WO2018179782A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2018179782A1
WO2018179782A1 PCT/JP2018/002743 JP2018002743W WO2018179782A1 WO 2018179782 A1 WO2018179782 A1 WO 2018179782A1 JP 2018002743 W JP2018002743 W JP 2018002743W WO 2018179782 A1 WO2018179782 A1 WO 2018179782A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
aqueous electrolyte
lithium
current collector
Prior art date
Application number
PCT/JP2018/002743
Other languages
English (en)
French (fr)
Inventor
博之 南
佑太 関
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880004188.3A priority Critical patent/CN109937504A/zh
Priority to US16/496,556 priority patent/US20210111429A1/en
Priority to JP2019508639A priority patent/JP6917586B2/ja
Publication of WO2018179782A1 publication Critical patent/WO2018179782A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0563Liquid materials, e.g. for Li-SOCl2 cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a non-aqueous electrolyte secondary battery, and more particularly to a lithium secondary battery.
  • non-aqueous electrolyte secondary batteries are required to have higher capacities in the in-vehicle field and power storage field.
  • Lithium ion batteries are exclusively used as high capacity non-aqueous electrolyte secondary batteries.
  • graphite and an alloy active material such as a silicon compound are used in combination as a negative electrode active material, but the increase in capacity is reaching the limit.
  • Patent Document 1 discloses a lithium secondary battery in which the 10-point average roughness (Rz) defined by JIS B0601 of the lithium metal deposition surface of the negative electrode current collector is 10 ⁇ m or less.
  • a non-aqueous electrolyte secondary battery which is one embodiment of the present disclosure includes a positive electrode having a positive electrode current collector and a positive electrode mixture layer formed on the current collector, a negative electrode having a negative electrode current collector, and a non-aqueous battery.
  • An electrolyte, lithium metal is deposited on the negative electrode current collector during charging, and the lithium metal is dissolved in the non-aqueous electrolyte during discharge, wherein the non-aqueous electrolyte comprises: It contains a lithium salt having an oxalate complex as an anion.
  • lithium secondary battery non-aqueous electrolyte secondary battery
  • safety is high and good cycle characteristics are obtained.
  • the non-aqueous electrolyte secondary battery (lithium secondary battery) in which lithium metal is deposited on the negative electrode during charging and the lithium metal is dissolved in the non-aqueous electrolyte during discharging has a higher capacity than the lithium ion battery.
  • lithium metal dendrites are easily generated and the amount of expansion of the negative electrode is large.
  • the present inventors have added lithium salt having an oxalate complex as an anion in the non-aqueous electrolyte, so that lithium metal is uniformly deposited on the negative electrode, and the negative electrode is expanded. Has been found to be specifically suppressed.
  • the electrolyte component is decomposed to form a film called SEI (Solid Electrolyte Interphase) film, and the SEI film is also formed on the surface of the deposited lithium metal, but the thickness of this film is not uniform. Therefore, it is considered that lithium metal precipitates in a dendrite shape.
  • a lithium salt having an oxalate complex as an anion is considered to cover the surface of the lithium metal thinly and uniformly when it is decomposed on the negative electrode.
  • the lithium salt is considered to decompose at a higher potential than other additives and solvents contained in the nonaqueous electrolyte and form a thin and uniform SEI film on the surface of the deposited lithium metal.
  • lithium metal easily deposits on the negative electrode, and the expansion of the negative electrode is greatly suppressed.
  • cutting of the electrode due to expansion of the negative electrode can be sufficiently suppressed, and a lithium secondary battery using a stacked electrode body In this case, the expansion of the battery can be significantly suppressed.
  • FIG. 1 is a cross-sectional view of a nonaqueous electrolyte secondary battery 10 which is an example of an embodiment.
  • the non-aqueous electrolyte secondary battery 10 illustrated as an embodiment is a cylindrical battery including a cylindrical metal case, but the non-aqueous electrolyte secondary battery of the present disclosure is not limited to this.
  • the nonaqueous electrolyte secondary battery of the present disclosure may be, for example, a rectangular battery including a rectangular metal case, a laminated battery including an exterior body made of an aluminum laminate sheet, or the like.
  • a wound type electrode body 14 in which the positive electrode and the negative electrode are wound via a separator is illustrated, but the electrode body is not limited thereto.
  • the electrode body may be a stacked electrode body in which a plurality of positive electrodes and a plurality of negative electrodes are alternately stacked via separators, for example.
  • the nonaqueous electrolyte secondary battery 10 includes an electrode body 14 having a winding structure and a nonaqueous electrolyte (not shown).
  • the electrode body 14 includes a positive electrode 11, a negative electrode 12, and a separator 13, and the positive electrode 11 and the negative electrode 12 are wound around the separator 13 in a spiral shape.
  • the non-aqueous electrolyte secondary battery 10 is a lithium secondary battery in which lithium metal is deposited on the negative electrode 12 during charging, and the lithium metal is dissolved in the non-aqueous electrolyte during discharging.
  • the non-aqueous electrolyte, a lithium salt having an anion oxalate complex preferably contains a lithium hexafluorophosphate (LiPF 6).
  • the positive electrode 11, the negative electrode 12, and the separator 13 constituting the electrode body 14 are all formed in a band shape, and are wound in a spiral shape to be alternately stacked in the radial direction of the electrode body 14.
  • the longitudinal direction of each electrode is the winding direction
  • the width direction of each electrode is the axial direction.
  • the positive electrode lead 19 that electrically connects the positive electrode 11 and the positive electrode terminal is connected to, for example, the longitudinal center of the positive electrode 11 and extends from the upper end of the electrode group.
  • the negative electrode lead 20 that electrically connects the negative electrode 12 and the negative electrode terminal is connected to, for example, the longitudinal end portion of the negative electrode 12 and extends from the lower end of the electrode group.
  • the case main body 15 and the sealing body 16 constitute a metal battery case that houses the electrode body 14 and the nonaqueous electrolyte.
  • Insulating plates 17 and 18 are provided above and below the electrode body 14, respectively.
  • the positive electrode lead 19 extends through the through hole of the insulating plate 17 toward the sealing body 16 and is welded to the lower surface of the filter 22 that is the bottom plate of the sealing body 16.
  • the cap 26 of the sealing body 16 electrically connected to the filter 22 serves as a positive electrode terminal.
  • the negative electrode lead 20 extends to the bottom side of the case main body 15 and is welded to the bottom inner surface of the case main body 15.
  • the case body 15 serves as a negative electrode terminal.
  • the case body 15 is a bottomed cylindrical metal container.
  • a gasket 27 is provided between the case main body 15 and the sealing body 16 to ensure hermeticity in the battery case.
  • the case main body 15 includes an overhanging portion 21 that supports the sealing body 16 formed by pressing a side surface portion from the outside, for example.
  • the overhang portion 21 is preferably formed in an annular shape along the circumferential direction of the case body 15, and supports the sealing body 16 on the upper surface thereof.
  • the sealing body 16 has a structure in which a filter 22, a lower valve body 23, an insulating member 24, an upper valve body 25, and a cap 26 are stacked in this order from the electrode body 14 side.
  • the members constituting the sealing body 16 have, for example, a disk shape or a ring shape, and the members other than the insulating member 24 are electrically connected to each other.
