JP2021114902A - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
JP2021114902A
JP2021114902A JP2021081867A JP2021081867A JP2021114902A JP 2021114902 A JP2021114902 A JP 2021114902A JP 2021081867 A JP2021081867 A JP 2021081867A JP 2021081867 A JP2021081867 A JP 2021081867A JP 2021114902 A JP2021114902 A JP 2021114902A
Authority
JP
Japan
Prior art keywords
magnet
stator
rotor
magnetic
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021081867A
Other languages
English (en)
Other versions
JP7136272B2 (ja
Inventor
裕樹 高橋
Hiroki Takahashi
裕樹 高橋
真 谷口
Makoto Taniguchi
真 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Publication of JP2021114902A publication Critical patent/JP2021114902A/ja
Application granted granted Critical
Publication of JP7136272B2 publication Critical patent/JP7136272B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/0094Structural association with other electrical or electronic devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • H02K3/14Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots with transposed conductors, e.g. twisted conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

【課題】本発明は、トルクの増強を図ることができる回転電機を提供する。【解決手段】回転電機は、回転子と、複数の導線を含む固定子巻線51と、固定子コア52とを有している。導線は、回転子の磁石部に対して径方向に対向する位置に配置される磁石対向部を有している。固定子コア52は、周方向に隣り合う磁石対向部の間を、固定子巻線51の径方向両側のうち回転子とは反対側から回転子側へと向かって突出するように延びる突起部142を有している。突起部142は、磁石部の1極分の範囲において固定子巻線51の通電により励磁される突起部142の周方向の幅寸法をWt、突起部142の飽和磁束密度をBs、磁石部の1極分の周方向の幅寸法をWmとし、磁石部の残留磁束密度をBrとする場合、Wt×Bs≦Wm×Brとなる磁性材料からなる。【選択図】 図31

