JP2008538283A - 細胞および他の粒子を濃縮および改変するためのデバイスおよび方法 - Google Patents

細胞および他の粒子を濃縮および改変するためのデバイスおよび方法 Download PDF

Info

Publication number
JP2008538283A
JP2008538283A JP2008505514A JP2008505514A JP2008538283A JP 2008538283 A JP2008538283 A JP 2008538283A JP 2008505514 A JP2008505514 A JP 2008505514A JP 2008505514 A JP2008505514 A JP 2008505514A JP 2008538283 A JP2008538283 A JP 2008538283A
Authority
JP
Japan
Prior art keywords
sample
cells
particles
cell
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008505514A
Other languages
English (en)
Other versions
JP2008538283A5 (ja
Inventor
ローティエン リチャード ファン
トーマス エイ. バーバー
ブルース エル. カルバルホ
ラヴィ カプール
ポール ヴェルナッチ
メーメット トーナー
ジファ ワン
Original Assignee
リビング マイクロシステムズ
ザ ジェネラル ホスピタル コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リビング マイクロシステムズ, ザ ジェネラル ホスピタル コーポレイション filed Critical リビング マイクロシステムズ
Publication of JP2008538283A publication Critical patent/JP2008538283A/ja
Publication of JP2008538283A5 publication Critical patent/JP2008538283A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/32Magnetic separation acting on the medium containing the substance being separated, e.g. magneto-gravimetric-, magnetohydrostatic-, or magnetohydrodynamic separation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/06Hydrolysis; Cell lysis; Extraction of intracellular or cell wall material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/0005Field flow fractionation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0472Diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00237Handling microquantities of analyte, e.g. microvalves, capillary networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25375Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Fluid Mechanics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Ecology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、粒子の決定論的な分離のためのデバイスおよび方法を特徴とする。例示的な方法は、デバイス内における、所望の粒子に関する試料の濃縮、または所望の粒子の改変を含む。本発明のデバイスおよび方法は、都合のよいことには、試料中、例えば母体の血液中に存在する極めて少ない細胞、例えば胎児の細胞、および極めて少ない細胞成分、例えば胎児細胞の核を濃縮するために使用される。本発明はさらに、試料中の対象細胞を、例えば細胞成分、例えば対象細胞の核から臨床情報を得るために、優先的に溶解させる方法を提供する。一般に本発明の方法は、試料中に含まれる対象細胞と他の細胞(例えば他の有核細胞)との間における差次的な溶解を利用する。

