at least a part of the lithium iron-containing oxide is decomposed, and the decomposed product remains in the positive electrode mixture.
  • a lithium metal layer is formed on the negative electrode current collector by the positive electrode additive, and a side reaction at the end of discharge is particularly suppressed, and a smooth lithium metal layer is formed on the surface of the negative electrode current collector by the action of the oxalate complex anion. obtain.
  • M1 contains at least one selected from the group consisting of Co, Cu, Mg, Ni, Mn, Zn, Al, Ga, Ge, Ti, Si, Sn, Ce, Y, Zr, S and Na. From the viewpoint of suppressing gas generation and the like, M1 may contain at least one of Mn and Al.
  • the general formula (2) satisfies 0 ⁇ a2 ⁇ 2, 0 ⁇ x2 ⁇ 1, 0 ⁇ y2 ⁇ 1, and 1 ⁇ z2 ⁇ 2. At least one of a2 and x2 is greater than 0. However, before the first charge, at least a2 is larger than 1.
  • a2, x2, y2 and z2 may satisfy 1 ⁇ a1 ⁇ 2, 0 ⁇ x2 ⁇ 1, 0 ⁇ y2 ⁇ 1 and 1 ⁇ z2 ⁇ 2.
  • the general formula (2) indicates that the second compound contains a lithium nickel-containing oxide and / or a decomposition product thereof.
  • the lithium nickel-containing oxide may have a crystal structure of a rock salt type layered structure.
  • lithium ions are released from the lithium nickel-containing oxide.
  • at this time at least a part of the lithium nickel-containing oxide is decomposed, and the decomposed product remains in the positive electrode mixture.
  • a lithium metal layer is formed on the negative electrode current collector by the positive electrode additive, and a side reaction at the end of discharge is particularly suppressed, and a smooth lithium metal layer is formed on the surface of the negative electrode current collector by the action of the oxalate complex anion. Can be done.
  • the decomposition product of the lithium nickel-containing oxide may have a rock salt type layered structure, but has a relatively irregular crystal structure and can be easily distinguished from the positive electrode active material having a general rock salt type layered structure.
  • M2 contains at least one selected from the group consisting of Co, Cu, Mg, Fe, Mn, Zn, Al, Ga, Ge, Ti, Si, Sn, Ce, Y, Zr, S and Na.
  • the content of the positive electrode additive in the positive electrode mixture may be 0.1% by mass or more, 20% by mass or less, or 0.1% by mass or more and 5% by mass or less, based on the total amount of the positive electrode mixture. Good.
  • the content of the positive electrode additive in the positive electrode mixture is 0.1% by mass or more with respect to the total amount of the positive electrode mixture, a sufficient amount of lithium metal layer for suppressing side reactions is formed on the negative electrode current collector. It is formed, and it becomes easy to suppress the deterioration of the cycle characteristics.
  • the content of the positive electrode additive in the positive electrode mixture is 20% by mass or less, more positive electrode active material can be contained in the positive electrode, so that high capacity and excellent cycle characteristics can be easily obtained.
  • the content of the positive electrode additive in the positive electrode mixture is determined by, for example, X-ray diffraction (XRD), Mössbauer spectroscopy, or the like.
  • the positive electrode mixture as a first compound, for example, Li 5 FeO 4, Li 4 Fe 4, LiFeO 2, Li least one may include is selected from 2 O and Fe 2 O 3 the group consisting of.
  • the positive electrode additive to be contained in the positive electrode mixture at the time of producing the positive electrode or before the initial charging is Li 5 FeO 4
  • the decomposition products of the first compound after the initial charging are, for example, Li 4 Fe 4 , Li FeO 2 , Li 2. Includes at least one selected from the group consisting of O and Fe 2 O 3 .
  • the positive electrode mixture, a second compound, for example, may include at least one selected from the group consisting of Li 2 NiO 2, LiNiO 2, NiO and Li 2 O.
  • the positive electrode additive to be contained in the positive electrode mixture at the time of producing the positive electrode or before the initial charging is Li 2 NiO 2
  • the decomposition products of the second compound after the initial charging are, for example, Li 2 NiO 2 , LiNiO 2 , NiO and It contains at least one selected from the group consisting of Li 2 O.
  • the negative electrode current collector When the positive electrode additive is added to the positive electrode mixture layer, even if the lithium metal layer does not exist on the surface of the negative electrode current collector before the initial charge, the negative electrode current collector is always in the fully discharged state after the initial charge.
  • the thickness of the lithium metal layer is not particularly limited, but may be 5 ⁇ m or more and 30 ⁇ m or less, and may be 5 ⁇ m or more and 15 ⁇ m or less when the battery is fully discharged.
  • the lithium metal layer formed on the surface of the negative electrode current collector is formed in advance on the surface of the negative electrode current collector before being incorporated into the battery in that it is formed by electrochemical precipitation in the battery. It is structurally different from the obtained lithium metal layer.
  • forming a lithium metal layer on the surface of the negative electrode current collector by such a method requires a very complicated process.
  • the electrochemically precipitated lithium metal layer is different in composition, density and the like from the lithium metal layer formed by a method other than the electrochemical method.
  • the lithium metal layer formed in advance before being incorporated into a battery may contain a large amount of lithium carbonate, lithium oxide and the like generated by reaction with carbon dioxide, moisture or oxygen in the surrounding atmosphere.
  • the lithium metal layer is further electrochemically deposited on the surface of the preformed lithium metal layer.
  • the layers can have a structure of two or more layers.
  • the decomposition product of the lithium iron-containing oxide or the decomposition product of the lithium nickel-containing oxide can be eluted in the electrolytic solution and moved to the negative electrode. Therefore, when the positive electrode mixture contains a positive electrode additive, the negative electrode may contain Fe element and / and Ni element.
  • the oxalate complex anion contained in the oxalate complex salt may contain boron and / or phosphorus.
  • oxalate complex anion bis (oxalato) borate anion (B (C 2 O 4) 2 -), difluoro (oxalato) borate anion (BF 2 (C 2 O 4 ) -), PF 4 (C 2 O 4 ) - , PF 2 (C 2 O 4 ) 2- and the like. These may be used alone or in combination of two or more.
  • the action of the oxalate complex anion on the lithium ions in the electrolytic solution facilitates uniform precipitation of the lithium metal in the form of fine particles. Therefore, the precipitation of dendrites and the non-uniform progress of the charge / discharge reaction due to the local precipitation of the lithium metal are suppressed.
  • the oxalate complex anions bisoxalate borate anions and / or difluorooxalate borate anions are preferable.
  • the concentration of the oxalate complex salt contained in the electrolytic solution is not particularly limited, but from the viewpoint of reducing the viscosity of the electrolytic solution and ensuring high ionic conductivity, for example, it is 0.01 mol / L or more and 2 mol / L or less. It may be sufficient, and may be 0.1 mol / L or more and 1 mol / L or less.
  • the electrolyte may further contain at least one of LiPF 6 and lithium bis (fluorosulfonyl) imide to ensure high ionic conductivity as well as higher cycle characteristics and charge / discharge efficiency.
  • the total concentration of the lithium salt in the electrolytic solution is, for example, 0.5 mol / L or more, may be 1 mol / L or more, or may be 1.5 mol / L or more.
  • concentration of the lithium salt is in such a range, it is easy to secure high lithium ion conductivity of the electrolytic solution.
  • concentration of the lithium salt in the electrolytic solution may be 3 mol / L or less, or 2 mol / L or less. In this case, the number of solvent molecules solvated with lithium ions can be reduced, and the charge / discharge reaction can be efficiently performed.
  • the total concentration of the oxalate complex salt, LiPF 6 and lithium bis (fluorosulfonyl) imide is within the above concentration range.
  • FIG. 1 is a vertical cross-sectional view schematically showing a lithium secondary battery according to an embodiment of the present disclosure.
  • 2 and 3 are enlarged cross-sectional views schematically showing the region II of FIG.
  • the lithium secondary battery 10 includes, for example, a cylindrical battery case, a winding electrode group 14 housed in the battery case, and an electrolytic solution (not shown).
  • the battery case is composed of, for example, a case body 15 which is a bottomed cylindrical metal container and a sealing body 16 which seals an opening of the case body 15.
  • a gasket 27 may be arranged between the case body 15 and the sealing body 16.