Description

本発明は、回転電機に関するものである。
従来から、例えば特許文献1に記載されているように、家電用、産機用、遊技機用、農建機用、自動車用に適用される回転電機が知られている。一般的には、ティースで区画された巻線収容部であるいわゆるスロットが固定子コア(つまり、鉄心)に形成され、銅線やアルミ線等の導線がスロットに収容されることにより固定子巻線が構成されている。
特開平6−70522号公報
固定子巻線の通電時において、固定子巻線の起磁力が増加するのに伴い、ティース部分で磁気飽和が生じ、それに起因して回転電機のトルク密度が制限されることが考えられる。つまり、固定子巻線の通電により生じた回転磁束がティースに集中することで、磁気飽和が生じると考えられる。その磁気飽和に起因して、トルクの増加が制限され得る。
本発明は、トルクの増強を図ることができる回転電機を提供することを主たる目的とする。
本発明は、磁石部を有し、回転自在に支持された回転子と、
複数の導線を含む固定子巻線と、固定子コアとを有し、前記回転子に対向して配置される固定子と、
を備えた回転電機であって、
前記導線は、前記磁石部に対して径方向に対向する位置に配置される磁石対向部を有し、
前記固定子コアは、周方向に隣り合う前記磁石対向部の間を、前記固定子巻線の径方向両側のうち前記回転子とは反対側から前記回転子側へと向かって突出するように延びる突起部を有しており、
前記突起部は、前記磁石部の1極分の範囲において前記固定子巻線の通電により励磁される前記突起部の周方向の幅寸法をWt、前記突起部の飽和磁束密度をBs、前記磁石部の1極分の周方向の幅寸法をWmとする場合、Wt×Bs≦Wm×Brとなる磁性材料からなる。
本発明によれば、トルクの増強を図ることができる。
なお、本発明に関連する各手段について説明する。第1の手段は、磁石部を有し、回転自在に支持された回転子と、複数の導線を含む固定子巻線を有し、前記回転子に対向して配置される固定子と、を備えた回転電機であって、周方向に隣り合う前記導線の間に軟磁性体からなるコア部材が設けられていない構成となっており、前記導線は、複数の素線が撚りあった集合体からなる導体を有している。
第1の手段では、周方向に隣り合う導線の間に軟磁性体からなるティースが設けられていない構成であるスロットレス構造となっている。この構成において、第1の手段では、固定子巻線の各導線が複数の素線の集合体からなる導体を有している。このため、導線における電流流通経路の細線化を図ることができ、高調波磁界を含む磁石部からの磁界が導線と鎖交した場合に渦電流が生じても、その渦電流に対する導線の過電流抑制効果を大きくすることができる。その結果、導線に流れる渦電流を低減でき、渦電流損失を低減することができる。
また、各導線は、素線が撚り合わせられて構成されているため、各素線において磁界の印加方向が互いに逆になる部位が生じ、鎖交磁界に起因した逆起電圧が相殺される。その結果、導線を流れる渦電流の低減効果を高めることができ、渦電流損失の低減効果を高めることができる。
なお、周方向に並ぶ各導線の間においてティースが設けられている構成とは、ティースが、径方向に所定厚さを有し、かつ周方向に所定幅を有することで、各導線の間に磁気回路の一部、すなわち磁石磁路を形成する構成であると言える。この点において、各導線の間にティースが設けられていない構成とは、上記の磁気回路の形成がなされていない構成であると言える。
第2の手段は、磁石部を有し、回転自在に支持された回転子と、複数の導線を含む固定子巻線と、固定子コアとを有し、前記回転子に対向して配置される固定子と、を備えた回転電機であって、前記導線は、前記磁石部に対して径方向に対向する位置に配置される磁石対向部と、前記磁石対向部よりも軸方向外側となる位置において同相の前記磁石対向部同士を、所定数おきに互いに接続するターン部とを有し、前記ターン部により互いに接続される同相の前記磁石対向部同士が、前記回転子の軸心を中心とする同一のピッチ円上となる位置に配置されており、前記固定子コアは、前記固定子巻線の径方向両側のうち前記回転子とは反対側に設けられているヨーク部と、前記ヨーク部から、周方向に隣り合う前記磁石対向部の間に向かって突出するように延びる突起部とを有し、前記突起部における前記ヨーク部からの径方向の厚さ寸法は、前記磁石対向部における径方向の厚さ寸法の1/2よりも小さくされており、前記導線は、複数の素線が撚りあった集合体からなる導体を有している。
第2の手段では、固定子コアは、回転子とは径方向反対側に設けられているヨーク部から、周方向に隣り合う磁石対向部の間に向かって突出するように延びる突起部を有しており、突起部におけるヨーク部からの径方向の厚さ寸法が、磁石対向部における径方向の厚さ寸法の1/2よりも小さくされている。この場合、突起部は、径方向の厚み寸法が制限されており、周方向に隣り合う磁石対向部の間においてティースとして機能するものでない。このため、第2の手段の回転電機はスロットレス構造となっている。
ここで、突起部の径方向の厚み寸法が制限されているため、径方向において突起部から突出した磁石対向部の鎖交磁束が増大してしまう。鎖交磁束の増大は、渦電流の増大につながる。しかし、第2の手段では、固定子巻線の各導線が複数の素線の集合体であり、また、素線が撚り合わせられて各導体が構成されているため、導線に流れる渦電流の低減効果が高められている。したがって、第2の手段によれば、位置決め機能を実現しつつ、渦電流を低減でき、渦電流損失を低減することができる。
ここで、第2の手段は、具体的には例えば、第3の手段とすることができる。第3の手段では、前記固定子巻線において、周方向に所定間隔で定められた位置に、径方向内外となる複数層で前記磁石対向部が配置されており、前記突起部における前記ヨーク部からの径方向の厚さ寸法は、前記複数層の前記磁石対向部のうち前記ヨーク部に径方向に隣接する前記磁石対向部における径方向の厚さ寸法の1/2よりも小さい。
また、第3の手段は、具体的には例えば、第4の手段とすることができる。第4の手段では、前記突起部は、周方向において前記磁石対向部に係合している。
第4の手段によれば、固定子巻線の各磁石対向部を、突起部を位置決め部として用いつつ周方向に並べて配置することができる。
ここで、スロットレス構造としては、具体的には例えば、第5の手段を用いることができる。第5の手段は、複数の導線を含む固定子巻線を有する固定子と、前記固定子と対向する面に磁石部を有し、回転自在に配置された回転子と、を備えた回転電機であって、前記導線は、前記磁石部に対して径方向に対向する位置に配置される磁石対向部と、前記磁石対向部よりも軸方向外側となる位置において同相の前記磁石対向部同士を、所定数おきに互いに接続するターン部とを有し、前記固定子巻線の前記磁石対向部は、周方向に所定間隔で定められた位置にそれぞれ配置されており、前記磁石部は、前記回転子における前記固定子と対向する面に、周方向に沿って磁極が交互になるように設けられた複数の磁石を有し、前記固定子は、周方向に隣り合う前記磁石対向部の間に巻線間部材を有しており、前記巻線間部材は、前記磁石部の1極分の範囲において前記固定子巻線の通電により励磁される前記巻線間部材の周方向の幅寸法をWt、前記巻線間部材の飽和磁束密度をBs、前記磁石部の1極分の周方向の幅寸法をWm、前記磁石部の残留磁束密度をBrとする場合、Wt×Bs≦Wm×Brとなる磁性材料、又は非磁性材料からなる。
第5の手段によれば、回転子が有する磁石部の磁束を固定子で十分受けることができる。
第6の手段では、前記素線は、繊維状の導電材により構成されている。
第6の手段では、各素線が繊維状の導電材により構成されているため、導体における電流流通経路をより細線化でき、また、電流流通経路の撚り回数をより増大できる。これにより、渦電流の低減効果を高めることができ、渦電流損失の低減効果を高めることができる。
ここで、各素線は、具体的には例えば第7の手段のように、少なくともカーボンナノチューブ繊維(以下、CNTと称す)で構成されていればよい。この場合、渦電流抑制効果をいっそう増大でき、渦電流損失をいっそう低減することができる。
また、各素線は、具体的には例えば第8の手段のように、カーボンナノチューブ繊維の炭素のうち少なくとも一部をホウ素で置換したホウ素含有微細繊維を含む繊維で構成されていればよい。この場合、渦電流抑制効果をさらに増大でき、渦電流損失の低減効果をさらに高めることができる。
第9の手段では、前記固定子巻線は、径方向の厚さ寸法が周方向の幅寸法よりも小さい断面扁平状の導線を用いて構成されている。
第9の手段では、固定子巻線において導線を扁平状にして磁石対向部における径方向厚さを薄くすることにより、その磁石対向部においてその径方向の中心位置を回転子の磁石部に近づけることができる。これにより、スロットレス構造の採用による固定子での磁気飽和の抑制を図りつつ、固定子巻線の磁石対向部における磁束密度を高めてトルクの増強を図ることが可能となる。
ここで、導線を扁平状にすることによってトルクが増強されるものの、扁平状であることから導線の鎖交磁束が増大してしまう。鎖交磁束の増大は、渦電流の増大につながる。しかし、第9の手段では、固定子巻線の各導線が複数の素線の集合体であり、また、素線が撚り合わせられて各導体が構成されているため、導線に流れる渦電流の低減効果が高められている。また、導線が径方向に薄い扁平状をなしていることによっても、渦電流の低減効果が高まる。したがって、第9の手段によれば、回転電機のトルクの増強を図りつつ、渦電流を低減することができる。
第9の手段は、前記固定子が固定子コアを有しており、前記固定子コアが、前記固定子巻線の径方向両側のうち前記回転子とは反対側に設けられている構成を備えていてもよい。この場合、導線を扁平状にして磁石対向部における径方向厚さを薄くすることにより、固定子コアと回転子との間のエアギャップを小さくできる。その結果、固定子及び回転子を通る磁束の磁気回路の磁気抵抗を低減でき、磁気回路の磁束を増大できる。これにより、スロットレス構造の採用による固定子での磁気飽和の抑制を図りつつ、回転電機のトルクの増強を図ることが可能となる。
第10の手段では、前記磁石部は、永久磁石を有する。
磁石部が界磁巻線を備える構成では、回転電機の駆動制御を実施しない場合、界磁巻線に通電されず、界磁巻線から磁束が発生しない。これに対し、磁石部が永久磁石を備える構成では、永久磁石から磁界が常時発生している。このため、例えば、回転電機の回転軸が車両の車輪と動力伝達可能とされている場合、回転電機の駆動制御を実施しないときであっても車輪の回転により回転子が回転する。その結果、磁石部から回転磁界が常時発生し、高調波磁界に起因して導線に渦電流が流れてしまい、渦電流損失が発生してしまう。
しかし、第10の手段では、固定子巻線の各導線が複数の素線の集合体であり、また、素線が撚り合わせられて各導体が構成されているため、導線に流れる渦電流の低減効果が高められている。したがって、第10の手段によれば、回転電機の駆動制御を実施しない場合においても、渦電流損失を好適に低減することができる。
第11の手段では、前記永久磁石は、磁極中心に向かって磁化方向が円弧状に延びる第1磁石と、磁極中心に向かって磁化方向が円弧状に延びてかつ前記第1磁石とは磁極が異なる第2磁石とを有し、前記回転子において前記固定子との対向面に、前記第1磁石及び前記第2磁石が周方向に交互に配置されている。
一般的に、埋め込み磁石型回転電機の回転子の構成として、永久磁石がd軸に配置され、q軸に鉄心が配置されたものが知られている。この場合、d軸近傍の固定子巻線が励磁されることで、固定子から回転子のq軸に励磁電流が流入される。これにより、回転子のq軸コア部分に、広範囲の磁気飽和が生じ得る。
そこで、q軸コア部分で生じる磁気飽和をなくすべく、第11の手段では、回転子において固定子との対向面に永久磁石が配置される構成としている。この構成を前提として、回転電機のトルクを増強すべく、第11の手段では、極異方構造の永久磁石を採用している。詳しくは、永久磁石は、磁極中心に向かって磁化方向が円弧状に延びる第1磁石と、磁極中心に向かって磁化方向が円弧状に延びてかつ第1磁石とは磁極が異なる第2磁石とを有し、第1磁石及び第2磁石が周方向に交互に配置されている。これにより、磁気回路の磁束を増大でき、回転電機のトルクの増強を図ることが可能となる。
ここで、磁束の増大によってトルクが増強されるものの、導線の鎖交磁束が増大してしまう。鎖交磁束の増大は、渦電流の増大につながる。しかし、第11の手段では、固定子巻線の各導線が複数の素線の集合体であり、また、素線が撚り合わせられて各導体が構成されているため、導線に流れる渦電流の低減効果が高められている。したがって、第11の手段によれば、回転電機のトルクの増強を図りつつ、渦電流損失を低減することができる。
永久磁石の構成としては、第11の手段に代えて、例えば第12の手段を採用できる。第12の手段では、前記永久磁石は、磁化方向を径方向とする第1磁石と、磁化方向を径方向以外の方向とする第2磁石とを有し、前記回転子において前記固定子との対向面に、周方向に所定間隔で前記第1磁石が配置され、周方向において隣り合う前記第1磁石の間となる位置に前記第2磁石が配置されている。
第13の手段では、前記導線は、前記磁石部に対して径方向に対向する位置に配置される磁石対向部と、前記磁石対向部よりも軸方向外側となる位置において同相の前記磁石対向部同士を、所定数おきに互いに接続するターン部とを有し、前記ターン部の断面積が前記磁石対向部の断面積よりも大きい。
磁石対向部よりも軸方向外側となる位置付近は、径方向において磁石部と対向しない位置であるため、ターン部を配置する場合のスペース上の制約が小さい。このため、第13の手段では、ターン部の断面積が磁石対向部の断面積よりも大きい。これにより、ターン部の電気抵抗を低減し、トルクの増強を図っている。
ここで、回転磁界の漏れ磁束がターン部と鎖交し得る。この場合、ターン部の断面積が大きいことから、渦電流も大きくなる懸念がある。しかし、第13の手段では、固定子巻線の各導線が複数の素線の集合体であり、また、素線が撚り合わせられて各導体が構成されているため、導線に流れる渦電流の低減効果が高められている。したがって、第13の手段によれば、回転電機のトルクの増強を図りつつ、渦電流損失を低減することができる。
回転電機の縦断面斜視図。 回転電機の縦断面図。 図2のIII−III線断面図。 図3の一部を拡大して示す断面図。 回転電機の分解図。 インバータユニットの分解図。 固定子巻線のアンペアターンとトルク密度との関係を示すトルク線図。 回転子及び固定子の横断面図。 図8の一部を拡大して示す図。 固定子の横断面図。 固定子の縦断面図。 固定子巻線の斜視図。 導線の構成を示す斜視図。 素線の構成を示す模式図。 ホウ素含有微細繊維を示す模式図。 CNT繊維を含む素線群の模式図。 渦電流の低減効果を説明するための図。 渦電流の低減効果を説明するための図。 巻線割合及び導体の厚さの関係を示す図。 n層目における各導線の形態を示す図。 n層目とn+1層目の各導線を示す側面図。 実施形態の磁石について電気角と磁束密度との関係を示す図。 比較例の磁石について電気角と磁束密度との関係を示す図。 回転電機の制御システムの電気回路図。 制御装置による電流フィードバック制御処理を示す機能ブロック図。 制御装置によるトルクフィードバック制御処理を示す機能ブロック図。 固定子巻線に流れる電流値及び回転電機のトルクの推移を示すタイムチャート。 第2実施形態における回転子及び固定子の横断面図。 図28の一部を拡大して示す図。 磁石部における磁束の流れを具体的に示す図。 第3実施形態における固定子の断面図。 第3実施形態の変形例2における固定子の断面図。 第3実施形態の変形例3における固定子の断面図。 第3実施形態の変形例4における固定子の断面図。 第4実施形態における回転電機の縦断面図。 第5実施形態における回転電機の縦断面図。 第6実施形態における回転電機の縦断面図。 固定子巻線を示す図。 第6実施形態の変形例における回転電機の縦断面図。 他の実施形態における直線部及びターン部の一部を示す図。
以下、実施形態を図面に基づいて説明する。本実施形態における回転電機は、例えば車両動力源として用いられるものとなっている。ただし、回転電機は、産業用、車両用、家電用、OA機器用、遊技機用などとして広く用いられることが可能となっている。なお、以下の各実施形態相互において、互いに同一又は均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。
(第1実施形態)
本実施形態に係る回転電機10は、同期式多相交流モータであり、アウタロータ構造(外転構造)のものとなっている。回転電機10の概要を図1乃至図5に示す。図1は、回転電機10の縦断面斜視図であり、図2は、回転電機10の回転軸11に沿う方向での縦断面図であり、図3は、回転軸11に直交する方向での回転電機10の横断面図(図2のIII−III線断面図)であり、図4は、図3の一部を拡大して示す断面図であり、図5は、回転電機10の分解図である。なお、図3では、図示の都合上、回転軸11を除き、切断面を示すハッチングを省略している。以下の記載では、回転軸11が延びる方向を軸方向とし、回転軸11の中心から放射状に延びる方向を径方向とし、回転軸11を中心として円周状に延びる方向を周方向としている。
回転電機10は、大別して、軸受部20と、ハウジング30と、回転子40と、固定子50と、インバータユニット60とを備えている。これら各部材は、いずれも回転軸11と共に同軸上に配置され、所定順序で軸方向に組み付けられることで回転電機10が構成されている。
軸受部20は、軸方向に互いに離間して配置される2つの軸受21,22と、その軸受21,22を保持する保持部材23とを有している。軸受21,22は、例えばラジアル玉軸受であり、それぞれ外輪25と、内輪26と、それら外輪25及び内輪26の間に配置された複数の玉27とを有している。保持部材23は円筒状をなしており、その径方向内側に軸受21,22が組み付けられている。そして、軸受21,22の径方向内側に、回転軸11及び回転子40が回転自在に支持されている。
ハウジング30は、円筒状をなす周壁部31と、その周壁部31の軸方向両端部のうち一方の端部に設けられた端面部32とを有している。周壁部31の軸方向両端部のうち端面部32の反対側は開口部33となっており、ハウジング30は、端面部32の反対側が開口部33により全面的に開放された構成となっている。端面部32には、その中央に円形の孔34が形成されており、その孔34に挿通させた状態で、ネジやリベット等の固定具により軸受部20が固定されている。また、ハウジング30内、すなわち周壁部31及び端面部32により区画された内部スペースには、回転子40と固定子50とが収容されている。本実施形態では回転電機10がアウタロータ式であり、ハウジング30内には、筒状をなす回転子40の径方向内側に固定子50が配置されている。回転子40は、軸方向において端面部32の側で回転軸11に片持ち支持されている。
回転子40は、中空筒状に形成された回転子本体41と、その回転子本体41の径方向内側に設けられた環状の磁石部42とを有している。回転子本体41は、略カップ状をなし、磁石保持部材としての機能を有する。回転子本体41は、筒状をなす磁石保持部43と、同じく筒状をなしかつ磁石保持部43よりも小径の固定部44と、それら磁石保持部43及び固定部44を繋ぐ部位となる中間部45とを有している。磁石保持部43の内周面に磁石部42が取り付けられている。
固定部44の貫通孔44aには回転軸11が挿通されており、その挿通状態で回転軸11に対して固定部44が固定されている。つまり、固定部44により、回転軸11に対して回転子本体41が固定されている。なお、固定部44は、凹凸を利用したスプライン結合やキー結合、溶接、又はかしめ等により回転軸11に対して固定されているとよい。これにより、回転子40が回転軸11と一体に回転する。
また、固定部44の径方向外側には、軸受部20の軸受21,22が組み付けられている。上述のとおり軸受部20はハウジング30の端面部32に固定されているため、回転軸11及び回転子40は、ハウジング30に回転可能に支持されるものとなっている。これにより、ハウジング30内において回転子40が回転自在となっている。
回転子40には、軸方向両側のうち片側にのみ固定部44が設けられており、これにより、回転子40が回転軸11に片持ち支持されている。ここで、回転子40の固定部44は、軸受部20の軸受21,22により、軸方向に異なる2位置で回転可能に支持されている。すなわち、回転子40は、回転子本体41における軸方向の両側端部のうち一方の側において、軸方向2箇所の軸受21,22により回転可能に支持されている。そのため、回転子40が回転軸11に片持ち支持される構造であっても、回転子40の安定回転が実現されるようになっている。この場合、回転子40の軸方向中心位置に対して片側にずれた位置で、回転子40が軸受21,22により支持されている。
また、軸受部20において回転子40の中心寄り(図の下側)の軸受22と、その逆側(図の上側)の軸受21とは、外輪25及び内輪26と玉27との間の隙間寸法が相違しており、例えば回転子40の中心寄りの軸受22の方が、その逆側の軸受21よりも隙間寸法が大きいものとなっている。この場合、回転子40の中心寄りの側において、回転子40の振れや、部品公差に起因するインバランスによる振動が軸受部20に作用しても、その振れや振動の影響が良好に吸収される。具体的には、回転子40の中心寄り(図の下側)の軸受22において予圧により遊び寸法(隙間寸法)を大きくしていることで、片持ち構造において生じる振動がその遊び部分により吸収される。前記予圧は、定位置予圧でもよいが、軸受22の軸方向外側(図の上側)の段差に予圧用バネ、ウェーブワッシャ等を挿入することで与えてもよい。
また、中間部45は、径方向中心側とその外側とで軸方向の段差を有する構成となっている。この場合、中間部45において、径方向の内側端部と外側端部とは、軸方向の位置が相違しており、これにより、軸方向において磁石保持部43と固定部44とが一部重複している。つまり、固定部44の基端部(図の下側の奥側端部)よりも軸方向外側に、磁石保持部43が突出するものとなっている。本構成では、中間部45が段差無しで平板状に設けられる場合に比べて、回転子40の重心近くの位置で、回転軸11に対して回転子40を支持させることが可能となり、回転子40の安定動作が実現できるものとなっている。
上述した中間部45の構成によれば、回転子40には、径方向において固定部44を囲みかつ中間部45の内寄りとなる位置に、軸受部20の一部を収容する軸受収容凹部46が環状に形成されるとともに、径方向において軸受収容凹部46を囲みかつ中間部45の外寄りとなる位置に、後述する固定子50の固定子巻線51のコイルエンド部54を収容するコイル収容凹部47が形成されている。そして、これら各収容凹部46,47が、径方向の内外で隣り合うように配置されるようになっている。つまり、軸受部20の一部と、固定子巻線51のコイルエンド部54とが径方向内外に重複するように配置されている。これにより、回転電機10において軸方向の長さ寸法の短縮が可能となっている。
コイルエンド部54は、径方向の内側又は外側に曲げられることで、そのコイルエンド部54の軸方向寸法を小さくすることができ、固定子軸長を短縮することが可能である。コイルエンド部54の曲げ方向は、回転子40との組み付けを考慮したものであるとよい。回転子40の径方向内側に固定子50を組み付けることを想定すると、その回転子40に対する挿入先端側では、コイルエンド部54が径方向内側に曲げられるとよい。その逆側の曲げ方向は任意でよいが、空間的に余裕のある外径側が製造上好ましい。
また、磁石部42は、磁石保持部43の径方向内側において、周方向に沿って磁極が交互に変わるように配置された複数の磁石により構成されている。ただし、磁石部42の詳細については後述する。
固定子50は、回転子40の径方向内側に設けられている。固定子50は、略筒状に巻回形成された固定子巻線51と、その径方向内側に配置された固定子コア52とを有しており、固定子巻線51が、所定のエアギャップを挟んで円環状の磁石部42に対向するように配置されている。固定子巻線51は複数の相巻線よりなる。それら各相巻線は、周方向に配列された複数の導線が所定ピッチで互いに接続されることで構成されている。本実施形態では、U相、V相及びW相の3相巻線と、X相、Y相及びZ相の3相巻線とを用い、それら3相2組の相巻線を用いることで、固定子巻線51が6相の相巻線として構成されている。
固定子コア52は、軟磁性体からなる積層鋼板により円環状に形成されており、固定子巻線51の径方向内側に組み付けられている。
固定子巻線51は、軸方向において固定子コア52に重複する部分であり、かつ固定子コア52の径方向外側となるコイルサイド部53と、軸方向において固定子コア52の一端側及び他端側にそれぞれ張り出すコイルエンド部54,55とを有している。コイルサイド部53は、径方向において固定子コア52と回転子40の磁石部42にそれぞれ対向している。回転子40の内側に固定子50が配置された状態では、軸方向両側のコイルエンド部54,55のうち軸受部20の側(図の上側)となるコイルエンド部54が、回転子40の回転子本体41により形成されたコイル収容凹部47に収容されている。ただし、固定子50の詳細については後述する。
インバータユニット60は、ハウジング30に対してボルト等の締結具により固定されるユニットベース61と、そのユニットベース61に組み付けられる電気コンポーネント62とを有している。ユニットベース61は、ハウジング30の開口部33側の端部に対して固定されるエンドプレート部63と、そのエンドプレート部63に一体に設けられ、軸方向に延びるケーシング部64とを有している。エンドプレート部63は、その中心部に円形の開口部65を有しており、開口部65の周縁部から起立するようにしてケーシング部64が形成されている。
ケーシング部64の外周面には固定子50が組み付けられている。つまり、ケーシング部64の外径寸法は、固定子コア52の内径寸法と同じか、又は固定子コア52の内径寸法よりも僅かに小さい寸法になっている。ケーシング部64の外側に固定子コア52が組み付けられることで、固定子50とユニットベース61とが一体化されている。また、ユニットベース61がハウジング30に固定されることからすると、ケーシング部64に固定子コア52が組み付けられた状態では、固定子50がハウジング30に対して一体化された状態となっている。
