WO2022149611A1 - リチウム鉄複合酸化物、正材材料、正極及びリチウムイオン二次電池 - Google Patents

リチウム鉄複合酸化物、正材材料、正極及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2022149611A1
WO2022149611A1 PCT/JP2022/000359 JP2022000359W WO2022149611A1 WO 2022149611 A1 WO2022149611 A1 WO 2022149611A1 JP 2022000359 W JP2022000359 W JP 2022000359W WO 2022149611 A1 WO2022149611 A1 WO 2022149611A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
composite oxide
iron composite
lithium iron
Prior art date
Application number
PCT/JP2022/000359
Other languages
English (en)
French (fr)
Inventor
智彦 長谷川
功典 佐藤
洋 苅宿
敬史 毛利
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US17/913,739 priority Critical patent/US20230112744A1/en
Priority to JP2022535501A priority patent/JPWO2022149611A1/ja
Priority to CN202280003202.4A priority patent/CN115315834A/zh
Publication of WO2022149611A1 publication Critical patent/WO2022149611A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0027Mixed oxides or hydroxides containing one alkali metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/89Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by mass-spectroscopy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium iron composite oxide, a positive material, a positive electrode, and a lithium ion secondary battery.
  • This application claims priority based on Japanese Patent Application No. 2021-002344, Japanese Patent Application No. 2021-002345, and Japanese Patent Application No. 2021-002346 filed in Japan on January 8, 2021, and the contents thereof are described here. Invite to.
  • Lithium-ion secondary batteries are characterized by their small size and large capacity. Lithium-ion secondary batteries are installed not only in electronic devices such as mobile phones and notebook computers, but also in mobile bodies such as automobiles and drones in recent years. Lithium-ion secondary batteries are expanding their applications more and more.
  • alloy-based negative electrode active materials typified by silicon and silicon oxide are being researched. These negative electrode active materials can occlude lithium several to ten times as much as graphite, and have a much larger capacity than graphite. On the other hand, these negative electrode active materials cause irreversible structural changes at the time of initial charging, and trap lithium ions in the structure. The trapped lithium ion cannot contribute to the subsequent charge / discharge reaction, so that a sufficient cell capacity cannot be achieved.
  • lithium predoping In order to prevent this lithium ion from being trapped in the negative electrode active material, a technique called lithium predoping, in which lithium is occluded in the negative electrode in advance, has been proposed. By performing lithium predoping, it is possible to prevent the lithium released from the positive electrode from being consumed and to increase the capacity of the alloy-based negative electrode active material. Lithium predoping can be performed on either the positive electrode or the negative electrode.
  • Patent Document 1 reports an example in which a lithium iron composite oxide having a reverse fluorite-type crystal structure having a large irreversible capacity at the time of initial charge / discharge is used for the positive electrode.
  • Patent Document 2 reports that in order to improve the high resistance of the lithium iron composite oxide, carbon coating by chemical vapor deposition is performed to improve the characteristics.
  • the lithium iron composite oxides there is a lithium iron composite oxide.
  • the lithium iron composite oxide has a problem that its resistance is high and its irreversible capacity is not sufficiently expressed. In other words, the lithium iron composite oxide may not be sufficiently effective as a lithium pre-doped material.
  • the present disclosure has been made in view of the above problems, and an object thereof is to increase the irreversible capacity of the lithium iron composite oxide.
  • the lithium iron composite oxide according to the first aspect is represented by Li 5 FeO 4 , and shows two peaks having different quadrupole splitting values (QS) analyzed by 57 Fe Mössbauer spectroscopy.
  • QS quadrupole splitting values
  • the peak A and the peak B may each have an isomer shift value (IS) of 0.05 or more and 0.25 or less.
  • the positive electrode material according to the second aspect includes the lithium iron composite oxide according to the above aspect.
  • the positive electrode material according to the third aspect includes the lithium iron composite oxide according to the above aspect and a coating layer for coating the surface of the lithium iron composite oxide, and the coating layer comprises lithium silicate. include.
  • the mass ratio of the coating layer may be 0.1% by mass or more and 3.0% by mass or less with respect to the entire positive electrode material.
  • the positive electrode material according to the fourth aspect includes the lithium iron composite oxide according to the above aspect and a coating layer for coating the surface of the lithium iron composite oxide, and the coating layer is diamond-like carbon. including.
  • the positive electrode according to the fifth aspect includes the positive electrode material according to the above aspect.
  • the lithium ion secondary battery according to the sixth aspect includes the positive electrode according to the above aspect.
  • the lithium iron composite oxide according to the above aspect can increase the irreversible capacity.
  • FIG. 1 is a schematic diagram of a lithium ion secondary battery according to the first embodiment.
  • the lithium ion secondary battery 100 shown in FIG. 1 includes a laminate 30, an electrolyte solution containing lithium ions, a case 50, a lead 60, and a lead 62.
  • the case 50 houses the laminate 30 and the electrolyte solution in a sealed state.
  • One end of the lead 60 is electrically connected to the positive electrode 10, and the other end projects to the outside of the case 50.
  • One end of the lead 62 is electrically connected to the negative electrode 20, and the other end projects to the outside of the case.
  • the laminated body 30 includes a positive electrode 10, a negative electrode 20, and a separator 18. Each of the positive electrode 10, the negative electrode 20, and the separator 18 is, for example, a plate-shaped member. The separator 18 is located between the positive electrode 10 and the negative electrode 20. The laminated body 30 may be replaced with a wound body in which a structure in which the positive electrode 10, the separator 18, and the negative electrode 20 are laminated in this order is wound.
  • the positive electrode 10 has, for example, a positive electrode current collector 12 and a positive electrode active material layer 14.
  • the positive electrode active material layer 14 is in contact with at least one surface of the positive electrode current collector 12.
  • the negative electrode 20 has, for example, a negative electrode current collector 22 and a negative electrode active material layer 24.
  • the negative electrode active material layer 24 is in contact with at least one surface of the negative electrode current collector 22.
  • the separator 18 is located between the positive electrode active material layer 14 and the negative electrode active material layer 24.
  • the positive electrode 10 includes a positive electrode current collector 12 and a positive electrode active material layer 14.
  • the positive electrode current collector 12 is, for example, a conductive plate material.
  • the positive electrode current collector 12 is a thin plate of a metal or alloy such as aluminum, copper, nickel, titanium, and stainless steel.
  • the positive electrode current collector 12 is, for example, a metal foil.
  • the positive electrode active material layer 14 contains, for example, a positive electrode active material, a binder for a positive electrode, a conductive auxiliary agent, and an additive.
  • the additive is an example of a positive electrode material.
  • the additive functions, for example, as a pre-doped material.
  • Additives include a lithium iron composite oxide represented by Li 5 FeO 4 .
  • Li 5 FeO 4 is a notation in stoichiometric composition, and the lithium iron composite oxide may have element defects or the like.
  • FIG. 2 is a Mössbauer spectroscopic analysis result of an example of the additive of the lithium ion secondary battery according to the first embodiment.
  • the solid line in FIG. 2 is the measured value
  • the dotted line is one peak obtained by analyzing the measured value and separated into peaks (hereinafter referred to as peak A)
  • the alternate long and short dash line is one peak separated by analyzing the measured value (hereinafter referred to as peak A).
  • peak B it is referred to as peak B).
  • Peak A is a peak caused by the crystalline component of the lithium iron composite oxide.
  • the quadrupole splitting value (QS) of peak A is the interval between the two local minimums (the interval between level splits) and QS> 0.
  • Peak B is a peak caused by the amorphous component of the lithium iron composite oxide.
  • QS quadrupole splitting value
  • the lithium iron composite oxide is presumed to be microcrystalline because the quadrupole splitting value (QS) analyzed using 57 Fe Mössbauer spectroscopy shows peak A and peak B.
  • QS quadrupole splitting value
  • the lithium iron composite oxide according to this embodiment easily releases lithium ions.
  • a lithium iron composite oxide having low crystallinity tends to release lithium ions more easily than a lithium iron composite oxide having high crystallinity, and resistance tends to decrease.
  • the lithium ion secondary battery containing the substance has a sufficiently large irreversible capacity at the time of initial charging.
  • the pre-doped material preferably has a large irreversible capacity. This is because the pre-doped material releases Li only at the time of initial charging and contributes to the reaction, and does not assume a reversible reaction. Therefore, the lithium iron composite oxide according to the present embodiment functions suitably as a pre-doped material.
  • the lithium iron composite oxide according to the present embodiment preferably has an isomer shift value (IS) of each of the peak A and the peak B of 0.05 or more and 0.25 or less.
  • the isomer shift value (IS) is one of the measurement parameters of 57 Fe Mössbauer spectroscopy, and is a numerical value of the deviation from the central relative velocity output from the measuring instrument performing 57 Fe Mössbauer spectroscopy.
  • the IS of each of peak A and peak B is preferably 0.05 or more and 0.25 or less, and 0.11 or more and 0. 22 or less is more preferable. If this value is within the range, it can be considered that there is no change in the valence of Fe due to microcrystallization, and an increase in grain boundary resistance can be suppressed.
  • the lithium iron composite oxide according to the present embodiment is 0.01 ⁇ SB / ( SA + SB ) ⁇ 0, where SA is the area value of the peak A and SB is the area value of the peak B. It is preferably .50, and more preferably 0.01 ⁇ SB / ( SA + SB ) ⁇ 0.20. If this range is satisfied, structural deterioration of the microcrystalline lithium iron composite oxide can be suppressed.
  • the area values of peak A and peak B can be obtained by the half width method after expressing each observation data by two Lorentz functions and extracting the hyperfine parameters by the least squares method.
  • the lithium iron composite oxide according to this embodiment can be produced by a synthesis step and a microcrystallization step.
  • the synthesis step can be carried out by a known method and is not particularly limited.
  • an iron source and a lithium source are combined by a mechanical milling treatment such as a ball mill, and then fired.
  • the iron source is, for example, Fe 2 O 3 or Fe 3 O 4 .
  • the lithium source is, for example, elemental lithium, Li 2 O, Li 2 CO 3 , Li OH or the like.
  • the material synthesized in the synthesis process is mechanically milled.
  • the mechanical milling process can be performed by, for example, a ball mill or the like.
  • the mechanical milling treatment is performed, the materials collide with each other, the powder propagates and crushes repeatedly, and a lamellar structure is formed.
  • the layer spacing of the lamellar structure gradually narrows and becomes random, resulting in a microcrystalline structure.
  • Analysis of the lithium iron composite oxide by 57 Fe Mössbauer spectroscopy can be performed even if it is not in the powder state.
  • the positive electrode does not contain other iron compounds, it can be carried out even in the state of the positive electrode.
  • the positive electrode active material layer and the positive electrode current collector are separated by a spatula or the like, and the obtained positive electrode active material layer is analyzed.
  • the lithium iron composite oxide as a simple substance has been shown, but a coating layer may be formed on the surface of the lithium iron composite oxide. That is, the additive may include a lithium iron composite oxide and a coating layer that covers the surface of the lithium iron composite oxide.
  • the coating layer may contain, for example, lithium silicate.
  • Lithium silicate protects the surface of the lithium iron composite oxide and further enhances the irreversible volume of the additive. The reason for this is not clear, but it is considered that silicide is formed between the lithium silicate and the lithium iron composite oxide to improve the adhesion of the coating layer.