Description

本発明は、細胞の分離および流体デバイスの分野に関する。
発明の背景
臨床または環境に関連する情報は、試料中に存在する場合がしばしばあるが、量が極めて少ないために検出できない。したがって、そのような情報の検出能力を高めるために、さまざまな濃縮法または増幅法がしばしば使用される。
細胞の場合、さまざまなフローサイトメトリーや細胞選別法が利用可能であるが、これらの手法は典型的には、大量の試料および熟練した操作者を必要とする、大型で高価な一連の装置を使用する。このような血球計算器および選別器は、細胞の分離を達成するために、静電偏向法、遠心分離法、蛍光活性化細胞選別法(FACS)、および磁気活性化細胞選別法(MACS)などの方法を使用する。これらの方法は、試料の極めて少ない成分の解析を可能とするように試料を十分に濃縮できないという問題にしばしば遭遇する。さらに、このような手法は、そのような極めて少ない成分の、例えば対象成分の非効率的な分離または分解による、許容できない損失につながる場合がある。
したがって、試料を濃縮するための新たなデバイスおよび方法が求められている。
発明の概要
一般に本発明は、臨界サイズを上回る流体力学的サイズを有する粒子を流体中において、構造中における流体の流れの平均的な方向に平行でない方向に確定的に偏向させる、1つもしくは複数の構造を含むデバイスを特徴とする。例示的な構造は、ギャップを通過する流体が、メジャーフラックスの平均的な方向が、流路内における流体の流れの平均的な方向に平行とならず、および第1の外部領域に由来するメジャーフラックスが第2の外部領域に誘導されるか、または粒子がメジャーフラックス中に誘導される第2の外部領域から離れるように誘導されるように、メジャーフラックスとマイナーフラックスに不均等に分けられる、ギャップのネットワークを形成する障害物のアレイを含む。障害物のアレイは好ましくは、第1の行内におけるギャップを通過する流体が、第2の行内における2つのギャップに不均等に分けられるように相互に側方に動かされる第1および第2の行を含む。このような構造は、1つの流路内に直列に、同じ流路内に平行に、例えば複式配置で、デバイス内の多数の流路内に平行に、またはこれらを組み合わせることで配置可能である。各流路は、少なくとも1つの流入口、および少なくとも1つの流出口を有することになる。1つの流入口および流出口を平行に、同じ流路内または異なる流路内で、2つまたは2つ以上の構造に使用することができる。または個々の構造は、それ自体の流入口および流出口を有する場合があるか、または1つの構造は、例えば2種類の異なる流体を同時に導入または回収するために、多数の流入口および流出口を含む場合がある。
本発明はさらに、本発明のデバイスを使用して試料を濃縮および改変する方法を特徴とする。
好ましい態様では、本発明のデバイスは、マイクロ流体流路を含む。他の好ましい態様では、本発明のデバイスは、血液成分、例えば赤血球、白血球、または血小板を全血から、有核赤血球などの極めて少ない細胞を母体血液から、および幹細胞、病原性生物もしくは寄生性生物、または宿主もしくは移植免疫細胞を血液から分離するように構成される。この方法は、あらゆる血液細胞、またはこの一部を血漿から、または試料中の細胞成分もしくは細胞内寄生虫、もしくはこれらの小集団などのあらゆる粒子を懸濁状流体から分離するために使用することもできる。本発明のデバイス内で分離可能な他の粒子は、本明細書に記載されている。
本発明はさらに、例えば、対象細胞、例えば有核胎児赤血球の細胞成分、例えば核または核酸から臨床情報を得るために、試料中の対象細胞を優先的に溶解させる方法を提供する。一般に、このような方法では、試料中における対象細胞と他の細胞(例えば他の有核細胞)間における差次的な溶解を利用する。ある態様では、優先的な溶解は、対象細胞、例えば赤血球もしくは胎児の有核赤血球の少なくとも10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、または99%の溶解を、および所望されていない細胞、例えば母体白血球もしくは母体有核赤血球の50%未満、40%未満、30%未満、20%未満、10%未満、5%未満、または1%未満の溶解をもたらす。
「ギャップ」とは、流体および/または粒子が通過可能な開口部を意味する。例えばギャップは、毛細管か、流体が通過可能な2つの障害物間の空間であるか、または水性流体が制限される、通常は疎水性である表面における親水性パターンである。本発明の好ましい態様では、ギャップのネットワークは、障害物のアレイによって規定される。この態様では、ギャップは、隣接する障害物間の空間である。好ましい態様では、ギャップのネットワークは、基質の表面上に障害物のアレイによって構築される。