  • the side wall of the case body 15 has, for example, a step portion 21 formed in an annular shape along the circumferential direction of the case body 15.
  • the sealing body 16 is supported on the opening side of the step portion 21.
  • the sealing body 16 includes a filter 22, a lower valve body 23, an insulating member 24, an upper valve body 25, and a cap 26 in this order from the inside of the case body 15. Insulating plates 17 and 18 may be arranged at both ends of the electrode group 14 in the winding axis direction in the case body 15.
  • the electrode group 14 is configured by spirally winding a strip-shaped positive electrode 11 and a negative electrode 12 with a separator 13 interposed between them.
  • the positive electrode 11 is electrically connected to, for example, a cap 26 that also serves as a positive electrode terminal via a positive electrode lead 19.
  • the negative electrode 12 is electrically connected to, for example, a case body 15 that also serves as a negative electrode terminal via a negative electrode lead 20.
  • the positive electrode 11 includes a positive electrode current collector 110 and a positive electrode mixture layer 111 arranged on both sides of the positive electrode current collector 110.
  • the negative electrode 12 includes a negative electrode current collector 120.
  • FIG. 2 shows a cross section immediately after assembling the battery, that is, in a fully discharged state before the first charge. In FIG. 2, no lithium metal is deposited on the surface of the negative electrode current collector 120.
  • FIG. 3 shows a cross section in a completely discharged state after the initial charging. In FIG. 3, a lithium metal layer 121 corresponding to an irreversible capacitance is formed on the surface of the negative electrode current collector 120.
  • the positive electrode mixture layer 111 may be formed on both sides of the positive electrode current collector 110, or may be formed on one surface. Further, in the region connecting the positive electrode lead 19 of the positive electrode 11 and / or the region not facing the negative electrode 12, the positive electrode mixture layer 111 may be formed only on one surface of the positive electrode current collector 110.
  • the positive electrode mixture layer 111 contains a positive electrode active material and a positive electrode additive as essential components, and may contain arbitrary components such as a conductive material and a binder.
  • the positive electrode 11 is obtained, for example, by applying a slurry containing a positive electrode mixture and a dispersion medium to the surface of the positive electrode current collector 110, drying the coating film, and then rolling.
  • a dispersion medium water and / or an organic medium is used. If necessary, a conductive carbon material may be applied to the surface of the positive electrode current collector 110.
  • the positive electrode active material a material that occludes and releases lithium ions can be used.
  • the positive electrode active material include lithium-containing transition metal oxides, transition metal fluorides, polyanions, fluorinated polyanions, transition metal sulfides, and the like.
  • transition metal element contained in the lithium-containing transition metal oxide examples include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, W and the like.
  • the lithium-containing transition metal oxide may contain one kind of transition metal element, or may contain two or more kinds of transition metal elements.
  • the transition metal element may be Co, Ni and / or Mn.
  • the lithium-containing transition metal oxide may contain one or more main group metal elements, if desired. Typical metal elements include Mg, Al, Ca, Zn, Ga, Ge, Sn, Sb, Pb, Bi and the like.
  • the main group element may be Al or the like.
  • the crystal structure of the positive electrode active material is not particularly limited, but a positive electrode active material having a crystal structure belonging to the space group R-3m may be used. Such a positive electrode active material has relatively small expansion and contraction of the lattice due to charge and discharge, is less likely to deteriorate, and tends to obtain excellent cycle characteristics.
  • the positive electrode active material having a rock salt type layered crystal structure belonging to the space group R-3m may contain, for example, Ni, Co, Mn and / or Al. In such a positive electrode active material, the ratio of Ni to the total number of atoms of Ni, Co, Mn and Al may be 50 atomic% or more.
  • the ratio of Ni may be 50 atomic% or more, or 80 atomic% or more.
  • the ratio of Ni may be 50 atomic% or more.
  • the conductive material is, for example, a carbon material.
  • the carbon material include carbon black, carbon nanotubes, and graphite.
  • Examples of carbon black include acetylene black and Ketjen black.
  • binder examples include fluororesin, polyacrylonitrile, polyimide resin, acrylic resin, polyolefin resin, rubber-like polymer and the like.
  • fluororesin examples include polytetrafluoroethylene and polyvinylidene fluoride.
  • Examples of the material of the positive electrode current collector 110 include metal materials containing Al, Ti, Fe and the like.
  • the metal material may be Al, Al alloy, Ti, Ti alloy, Fe alloy or the like.
  • the Fe alloy may be stainless steel.
  • the positive electrode current collector 110 is a foil, a film, or the like, and may be porous.
  • the thickness of the positive electrode current collector 110 is, for example, 5 ⁇ m or more and 30 ⁇ m or less.
  • lithium metal is deposited by charging. More specifically, the lithium ions contained in the electrolytic solution receive electrons at the negative electrode 12 by charging to become lithium metal, which is deposited on the negative electrode 12. The lithium metal precipitated at the negative electrode 12 is dissolved as lithium ions in the electrolytic solution by electric discharge.
  • the lithium ions contained in the electrolytic solution may be derived from the lithium salt added to the electrolytic solution, may be supplied from the positive electrode active material by charging, or both of them may be used.
  • the negative electrode 12 includes a negative electrode current collector 120.
  • the negative electrode current collector 120 is usually made of a conductive sheet, and the conductive sheet is made of a conductive material.
  • the conductive material may be a metal material such as a metal or an alloy.
  • the metal material a material that does not react with lithium, that is, a material that does not form any of lithium and an alloy or an intermetallic compound may be used.
  • copper, nickel, iron and alloys containing these metallic elements can be mentioned.
  • copper and / or a copper alloy is preferable from the viewpoint of cost.
  • the content of copper in the copper alloy may be 50% by mass or more, or 80% by mass or more.
  • the negative electrode current collector 120 is a foil, a film, or the like, and may be porous.
  • the thickness of the negative electrode current collector 120 is, for example, 5 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode 12 may include only the negative electrode current collector 120 before the initial charging of the lithium secondary battery, that is, immediately after assembly.
  • the completely discharged state means a state in which the lithium secondary battery is discharged until it reaches a discharged state (DoD: Depth of Discharge) of 0.05 ⁇ C or less. ..
  • DoD Depth of Discharge
  • the lower limit voltage is, for example, 2.5V.
  • the electrolytic solution contains a solvent and a solute that dissolves in the solvent.
  • Various lithium salts are used as solutes.
  • the concentration of the lithium salt in the electrolytic solution is, for example, 0.5 to 2 mol / L.
  • the electrolytic solution may contain a known additive.
  • the solvent examples include non-aqueous solvents such as cyclic carbonate ester, chain carbonate ester, cyclic carboxylic acid ester, chain carboxylic acid ester, chain ether, and cyclic ether, or water.
  • One type of solvent may be used alone, or two or more types may be used in combination.
  • the volume ratio of the main solvent to the total solvent may be 50% by volume or more, 60% by volume or more, 70% by volume or more, or 80% by volume or more.
  • ethylene carbonate (EC), fluoroethylene carbonate (FEC), propylene carbonate (PC), butylene carbonate, vinylene carbonate, vinylethylene carbonate and derivatives thereof can be used.
  • ethylene carbonate EC
  • fluoroethylene carbonate FEC
  • propylene carbonate PC
  • butylene carbonate vinylene carbonate
  • vinylethylene carbonate and derivatives thereof From the viewpoint of the ionic conductivity of the electrolytic solution, it is preferable to use at least one selected from the group consisting of ethylene carbonate, fluoroethylene carbonate and propylene carbonate.
  • chain carbonic acid ester examples include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC).
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • cyclic carboxylic acid ester examples include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • methyl acetate (MA), ethyl acetate (EA), propyl acetate, methyl propionate, ethyl propionate, propyl propionate and the like can be used.