  • Lithium silicate prevents the lithium iron composite oxide from reacting with H2O and CO2 in the atmosphere.
  • highly alkaline compounds such as LiOH and Li 2 CO 3 are produced on the surface of the particles.
  • the highly alkaline compound reacts with the electrolytic solution during charging to form a high resistance film, and inhibits the charging reaction of the lithium iron composite oxide.
  • the mass ratio of the coating layer containing lithium silicate is preferably 0.1% by mass or more and 3.0% by mass or less with respect to the total mass of the additive.
  • the total mass of the additive is, for example, the total mass of the lithium iron composite oxide and the coating layer. When the ratio of the coating layer is in this range, excessive silicate is not formed and the adverse effect on the battery characteristics is small.
  • the mass ratio of the coating layer can be determined by emission spectroscopy (ICP).
  • the coating layer containing lithium silicate can be prepared by several methods. For example, by mechanically milling a lithium iron composite oxide and a silicate material with a ball mill or the like, a coating layer containing lithium silicate can be formed on the surface of the lithium iron composite oxide. Further, for example, a coating layer containing lithium silicate can be formed by forming a silicon oxide film such as SiO 2 on the surface of the lithium iron composite oxide by a sol-gel method or the like and then firing the film. The coating layer can be analyzed by, for example, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM) observation, inductively coupled plasma (ICP) emission analysis, and the like.
  • XRD X-ray diffraction
  • XPS X-ray photoelectron spectroscopy
  • TEM transmission electron microscope
  • ICP inductively coupled plasma
  • the coating layer may contain, for example, diamond-like carbon (DLC).
  • DLC diamond-like carbon
  • the carbon in the film predominates in the sp3 structure , and the DLC has a structure close to amorphous.
  • the coating layer containing DLC prevents the lithium iron composite oxide from reacting with H2O and CO2 in the atmosphere.
  • highly alkaline compounds such as LiOH and Li 2 CO 3 are produced on the surface of the particles.
  • the highly alkaline compound reacts with the electrolytic solution during charging to form a high resistance film, and inhibits the charging reaction of the lithium iron composite oxide.
  • DLC can be formed, for example, at a low temperature of 500 ° C. or lower.
  • a carbon film is formed at a high temperature exceeding 600 ° C., a part of the transition metal of the lithium iron composite oxide is reduced, which may adversely affect the battery characteristics.
  • a carbon coating can be formed without reducing the lithium iron composite oxide. The use of a coating material containing DLC improves the cycle characteristics of the lithium ion secondary battery.
  • the coating layer containing DLC partially overlaps the spectrum of the G band of 1580 cm -1 and the spectrum of the D band of 1350 cm -1 , which is the ratio of the peak intensities of the G band and the D band.
  • the / D ratio is preferably 1.5 or less.
  • the carbon coating formed at high temperature has a graphite structure that easily grows and has a high G / D ratio. If the G / D ratio is 1.5 or less, it indicates that the film is formed at a low temperature. In other words, having a coating layer satisfying the above conditions suppresses the reduction of the lithium iron composite oxide, and further improves the cycle characteristics of the lithium ion secondary battery.
  • the film thickness of the coating layer containing DLC is, for example, 1 nm or more and 100 nm or less. If the film thickness is 1 nm or less, the improvement effect of the carbon coating is small, and if it exceeds 100 nm, the resistance increases.
  • the film thickness of the coating layer can be measured by observation with a transmission electron microscope (TEM).
  • the coating layer containing DLC can be produced by physical vapor deposition (PVD) such as, for example, a sputtering method or an arc ion plating method.
  • PVD physical vapor deposition
  • the physical characteristics of DLC can be controlled. For example, when a DLC is formed by a sputtering method, the G / D ratio and the film thickness can be arbitrarily set by controlling the power supply output, processing time, sample temperature, gas pressure, and the like.
  • the positive electrode active material is an electrode active material capable of reversibly advancing the storage and release of lithium ions, the desorption and insertion (intercalation) of lithium ions, or the doping and dedoping of lithium ions and counter anions. including.
  • the positive electrode active material is, for example, a composite metal oxide.
  • the composite metal oxide may be, for example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), lithium manganese spinel (LiMn 2 O 4 ), and general formula: LiNi x Co.
  • the positive electrode active material may be an organic substance.
  • the positive electrode active material may be polyacetylene, polyaniline, polypyrrole, polythiophene, or polyacene.
  • the positive electrode active material may contain, for example, any one selected from the group consisting of nickel, cobalt, manganese, and aluminum.
  • the positive electrode active material is, for example, a ternary compound containing any one selected from the group consisting of nickel, cobalt, manganese, and aluminum.
  • Nickel-cobalt-lithium manganate (NCM) and nickel-cobalt-lithium aluminate (NCA) are examples of ternary compounds.
  • the ternary compound can be used even at a high potential.
  • the positive electrode active material may be a lithium-free material.
  • the lithium-free material is, for example, FeF 3 , a conjugated polymer containing an organic conductive substance, a chevrel phase compound, a transition metal chalcogenide, vanadium oxide, niobium oxide and the like.
  • As the lithium-free material only one of the materials may be used, or a plurality of materials may be used in combination.
  • discharge is performed first. Lithium is inserted into the positive electrode active material by electric discharge.
  • lithium may be chemically or electrochemically pre-doped into a material containing no lithium as the positive electrode active material.
  • the conductive auxiliary agent enhances the electron conductivity between the positive electrode active materials.
  • the conductive auxiliary agent is, for example, a carbon powder, a carbon nanotube, a carbon material, a metal fine powder, a mixture of a carbon material and a metal fine powder, or a conductive oxide.
  • the carbon powder is, for example, carbon black, acetylene black, ketjen black and the like.
  • the metal fine powder is, for example, powder such as copper, nickel, stainless steel, and iron.
  • the content of the conductive auxiliary agent in the positive electrode active material layer 14 is not particularly limited.
  • the content of the conductive auxiliary agent with respect to the total mass of the positive electrode active material, the conductive auxiliary agent, and the binder is 0.5% by mass or more and 20% by mass or less, preferably 1% by mass or more and 5% by mass or less. ..
  • the binder in the positive electrode active material layer 14 binds the positive electrode active materials to each other.
  • a known binder can be used.
  • the binder include fluororesins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), cellulose, styrene / butadiene rubber, ethylene / propylene rubber, polyimide resin, polyamide-imide resin and the like.
  • the binder may be an electron conductive conductive polymer or an ion conductive conductive polymer.
  • the electron-conducting conductive polymer is, for example, polyacetylene, polythiophene, polyaniline, or the like.
  • the ionic conductive polymer is, for example, a composite of a polyether polymer compound such as polyethylene oxide or polypropylene oxide and a lithium salt such as LiClO 4 , LiBF 4 , or LiPF 6 .
  • the content of the binder in the positive electrode active material layer 14 is not particularly limited.
  • the content of the binder is 0.5% by mass or more and 5% by mass or less with respect to the total mass of the positive electrode active material, the conductive auxiliary agent, and the binder.
  • the negative electrode 20 has, for example, a negative electrode current collector 22 and a negative electrode active material layer 24.
  • the negative electrode active material layer 24 is formed on at least one surface of the negative electrode current collector 22.
  • the negative electrode current collector 22 is, for example, a conductive plate material. As the negative electrode current collector 22, the same one as the positive electrode current collector 12 can be used. The negative electrode current collector 22 is, for example, a copper foil.
  • the negative electrode active material layer 24 contains, for example, a negative electrode active material.
  • the negative electrode active material layer 24 may contain a conductive auxiliary agent and a binder, if necessary.
  • the negative electrode active material may be any compound that can store and release lithium ions, and a known negative electrode active material used in a lithium ion secondary battery can be used.
  • the negative electrode active material for example, reversibly proceeds with the desorption and insertion of lithium ions.
  • the negative electrode active material is, for example, metallic lithium, a lithium alloy, a carbon material, or a substance that can be alloyed with lithium.
  • the carbon material is, for example, graphite (natural graphite, artificial graphite) capable of storing and releasing ions, carbon nanotubes, non-graphitizable carbon, easily graphitized carbon, low-temperature calcined carbon and the like.
  • Substances that can be alloyed with lithium include, for example, silicon, tin, zinc, lead and antimony.
  • the substance that can be alloyed with lithium may be, for example, these elemental metals, alloys or oxides containing these elements. Further, the substance that can be alloyed with lithium may be a complex in which at least a part of the surface thereof is coated with a conductive material (for example, a carbon material) or the like.
  • the binder in the negative electrode 20 may be, for example, cellulose, styrene / butadiene rubber, ethylene / propylene rubber, polyimide resin, polyamide-imide resin, acrylic resin or the like, in addition to those listed in the positive electrode 10.
  • Cellulose may be, for example, carboxymethyl cellulose (CMC).
  • the separator 18 is sandwiched between the positive electrode 10 and the negative electrode 20.
  • the separator 18 isolates the positive electrode 10 and the negative electrode 20 and prevents a short circuit between the positive electrode 10 and the negative electrode 20.
  • the separator 18 extends in-plane along the positive electrode 10 and the negative electrode 20. Lithium ions can pass through the separator 18.
  • the separator 18 has, for example, an electrically insulating porous structure.
  • the separator 18 is, for example, a monolayer or a laminated body of a polyolefin film.
  • the separator 18 may be a stretched film of a mixture such as polyethylene or polypropylene.
  • the separator 18 may be a fibrous nonwoven fabric made of at least one constituent material selected from the group consisting of cellulose, polyester, polyacrylonitrile, polyamide, polyethylene and polypropylene.
  • the separator 18 may be, for example, a solid electrolyte.
  • the solid electrolyte is, for example, a polymer solid electrolyte, an oxide-based solid electrolyte, or a sulfide-based solid electrolyte.
  • the separator 18 may be an inorganic coated separator.
  • the inorganic coated separator is obtained by coating the surface of the above film with a mixture of a resin such as PVDF or CMC and an inorganic substance such as alumina or silica.
  • the inorganic coated separator has excellent heat resistance and suppresses the precipitation of transition metals eluted from the positive electrode on the surface of the negative electrode.
  • the electrolytic solution is sealed in the case 50 and impregnated in the laminate 30.
  • the electrolytic solution has, for example, a solvent and an electrolyte.
  • solvent a solvent generally used for a lithium ion secondary battery can be mixed and used at an arbitrary ratio.
  • cyclic carbonate compounds such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate
  • chain carbonate compounds such as diethyl carbonate (DEC), ethylmethyl carbonate (EMC) and dimethyl carbonate (DMC), ⁇ -butyrolactone.
  • Cyclic ester compounds such as (GBL) and chain ester compounds such as propyl propionate (PrP), ethyl propionate (PrE) and ethyl acetate can be used as the solvent.
  • the electrolyte is not particularly limited as long as it is a lithium salt used as an electrolyte of a lithium ion secondary battery.
  • inorganic acid anion salts such as LiPF 6 , LiBF 4 , lithium bisoxalate boron, organic acid anion salts such as LiCF 3 SO 3 , (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, etc.can be used as an electrolyte.
  • the case 50 seals the laminate 30 and the electrolytic solution inside the case 50.
  • the case 50 suppresses leakage of the electrolytic solution to the outside and invasion of water or the like into the inside of the lithium ion secondary battery 100 from the outside.