また、ケーシング部64の径方向内側は、電気コンポーネント62を収容する収容空間となっており、その収容空間には、回転軸11を囲むようにして電気コンポーネント62が配置されている。ケーシング部64は、収容空間形成部としての役目を有している。電気コンポーネント62は、インバータ回路を構成する半導体モジュール66や、制御基板67、コンデンサモジュール68を具備する構成となっている。
ここで、上記図1〜図5に加え、インバータユニット60の分解図である図6を用いて、インバータユニット60の構成をさらに説明する。
ユニットベース61において、ケーシング部64は、筒状部71と、その筒状部71の軸方向両端部のうち一方の端部(軸受部20側の端部)に設けられた端面部72とを有している。筒状部71の軸方向両端部のうち端面部72の反対側は、エンドプレート部63の開口部65を通じて全面的に開放されている。端面部72には、その中央に円形の孔73が形成されており、その孔73に回転軸11が挿通可能となっている。
ケーシング部64の筒状部71は、その径方向外側に配置される回転子40及び固定子50と、その径方向内側に配置される電気コンポーネント62との間を仕切る仕切り部となっており、筒状部71を挟んで径方向内外に、回転子40及び固定子50と電気コンポーネント62とが並ぶようにそれぞれ配置されている。
また、電気コンポーネント62は、インバータ回路を構成する電気部品であり、固定子巻線51の各相巻線に対して所定順序で電流を流して回転子40を回転させる力行機能と、回転軸11の回転に伴い固定子巻線51に流れる3相交流電流を入力し、発電電力として外部に出力する発電機能とを有している。なお、電気コンポーネント62は、力行機能と発電機能とのうちいずれか一方のみを有するものであってもよい。発電機能は、例えば回転電機10が車両用動力源として用いられる場合、回生電力として外部に出力する回生機能である。
電気コンポーネント62の具体的な構成として、回転軸11の周りには、中空円筒状をなすコンデンサモジュール68が設けられており、そのコンデンサモジュール68の外周面上に、複数の半導体モジュール66が周方向に並べて配置されている。コンデンサモジュール68は、互いに並列接続された平滑用のコンデンサ68aを複数備えている。具体的には、コンデンサ68aは、複数枚のフィルムコンデンサが積層されてなる積層型フィルムコンデンサであり、横断面が台形状をなしている。コンデンサモジュール68は、12個のコンデンサ68aが環状に並べて配置されることで構成されている。
なお、コンデンサ68aの製造過程においては、例えば、複数のフィルムが積層されてなる所定幅の長尺フィルムを用い、フィルム幅方向を台形高さ方向とし、かつ台形の上底と下底とが交互になるように長尺フィルムが等脚台形状に切断されることにより、コンデンサ素子が作られる。そして、そのコンデンサ素子に電極等を取り付けることでコンデンサ68aが作製される。
半導体モジュール66は、例えばMOSFETやIGBT等の半導体スイッチング素子を有し、略板状に形成されている。本実施形態では、回転電機10が2組の3相巻線を備えており、その3相巻線ごとにインバータ回路が設けられていることから、計12個の半導体モジュール66が電気コンポーネント62に設けられている。
半導体モジュール66は、ケーシング部64の筒状部71とコンデンサモジュール68との間に挟まれた状態で配置されている。半導体モジュール66の外周面は筒状部71の内周面に当接し、半導体モジュール66の内周面はコンデンサモジュール68の外周面に当接している。この場合、半導体モジュール66で生じた熱は、ケーシング部64を介してエンドプレート部63に伝わり、エンドプレート部63から放出される。
半導体モジュール66は、外周面側、すなわち径方向において半導体モジュール66と筒状部71との間にスペーサ69を有しているとよい。この場合、コンデンサモジュール68では軸方向に直交する横断面の断面形状が正12角形である一方、筒状部71の内周面の横断面形状が円形であるため、スペーサ69は、内周面が平坦面、外周面が曲面となっている。スペーサ69は、各半導体モジュール66の径方向外側において円環状に連なるように一体に設けられていてもよい。なお、筒状部71の内周面の横断面形状をコンデンサモジュール68と同じ12角形にすることも可能である。この場合、スペーサ69の内周面及び外周面がいずれも平坦面であるとよい。
また、本実施形態では、ケーシング部64の筒状部71に、冷却水を流通させる冷却水通路74が形成されており、半導体モジュール66で生じた熱は、冷却水通路74を流れる冷却水に対しても放出される。つまり、ケーシング部64は水冷機構を備えている。図3や図4に示すように、冷却水通路74は、電気コンポーネント62(半導体モジュール66及びコンデンサモジュール68)を囲むように環状に形成されている。半導体モジュール66は筒状部71の内周面に沿って配置されており、その半導体モジュール66に対して径方向内外に重なる位置に冷却水通路74が設けられている。
筒状部71の外側には固定子50が配置され、内側には電気コンポーネント62が配置されていることから、筒状部71に対しては、その外側から固定子50の熱が伝わるとともに、内側から半導体モジュール66の熱が伝わることになる。この場合、固定子50と半導体モジュール66とを同時に冷やすことが可能となっており、回転電機10における発熱部材の熱を効率良く放出することができる。
また、電気コンポーネント62は、軸方向において、コンデンサモジュール68の一方の端面に設けられた絶縁シート75と、他方の端面に設けられた配線モジュール76とを備えている。この場合、コンデンサモジュール68の軸方向両端面のうち一方の端面(軸受部20側の端面)は、ケーシング部64の端面部72に対向しており、絶縁シート75を挟んだ状態で端面部72に重ね合わされている。また、他方の端面(開口部65側の端面)には、配線モジュール76が組み付けられている。
配線モジュール76は、合成樹脂材よりなり円形板状をなす本体部76aと、その内部に埋設された複数のバスバー76b,76cを有しており、そのバスバー76b,76cにより、半導体モジュール66やコンデンサモジュール68と電気的接続がなされている。具体的には、半導体モジュール66は、その軸方向端面から延びる接続ピン66aを有しており、その接続ピン66aが、本体部76aの径方向外側においてバスバー76bに接続されている。また、バスバー76cは、本体部76aの径方向外側においてコンデンサモジュール68とは反対側に延びており、その先端部にて配線部材79に接続されるようになっている(図2参照)。
上記のとおりコンデンサモジュール68の軸方向両側に絶縁シート75と配線モジュール76とがそれぞれ設けられた構成によれば、コンデンサモジュール68の放熱経路として、コンデンサモジュール68の軸方向両端面から端面部72及び筒状部71に至る経路が形成される。これにより、コンデンサモジュール68において半導体モジュール66が設けられた外周面以外の端面部からの放熱が可能になっている。つまり、径方向への放熱だけでなく、軸方向への放熱も可能となっている。
また、コンデンサモジュール68は中空円筒状をなし、その内周部には所定の隙間を介在させて回転軸11が配置されることから、コンデンサモジュール68の熱はその中空部からも放出可能となっている。この場合、回転軸11の回転により空気の流れが生じることにより、その冷却効果が高められるようになっている。
配線モジュール76には、円板状の制御基板67が取り付けられている。制御基板67は、所定の配線パターンが形成されたプリントサーキットボード(PCB)を有しており、そのボード上には各種ICや、マイコン等からなる制御装置77が実装されている。制御基板67は、ネジ等の固定具により配線モジュール76に固定されている。制御基板67は、その中央部に、回転軸11を挿通させる挿通孔67aを有している。
なお、配線モジュール76の軸方向両側のうちコンデンサモジュール68の反対側に制御基板67が設けられ、その制御基板67の両面の一方側から他方側に配線モジュール76のバスバー76cが延びる構成となっている。かかる構成において、制御基板67には、バスバー76cとの干渉を回避する切欠が設けられているとよい。例えば、円形状をなす制御基板67の外縁部の一部が切り欠かれているとよい。
上述のとおり、ケーシング部64に囲まれた空間内に電気コンポーネント62が収容され、その外側に、ハウジング30、回転子40及び固定子50が層状に設けられている構成によれば、インバータ回路で生じる電磁ノイズが好適にシールドされるようになっている。すなわち、インバータ回路では、所定のキャリア周波数によるPWM制御を利用して各半導体モジュール66でのスイッチング制御が行われ、そのスイッチング制御により電磁ノイズが生じることが考えられるが、その電磁ノイズを、電気コンポーネント62の径方向外側のハウジング30、回転子40、固定子50等により好適にシールドできる。
筒状部71においてエンドプレート部63の付近には、その外側の固定子50と内側の電気コンポーネント62とを電気的に接続する配線部材79(図2参照)を挿通させる貫通孔78が形成されている。図2に示すように、配線部材79は、圧着、溶接などにより、固定子巻線51の端部と配線モジュール76のバスバー76cとにそれぞれ接続されている。配線部材79は、例えばバスバーであり、その接合面は平たく潰されていることが望ましい。貫通孔78は、1カ所又は複数箇所に設けられているとよく、本実施形態では2カ所に貫通孔78が設けられている。2カ所に貫通孔78が設けられる構成では、2組の3相巻線から延びる巻線端子を、それぞれ配線部材79により容易に結線することが可能となり、多相結線を行う上で好適なものとなっている。
上述のとおりハウジング30内には、図4に示すように径方向外側から順に回転子40、固定子50が設けられ、固定子50の径方向内側にインバータユニット60が設けられている。ここで、ハウジング30の内周面の半径をdとした場合に、回転中心からd×0.705の距離よりも径方向外側に回転子40と固定子50とが配置されている。この場合、回転子40及び固定子50のうち径方向内側の固定子50の内周面(すなわち固定子コア52の内周面)から径方向内側となる領域を第1領域X1、径方向において固定子50の内周面からハウジング30までの間の領域を第2領域X2とすると、第1領域X1の横断面の面積は、第2領域X2の横断面の面積よりも大きい構成となっている。また、軸方向において回転子40の磁石部42及び固定子巻線51が重複する範囲で見て、第1領域X1の容積が第2領域X2の容積よりも大きい構成となっている。
なお、回転子40及び固定子50を磁気回路コンポーネントとすると、ハウジング30内において、その磁気回路コンポーネントの内周面から径方向内側となる第1領域X1が、径方向において磁気回路コンポーネントの内周面からハウジング30までの間の第2領域X2よりも容積が大きい構成となっている。
次いで、回転子40及び固定子50の構成をより詳しく説明する。
一般に、回転電機における固定子の構成として、積層鋼板よりなりかつ円環状をなす固定子コアに周方向に複数のスロットを設け、そのスロット内に固定子巻線を巻装するものが知られている。具体的には、固定子コアは、ヨーク部から所定間隔で径方向に延びる複数のティースを有しており、周方向に隣り合うティース間にスロットが形成されている。そして、スロット内に、例えば径方向に複数層の導線が収容され、その導線により固定子巻線が構成されている。
ただし、上述した固定子構造では、固定子巻線の通電時において、固定子巻線の起磁力が増加するのに伴い固定子コアのティース部分で磁気飽和が生じ、それに起因して回転電機のトルク密度が制限されることが考えられる。つまり、固定子コアにおいて、固定子巻線の通電により生じた回転磁束がティースに集中することで、磁気飽和が生じると考えられる。
また、一般的に、回転電機におけるIPMロータの構成として、永久磁石がd軸に配置され、q軸にロータコアが配置されたものが知られている。このような場合、フレミングの法則によりd軸近傍の固定子巻線が励磁されることで、フレミングの法則により固定子から回転子のq軸に磁束が流入される。そしてこれにより、回転子のq軸コア部分に、広範囲の磁気飽和が生じると考えられる。
図7は、固定子巻線の起磁力を示すアンペアターン[AT]とトルク密度[Nm/L]との関係を示すトルク線図である。破線が一般的なIPMロータ型の回転電機における特性を示す。図7に示すように、一般的な回転電機では、固定子において起磁力を増加させていくことにより、スロット間のティース部分及びq軸コア部分の2カ所で磁気飽和が生じ、それが原因でトルクの増加が制限されてしまう。このように、当該一般的な回転電機では、アンペアターン設計値がX1で制限されることになる。
そこで本実施形態では、磁気飽和に起因するトルク制限を解消すべく、回転電機10において、以下に示す構成を付与するものとしている。すなわち、第1の工夫として、固定子において固定子コアのティースで生じる磁気飽和をなくすべく、固定子50においてスロットレス構造を採用し、かつIPMロータのq軸コア部分で生じる磁気飽和をなくすべく、SPMロータを採用している。第1の工夫によれば、磁気飽和が生じる上記2カ所の部分をなくすことができるが、低電流域でのトルクが減少することが考えられる(図7の一点鎖線参照)。そのため、第2の工夫として、SPMロータの磁束増強を図ることでトルク減少を挽回すべく、回転子40の磁石部42において磁石磁路を長くして磁力を高めた極異方構造を採用している。
また、第3の工夫として、固定子巻線51のコイルサイド部53において導線の径方向厚さを小さくした扁平導線構造を採用してトルク減少の挽回を図っている。ここで、上述の磁力を高めた極異方構造によって、対向する固定子巻線51には、より大きな渦電流が発生することが考えられる。しかしながら、第3の工夫によれば、径方向に薄い扁平導線構造のため、固定子巻線51における径方向の渦電流の発生を抑制することができる。このように、これら第1〜第3の各構成によれば、図7に実線で示すように、磁力の高い磁石を採用してトルク特性の大幅な改善を見込みつつも、磁力の高い磁石ゆえに生じ得る大きい渦電流発生の懸念も改善できるものとなっている。
さらに、第4の工夫として、極異方構造を利用し正弦波に近い磁束密度分布を有する磁石部を採用している。これによれば、後述するパルス制御等によって正弦波整合率を高めてトルク増強を図ることができるとともに、ラジアル磁石と比べ緩やかな磁束変化のため渦電流損もまた更に抑制することができるのである。
また、第5の工夫として、固定子巻線51を複数の素線を寄せ集めて撚った素線導体構造としている。これによれば、基本波成分は集電されて大電流が流せるとともに、扁平導線構造で周方向に広がった導線で発生する周方向に起因する渦電流の発生を、素線それぞれの断面積が小さくなるため、第3の工夫による径方向に薄くする以上に効果的に抑制することができる。そして、複数の素線が撚り合っていることで、導体からの起磁力に対しては、電流通電方向に対して右ネジの法則で発生する磁束に対する渦電流を相殺することができる。
このように、第4の工夫、第5の工夫をさらに加えると、第2の工夫である磁力の高い磁石を採用しながら、さらにその高い磁力に起因する渦電流損を抑制しながらトルク増強を図ることができる。
以下に、上述した固定子50のスロットレス構造、固定子巻線51の扁平導線構造、及び磁石部42の極異方構造について個別に説明を加える。ここではまずは、固定子50におけるスロットレス構造と固定子巻線51の扁平導線構造とを説明する。図8は、回転子40及び固定子50の横断面図であり、図9は、図8に示す回転子40及び固定子50の一部を拡大して示す図である。図10は、固定子50の横断面を示す断面図であり、図11は、固定子50の縦断面を示す断面図である。また、図12は、固定子巻線51の斜視図である。なお、図8及び図9には、磁石部42における磁石の磁化方向を矢印にて示している。
図8乃至図11に示すように、固定子コア52は、軸方向に複数の電磁鋼板が積層され、かつ径方向に所定の厚さを有する円筒状をなしており、その径方向外側に固定子巻線51が組み付けられるものとなっている。固定子コア52の外周面が導線設置部となっている。固定子コア52の外周面は凹凸のない曲面状をなしており、その外周面において周方向に並べて複数の導線群81が配置されている。固定子コア52は、回転子40を回転させるための磁気回路の一部となるバックヨークとして機能する。この場合、周方向に隣り合う各導線群81の間には、軟磁性体からなるティース(つまり、鉄心)が設けられていない構成(つまり、スロットレス構造)となっている。本実施形態において、それら各導線群81の間隙56には、封止部57の樹脂材料が入り込む構造となっている。つまり、封止部57の封止前の状態で言えば、固定子コア52の径方向外側には、それぞれ導線間領域である間隙56を隔てて周方向に所定間隔で導線群81が配置されており、これによりスロットレス構造の固定子50が構築されている。
なお、周方向に並ぶ各導線群81の間においてティースが設けられている構成とは、ティースが、径方向に所定厚さを有し、かつ周方向に所定幅を有することで、各導線群81の間に磁気回路の一部、すなわち磁石磁路を形成する構成であると言える。この点において、各導線群81の間にティースが設けられていない構成とは、上記の磁気回路の形成がなされていない構成であると言える。
図10及び図11に示すように、固定子巻線51は、封止材としての合成樹脂材からなる封止部57により封止されている。図10の横断面で見れば、封止部57は、各導線群81の間、すなわち間隙56に合成樹脂材が充填されて設けられており、封止部57により、各導線群81の間に絶縁部材が介在する構成となっている。つまり、間隙56において封止部57が絶縁部材として機能する。封止部57は、固定子コア52の径方向外側において、各導線群81を全て含む範囲、すなわち径方向の厚さ寸法が各導線群81の径方向の厚さ寸法よりも大きくなる範囲で設けられている。
また、図11の縦断面で見れば、封止部57は、固定子巻線51のターン部84を含む範囲で設けられている。固定子巻線51の径方向内側では、固定子コア52の端面の少なくとも一部を含む範囲で封止部57が設けられている。この場合、固定子巻線51は、各相の相巻線の端部、すなわちインバータ回路との接続端子を除く略全体で樹脂封止されている。
封止部57が固定子コア52の端面を含む範囲で設けられた構成では、封止部57により、固定子コア52の積層鋼板を軸方向内側に押さえ付けることができる。これにより、封止部57を用いて、各鋼板の積層状態を保持することができる。なお、本実施形態では、固定子コア52の内周面を樹脂封止していないが、これに代えて、固定子コア52の内周面を含む固定子コア52の全体を樹脂封止する構成であってもよい。
回転電機10が車両動力源として使用される場合には、封止部57が、高耐熱のフッ素樹脂や、エポキシ樹脂、PPS樹脂、PEEK樹脂、LCP樹脂、シリコン樹脂、PAI樹脂、PI樹脂等により構成されていることが好ましい。また、膨張差による割れ抑制の観点から線膨張係数を考えると、固定子巻線51の導線の外被膜と同じ材質であることが望ましい。すなわち、線膨張係数が、一般的に他樹脂の倍以上であるシリコン樹脂は望ましくは除外される。なお、電気車両の如く、燃焼を利用した機関を持たない電気製品においては、180℃程度の耐熱性を持つPPO樹脂やフェノール樹脂、FRP樹脂も候補となる。回転電機の周囲温度が100℃未満と見做せる分野においては、この限りではない。
回転電機10のトルクは磁束の大きさに比例する。ここで、固定子コアがティースを有している場合には、固定子での最大磁束量がティースでの飽和磁束密度に依存して制限されるが、固定子コアがティースを有していない場合には、固定子での最大磁束量が制限されない。そのため、固定子巻線51に対する通電電流を増加して回転電機10のトルク増加を図る上で、有利な構成となっている。
固定子コア52の径方向外側における各導線群81は、断面が扁平矩形状をなす複数の導線82が径方向に並べて配置されて構成されている。各導線82は、横断面において「径方向寸法<周方向寸法」となる向きで配置されている。これにより、各導線群81において径方向の薄肉化が図られている。また、径方向の薄肉化を図るとともに、導体領域が、ティースが従来あった領域まで平らに延び、扁平導線領域構造となっている。これにより、薄肉化により断面積が小さくなることで懸念される導線の発熱量の増加を、周方向に扁平化して導体の断面積を稼ぐことで抑えている。なお、複数の導線を周方向に並べ、かつそれらを並列結線とする構成であっても、導体被膜分の導体断面積低下は起こるものの、同じ理屈に依る効果が得られる。
スロットがないことから、本実施形態における固定子巻線51では、その周方向の一周における導体領域を、隙間領域より大きく設計することができる。なお、従来の車両用回転電機は、固定子巻線の周方向の一周における導体領域/隙間領域は1以下であるのが当然であった。一方、本実施形態では、導体領域が隙間領域と同等又は導体領域が隙間領域よりも大きくなるようにして、各導線群81が設けられている。ここで、図10に示すように、周方向において導線82(つまり、後述する直線部83)が配置された導線領域をWA、隣り合う導線82の間となる導線間領域をWBとすると、導線領域WAは、導線間領域WBより周方向において大きいものとなっている。
回転電機10のトルクは、導線群81の径方向の厚さに略反比例する。この点、固定子コア52の径方向外側において導線群81の厚さを薄くしたことにより、回転電機10のトルク増加を図る上で有利な構成となっている。その理由としては、回転子40の磁石部42から固定子コア52までの距離(つまり、鉄の無い部分の距離)を小さくして磁気抵抗を下げることができるためである。これによれば、永久磁石による固定子コア52の鎖交磁束を大きくすることができ、トルクを増強することができる。
導線82は、導体82aの表面が絶縁被膜82bにより被覆された被覆導線よりなり、径方向に互いに重なる導線82同士の間、及び導線82と固定子コア52との間においてそれぞれ絶縁性が確保されている。導線82における絶縁被膜82bの厚さは例えば80μmであり、これは一般に使用される導線の被膜厚さ(20〜40μm)よりも厚肉となっている。これにより、導線82と固定子コア52との間に絶縁紙等を介在させることをしなくても、これら両者の間の絶縁性が確保されている。なお、導線82により構成される各相巻線は、接続のための露出部分を除き、絶縁被膜82bによる絶縁性が保持されるものとなっている。露出部分としては、例えば、入出力端子部や、星形結線とする場合の中性点部分である。導線群81では、樹脂固着や自己融着被覆線を用いて、径方向に隣り合う各導線82が相互に固着されている。これにより、導線82同士が擦れ合うことによる絶縁破壊や、振動、音が抑制される。
本実施形態では、導体82aが複数の素線86の集合体として構成されており、各導体82aにおいて複数の素線86が並列接続されている。具体的には、図13に示すように、導体82aは、複数の素線86を撚ることで撚糸状に形成されている。電気抵抗は、一般的に、素線の断面積に反比例する。このため、素線86の数が多いほど、素線86の断面積が小さくなり、渦電流の減衰効果が大きくなる。また、図14に示すように、素線86は、細い繊維状の導電材87を束ねた複合体として構成されている。素線86の表面は、エナメルなどの高分子絶縁層で覆われている。
素線86はCNT(カーボンナノチューブ)繊維の複合体である。CNTの電気抵抗は、銅線の1/5程度以下が期待できる。本実施形態では、CNT繊維として、炭素の少なくとも一部をホウ素で置換したホウ素含有微細繊維を含む繊維が用いられている。ホウ素含有微細繊維は導電性が高いため、導線82の電気抵抗をいっそう小さくできる。なお、炭素系微細繊維としては、CNT繊維以外に、気相成長法炭素繊維(VGCF)等を用いることができるが、CNT繊維を用いることが好ましい。
CNT繊維としては、図15に示すように、炭素系微細繊維における実質的に全ての炭素原子をホウ素、窒素で置換したものが好ましい。また、ホウ素窒素含有微細繊維におけるホウ素と窒素との比率は、原子数比で1:1であることが好ましい。
ホウ素窒素含有微細繊維は、例えば、炭素系微細繊維を含む繊維状集合体と、ホウ素元素とを混合し、窒素雰囲気下で加熱して炭素系微細繊維の一部をホウ素窒素含有微細繊維に変換する工程と、炭素系微細繊維を含む繊維状集合体とホウ素元素とを混合し、実質的に窒素元素を含まない不活性ガス雰囲気下で加熱して炭素系微細繊維の一部をホウ素含有微細繊維に変換する工程とにより製造することができる。CNTにおける炭素の置換については、例えば、特許4577385号公報に開示されている方法で生成すればよい。
この方法について説明すると、CNTワイヤとホウ酸とをモル比2:1となるように、加熱用の黒鉛坩堝に入れる。これを、高周波加熱炉により、2000℃の温度で、アルゴン雰囲気下(200sccm,1.0atm)において30分間加熱し、その後、室温まで自然冷却する。この工程で、CNTワイヤを構成するCNTの一部において、炭素のうちの少なくとも一部がホウ素で置換される。加熱炉よりルツボを取り出し、CNTワイヤとホウ酸とがモル比5:1となるように、再度ホウ酸を加える。加熱炉により、2000℃の温度で、窒素雰囲気下(200sccm、1.0atm)において30分間加熱する。この工程で、CNTワイヤを構成するCNTの一部において、図15に示すように、炭素が窒素とホウ素で置換される。炭素がホウ素及び窒素で置換されたCNTにおいて、六員環を構成する窒素が有する2価の価電子は、窒素の電気陰性度が高いため、自由に動くことができない。その結果、炭素がホウ素及び窒素で置換されたCNTは電気的絶縁性を有する。なお、上記のようにして、一部のCNTにおける炭素がホウ素及び窒素で置換されたワイヤを処理後CNTワイヤと称し、炭素を置換していないCNTワイヤを未処理CNTワイヤと称す。図16(a)に示すように、処理後CNTワイヤ222の外層は、炭素がホウ素及び窒素で置換された処理後CNT224で覆われている。また、処理後CNTワイヤ222の中心部には、炭素がホウ素及び窒素のいずれにも置換されていないCNT223と、炭素の一部がホウ素に置換されたCNT225とが混在している。
ちなみに、処理後CNTワイヤとしては、図16(a)に示すように、炭素がホウ素及び窒素のいずれにも置換されていないCNT223と、炭素の一部がホウ素に置換されたCNT224と、炭素がホウ素及び窒素のいずれにも置換されていないCNT223とが混在しているものであってもよい。