  • cyclic ether examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4-dioxane, and the like.
  • examples thereof include 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole and crown ether.
  • Chain ethers include dimethyl ether, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxytoluene, and benzyl.
  • ether is suitable for use as a solvent for an electrolytic solution of a lithium secondary battery.
  • the ether may be fluorinated, for example, a fluorinated ether having a fluorination rate of 40% or more may be used. In this case, the charge / discharge reaction can be performed more uniformly.
  • the fluorination rate may be 60% or more, or 70% or more.
  • the fluorination rate of the fluorinated ether represents the ratio of the number of fluorine atoms to the total number of fluorine atoms and hydrogen atoms contained in the fluorinated ether as a percentage (%). Therefore, the fluorination rate has the same meaning as the percentage (%) of the substitution ratio of hydrogen atoms by fluorine atoms in the ether in which all the fluorine atoms of the fluorinated ether are replaced with hydrogen atoms.
  • fluorinated ether examples include, for example, fluorinated (poly) ethylene glycol dialkyl ether, and the number of carbon atoms of the alkyl group is, for example, 1 to 6, even if it is 1 to 4, respectively. Well, it may be 1 or 2.
  • Lithium salts include, in addition to oxalate complex salts, LiPF 6 and lithium bis (fluorosulfonyl) imide (LiN (SO 2 F) 2 ), for example, LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN ( SO 2 CF 3 ) 2 and the like.
  • LiN (SO 2 F) 2 lithium bis (fluorosulfonyl) imide
  • LiBF 4 LiClO 4
  • LiAsF 6 LiCF 3 SO 3
  • LiN ( SO 2 CF 3 ) 2 LiN ( SO 2 CF 3 ) 2 and the like.
  • a plurality of types of lithium salts may be used in combination.
  • a porous sheet having ion permeability and electronic insulation is used as the separator 13.
  • the porous sheet include a microporous film, a woven fabric, and a non-woven fabric.
  • the material of the separator is not particularly limited, but a polymer material is preferable, and examples thereof include olefin resin, polyamide resin, and cellulose.
  • the olefin resin include olefin-based copolymers containing at least one of polyethylene, polypropylene, ethylene and propylene as a monomer unit.
  • the separator 13 may contain an additive, if necessary. Examples of the additive include an inorganic filler and the like.
  • FIG. 1 has described a cylindrical lithium secondary battery provided with a cylindrical battery case
  • the lithium secondary battery according to the present disclosure is not limited to this case.
  • the lithium secondary battery according to the present disclosure can also be applied to, for example, a square battery having a square battery case, a laminated battery having a resin outer body such as an aluminum laminated sheet, and the like.
  • the electrode group is not limited to the winding type, and may be, for example, a laminated type electrode group in which a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated so that separators are interposed between the positive and negative electrodes.
  • a lithium secondary battery was manufactured by the following procedure.
  • the content of the positive electrode additive in the positive electrode mixture is as shown in Table 1.
  • An appropriate amount of N-methyl-2-pyrrolidone as a dispersion medium was added to the mixture and stirred to prepare a positive electrode mixture slurry.
  • As the positive electrode active material a lithium-containing transition metal oxide containing Ni, Co and Al and having a crystal structure belonging to the space group R-3m was used.
  • the positive electrode mixture slurry was applied to both sides of the aluminum foil as the positive electrode current collector 110 and dried.
  • the dried product was compressed in the thickness direction using a roller.
  • a positive electrode 11 having positive electrode mixture layers 111 on both sides of the positive electrode current collector 110 was produced.
  • An exposed portion of the positive electrode current collector 110 having no positive electrode mixture layer 111 was formed in a part of the positive electrode 11.
  • One end of an aluminum positive electrode lead 19 was attached to the exposed portion of the positive electrode current collector 110 by welding.
  • the negative electrode current collector 120 was formed by cutting an electrolytic copper foil having a thickness of 10 ⁇ m into a predetermined electrode size.
  • the negative electrode current collector 120 was used as the negative electrode 12 for manufacturing the battery.
  • One end of a nickel negative electrode lead 20 was attached to the negative electrode current collector 120 by welding.
  • the positive electrode 11 obtained in (1) above and the negative electrode 12 obtained in (2) above are placed between them as a separator 13 made of polyethylene.
  • the electrodes were laminated with a film interposed therebetween and wound in a spiral shape to prepare an electrode group.
  • the obtained electrode group was housed in a bag-shaped exterior body formed of a laminated sheet having an Al layer, and after injecting a non-aqueous electrolyte solution, the exterior body was sealed to complete a lithium secondary battery. ..
  • the lithium secondary batteries obtained in Examples and Comparative Examples were subjected to a charge / discharge test according to the following procedure, and the maintenance rate of the capacity at the 50th cycle with respect to the initial capacity was evaluated.
  • the lithium secondary battery was charged under the following conditions in a constant temperature bath at 25 ° C., then paused for 20 minutes, and then discharged under the following conditions.
  • the charge and discharge tests were performed for 50 cycles, with the above charge and discharge as one cycle.
  • the discharge capacity in the first cycle was measured and used as the initial discharge capacity.
  • the ratio of the discharge capacity at the 50th cycle to the initial discharge capacity was determined as the capacity retention rate (%).
  • Table 1 shows the results of Examples 1 to 3 and Comparative Examples 1 to 5.
  • Examples 1 to 3 are batteries A1 to A3, and Comparative Examples 1 to 5 are batteries R1 to R5.
  • Example 4 to 7 and Comparative Examples 6 to 11 The positive electrode active material, the positive electrode additives (Li 5 FeO 4 , Li 2 NiO 2 ) shown in Table 1, acetylene black (conductive agent, AB), and polyvinylidene fluoride (binding agent, PVdF) were added (positive electrode).
  • Active material + positive electrode additive): AB: PVdF 95: 2.5: 2.5 to prepare a positive electrode in the same manner as in Examples 1 to 3 above, and further, a negative electrode similar to the above.
  • the current collector 120 was prepared as the negative electrode 12.
  • the content of the positive electrode additive in the positive electrode mixture is as shown in Table 2.
  • the volume ratio of dimethoxyethane (DME) to 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether fluorination rate 70% (HFE) 1
  • the lithium salt (lithium bis (fluorosulfonyl) imide (LiFSI), lithium difluorooxalate borate (LiFOB)) shown in Table 2 is dissolved in the mixed solvent of: 2 to the concentration shown in Table 2 to be non-aqueous.
  • An electrolytic solution was prepared.
  • Examples 4 to 7 are batteries A4 to A7
  • Comparative Examples 6 to 11 are batteries R6 to R11.
  • the batteries A4 to A7 maintain a high discharge capacity even after 50 cycles, and excellent cycle characteristics are obtained.
  • the lithium secondary battery according to the present disclosure has excellent cycle characteristics.
  • the lithium secondary battery according to the present disclosure is useful for various applications such as electronic devices such as mobile phones, smartphones and tablet terminals, hybrids, electric vehicles including plug-in hybrids, and household storage batteries combined with solar batteries. ..
  • electronic devices such as mobile phones, smartphones and tablet terminals
  • hybrids electric vehicles including plug-in hybrids
  • household storage batteries combined with solar batteries. ..
  • the present invention has described preferred embodiments at this time, such disclosures should not be construed in a limited way. Various modifications and modifications will undoubtedly become apparent to those skilled in the art belonging to the present invention by reading the above disclosure. Therefore, the appended claims should be construed to include all modifications and modifications without departing from the true spirit and scope of the invention.
  • Lithium secondary battery 11 Positive electrode 12 Negative electrode 13 Separator 14 Electrode group 15 Case body 16 Sealing body 17, 18 Insulating plate 19 Positive electrode lead 20 Negative electrode lead 21 Steps 22 Filter 23 Lower valve body 24 Insulation member 25 Upper valve body 26 Cap 27 Gasket 110 Positive electrode current collector 111 Positive electrode mixture layer 120 Negative electrode current collector 121 Lithium metal layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