  • the case 50 has, for example, as shown in FIG. 1, a metal foil 52 and a resin layer 54 laminated on each surface of the metal foil 52.
  • the case 50 is a metal laminated film in which a metal foil 52 is coated from both sides with a polymer film (resin layer 54).
  • the metal foil 52 for example, an aluminum foil can be used.
  • a polymer film such as polypropylene can be used for the resin layer 54.
  • the material constituting the resin layer 54 may be different between the inside and the outside.
  • a polymer having a high melting point for example, polyethylene terephthalate (PET), polyamide (PA), etc. is used as the outer material, and polyethylene (PE), polypropylene (PP), etc. are used as the material of the inner polymer film. be able to.
  • the leads 60 and 62 are connected to the positive electrode 10 and the negative electrode 20, respectively.
  • the lead 60 connected to the positive electrode 10 is a positive electrode terminal
  • the lead 62 connected to the negative electrode 20 is a negative electrode terminal.
  • the leads 60 and 62 are responsible for electrical connection with the outside.
  • the leads 60 and 62 are made of a conductive material such as aluminum, nickel and copper.
  • the connection method may be welding or screwing.
  • the leads 60 and 62 are preferably protected with insulating tape to prevent short circuits.
  • the lithium ion secondary battery 100 can be manufactured by a known method.
  • the positive electrode active material layer 14 is produced, the above-mentioned additive containing the lithium iron composite oxide is added.
  • the lithium ion secondary battery 100 contains a microcrystalline lithium iron composite oxide whose results analyzed by 57 Fe Mesbauer spectroscopy satisfy predetermined conditions.
  • the microcrystalline lithium iron composite oxide has a large reaction surface area and a sufficiently large irreversible capacity. Therefore, it functions as a pre-doped material in the lithium ion secondary battery 100, and the reversible capacity of the lithium ion secondary battery 100 can be increased.
  • the lithium iron composite oxide by coating the lithium iron composite oxide with a predetermined coating layer, it is possible to suppress the reduction of the lithium iron composite oxide. As a result, the irreversible capacity of the pre-doped material can be increased, and the reversible capacity of the lithium ion secondary battery 100 can be increased.
  • Example 1 (Synthesis of Li 5 FeO 4 ) LiOH 0.805 mmol (9.63 g) as a Li source and Fe 2O 3 0.0805 mmol (12.80 g) as a transition metal oxide were put into a stainless steel pot together with 100 g of 2 mm ⁇ ZrO 2 beads, and Makino's pot mill rotation was performed. A precursor was prepared by treating at 100 rpm for 12 hours using a table. The precursor was heated at 600 ° C. for 24 hours in an Ar atmosphere to obtain Li 5 FeO 4 .
  • Mössbauer spectroscopic analysis Mössbauer spectroscopic analysis was performed on Li 5 FeO 4 which had been microcrystallized above. When the obtained spectrum was fitted by the Lorentz function, the separation between peak A and peak B was confirmed. The spectroscopic results are shown in Table 1.
  • LiCoO 2 was used as the positive electrode active material, lithium iron composite oxide after microcrystallization was used as the additive, carbon black was used as the conductive auxiliary agent, and PVDF was used as the binder.
  • NMP N-methyl-2-pyrrolidone
  • a 500 ⁇ m Li foil was used as the negative electrode active material.
  • the Li foil was attached to a copper foil having a thickness of 20 ⁇ m and pressure-molded by a roller press to prepare a negative electrode.
  • Ethylene carbonate (EC) and diethyl carbonate (DEC) were used as the solvent, and lithium hexafluorophosphate (LiPF 6 ) was used as the supporting salt.
  • the positive electrode and the negative electrode prepared above were sequentially laminated via a polyethylene separator.
  • the tab leads were ultrasonically welded to this laminate and then packaged in an aluminum laminate pack.
  • the electrolytic solution prepared above was injected and vacuum-sealed to prepare a lithium ion secondary battery for evaluation.
  • the evaluation lithium ion secondary battery produced above was placed in a constant temperature bath set at 25 ° C. and evaluated by a charge / discharge test device manufactured by Hokuto Denko Co., Ltd. First, the battery is charged until the battery voltage reaches 4.4 V by constant current charging with a current value of 0.1 C, and then discharged until the battery voltage reaches 3.0 V by constant current discharge with a current value of 0.1 C. rice field.
  • the charging of the current value (X) C means the current value at which the battery can be charged in (1 / X) time.
  • the charge capacity-discharge capacity obtained above was defined as the irreversible capacity, and the obtained values are shown in Table 1. Since the reaction potentials of Li 5 FeO 4 and LiCoO 2 are different, only the irreversible volume of Li 5 FeO 4 can be extracted. The larger this value is, the more effectively the additive works as a lithium pre-doped material.
  • Example 2 It differs from Example 1 in that the treatment conditions for microcrystallization of Li 5 FeO 4 are changed. In Example 2, the treatment at 500 rpm for 3 minutes was performed a total of 3 times. Other conditions were the same as in Example 1, and evaluation was performed.
  • Example 3 It differs from Example 1 in that the treatment conditions for microcrystallization of Li 5 FeO 4 are changed. In Example 3, the treatment at 550 rpm for 3 minutes was performed a total of 3 times. Other conditions were the same as in Example 1, and evaluation was performed.
  • Example 4 It differs from Example 1 in that the treatment conditions for microcrystallization of Li 5 FeO 4 are changed. In Example 4, the treatment at 600 rpm for 3 minutes was performed a total of 3 times. Other conditions were the same as in Example 1, and evaluation was performed.
  • Example 5 It differs from Example 1 in that the treatment conditions for microcrystallization of Li 5 FeO 4 are changed. In Example 5, the treatment at 500 rpm for 1 minute was performed 9 times in total. Other conditions were the same as in Example 1, and evaluation was performed.
  • Example 6 It differs from Example 1 in that the treatment conditions for microcrystallization of Li 5 FeO 4 are changed. In Example 5, the treatment at 500 rpm for 9 minutes was performed once in total. Other conditions were the same as in Example 1, and evaluation was performed.
  • Example 1 It differs from Example 1 in that the treatment for microcrystallization of Li 5 FeO 4 was not performed. Other conditions were the same as in Example 1, and evaluation was performed.
  • the IS value is preferably 0.05 or more and 0.25 or less.
  • Example 7 is different from Example 1 in that a coating layer of lithium silicate is formed on the surface of Li 5 FeO 4 .
  • Other conditions were the same as in Example 1, and evaluation was performed.
  • the amount of the slurry applied to the aluminum foil when the positive electrode active material layer was prepared was 13.0 mg / cm 2 .
  • Formation of covering layer For the coating layer, 10.0 g of Li 5 FeO 4 and 12.0 mg of Li 4 SiO 4 as a lithium silicate material are put into a polypropylene pot together with 100 g of 2 mm ⁇ ZrO 2 beads, and 100 rpm is used using a Makino pot mill rotary table. It was formed by rotating it for 2 hours. Further, when the quantification of the coating layer was performed by emission spectroscopic analysis (ICP), the coating layer in the amount shown in the coating amount in Table 2 was formed.
  • ICP emission spectroscopic analysis
  • Example 8 It differs from Example 7 in that Li 4 SiO 4 was used as a lithium silicate material at 54.0 mg when the coating layer was formed. Other conditions were the same as in Example 7, and evaluation was performed.
  • Example 9 It differs from Example 7 in that Li 4 SiO 4 was used as a lithium silicate material in an amount of 304 mg when the coating layer was formed. Other conditions were the same as in Example 7, and evaluation was performed.
  • Example 10 It differs from Example 7 in that Li 4 SiO 4 was used as the lithium silicate material at 404 mg when the coating layer was formed. Other conditions were the same as in Example 7, and evaluation was performed.
  • Example 11 It differs from Example 7 in that Li 2 SiO 3 was used as a lithium silicate material at 54.0 mg when the coating layer was formed. Other conditions were the same as in Example 7, and evaluation was performed.
  • Example 12 It differs from Example 7 in that Li 8 SiO 6 was set to 54.0 mg as the lithium silicate material at the time of forming the coating layer. Other conditions were the same as in Example 7, and evaluation was performed.
  • Example 13 It differs from Example 7 in that Li 2 Si 2 O 6 was 54.0 mg as the lithium silicate material at the time of forming the coating layer. Other conditions were the same as in Example 7, and evaluation was performed.
  • Example 14 It differs from Example 7 in that 54.0 mg of carbon black was used instead of the lithium silicate material when the coating layer was formed. Other conditions were the same as in Example 7, and evaluation was performed.
  • Example 15 is different from Example 7 in that the coating layer is diamond-like carbon (DLC). Other conditions were the same as in Example 7, and evaluation was performed.
  • DLC diamond-like carbon
  • the DLC was formed using a barrel sputtering device under the conditions of output voltage: 4.0 kV, gas pressure: 1 Pa, processing time: 3 minutes, and barrel rotation speed: 10 rpm.
  • Example 15 the irreversible capacity of Li 5 FeO 4 was larger than that in Example 14. That is, when a predetermined coating layer containing lithium silicate or diamond-like carbon is formed on the surface of Li 5 FeO 4 , the reaction efficiency as a pre-doped material is enhanced.
  • Example 16 Using the positive electrode prepared under the same conditions as in Example 1, a full cell of a lithium ion secondary battery was prepared with the negative electrode having the following configuration, and the cycle characteristics of the lithium ion secondary battery were measured.
  • Graphite was used as the negative electrode active material, carbon black was used as the conductive auxiliary agent, and styrene-butadiene rubber (SBR) and carboxymethyl cellulose (CMC) were used as the binder.
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • Graphite: carbon black: SBR: CMC 90: 4: 3: 3 (parts by mass) is mixed and dispersed in N-methyl-2-pyrrolidone (NMP) using a hybrid mixer to form a negative electrode active material layer.
  • NMP N-methyl-2-pyrrolidone
  • the slurry for was adjusted. This slurry was applied to a copper foil having a thickness of 20 ⁇ m so as to have a coating amount of 9.0 mg / cm 2 , and dried at 100 ° C. to form a negative electrode active material layer. Then, this was pressure-molded by a roller press machine to prepare a negative electrode.
  • the full-cell evaluation lithium-ion secondary battery produced above was placed in a constant temperature bath set at 25 ° C. and evaluated with a charge / discharge test device manufactured by Hokuto Denko Co., Ltd. First, the battery is charged until the battery voltage reaches 4.4 V by constant current charging with a current value of 0.1 C, and then discharged until the battery voltage reaches 3.0 V by constant current discharge with a current value of 0.1 C. rice field.
  • Example 17 is different from Example 16 in that a coating layer of diamond-like carbon (DLC) is formed on the surface of Li 5 FeO 4 .
  • DLC diamond-like carbon
  • Diamond-like carbon (DLC) was produced by the same method as in Example 15.
  • the lithium iron composite oxide coated with DLC was analyzed using a microlaser Raman spectrophotometer manufactured by aiser and a laser beam having a wavelength of 532 nm. Then, the G / D ratio and the presence or absence of peak overlap were determined from the obtained spectrum. Further, the film thickness of the coating layer was measured at an acceleration voltage of 200 kV using a transmission electron microscope manufactured by Hitachi High-Technologies Corporation.
  • Example 18 It was the same as in Example 17 except that the treatment time for forming the DLC was 15 minutes. Other conditions were the same as in Example 16 and evaluation was performed.
  • Example 19 It was the same as in Example 17 except that the treatment time for forming the DLC was 5 hours. Other conditions were the same as in Example 16 and evaluation was performed.
  • Example 20 It was the same as in Example 18 except that the treatment time for forming the DLC was 5.5 hours. Other conditions were the same as in Example 16 and evaluation was performed.
  • Example 21 The same as in Example 18 except that the output voltage for forming the DLC was set to 3.0 kV. Other conditions were the same as in Example 16 and evaluation was performed.
  • Example 22 The same as in Example 18 except that the output voltage for forming the DLC was 5.0 kV. Other conditions were the same as in Example 16 and evaluation was performed.
  • Example 23 is different from Example 16 in that a carbon coating layer is formed on the surface of Li 5 FeO 4 by using thermal CVD. Other conditions were the same as in Example 17, and evaluation was performed.
  • Examples 17 to 22 on which the DLC coating layer was formed were superior in cycle characteristic performance to Examples 16 and 23.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