  • the lower valve body 23 and the upper valve body 25 are connected to each other at the center, and an insulating member 24 is interposed between the peripheral edges. Since the lower valve body 23 is provided with a vent hole, when the internal pressure of the battery rises due to abnormal heat generation, the upper valve body 25 swells toward the cap 26 and separates from the lower valve body 23, thereby electrically connecting the two. Blocked. When the internal pressure further increases, the upper valve body 25 is broken and the gas is discharged from the opening of the cap 26.
  • the positive electrode 11 includes a positive electrode current collector 30 and a positive electrode mixture layer 31 formed on the current collector.
  • a metal foil that is stable in the potential range of the positive electrode 11 such as aluminum, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the positive electrode mixture layer 31 includes a positive electrode active material, a conductive material, and a binder.
  • the positive electrode mixture layer 31 is generally formed on both surfaces of the positive electrode current collector 30.
  • the positive electrode 11 is formed by applying a positive electrode mixture slurry containing a positive electrode active material, a conductive material, a binder, and the like onto the positive electrode current collector 30, drying the coating film, and rolling the positive electrode mixture layer 31. Can be formed on both sides of the current collector.
  • a lithium-containing transition metal oxide for the positive electrode active material.
  • the metal element constituting the lithium-containing transition metal oxide include magnesium (Mg), aluminum (Al), calcium (Ca), scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), germanium (Ge), yttrium (Y), zirconium (Zr), tin It is at least one selected from (Sn), antimony (Sb), tungsten (W), lead (Pb), and bismuth (Bi). Among these, it is preferable to include at least one selected from Co, Ni, Mn, and Al.
  • Examples of the conductive material constituting the positive electrode mixture layer 31 include carbon materials such as carbon black (CB), acetylene black (AB), ketjen black, and graphite.
  • Examples of the binder constituting the positive electrode mixture layer 31 include fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, and acrylic resins. Examples thereof include resins and polyolefin resins. These may be used alone or in combination of two or more.
  • the negative electrode 12 is an electrode for depositing lithium metal during charging, and has a negative electrode current collector 40.
  • the lithium metal deposited on the negative electrode 12 is derived from lithium ions in the non-aqueous electrolyte, and the deposited lithium metal is dissolved in the electrolytic solution by discharge.
  • the negative electrode 12 may be composed of lithium metal, for example, a lithium metal foil, or a negative electrode current collector 40 having a lithium metal layer formed on the surface by vapor deposition or the like, or a film (in this case, lithium It is preferable that the negative electrode active material is not present in the initial state.
  • the negative electrode 12 is preferably composed of only the negative electrode current collector 40 in the initial state.
  • the volume energy density of the battery can be increased.
  • the initial state means a state immediately after assembly of the nonaqueous electrolyte secondary battery 10 (immediately after manufacture) and a state in which the battery reaction does not proceed.
  • the negative electrode current collector 40 is made of, for example, a metal foil such as copper, nickel, iron, or a stainless steel alloy (SUS), and a copper foil having high conductivity is particularly preferable.
  • the copper foil is a metal foil containing copper as a main component, and may be substantially composed only of copper.
  • the thickness of the copper foil is preferably 5 ⁇ m to 20 ⁇ m.
  • the negative electrode 12 is composed of only a copper foil having a thickness of 5 ⁇ m to 20 ⁇ m, for example, before charging / discharging of the battery, and lithium metal is deposited on both sides of the copper foil by charging to form a lithium metal layer.
  • lithium metal dendrite is hardly generated on the surface of the negative electrode current collector 40 due to the action of a lithium salt having an oxalate complex added to the nonaqueous electrolyte as an anion, and the thickness is uniform. A lithium metal layer is formed and swelling of the negative electrode 12 is suppressed.
  • the negative electrode current collector 40 may have a layer (protective layer) containing a solid electrolyte, an organic substance, or an inorganic substance on the surface.
  • the protective layer has an effect of making the electrode surface reaction uniform, and lithium metal is uniformly deposited on the negative electrode, thereby suppressing expansion of the negative electrode.
  • the solid electrolyte include a sulfide-based solid electrolyte, a phosphoric acid-based solid electrolyte, a perovskite-based solid electrolyte, and a garnet-based solid electrolyte.
  • the sulfide-based solid electrolyte is not particularly limited as long as it contains a sulfur component and has lithium ion conductivity.
  • Specific examples of the raw material for the sulfide-based solid electrolyte include those having Li, S, and the third component A.
  • Examples of the third component A include at least one selected from the group consisting of P, Ge, B, Si, I, Al, Ga, and As.
  • Specific examples of the sulfide-based solid electrolyte include Li 2 S—P 2 S 5 , 70Li 2 S-30P 2 S 5 , 80Li 2 S-20P 2 S 5 , Li 2 S—SiS 2 , LiGe 0.25 P 0.75 S 4 etc. can be mentioned.
  • the phosphoric acid solid electrolyte is not particularly limited as long as it contains a phosphoric acid component and has lithium ion conductivity.
  • Examples of the phosphoric acid-based solid electrolytes such as Li 1.5 Al 0.5 Ti 1.5 (PO 4) 3, etc. Li 1 + X Al X Ti 2 -X (PO 4) 3 (0 ⁇ X ⁇ 2, among others 0 ⁇ X ⁇ 1 And Li 1 + X Al X Ge 2 ⁇ X (PO 4 ) 3 (0 ⁇ X ⁇ 2, more preferably 0 ⁇ X ⁇ 1).
  • the organic layer is preferably a lithium conductive material such as polyethylene oxide or polymethyl methacrylate.
  • ceramic materials such as SiO 2 , Al 2 O 3 and MgO are preferable.
  • the separator 13 a porous sheet having ion permeability and insulating properties is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric.
  • olefin resin such as polyethylene, polypropylene, a copolymer containing at least one of ethylene and propylene, cellulose, and the like are preferable.
  • the separator 13 may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin.
  • the multilayer separator containing a polyethylene layer and a polypropylene layer may be used, and what applied the aramid resin etc. to the surface of the separator 13 may be used.
  • a heat-resistant layer containing an inorganic compound filler may be formed at the interface between the separator 13 and at least one of the positive electrode 11 and the negative electrode 12.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous electrolyte includes a lithium salt having an oxalate complex as an anion.
  • the lithium salt functions as an electrolyte salt, but decomposes at the negative electrode 12 and decreases in concentration. Therefore, it is preferable to use another electrolyte salt in combination.
  • the nonaqueous electrolyte is not limited to a liquid electrolyte (nonaqueous electrolyte solution), and may be a solid electrolyte using a gel polymer or the like.
  • non-aqueous solvents examples include esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and a mixture of two or more of these.
  • the non-aqueous solvent may contain a halogen-substituted product in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.
  • esters examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, and fluoroethylene carbonate (FEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, and fluoroethylene carbonate (FEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate.
  • DEC chain carbonates such as methylpropyl carbonate, ethylpropyl carbonate, methylisopropyl carbonate, cyclic carboxylic acid esters such as ⁇ -butyrolactone, ⁇ -valerolactone, methyl acetate, ethyl acetate, propyl acetate, methyl propionate ( MP), ethyl propionate, ⁇ -butyrolactone, chain carboxylic acid esters such as methyl fluoropropionate (FMP), and the like.
  • DEC chain carbonates such as methylpropyl carbonate, ethylpropyl carbonate, methylisopropyl carbonate