正極添加剤を含む正極合剤を備える正極と負極とセパレータと電解液とを備え、負極では、充電時にリチウム金属が析出し、リチウム金属は放電時に電解液中に溶解し、正極添加剤は一般式(1):Lia1Fex1M1y1z1で表される第1化合物および/または一般式(2):Lia2Nix2M2y2z2で表される第2化合物を含み、一般式(1)は、0≦a1≦5、0≦x1≦5、0≦y1≦1、0≦z1≦4を満たし、a1、x1、y1およびz1のうち、少なくとも2つは0より大きく、一般式(2)は、0≦a2≦2、0≦x2≦1、0≦y2≦1、1≦z2≦2を満たし、a2およびx2の少なくとも一方は0より大きく、電解液は、オキサレート錯体アニオンとリチウムイオンとを有するオキサレート錯体塩を含む、リチウム二次電池。

Description

リチウム二次電池
 本開示は、リチウム金属を負極活物質として用いるリチウム二次電池に関する。
 非水電解質二次電池は、例えば、パソコンおよびスマートフォン等のICT用、車載用、ならびに蓄電用等の用途に用いられている。このような用途において、非水電解質二次電池には、さらなる高容量化が求められる。高容量の非水電解質二次電池としては、リチウムイオン電池が知られている。しかし、リチウムイオン電池の高容量化は限界に達しつつある。
 リチウムイオン電池を超える高容量の非水電解質二次電池として、リチウム二次電池が有望である(特許文献1)。リチウム二次電池では、充電時に、負極にリチウム金属が析出し、このリチウム金属は放電時に非水電解質中に溶解する。なお、リチウム二次電池は、リチウム金属二次電池とも称される。
特開2001-243957号公報
 リチウム(金属)二次電池では、負極におけるリチウム金属の析出形態の制御が難しい。リチウム金属がデンドライト状に析出することを抑制し、電解液とリチウム金属の副反応を抑え、サイクル特性を向上させることが望まれている。本開示は、サイクル特性に優れたリチウム二次電池を提供することを目的の一つとする。
 本開示の一側面は、正極活物質と正極添加剤とを含む正極合剤を備える正極と、負極集電体を備える負極と、前記正極と前記負極との間に配置されるセパレータと、電解液と、を備え、
 前記負極では、充電時にリチウム金属が析出し、放電時に前記リチウム金属は前記電解液中に溶解し、
 前記正極添加剤は、一般式(1):Lia1Fex1M1y1z1で表される第1化合物および一般式(2):Lia2Nix2M2y2z2で表される第2化合物からなる群より選択される少なくとも1種を含み、
 一般式(1)は、0≦a1≦5、0≦x1≦5、0≦y1≦1および0≦z1≦4を満たし、
 a1、x1、y1およびz1のうち、少なくとも2つは0より大きく、
 M1は、Co、Cu、Mg、Ni、Mn、Zn、Al、Ga、Ge、Ti、Si、Sn、Ce、Y、Zr、SおよびNaからなる群より選択される少なくとも1種を含み、
 一般式(2)は、0≦a2≦2、0≦x2≦1、0≦y2≦1および1≦z2≦2を満たし、
 a2およびx2の少なくとも一方は0より大きく、
 M2は、Co、Cu、Mg、Fe、Mn、Zn、Al、Ga、Ge、Ti、Si、Sn、Ce、Y、Zr、SおよびNaからなる群より選択される少なくとも1種を含み、
 前記電解液は、オキサレート錯体アニオンと、リチウムイオンと、を有するオキサレート錯体塩を含む、リチウム二次電池に関する。
 リチウム二次電池において、優れたサイクル特性が得られる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本開示の一実施形態に係るリチウム二次電池を模式的に示す縦断面図である。 リチウム二次電池の初回充電前の完全放電状態(すなわち電池組み立て直後)における図1のIIの領域を模式的に示す拡大断面図である。 リチウム二次電池の初回充電後の完全放電状態における図1のIIの領域を模式的に示す拡大断面図である。
 本開示に係るリチウム二次電池は、正極活物質と正極添加剤とを含む正極合剤を備える正極と、負極集電体を備える負極と、正極と負極との間に配置されるセパレータと、オキサレート錯体塩を含む電解液とを備え、負極では、充電時にリチウム金属が析出し、放電時にリチウム金属は電解液中に溶解する。リチウム二次電池では、例えば、可逆容量の50%以上、更には80%以上もしくは実質的に100%がリチウム金属の析出と溶解により発現される。負極集電体は、銅箔または銅合金箔であり得る。
 一般的なリチウム二次電池では、放電過程において負極集電体上のリチウム金属が溶解する際に、リチウム金属と電解液との副反応が起こる。副反応の生成物は不可逆容量となり、サイクル特性の低下の一因となる。
 一方、電解液が、オキサレート錯体アニオンとリチウムイオンとを有するオキサレート錯体塩を含む場合、オキサレート錯体アニオンの作用により、リチウム金属の析出形態が制御され、デンドライト状のリチウム金属の析出が抑制される。その結果、析出するリチウム金属の表面積が減少し、副反応が抑制され、サイクル特性が向上する。
 発明者の研究では、リチウム金属と電解液との副反応は、特に放電末期において負極集電体近傍で顕著に進行することが見出されている。オキサレート錯体塩を含む電解液を用いた場合でも、放電末期の副反応の抑制には不十分であることも見出されている。これに対し、正極合剤が所定の正極添加剤を含む場合は、正極添加剤から初回充電時に負極集電体の表面にリチウム金属が供給される。リチウムが抜けた正極添加剤の少なくとも一部は、分解し、リチウムイオンを吸蔵しないため、不可逆な充電容量が得られる。すなわち、初回充電後、満放電状態において、負極集電体の表面には、常に正極に戻れないリチウム金属が析出した状態となる。負極集電体が正極添加剤由来のリチウム金属層により常に被覆された状態となる場合、負極集電体近傍での副反応は顕著に抑制され得る。すなわち、オキサレート錯体塩を含む電解液と正極添加剤とを併用することで、放電過程の全域において副反応が抑制されるため、サイクル特性が向上する。
 正極添加剤は、一般式(1):Lia1Fex1M1y1z1で表される第1化合物および一般式(2):Lia2Nix2M2y2z2で表される第2化合物からなる群より選択される少なくとも1種を含む。第1化合物は、典型的には、LiFeOの組成式を有し、第2化合物は、典型的には、LiNiOの組成式を有する。
 一般式(1)は、0≦a1≦5、0≦x1≦5、0≦y1≦1および0≦z1≦4を満たす。a1、x1、y1およびz1のうち、少なくとも2つは0より大きい。ただし、初回充電前において、少なくともa1は0ではなく、第1化合物はLiを含む。a1、x1、y1およびz1は、0<a1≦5、0<x1≦5、0≦y1≦1および1≦z1≦4を満たしてもよい。初回充電前において、a1、x1、y1およびz1は、例えば、4≦a1≦5、0.8≦x1≦1、x1+y1=1、3.5≦z1≦4を満たしてもよい。
 一般式(1)は、第1化合物が、リチウム鉄含有酸化物および/またはその分解物を含むことを示している。リチウム鉄含有酸化物は、逆蛍石型の結晶構造を有してもよい。充電時には、リチウム鉄含有酸化物からリチウムイオンが放出される。このとき、リチウム鉄含有酸化物の少なくとも一部が分解し、正極合剤中に分解物が残存する。正極添加剤により負極集電体上にリチウム金属層が形成され、特に放電末期の副反応が抑制されるとともに、オキサレート錯体アニオンの作用により平滑なリチウム金属層が負極集電体の表面に形成され得る。
 M1は、Co、Cu、Mg、Ni、Mn、Zn、Al、Ga、Ge、Ti、Si、Sn、Ce、Y、Zr、SおよびNaからなる群より選択される少なくとも1種を含む。ガス発生の抑制等の観点から、M1は、MnおよびAlの少なくとも一方を含んでもよい。
 一般式(2)は、0≦a2≦2、0≦x2≦1、0≦y2≦1および1≦z2≦2を満たす。a2およびx2の少なくとも一方は0より大きい。ただし、初回充電前において、少なくともa2は1より大きい。a2、x2、y2およびz2は、1≦a1≦2、0<x2≦1、0≦y2<1および1≦z2≦2を満たしてもよい。初回充電前において、a2、x2、y2およびz2は、例えば、1<a2≦2、0.8≦x2≦1、x2+y2=1、1.5≦z2≦2を満たしてもよい。