このリチウム鉄複合酸化物は、LiFeOで表され、57Feメスバウアー分光法を用いて解析した四極子分裂値(QS)が異なる二つのピークを示し、前記二つのピークのうちの一方のピークAはQS>0を満たし、前記二つのピークのうちの他方のピークBはQS=0を満たす。

Description

リチウム鉄複合酸化物、正材材料、正極及びリチウムイオン二次電池
 本発明は、リチウム鉄複合酸化物、正材材料、正極及びリチウムイオン二次電池に関する。本願は、2021年1月8日に日本に出願された、特願2021-002344号、特願2021-002345号、及び、特願2021-002346号に基づき優先権を主張し、その内容をここに援用する。
 リチウムイオン二次電池は、小型、大容量の特徴を有する。リチウムイオン二次電池は、携帯電話やノート型パソコン等の電子機器類だけではなく、近年では自動車やドローン等の移動体にも搭載されている。リチウムイオン二次電池は、ますますその用途を拡大している。
 アプリケーションの高性能化に伴い、リチウムイオン二次電池にも更なる特性改善が求められている。特にエネルギー密度の向上の要求が大きい。エネルギー密度を増加させるためには、正極活物質及び負極活物質のそれぞれの高容量化が必要となる。黒鉛は、負極活物質として代表的な材料である。黒鉛は、寿命や出力特性に優れ、なおかつ安価であり、負極活物質として広く用いられていた。一方で、黒鉛はその容量を既に理論値まで使い切っており、負極の高容量化のためには黒鉛から別の材料への転換が検討されている。
 黒鉛代替負極として、シリコンや酸化シリコンに代表される合金系の負極活物質が研究されている。これらの負極活物質は、黒鉛の数倍から十数倍のリチウムを吸蔵でき、容量が黒鉛よりも格段に大きい。一方で、これらの負極活物質は、初回充電時に不可逆な構造変化を起こし、その構造中にリチウムイオンをトラップしてしまう。トラップされたリチウムイオンは、その後の充放電反応に寄与できなくなるため、十分なセル容量を達成できない。
 このリチウムイオンが負極活物質にトラップされることを防ぐために、あらかじめ負極にリチウムを吸蔵させておく、リチウムプレドープという技術が提唱されている。リチウムプレドープを行うことで、正極から放出されたリチウムが消費されることを防ぎ、合金系負極活物質の高容量化が可能となる。リチウムプレドープは、正極、負極のいずれに対しても行うことができる。例えば、特許文献1には、正極に、初回充放電時の不可逆容量が大きい逆ホタル石型の結晶構造を有するリチウム鉄複合酸化物を用いた例が報告されている。例えば、特許文献2には、上記リチウム鉄複合酸化物の高抵抗を改善するため、化学蒸着による炭素被覆を行い、特性が改善することが報告されている。
特開2004-207055号公報 特開2017-130359号公報
 リチウム鉄複合酸化物の一つとして、リチウム鉄複合酸化物がある。リチウム鉄複合酸化物は、抵抗が高く、その不可逆容量が十分に発現されないという課題があった。換言すれば、リチウム鉄複合酸化物は、リチウムプレドープ材料としての効果を十分発揮できない場合がある。
 本開示は上記問題に鑑みてなされたものであり、リチウム鉄複合酸化物の不可逆容量を大きくすることを目的とする。
(1)第1の態様にかかるリチウム鉄複合酸化物は、LiFeOで表され、57Feメスバウアー分光法を用いて解析した四極子分裂値(QS)が異なる二つのピークを示し、前記二つのピークのうちの一方のピークAはQS>0を満たし、前記二つのピークのうちの他方のピークBはQS=0を満たす。
(2)上記態様にかかるリチウム鉄複合酸化物において、前記ピークA及び前記ピークBは、それぞれアイソマーシフト値(IS)が、0.05以上0.25以下であってもよい。
(3)上記態様にかかるリチウム鉄複合酸化物において、前記ピークAの面積値をS、前記ピークBの面積値をSとした際に、0.01≦S/(S+S)≦0.50を満たしてもよい。
(4)第2の態様にかかる正極材料は、上記態様にかかるリチウム鉄複合酸化物を備える。
(5)第3の態様にかかる正極材料は、上記態様にかかるリチウム鉄複合酸化物と、前記リチウム鉄複合酸化物の表面を被覆する被覆層と、を備え、前記被覆層は、リチウムシリケートを含む。
(6)上記態様にかかる正極材料において、前記被覆層の質量比は、前記正極材料全体に対して0.1質量%以上3.0質量%以下であってもよい。
(7)第4の態様にかかる正極材料は、上記態様にかかるリチウム鉄複合酸化物と、前記リチウム鉄複合酸化物の表面を被覆する被覆層と、を備え、前記被覆層は、ダイアモンドライクカーボンを含む。
(8)上記態様にかかる正極材料の前記被覆層のラマンスペクトル分析において、1580cm-1のGバンドのスペクトルと、1350cm-1のDバンドのスペクトルとの一部が重複し、前記Gバンドと前記Dバンドのピーク強度の比率であるG/D比が1.5以下であってもよい。
(9)第5の態様にかかる正極は、上記態様にかかる正極材料を含む。
(10)第6の態様にかかるリチウムイオン二次電池は、上記態様にかかる正極を備える。
 上記態様に係るリチウム鉄複合酸化物は、不可逆容量を大きくすることができる。
第1実施形態に係るリチウムイオン二次電池の模式図である。 第1実施形態に係るリチウムイオン二次電池の正極材料の一例のメスバウアー分光分析結果である。
 以下、実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等は実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本開示はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。また以下に記載した構成要素は、適宜組み合わせることができる。
「リチウムイオン二次電池」
 図1は、第1実施形態にかかるリチウムイオン二次電池の模式図である。図1に示すリチウムイオン二次電池100は、積層体30と、リチウムイオンを含む電解質溶液と、ケース50と、リード60と、リード62とを備える。ケース50は、積層体30と電解質溶液を密閉した状態で収容する。リード60は、一方の端部が正極10と電気的に接続され、他方の端部がケース50の外部に突出する。リード62は、一方の端部が負極20と電気的に接続され、他方の端部がケースの外部に突出する。
 積層体30は、正極10と負極20とセパレータ18とを備える。正極10、負極20及びセパレータ18のそれぞれは、例えば、板状の部材である。セパレータ18は、正極10と負極20との間にある。積層体30は、正極10、セパレータ18、負極20の順に積層された構造体を巻回した巻回体に置き換えてもよい。正極10は、例えば、正極集電体12と正極活物質層14とを有する。正極活物質層14は、正極集電体12の少なくとも一面に接する。負極20は、例えば、負極集電体22と負極活物質層24とを有する。負極活物質層24は、負極集電体22の少なくとも一面に接する。セパレータ18は、正極活物質層14と負極活物質層24との間に位置する。
<正極>
 正極10は、正極集電体12と正極活物質層14とを備える。
[正極集電体]
 正極集電体12は、例えば、導電性の板材である。正極集電体12は、例えば、アルミニウム、銅、ニッケル、チタン、ステンレス等の金属又は合金の薄板である。正極集電体12は、例えば、金属箔である。
[正極活物質層]
 正極活物質層14は、例えば、正極活物質、正極用バインダー、導電助剤、添加剤を含む。添加剤は、正極材料の一例である。添加剤は、例えば、プレドープ材として機能する。
(添加剤)
 添加剤は、LiFeOで表されるリチウム鉄複合酸化物を含む。LiFeOは化学量論組成での表記であり、リチウム鉄複合酸化物は元素欠損等を生じていてもよい。
 リチウム鉄複合酸化物は、57Feメスバウアー分光法を用いて解析した四極子分裂値(QS)が異なる二つのピークを示す。図2は、第1実施形態に係るリチウムイオン二次電池の添加剤の一例のメスバウアー分光分析結果である。図2における実線は実測値であり、点線は実測値を解析しピーク分離した一つのピーク(以下、ピークAと称する。)であり、一点鎖線は実測値を解析しピーク分離した一つのピーク(以下、ピークBと称する。)である。
 ピークAは、リチウム鉄複合酸化物の結晶性成分に起因するピークである。ピークAの四極子分裂値(QS)は、2つの極小値の間の間隔(準位の分裂した間隔)であり、QS>0である。
 ピークBは、リチウム鉄複合酸化物の非結晶性成分に起因するピークである。ピークBは極小値が一つであり、四極子分裂値(QS)はQS=0である。換言すると、ピークBが確認されるということは、リチウム鉄複合酸化物がX線的非晶質を含むことを示す。
 リチウム鉄複合酸化物は、57Feメスバウアー分光法を用いて解析した四極子分裂値(QS)がピークAとピークBとを示すため、微結晶状であると推測される。本実施形態にかかるリチウム鉄複合酸化物は、リチウムイオンを放出しやすい。結晶性が低いリチウム鉄複合酸化物は、結晶性の高いリチウム鉄複合酸化物よりもリチウムイオンを放出しやすく、抵抗が低下しやすい。その結果、当該物質を含むリチウムイオン二次電池は、初回充電時の不可逆容量が十分に大きい。
 プレドープ材は、不可逆容量が大きいことが好ましい。プレドープ材は、初回の充電時にのみにLiを放出し、反応に寄与するものであり、可逆的な反応を想定していないためである。したがって、本実施形態にかかるリチウム鉄複合酸化物は、プレドープ材として好適に機能する。