  • cyclic carboxylic acid esters such as ⁇ -butyrolactone, ⁇ -valerolactone, methyl acetate, ethyl acetate, propyl acetate, methyl propionate ( MP), ethyl propionate, ⁇ -butyrolactone
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4 -Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineol, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxy toluene, benzyl ethyl ether, diphenyl ether, diphen
  • the lithium salt having an oxalate complex as an anion is preferably contained in the non-aqueous electrolyte at a concentration of at least 0.01 M (mol / L).
  • the upper limit of the amount of lithium salt added is preferably solubility.
  • the lithium salt is added as much as possible to the non-aqueous solvent as long as it does not precipitate when the battery is used.
  • the lithium salt having an oxalate complex as an anion preferably contains boron (B) or phosphorus (P).
  • B boron
  • P phosphorus
  • LiBOB lithium bisoxalate borate
  • LiBF 2 (C 2 O 4 ) 2 LiBF 2 (C 2 O 4 )
  • LiPF 4 (C 2 O 4 ) 2 LiPF 2 (C 2 O 4 ) 2
  • LiBF 2 (C 2 O 4 ) is preferable.
  • a suitable addition amount varies depending on the type of the solvent, but for example, about 0.2 M for LiBOB, about 1.0 M for LiBF 2 (C 2 O 4 ), and about 0.5 M for LiPF 2 (C 2 O 4 ) 2. It is.
  • the presence or absence and addition amount can be analyzed by analyzing the decomposition
  • Oxalate complex as an example of the electrolyte salt to be used in combination with the lithium salt of the anion, LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiCF 3 CO 2, LiN
  • imide salts such as (SO 2 CF 3 ) 2 , LiN (C l F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) ⁇ 1, m is an integer of 1 or more ⁇ .
  • LiPF 6 is preferably used.
  • the nonaqueous electrolyte preferably contains other additives that decompose at the negative electrode 12.
  • the non-aqueous electrolyte includes at least one selected from, for example, vinylene carbonate (VC), fluoroethylene carbonate (FEC), and vinyl ethyl carbonate (VEC).
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • VEC vinyl ethyl carbonate
  • Example 1 [Production of positive electrode] A lithium-containing transition metal oxide containing aluminum, nickel, and cobalt as a positive electrode active material, acetylene black (AB), and polyvinylidene fluoride (PVdF) are mixed at a mass ratio of 95: 2.5: 2.5. Further, an appropriate amount of N-methyl-2-pyrrolidone (NMP) was added and stirred to prepare a positive electrode mixture slurry. Next, the positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of an aluminum foil, and the coating film was dried. After rolling a coating film using a roller, it cut
  • NMP N-methyl-2-pyrrolidone
  • Ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 3: 7.
  • a non-aqueous electrolyte is prepared by dissolving LiPF 6 at a concentration of 1.0 M (mol / L) and LiBF 2 (C 2 O 4 ) at a concentration of 0.1 M (mol / L) in the mixed solvent. did.
  • the positive electrode with an aluminum tab and the negative electrode with a nickel tab were spirally wound through a polyethylene separator to produce a wound electrode body.
  • the electrode body was accommodated in an exterior body composed of an aluminum laminate, and after pouring the non-aqueous electrolyte, the opening of the exterior body was sealed to prepare a battery T1.
  • Example 2 A battery T2 was produced in the same manner as in Example 1 except that the amount of LiBF 2 (C 2 O 4 ) added was 0.5 M (mol / L) in the preparation of the nonaqueous electrolytic solution.
  • Example 3 A battery T3 was produced in the same manner as in Example 2 except that vinylene carbonate (VC) was added in an amount of 5% by mass with respect to the mass of the electrolytic solution in the preparation of the nonaqueous electrolytic solution.
  • VC vinylene carbonate
  • Example 4 A battery T4 was produced in the same manner as in Example 3 except that LiPF 6 was not added in the preparation of the nonaqueous electrolytic solution.
  • Example 5 A battery T5 was produced in the same manner as in Example 3 except that LiBOB was added at a concentration of 0.1 M (mol / L) instead of LiBF 2 (C 2 O 4 ) in the preparation of the non-aqueous electrolyte. .
  • Example 3 is the same as Example 3 except that LiPF 2 (C 2 O 4 ) 2 was added at a concentration of 0.5 M (mol / L) instead of LiBF 2 (C 2 O 4 ) in the preparation of the non-aqueous electrolyte.
  • a battery T6 was produced in the same manner.
  • a battery R1 was produced in the same manner as in Example 1 except that LiBF 2 (C 2 O 4 ) was not added in the preparation of the nonaqueous electrolytic solution.
  • a battery R2 was produced in the same manner as in Example 3 except that LiBF 2 (C 2 O 4 ) was not added in the preparation of the nonaqueous electrolytic solution.
  • the negative electrode expansion coefficient and dendrite on the negative electrode surface were evaluated by the following methods.
  • Li metal thickness with respect to charge capacity The theoretical capacity of Li metal is 3860 mAh / g, and the true density of Li metal is 0.534 g / cm 3 (room temperature). The thickness of the negative electrode in the case where the deposited layer was Li metal with a true density was calculated. (4) Calculation of negative electrode expansion coefficient relative to Li true density: The negative electrode expansion coefficient relative to Li true density was determined from the following formula.
  • the batteries of the examples all had a negative electrode expansion coefficient lower than that of the batteries of the comparative examples, and the formation of dendrites could not be confirmed. That is, by adding a lithium salt having an oxalate complex as an anion in the non-aqueous electrolyte, it is difficult to generate a lithium metal dendrite during charging, and the swelling of the negative electrode is specifically suppressed. Further, the combined use of the lithium salt, LiPF 6 , and VC makes the negative electrode expansion suppression effect more remarkable.
  • Example 7 A battery T7 was produced in the same manner as in Example 3 except that in the preparation of the nonaqueous electrolytic solution, the amount of LiBF 2 (C 2 O 4 ) added was 0.01 M (mol / L).
  • Example 8 A battery T8 was produced in the same manner as in Example 3 except that in the preparation of the nonaqueous electrolytic solution, the amount of LiBF 2 (C 2 O 4 ) added was 0.1 M (mol / L).
  • Example 9 A battery T9 was produced in the same manner as in Example 3 except that in the preparation of the nonaqueous electrolytic solution, the addition amount of LiBF 2 (C 2 O 4 ) was 1 M (mol / L).
  • Example 10 A battery T10 was produced in the same manner as in Example 3 except that in the preparation of the nonaqueous electrolytic solution, the addition amount of LiBF 2 (C 2 O 4 ) was 2 M (mol / L). However, in this case, since LiBF 2 (C 2 O 4 ) was not completely dissolved, a battery T10 was produced using a suspension containing an insoluble content of LiBF 2 (C 2 O 4 ).
  • the negative electrode expansion coefficient and the dendrite on the negative electrode surface were evaluated, and the evaluation results are shown in Table 2 (the evaluation results of the batteries T3 and R2 are also shown).
  • the negative electrode expansion coefficient was reduced by adding LiBF 2 (C 2 O 4 ) at a concentration of 0.01 M or more.
  • the effect of suppressing swelling was remarkable at a concentration of 0.5 M or more.
  • the addition amount of the lithium salt having an oxalate complex as an anion is preferably the maximum amount that is soluble in the solvent.
  • LiBF 2 (C 2 O 4 ) was not completely dissolved at a concentration of 2M. However, when another solvent was used, it could be completely dissolved even at a concentration of 2M. There is.
  • Example 11 Using trimethyl phosphate and lithium (bistrimethylsilyl) amide as raw materials, a protective layer having a thickness of 5 ⁇ m made of lithium phosphate was formed on the surface of the negative electrode current collector by an ALD method (atomic layer deposition method).
  • a battery T11 was produced in the same manner as in Example 3 except that this negative electrode current collector was used. In calculating the negative electrode expansion coefficient with respect to the Li true density of T11, the thickness of lithium phosphate was not taken into consideration.
  • the negative electrode expansion coefficient is further reduced by forming a protective layer made of lithium phosphate on the surface of the negative electrode current collector.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