 一般式(2)は、第2化合物が、リチウムニッケル含有酸化物および/またはその分解物を含むことを示している。リチウムニッケル含有酸化物は、岩塩型層状構造の結晶構造を有してもよい。充電時には、リチウムニッケル含有酸化物からリチウムイオンが放出される。このとき、リチウムニッケル含有酸化物の少なくとも一部が分解し、正極合剤中に分解物が残存する。正極添加剤により負極集電体上にリチウム金属層が形成され、特に放電末期の副反応が抑制されるとともに、オキサレート錯体アニオンの作用により、平滑なリチウム金属層が負極集電体の表面に形成され得る。リチウムニッケル含有酸化物の分解物は、岩塩型層状構造を有し得るが、比較的不規則な結晶構造を有し、一般的な岩塩型層状構造の正極活物質と容易に区別できる。
 M2は、Co、Cu、Mg、Fe、Mn、Zn、Al、Ga、Ge、Ti、Si、Sn、Ce、Y、Zr、SおよびNaからなる群より選択される少なくとも1種を含む。
 第1化合物および第2化合物は、いずれも大きな充電容量を有するため、正極添加剤の使用量は少量でも十分である。例えば、正極合剤中の正極添加剤の含有量は、正極合剤の総量に対して、0.1質量%以上、20質量%以下でもよく、0.1質量%以上、5質量%以下でもよい。
 正極合剤中の正極添加剤の含有量が正極合剤の総量に対して0.1質量%以上である場合、負極集電体上に副反応を抑制するための十分量のリチウム金属層が形成され、サイクル特性の低下を抑制しやすくなる。一方、正極合剤中の正極添加剤の含有量が20質量%以下である場合、正極中により多くの正極活物質を含ませることができるため、高容量および優れたサイクル特性が得られ易い。正極合剤中の正極添加剤の含有量は、例えば、X線回折法(XRD)、メスバウアー分光法等により求められる。
 正極合剤は、第1化合物として、例えば、LiFeO、LiFe、LiFeO、LiOおよびFeからなる群より選択される少なくとも1種を含んでもよい。正極作製時もしくは初回充電前に正極合剤に含ませる正極添加剤がLiFeOである場合、初回充電後の第1化合物の分解物は、例えば、LiFe、LiFeO、LiOおよびFeからなる群から選択される少なくとも1種を含む。
 正極合剤は、第2化合物として、例えば、LiNiO、LiNiO、NiOおよびLiOからなる群より選択される少なくとも1種を含んでもよい。正極作製時もしくは初回充電前に正極合剤に含ませる正極添加剤がLiNiOである場合、初回充電後の第2化合物の分解物は、例えば、LiNiO、LiNiO、NiOおよびLiOからなる群より選択される少なくとも1種を含む。
 正極合剤層に正極添加剤を添加する場合、初回充電前に負極集電体の表面にリチウム金属層が存在しない場合であっても、初回充電後の満放電状態において、常に負極集電体の表面にリチウム金属層が存在し得る。リチウム金属層の厚さは、特に限定されないが、電池の満放電時において、例えば5μm以上、30μm以下であればよく、5μm以上、15μm以下でもよい。
 ここで、負極集電体の表面に形成されるリチウム金属層は、電池内で電気化学的に析出して形成される点で、電池に組み込まれる前の負極集電体の表面に予め形成され得るリチウム金属層とは構造的に相違する。例えば、電池に組み込まれる前の負極集電体の表面に予めリチウム金属箔を貼り付け、もしくはリチウム金属を膜状に蒸着させることで、リチウム金属層を形成することも可能である。しかし、そのような方法で負極集電体の表面にリチウム金属層を形成するには、非常に煩雑な工程を必要とする。また、電気化学的に析出させたリチウム金属層は、電気化学的な方法以外で形成されたリチウム金属層とは、組成、密度等が相違する。例えば、電池に組み込まれる前に予め形成されたリチウム金属層は、周囲の雰囲気の二酸化炭素、水分もしくは酸素との反応により生成する炭酸リチウム、酸化リチウム等を多く含み得る。電気化学的な方法以外で予め負極集電体の表面にリチウム金属層を形成した場合、その後、予め形成されたリチウム金属層の表面に更に電気化学的にリチウム金属層が析出するため、リチウム金属層が2層以上の構造を有し得る。
 正極添加剤の中でも、リチウム鉄含有酸化物の分解物もしくはリチウムニッケル含有酸化物の分解物は、電解液中に溶出し、負極に移動し得る。よって、正極合剤が正極添加剤を含む場合、負極は、Fe元素または/およびNi元素を含んでもよい。
 オキサレート錯体塩が有するオキサレート錯体アニオンは、ホウ素および/またはリンを含有してもよい。オキサレート錯体アニオンの具体例としては、ビスオキサレートボレートアニオン(B(C )、ジフルオロオキサレートボレートアニオン(BF(C)、PF(C、PF(C 等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 電解液中でオキサレート錯体アニオンがリチウムイオンに作用することで、リチウム金属が細かい粒子状で均一に析出し易くなるものと考えられる。そのため、リチウム金属の局所的な析出に伴うデンドライトの析出、不均一な充放電反応の進行等が抑制される。オキサレート錯体アニオンの中でも、ビスオキサレートボレートアニオンおよび/またはジフルオロオキサレートボレートアニオンが好ましい。
 電解液に含まれるオキサレート錯体塩の濃度は、特に限定されないが、電解液の粘度を低減し、高いイオン伝導性を確保する観点からは、例えば、0.01mol/L以上、2mol/L以下であればよく、0.1mol/L以上、1mol/L以下でもよい。
 電解液は、高いイオン伝導性を確保するとともに、より高いサイクル特性および充放電効率を確保するために、更に、LiPFおよびリチウムビス(フルオロスルホニル)イミドの少なくとも一方を含んでもよい。
 電解液中のリチウム塩の合計濃度は、例えば、0.5mol/L以上であり、1mol/L以上でもよく、1.5mol/L以上でもよい。リチウム塩の濃度がこのような範囲である場合、電解液の高いリチウムイオン伝導性を確保しやすい。一方、電解液中のリチウム塩の濃度は、3mol/L以下であってもよく、2mol/L以下であってもよい。この場合、リチウムイオンに溶媒和する溶媒分子の数を低減することができ、充放電反応を効率よく行うことができる。中でも、オキサレート錯体塩、LiPFおよびリチウムビス(フルオロスルホニル)イミドの合計濃度が上記濃度範囲内であることが好ましい。
 以下、リチウム二次電池の構成要素について図面を参照しながら更に説明するが、以下の図面等は本発明を限定するものではない。
 図1は、本開示の一実施形態に係るリチウム二次電池を模式的に示す縦断面図である。図2、3は、図1のIIの領域を模式的に示す拡大断面図である。
 リチウム二次電池10は、例えば円筒形の電池ケースと、電池ケース内に収容された巻回式の電極群14および図示しない電解液とを備える。電池ケースは、例えば有底円筒形の金属製容器であるケース本体15と、ケース本体15の開口部を封口する封口体16とで構成される。ケース本体15と封口体16との間にガスケット27を配置してもよい。ケース本体15の側壁は、例えば、ケース本体15の周方向に沿って環状に形成された段部21を有する。段部21の開口部側に封口体16が支持される。封口体16は、ケース本体15の内側から順に、フィルタ22、下弁体23、絶縁部材24、上弁体25およびキャップ26を備えている。ケース本体15内において、電極群14の巻回軸方向の両端部には、絶縁板17、18をそれぞれ配置してもよい。
 電極群14は、それぞれ帯状の正極11と負極12とを、これらの間にセパレータ13を介在させた状態で渦巻状に巻回して構成されている。正極11は、正極リード19を介して、例えば正極端子を兼ねるキャップ26と電気的に接続されている。負極12は、負極リード20を介して、例えば負極端子を兼ねるケース本体15と電気的に接続されている。
 図2に示すように、正極11は、正極集電体110と、正極集電体110の両面に配置された正極合剤層111とを備える。負極12は、負極集電体120を備えている。図2には、電池組み立て直後、すなわち初回充電前の完全放電状態における断面を示す。図2では、負極集電体120の表面にリチウム金属は析出していない。一方、図3には、初回充電後、完全放電状態における断面を示す。図3では、負極集電体120の表面に不可逆容量に相当するリチウム金属層121が形成されている。
(正極)
 正極11において、正極合剤層111は、正極集電体110の両面に形成されていてもよく、一方の表面に形成されていてもよい。また、正極11の正極リード19を接続する領域および/または負極12と対向しない領域では、正極集電体110の一方の表面のみに正極合剤層111を形成してもよい。正極合剤層111は、正極活物質および正極添加剤を必須成分として含んでおり、導電材、結着材等の任意成分を含んでもよい。