 本実施形態に係るリチウム鉄複合酸化物は、上記ピークAおよび上記ピークBそれぞれのアイソマーシフト値(IS)が、0.05以上0.25以下であることが好ましい。アイソマーシフト値(IS)は、57Feメスバウアー分光法の測定パラメータの一つであり、57Feメスバウアー分光法を行う測定器から出力される中心相対速度からのずれの数値である。
 本実施形態に係るリチウム鉄複合酸化物は、上記57Feメスバウアー分光法において、ピークAおよびピークBそれぞれのISが0.05以上0.25以下であることが好ましく、0.11以上0.22以下がより好ましい。この値が当該範囲であれば、微結晶化に伴うFeの価数変化がないものと見なすことが可能で、粒界抵抗の増加を抑制できる。
 本実施形態に係るリチウム鉄複合酸化物は、上記ピークAの面積値をS、上記ピークBの面積値をSとしたとき、0.01≦S/(S+S)≦0.50であることが好ましく、0.01≦S/(S+S)≦0.20であることがより好ましい。当該範囲を満たすと、微結晶状のリチウム鉄複合酸化物の構造劣化を抑制できる。ピークA及びピークBの面積値はそれぞれの観測データを2本のローレンツ関数で表現し、超微細パラメータを最小二乗法により抽出した後、半値幅法で求めることができる。
 本実施形態に係るリチウム鉄複合酸化物は、合成工程と、微結晶化工程と、によって作製できる。
 合成工程は、公知の方法で行うことができ、特に制限は無い。例えば、鉄源とリチウム源とを、ボールミル等のメカニカルミリング処理によって複合化した後に、焼成する。鉄源は、例えば、Fe、Fe等である。リチウム源は、例えば、リチウム単体、LiO、LiCO、LiOH等である。
 微結晶工程では、合成工程で合成した材料をメカニカルミリング処理する。メカニカルミリング処理は、例えば、ボールミル等で行うことができる。メカニカルミリング処理をすると、材料同士が衝突し、粉末が進展、破砕を繰り返し、ラメラ構造が形成される。処理時間の増大と共に、次第に、ラメラ構造の層間隔が狭小、ランダム化して微結晶構造となる。
 リチウム鉄複合酸化物の57Feメスバウアー分光法による分析は、粉体の状態でなくても行うことができる。例えば、正極中にその他の鉄化合物が含まれていない場合は、正極の状態でも行うことができる。まずスパチュラ等によって正極活物質層と正極集電体を分離し、得られた正極活物質層を分析する。
 ここまで、リチウム鉄複合酸化物を単体として適用する例を示したが、リチウム鉄複合酸化物の表面に被覆層を形成してもよい。すなわち、添加剤は、リチウム鉄複合酸化物と、リチウム鉄複合酸化物の表面を被覆する被覆層と、を備えてもよい。
 被覆層は、例えば、リチウムシリケートを含んでもよい。リチウムシリケートは、リチウム鉄複合酸化物の表面を保護し、添加剤の不可逆容量をさらに高める。この理由は明確ではないが、リチウムシリケートとリチウム鉄複合酸化物の間にシリサイドが形成され、被覆層の密着性が向上するためと考えられる。
 リチウムシリケートは、リチウム鉄複合酸化物が、大気中のHOやCOと反応することを防止する。リチウム鉄複合酸化物が大気中のガスと反応すると、その粒子表面にLiOH、LiCO等の高アルカリ化合物が生成される。高アルカリ化合物は、充電時に電解液と反応して高抵抗被膜を形成して、リチウム鉄複合酸化物の充電反応を阻害する。
 リチウムシリケートを含む被覆層の質量比は、添加剤の全体の質量に対して0.1質量%以上3.0質量%以下であることが好ましい。添加剤の全体の質量は、例えば、リチウム鉄複合酸化物と被覆層との合計質量である。被覆層の割合がこの範囲であれば、過剰なシリケートが形成されることがなく、電池特性への悪影響が小さい。被覆層の質量比は、発光分光分析(ICP)で求めることができる。
 リチウムシリケートを含む被覆層は、いくつかの方法で作製できる。例えば、リチウム鉄複合酸化物とシリケート材料とを、ボールミル等のメカニカルミリング処理することで、リチウム鉄複合酸化物の表面にリチウムシリケートを含む被覆層を形成できる。また例えば、ゾル-ゲル法等によって、リチウム鉄複合酸化物の表面に、SiO等のシリコン酸化物被膜を形成した後、焼成することで、リチウムシリケートを含む被覆層を形成できる。被覆層の分析は、例えば、X線回折法(XRD)、X線光電子分光(XPS)、透過型電子顕微鏡(TEM)観察、誘導結合プラズマ(ICP)発光分析等で行うことができる。
 被覆層は、例えばダイアモンドライクカーボン(DLC)を含んでもよい。DLCは、膜中の炭素がsp構造を優勢にとり、アモルファスに近い構造を有する。DLCを含む被覆層は、リチウム鉄複合酸化物が、大気中のHOやCOと反応することを防止する。リチウム鉄複合酸化物が大気中のガスと反応すると、その粒子表面にLiOH、LiCO等の高アルカリ化合物が生成される。高アルカリ化合物は、充電時に電解液と反応して高抵抗被膜を形成して、リチウム鉄複合酸化物の充電反応を阻害する。
 DLCは、例えば、500℃以下の低温で成膜することができる。例えば、600℃を超える高温で炭素膜を形成すると、リチウム鉄複合酸化物の一部の遷移金属が還元され、電池特性への悪影響を及ぼす場合がある。DLCを用いると、リチウム鉄複合酸化物を還元することなく、炭素被覆を形成できる。DLCを含む被覆材を用いると、リチウムイオン二次電池のサイクル特性が改善する。
 DLCを含む被覆層は、ラマンスペクトル分析において、1580cm-1のGバンドのスペクトルと、1350cm-1のDバンドのスペクトルの一部が重複し、GバンドとDバンドのピーク強度の比率であるG/D比が1.5以下であることが好ましい。
 高温で成膜された炭素被覆は黒鉛構造が成長しやすく、G/D比が高くなる。G/D比が1.5以下であれば、低温で成膜されていることを示す。換言すれば、当該条件を満たす被覆層を有すると、リチウム鉄複合酸化物の還元が抑制され、リチウムイオン二次電池のサイクル特性が更に改善する。
 DLCを含む被覆層の膜厚は、例えば、1nm以上100nm以下である。膜厚が1nm以下だと、炭素被覆による改善効果が薄く、100nmを超える場合は抵抗増加を引き起こす。被覆層の膜厚は、透過型電子顕微鏡(TEM)観察で測定できる。
 DLCを含む被覆層は、例えば、スパッタリング法、アークイオンプレーティング法等の物理蒸着(PVD)で作製できる。DLCの物性は制御できる。例えば、スパッタリング法でDLCを成膜する場合は、電源出力、処理時間、サンプル温度、ガス圧力等を制御することで、G/D比、膜厚を任意に設定できる。
(正極活物質)
 正極活物質は、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、リチウムイオンとカウンターアニオンのドープ及び脱ドープを可逆的に進行させることが可能な電極活物質を含む。
 正極活物質は、例えば、複合金属酸化物である。複合金属酸化物は、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNiCoMnの化合物(一般式中においてx+y+z+a=1、0≦x<1、0≦y<1、0≦z<1、0≦a<1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)、リチウムバナジウム化合物(LiV)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素又はVOを示す)、チタン酸リチウム(LiTi12)、LiNiCoAl(0.9<x+y+z<1.1)である。正極活物質は、有機物でもよい。例えば、正極活物質は、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセンでもよい。
 正極活物質は、例えば、ニッケル、コバルト、マンガン、アルミニウムからなる群から選択されるいずれかを含むものでもよい。正極活物質は、例えば、ニッケル、コバルト、マンガン、アルミニウムからなる群から選択されるいずれかを含む三元系化合物である。ニッケル・コバルト・マンガン酸リチウム(NCM)、ニッケル・コバルト・アルミニウム酸リチウム(NCA)は、三元系化合物の例である。三元系化合物は、高電位でも使用できる。
 正極活物質は、リチウム非含有の材料でもよい。リチウム非含有の材料は、例えば、FeF、有機導電性物質を含む共役系ポリマー、シェブレル相化合物、遷移金属カルコゲン化物、バナジウム酸化物、ニオブ酸化物等である。リチウム非含有の材料は、いずれか一つの材料のみを用いてもよいし、複数組み合わせて用いてもよい。正極活物質がリチウム非含有の材料の場合は、例えば、最初に放電を行う。放電により正極活物質にリチウムが挿入される。このほか、正極活物質がリチウム非含有の材料に対して、化学的又は電気化学的にリチウムをプレドープしてもよい。
(導電助剤)
 導電助剤は、正極活物質の間の電子伝導性を高める。導電助剤は、例えば、カーボン粉末、カーボンナノチューブ、炭素材料、金属微粉、炭素材料及び金属微粉の混合物、導電性酸化物である。カーボン粉末は、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック等である。金属微粉は、例えば、銅、ニッケル、ステンレス、鉄等の粉である。
 正極活物質層14における導電助剤の含有率は特に限定されない。例えば、正極活物質、導電助剤、バインダーの総質量に対して導電助剤の含有率は、0.5質量%以上20質量%以下であり、好ましくは1質量%以上5質量%以下である。
(正極用バインダー)