非水電解質二次電池は、正極集電体及び当該集電体上に形成された正極合材層とを有する正極と、負極集電体を有する負極と、非水電解質とを備える。充電時に負極集電体上にリチウム金属が析出し、放電時に当該リチウム金属が非水電解質中に溶解するリチウム二次電池である。非水電解質は、オキサレート錯体をアニオンとするリチウム塩を含む。

Description

非水電解質二次電池
 本開示は、非水電解質二次電池に関し、より詳しくはリチウム二次電池に関する。
 パソコン、スマートフォン等のICT分野に加え、車載分野、蓄電分野等においても非水電解質二次電池のさらなる高容量化が求められている。高容量の非水電解質二次電池としては、もっぱらリチウムイオン電池が使用されている。リチウムイオン電池では、例えば負極活物質として黒鉛とシリコン化合物等の合金活物質とを併用することで高容量化を図ってきたが、高容量化は限界に達しつつある。
 リチウムイオン電池を超える高容量の非水電解質二次電池として、充電時にリチウム金属が負極上に析出し、放電時に当該リチウム金属が非水電解質中に溶解するリチウム二次電池が有望である。例えば、特許文献1には、負極集電体のリチウム金属析出面のJIS B0601で定義される十点平均粗さ(Rz)を10μm以下としたリチウム二次電池が開示されている。
特開2001-243957号公報
 ところで、リチウム二次電池では、充電時にリチウム金属のデンドライトが生成し、安全性が低下する、或いは副反応が増加するといった課題がある。特許文献1に開示された技術は、リチウム金属のデンドライト生成を抑制するものであるが、未だ改良の余地がある。さらに、リチウム二次電池では、充電時の負極の膨化量が大きく、円筒形電池の場合は、負極の膨化により発生する応力の影響で電極が切断されることがある。また、角形電池及びラミネート電池では、負極の膨化により電池の厚みが大幅に増加するという問題がある。
 本開示の一態様である非水電解質二次電池は、正極集電体及び当該集電体上に形成された正極合材層とを有する正極と、負極集電体を有する負極と、非水電解質とを備え、充電時に前記負極集電体上にリチウム金属が析出し、放電時に当該リチウム金属が前記非水電解質中に溶解する非水電解質二次電池であって、前記非水電解質は、オキサレート錯体をアニオンとするリチウム塩を含むことを特徴とする。
 本開示の一態様によれば、充電時にリチウム金属のデンドライトが生成し難く、負極の膨化が抑制された非水電解質二次電池(リチウム二次電池)を提供することができる。本開示の一態様であるリチウム二次電池によれば、安全性が高く、良好なサイクル特性が得られる。
実施形態の一例である非水電解質二次電池の断面図である。
 上述のように、充電時にリチウム金属が負極上に析出し、放電時に当該リチウム金属が非水電解質中に溶解する非水電解質二次電池(リチウム二次電池)は、リチウムイオン電池を超える高容量化が期待できるものの、リチウム金属のデンドライトが生成し易い、負極の膨化量が大きいといった課題がある。本発明者らは、かかる課題を解決すべく鋭意検討した結果、非水電解質中にオキサレート錯体をアニオンとするリチウム塩を添加することで、負極上にリチウム金属が均一に析出し、負極の膨化が特異的に抑えられることを見出した。
 負極表面には、電解質成分が分解してSEI(Solid Electrolyte Interphase)皮膜と呼ばれる皮膜が形成され、析出したリチウム金属の表面にもSEI皮膜が形成されるが、この皮膜の厚みが不均一であるため、リチウム金属がデンドライト状に析出すると考えられる。これに対し、オキサレート錯体をアニオンとするリチウム塩は、負極上で分解したときにリチウム金属の表面を薄く均一に被覆すると考えられる。当該リチウム塩は、非水電解質中に含まれる他の添加剤や溶媒よりも高電位で分解し、析出したリチウム金属の表面に薄くて均一なSEI皮膜を形成すると考えられる。
 このため、負極上にリチウム金属が均一に析出し易くなり、負極の膨化が大幅に抑えられる。本開示の一態様よれば、巻回型の電極体を用いたリチウム二次電池において負極の膨化に起因した電極の切断を十分に抑制でき、また積層型の電極体を用いたリチウム二次電池において電池の膨化を大幅に抑制することが可能である。
 以下、本開示に係る非水電解質二次電池の実施形態の一例について詳細に説明する。図1は、実施形態の一例である非水電解質二次電池10の断面図である。
 実施形態として例示する非水電解質二次電池10は、円筒形の金属製ケースを備えた円筒形電池であるが、本開示の非水電解質二次電池はこれに限定されない。本開示の非水電解質二次電池は、例えば角形の金属製ケースを備えた角形電池、アルミニウムラミネートシート等からなる外装体を備えたラミネート電池などであってもよい。また、非水電解質二次電池を構成する電極体として、正極及び負極がセパレータを介して巻回された巻回型の電極体14を例示するが、電極体はこれに限定されない。電極体は、例えば複数の正極と複数の負極がセパレータを介して交互に積層されてなる積層型の電極体であってもよい。
 図1に例示するように、非水電解質二次電池10は、巻回構造を有する電極体14と、非水電解質(図示せず)とを備える。電極体14は、正極11と、負極12と、セパレータ13とを有し、正極11と負極12がセパレータ13を介して渦巻状に巻回されてなる。非水電解質二次電池10は、充電時に負極12上にリチウム金属が析出し、放電時に当該リチウム金属が非水電解質中に溶解するリチウム二次電池である。詳しくは後述するが、非水電解質中は、オキサレート錯体をアニオンとするリチウム塩と、六フッ化リン酸リチウム(LiPF6)とを含むことが好ましい。
 電極体14を構成する正極11、負極12、及びセパレータ13は、いずれも帯状に形成され、渦巻状に巻回されることで電極体14の径方向に交互に積層された状態となる。電極体14において、各電極の長手方向が巻回方向となり、各電極の幅方向が軸方向となる。正極11と正極端子とを電気的に接続する正極リード19は、例えば正極11の長手方向中央部に接続され、電極群の上端から延出している。負極12と負極端子とを電気的に接続する負極リード20は、例えば負極12の長手方向端部に接続され、電極群の下端から延出している。
 図1に示す例では、ケース本体15と封口体16によって、電極体14及び非水電解質を収容する金属製の電池ケースが構成されている。電極体14の上下には、絶縁板17,18がそれぞれ設けられる。正極リード19は絶縁板17の貫通孔を通って封口体16側に延び、封口体16の底板であるフィルタ22の下面に溶接される。非水電解質二次電池10では、フィルタ22と電気的に接続された封口体16のキャップ26が正極端子となる。他方、負極リード20はケース本体15の底部側に延び、ケース本体15の底部内面に溶接される。非水電解質二次電池10では、ケース本体15が負極端子となる。
 ケース本体15は、有底円筒形状の金属製容器である。ケース本体15と封口体16の間にはガスケット27が設けられ、電池ケース内の密閉性が確保されている。ケース本体15は、例えば側面部を外側からプレスして形成された、封口体16を支持する張り出し部21を有する。張り出し部21は、ケース本体15の周方向に沿って環状に形成されることが好ましく、その上面で封口体16を支持する。
 封口体16は、電極体14側から順に、フィルタ22、下弁体23、絶縁部材24、上弁体25、及びキャップ26が積層された構造を有する。封口体16を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材24を除く各部材は互いに電気的に接続されている。下弁体23と上弁体25は各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材24が介在している。下弁体23には通気孔が設けられているため、異常発熱で電池の内圧が上昇すると、上弁体25がキャップ26側に膨れて下弁体23から離れることにより両者の電気的接続が遮断される。さらに内圧が上昇すると、上弁体25が破断し、キャップ26の開口部からガスが排出される。
 以下、電極体14の各構成要素(正極11、負極12、セパレータ13)及び非水電解質について詳説する。
 [正極]