 正極11は、例えば、正極合剤と分散媒とを含むスラリーを、正極集電体110の表面に塗布し、塗膜を乾燥させた後、圧延することにより得られる。分散媒としては、水および/または有機媒体が用いられる。正極集電体110の表面には、必要に応じて、導電性の炭素材料を塗布してもよい。
 正極活物質としては、リチウムイオンを吸蔵および放出する材料を用い得る。正極活物質としては、例えば、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン、フッ素化ポリアニオン、遷移金属硫化物等が挙げられる。
 リチウム含有遷移金属酸化物に含まれる遷移金属元素としては、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr、W等が挙げられる。リチウム含有遷移金属酸化物は、遷移金属元素を1種含んでもよく、2種以上含んでいてもよい。遷移金属元素は、Co、Niおよび/またはMnであってもよい。リチウム含有遷移金属酸化物は、必要に応じて、1種または2種以上の典型金属元素を含むことができる。典型金属元素としては、Mg、Al、Ca、Zn、Ga、Ge、Sn、Sb、Pb、Bi等が挙げられる。典型金属元素は、Al等であってもよい。
 正極活物質の結晶構造は特に制限されないが、空間群R-3mに属する結晶構造を有する正極活物質を用いてもよい。このような正極活物質は、充放電に伴う格子の膨張収縮が比較的小さく、劣化しにくく、優れたサイクル特性が得られ易い。空間群R-3mに属する岩塩型層状の結晶構造を有する正極活物質は、例えば、NiとCoとMnおよび/またはAlとを含むものであってもよい。このような正極活物質において、Ni、Co、MnおよびAlの原子数の合計に占めるNiの比率は、50原子%以上であってもよい。例えば、正極活物質がNi、Co、およびAlを含む場合、Niの比率は、50原子%以上であってもよく、80原子%以上であってもよい。正極活物質が、Ni、CoおよびMnを含む場合、Niの比率は、50原子%以上であってもよい。
 導電材は、例えば、炭素材料である。炭素材料としては、カーボンブラック、カーボンナノチューブ、および黒鉛等が挙げられる。カーボンブラックとしては、アセチレンブラック、ケッチェンブラックなどが挙げられる。
 結着材としては、例えば、フッ素樹脂、ポリアクリロニトリル、ポリイミド樹脂、アクリル樹脂、ポリオレフィン樹脂、ゴム状重合体等が挙げられる。フッ素樹脂としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等が挙げられる。
 正極集電体110の材質としては、Al、Ti、Feなどを含む金属材料が挙げられる。金属材料は、Al、Al合金、Ti、Ti合金、Fe合金などであってもよい。Fe合金は、ステンレス鋼であってもよい。正極集電体110は、箔、フィルムなどであり、多孔質であってもよい。正極集電体110の厚みは、例えば、5μm以上、30μm以下である。
(負極)
 負極12では、充電によりリチウム金属が析出する。より具体的には、電解液に含まれるリチウムイオンが、充電により負極12で電子を受け取ってリチウム金属になり、負極12に析出する。負極12で析出したリチウム金属は、放電により電解液中にリチウムイオンとして溶解する。なお、電解液に含まれるリチウムイオンは、電解液に添加したリチウム塩に由来してもよく、充電により正極活物質から供給されてもよく、これらの双方でもよい。
 負極12は、負極集電体120を備えている。負極集電体120は、通常、導電性シートで構成され、導電性シートは導電性材料で構成される。導電性材料は、金属、合金などの金属材料であってもよい。金属材料は、リチウムと反応しない材料、すなわちリチウムと合金および金属間化合物のいずれも形成しない材料を用いてもよい。例えば、銅、ニッケル、鉄およびこれらの金属元素を含む合金などが挙げられる。中でも、金属材料は、コストの観点からも、銅および/または銅合金が好ましい。銅合金中の銅の含有量は、50質量%以上であってもよく、80質量%以上であってもよい。負極集電体120は、箔、フィルムなどであり、多孔質であってもよい。負極集電体120の厚みは、例えば、5μm以上、20μm以下である。
 高い体積エネルギー密度を確保し易い観点から、負極12は、リチウム二次電池の初回充電前、すなわち組み立て直後において、負極集電体120のみを含んでいてもよい。
 なお、本開示において、リチウム二次電池の定格容量をCとするとき、完全放電状態とは、0.05×C以下の放電状態(DoD:Depth of Discharge)となるまで放電させた状態をいう。例えば0.05Cの定電流で下限電圧まで放電した状態をいう。下限電圧は、例えば2.5Vである。
(電解液)
 電解液は、溶媒と、溶媒に溶解する溶質とを含む。溶質には様々なリチウム塩が用いられる。電解液中のリチウム塩の濃度は、例えば0.5~2mol/Lである。電解液は、公知の添加剤を含有してもよい。
 溶媒としては、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル、鎖状カルボン酸エステル、鎖状エーテル、環状エーテルなどの非水溶媒または水が例示できる。溶媒は1種を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。中でも、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル、鎖状カルボン酸エステル、鎖状エーテルおよび環状エーテルからなる群より選択される少なくとも1種を主溶媒として含むことが好ましい。ここで、主溶媒が全溶媒に占める体積割合は、50体積%以上であってもよく、60体積%以上であってもよく、70体積%以上または80体積%以上としてもよい。
 環状炭酸エステルとしては、エチレンカーボネート(EC)、フルオロエチレンカーボネート(FEC)、プロピレンカーボネート(PC)、ブチレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネートおよびこれらの誘導体等を用いることができる。電解液のイオン導電率の観点から、エチレンカーボネート、フルオロエチレンカーボネートおよびプロピレンカーボネートからなる群より選択される少なくとも1種を用いることが好ましい。
 鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。
 環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)などが挙げられる。
 鎖状カルボン酸エステルとしては、酢酸メチル(MA)、酢酸エチル(EA)、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル等を用いることができる。
 環状エーテルとしては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等が挙げられる。
 鎖状エーテルとしては、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、1,2-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチル等が挙げられる。
 なお、エーテルの最低空軌道(LUMO:Lowest Unoccupied Molecular Orbital)は、高いエネルギー準位に存在する。そのため、エーテルが、強い還元力を有するリチウム金属と接触しても還元分解されにくい。加えて、エーテル骨格中の酸素は、リチウムイオンと強く相互作用するため、リチウム塩を容易に溶解させることができる。これらの性質を考慮すると、エーテルは、リチウム二次電池の電解液の溶媒として使用するのに適している。一方、エーテルとリチウムイオンとの相互作用が強過ぎると、リチウムイオンに対するエーテルの脱溶媒和エネルギーが大きくなり、エーテル分子によりリチウムイオンが捕捉された状態となり、負極表面においてリチウムイオンがリチウム金属に還元され難くなる。
 以上より、エーテルは、フッ素化してもよく、例えばフッ素化率40%以上のフッ素化エーテルを用いてもよい。この場合、充放電反応をより均一に行うことができる。フッ素化率は、60%以上であってもよく、70%以上であってもよい。