従来は、図17(a)に示すように、太い導体(例えば断面矩形状の角形導線)で固定子巻線が構成されていたため、導体に印加される磁界Hに対してループ状の渦電流Ie1が流れる。導体中は電気伝導率が一様に大きいので渦電流を遮るものがなく、渦電流Ie1のループの面積が大きくなり、渦電流も大きくなる。これに対し、本実施形態の導体82aでは、図17(b)に示すように、複数の素線86が撚り合わされて構成されており、各素線86が絶縁層で覆われているため、素線86を跨いで渦電流は流れない。このため、渦電流Ie2のループ面積が小さくなり、渦電流を低減できる。
また、各素線86が捻られていることで、図18(a)に示すように、1本の素線86において磁界の印加方向が互いに逆になる部位が生じる。1本の素線86を展開すると、図18(b)に示すように、磁界に起因した逆起電圧が相殺される。そのため、やはり渦電流の低減を図ることができる。特に、素線86を繊維状の導電材87により構成することで、細線化することと捻り回数を格段に増やすこととが可能になり、渦電流をより好適に低減することができる。
図4に示すように、磁石部42の径方向内側の内周面から、固定子コア52の径方向外側の外周面までの距離をg1とし、磁石部42の径方向内側の内周面から、固定子巻線51の径方向外側の外周面までの距離をg2とする。「g1−g2」は、固定子巻線51の径方向の厚さ寸法に相当する。そして、巻線割合KをK=(g1−g2)/g1で定義する。CNT繊維を用いた構成によれば、図19に示すように、巻線割合Kを66%以下にできる。図19は、導体の厚さと巻線割合Kとの関係を示す図である。図19には、縦軸の巻線割合Kを百分率で示している。巻線割合Kを小さくできるのは、CNTを用いることにより電気伝導率が飛躍的に増加し、電気装荷の実装密度を高くすることができるためである。その結果、磁石部42の径方向内側の内周面から固定子コア52の径方向外側の外周面までの距離を大幅に短縮でき、磁気回路の磁気抵抗を大幅に低減することができる。その結果、例えば、等量の磁束を発生させるのに必要な起磁力が低減でき、回転子の永久磁石の厚さを薄くすることができる。
なお、図19は、固定子コア52の外径が約200mmのものでの設計事例である。銅線を採用する場合、空隙を占める導体の割合が75%を下回ることができず、空隙の長さを短縮することが困難である。銅合金は、純銅よりも電気抵抗率が大きい。純銅よりも電気抵抗の小さな銀でも、巻線割合Kを70%未満にできない。例えば、高温超電導という選択も可能であるが、現時点での動作可能温度はまだ室温には程遠く、特に自動車の車載用には使えないものである。CNTであれば室温環境下でも低抵抗を維持できるため、磁石部42の径方向内側の内周面から固定子コア52の径方向外側の外周面までの距離を短縮するのに効果的である。
上述のとおり導線82は、断面が扁平矩形状をなし、径方向に複数並べて配置されるものとなっており、例えば複数の素線86を撚った状態で集合させ、その状態で合成樹脂等により所望の形状に固めて成形するとよい。
各導線82は、周方向に所定の配置パターンで配置されるように折り曲げ形成されており、これにより、固定子巻線51として相ごとの相巻線が形成されている。図12に示すように、固定子巻線51では、各導線82のうち軸方向に直線状に延びる直線部83によりコイルサイド部53が形成され、軸方向においてコイルサイド部53よりも両外側に突出するターン部84によりコイルエンド部54,55が形成されている。各導線82は、直線部83とターン部84とが交互に繰り返されることにより、波巻状の一連の導線として構成されている。直線部83は、磁石部42に対して径方向に対向する位置に配置されており、磁石部42の軸方向外側となる位置において所定間隔を隔てて配置される同相の直線部83同士が、ターン部84により互いに接続されている。なお、直線部83が「磁石対向部」に相当する。
本実施形態では、固定子巻線51が分布巻きにより円環状に巻回形成されている。この場合、コイルサイド部53では、相ごとに、磁石部42の1極対に対応するピッチで周方向に直線部83が配置され、コイルエンド部54,55では、相ごとの各直線部83が、略V字状に形成されたターン部84により互いに接続されている。1極対に対応して対となる各直線部83は、それぞれ電流の向きが互いに逆になるものとなっている。また、一方のコイルエンド部54と他方のコイルエンド部55とでは、ターン部84により接続される一対の直線部83の組み合わせがそれぞれ相違しており、そのコイルエンド部54,55での接続が周方向に繰り返されることにより、固定子巻線51が略円筒状に形成されている。
より具体的には、固定子巻線51は、各相2対ずつの導線82を用いて相ごとの巻線を構成しており、固定子巻線51のうち一方の3相巻線(U相、V相、W相)と他方の3相巻線(X相、Y相、Z相)とが径方向内外の2層に設けられるものとなっている。巻線の相数をS、導線82の対数をmとすれば、極対ごとに2×S×m=2Sm個の導線群81が形成されることになる。本実施形態では、相数Sが3、対数mが2であり、8極対(16極)の回転電機であることから、2×3×2×8=96の導線群81が周方向に配置されている。
図12に示す固定子巻線51では、コイルサイド部53において、径方向内外の2層で直線部83が重ねて配置されるとともに、コイルエンド部54,55において、径方向内外に重なる各直線部83から、互いに周方向逆となる向きでターン部84が周方向に延びる構成となっている。つまり、径方向に隣り合う各導線82では、コイル端となる部分を除き、ターン部84の向きが互いに逆となっている。
ここで、固定子巻線51における導線82の巻回構造を具体的に説明する。本実施形態では、波巻にて形成された複数の導線82を、径方向内外に複数層(例えば2層)に重ねて設ける構成としている。図20は、n層目における各導線82の形態を示す図であり、(a)には、固定子巻線51の側方から見た導線82の形状を示し、(b)には、固定子巻線51の軸方向一側から見た導線82の形状を示している。なお、図20では、導線群81が配置される位置をそれぞれD1,D2,D3,…と示している。また、説明の便宜上、3本の導線82のみを示しており、それを第1導線82_A、第2導線82_B、第3導線82_Cとしている。
各導線82_A〜82_Cでは、直線部83が、いずれもn層目の位置、すなわち径方向において同じ位置に配置され、周方向に6位置(3×m対分)ずつ離れた直線部83同士がターン部84により互いに接続されている。換言すると、各導線82_A〜82_Cでは、いずれも回転子40の軸心を中心とする同一のピッチ円上において、5個おきの直線部83がターン部84により互いに接続されている。例えば第1導線82_Aでは、一対の直線部83がD1,D7にそれぞれ配置され、その一対の直線部83同士が、逆V字状のターン部84により接続されている。また、他の導線82_B,82_Cは、同じn層目において周方向の位置を1つずつずらしてそれぞれ配置されている。この場合、各導線82_A〜82_Cは、いずれも同じ層に配置されるため、ターン部84が互いに干渉することが考えられる。そのため本実施形態では、各導線82_A〜82_Cのターン部84に、その一部を径方向にオフセットした干渉回避部を形成することとしている。
具体的には、各導線82_A〜82_Cのターン部84は、同一のピッチ円上で周方向に延びる部分である傾斜部84aと、傾斜部84aからその同一のピッチ円よりも径方向内側(図20(b)において上側)にシフトし、別のピッチ円上で周方向に延びる部分である頂部84b、傾斜部84c及び戻り部84dとを有している。頂部84b、傾斜部84c及び戻り部84dが干渉回避部に相当する。なお、傾斜部84cは、傾斜部84aに対して径方向外側にシフトする構成であってもよい。
つまり、各導線82_A〜82_Cのターン部84は、周方向の中央位置である頂部84bを挟んでその両側に、一方側の傾斜部84aと他方側の傾斜部84cとを有しており、それら各傾斜部84a,84cの径方向の位置(図20(a)では紙面前後方向の位置、図20(b)では上下方向の位置)が互いに相違するものとなっている。例えば第1導線82_Aのターン部84は、n層のD1位置を始点位置として周方向に沿って延び、周方向の中央位置である頂部84bで径方向(例えば径方向内側)に曲がった後、周方向に再度曲がることで、再び周方向に沿って延び、さらに戻り部84dで再び径方向(例えば径方向外側)に曲がることで、終点位置であるn層のD9位置に達する構成となっている。
上記構成によれば、導線82_A〜82_Cでは、一方の各傾斜部84aが、上から第1導線82_A→第2導線82_B→第3導線82_Cの順に上下に並ぶとともに、頂部84bで各導線82_A〜82_Cの上下が入れ替わり、他方の各傾斜部84cが、上から第3導線82_C→第2導線82_B→第1導線82_Aの順に上下に並ぶ構成となっている。そのため、各導線82_A〜82_Cが互いに干渉することなく周方向に配置できるようになっている。
ここで、複数の導線82を径方向に重ねて導線群81とする構成において、複数層の各直線部83のうち径方向内側の直線部83に接続されたターン部84と、径方向外側の直線部83に接続されたターン部84とが、それら各直線部83よりも径方向に離して配置されているとよい。また、ターン部84の端部、すなわち直線部83との境界部付近で、複数層の導線82が径方向の同じ側に曲げられる場合に、その隣り合う層の導線82同士の干渉により絶縁性が損なわれることが生じないようにするとよい。
例えば図20のD7〜D9では、径方向に重なる各導線82が、ターン部84の戻り部84dでそれぞれ径方向に曲げられる。この場合、図21に示すように、n層目の導線82とn+1層目の導線82とで、曲がり部の曲げアールを相違させるとよい。具体的には、径方向内側(n層目)の導線82の曲げアールR1を、径方向外側(n+1層目)の導線82の曲げアールR2よりも小さくする。
また、n層目の導線82とn+1層目の導線82とで、径方向のシフト量を相違させるとよい。具体的には、径方向内側(n層目)の導線82のシフト量S1を、径方向外側(n+1層目)の導線82のシフト量S2よりも大きくする。
上記構成により、径方向に重なる各導線82が同じ向きに曲げられる場合であっても、各導線82の相互干渉を好適に回避することができる。これにより、良好な絶縁性が得られることとなる。
次に、回転子40における磁石部42の構造について説明する。本実施形態では、永久磁石として、残留磁束密度Br=1.0[T]、保磁力bHc=400[kA/m]以上のものを想定している。5000〜10000[AT]が相間励磁により掛かるものであるから、1極対で25[mm]の永久磁石を使えば、bHc=10000[A]となり、減磁をしないことが伺える。ここで、本実施形態においては、配向により磁化容易軸をコントロールした永久磁石を利用しているから、その磁石内部の磁気回路長を、従来1.0[T]以上を出す直線配向磁石の磁気回路長と比べて、長くすることができる。すなわち、1極対あたりの磁気回路長を、少ない磁石量で達成できる他、従来の直線配向磁石を利用した設計と比べ、過酷な高熱条件に曝されても、その可逆減磁範囲を保つことができる。また、本願発明者は、従来技術の磁石を用いても、極異方性磁石と近しい特性を得られる構成を見いだした。
図8及び図9に示すように、磁石部42は、円環状をなしており、回転子本体41の内側(詳しくは磁石保持部43の径方向内側)に設けられている。磁石部42は、それぞれ極異方性磁石でありかつ磁極が互いに異なる第1磁石91及び第2磁石92を有している。第1磁石91及び第2磁石92は周方向に交互に配置されている。第1磁石91は、回転子40においてN極となる磁石であり、第2磁石92は、回転子40においてS極となる磁石である。第1磁石91及び第2磁石92は、例えばネオジム磁石等の希土類磁石からなる永久磁石である。
各磁石91,92では、それぞれ磁極中心であるd軸と磁極境界であるq軸との間において磁化方向が円弧状に延びている。各磁石91,92それぞれにおいて、d軸側では磁化方向が径方向とされ、q軸側では磁化方向が周方向とされている。磁石部42では、各磁石91,92により、隣接するN,S極間を円弧状に磁束が流れるため、例えばラジアル異方性磁石に比べて磁石磁路が長くなっている。このため、図22に示すように、磁束密度分布が正弦波に近いものとなる。その結果、図23に比較例として示すラジアル異方性磁石の磁束密度分布とは異なり、磁極位置に磁束を集中させることができ、回転電機10のトルクを高めることができる。なお、図22及び図23において、横軸は電気角を示し、縦軸は磁束密度を示す。また、図22及び図23において、横軸の90°はd軸(すなわち磁極中心)を示し、横軸の0°,180°はq軸を示す。
また、磁束密度分布の正弦波整合率は、例えば40%以上の値とされていればよい。このようにすれば、正弦波整合率が30%程度であるラジアル配向磁石、パラレル配向磁石を用いる場合に比べ、確実に波形中央部分の磁束量を向上させることができる。また、正弦波整合率を60%以上とすれば、ハルバッハ配列と呼ばれる磁束集中配列と比べ、確実に波形中央部分の磁束量を向上させることができる。
図23に示す比較例では、q軸付近において磁束密度が急峻に変化する。磁束密度の変化が急峻なほど、固定子巻線51に発生する渦電流が増加してしまう。これに対し、本実施形態では、磁束密度分布が正弦波に近い。このため、q軸付近において、磁束密度の変化が、ラジアル異方性磁石の磁束密度の変化よりも小さい。これにより、渦電流の発生を抑制することができる。
ところで、磁石部42では、各磁石91,92のd軸付近(すなわち磁極中心)において磁極面に直交する向きで磁束が生じ、その磁束は、磁極面から離れるほど、d軸から離れるような円弧状をなす。また、磁極面に直交する磁束ほど、強い磁束となる。この点において、本実施形態の回転電機10では、上述のとおり各導線群81を径方向に薄くしたため、導線群81の径方向の中心位置が磁石部42の磁極面に近づくことになり、固定子50において回転子40から強い磁石磁束を受けることができる。
また、固定子50には、固定子巻線51の径方向内側、すなわち固定子巻線51を挟んで回転子40の逆側に円筒状の固定子コア52が設けられている。そのため、各磁石91,92の磁極面から延びる磁束は、固定子コア52に引きつけられ、固定子コア52を磁路の一部として用いつつ周回する。この場合、磁石磁束の向き及び経路を適正化することができる。
次に、回転電機10を制御する制御システムの構成について説明する。図24は、回転電機10の制御システムの電気回路図であり、図25は、制御装置110による制御処理を示す機能ブロック図である。
図24では、固定子巻線51として2組の3相巻線51a,51bが示されており、3相巻線51aはU相巻線、V相巻線及びW相巻線よりなり、3相巻線51bはX相巻線、Y相巻線及びZ相巻線よりなる。本実施形態では、2組の3相巻線51a,51bが電気角で30°ずらされて配置されている。3相巻線51a,51bごとに、第1インバータ101と第2インバータ102とがそれぞれ設けられている。インバータ101,102は、相巻線の相数と同数の上下アームを有するフルブリッジ回路により構成されており、各アームに設けられたスイッチ(半導体スイッチング素子)のオンオフにより、固定子巻線51の各相巻線において通電電流が調整される。
各インバータ101,102には、直流電源103と平滑用のコンデンサ104とが並列に接続されている。直流電源103は、例えば複数の単電池が直列接続された組電池により構成されている。なお、インバータ101,102の各スイッチが、図1等に示す半導体モジュール66に相当し、コンデンサ104が、図1等に示すコンデンサモジュール68に相当する。
制御装置110は、CPUや各種メモリからなるマイコンを備えており、回転電機10における各種の検出情報や、力行駆動及び発電の要求に基づいて、インバータ101,102における各スイッチのオンオフにより通電制御を実施する。制御装置110が、図6に示す制御装置77に相当する。回転電機10の検出情報には、例えば、レゾルバ等の角度検出器により検出される回転子40の回転角度(電気角情報)や、電圧センサにより検出される電源電圧(インバータ入力電圧)、電流センサにより検出される各相の通電電流が含まれる。制御装置110は、インバータ101,102の各スイッチを操作する操作信号を生成して出力する。なお、発電の要求は、例えば回転電機10が車両用動力源として用いられる場合、回生駆動の要求である。
第1インバータ101は、U相、V相及びW相からなる3相において上アームスイッチSpと下アームスイッチSnとの直列接続体をそれぞれ備えている。各相の上アームスイッチSpの高電位側端子は直流電源103の正極端子に接続され、各相の下アームスイッチSnの低電位側端子は直流電源103の負極端子(グランド)に接続されている。各相の上アームスイッチSpと下アームスイッチSnとの間の中間接続点には、それぞれU相巻線、V相巻線、W相巻線の一端が接続されている。これら各相巻線は星形結線(Y結線)されており、各相巻線の他端は中性点にて互いに接続されている。
第2インバータ102は、第1インバータ101と同様の構成を有しており、X相、Y相及びZ相からなる3相において上アームスイッチSpと下アームスイッチSnとの直列接続体をそれぞれ備えている。各相の上アームスイッチSpの高電位側端子は直流電源103の正極端子に接続され、各相の下アームスイッチSnの低電位側端子は直流電源103の負極端子(グランド)に接続されている。各相の上アームスイッチSpと下アームスイッチSnとの間の中間接続点には、それぞれX相巻線、Y相巻線、Z相巻線の一端が接続されている。これら各相巻線は星形結線(Y結線)されており、各相巻線の他端は中性点で互いに接続されている。
図25には、U,V,W相の各相電流を制御する電流フィードバック制御処理と、X,Y,Z相の各相電流を制御する電流フィードバック制御処理とが示されている。ここではまず、U,V,W相側の制御処理について説明する。
図25において、電流指令値設定部111は、トルク−dqマップを用い、回転電機10に対する力行トルク指令値又は発電トルク指令値や、電気角θを時間微分して得られる電気角速度ωに基づいて、d軸の電流指令値とq軸の電流指令値とを設定する。なお、電流指令値設定部111は、U,V,W相側及びX,Y,Z相側において共通に設けられている。なお、発電トルク指令値は、例えば回転電機10が車両用動力源として用いられる場合、回生トルク指令値である。
dq変換部112は、相ごとに設けられた電流センサによる電流検出値(各相電流)を、界磁方向をd軸とする直交2次元回転座標系の成分であるd軸電流とq軸電流とに変換する。
d軸電流フィードバック制御部113は、d軸電流をd軸の電流指令値にフィードバック制御するための操作量としてd軸の指令電圧を算出する。また、q軸電流フィードバック制御部114は、q軸電流をq軸の電流指令値にフィードバック制御するための操作量としてq軸の指令電圧を算出する。これら各フィードバック制御部113,114では、d軸電流及びq軸電流の電流指令値に対する偏差に基づき、PIフィードバック手法を用いて指令電圧が算出される。
3相変換部115は、d軸及びq軸の指令電圧を、U相、V相及びW相の指令電圧に変換する。なお、上記の各部111〜115が、dq変換理論による基本波電流のフィードバック制御を実施するフィードバック制御部であり、U相、V相及びW相の指令電圧がフィードバック制御値である。
そして、操作信号生成部116は、周知の三角波キャリア比較方式を用い、3相の指令電圧に基づいて、第1インバータ101の操作信号を生成する。具体的には、操作信号生成部116は、3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号(デューティ信号)を生成する。
また、X,Y,Z相側においても同様の構成を有しており、dq変換部122は、相ごとに設けられた電流センサによる電流検出値(各相電流)を、界磁方向をd軸とする直交2次元回転座標系の成分であるd軸電流とq軸電流とに変換する。
d軸電流フィードバック制御部123はd軸の指令電圧を算出し、q軸電流フィードバック制御部124はq軸の指令電圧を算出する。3相変換部125は、d軸及びq軸の指令電圧を、X相、Y相及びZ相の指令電圧に変換する。そして、操作信号生成部126は、3相の指令電圧に基づいて、第2インバータ102の操作信号を生成する。具体的には、操作信号生成部126は、3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号(デューティ信号)を生成する。
ドライバ117は、操作信号生成部116,126にて生成されたスイッチ操作信号に基づいて、各インバータ101,102における各3相のスイッチSp,Snをオンオフさせる。
続いて、トルクフィードバック制御処理について説明する。この処理は、例えば高回転領域及び高出力領域等、各インバータ101,102の出力電圧が大きくなる運転条件において、主に回転電機10の高出力化や損失低減の目的で用いられる。制御装置110は、回転電機10の運転条件に基づいて、トルクフィードバック制御処理及び電流フィードバック制御処理のいずれか一方の処理を選択して実行する。
図26には、U,V,W相に対応するトルクフィードバック制御処理と、X,Y,Z相に対応するトルクフィードバック制御処理とが示されている。ここではまず、U,V,W相側の制御処理について説明する。
電圧振幅算出部127は、回転電機10に対する力行トルク指令値又は発電トルク指令値と、電気角θを時間微分して得られる電気角速度ωとに基づいて、電圧ベクトルの大きさの指令値である電圧振幅指令を算出する。
トルク推定部128aは、dq変換部112により変換されたd軸電流とq軸電流とに基づいて、U,V,W相に対応するトルク推定値を算出する。なお、トルク推定部128aは、d軸電流、q軸電流及び電圧振幅指令が関係付けられたマップ情報に基づいて、電圧振幅指令を算出すればよい。
トルクフィードバック制御部129aは、力行トルク指令値又は発電トルク指令値にトルク推定値をフィードバック制御するための操作量として、電圧ベクトルの位相の指令値である電圧位相指令を算出する。トルクフィードバック制御部129aでは、力行トルク指令値又は発電トルク指令値に対するトルク推定値の偏差に基づき、PIフィードバック手法を用いて電圧位相指令が算出される。
操作信号生成部130aは、電圧振幅指令、電圧位相指令及び電気角θに基づいて、第1インバータ101の操作信号を生成する。具体的には、操作信号生成部130aは、電圧振幅指令、電圧位相指令及び電気角θに基づいて3相の指令電圧を算出し、算出した3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号を生成する。
ちなみに、操作信号生成部130aは、電圧振幅指令、電圧位相指令、電気角θ及びスイッチ操作信号が関係付けられたマップ情報であるパルスパターン情報、電圧振幅指令、電圧位相指令並びに電気角θに基づいて、スイッチ操作信号を生成してもよい。
また、X,Y,Z相側においても同様の構成を有しており、トルク推定部128bは、dq変換部122により変換されたd軸電流とq軸電流とに基づいて、X,Y,Z相に対応するトルク推定値を算出する。
トルクフィードバック制御部129bは、力行トルク指令値又は発電トルク指令値にトルク推定値をフィードバック制御するための操作量として、電圧位相指令を算出する。トルクフィードバック制御部129bでは、力行トルク指令値又は発電トルク指令値に対するトルク推定値の偏差に基づき、PIフィードバック手法を用いて電圧位相指令が算出される。
操作信号生成部130bは、電圧振幅指令、電圧位相指令及び電気角θに基づいて、第2インバータ102の操作信号を生成する。具体的には、操作信号生成部130bは、電圧振幅指令、電圧位相指令及び電気角θに基づいて3相の指令電圧を算出し、算出した3相の指令電圧を電源電圧で規格化した信号と、三角波信号等のキャリア信号との大小比較に基づくPWM制御により、各相における上下アームのスイッチ操作信号を生成する。ドライバ117は、操作信号生成部130a,130bにて生成されたスイッチ操作信号に基づいて、各インバータ101,102における各3相のスイッチSp,Snをオンオフさせる。
ちなみに、操作信号生成部130bは、電圧振幅指令、電圧位相指令、電気角θ及びスイッチ操作信号が関係付けられたマップ情報であるパルスパターン情報、電圧振幅指令、電圧位相指令並びに電気角θに基づいて、スイッチ操作信号を生成してもよい。
スイッチSp,Snのオンオフにより、図27(a)に示すように、2組の3相巻線51a,51bそれぞれにおいて、電気角で30°ずれた各相電流が流れる。これにより、図27(b)に示すように、3相巻線51aに対応するトルクTr1と3相巻線51bに対応するトルクTr2とが発生し、回転電機10の発生トルクのうち6倍調波の脈動成分を好適に低減できる。
以上説明した本実施形態によれば、以下の効果が得られる。
回転電機10は、周方向に隣り合う導線82の間に軟磁性体からなるティースが設けられていないスロットレス構造となっている。この構成において、各導線82は、複数の素線86の集合体からなる導体82aを有している。このため、導線82における電流流通経路の細線化を図ることができ、高調波磁界を含む磁石部42からの磁界が導線82と鎖交した場合に渦電流が生じる場合であっても、その渦電流に対する導線82の電気抵抗を大きくすることができる。その結果、導線82に流れる渦電流を低減することができ、渦電流損失を低減することができる。
また、各導線82は、素線86が撚り合わせられて構成されているため、各素線86において磁界の印加方向が互いに逆になる部位が生じ、鎖交磁界に起因した逆起電圧が相殺される。その結果、導線82を流れる渦電流の低減効果を高めることができ、渦電流損失の低減効果を高めることができる。
特に本実施形態では、各素線86は、カーボンナノチューブ繊維の炭素のうち少なくとも一部をホウ素で置換したホウ素含有微細繊維を含む繊維で構成されている。この場合、導体82aにおける電流流通経路をより細線化でき、また、電流流通経路の撚り回数をより増大できる。これにより、渦電流に対する電気抵抗をさらに増大でき、渦電流損失の低減効果をさらに高めることができる。
固定子巻線51の導線82を扁平状にした。このため、直線部83における径方向厚さを薄くすることができ、その直線部83においてその径方向の中心位置を磁石部42に近づけることができる。また、導線82を扁平状にして直線部83における径方向厚さを薄くすることにより、固定子コア52と磁石部42との間のエアギャップを小さくできる。このため、固定子50及び回転子40を通る磁束の磁気回路の磁気抵抗を低減でき、磁気回路の磁束を増大できる。これにより、スロットレス構造の採用による固定子50での磁気飽和の抑制を図りつつ、直線部83における磁束密度を高めて回転電機10のトルクの増強を図ることができる。