 正極11は、正極集電体30と、当該集電体上に形成された正極合材層31とを備える。正極集電体30には、アルミニウムなどの正極11の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極合材層31は、正極活物質と、導電材と、結着材とで構成される。正極合材層31は、一般的に正極集電体30の両面に形成される。正極11は、例えば正極集電体30上に正極活物質、導電材、及び結着材等を含む正極合材スラリーを塗布し、塗膜を乾燥させた後、圧延して正極合材層31を集電体の両面に形成することにより作製できる。
 正極活物質には、リチウム含有遷移金属酸化物を用いることが好ましい。リチウム含有遷移金属酸化物を構成する金属元素は、例えばマグネシウム(Mg)、アルミニウム(Al)、カルシウム(Ca)、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ゲルマニウム(Ge)、イットリウム(Y)、ジルコニウム(Zr)、錫(Sn)、アンチモン(Sb)、タングステン(W)、鉛(Pb)、およびビスマス(Bi)から選択される少なくとも1種である。中でも、Co、Ni、Mn、Alから選択される少なくとも1種を含むことが好ましい。
 正極合材層31を構成する導電材の例としては、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、黒鉛等の炭素材料などが挙げられる。また、正極合材層31を構成する結着材の例としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素系樹脂、ポリアクリロニトリル(PAN)、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂などが挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 [負極]
 負極12は、充電時にリチウム金属を析出させる電極であって、負極集電体40を有する。負極12上に析出するリチウム金属は、非水電解質中のリチウムイオンに由来するものであり、析出したリチウム金属は放電により電解液中に溶解する。負極12は、リチウム金属で構成されてもよく、例えばリチウム金属箔、或いは蒸着等により表面にリチウム金属層が形成された負極集電体40又はフィルムで構成されてもよいが(この場合、リチウムが活物質となる)、初期状態において負極活物質を有さないことが好ましい。
 即ち、負極12は、初期状態において負極集電体40のみで構成されることが好ましい。この場合、電池の体積エネルギー密度を高めることができる。なお、リチウム金属箔、リチウム金属層を有する集電体等を用いた場合は、リチウム層の厚み分だけ電池の体積エネルギー密度が低下することになる。ここで、初期状態とは、非水電解質二次電池10の組み立て直後(製造直後)の状態であって、電池反応が進行していない状態を意味する。
 負極集電体40は、例えば銅、ニッケル、鉄、ステンレス合金(SUS)等の金属箔で構成され、中でも導電性の高い銅箔が好ましい。銅箔は、銅を主成分とする金属箔であって、実質的に銅のみで構成されてもよい。銅箔の厚みは、5μm~20μmが好ましい。負極12は、例えば電池の充放電前において、厚みが5μm~20μmの銅箔のみで構成され、充電により銅箔の両面にリチウム金属が析出してリチウム金属層が形成される。非水電解質二次電池10では、非水電解質中に添加されたオキサレート錯体をアニオンとするリチウム塩の作用により、負極集電体40の表面にリチウム金属のデンドライトが生成し難く、厚みが均一なリチウム金属層が形成され、負極12の膨化が抑えられる。
 負極集電体40は、表面に固体電解質、有機物や無機物を含む層(保護層)を有していてもよい。保護層は、電極表面反応を均一にする効果があり、負極上にリチウム金属が均一に析出し、負極の膨化を抑制することができる。固体電解質としては、例えば硫化物系固体電解質、リン酸系固体電解質、ペロブスカイト系固体電解質、ガーネット系固体電解質等を挙げることができる。
 上記硫化物系固体電解質としては、硫黄成分を含有し、リチウムイオン伝導性を有するものであれば特に限定されない。硫化物系固体電解質の原料としては、具体的には、Li、S、及び第三成分Aを有するもの等を挙げることができる。第三成分Aとしては、例えばP、Ge、B、Si、I、Al、Ga、及びAsからなる群より選択される少なくとも一種を挙げることができる。硫化物系固体電解質としては、具体的には、Li2S-P25、70Li2S-30P25、80Li2S-20P25、Li2S-SiS2、LiGe0.250.754等を挙げることができる。
 上記リン酸系固体電解質としては、リン酸成分を含有し、リチウムイオン伝導性を有するものであれば特に限定されるものではない。リン酸系固体電解質としては、例えばLi1.5Al0.5Ti1.5(PO43等のLi1+XAlXTi2-X(PO43(0<X<2、中でも0<X≦1が好ましい。)、及びLi1+XAlXGe2-X(PO43(0<X<2、中でも0<X≦1が好ましい。)等を挙げることができる。
 上記有機物層としては、ポリエチレンオキサイドやポリメタクリル酸メチル等のリチウム導電性物質が好ましい。無機物層としては、SiO2やAl23、MgOなどのセラミック材が好ましい。
 [セパレータ]
 セパレータ13には、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ13の材質としては、ポリエチレン、ポリプロピレン、エチレン及びプロピレンの少なくとも一方を含む共重合体等のオレフィン系樹脂、セルロースなどが好適である。セパレータ13は、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、ポリエチレン層及びポリプロピレン層を含む多層セパレータであってもよく、セパレータ13の表面にアラミド系樹脂等が塗布されたものを用いてもよい。また、セパレータ13と正極11及び負極12の少なくとも一方との界面には、無機化合物のフィラーを含む耐熱層が形成されていてもよい。
 [非水電解質]
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質は、上述の通り、オキサレート錯体をアニオンとするリチウム塩を含む。非水溶媒に当該リチウム塩を添加することで、充電時にリチウム金属のデンドライトが生成し難くなり、負極12の膨化が抑制される。当該リチウム塩は、電解質塩として機能するが負極12で分解して濃度が低くなるため、他の電解質塩を併用することが好ましい。なお、非水電解質は、液体電解質(非水電解液)に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。
 非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、フルオロエチレンカーボネート(FEC)等の環状炭酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン、γ-バレロラクトン等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル、γ-ブチロラクトン、フルオロプロピオン酸メチル(FMP)等の鎖状カルボン酸エステルなどが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチル等の鎖状エーテル類などが挙げられる。
 オキサレート錯体をアニオンとするリチウム塩は、非水電解質中に少なくとも0.01M(mol/L)の濃度で含まれることが好ましい。当該リチウム塩を0.01M以上の濃度で添加することで、負極12の膨化抑制効果が顕著になる。当該リチウム塩の添加量の上限は、溶解度であることが好ましい。当該リチウム塩は、電池の使用時に析出しない範囲で非水溶媒にできるだけ多く添加される。
 オキサレート錯体をアニオンとするリチウム塩は、ホウ素(B)又はリン(P)を含有することが好ましく、例えばリチウムビスオキサレートボレート(LiBOB、LiB(C242)、LiBF2(C24)、LiPF4(C24)、及びLiPF2(C242から選択される少なくとも1種である。中でも、LiBF2(C24)が好ましい。好適な添加量は、溶媒の種類によっても異なるが、例えばLiBOBでは約0.2M、LiBF2(C)では約1.0M、LiPF2(C242では約0.5Mである。なお、当該リチウム塩は、負極12で分解するため、その分解成分、例えば負極12上に形成された皮膜組成を分析して添加の有無及び添加量を解析できる。