「障害物」とは、流路内を流れる際の障害、例えば、一方の表面からの突起を意味する。例えば障害物は、ベース基質、または水性流体に対する疎水性障害物の上に突き出たポストを意味する場合がある。いくつかの態様では、障害物は部分的に透過性である場合がある。例えば障害物は、孔が水性成分の透過を可能とするが、極めて小さいために分離対象の粒子が侵入できない多孔性材料から作られるポストの場合がある。
「流体力学的サイズ」とは、流れ、ポスト、および他の粒子と相互作用する粒子の有効サイズを意味する。この表現は、流れ中における粒子の体積、形状、および変形性を示す一般的な表現として使用される。
「流れ-抽出境界」とは、アレイから流体を除去するために設計された境界を意味する。
「流れ-供給境界」とは、アレイに流体を添加するために設計された境界を意味する。
「膨張試薬」と現は、粒子の流体力学的半径を増加させる試薬を意味する。膨張試薬は、体積を増やすこと、変形性を低下させること、または粒子の形状を変化させることによって作用する場合がある。
「収縮試薬」とは、粒子の流体力学的半径を減少させる試薬を意味する。収縮試薬は、粒子の体積を減少させること、変形性を高めること、または形状を変化させることによって作用する場合がある。
「標識試薬」とは、粒子に結合するか、または粒子とともに局在化されて、例えば、形状、形態、色、蛍光、発光、燐光、吸光度、磁気的性質、または放出放射線によって検出可能な試薬を意味する。
「流路」とは、流体が流れ得るギャップを意味する。流路は、毛細管、導管、または親水性パターンのストリップ、または水性流体が制限される疎水性表面である場合がある。
「マイクロ流体の」とは、少なくとも1 mm未満の寸法を有することを意味する。
「濃縮された試料」とは、典型的には試料中に存在する他の成分に対して、対象となる細胞の相対集団または粒子を増やすように処理された、細胞または他の粒子を含む試料を意味する。例えば試料は、対象となる粒子の相対集団を、少なくとも10%、25%、50%、75%、100%に、または少なくとも1000倍、10,000倍、100,000倍、もしくは1,000,000倍に増やすことで濃縮可能である。
「細胞内活性化」とは、転写因子の活性化、またはキナーゼもしくは他の代謝経路の活性化に至る、セカンドメッセンジャー経路の活性化を意味する。細胞膜の外側に存在する抗原の調節による細胞内活性化は、受容体輸送の変化に至る場合もある。
「細胞試料」とは、細胞またはこの成分を含む試料を意味する。このような試料は、天然の流体(例えば血液、リンパ液、脳脊髄液、尿、子宮頚部洗浄液(cervical lavage)、および水性試料)、ならびに細胞が導入された流体(例えば培地および液化組織試料)を含む。この表現は溶解物も含む。
「生物学的試料」とは、生物起源の任意の試料、または生物学的粒子を含むか、もしくは潜在的に含む任意の試料を意味する。好ましい生物学的試料は細胞試料である。
「生物学的粒子」とは、水性溶媒に不溶性の、生物起源の任意の化学種を意味する。例には、細胞、粒子状細胞成分、ウイルス、ならびにタンパク質、脂質、核酸、および糖質を含む複合体などがある。
細胞の「成分」(すなわち「細胞成分」)とは、細胞の溶解によって少なくとも部分的に分離可能な、細胞の任意の成分を意味する。細胞成分は、細胞小器官(例えば核、核周囲区画、核膜、ミトコンドリア、葉緑体、もしくは細胞膜)、ポリマーもしくは分子の複合体(例えば脂質、多糖、タンパク質(膜タンパク質、トランス膜タンパク質、もしくは細胞質タンパク質)、核酸(天然の核酸、治療用の核酸、もしくは病原性の核酸)、ウイルス粒子、もしくはリボソーム)、細胞内の寄生虫もしくは病原体、または他の分子(例えばホルモン、イオン、補因子、もしくは薬剤)の場合がある。
「血液成分」とは、宿主の赤血球、白血球、および血小板を含む、全血の任意の成分を意味する。血液成分は、血漿の成分、例えばタンパク質、脂質、核酸、および糖質、ならびに例えば現在もしくは過去の妊娠、臓器移植、または感染のために血液中に存在し得る任意の他の細胞も含む。
「対応物」とは、詳細なレベルでは(例えば配列)が異なるものの同じクラスである細胞成分を意味する。例には、さまざまな細胞のタイプ、例えば胎児赤血球や母体白血球に由来する核、ミトコンドリア、mRNA、およびリボソームなどがある。
「優先的な溶解」とは、対象細胞を溶解の時間スケールで、所望されていない細胞より大きな規模で溶解させることを意味する。所望されていない細胞は典型的には、対象細胞、もしくはその対応物中に存在する成分と同じ細胞成分、または対象細胞の内容物を損なう細胞成分を含む。優先的な溶解は、例えば所望されていない細胞の50%未満、40%未満、30%未満、20%未満、10%未満、5%未満、または1%未満を溶解しながら、対象細胞の少なくとも10%、20%、30%、40%、50%、60%、70%、80%、90%、95%、または99%の溶解を生じる場合がある。優先的な溶解は、所望されていない細胞に対する対象細胞の溶解の比をもたらす場合もある。