 本開示において、フッ素化エーテルのフッ素化率とは、フッ素化エーテルに含まれるフッ素原子と水素原子の合計個数に占めるフッ素原子の個数比率を百分率(%)で表したものである。従って、フッ素化率は、フッ素化エーテルのフッ素原子を全て水素原子に置き換えたエーテルにおける、フッ素原子による水素原子の置換割合を百分率(%)で表したものと同じ意味である。
 フッ素化エーテルの具体例としては、例えば、フッ素化された(ポリ)エチレングリコールジアルキルエーテルが挙げられ、アルキル基の炭素数は、それぞれ、例えば、1~6であり、1~4であってもよく、1または2であってもよい。
 リチウム塩としては、オキサレート錯体塩、LiPFおよびリチウムビス(フルオロスルホニル)イミド(LiN(SO2F)2)の他に、例えば、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiN(SO2CF32などが挙げられる。リチウム塩は、複数種を組み合わせて用いてもよい。
(セパレータ)
 セパレータ13には、イオン透過性および電子絶縁性を有する多孔性シートが用いられる。多孔性シートとしては、例えば、微多孔フィルム、織布、不織布が挙げられる。セパレータの材質は、特に限定されないが、高分子材料がよく、オレフィン樹脂、ポリアミド樹脂、セルロース等が挙げられる。オレフィン樹脂としては、ポリエチレン、ポリプロピレン、エチレンおよびプロピレンの少なくとも一方をモノマー単位として含むオレフィン系共重合体などが挙げられる。セパレータ13は、必要に応じて、添加剤を含んでもよい。添加剤としては、無機フィラー等が挙げられる。
 図1では、円筒形電池ケースを備えた円筒形のリチウム二次電池について説明したが、本開示に係るリチウム二次電池はこの場合に限らない。本開示に係るリチウム二次電池は、例えば、角形の電池ケースを備えた角形電池、アルミニウムラミネートシートなどの樹脂外装体を備えたラミネート電池などにも適用できる。また、電極群も、巻回型に限らず、例えば、複数の正極と複数の負極とをセパレータが正負極間に介在するように交互に積層した積層型の電極群であってもよい。
[実施例]
 以下、本開示に係るリチウム二次電池を実施例および比較例に基づいて具体的に説明する。本開示は以下の実施例に限定されるものではない。
(実施例1~3および比較例1~5)
 以下の手順でリチウム二次電池を作製した。
(1)正極11の作製
 正極活物質と、表1に示す正極添加剤(LiFeO、LiNiO)と、アセチレンブラック(導電剤、AB)と、ポリフッ化ビニリデン(結着剤、PVdF)とを、(正極活物質+正極添加剤):AB:PVdF=95:2.5:2.5の質量比で混合した。正極合剤中の正極添加剤の含有量は、表1に示す通りである。混合物に、分散媒としてのN-メチル-2-ピロリドンを適量加えて撹拌することにより、正極合剤スラリーを調製した。正極活物質としては、Ni、CoおよびAlを含み、空間群R-3mに属する結晶構造を有するリチウム含有遷移金属酸化物を用いた。
 正極合剤スラリーを、正極集電体110としてのアルミニウム箔の両面に塗布し、乾燥した。乾燥物を、ローラーを用いて厚み方向に圧縮した。得られた積層体を、所定の電極サイズに切断することにより、正極集電体110の両面に正極合剤層111を備える正極11を作製した。なお、正極11の一部の領域には、正極合剤層111を有さない正極集電体110の露出部を形成した。正極集電体110の露出部に、アルミニウム製の正極リード19の一端部を溶接により取り付けた。
(2)負極12の作製
 厚み10μmの電解銅箔を、所定の電極サイズに切断することにより、負極集電体120を形成した。負極集電体120を負極12として電池の作製に用いた。負極集電体120には、ニッケル製の負極リード20の一端部を溶接により取り付けた。
(3)非水電解質の調製
 表1に示すように、フルオロエチレンカーボネート(FEC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)との体積比4:1:15の混合溶媒に、表1に示すリチウム塩(LiPF、リチウムジフルオロオキサレートボレート(LiFOB))を表1に示す濃度となるように溶解させて、非水電解液を調製した。
(4)電池の作製
 不活性ガス雰囲気中で、上記(1)で得られた正極11と、上記(2)で得られた負極12とを、これらの間にセパレータ13としてポリエチレン製の微多孔フィルムを介在させて積層し、渦巻状に巻回して電極群を作製した。得られた電極群を、Al層を備えるラミネートシートで形成される袋状の外装体に収容し、非水電解液を注入した後、外装体を封止し、リチウム二次電池を完成させた。
(5)評価
 実施例および比較例で得られたリチウム二次電池について、下記の手順で充放電試験を行い、50サイクル目の容量の初期容量に対する維持率を評価した。
 まず、25℃の恒温槽内において、リチウム二次電池の充電を、以下の条件で行った後、20分間休止して、以下の条件で放電を行った。
 (充電)
 0.2Itの電流で、電池電圧が4.1Vになるまで定電流充電を行い、その後、4.1Vの電圧で電流値が0.02Itになるまで定電圧充電を行った。
 (放電)
 0.2Itの電流で電池電圧が3.0Vになるまで定電流放電を行った。
 上記充電および放電を1サイクルとし、50サイクルの充放電試験を行った。1サイクル目の放電容量を測定し、初回放電容量とした。50サイクル目の放電容量の、初回放電容量に対する比率を、容量維持率(%)として求めた。
 実施例1~3および比較例1~5の結果を表1に示す。実施例1~3は、電池A1~A3であり、比較例1~5は、電池R1~R5である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、電池A1~A3では、LiFOBを用い、正極に正極添加剤を添加したため、電解液とリチウム金属との副反応を抑制でき、50サイクル後も高い放電容量が維持され、優れたサイクル特性が得られている。
(実施例4~7および比較例6~11)
 正極活物質と、表1に示す正極添加剤(LiFeO、LiNiO)と、アセチレンブラック(導電剤、AB)と、ポリフッ化ビニリデン(結着剤、PVdF)とを、(正極活物質+正極添加剤):AB:PVdF=95:2.5:2.5の質量比で混合し、上記実施例1~3等と同様に正極を作製し、更に、上記と同様の負極集電体120を負極12として準備した。正極合剤中の正極添加剤の含有量は、表2に示す通りである。
 表2に示すように、ジメトキシエタン(DME)と1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル(フッ素化率70%)(HFE)との体積比1:2の混合溶媒に、表2に示すリチウム塩(リチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウムジフルオロオキサレートボレート(LiFOB))を表2に示す濃度となるように溶解させて、非水電解液を調製した。
 その他は、上記実施例1~3等と同様に電池を作製し、同様に評価した。実施例4~7および比較例6~11の結果を表2に示す。実施例4~7は、電池A4~A7であり、比較例6~11は、電池R6~R11である。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、電池A4~A7では50サイクル後も高い放電容量が維持され、優れたサイクル特性が得られている。
 本開示に係るリチウム二次電池は、サイクル特性に優れる。本開示に係るリチウム二次電池は、携帯電話、スマートフォン、タブレット端末のような電子機器、ハイブリッド、プラグインハイブリッドを含む電気自動車、太陽電池と組み合わせた家庭用蓄電池などの様々な用途に有用である。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
  10 リチウム二次電池
  11 正極
  12 負極
  13 セパレータ
  14 電極群
  15 ケース本体
  16 封口体
  17、18 絶縁板
  19 正極リード
  20 負極リード
  21 段部
  22 フィルタ
  23 下弁体
  24 絶縁部材
  25 上弁体
  26 キャップ
  27 ガスケット
 110 正極集電体
 111 正極合剤層
 120 負極集電体
 121 リチウム金属層
 