 オキサレート錯体をアニオンとするリチウム塩と併用される電解質塩の例としては、LiBF4、LiClO4、LiPF6、LiAsF6、LiSbF6、LiAlCl4、LiSCN、LiCF3SO3、LiCF3CO2、LiN(SO2CF32、LiN(Cl2l+1SO2)(Cm2m+1SO2){l,mは1以上の整数}等のイミド塩類などが挙げられる。中でも、LiPF6を用いることが好ましい。
 非水電解質は、負極12で分解する他の添加剤を含むことが好ましい。非水電解質は、例えばビニレンカーボネート(VC)、フルオロエチレンカーボネート(FEC)、及びビニルエチルカーボネート(VEC)から選択される少なくとも1種を含む。VC等を添加することで、負極の膨化がさらに抑制され、サイクル特性がより良好になる。これは、オキサレート錯体をアニオンとするリチウム塩由来の皮膜の上から、分解電位の低いVC等に由来する皮膜が形成されて皮膜が安定化することによると考えられる。
 以下、実施例により本開示をさらに詳説するが、本開示はこれらの実施例に限定されるものではない。
 <実施例1>
 [正極の作製]
 正極活物質としてアルミニウム、ニッケル、コバルトを含有するリチウム含有遷移金属酸化物と、アセチレンブラック(AB)と、ポリフッ化ビニリデン(PVdF)とを、95:2.5:2.5の質量比で混合し、さらにN-メチル-2-ピロリドン(NMP)を適量加えて撹拌することで正極合材スラリーを調製した。次に、当該正極合材スラリーをアルミニウム箔からなる正極集電体の両面に塗布し、塗膜を乾燥させた。ローラーを用いて塗膜を圧延した後、所定の電極サイズに切断し、正極集電体の両面に正極合材層が順に形成された正極を作製した。
 [負極の作製]
 電解銅箔(厚み10μm)を所定の電極サイズに切断して負極とした。なお、銅箔上には負極合材の塗工は行わなかった。
 [非水電解液の調製]
 エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)とを、3:7の容積比で混合した。当該混合溶媒に、LiPF6を1.0M(mol/L)の濃度で、LiBF2(C24)を0.1M(mol/L)の濃度でそれぞれ溶解させて非水電解液を調製した。
 [電池の作製]
 不活性ガス雰囲気中で、アルミニウム製のタブを取り付けた上記正極、及びニッケル製のタブを取り付けた上記負極をポリエチレン製のセパレータを介して渦巻状に巻回し、巻回型の電極体を作製した。当該電極体をアルミニウムラミネートで構成される外装体内に収容し、上記非水電解液を注入後、外装体の開口部を封止して電池T1を作製した。
 <実施例2>
 非水電解液の調製において、LiBF2(C24)の添加量を0.5M(mol/L)としたこと以外は、実施例1と同様にして電池T2を作製した。
 <実施例3>
 非水電解液の調製において、ビニレンカーボネート(VC)を電解液の質量に対して5質量%の量で添加したこと以外は、実施例2と同様にして電池T3を作製した。
 <実施例4>
 非水電解液の調製において、LiPF6を添加しなかったこと以外は、実施例3と同様にして電池T4を作製した。
 <実施例5>
 非水電解液の調製において、LiBF2(C24)に代えてLiBOBを0.1M(mol/L)の濃度で添加したこと以外は、実施例3と同様にして電池T5を作製した。
 <実施例6>
 非水電解液の調製において、LiBF2(C24)に代えてLiPF2(C242を0.5M(mol/L)の濃度で添加したこと以外は、実施例3と同様にして電池T6を作製した。
 <比較例1>
 非水電解液の調製において、LiBF2(C24)を添加しなかったこと以外は、実施例1と同様にして電池R1を作製した。
 <比較例2>
 非水電解液の調製において、LiBF2(C24)を添加しなかったこと以外は、実施例3と同様にして電池R2を作製した。
 実施例及び比較例の各電池について、下記の方法により、負極膨張率の評価、及び負極表面におけるデンドライトの評価を行った。
 [負極膨張率の評価]
 充電状態の各電池について、Li真密度に対する負極膨張率を下記の手順で求めた。評価結果は、表1に示した。
(1)充電条件:0.1Itの電流で電池電圧が4.3Vになるまで定電流充電を行い、その後、4.3Vの定電圧で電流値が0.01Itになるまで定電圧充電を行った。
(2)負極膨張量:充電状態の電池を解体し、負極断面の二次電子像(SEM画像)から、負極の厚みを測定した。測定された負極の厚みから、充電前の負極の厚みを引くことにより、負極膨張量を算出した。
(3)充電容量に対するLi金属の厚み:Li金属の理論容量を3860mAh/g、Li金属の真密度を0.534g/cm3(室温)として、上記充電で得られた充電容量から、負極表面の析出層が真密度のLi金属であった場合の負極厚みを計算で求めた。
(4)Li真密度に対する負極膨張率の算出:下記の式からLi真密度に対する負極膨張率を求めた。
  (2)の負極膨張量/(3)のLi金属層厚み×100(%)  (式1)
 [負極表面におけるデンドライトの評価]
 上記(2)で解体した負極の表面を二次電子像で観察し、針状のデンドライトの有無を確認した。評価結果は、表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例の電池はいずれも、比較例の電池と比べて負極膨張率が低く、デンドライトの生成も確認できなかった。つまり、非水電解液中にオキサレート錯体をアニオンとするリチウム塩を添加することにより、充電時にリチウム金属のデンドライトが生成し難く、負極の膨化が特異的に抑制される。また、当該リチウム塩と、LiPF6、VCを併用することで、負極の膨化抑制効果がより顕著となる。
 <実施例7>
 非水電解液の調製において、LiBF2(C24)の添加量を0.01M(mol/L)としたこと以外は、実施例3と同様にして電池T7を作製した。
 <実施例8>
 非水電解液の調製において、LiBF2(C24)の添加量を0.1M(mol/L)としたこと以外は、実施例3と同様にして電池T8を作製した。
 <実施例9>
 非水電解液の調製において、LiBF2(C24)の添加量を1M(mol/L)としたこと以外は、実施例3と同様にして電池T9を作製した。
 <実施例10>
 非水電解液の調製において、LiBF2(C24)の添加量を2M(mol/L)としたこと以外は、実施例3と同様にして電池T10を作製した。ただし、この場合は、LiBF2(C24)が完全に溶解しなかったため、LiBF2(C24)の不溶分を含む懸濁液を使用して電池T10を作製した。
 電池T7~T10について、負極膨張率の評価、及び負極表面におけるデンドライトの評価を行い、評価結果を表2に示した(電池T3,R2の評価結果も併せて示す)。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、0.01M以上の濃度でLiBF2(C24)を添加することにより、負極膨張率の低減が確認できた。LiBF2(C24)の濃度が高くなるほど効果が高く、特に0.5M以上の濃度で膨化抑制効果が顕著であった。オキサレート錯体をアニオンとするリチウム塩の添加量は、溶媒に溶ける最大量とすることが好ましい。なお、本実施例で用いた溶媒では、2Mの濃度でLiBF2(C24)は完全に溶解しなかったが、他の溶媒を用いた場合は2Mの濃度でも完全に溶解する可能性がある。
 <実施例11>
 リン酸トリメチル、及びリチウム(ビストリメチルシリル)アミドを原料に用い、ALD法(原子層堆積法)で負極集電体表面にリン酸リチウムからなる厚さ5μmの保護層を成膜した。この負極集電体を用いたこと以外は、実施例3と同様にして電池T11を作製した。なお、T11のLi真密度に対する負極膨張率の算出にあたり、リン酸リチウムの厚みは考慮にいれなかった。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、負極集電体表面にリン酸リチウムからなる保護層を形成することにより、負極膨張率がさらに低減される。
 10  非水電解質二次電池
 11  正極
 12  負極
 13  セパレータ
 14  電極体
 15  ケース本体
 16  封口体
 17,18  絶縁板
 19  正極リード
 20  負極リード
 21  張り出し部
 22  フィルタ
 23  下弁体
 24  絶縁部材
 25  上弁体
 26  キャップ
 27  ガスケット
 30  正極集電体
 31  正極合材層
 40  負極集電体