他の特徴および利点は、以下の記述および請求項から明らかになる。
発明の詳細な説明
デバイス
一般にデバイスは、流体の成分の決定論的な側方変位を可能とする1つもしくは複数の障害物のアレイを含む。この目的に障害物を使用する、本発明のデバイスとは異なるが、本発明のデバイスに似ている先行技術のデバイスは例えば、Huang et al., Science 304, 987-990 (2004)、および米国特許出願第20040144651号に記載されている。サイズに従って粒子を分離するための本発明のデバイスでは、ギャップを通過する流体が、後続のギャップに不均等に分けられる、ギャップのネットワークのアレイを使用する。アレイは、ギャップを通過する流体が、ギャップが同一の寸法の場合であっても不均等に分けられるように配置されたギャップのネットワークを含む。
デバイスは、分離対象となる細胞を、ギャップのアレイを介して運ぶ流れを使用する。流れは、アレイから見て小さな角度(流れ角)を設けて配置される。臨界サイズより大きい流体力学的サイズを有する細胞は、アレイ内の線方向に沿って移動する一方で、臨界サイズより小さい流体力学的サイズを有する細胞は、異なる方向の流れに従う。デバイス内における流れは層流条件下で生じる。
臨界サイズは、複数の設計パラメータの関数である。図1の障害物アレイに関連して、ポストの各行は、手前の行に対してΔλだけ水平に傾いている。ここでλは、ポストどうしの中心間の距離を意味する(図1A)。パラメーターΔλ/λ(「分岐比」、ε)は、後続のポストの左側に分岐した流れの比を決定する。図1でεは、説明の便宜上、1/3としてある。一般に、2本のポスト間のギャップを通過するフラックスがΦであれば、マイナーフラックスはεΦとなり、メジャーフラックスは(1-εΦ)となる(図2)。この例では、ギャップを通過するフラックスは基本的に3本に分かれる(図1B)。ギャップを通過する3本のフラックスのそれぞれが、ポストのアレイの周囲を進む一方で、個々のフラックスの平均的な方向は、流れの全体的な方向にある。図1Cは、アレイを通過する、臨界サイズを上回るサイズの粒子の動きを示す。このような粒子はメジャーフラックスとともに動き、各ギャップを通過するメジャーフラックスへ連続的に移される。
図2に関しては、臨界サイズは約2R臨界である。ここでR臨界は、流れない流れのラインとポストとの間の距離である。仮に粒子、例えば細胞の重心がポストから少なくともR臨界の位置にある場合、粒子はメジャーフラックスに従い、アレイの線方向に沿って動くと考えられる。仮に、粒子の質量中心がポストからR臨界以内にある場合は、マイナーフラックスに異なる方向で従う。R臨界は、ギャップを挟んだ流れプロファイルが既知であれば決定可能である(図3);これは、マイナーフラックスを形成すると考えられる流体の層の厚みである。任意のギャップサイズdに関して、R臨界は分岐比εを基に調整することができる。一般に、小さいεほどR臨界は小さくなる。
決定論的な側方変位用のアレイでは、異なる形状の粒子は異なるサイズをもつようにふるまう(図4)。例えばリンパ球は直径が約5μmの球状であり、赤血球は直径が約7μmで厚みが約1.5μmの両凹面の円板である。赤血球の長軸(直径)は、リンパ球の長軸より長いが、短軸(厚み)は短い。仮に赤血球が、流れによるポストのアレイによって駆動時に、その長軸を揃えて流れると、流体力学的サイズは、事実上、約1.5μmの厚みとなり、これはリンパ球より短い。赤血球がポストのアレイによって、流体力学的な流れによって駆動される場合は、その長軸が流れに沿って整列し、リンパ球より事実上「小さい」、約1.5μm幅の粒子のようにふるまう傾向がある。したがって、このような方法およびデバイスは、細胞を、その形状にしたがって分離可能であるが、細胞の容積は同じ場合がある。加えて、さまざまな変形性を有する粒子は、異なるサイズをもつかのようにふるまう(図5)。例えば、変形していない形状を有する2つの粒子は、決定論的な側方変位によって分離され得る。というのは、変形性のより大きな細胞は、アレイ内の障害物と接触時に変形して形状を変える可能性があるからである。したがって、デバイス内における分離は、粒子の物理的寸法、形状、および変形性を含む、流体力学的サイズに影響を及ぼす任意のパラメータを基に達成することができる。