ここで、導線82を扁平状にすることによってトルクが増強されるものの、扁平状であることから、磁石部42から導線82への鎖交磁束が増大し、渦電流が増大する。しかし、本実施形態では、各導線82が複数の素線86の集合体であり、また、素線86が撚り合わせられて各導体82aが構成されている。このため、導線82に流れる渦電流の低減効果が高められている。また、導線82が径方向に薄い扁平状をなしていることによっても、渦電流の低減効果が高まる。したがって、本実施形態によれば、回転電機10のトルクの増強を図りつつ、渦電流損失を低減することができる。
磁石部42が永久磁石である第1磁石91及び第2磁石92を有する構成とした。この構成では、磁石部42から磁界が常時発生している。このため、制御装置110により回転電機10の駆動制御を実施しない場合であっても、回転子40の空転により、磁石部42から回転磁界が常時発生し、高調波磁界に起因して導線82に渦電流が流れてしまう。しかし、本実施形態では、各導線82が複数の素線86の集合体であり、また、素線86が撚り合わせられて各導体82aが構成されている。このため、導線82に流れる渦電流の低減効果が高められている。したがって、本実施形態によれば、回転電機10の駆動制御を実施しない場合においても、渦電流損失を好適に低減することができる。
q軸コア部分で生じる磁気飽和をなくすべく、回転子40において固定子50との対向面に第1磁石91及び第2磁石92が配置される構成とした。この構成を前提として、回転電機10のトルクを増強すべく、第1磁石91及び第2磁石92として極異方構造の永久磁石を採用した。この構成によれば、磁束の増大によってトルクが増強されるものの、導線82の鎖交磁束が増大し、渦電流が増大する。しかし、本実施形態では、各導線82が複数の素線86の集合体であり、また、素線86が撚り合わせられて各導体82aが構成されている。このため、導線82に流れる渦電流の低減効果が高められている。したがって、本実施形態によれば、回転電機10のトルクの増強を図りつつ、渦電流損失を低減することができる。
(第2実施形態)
以下、第2実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、回転子40における磁石部42の極異方構造を変更しており、以下に詳しく説明する。
図28及び図29に示すように、磁石部42は、ハルバッハ配列と称される磁石配列を用いて構成されている。すなわち、磁石部42は、磁化方向(磁極の向き)を径方向とする第1磁石131と、磁化方向(磁極の向き)を周方向とする第2磁石132とを有しており、周方向に所定間隔で第1磁石131が配置されるとともに、周方向において隣り合う第1磁石131の間となる位置に第2磁石132が配置されている。第1磁石131及び第2磁石132は、例えばネオジム磁石等の希土類磁石からなる永久磁石である。
第1磁石131は、固定子50に対向する側(径方向内側)の極が交互にN極、S極となるように周方向に互いに離間して配置されている。また、第2磁石132は、各第1磁石131の隣において周方向の磁極の向きが交互に逆向きとなるように配置されている。
また、第1磁石131の径方向外側、すなわち回転子本体41の磁石保持部43の側には、軟磁性材料よりなる磁性体133が配置されている。例えば磁性体133は、電磁鋼板や軟鉄、圧粉鉄心材料により構成されているとよい。この場合、磁性体133の周方向の長さは第1磁石131の周方向の長さ(特に第1磁石131の外周部の周方向の長さ)と同じである。また、第1磁石131と磁性体133とを一体化した状態でのその一体物の径方向の厚さは、第2磁石132の径方向の厚さと同じである。換言すれば、第1磁石131は第2磁石132よりも磁性体133の分だけ径方向の厚さが薄くなっている。各磁石131,132と磁性体133とは、例えば接着剤により相互に固着されている。磁石部42において第1磁石131の径方向外側は、固定子50とは反対側であり、磁性体133は、径方向における第1磁石131の両側のうち、固定子50とは反対側(反固定子側)に設けられている。
磁性体133の外周部には、径方向外側、すなわち回転子本体41の磁石保持部43の側に突出する凸部としてのキー134が形成されている。また、磁石保持部43の内周面には、磁性体133のキー134を収容する凹部としてのキー溝135が形成されている。キー134の突出形状とキー溝135の溝形状とは同じであり、各磁性体133に形成されたキー134に対応して、キー134と同数のキー溝135が形成されている。キー134及びキー溝135の係合により、第1磁石131及び第2磁石132と回転子本体41との周方向(回転方向)の位置ずれが抑制されている。なお、キー134及びキー溝135(凸部及び凹部)を、回転子本体41の磁石保持部43及び磁性体133のいずれに設けるかは任意でよく、上記とは逆に、磁性体133の外周部にキー溝135を設けるとともに、回転子本体41の磁石保持部43の内周部にキー134を設けることも可能である。
ここで、磁石部42では、第1磁石131と第2磁石132とを交互に配列することにより、第1磁石131での磁束密度を大きくすることが可能となっている。そのため、磁石部42において、磁束の片面集中を生じさせ、固定子50寄りの側での磁束強化を図ることができる。
また、第1磁石131の径方向外側、すなわち反固定子側に磁性体133を配置したことにより、第1磁石131の径方向外側での部分的な磁気飽和を抑制でき、ひいては磁気飽和に起因して生じる第1磁石131の減磁を抑制できる。これにより、結果的に磁石部42の磁力を増加させることが可能となっている。本実施形態の磁石部42は、言うなれば、第1磁石131において減磁が生じ易い部分を磁性体133に置き換えた構成となっている。
図30は、磁石部42における磁束の流れを具体的に示す図であり、(a)は、磁石部42において磁性体133を有していない従来構成を用いた場合を示し、(b)は、磁石部42において磁性体133を有している本実施形態の構成を用いた場合を示している。なお、図30では、回転子本体41の磁石保持部43及び磁石部42を直線状に展開して示しており、図の下側が固定子側、上側が反固定子側となっている。
図30(a)の構成では、第1磁石131の磁極面と第2磁石132の側面とが、それぞれ磁石保持部43の内周面に接触している。また、第2磁石132の磁極面が第1磁石131の側面に接触している。この場合、磁石保持部43には、第2磁石132の外側経路を通って第1磁石131との接触面に入る磁束F1と、磁石保持部43と略平行で、かつ第2磁石132の磁束F2を引きつける磁束との合成磁束が生じる。そのため、磁石保持部43において第1磁石131と第2磁石132との接触面付近において、部分的に磁気飽和が生じることが懸念される。
これに対し、図30(b)の構成では、第1磁石131の反固定子側において第1磁石131の磁極面と磁石保持部43の内周面との間に磁性体133が設けられているため、その磁性体133で磁束の通過が許容される。したがって、磁石保持部43での磁気飽和を抑制でき、減磁に対する耐力が向上する。
また、図30(b)の構成では、図30(a)とは異なり、磁気飽和を促すF2を消すことができる。これにより、磁気回路全体のパーミアンスを効果的に向上させることができる。このように構成することで、その磁気回路特性を、過酷な高熱条件下でも保つことができる。
また、従来のSPMロータにおけるラジアル磁石と比べて、磁石内部を通る磁石磁路が長くなる。そのため、磁石パーミアンスが上昇し、磁力を上げ、トルクを増強することができる。さらに、磁束がd軸の中央に集まることにより、正弦波整合率を高くすることができる。特に、PWM制御により、電流波形を正弦波や台形波とする、又は120度通電のスイッチングICを利用すると、より効果的にトルクを増強することができる。
(第3実施形態)
以下、第3実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。上記実施形態では、固定子コア52の外周面を凹凸のない曲面状とし、その外周面に所定間隔で複数の導線群81を並べて配置する構成としたが、これを変更してもよい。例えば、図31に示すように、固定子コア52は、固定子巻線51の径方向両側のうち回転子とは反対側(図の下側)に設けられた円環状のヨーク部141と、そのヨーク部141から、周方向に隣り合う直線部83の間に向かって突出するように延びる突起部142とを有している。突起部142は、ヨーク部141の径方向外側、すなわち回転子40側に所定間隔で設けられている。固定子巻線51の各導線群81は、突起部142と周方向において係合しており、突起部142を位置決め部として用いつつ周方向に並べて配置されている。なお、突起部142が「巻線間部材」に相当する。
突起部142は、ヨーク部141からの径方向の厚さ寸法が、ヨーク部141に径方向に隣接する直線部83の径方向の厚さ寸法の1/2(図のH1)よりも小さい構成となっている。こうした突起部142の厚さ制限により、周方向に隣り合う導線群81(すなわち直線部83)の間において突起部142がティースとして機能せず、ティースによる磁路形成がなされないようになっている。突起部142は、周方向に並ぶ各導線群81の間ごとに全て設けられていなくてもよく、周方向に隣り合う少なくとも1組の導線群81の間に設けられていればよい。突起部142の形状は、矩形状、円弧状など任意の形状でよい。
なお、回転軸11の中心を軸心とし、かつヨーク部141に径方向に隣接する直線部83の径方向の中心位置を通る仮想円を想定すると、突起部142は、その仮想円の範囲内においてヨーク部141から突出する形状、換言すれば仮想円よりも径方向外側(すなわち回転子40側)に突出しない形状をなしているとよい。
以上説明した本実施形態によれば、固定子巻線51の各直線部83を、突起部142を位置決め部として用いつつ周方向に並べて配置することができる。これにより、巻線作業を容易に実施できる。
ここで、突起部142の径方向の厚さ寸法が制限されているため、径方向において突起部142から突出した直線部83の磁石部42からの鎖交磁束が増大してしまう。鎖交磁束の増大は、渦電流の増大につながる。しかし、各導線82が複数の素線86の集合体であり、また、素線86が撚り合わせられて各導体82aが構成されているため、渦電流を低減することができる。
(第3実施形態の変形例1)
固定子コア52のヨーク部141と、回転子40の磁石部42(すなわち各磁石91,92)とが所定距離以上離れていれば、突起部142の径方向の厚さ寸法は、図31のH1に縛られるものではない。具体的には、ヨーク部141と磁石部42とが2mm以上離れていれば、突起部142の径方向の厚さ寸法は、図31のH1以上であってもよい。例えば、直線部83の径方向厚み寸法が2mmを越えており、かつ導線群81が径方向内外の2層の導線82により構成されている場合に、ヨーク部141に隣接していない直線部83、すなわちヨーク部141から数えて2層目の導線82の半分位置までの範囲で、突起部142が設けられていてもよい。この場合、突起部142の径方向厚さ寸法が「H1×3/2」までになっていれば、導線群81における導体断面積を大きくすることで、前記効果を少なからず得ることはできる。
(第3実施形態の変形例2)
固定子コア52は、図32に示す構成であってもよい。なお、図32では、封止部57を省略しているが、封止部57が設けられていてもよい。図32では、便宜上、磁石部42及び固定子コア52を直線状に展開して示している。
図32の構成では、固定子50は、周方向に隣接する導線82(すなわち直線部83)の間に、巻線間部材としての突起部142を有している。ここで、磁石部42の1極分の範囲において固定子巻線51の通電により励磁される突起部142の周方向の幅寸法をWt、突起部142の飽和磁束密度をBs、磁石部42の1極分の周方向の幅寸法をWm、磁石部42の残留磁束密度をBrとする場合、突起部142は、
Wt×Bs≦Wm×Br …(1)
となる磁性材料により構成されている。
詳しくは、本実施形態では、固定子巻線51の3相巻線が分布巻であり、その固定子巻線51では、磁石部42の1極に対して、突起部142の数、すなわち各導線群81の間となる間隙56の数が「3×m」個となっている。なお、mは導線82の対数である。この場合、固定子巻線51が各相所定順序で通電されると、1極内において2相分の突起部142が励磁される。したがって、磁石部42の1極分の範囲において固定子巻線51の通電により励磁される突起部142の周方向の幅寸法Wtは、突起部142(つまり、間隙56)の周方向の幅寸法をAとすると、「2×A×m」となる。そして、こうして幅寸法Wtが規定された上で、固定子コア52において、突起部142が、上記(1)の関係を満たす磁性材料として構成されている。なお、幅寸法Wtは、1極内において比透磁率が1よりも大きくなりえる部分の周方向寸法でもある。
なお、固定子巻線51を集中巻とする場合には、固定子巻線51において、磁石部42の1極対(つまり2極)に対して、突起部142の数、すなわち各導線群81の間となる間隙56の数が「3×m」個となっている。この場合、固定子巻線51が各相所定順序で通電されると、1極内において1相分の突起部142が励磁される。したがって、磁石部42の1極分の範囲において固定子巻線51の通電により励磁される突起部142の周方向の幅寸法Wtは、「A×m」となる。そして、こうして幅寸法Wtが規定された上で、突起部142が、上記(1)の関係を満たす磁性材料として構成されている。
ちなみに、ネオジム磁石やサマリウムコバルト磁石、フェライト磁石といったBH積が20[MGOe(kJ/m^3)]以上の磁石ではBd=1.0強[T]、鉄ではBr=2.0強[T]である。そのため、高出力モータとしては、固定子コア52において、突起部142が、Wt<1/2×Wmの関係を満たす磁性材料であればよい。
(第3実施形態の変形例3)
上記実施形態では、固定子巻線51を覆う封止部57を、固定子コア52の径方向外側において各導線群81を全て含む範囲、すなわち径方向の厚さ寸法が各導線群81の径方向の厚さ寸法よりも大きくなる範囲で設ける構成としたが、これを変更してもよい。例えば、図33に示すように、封止部57を、導線82の一部がはみ出すように設ける構成とする。より具体的には、封止部57を、導線群81において最も径方向外側となる導線82の一部を径方向外側、すなわち固定子50側に露出させた状態で設ける構成とする。この場合、封止部57の径方向の厚さ寸法は、各導線群81の径方向の厚さ寸法と同じ、又はその厚さ寸法よりも小さいとよい。
導線82の一部がはみ出すように封止部57を設ける構成とすることにより、導線82の露出部分が空冷される。このため、導線82の放熱性を高めることができる。
なお、図33には、突起部142が設けられない構成を示したが、突起部142が設けられる構成であってもよい。
(第3実施形態の変形例4)
図34に示すように、各導線群81が封止部57により封止されていない構成としてもよい。つまり、固定子巻線51を覆う封止部57を用いない構成とする。この場合、周方向に並ぶ各導線群81の間は、コア部材のない空隙となっている。
なお、図34には、突起部142が設けられない構成を示したが、突起部142が設けられる構成であってもよい。
(第4実施形態)
以下、第4実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態において、回転電機は、インナロータ構造(内転構造)のものである。図35は、回転電機300の回転軸301に沿う方向での縦断面図である。
回転電機300は、回転軸301、2つの軸受302,303、ハウジング310、回転子320及び固定子330を備えている。これら各部材は、いずれも回転軸301と共に同軸上に配置されている。
各軸受302,303は、ハウジング310に設けられており、軸方向に互いに離間して配置されている。各軸受302,303は、例えばラジアル玉軸受である。各軸受302,303により、回転軸301及び回転子320が回転自在に支持されている。
回転子320は、円筒状に形成されたロータ本体321と、そのロータ本体321の外周側に設けられた環状の磁石部322とを有している。磁石部322は、周方向に沿って磁極が交互に変わるように配置された複数の磁石により構成されている。
固定子330は、回転子320の径方向外側に設けられている。固定子330は、略筒状に巻回形成された固定子巻線331と、その径方向外側に配置された固定子コア332とを有している。固定子コア332は、円環状をなしており、ハウジング310の径方向内側に設けられている。固定子コア332は、例えば、接着剤等によりハウジング310に固定されている。固定子コア332は、第1実施形態と同様、ティースが存在しないスロットレスのものである。
固定子巻線331は、所定のエアギャップを挟んで円環状の磁石部322に対向するように配置されている。固定子巻線331は、3相巻線であり、巻線方式は全節分布巻であるが、これに限るものではない。固定子巻線331を構成する導線は、第1実施形態と同様に、扁平状のものである。また、固定子巻線331を構成する導体は、第1実施形態と同様に、複数の素線の集合体として構成されており、複数の素線を撚ることで撚糸状に形成されている。
ちなみに、例えばハウジング310内において、回転子40の径方向内側にインバータユニットが設けられているとよい。また、図33には、磁石部322の径方向外側の外周面から、固定子コア332の径方向内側の内周面までの距離g1と、磁石部322の径方向外側の外周面から、固定子巻線331の径方向内側の内周面までの距離g2とを示す。本実施形態においても、巻線割合Kを小さくでき、磁気回路の磁気抵抗を低減できる。
以上説明した本実施形態によれば、第1実施形態の効果に準じた効果を得ることができる。
(第5実施形態)
以下、第5実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態において、回転電機は、図36に示すように、アウタロータ構造のものであり、第1実施形態のものとは異なる。図36は、回転電機400の回転軸401に沿う方向での縦断面図である。
回転電機400は、回転軸401、2つの軸受402,403、ハウジング410、回転子420及び固定子430を備えている。これら各部材は、いずれも回転軸401と共に同軸上に配置されている。各軸受402,403は、ハウジング410に設けられており、軸方向に互いに離間して配置されている。各軸受402,403により、回転軸401及び回転子420が回転自在に支持されている。
回転子420は、中空円筒状に形成されたロータ本体421と、そのロータ本体421の径方向内側に設けられた環状の回転子コア422と、その回転子コア422の径方向内側に設けられた環状の磁石部423とを有している。磁石部423は、周方向に沿って磁極が交互に変わるように配置された複数の磁石により構成されている。
固定子430は、回転子420の径方向内側に設けられている。固定子430は、略筒状に巻回形成された固定子巻線431と、その径方向内側に配置された固定子コア432とを有している。固定子コア432は、円環状をなしている。固定子コア432は、第1実施形態と同様、ティースが存在しないスロットレスのものである。
固定子巻線431は、所定のエアギャップを挟んで円環状の磁石部423に対向するように配置されている。固定子巻線431を構成する導線は、第1実施形態と同様に、扁平状のものである。また、固定子巻線431を構成する導体は、第1実施形態と同様に、複数の素線の集合体として構成されており、複数の素線を撚ることで撚糸状に形成されている。なお、図34には、磁石部423の径方向内側の内周面から、固定子コア432の径方向外側の外周面までの距離g1と、磁石部423の径方向内側の内周面から、固定子巻線431の径方向外側の外周面までの距離g2とを示す。
以上説明した本実施形態によれば、第1実施形態の効果に準じた効果を得ることができる。
(第6実施形態)
以下、第6実施形態について、第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態において、回転電機は、ラジアルギャップ構造のものではなく、図37に示すように、アキシャルギャップ構造のものである。図37は、回転電機500の回転軸501に沿う方向での縦断面図である。
回転電機500は、回転軸501、軸受502、ハウジング510、回転子520及び固定子530を備えている。軸受502は、ハウジング510に設けられており、例えばラジアル玉軸受である。軸受502により、回転軸501及び回転子520が回転自在に支持されている。
回転子520は、円盤状に形成されたロータ本体521と、そのロータ本体521に設けられた円盤状の磁石部522とを有している。磁石部522は、周方向に沿って磁極が交互に変わるように配置された複数の磁石により構成されている。
固定子530は、軸方向において回転子520と対向する位置に設けられている。固定子530は、円盤状に形成された固定子巻線531と、固定子コア532とを有している。固定子コア532は、円盤状をなしている。固定子コア532は、ティースが存在しないスロットレスのものである。
固定子巻線431は、所定のエアギャップを挟んで円環状の磁石部423に対向するように配置されている。固定子巻線531は、図38に示すように扇形をなしている。固定子巻線531を構成する導線は、第1実施形態と同様に、扁平状のものである。また、固定子巻線531を構成する導体は、第1実施形態と同様に、複数の素線の集合体として構成されており、複数の素線を撚ることで撚糸状に形成されている。なお、図37には、磁石部522において固定子巻線531との対向面から、固定子コア532の軸方向両端部のうち固定子巻線531とは反対側の面までの距離g1と、磁石部522において固定子巻線531との対向面から、固定子巻線531において磁石部522との対向面までの距離g2とを示す。
ちなみに、従来、ティース付きのアキシャルギャップ構造の回転電機においては、巻線作業の煩わしさから集中巻巻線が主流となっていた。しかし、スロットレス構造とされたことにより、全節分布巻などの振動騒音に有利な巻線が比較的容易に実施できる。
以上説明した本実施形態によれば、第1実施形態の効果に準じた効果を得ることができる。
(第6実施形態の変形例)
アキシャルギャップ構造の回転電機としては、図39に示すように、軸方向において固定子630を挟んで2つの磁石部622a,622bが配置されたタンデム型のものであってもよい。回転電機600は、回転軸601、2つの軸受602,603、ハウジング610、回転子620及び固定子630を備えている。固定子630は、第1,第2固定子巻線631a,631bと、固定子コア632とを有している。回転子620は、第1,第2回転子コア621a,621bと、第1,第2磁石部622a,622bとを有している。図39に示す構成によれば、第6実施形態よりも回転電機600のトルクを増強できる。
(他の実施形態)
なお、上記実施形態は、以下のように変更して実施してもよい。
・コイルエンド部付近は、コイル収容凹部47となっているため、導線を配置するに際してスペース上の制約が小さい。このため、図40に示すように、ターン部702の断面積が直線部701の断面積よりも大きくされていてもよい。これにより、ターン部702の電気抵抗を低減でき、流通電流を大きくでき、トルクの増強を図ることができる。
ここで、回転磁界の漏れ磁束がターン部702と鎖交し得る。この場合、ターン部702の断面積が直線部701の断面積よりも大きいことから、渦電流も大きくなる懸念がある。しかし、固定子巻線の各導線が複数の素線の集合体であり、また、素線が撚り合わせられて各導体が構成されていることにより、導線に流れる渦電流を低減できる。これにより、渦電流損失を低減できる。
・第2実施形態において、磁性体133及びキー134は必須ではない。
・第2実施形態において、第2磁石132の磁化方向が、径方向及び周方向それぞれの成分を含む方向とされていてもよい。
・固定子50が固定子コア52を具備していない構成としてもよい。この場合、固定子50は、図12に示す固定子巻線51により構成されることになる。なお、固定子コア52を具備していない固定子50において、固定子巻線51を封止材により封止する構成としてもよい。又は、固定子50が、軟磁性材からなる固定子コア52に代えて、合成樹脂等の非磁性材からなる円環状の巻線保持部を備える構成であってもよい。
・固定子巻線51において、導線82の直線部83を径方向に単層で設ける構成としてもよい。また、径方向内外に複数層で直線部83を配置する場合に、その層数は任意でよく、3層、4層、5層、6層等で設けてもよい。
・上記実施形態では、回転軸11を、軸方向で回転電機10の一端側及び他端側の両方に突出するように設けたが、これを変更し、一端側にのみ突出する構成としてもよい。この場合、回転軸11は、軸受部20により片持ち支持される部分を端部とし、その軸方向外側に延びるように設けられるとよい。本構成では、インバータユニット60の内部に回転軸11が突出しない構成となるため、インバータユニット60の内部空間、詳しくは筒状部71の内部空間をより広く用いることができることとなる。
・回転軸11を回転自在に支持する構成として、回転子40の軸方向一端側及び他端側の2カ所に軸受を設ける構成としてもよい。この場合、図1の構成で言えば、インバータユニット60を挟んで一端側及び他端側の2カ所に軸受が設けられるとよい。
・上記実施形態では、回転子40において回転子本体41の中間部45を、軸方向に段差を有する構成としたが、これを変更し、中間部45の段差を無くし、平板状としてもよい。
・上記実施形態では、固定子50の径方向内側にインバータユニット60を設ける構成としたが、これに代えて、固定子50の径方向内側にインバータユニット60を設けない構成としてもよい。この場合、固定子50の径方向内側となる内部領域を空間としておくことが可能である。また、その内部領域に、インバータユニット60とは異なる部品を配することが可能である。
・回転電機10において、ハウジング30を具備しない構成としてもよい。この場合、例えばホイールや他の車両部品の一部において、回転子40、固定子50等が保持される構成であってもよい。
・素線としては、第1実施形態で説明したもの以外に、例えば、銅線又はアルミ線が用いられてもよい。
なお、この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。
10…回転電機、40…回転子、42…磁石部、51…固定子巻線、52…固定子、82…導線、82a…導体、86…素線。