Claims (8)

  1.  正極集電体及び当該集電体上に形成された正極合材層とを有する正極と、
     負極集電体を有する負極と、
     非水電解質と、
     を備え、充電時に前記負極集電体上にリチウム金属が析出し、放電時に当該リチウム金属が前記非水電解質中に溶解する非水電解質二次電池であって、
     前記非水電解質は、オキサレート錯体をアニオンとするリチウム塩を含む、非水電解質二次電池。
  2.  前記負極は、初期状態において負極活物質を有さない、請求項1に記載の非水電解質二次電池。
  3.  前記負極集電体は、銅箔である、請求項1又は2に記載の非水電解質二次電池。
  4.  前記非水電解質は、六フッ化リン酸リチウムをさらに含む、請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記非水電解質は、ビニレンカーボネート、フルオロエチレンカーボネート、及びビニルエチレンカーボネートから選択される少なくとも1種をさらに含む、請求項1~4のいずれか1項に記載の非水電解質二次電池。
  6.  前記オキサレート錯体をアニオンとするリチウム塩は、前記非水電解質中に少なくとも0.01Mの濃度で含まれる、請求項1~5のいずれか1項に記載の非水電解質二次電池。
  7.  前記オキサレート錯体をアニオンとするリチウム塩は、ホウ素又はリンを含有する、請求項1~6のいずれか1項に記載の非水電解質二次電池。
  8.  前記負極集電体の表面に、固体電解質、有機物、及び無機物から選ばれる1つを少なくとも含む層を設けた、請求項1~7のいずれか1項に記載の非水電解質二次電池。
PCT/JP2018/002743 2017-03-28 2018-01-29 非水電解質二次電池 WO2018179782A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880004188.3A CN109937504A (zh) 2017-03-28 2018-01-29 非水电解质二次电池
US16/496,556 US20210111429A1 (en) 2017-03-28 2018-01-29 Non-aqueous electrolyte secondary battery
JP2019508639A JP6917586B2 (ja) 2017-03-28 2018-01-29 非水電解質二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-062569 2017-03-28
JP2017062569 2017-03-28

Publications (1)

Publication Number Publication Date
WO2018179782A1 true WO2018179782A1 (ja) 2018-10-04

Family

ID=63674933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002743 WO2018179782A1 (ja) 2017-03-28 2018-01-29 非水電解質二次電池

Country Status (4)