図6および図7によれば、粒子の混合物、例えばさまざまな流体力学的サイズの細胞をアレイの先頭から供給し、および図に示すように底部で粒子を回収することで、臨界サイズ2R臨界より大きな細胞を含む排出と、臨界サイズより小さい細胞を含む廃液の2つの生成物が得られる。図7では「廃液」と表記されているが、臨界サイズに満たない粒子は、臨界サイズを上回る粒子が廃棄される一方で回収され得る。いずれのタイプの排出とも、例えば試料を2つまたは2つ以上の下位試料に分画することで、望ましくは回収することもできる。ギャップサイズより大きい細胞はアレイ内部に捕捉されることになる。したがってアレイは、作業サイズの範囲を有する。細胞がメジャーフラックス内に誘導されるためには、臨界サイズ(2R臨界)より大きく、かつ最大通過サイズ(アレイのギャップサイズ)より小さくなければならない。
本発明のデバイスの使用
本発明は、細菌、ウイルス、真菌、細胞、細胞成分、ウイルス、核酸、タンパク質、およびタンパク質複合体を含む粒子の、サイズによる分離用の改善されたデバイスを特徴とする。デバイスは、試料中の粒子に対してさまざまな操作を行うために使用することができる。このような操作は、サイズベースの分画、または粒子そのもの、もしくは粒子を運ぶ流体の改変を含む、粒子の濃縮すなわち高濃度化を含む。好ましくはデバイスは、不均一な混合物から極めて少ない粒子を濃縮するために、または、極めて少ない粒子を、例えば懸濁物中の液体を交換することで、または粒子に試薬を接触させることで変化させるために使用される。このようなデバイスによって、細胞に加わるストレスを抑えた、例えば細胞の機械的な溶解または細胞内活性化を抑えた高度の濃縮が可能となる。
主に細胞に関して記述したが、本発明のデバイスは、サイズが本発明のデバイスにおける分離が可能な他の任意の粒子を対象に使用することができる。
アレイの設計
単ステージ型アレイ。1つの態様では、単ステージは障害物のアレイ、例えば円筒形のポストを含む(図1D)。ある態様では、アレイは、赤血球から白血球を分離する際に、臨界サイズより数倍大きい最大通過サイズを有する。この結果は、大きなギャップサイズdと、小さな分岐比εを組み合わせることで達成可能である。好ましい態様では、εは最大で1/2であり、例えば最大で1/3、1/10、1/30、1/100、1/300、または1/1000である。このような態様では、障害物の形状が、ギャップ中における流れプロファイルに影響を及ぼす可能性がある;しかしながら障害物は、アレイを短くするために、流れの方向に圧縮され得る(図1E)。単ステージ型アレイは、本明細書に記載されたバイパス流路を含む場合がある。
マルチステージ型アレイ。別の態様では、マルチステージを使用して、サイズの幅の広い粒子を分離する。例示的なデバイスを図7に示す。図のデバイスは3つのステージを有しているが、任意の数のステージを使用することができる。典型的には、第1のステージにおけるカットオフサイズ(すなわち臨界サイズ)は、第2のステージにおけるカットオフサイズより大きく、第1のステージのカットオフサイズは、第2のステージの最大通過サイズより小さい(図8)。同じことは、後続のステージについても言える。第1のステージは、例えば、第2のステージにおいて目詰まりを引き起こす可能性のある粒子を、粒子が第2のステージに到達する前に偏向させる(そして除去する)。同様に、第2のステージは、第3のステージにおいて目詰まりを引き起こす可能性のある粒子を、粒子が第3のステージに到達する前に偏向させる(そして除去する)。一般にアレイは、望ましいならば、多くのステージを有する場合がある。
記載されたように、マルチステージ型アレイでは、大きな粒子、例えば下流で目詰まりを引き起こす可能性のある細胞が最初に偏向されるので、偏向された粒子は、目詰まりを避けるために下流のステージを迂回する必要がある。したがって本発明のデバイスは、アレイから排出を除去するバイパス流路を含む場合がある。本明細書では、臨界サイズを上回る粒子を除去することについて説明したが、バイパス流路を、アレイの任意の部分から排出を除去するために使用することもできる。
バイパス流路のさまざまな設計について、以下に説明する。
単バイパス流路。この設計では、全てのステージが1つのバイパス流路を共有するか、または1つのステージのみ存在する。バイパス流路の物理的な境界は、一方の側ではアレイの境界によって、および別の側では側壁によって定まる(図9〜11)。単バイパス流路は、中央のバイパス流路が2つのアレイ(すなわち2つの外部領域)を隔てるように、複式アレイで使用することもできる(図12)。
単バイパス流路は、デバイスの全体において一定の流れを維持するために、アレイと連結して設計することもできる(図13)。バイパス流路は、流路内における流れがアレイ内における流れに干渉しないように、全てのステージにわたって一定のフラックスを維持するように設計された、多様な幅を有する。このような設計は、複式アレイについても使用できる(図14)。単バイパス流路は、全てのステージにわたって実質的に一定の流体抵抗を維持するために、アレイと連結されるように設計することもできる(図15)。このような設計は、複式アレイで使用することもできる(図16)。