Claims (3)

  1. 磁石部(42)を有し、回転自在に支持された回転子(40)と、
    複数の導線(82)を含む固定子巻線(51)と、固定子コア(52)とを有し、前記回転子に対向して配置される固定子(52)と、
    を備えた回転電機(10)であって、
    前記導線は、前記磁石部に対して径方向に対向する位置に配置される磁石対向部(83)を有し、
    前記固定子コアは、周方向に隣り合う前記磁石対向部の間を、前記固定子巻線の径方向両側のうち前記回転子とは反対側から前記回転子側へと向かって突出するように延びる突起部(142)を有しており、
    前記突起部は、前記磁石部の1極分の範囲において前記固定子巻線の通電により励磁される前記突起部の周方向の幅寸法をWt、前記突起部の飽和磁束密度をBs、前記磁石部の1極分の周方向の幅寸法をWm、前記磁石部の残留磁束密度をBrとする場合、Wt×Bs≦Wm×Brとなる磁性材料からなる、回転電機。
  2. 前記磁石部は、磁極中心であるd軸において磁束の径方向成分が周方向成分よりも大きくなり、磁極境界であるq軸において磁束の周方向成分が径方向成分よりも大きくなるように配向されている、請求項1に記載の回転電機。
  3. 前記導線は、複数の素線(86)が撚りあった集合体からなる導体(82a)を有している、請求項1又は2に記載の回転電機。
JP2021081867A 2017-07-21 2021-05-13 回転電機 Active JP7136272B2 (ja)