Country Link
US (1) US20210111429A1 (ja)
JP (2) JP6917586B2 (ja)
CN (1) CN109937504A (ja)
WO (1) WO2018179782A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181277A1 (ja) * 2018-03-23 2019-09-26 パナソニックIpマネジメント株式会社 リチウム二次電池
WO2020202844A1 (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 リチウム二次電池
WO2022024568A1 (ja) 2020-07-30 2022-02-03 パナソニックIpマネジメント株式会社 リチウム二次電池
WO2022264499A1 (ja) * 2021-06-15 2022-12-22 株式会社豊田自動織機 バイポーラ電極及び蓄電装置
WO2023203987A1 (ja) * 2022-04-22 2023-10-26 パナソニックIpマネジメント株式会社 リチウム二次電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220359904A1 (en) * 2019-08-30 2022-11-10 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery
CN114342120A (zh) * 2019-08-30 2022-04-12 松下知识产权经营株式会社 非水电解质二次电池
US11728470B2 (en) * 2020-12-21 2023-08-15 GM Global Technology Operations LLC Lithium metal negative electrode and method of manufacturing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097593A (ja) * 1995-06-16 1997-01-10 Nippon Telegr & Teleph Corp <Ntt> リチウム二次電池
JPH113713A (ja) * 1997-06-11 1999-01-06 Nec Corp 二次電池負極集電体、それを用いたリチウム二次電池
JP2000173595A (ja) * 1998-12-08 2000-06-23 Sony Corp 複合負極及びそれを用いた二次電池
JP2002237293A (ja) * 2000-07-06 2002-08-23 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
JP2004014151A (ja) * 2002-06-03 2004-01-15 Sony Corp 電池
JP2004363076A (ja) * 2003-05-13 2004-12-24 Sony Corp 電池
JP2012146553A (ja) * 2011-01-13 2012-08-02 Idemitsu Kosan Co Ltd リチウムイオン電池負極部材及び負極
JP2014007168A (ja) * 2010-12-28 2014-01-16 Sekisui Chem Co Ltd リチウムイオン二次電池
JP2016091984A (ja) * 2014-11-04 2016-05-23 株式会社パワージャパンプリュス 蓄電素子
JP2017017002A (ja) * 2015-07-03 2017-01-19 三井化学株式会社 電池用非水電解液及びリチウム二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4049506B2 (ja) * 2000-02-29 2008-02-20 三洋電機株式会社 リチウム二次電池
JP2007311096A (ja) * 2006-05-17 2007-11-29 Seiko Epson Corp 二次電池、二次電池の製造方法、電子機器
JP2008091236A (ja) * 2006-10-03 2008-04-17 Sanyo Electric Co Ltd 非水電解質二次電池
JP4586820B2 (ja) * 2007-05-07 2010-11-24 ソニー株式会社 巻回型非水電解質二次電池
JP5515308B2 (ja) * 2009-02-03 2014-06-11 ソニー株式会社 薄膜固体リチウムイオン二次電池及びその製造方法
CN103199299B (zh) * 2012-01-06 2015-02-11 王复民 锂离子电池阳极保护层及其制造方法
CN105009347A (zh) * 2013-02-12 2015-10-28 昭和电工株式会社 二次电池用非水电解液及非水电解液二次电池
KR102341434B1 (ko) * 2014-03-24 2021-12-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 리튬 이온 이차 전지
CN103928704B (zh) * 2014-04-14 2016-08-03 南京安普瑞斯有限公司 锂离子电池及其制造方法
CN104134780A (zh) * 2014-07-18 2014-11-05 奇瑞汽车股份有限公司 一种锂离子电池极片及其制备方法
KR101905246B1 (ko) 2014-09-30 2018-10-05 주식회사 엘지화학 리튬 이차전지의 제조방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH097593A (ja) * 1995-06-16 1997-01-10 Nippon Telegr & Teleph Corp <Ntt> リチウム二次電池
JPH113713A (ja) * 1997-06-11 1999-01-06 Nec Corp 二次電池負極集電体、それを用いたリチウム二次電池
JP2000173595A (ja) * 1998-12-08 2000-06-23 Sony Corp 複合負極及びそれを用いた二次電池
JP2002237293A (ja) * 2000-07-06 2002-08-23 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
JP2004014151A (ja) * 2002-06-03 2004-01-15 Sony Corp 電池
JP2004363076A (ja) * 2003-05-13 2004-12-24 Sony Corp 電池
JP2014007168A (ja) * 2010-12-28 2014-01-16 Sekisui Chem Co Ltd リチウムイオン二次電池
JP2012146553A (ja) * 2011-01-13 2012-08-02 Idemitsu Kosan Co Ltd リチウムイオン電池負極部材及び負極
JP2016091984A (ja) * 2014-11-04 2016-05-23 株式会社パワージャパンプリュス 蓄電素子
JP2017017002A (ja) * 2015-07-03 2017-01-19 三井化学株式会社 電池用非水電解液及びリチウム二次電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181277A1 (ja) * 2018-03-23 2019-09-26 パナソニックIpマネジメント株式会社 リチウム二次電池
WO2020202844A1 (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 リチウム二次電池
CN113632259A (zh) * 2019-03-29 2021-11-09 松下知识产权经营株式会社 锂二次电池
WO2022024568A1 (ja) 2020-07-30 2022-02-03 パナソニックIpマネジメント株式会社 リチウム二次電池
WO2022264499A1 (ja) * 2021-06-15 2022-12-22 株式会社豊田自動織機 バイポーラ電極及び蓄電装置
WO2023203987A1 (ja) * 2022-04-22 2023-10-26 パナソニックIpマネジメント株式会社 リチウム二次電池

Also Published As

Publication number Publication date
JP6917586B2 (ja) 2021-08-11
US20210111429A1 (en) 2021-04-15
JP7162281B2 (ja) 2022-10-28
CN109937504A (zh) 2019-06-25
JP2021166195A (ja) 2021-10-14
JPWO2018179782A1 (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
JP7162281B2 (ja) 非水電解質二次電池
JP7236645B2 (ja) 非水電解質二次電池及びその製造方法
US11742481B2 (en) Nonaqueous electrolyte secondary battery
WO2018221024A1 (ja) 二次電池用正極、及び二次電池
WO2020084986A1 (ja) 円筒型二次電池
CN109937508B (zh) 非水电解质二次电池
JP7270155B2 (ja) 非水電解質二次電池
US20190006664A1 (en) Lithium secondary battery including electrolyte containing lithium boron compound
JP7117478B2 (ja) リチウム二次電池
CN110073534B (zh) 非水电解质二次电池
WO2021111931A1 (ja) 非水電解液二次電池
CN117999665A (zh) 非水电解质二次电池
CN111052490B (zh) 非水电解质二次电池
CN112018395A (zh) 二次电池
CN112018389A (zh) 正极活性物质和使用该正极活性物质的二次电池
WO2023145395A1 (ja) 非水系リチウム二次電池
WO2023145608A1 (ja) 非水電解質二次電池
CN109997270B (zh) 非水电解质二次电池
CN109964357B (zh) 非水电解质二次电池
CN112018343A (zh) 正极活性物质和使用该正极活性物质的二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508639

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776998

Country of ref document: EP

Kind code of ref document: A1