マルチバイパス流路。この設計(図17)では、各ステージが専用のバイパス流路を有し、流路は、例えば異なる流路の内容物の混合を防ぐために、側壁によって相互に隔てられている。大きな粒子、例えば細胞は、メジャーフラックス中ので第1のステージの右下の角に向かって、および続いてバイパス流路(図17のバイパス流路1)中に偏向される。第2のステージにおいて目詰まりを引き起こさないと考えられる、より小さな細胞は第2のステージへと進み、および第2のステージの臨界サイズを上回る細胞は、第2のステージの右下の角に向かって、および別のバイパス流路(図17のバイパス流路2)中に偏向される。この設計は望ましいならば、多くのステージに関して繰り返すことができる。この態様では、バイパス流路は流体連結されていないために、別個の回収および他の操作が可能となる。バイパス流路は直線的である必要はなく、相互に物理的に平行である必要もない(図18)。マルチバイパス流路は、複式アレイで使用することもできる(図19)。
マルチバイパス流路は、デバイスの全体にわたって一定のフラックスを維持するために、アレイと連結されるように設計することができる(図20)。この例では、バイパス流路は、流れの量を、アレイ内における流れが攪拌されないように、すなわち実質的に一定となるように設計される。このような設計は、複式アレイで使用することもできる(図21)。この設計では、中央のバイパス流路は、複式アレイ内の2つのアレイ間で共有される場合がある。
最適な境界の設計。仮にアレイが無限に大きければ、流れの分布は、全てのギャップにおいて同じとなるであろう。ギャップを通過するフラックスΦは同じとなるであろうし、マイナーフラックスは全てのギャップに関してεΦとなるであろう。実際にはアレイの境界は、この無限の流れパターンを乱す。アレイの境界の一部分は、無限のアレイの流れパターンを生じるように設計可能である。境界は、流れ-供給型、すなわち境界が流体をアレイ内に注入するか、または流れ-抽出型、すなわち境界がアレイから流体を抽出する場合がある。
好ましい流れ-抽出境界が次第に拡がってゆくことで、境界における個々のギャップからεΦ(図22の矢印)が抽出される(d=24μm、ε=1/60)。例えば、アレイと側壁間の距離が次第に広がってゆくことで、境界に沿った各ギャップに由来する境界へのεΦの追加が可能となる。このアレイの内部における流れパターンは、このような境界の設計のためにバイパス流路の影響を受けない。
好ましい流れ-供給境界が次第に狭まってゆくことで、εΦ(図23の矢印)が、境界における各ギャップ中に正確に供給される(d=24μm、ε=1/60)。例えば、アレイと側壁間の距離が次第に狭くなってゆくことで、境界から境界に沿った各ギャップへのεΦの追加が可能となる。この場合も、アレイ内部における流れパターンは、境界の設計のためにバイパス流路の影響を受けない。
流れ-供給境界は、アレイのギャップと同等の幅か、またはこれより広い幅を有する場合もある(図24)(d=24μm、ε=1/60)。例えば粒子の回収を可能とするために、境界がバイパス流路として機能する場合には、広い境界が望ましい場合がある。アレイを供給するために、その全体的な流れの一部を使用し、およびεΦを境界において各ギャップ中に供給する境界を使用することが可能である(図24の矢印)。
図25は、複式アレイ内の単バイパス流路を示す(ε=1/10、d=8μm)。バイパス流路は、2か所の流れ-供給境界を含む。バイパス流路内の点線1を超えるフラックスはΦバイパスである。流れのΦは、点線の左側に向かってギャップに由来するΦバイパスと合流する。境界における障害物の形状は、アレイ内を進む流れが境界における各ギャップにおいてεΦとなるように調整される。点線2におけるフラックスもΦバイパスである。
デバイスの設計
流れを規定して安定化させるためのオンチップのフローレジスター
本発明のデバイスは、流体レジスターを利用してアレイ内における流れを規定して安定化することも可能であり、ならびにアレイから回収される流れを規定することもできる。図26は、平面デバイスの略図を示す;試料、例えば血液、流入口流路、緩衝液流入口流路、廃液流出口流路、および生成物流出口流路がそれぞれアレイに連結されている。流入口および流出口はフローレジスターとして作用する。図26は、このような多様なデバイスコンポーネントの対応する流体抵抗も示す。
アレイ内における流れの規定
図27および図28は、デバイスが一定の深さを有し、および任意の圧力の低下によって作動する際の、試料の流れおよび対応する幅、ならびにアレイ内における緩衝液の流れを示す。流れは、圧力低下を抵抗で割った値で規定される。この特定のデバイスでは、I血液とI緩衝液は等しく、およびこれがアレイ内における血液流と緩衝液流の等しい幅を規定する。
回収フラクションの規定