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
JP2017142226 2017-07-21
JP2017142228 2017-07-21
JP2017142228 2017-07-21
JP2017142227 2017-07-21
JP2017142227 2017-07-21
JP2017142224 2017-07-21
JP2017142223 2017-07-21
JP2017142226 2017-07-21
JP2017142223 2017-07-21
JP2017142225 2017-07-21
JP2017142225 2017-07-21
JP2017142224 2017-07-21
JP2017255052A JP6885328B2 (ja) 2017-07-21 2017-12-28 回転電機

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017255052A Division JP6885328B2 (ja) 2017-07-21 2017-12-28 回転電機

Publications (2)

Publication Number Publication Date
JP2021114902A true JP2021114902A (ja) 2021-08-05
JP7136272B2 JP7136272B2 (ja) 2022-09-13

Family

ID=65368643

Family Applications (9)

Application Number Title Priority Date Filing Date
JP2017255048A Pending JP2019024293A (ja) 2017-07-21 2017-12-28 回転電機
JP2017255050A Active JP6977555B2 (ja) 2017-07-21 2017-12-28 回転電機
JP2017255052A Active JP6885328B2 (ja) 2017-07-21 2017-12-28 回転電機
JP2017255049A Active JP6874675B2 (ja) 2017-07-21 2017-12-28 回転電機
JP2017255053A Active JP6939543B2 (ja) 2017-07-13 2017-12-28 回転電機
JP2017255051A Active JP6977556B2 (ja) 2017-07-21 2017-12-28 回転電機
JP2020215078A Active JP7095730B2 (ja) 2017-07-21 2020-12-24 回転電機
JP2020215079A Active JP7095731B2 (ja) 2017-07-21 2020-12-24 回転電機
JP2021081867A Active JP7136272B2 (ja) 2017-07-21 2021-05-13 回転電機

Family Applications Before (8)

Application Number Title Priority Date Filing Date
JP2017255048A Pending JP2019024293A (ja) 2017-07-21 2017-12-28 回転電機
JP2017255050A Active JP6977555B2 (ja) 2017-07-21 2017-12-28 回転電機
JP2017255052A Active JP6885328B2 (ja) 2017-07-21 2017-12-28 回転電機
JP2017255049A Active JP6874675B2 (ja) 2017-07-21 2017-12-28 回転電機
JP2017255053A Active JP6939543B2 (ja) 2017-07-13 2017-12-28 回転電機
JP2017255051A Active JP6977556B2 (ja) 2017-07-21 2017-12-28 回転電機
JP2020215078A Active JP7095730B2 (ja) 2017-07-21 2020-12-24 回転電機
JP2020215079A Active JP7095731B2 (ja) 2017-07-21 2020-12-24 回転電機

Country Status (4)

Country Link
US (1) US11374465B2 (ja)
JP (9) JP2019024293A (ja)
CN (1) CN110959245B (ja)
DE (1) DE112018003735T5 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
JP2019024293A (ja) 2017-07-21 2019-02-14 株式会社デンソー 回転電機
CN113991959B (zh) 2017-07-21 2024-04-16 株式会社电装 旋转电机
DE112018006717T5 (de) 2017-12-28 2020-09-10 Denso Corporation Rotierende elektrische Maschine
CN111557069A (zh) 2017-12-28 2020-08-18 株式会社电装 旋转电机
JP6927186B2 (ja) 2017-12-28 2021-08-25 株式会社デンソー 回転電機
JP7006541B2 (ja) 2017-12-28 2022-01-24 株式会社デンソー 回転電機
CN111565965B (zh) 2017-12-28 2023-07-14 株式会社电装 车轮驱动装置
DE112018006694T5 (de) 2017-12-28 2020-09-10 Denso Corporation Rotierende elektrische Maschine
JP7238312B2 (ja) * 2018-09-28 2023-03-14 日本電産株式会社 モータ
JP7331377B2 (ja) * 2019-02-22 2023-08-23 株式会社デンソー 回転電機
JP7302198B2 (ja) 2019-02-25 2023-07-04 株式会社デンソー 回転電機
JP7147628B2 (ja) * 2019-02-25 2022-10-05 株式会社デンソー 電機子及び回転電機
JP7331963B2 (ja) * 2019-02-25 2023-08-23 株式会社デンソー 電機子
JP2020137369A (ja) * 2019-02-25 2020-08-31 株式会社デンソー 電機子及び回転電機
JP7226162B2 (ja) * 2019-02-25 2023-02-21 株式会社デンソー 回転電機
WO2020175335A1 (ja) * 2019-02-25 2020-09-03 株式会社デンソー 回転電機
JP7331383B2 (ja) * 2019-02-28 2023-08-23 株式会社デンソー 回転電機
WO2020183574A1 (ja) * 2019-03-11 2020-09-17 三菱電機株式会社 電動機、電動送風機、電気掃除機および手乾燥装置
JP7310227B2 (ja) * 2019-03-29 2023-07-19 株式会社デンソー 回転電機
JP7383899B2 (ja) * 2019-03-29 2023-11-21 株式会社デンソー 回転電機
JP7346892B2 (ja) * 2019-04-19 2023-09-20 株式会社デンソー 回転電機
JP7298267B2 (ja) * 2019-04-19 2023-06-27 株式会社デンソー 回転電機
JP7318331B2 (ja) * 2019-06-13 2023-08-01 株式会社デンソー 固定子及び固定子の製造方法
JP7205397B2 (ja) * 2019-06-14 2023-01-17 株式会社デンソー 電機子
JP7434734B2 (ja) * 2019-06-20 2024-02-21 株式会社デンソー 電機子の製造方法
JP2021013204A (ja) * 2019-07-03 2021-02-04 株式会社デンソー 減速機付モータ
JP7388071B2 (ja) * 2019-09-11 2023-11-29 株式会社デンソー 車輪駆動装置
IT202000002266A1 (it) * 2020-02-05 2021-08-05 Ferrari Spa Macchina elettrica rotante con rotore alleggerito
CN113692690A (zh) 2020-03-05 2021-11-23 株式会社电装 旋转电机
CN116868490A (zh) 2021-02-17 2023-10-10 株式会社电装 旋转电机及其制造方法
WO2022181352A1 (ja) 2021-02-24 2022-09-01 株式会社デンソー 電機子巻線、及びその製造方法
US11641150B2 (en) * 2021-02-25 2023-05-02 O Chan KWON Smart generator
CN116998108A (zh) * 2021-03-01 2023-11-03 株式会社电装 旋转电机以及旋转电机的控制方法
GB2617307B (en) * 2021-06-24 2024-04-24 Eta Green Power Ltd Stator for an electric machine
DE102021121626A1 (de) 2021-08-20 2023-02-23 Bayerische Motoren Werke Aktiengesellschaft Rotor mit einer Haltevorrichtung für eine Spulenvorrichtung, elektrische Maschine mit einem Rotor und Kraftfahrzeug mit einer elektrischen Maschine
JP2023110431A (ja) * 2022-01-28 2023-08-09 株式会社デンソー コイル体、電気子及びステータ
WO2024048870A1 (ko) * 2022-08-30 2024-03-07 엘지전자 주식회사 자속 집중형 모터

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303351A (ja) * 1989-05-16 1990-12-17 Canon Electron Inc 小型ブラシレスモータ
JP2002191146A (ja) * 2000-12-20 2002-07-05 Yaskawa Electric Corp ギャップワインディングモータ