Claims (10)

  1.  正極活物質と正極添加剤とを含む正極合剤を備える正極と、
     負極集電体を備える負極と、
     前記正極と前記負極との間に配置されるセパレータと、
     電解液と、を備え、
     前記負極では、充電時にリチウム金属が析出し、放電時に前記リチウム金属は前記電解液中に溶解し、
     前記正極添加剤は、一般式(1):Lia1Fex1M1y1z1で表される第1化合物および一般式(2):Lia2Nix2M2y2z2で表される第2化合物からなる群より選択される少なくとも1種を含み、
     一般式(1)は、0≦a1≦5、0≦x1≦5、0≦y1≦1および0≦z1≦4を満たし、
     a1、x1、y1およびz1のうち、少なくとも2つは0より大きく、
     M1は、Co、Cu、Mg、Ni、Mn、Zn、Al、Ga、Ge、Ti、Si、Sn、Ce、Y、Zr、SおよびNaからなる群より選択される少なくとも1種を含み、
     一般式(2)は、0≦a2≦2、0≦x2≦1、0≦y2≦1および1≦z2≦2を満たし、
     a2およびx2の少なくとも一方は0より大きく、
     M2は、Co、Cu、Mg、Fe、Mn、Zn、Al、Ga、Ge、Ti、Si、Sn、Ce、Y、Zr、SおよびNaからなる群より選択される少なくとも1種を含み、
     前記電解液は、オキサレート錯体アニオンと、リチウムイオンと、を有するオキサレート錯体塩を含む、リチウム二次電池。
  2.  前記負極集電体は、銅箔または銅合金箔である、請求項1に記載のリチウム二次電池。
  3.  前記電解液は、前記オキサレート錯体塩を、0.01mol/L以上、2mol/L以下の濃度で含む、請求項1または2に記載のリチウム二次電池。
  4.  前記オキサレート錯体アニオンが、ジフルオロオキサレートボレートイオンである、請求項1~3のいずれか1項に記載のリチウム二次電池。
  5.  前記電解液が、更に、LiPFおよびリチウムビス(フルオロスルホニル)イミドの少なくとも一方を含む、請求項1~4のいずれか1項に記載のリチウム二次電池。
  6.  前記第1化合物が、LiFeO、LiFe、LiFeO、LiOおよびFeからなる群より選択される少なくとも1種を含む、請求項1~5のいずれか1項に記載のリチウム二次電池。
  7.  前記第2化合物が、LiNiO、LiNiO、NiOおよびLiOからなる群より選択される少なくとも1種を含む、請求項1~6のいずれか1項に記載のリチウム二次電池。
  8.  前記正極合剤は、0.1質量%以上、20質量%以下の前記正極添加剤を含む、請求項1~7のいずれか1項に記載のリチウム二次電池。
  9.  満放電時において、前記負極が、前記負極集電体の表面に厚さ5μm以上、30μm以下のリチウム金属層を有する、請求項1~8のいずれか1項に記載のリチウム二次電池。
  10.  前記負極が、Fe元素または/およびNi元素を含む、請求項1~9のいずれか1項に記載のリチウム二次電池。
     
     
PCT/JP2020/006117 2019-03-29 2020-02-17 リチウム二次電池 WO2020202844A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080023839.0A CN113632259A (zh) 2019-03-29 2020-02-17 锂二次电池
US17/599,358 US20220190379A1 (en) 2019-03-29 2020-02-17 Lithium secondary battery
JP2021511198A JPWO2020202844A1 (ja) 2019-03-29 2020-02-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019066975 2019-03-29
JP2019-066975 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020202844A1 true WO2020202844A1 (ja) 2020-10-08

Family

ID=72667937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006117 WO2020202844A1 (ja) 2019-03-29 2020-02-17 リチウム二次電池

Country Status (4)

Country Link
US (1) US20220190379A1 (ja)
JP (1) JPWO2020202844A1 (ja)
CN (1) CN113632259A (ja)
WO (1) WO2020202844A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149611A1 (ja) * 2021-01-08 2022-07-14 Tdk株式会社 リチウム鉄複合酸化物、正材材料、正極及びリチウムイオン二次電池
WO2022163539A1 (ja) * 2021-01-29 2022-08-04 パナソニックIpマネジメント株式会社 二次電池の充電方法および充電システム
CN115842090A (zh) * 2021-09-18 2023-03-24 宁德时代新能源科技股份有限公司 负极极片及其制备方法、二次电池、电池模块、电池包、用电装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497514B (zh) * 2022-03-15 2023-07-14 远景动力技术(江苏)有限公司 正极补锂剂及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237293A (ja) * 2000-07-06 2002-08-23 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
WO2018179782A1 (ja) * 2017-03-28 2018-10-04 パナソニックIpマネジメント株式会社 非水電解質二次電池
JP2019009113A (ja) * 2017-06-28 2019-01-17 パナソニックIpマネジメント株式会社 リチウム二次電池
WO2019181278A1 (ja) * 2018-03-23 2019-09-26 パナソニックIpマネジメント株式会社 リチウム二次電池
WO2019181277A1 (ja) * 2018-03-23 2019-09-26 パナソニックIpマネジメント株式会社 リチウム二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700860B (zh) * 2012-09-27 2016-04-06 比亚迪股份有限公司 一种锂离子电池
JP6121454B2 (ja) * 2013-01-31 2017-04-26 三洋電機株式会社 非水電解質二次電池用正極及び非水電解質二次電池
KR101724004B1 (ko) * 2013-02-06 2017-04-06 삼성에스디아이 주식회사 리튬 이차 전지
JP2017168255A (ja) * 2016-03-15 2017-09-21 株式会社東芝 非水電解質二次電池、電池パック及び車両
KR20170134049A (ko) * 2016-05-27 2017-12-06 삼성에스디아이 주식회사 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237293A (ja) * 2000-07-06 2002-08-23 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
WO2018179782A1 (ja) * 2017-03-28 2018-10-04 パナソニックIpマネジメント株式会社 非水電解質二次電池
JP2019009113A (ja) * 2017-06-28 2019-01-17 パナソニックIpマネジメント株式会社 リチウム二次電池
WO2019181278A1 (ja) * 2018-03-23 2019-09-26 パナソニックIpマネジメント株式会社 リチウム二次電池
WO2019181277A1 (ja) * 2018-03-23 2019-09-26 パナソニックIpマネジメント株式会社 リチウム二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022149611A1 (ja) * 2021-01-08 2022-07-14 Tdk株式会社 リチウム鉄複合酸化物、正材材料、正極及びリチウムイオン二次電池
WO2022163539A1 (ja) * 2021-01-29 2022-08-04 パナソニックIpマネジメント株式会社 二次電池の充電方法および充電システム
CN115842090A (zh) * 2021-09-18 2023-03-24 宁德时代新能源科技股份有限公司 负极极片及其制备方法、二次电池、电池模块、电池包、用电装置

Also Published As

Publication number Publication date
US20220190379A1 (en) 2022-06-16
CN113632259A (zh) 2021-11-09
JPWO2020202844A1 (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
US10854876B2 (en) Positive electrode active material and battery using positive electrode active material
JP6024457B2 (ja) 二次電池およびそれに用いる二次電池用電解液
WO2020202844A1 (ja) リチウム二次電池
US9923244B2 (en) Nonaqueous electrolyte secondary battery
CN110581306A (zh) 锂二次电池
JP2006066341A (ja) 非水電解質二次電池
EP3422457B1 (en) Lithium secondary battery
US20170338466A1 (en) Non-aqueous electrolyte secondary battery
JP2019009112A (ja) リチウム二次電池
CN110088970B (zh) 非水电解质二次电池
CN113302763A (zh) 锂金属二次电池
CN110073534B (zh) 非水电解质二次电池
JP6500775B2 (ja) リチウムイオン二次電池
US11145891B2 (en) Lithium metal secondary battery and method for producing the same
CN112018342A (zh) 正极活性物质和使用该正极活性物质的二次电池
CN113614967B (zh) 非水电解质二次电池
JP6728135B2 (ja) 非水電解質二次電池
JP7122553B2 (ja) リチウム金属二次電池およびその製造方法
EP4024508A1 (en) Lithium secondary battery
CN111656593A (zh) 非水电解质二次电池、电解液和非水电解质二次电池的制造方法
JP2019212432A (ja) リチウム二次電池
CN112018389B (en) Positive electrode active material and secondary battery using same
JP7493165B2 (ja) 非水電解質二次電池
JP7407378B2 (ja) 正極活物質及びそれを用いた二次電池
CN112018389A (zh) 正极活性物质和使用该正极活性物质的二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20785185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511198

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20785185

Country of ref document: EP

Kind code of ref document: A1