生成物および廃液の流出口流路の相対的な抵抗を制御することで、各フラクションにかかる集積耐性(collection tolerance)を調節することができる。例えば、この特定の一連の回路では、R生成物がR廃液より大きい場合は、より高度に濃縮された生成物フラクションが、廃液フラクションへの喪失の潜在的な増加、および廃液フラクションの希釈を犠牲にして生じることになる。逆に、R生成物がR廃液に満たない場合は、より高く希釈されて、かつより多い収量の生成物フラクションが、廃液流からの潜在的な混入を犠牲にして回収されることになる。
流れの安定化
流入口および流出口の各流路を、流路を挟む圧力の低下が、感知可能か、または全体的な駆動圧の揺らぎより大きくなるように設計することができる。典型的な例では、流入口および流出口における圧力の低下は、駆動圧の0.001〜0.99倍である。
多重化アレイ
本発明は多重化アレイを特徴とする。多数のアレイを1つのデバイス上に集積することで、試料の処理スループットが高くなり、および異なるフラクションを対象とした、複数の試料、または試料の一部の平行処理または操作が可能となる。多重化は、調製用デバイスに、さらに望ましい。最も単純な多重型デバイスは、直列に連結された2つのデバイス、すなわちカスケードを含む。例えば、1つのデバイスのメジャーフラックスからの排出は、第2のデバイスの投入と連結してもよい。または、1つのデバイスのマイナーフラックスからの排出は、第2のデバイスの投入と連結してもよい。
複式化。2つのアレイを隣合わせて、例えば鏡像として配置することができる(図29)。このような配置では、2つのアレイの臨界サイズは同じか、または異なる場合がある。さらにアレイは、メジャーフラックスが2つのアレイの境界に向かって流れるように、各アレイの縁に向かって流れるように、またはこれらを組み合わされるように配置することが可能である。このような複式化されたアレイは例えば、臨界サイズを上回る粒子を回収するために、または試料を例えば緩衝液の交換、反応、または標識を介して改変するために、アレイ間に配置された中央のバイパス流路を含む場合もある。
デバイス上における多重化。複式とすることに加えて、投入が分割された2つまたは2つ以上のアレイを同じデバイス上に配置することができる(図30A)。このような配置は、複数の試料を対象に使用可能なほか、複数のアレイを、同じ試料の平行処理用に同じ流入口に連結することができる。同じ試料の平行処理では、流出口は流体連結される場合もあれば、されない場合もある。例えば、複数のアレイが同じ臨界サイズを有する場合、流出口を、高スループットの試料処理用に連結可能である。別の例では、アレイは、全てが同じ臨界サイズを有さなくてもよいか、またはアレイ内の粒子は、全てが同じ様式で処理されなくともよく、および流出口は流体連結されなくともよい。
多重化は、複数の複式アレイを1つのデバイス上に配置することでも達成できる(図30B)。複式または単式の別を問わず、複数のアレイを、相互に任意の可能な三次元関係となるように配置することができる。
本発明のデバイスは、小さなフットプリントも特徴とする。アレイのフットプリントを小さくすることで、コストの削減と、障害物との衝突数の減少が可能となり、粒子に対する任意の潜在的な機械的損傷または他の作用を除くことができる。マルチステージ型アレイの長さは、ステージ間の境界が流れの方向に対して垂直でなければ短縮可能である。長さを短くすることは、ステージの数が増える場合に重要となる。図31は、小さなフットプリントを擁する3ステージ型アレイを示す。
他のコンポーネント
ギャップのアレイに加えて、本発明のデバイスは、例えば分離、回収、操作、または検出のための他のコンポーネントを含む場合がある。このようなコンポーネントは当技術分野で周知である。アレイは、親和力、磁力、電気泳動度、遠心分離度、および誘電泳動度を利用した分離を含む他のタイプの分離用のコンポーネントを有するデバイス上で使用することもできる。本発明のデバイスは、デバイス、例えばウェルのアレイや平面表面に由来する排出の二次元イメージング用のコンポーネントとともに使用することもできる。好ましくは、本明細書に記載されたギャップのアレイは、親和性を利用した濃縮で使用される。
本発明は、同じデバイス上か、または別のデバイス上のいずれかに位置する、他の濃縮用デバイスとともに使用される場合もある。他の濃縮法は例えば、それぞれが参照により組み入れられる、国際特許出願第2004/029221号および第2004/113877号、米国特許第6,692,952号、米国特許出願第2005/0282293号および第2005/0266433号、ならびに米国特許出願第60/668,415号に記載されている。
作製