Family Cites Families (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2036866A1 (ja) * 1969-04-11 1970-12-31 Novosib Elektrotekh
JPS6111969Y2 (ja) 1979-05-29 1986-04-15
US4463276A (en) 1982-06-10 1984-07-31 Matsushita Electric Works, Ltd. Coil unit of coreless armature and method of manufacturing the same
JPS6114865U (ja) 1984-06-30 1986-01-28 株式会社東芝 モ−タ
JPS61180567U (ja) * 1985-04-30 1986-11-11
JPS61258643A (ja) * 1985-05-10 1986-11-17 Hitachi Ltd 外側回転子直流ブラシレスモ−トル
CN85103498B (zh) 1985-05-20 1987-05-06 中国科学院电工研究所 高均匀度磁场的永磁磁体
JPS6295954A (ja) 1985-10-21 1987-05-02 Brother Ind Ltd 偏平ブラシレスモ−タ
JPS62196053A (ja) 1986-02-24 1987-08-29 Toshiba Corp モ−ルドステ−タの製造方法
US5128574A (en) 1989-04-11 1992-07-07 Canon Kabushiki Kaisha Brushless motor
JPH0348373U (ja) 1989-09-14 1991-05-09
DE4111713A1 (de) * 1991-04-10 1993-01-14 Magnet Motor Gmbh Fluidpumpe
JPH0670522A (ja) * 1992-08-17 1994-03-11 Yukigaya Seigyo Kenkyusho:Kk コアレス型回転電機及びその製造方法
EP1557933A3 (en) 1994-01-06 2009-10-07 Hyun Laboratory Co., Ltd. Electrical apparatus
JP3463888B2 (ja) 1994-02-16 2003-11-05 新日本石油株式会社 フライホイール型電力貯蔵装置
US5880544A (en) 1994-02-16 1999-03-09 Nippon Oil Co., Ltd. Flywheel-type power storage device
JP3001939U (ja) 1994-03-11 1994-09-06 株式会社ルートシックス リミテッドスリップディファレンシャルギヤ
DE4414527C1 (de) 1994-04-26 1995-08-31 Orto Holding Ag Elektronisch kommutierte Gleichstrommaschine
US5637048A (en) 1994-04-27 1997-06-10 Aisin Seiki Kabushiki Kaisha Power train device
JPH08223840A (ja) 1995-02-17 1996-08-30 Toyota Motor Corp コイル用巻線材およびその製造方法
JPH08242564A (ja) 1995-03-01 1996-09-17 Sawafuji Electric Co Ltd 回転電機のバインド構造
JPH08265995A (ja) 1995-03-17 1996-10-11 Yaskawa Electric Corp モールドモータの固定子
JPH08275419A (ja) 1995-03-30 1996-10-18 Meidensha Corp 永久磁石式回転機の回転子
JPH0974713A (ja) 1995-09-04 1997-03-18 Toyota Motor Corp 電動モータ
WO1997023362A1 (fr) 1995-12-21 1997-07-03 Aisin Aw Co., Ltd. Dispositif d'entrainement pou automobiles electriques
JPH11206091A (ja) 1998-01-19 1999-07-30 Hitachi Ltd 外転型同期電動機
JPH11215749A (ja) 1998-01-27 1999-08-06 Nakagawa Seimitsu Kogyo Kk アウターロータ型電動機
JPH11308793A (ja) 1998-04-24 1999-11-05 Matsushita Electric Ind Co Ltd アウタロータ型永久磁石モータ
TW424356B (en) * 1998-12-24 2001-03-01 Grizzly Electric Corp Brushless motor having external rotor with high-efficiency, high-torque, and high-support
JP2000245089A (ja) 1999-02-24 2000-09-08 Hitachi Ltd 回転電機
JP3494065B2 (ja) 1999-03-16 2004-02-03 国産電機株式会社 アウターロータ形磁石式回転機
JP2001161050A (ja) 1999-11-30 2001-06-12 Denso Corp 液冷型車両用回転電機
JP3400776B2 (ja) 1999-12-14 2003-04-28 三菱電機株式会社 交流発電機
JP3347115B2 (ja) * 1999-12-20 2002-11-20 三菱電機株式会社 交流発電機
JP2001333555A (ja) 2000-05-19 2001-11-30 Mitsubishi Heavy Ind Ltd スロットレスラジアルギャップ型モータ
JP2002027693A (ja) 2000-07-10 2002-01-25 Mitsubishi Electric Corp 回転電機用巻線導体
JP2004507197A (ja) 2000-08-10 2004-03-04 ジョン・フロレスタ 高性能スロットレス電気モータ及びその製造方法
JP4734516B2 (ja) 2000-11-30 2011-07-27 並木精密宝石株式会社 Dcブラシレスモータ
JP2002354721A (ja) 2001-05-29 2002-12-06 Hitachi Ltd 永久磁石式回転子を備えた回転電機
JP2003070197A (ja) 2001-08-29 2003-03-07 Mitsubishi Materials Corp ステータコイルとそれを用いたモータ、及びステータコイルの製造方法とモータの製造方法、及びコイルユニットとコイルユニットの製造方法
JP2003104076A (ja) 2001-09-28 2003-04-09 Fuji Heavy Ind Ltd 車両の駆動装置
US6882077B2 (en) * 2002-12-19 2005-04-19 Visteon Global Technologies, Inc. Stator winding having cascaded end loops
JP3736754B2 (ja) 2002-03-01 2006-01-18 株式会社デンソー 車両用交流発電機の固定子
JP3613262B2 (ja) 2002-04-26 2005-01-26 三菱電機株式会社 回転電機およびその製造方法
JP2003324866A (ja) 2002-04-30 2003-11-14 Fujitsu General Ltd 永久磁石電動機
JP4310611B2 (ja) 2002-06-06 2009-08-12 株式会社安川電機 永久磁石形モータ
JP2004092715A (ja) 2002-08-30 2004-03-25 Nsk Ltd 回転支持装置及び回転機械装置
JP2004120892A (ja) 2002-09-26 2004-04-15 Hitachi Ltd リング磁石とその製造法及びそれを用いた回転子並びにモータ
JP4045923B2 (ja) 2002-11-07 2008-02-13 日産自動車株式会社 電動機
JP3559909B2 (ja) 2002-11-07 2004-09-02 日産自動車株式会社 機電一体型駆動装置
CN1503439A (zh) 2002-11-25 2004-06-09 张东辉 电动车用车轮电机
JP4284981B2 (ja) 2002-11-29 2009-06-24 株式会社安川電機 永久磁石形モータ
US7236995B2 (en) 2002-12-27 2007-06-26 Arm Limited Data processing apparatus and method for converting a number between fixed-point and floating-point representations
WO2005008862A1 (ja) 2003-07-22 2005-01-27 Aichi Steel Corporation Ltd. 薄型ハイブリッド着磁型リング磁石、ヨーク付き薄型ハイブリッド着磁型リング磁石、および、ブラシレスモータ
JP4181943B2 (ja) 2003-08-08 2008-11-19 トヨタ自動車株式会社 永久磁石型モータ
JP2005117751A (ja) * 2003-10-06 2005-04-28 Chubu Electric Power Co Inc 電力貯蔵フライホイール装置
JP2005151667A (ja) 2003-11-13 2005-06-09 Tamagawa Seiki Co Ltd モータステータ構造
JP2005253146A (ja) 2004-03-02 2005-09-15 Denso Corp 電動機
JP4576873B2 (ja) 2004-04-22 2010-11-10 ダイキン工業株式会社 永久磁石電動機並びにその駆動方法及び製造方法、圧縮機、送風機及び空気調和機
EP1830451A4 (en) 2004-12-17 2016-03-23 Hitachi Metals Ltd ROTOR FOR A MOTOR AND METHOD FOR THE PRODUCTION THEREOF
EP1699126A3 (en) 2005-03-01 2006-10-04 HONDA MOTOR CO., Ltd. Stator, motor and method of manufacturing such stator
JP4885574B2 (ja) * 2005-03-07 2012-02-29 アスモ株式会社 スロットレスモータ
JP2006320109A (ja) * 2005-05-12 2006-11-24 Asmo Co Ltd 回転電機、及び回転電機の製造方法
JP4839675B2 (ja) 2005-05-19 2011-12-21 トヨタ自動車株式会社 モータの巻線構造
JP5017627B2 (ja) 2005-05-27 2012-09-05 並木精密宝石株式会社 円筒状コイル及びそれを用いた円筒型マイクロモータ
JP2007202324A (ja) * 2006-01-27 2007-08-09 Matsushita Electric Ind Co Ltd ブラシレスモータ
JP2007267565A (ja) * 2006-03-30 2007-10-11 Nidec Sankyo Corp コアレスモータ
JP5248751B2 (ja) 2006-03-31 2013-07-31 三菱電機株式会社 スロットレス永久磁石型回転電機
WO2008013167A1 (fr) 2006-07-24 2008-01-31 Kabushiki Kaisha Toshiba Système d'entraînement de moteur à flux magnétique variable
JP2008072871A (ja) 2006-09-15 2008-03-27 Nidec Sankyo Corp コアレスモータ
JP5288698B2 (ja) 2006-10-20 2013-09-11 株式会社東芝 永久磁石式リラクタンス型回転電機
JP2008148375A (ja) 2006-12-06 2008-06-26 Toyota Motor Corp モータのコイル構造及びその加工方法
JP5240543B2 (ja) 2007-03-28 2013-07-17 日立金属株式会社 可動コイル型リニアモータの組立方法
WO2008119120A1 (en) 2007-04-03 2008-10-09 Hybridauto Pty Ltd Winding arrangement for an electrical machine
JP4561770B2 (ja) 2007-04-27 2010-10-13 ダイキン工業株式会社 アキシャルギャップ型回転電機及びその製造方法
US8384263B2 (en) 2008-02-14 2013-02-26 Hitachi, Ltd. Rotating electrical machine having a compact stator
JP4577385B2 (ja) * 2008-03-14 2010-11-10 株式会社デンソー 導線及びその製造方法
JP5228582B2 (ja) 2008-04-04 2013-07-03 三菱電機株式会社 永久磁石型回転電機およびそれを用いた電動パワーステアリング装置
JP2009291040A (ja) 2008-05-30 2009-12-10 Panasonic Corp 同期電動機駆動システム
JP5373375B2 (ja) 2008-07-10 2013-12-18 ミネベア株式会社 スピンドルモータ
JP4714305B2 (ja) 2008-07-30 2011-06-29 パナソニック株式会社 同期電動機
JP4852073B2 (ja) 2008-07-31 2012-01-11 スミダ電機株式会社 波捲きコイル
AU2009296686A1 (en) 2008-09-23 2010-04-01 Aerovironment, Inc. Motor air flow cooling
JP2010130819A (ja) 2008-11-28 2010-06-10 Daikin Ind Ltd 界磁子及び界磁子の製造方法
JP5253114B2 (ja) * 2008-12-01 2013-07-31 三菱電機株式会社 リニアモータ
JP5478136B2 (ja) 2009-07-15 2014-04-23 三菱電機株式会社 永久磁石式同期モータ
JP5515478B2 (ja) 2009-07-17 2014-06-11 株式会社安川電機 周期磁界発生装置およびそれを用いたリニアモータ、回転型モータ
JP5521820B2 (ja) 2009-09-07 2014-06-18 株式会社安川電機 回転電機およびその製造方法
JP4894903B2 (ja) 2009-10-26 2012-03-14 パナソニック株式会社 モールド電動機
US7898134B1 (en) * 2009-12-31 2011-03-01 Bill S. Shaw Brushless disk DC motor
US8446060B1 (en) * 2010-01-12 2013-05-21 Richard H. Lugg Magnetic advanced gas-turbine transmission with radial aero-segmented nanomagnetic-drive (MAGTRAN)
DK2362526T3 (da) 2010-02-26 2014-05-05 Siemens Ag Fremgangsmåde til fremstilling af en stator til en energiomdannelsesindretning
JP5505077B2 (ja) 2010-05-19 2014-05-28 トヨタ自動車株式会社 固定子製造方法
JP5516068B2 (ja) 2010-05-24 2014-06-11 株式会社デンソー 回転電機
JP5548046B2 (ja) 2010-06-28 2014-07-16 株式会社東芝 永久磁石回転電機
US8820448B2 (en) 2010-07-02 2014-09-02 M-Link Co., Ltd. In-wheel motor and electrically driven vehicle
JP4725684B1 (ja) 2010-08-10 2011-07-13 株式会社安川電機 発電機および風力発電システム
JP2012125088A (ja) 2010-12-10 2012-06-28 Seiko Epson Corp 電気機械装置及びロボット及び車輪
JP2012149546A (ja) * 2011-01-18 2012-08-09 Panasonic Corp 送風装置およびそれを搭載した電気機器
JP2012165614A (ja) 2011-02-09 2012-08-30 Toyota Motor Corp 回転電機
JP2012175755A (ja) 2011-02-18 2012-09-10 Toshiba Corp 永久磁石回転電機
JP5762105B2 (ja) 2011-04-20 2015-08-12 三菱電機株式会社 永久磁石型回転電機の製造方法
DE102011100816A1 (de) 2011-05-06 2012-11-08 Audi Ag Antriebsanordnung
JP2012244643A (ja) 2011-05-16 2012-12-10 Seiko Epson Corp コアレス電気機械装置、移動体、及びロボット
JP5545413B2 (ja) 2011-07-19 2014-07-09 トヨタ自動車株式会社 ハイブリッド車両用動力伝達装置の潤滑装置
JP2013051765A (ja) 2011-08-30 2013-03-14 Minebea Motor Manufacturing Corp Dcモータ
JP2013078167A (ja) 2011-09-29 2013-04-25 Seiko Epson Corp コアレス電気機械装置、移動体、ロボット及びコアレス電気機械装置の製造方法
DE102012016401A1 (de) 2011-11-20 2013-05-23 Krohne Ag Magnetisierungsvorrichtung für ein kernmagnetisches Durchflussmessgerät
JP5664927B2 (ja) 2011-11-21 2015-02-04 アイシン・エィ・ダブリュ株式会社 導体線及び回転電機
JP5929272B2 (ja) 2012-02-07 2016-06-01 株式会社デンソー 車両用回転電機の回転子およびその製造方法
JP2013207858A (ja) * 2012-03-27 2013-10-07 Asmo Co Ltd モータ
JP5893462B2 (ja) 2012-03-26 2016-03-23 東芝三菱電機産業システム株式会社 回転電機
US9425664B2 (en) 2012-05-09 2016-08-23 Thingap, Llc Composite stator for electromechanical power conversion
JP5910738B2 (ja) 2012-06-01 2016-04-27 株式会社安川電機 回転電機、回転電機用ステータおよび車両
US9692265B2 (en) 2012-06-26 2017-06-27 Nissan Motor Co., Ltd. Variable magnetic flux-type rotary electric machine
CN103066727B (zh) 2012-09-06 2015-06-03 哈尔滨工业大学 一种新型电机冷却及电涡流抑制结构
JP6064491B2 (ja) 2012-09-26 2017-01-25 アイシン精機株式会社 回転電機のステータの固定構造及びその固定方法
JP2014093835A (ja) 2012-11-01 2014-05-19 Nippon Densan Corp バスバーユニット
JP5757281B2 (ja) 2012-11-02 2015-07-29 株式会社デンソー 回転電機のロータ
JP5692247B2 (ja) * 2013-01-11 2015-04-01 トヨタ自動車株式会社 モータ巻線用集合導線
DE102013000421A1 (de) 2013-01-14 2014-07-17 Dorma Gmbh & Co. Kg Antriebseinheit für eine Karusselltür in einer flachen. scheibenförmigen Bauform
US9595851B2 (en) 2013-01-23 2017-03-14 Mitsubishi Electric Corporation Rotary electric machine
JP2014213622A (ja) 2013-04-23 2014-11-17 株式会社デンソー インホイールモータユニット
JP2016129439A (ja) 2013-04-25 2016-07-14 パナソニック株式会社 電動機およびそれを備えた電気機器
JP6343127B2 (ja) 2013-06-06 2018-06-13 日本電産株式会社 モータ
JP2015018633A (ja) 2013-07-09 2015-01-29 株式会社リコー 誘導加熱装置、誘導加熱定着装置及び画像形成装置
JP6219078B2 (ja) 2013-07-09 2017-10-25 佐藤産業株式会社 露回収構造
JP2015033173A (ja) 2013-07-31 2015-02-16 アスモ株式会社 モータ
JP6396648B2 (ja) * 2013-08-19 2018-09-26 Ntn株式会社 発電機
JP6326614B2 (ja) 2013-11-08 2018-05-23 株式会社明電舎 永久磁石表面貼付形モータの磁石固定構造及びその設計手法
JP6434694B2 (ja) 2013-12-20 2018-12-05 Ntn株式会社 回転電機機械
JP2015142484A (ja) 2014-01-30 2015-08-03 Ntn株式会社 表面磁石型回転電機
JP2015177725A (ja) * 2014-03-18 2015-10-05 アイシン・エィ・ダブリュ株式会社 回転電機用コイル
EP3866306A1 (en) * 2014-03-27 2021-08-18 TDK Corporation Permanent magnet piece, permanent magnet assembly, permanent-magnet application device, and motor
WO2015156044A1 (ja) 2014-04-08 2015-10-15 三菱電機株式会社 永久磁石埋込型回転電機
JP6494922B2 (ja) 2014-04-24 2019-04-03 東芝ライフスタイル株式会社 モータ、ランドリー機器、及びモータの製造方法
JP6349933B2 (ja) 2014-05-07 2018-07-04 日本精工株式会社 電動機、電動パワーステアリング装置および車両
JP6501507B2 (ja) 2014-06-02 2019-04-17 株式会社小松製作所 回転電機及び回転電機の制御装置
JP2015228762A (ja) * 2014-06-02 2015-12-17 日東電工株式会社 永久磁石、永久磁石の製造方法、回転電機及び回転電機の製造方法
JP6265087B2 (ja) 2014-09-01 2018-01-24 トヨタ自動車株式会社 車両の駆動装置
WO2016035358A1 (ja) 2014-09-04 2016-03-10 株式会社エムリンク 円筒コイルを含む固定子を備えた無鉄心回転電気機械およびその冷却方法
JP6324521B2 (ja) 2014-09-22 2018-05-16 三菱電機株式会社 回転電機の固定子
JP2016072457A (ja) 2014-09-30 2016-05-09 住友金属鉱山株式会社 異方性ボンド磁石の着磁方法
DE102014220835A1 (de) 2014-10-15 2016-04-21 Zf Friedrichshafen Ag Antriebsvorrichtung für einen Kraftfahrzeugantriebsstrang
JP2016092995A (ja) 2014-11-06 2016-05-23 Ntn株式会社 インホイールモータ装置およびそのインホイールモータ制御装置
JP6369294B2 (ja) * 2014-11-06 2018-08-08 株式会社デンソー 回転電機の固定子
JP6539997B2 (ja) 2014-11-25 2019-07-10 日本電産株式会社 モータ
JP6382726B2 (ja) 2015-01-08 2018-08-29 住友電気工業株式会社 コイル用導体線、及びコイル用電線
JP6360442B2 (ja) 2015-01-14 2018-07-18 株式会社日立製作所 永久磁石同期モータ、巻線切替モータ駆動装置、及び、それらを用いた冷凍空調機器、電動車両
US10079827B2 (en) 2015-03-16 2018-09-18 Ricoh Company, Ltd. Information processing apparatus, information processing method, and information processing system
WO2016152979A1 (ja) 2015-03-24 2016-09-29 日東電工株式会社 希土類磁石形成用焼結体及び希土類焼結磁石
JP6485229B2 (ja) 2015-06-03 2019-03-20 日産自動車株式会社 電動駆動機
JP6503950B2 (ja) 2015-07-13 2019-04-24 株式会社デンソー ロータ及びブラシレスモータ
JP6677029B2 (ja) 2015-07-21 2020-04-08 株式会社デンソー モータ
JP2017060321A (ja) 2015-09-17 2017-03-23 株式会社東芝 回転電機コイルおよび回転電機
JP2017070140A (ja) * 2015-10-01 2017-04-06 株式会社エムリンク 折り曲げにより形成された円筒形状のコイル体、該コイル体の製造方法、及び該コイル体を用いた回転電機
JP6781536B2 (ja) 2015-10-02 2020-11-04 東芝三菱電機産業システム株式会社 永久磁石式回転子および永久磁石式回転電機
JP6706487B2 (ja) 2015-11-19 2020-06-10 日東電工株式会社 希土類永久磁石をもった回転子を備える回転電機
CN105305756A (zh) * 2015-11-30 2016-02-03 河南理工大学 凸极halbach复合永磁旋转电机
DE102016123423A1 (de) 2015-12-16 2017-06-22 Johnson Electric S.A. Motor
US9819289B2 (en) 2016-02-01 2017-11-14 Denso Corporation Control apparatus for rotating electric machine
JP6005886B1 (ja) * 2016-03-03 2016-10-12 株式会社エムリンク 円筒コイルを備えた固定子を含む無鉄心回転電気機械およびその冷却方法
JP2017169316A (ja) 2016-03-15 2017-09-21 アスモ株式会社 モータ
JP6670644B2 (ja) 2016-03-15 2020-03-25 本田技研工業株式会社 電動パワーユニット
JP6597705B2 (ja) 2016-06-03 2019-10-30 株式会社デンソー 回転電機
JP2018074767A (ja) 2016-10-31 2018-05-10 日立オートモティブシステムズエンジニアリング株式会社 永久磁石同期モータ
GB2558660A (en) 2017-01-16 2018-07-18 Magnomatics Ltd An electrical machine and a method of operating an electrical machine
US20180262091A1 (en) 2017-03-13 2018-09-13 Hamilton Sundstrand Corporation Permanent magnet starter-generator with magnetic flux regulation
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
JP2019024293A (ja) 2017-07-21 2019-02-14 株式会社デンソー 回転電機
DE112018003942T5 (de) 2017-08-01 2020-05-07 Denso Corporation Magnetische Erzeugungseinrichtung für einen Motor, Weichmagnetischer Kern und Verfahren zur Herstellung eines Magneten

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303351A (ja) * 1989-05-16 1990-12-17 Canon Electron Inc 小型ブラシレスモータ
JP2002191146A (ja) * 2000-12-20 2002-07-05 Yaskawa Electric Corp ギャップワインディングモータ

Also Published As

Publication number Publication date
JP6874675B2 (ja) 2021-05-19
DE112018003735T5 (de) 2020-04-16
JP2019024295A (ja) 2019-02-14
US20200161939A1 (en) 2020-05-21
JP2021048769A (ja) 2021-03-25
JP7095730B2 (ja) 2022-07-05
JP2019024293A (ja) 2019-02-14
JP6977555B2 (ja) 2021-12-08
JP2021048768A (ja) 2021-03-25
JP2019024294A (ja) 2019-02-14
JP2019024297A (ja) 2019-02-14
JP7136272B2 (ja) 2022-09-13
JP2019024298A (ja) 2019-02-14
JP7095731B2 (ja) 2022-07-05
JP6939543B2 (ja) 2021-09-22
JP2019024296A (ja) 2019-02-14
JP6977556B2 (ja) 2021-12-08
JP6885328B2 (ja) 2021-06-16
CN110959245A (zh) 2020-04-03
US11374465B2 (en) 2022-06-28
CN110959245B (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
JP6885328B2 (ja) 回転電機
JP6922863B2 (ja) 回転電機
CN113972807B (zh) 旋转电机
JP7056441B2 (ja) 回転電機
JP7238318B2 (ja) 回転電機
JP6950652B2 (ja) 回転電機
JP2020114167A (ja) 制御装置及び回転電機システム
CN112470369B (zh) 旋转电机的定子
WO2020145078A1 (ja) 制御装置及び回転電機システム
JP7031539B2 (ja) 回転電機
JP7095550B2 (ja) 回転電機の制御装置及び回転電機の制御方法
JP7056479B2 (ja) 回転電機
JP7091946B2 (ja) 回転電機
CN112840526B (zh) 旋转电机

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R151 Written notification of patent or utility model registration

Ref document number: 7136272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151