 正極活物質層14におけるバインダーは、正極活物質同士を結合する。バインダーは、公知のものを用いることができる。バインダーは、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂や、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂等である。また、バインダーは、電子伝導性の導電性高分子やイオン伝導性の導電性高分子でもよい。電子伝導性の導電性高分子は、例えば、ポリアセチレン、ポリチオフェン、ポリアニリン等である。イオン伝導性の導電性高分子は、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物と、LiClO、LiBF、LiPF等のリチウム塩とを複合化させたもの等である。
 正極活物質層14におけるバインダーの含有率は特に限定されない。例えば、正極活物質、導電助剤、バインダーの総質量に対してバインダーの含有率は、0.5質量%以上5質量%以下である。
<負極>
 負極20は、例えば、負極集電体22と負極活物質層24とを有する。負極活物質層24は、負極集電体22の少なくとも一面に形成されている。
[負極集電体]
 負極集電体22は、例えば、導電性の板材である。負極集電体22は、正極集電体12と同様のものを用いることができる。負極集電体22は、例えば、銅箔である。
[負極活物質層]
 負極活物質層24は、例えば、負極活物質を含む。負極活物質層24は、必要に応じて、導電助剤、バインダーを含んでもよい。
(負極活物質)
 負極活物質は、リチウムイオンを吸蔵・放出可能な化合物であればよく、公知のリチウムイオン二次電池に用いられる負極活物質を使用できる。負極活物質は、例えば、リチウムイオンの脱離及び挿入を可逆的に進行させる。
 負極活物質は、例えば、金属リチウム、リチウム合金、炭素材料、リチウムと合金化できる物質である。炭素材料は、例えば、イオンを吸蔵・放出可能な黒鉛(天然黒鉛、人造黒鉛)、カーボンナノチューブ、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等である。リチウムと合金化できる物質は、例えば、シリコン、スズ、亜鉛、鉛、アンチモンを含む。リチウムと合金化できる物質は、例えば、これらの単体金属でも、これらの元素を含む合金又は酸化物でもよい。またリチウムと合金化できる物質は、その表面の少なくとも一部が導電性材料(例えば、炭素材料)等で被覆された複合体でもよい。
(導電助剤、負極用バインダー)
 導電助剤及びバインダーは、正極10と同様のものを用いることができる。負極20におけるバインダーは、正極10に挙げたものの他に、例えば、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂、アクリル樹脂等でもよい。セルロースは、例えば、カルボキシメチルセルロース(CMC)でもよい。
<セパレータ>
 セパレータ18は、正極10と負極20とに挟まれる。セパレータ18は、正極10と負極20とを隔離し、正極10と負極20との短絡を防ぐ。セパレータ18は、正極10及び負極20に沿って面内に広がる。リチウムイオンは、セパレータ18を通過できる。
 セパレータ18は、例えば、電気絶縁性の多孔質構造を有する。セパレータ18は、例えば、ポリオレフィンフィルムの単層体、積層体である。セパレータ18は、ポリエチレンやポリプロピレン等の混合物の延伸膜でもよい。セパレータ18は、セルロース、ポリエステル、ポリアクリロニトリル、ポリアミド、ポリエチレン及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布でもよい。セパレータ18は、例えば、固体電解質であってもよい。固体電解質は、例えば、高分子固体電解質、酸化物系固体電解質、硫化物系固体電解質である。セパレータ18は、無機コートセパレータでもよい。無機コートセパレータは、上記のフィルムの表面に、PVDFやCMCなど樹脂とアルミナやシリカなどの無機物の混合物を塗布したものである。無機コートセパレータは、耐熱性に優れ、正極から溶出した遷移金属の負極表面への析出を抑制する。
<電解液>
 電解液は、ケース50内に封入され、積層体30に含浸している。電解液は、例えば、溶媒と電解質とを有する。
(溶媒)
 溶媒は、一般にリチウムイオン二次電池に用いられている溶媒を任意の割合で混合して使用できる。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状カーボネート化合物、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等の鎖状カーボネート化合物、γ-ブチロラクトン(GBL)等の環状エステル化合物、プロピオン酸プロピル(PrP)、プロピオン酸エチル(PrE)、酢酸エチル等の鎖状エステル化合物を、溶媒に用いることができる。
(電解質)
 電解質は、リチウムイオン二次電池の電解質として用いられるリチウム塩であれば特に限定は無い。例えば、LiPF、LiBF、リチウムビスオキサレートボラート等の無機酸陰イオン塩、LiCFSO、(CFSONLi、(FSONLi等の有機酸陰イオン塩等を、電解質に用いることができる。
<ケース>
 ケース50は、その内部に積層体30及び電解液を密封する。ケース50は、電解液の外部への漏出や、外部からのリチウムイオン二次電池100内部への水分等の侵入等を抑止する。
 ケース50は、例えば図1に示すように、金属箔52と、金属箔52の各面に積層された樹脂層54と、を有する。ケース50は、金属箔52を高分子膜(樹脂層54)で両側からコーティングした金属ラミネートフィルムである。
 金属箔52としては例えばアルミ箔を用いることができる。樹脂層54には、ポリプロピレン等の高分子膜を利用できる。樹脂層54を構成する材料は、内側と外側とで異なっていてもよい。例えば、外側の材料としては融点の高い高分子、例えば、ポリエチレンテレフタレート(PET)、ポリアミド(PA)等を用い、内側の高分子膜の材料としてはポリエチレン(PE)、ポリプロピレン(PP)等を用いることができる。
<リード>
 リード60、62は、それぞれ正極10と負極20とに接続されている。正極10に接続されたリード60は正極端子であり、負極20に接続されたリード62は負極端子である。リード60、62は、外部との電気的接続を担う。リード60、62は、アルミニウム、ニッケル、銅等の導電材料から形成されている。接続方法は、溶接でもネジ止めでもよい。リード60、62は短絡を防ぐために、絶縁テープで保護することが好ましい。
 リチウムイオン二次電池100は、公知の方法で作製できる。正極活物質層14を作製する際に、上述のリチウム鉄複合酸化物を含む添加剤を添加する。
 本実施形態にかかるリチウムイオン二次電池100は、57Feメスバウアー分光法を用いて解析した結果が所定の条件を満たす微結晶状のリチウム鉄複合酸化物を含む。微結晶状のリチウム鉄複合酸化物は、反応表面積が大きく、不可逆容量が十分に大きい。したがって、リチウムイオン二次電池100においてプレドープ材として機能し、リチウムイオン二次電池100の可逆容量を大きくすることができる。
 またリチウム鉄複合酸化物を所定の被覆層で被覆すると、リチウム鉄複合酸化物が還元されることを抑制できる。その結果、プレドープ材の不可逆容量を大きくでき、リチウムイオン二次電池100の可逆容量を大きくすることができる。
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。
[実施例1]
 (LiFeOの合成)
 Li源としてLiOH 0.805mmol(9.63g)、遷移金属酸化物としてFe 0.0805mmol(12.80g)を、2mmφZrOビーズ 100gと共にステンレス製のポットに投入し、マキノ社のポットミル回転台を用いて100rpmで12時間処理することで前駆体を作製した。上記前駆体をAr雰囲気下、600℃で24時間加熱することでLiFeOを得た。
 (微結晶化)
 上記で得られたLiFeO 5.0gを、2mmφZrOビーズ 100gと共にステンレス製のポットに投入し、Fristch社の遊星ボールミル装置を用いて300rpmで3分間処理することで、LiFeOの微結晶化を行った。
 (メスバウアー分光分析)
 上記で微結晶化を行ったLiFeOについてメスバウアー分光分析を行った。得られたスペクトルをローレンツ関数でフィッティングすると、ピークAとピークBとの分離が確認された。分光結果を表1に示す。
 (正極の作製)
 正極活物質としてLiCoO、添加剤として微結晶化後のリチウム鉄複合酸化物、導電助剤としてカーボンブラック、バインダーとしてPVDFを用いた。LiCoO:リチウム鉄複合酸化物:カーボンブラック:PVDF=80:10:5:5(質量部)の割合で混合した。これを、ハイブリッドミキサーを用いてN-メチル-2-ピロリドン(NMP)に分散させることで、正極活物質層形成用のスラリーを調整した。このスラリーを、厚さ20μmのアルミニウム箔に塗布量13.0mg/cmとなるように塗布し、100℃で乾燥することで正極活物質層を形成した。その後、これをローラープレス機によって加圧成形し、正極を作製した。
 (負極の作製)
 負極活物質として500μmのLi箔を用いた。上記Li箔を厚さ20μmの銅箔に貼り付け、これをローラープレス機によって加圧成形し、負極を作製した。
 (電解液の作製)
 溶媒としてエチレンカーボネート(EC)およびジエチルカーボネート(DEC)、支持塩としてヘキサフルオロリン酸リチウム(LiPF)を用いた。EC:DEC=50:50(体積部)となるように混合し、これに1.0mol/Lの濃度となるようにLiPFを溶解させ、電解液を作製した。
 (評価用リチウムイオン二次電池の作製)
 上記で作製した正極および負極を、ポリエチレンセパレータを介して順次積層した。この積層体にタブリードを超音波溶着した後、アルミラミネートパックで包装した。その後、上記で作製した電解液を注入し、真空シールすることで評価用リチウムイオン二次電池を作製した。
 (LiFeOの不可逆容量の測定)
 上記で作製した評価用リチウムイオン二次電池を、25℃に設定した恒温槽内に入れ、北斗電工株式会社製の充放電試験装置で評価した。まず、電流値0.1Cの定電流充電で電池電圧が4.4Vとなるまで充電を行い、続けて、電流値0.1Cの定電流放電で電池電圧が3.0Vとなるまで放電を行った。なお、電流値(X)Cの充電とは、この電池を(1/X)時間で充電可能な電流値のことを示す。上記で得られた充電容量-放電容量を不可逆容量と定義し、得られた値を表1に示した。LiFeOとLiCoOとは反応電位が異なるため、LiFeOの不可逆容量のみを抽出できる。この値が大きいほど、添加剤がリチウムプレドープ材料として効果的に働くことを示す。
[実施例2]
 LiFeOの微結晶化の処理条件を変えた点が実施例1と異なる。実施例2では、500rpmで3分間の処理を、計3回行った。その他の条件は実施例1と同様として、評価を行った。
[実施例3]
 LiFeOの微結晶化の処理条件を変えた点が実施例1と異なる。実施例3では、550rpmで3分間の処理を、計3回行った。その他の条件は実施例1と同様として、評価を行った。
[実施例4]
 LiFeOの微結晶化の処理条件を変えた点が実施例1と異なる。実施例4では、600rpmで3分間の処理を、計3回行った。その他の条件は実施例1と同様として、評価を行った。
[実施例5]
 LiFeOの微結晶化の処理条件を変えた点が実施例1と異なる。実施例5では、500rpmで1分間の処理を、計9回行った。その他の条件は実施例1と同様として、評価を行った。
[実施例6]
 LiFeOの微結晶化の処理条件を変えた点が実施例1と異なる。実施例5では、500rpmで9分間の処理を、計1回行った。その他の条件は実施例1と同様として、評価を行った。
[比較例1]
 LiFeOの微結晶化の処理を行わなかった点が実施例1と異なる。その他の条件は実施例1と同様として、評価を行った。
 実施例2~6、および比較例1で作製した評価用リチウムイオン二次電池について、実施例1と同様に、LiFeOの不可逆容量の測定を行った。結果を表1に示す。
 実施例1~6はいずれも、比較例1に対し不可逆容量が増大した。微結晶化によってLiFeOの反応効率が改善したと考えられる。
 また実施例5~6の結果から、IS値は0.05以上0.25以下が好ましいことが明らかとなった。
Figure JPOXMLDOC01-appb-T000001
[実施例7]
 実施例7は、LiFeOの表面に、リチウムシリケートの被覆層を形成した点が実施例1と異なる。その他の条件は実施例1と同様として、評価を行った。なお、正極活物質層を作製する際のスラリーのアルミニウム箔への塗布量は、13.0mg/cmとした。
 (被覆層の形成)
 被覆層は、LiFeO 10.0gと、リチウムシリケート材料としてLiSiO 12.0mgとを、2mmφZrOビーズ 100gと共にポリプロピレン製のポットに投入し、マキノ社のポットミル回転台を用いて100rpmで2時間回転させること形成した。また、上記被覆層の定量を発光分光分析(ICP)で行ったところ、表2の被覆量で示した量の被覆層が形成されていた。
[実施例8]
 被覆層の形成時に、リチウムシリケート材料としてLiSiOを54.0mgとした点が実施例7と異なる。その他の条件は実施例7と同様として、評価を行った。
[実施例9]
 被覆層の形成時に、リチウムシリケート材料としてLiSiOを304mgとした点が実施例7と異なる。その他の条件は実施例7と同様として、評価を行った。
[実施例10]
 被覆層の形成時に、リチウムシリケート材料としてLiSiOを404mgとした点が実施例7と異なる。その他の条件は実施例7と同様として、評価を行った。
[実施例11]
 被覆層の形成時に、リチウムシリケート材料としてLiSiOを54.0mgとした点が実施例7と異なる。その他の条件は実施例7と同様として、評価を行った。
[実施例12]
 被覆層の形成時に、リチウムシリケート材料としてLiSiOを54.0mgとした点が実施例7と異なる。その他の条件は実施例7と同様として、評価を行った。
[実施例13]
 被覆層の形成時に、リチウムシリケート材料としてLiSiを54.0mgとした点が実施例7と異なる。その他の条件は実施例7と同様として、評価を行った。
[実施例14]
 被覆層の形成時に、リチウムシリケート材料の代わりにカーボンブラックを54.0mgとした点が実施例7と異なる。その他の条件は実施例7と同様として、評価を行った。
[実施例15]
 実施例15は、被覆層をダイアモンドライクカーボン(DLC)とした点が実施例7と異なる。その他の条件は実施例7と同様として、評価を行った。
 DLCは、バレルスパッタ装置を用い、出力電圧:4.0kV、ガス圧力:1Pa、処理時間:3分、バレル回転速度:10rpmの条件で形成した。
 実施例7~15の結果を表2にまとめた。
Figure JPOXMLDOC01-appb-T000002
 実施例7~13及び実施例15は、実施例14よりLiFeOの不可逆容量が大きかった。すなわち、LiFeOの表面に、リチウムシリケート又はダイアモンドライクカーボンを含む所定の被覆層が形成されていると、プレドープ材としての反応効率が高まる。
 また実施例7~9は、実施例10よりLiFeOの不可逆容量が大きかった。すなわち、被覆層の適切な被覆量が確認された。
[実施例16]
 実施例1と同様の条件で作製した正極を用い、負極を下記の構成として、リチウムイオン二次電池のフルセルを作製し、リチウムイオン二次電池のサイクル特性を測定した。
(負極の作製)
 負極活物質として黒鉛、導電助剤としてカーボンブラック、バインダーとしてスチレン-ブタジエンゴム(SBR)およびカルボキシメチルセルロース(CMC)を用いた。黒鉛:カーボンブラック:SBR:CMC=90:4:3:3(質量部)の割合で混合し、ハイブリッドミキサーを用いてN-メチル-2-ピロリドン(NMP)に分散させ、負極活物質層形成用のスラリーを調整した。このスラリーを、厚さ20μmの銅箔に塗布量9.0mg/cmとなるように塗布し、100℃で乾燥することで負極活物質層を形成した。その後、これをローラープレス機によって加圧成形し、負極を作製した。
(サイクル特性の測定)
 上記で作製したフルセルの評価用リチウムイオン二次電池を、25℃に設定した恒温槽内に入れ、北斗電工株式会社製の充放電試験装置で評価した。まず、電流値0.1Cの定電流充電で電池電圧が4.4Vとなるまで充電を行い、続けて、電流値0.1Cの定電流放電で電池電圧が3.0Vとなるまで放電を行った。
 続いて、電流値0.5Cの定電流充電で電池電圧が4.4Vとなるまで充電を行い、電流値0.5Cの定電流放電で電池電圧が3.0Vとなるまで放電を行った。この充放電を1サイクルと定義し、300サイクルの充放電を繰り返した。300サイクル後維持率(サイクル特性)=300サイクル目放電容量/1サイクル目放電容量×100[%]と定義する。
[実施例17]
 実施例17は、LiFeOの表面に、ダイアモンドライクカーボン(DLC)の被覆層を形成した点が実施例16と異なる。その他の条件は実施例16と同様として、評価を行った。
 ダイアモンドライクカーボン(DLC)は、実施例15と同様の方法で作製した。DLCを被覆したリチウム鉄複合酸化物を、aiser製の顕微レーザーラマン分光分析器を用い、波長が532nmのレーザー光線を用いて分析を行った。そして、得られたスペクトルからG/D比と、ピーク重複の有無を求めた。更に、日立ハイテクノロジーズ社の透過型電子顕微鏡を用い、加速電圧200kVで被覆層の膜厚を測定した。
[実施例18]
 DLCを形成する際の処理時間を15分としたこと以外は実施例17と同様とした。その他の条件は実施例16と同様として、評価を行った。
[実施例19]
 DLCを形成する際の処理時間を5時間としたこと以外は実施例17と同様とした。その他の条件は実施例16と同様として、評価を行った。
[実施例20]
 DLCを形成する際の処理時間を5.5時間としたこと以外は実施例18と同様とした。その他の条件は実施例16と同様として、評価を行った。
[実施例21]
 DLCを形成する際の出力電圧を3.0kVとしたこと以外は実施例18と同様とした。その他の条件は実施例16と同様として、評価を行った。
[実施例22]
 DLCを形成する際の出力電圧を5.0kVとしたこと以外は実施例18と同様とした。その他の条件は実施例16と同様として、評価を行った。
[実施例23]
 実施例23は、LiFeOの表面に、熱CVDを用いてカーボンの被覆層を形成した点が実施例16と異なる。その他の条件は実施例17と同様として、評価を行った。
 実施例16~23の結果を表3にまとめた。
Figure JPOXMLDOC01-appb-T000003
 DLCの被覆層が形成された実施例17~22は、実施例16及び実施例23よりサイクル特性の性能が優れていた。
10 正極
12 正極集電体
14 正極活物質層
18 セパレータ
20 負極
22 負極集電体
24 負極活物質層
30 積層体
50 ケース
52 金属箔
54 樹脂層
60、62 リード
100 リチウムイオン二次電池

Claims (10)

  1.  LiFeOで表され、
     57Feメスバウアー分光法を用いて解析した四極子分裂値(QS)が異なる二つのピークを示し、
     前記二つのピークのうちの一方のピークAはQS>0を満たし、
     前記二つのピークのうちの他方のピークBはQS=0を満たす、リチウム鉄複合酸化物。
  2.  前記ピークA及び前記ピークBは、それぞれアイソマーシフト値(IS)が、0.05以上0.25以下である、請求項1に記載のリチウム鉄複合酸化物。
  3.  前記ピークAの面積値をS、前記ピークBの面積値をSとした際に、0.01≦S/(S+S)≦0.50を満たす、請求項1又は2に記載のリチウム鉄複合酸化物。
  4.  請求項1~3のいずれか一項に記載のリチウム鉄複合酸化物を備える、正極材料。
  5.  請求項1~3のいずれか一項に記載のリチウム鉄複合酸化物と、
     前記リチウム鉄複合酸化物の表面を被覆する被覆層と、を備え、
     前記被覆層は、リチウムシリケートを含む、正極材料。
  6.  前記被覆層の質量比は、前記正極材料全体に対して0.1質量%以上3.0質量%以下である、請求項5に記載の正極材料。
  7.  請求項1~3のいずれか一項に記載のリチウム鉄複合酸化物と、
     前記リチウム鉄複合酸化物の表面を被覆する被覆層と、を備え、
     前記被覆層は、ダイアモンドライクカーボンを含む、正極材料。
  8.  前記被覆層のラマンスペクトル分析において、1580cm-1のGバンドのスペクトルと、1350cm-1のDバンドのスペクトルと、の一部が重複し、
     前記Gバンドと前記Dバンドのピーク強度の比率であるG/D比が1.5以下である、請求項7に記載の正極材料。
  9.  請求項4~8のいずれか一項に記載の正極材料を含む、正極。
  10.  請求項9に記載の正極を備える、リチウムイオン二次電池。
PCT/JP2022/000359 2021-01-08 2022-01-07 リチウム鉄複合酸化物、正材材料、正極及びリチウムイオン二次電池 WO2022149611A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/913,739 US20230112744A1 (en) 2021-01-08 2022-01-07 Lithium iron complex oxide, cathode material, cathode, and lithium-ion secondary battery
JP2022535501A JPWO2022149611A1 (ja) 2021-01-08 2022-01-07
CN202280003202.4A CN115315834A (zh) 2021-01-08 2022-01-07 锂铁复合氧化物、正极材料、正极及锂离子二次电池

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021-002344 2021-01-08
JP2021002346 2021-01-08
JP2021002344 2021-01-08
JP2021-002346 2021-01-08
JP2021002345 2021-01-08
JP2021-002345 2021-01-08

Publications (1)

Publication Number Publication Date
WO2022149611A1 true WO2022149611A1 (ja) 2022-07-14

Family

ID=82358006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000359 WO2022149611A1 (ja) 2021-01-08 2022-01-07 リチウム鉄複合酸化物、正材材料、正極及びリチウムイオン二次電池

Country Status (4)

Country Link
US (1) US20230112744A1 (ja)
JP (1) JPWO2022149611A1 (ja)
CN (1) CN115315834A (ja)
WO (1) WO2022149611A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118198536A (zh) * 2024-04-16 2024-06-14 湖北万润新能源科技股份有限公司 富锂铁酸锂材料及其制备方法、应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018185906A (ja) * 2017-04-24 2018-11-22 トヨタ自動車株式会社 二次電池の製造方法
JP2020050554A (ja) * 2018-09-27 2020-04-02 株式会社豊田自動織機 複合粒子
JP2020053314A (ja) * 2018-09-27 2020-04-02 株式会社豊田自動織機 複合粒子の製造方法
WO2020090591A1 (ja) * 2018-10-30 2020-05-07 パナソニックIpマネジメント株式会社 二次電池
WO2020202844A1 (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 リチウム二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018185906A (ja) * 2017-04-24 2018-11-22 トヨタ自動車株式会社 二次電池の製造方法
JP2020050554A (ja) * 2018-09-27 2020-04-02 株式会社豊田自動織機 複合粒子
JP2020053314A (ja) * 2018-09-27 2020-04-02 株式会社豊田自動織機 複合粒子の製造方法
WO2020090591A1 (ja) * 2018-10-30 2020-05-07 パナソニックIpマネジメント株式会社 二次電池
WO2020202844A1 (ja) * 2019-03-29 2020-10-08 パナソニックIpマネジメント株式会社 リチウム二次電池

Also Published As

Publication number Publication date
US20230112744A1 (en) 2023-04-13
JPWO2022149611A1 (ja) 2022-07-14
CN115315834A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
US11183714B2 (en) Hybrid metal-organic framework separators for electrochemical cells
JP7191419B2 (ja) リチウム二次電池用正極材、これを含む正極及びリチウム二次電池
WO2012132976A1 (ja) 二次電池および電解液
EP1653534A1 (en) Conductive agent - positive active material composite for lithium secondary battery, method of preparing the same, and positive electrode and lithium secondary battery comprising the same
JP2020525993A (ja) リチウム二次電池用正極活物質、その製造方法、それを含むリチウム二次電池用正極及びリチウム二次電池
JP6607188B2 (ja) 正極及びそれを用いた二次電池
KR101166281B1 (ko) 표면이 피복된 리튬티탄산화물 분말, 이를 구비한 전극, 및이차전지
WO2015140907A1 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用電極、非水電解質二次電池、電池パックおよび非水電解質二次電池用活物質の製造方法
JP5761098B2 (ja) 活物質及びこれを用いたリチウムイオン二次電池
JP2022009843A (ja) 正極活物質およびこれを含むリチウム二次電池
JP7322776B2 (ja) リチウムイオン二次電池
WO2013024621A1 (ja) リチウムイオン電池
JP2023500474A (ja) 非可逆添加剤、前記非可逆添加剤を含む正極材、前記正極材を含むリチウム二次電池
JP2024127969A (ja) 正極活物質、正極及びこれを含むリチウム二次電池
JP2024045547A (ja) 正極活物質およびこれを含むリチウム二次電池
KR101278832B1 (ko) 표면이 피복된 리튬티탄산화물 분말, 이를 구비한 전극, 및 이차전지
WO2022149611A1 (ja) リチウム鉄複合酸化物、正材材料、正極及びリチウムイオン二次電池
JP2020525991A (ja) リチウム二次電池用正極活物質、その製造方法、それを含むリチウム二次電池用正極及びリチウム二次電池
JP6897228B2 (ja) 活物質、電極及びリチウムイオン二次電池
JPWO2020065832A1 (ja) 導電性物質、正極および二次電池
US9966603B2 (en) Negative electrode carbon material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP5646661B2 (ja) 正極、非水電解質電池及び電池パック
WO2018096889A1 (ja) 非水電解液、及びリチウムイオン二次電池
JP2022181365A (ja) リチウムイオン二次電池
WO2012029645A1 (ja) 二次電池およびそれに用いる二次電池用電解液

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022535501

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22736779

Country of ref document: EP

Kind code of ref document: A1