本発明のデバイスは、当技術分野で周知の手法で作製することができる。作製法の選択は、デバイスに使用される材料、およびアレイのサイズに依存する。本発明のデバイスの作製に際して例示的な材料には、ガラス、シリコン、鉄、ニッケル、ポリメタクリル酸メチル(PMMA)、ポリカーボネート、ポリスチレン、ポリエチレン、ポリオレフィン、シリコーン(例えばポリジメチルシロキサン)、およびこれらの組み合わせなどがある。その他の材料は、当技術分野で既知である。例えば、ディープ反応性イオンエッチング法(DRIE)で、小さなギャップ、小さな障害物、および大きなアスペクト比(障害物の側方の寸法に対する高さの比)を有するシリコンベースのデバイスが作製される。プラスチック製デバイスの熱成形(エンボス加工法、射出成形法)を、例えば最小の側方素性が20ミクロンで、これらの素性のアスペクト比が3未満の場合に使用することもできる。他の方法には、フォトリソグラフィー(例えば立体リソグラフィーまたはX線フォトリソグラフィー)、モールディング法、エンボス加工法、シリコン微細加工法、湿式もしくは乾式の化学エッチング法、ミリング法、ダイヤモンド切削法、リソグラフィーによる電気めっきおよび成形法(LIGA)、ならびに電気めっき法などがある。例えばガラスについては、従来のフォトリソグラフィーによるシリコン作製法と、これに続く湿式(KOH)または乾式のエッチング(フッ素もしくは他の反応ガスを用いた反応性イオンエッチング)を利用できる。光子吸収効率の高いプラスチック材料の場合には、レーザー微細加工法などの手法を採用することができる。この手法は、プロセスが連続的であるため、低スループットの作製に適している。大量生産されるプラスチック製デバイスには、熱可塑性射出成形法および圧縮成形法が適切な場合がある。(特性の忠実度をサブミクロンで保存する)コンパクトディスクの大量生産に使用される従来の熱可塑性射出成形法で本発明のデバイスを作製することもできる。例えば、デバイスの特徴は従来のフォトリソグラフィーによってガラスマスター上で複製される。ガラスマスターを電気鋳造すると、頑丈で耐熱衝撃性、熱伝導性のある硬質の型が得られる。この型が、特性のプラスチック製デバイスへの射出成形法または圧縮成形法用のマスターテンプレートとして機能する。デバイスの作製に使用されるプラスチック材料、ならびに光学的品質および最終製品のスループットに関する要件に依存して、圧縮成形法または射出成形法を作製法として選択できる。圧縮成形法(ホットエンボス加工法またはリリーフインプリンティング法とも呼ばれる)には、小型作製には優れているが、高いアスペクト比の構造の複製における使用は難しく、サイクル時間が長い高分子量ポリマーと適合するという利点がある。射出成形法は、高アスペクト比の構造に良好に作用するが、低分子量ポリマーに最も適している。
デバイスは、1つもしくは複数のピースで作製後に組み立てられてよい。デバイスの層は、クランプ、接着剤、熱、陽極結合、または表面基間の反応(例えばウエハー結合)によって結合することができる。または、複数の平面上に流路を備えたデバイスを単一ピースとして、例えば立体リソグラフィーまたは他の三次元作製法で作製することができる。
例えば溶解した細胞から放出されるか、または生物学的試料中に存在する細胞または化合物が流路壁へ非特異的に吸着することを抑えるためには、1つもしくは複数の流路壁を、非接着性すなわち反発性となるように化学的に修飾するとよい。壁は、ヒドロゲルの形成に使用されているものなど、市販の焦げ付き防止剤による薄膜コーティング法でコーティングすることができる(例えば単層)。流路壁の修飾に使用可能な化学種の他の例には、オリゴエチレングリコール、フッ化ポリマー、オルガノシラン、チオール、ポリエチレングリコール、ヒアルロン酸、ウシ血清アルブミン、ポリビニルアルコール、ムチン、ポリHEMA、メタクリル化PEG、およびアガロースなどがある。荷電ポリマーを使用して、反対に荷電した分子種を反発させることもできる。反発に使用される化学種のタイプ、および流路壁への結合法は、反発対象となる分子種の性質、ならびに結合対象となる壁および分子種の性質に依存する。このような表面修飾法は当技術分野で周知である。壁には、デバイスが組み立てられる前または後に官能基を付与することができる。流路壁も、試料中の材料、例えば膜断片またはタンパク質を捕捉するためにコーティングすることができる。
操作法
本発明のデバイスは、臨界サイズを上回る粒子か、または臨界サイズに満たない粒子が濃縮された試料の生成が望ましい任意の応用に使用することができる。デバイスの好ましい使用は、細胞、例えば極めて少ない細胞が濃縮された試料の生成である。濃縮試料が生成されたら、解析用に回収することができるほか、例えばさらに濃縮して操作することができる。
本発明の方法では、分離対象の細胞をギャップのアレイを介して運ぶ流れを使用する。流れは、アレイから見て小さな角度(流れ角)をつけて配置される。臨界サイズより大きい流体力学的サイズを有する細胞は、アレイ内の線方向に沿って移動する一方で、臨界サイズより小さい流体力学的サイズを有する細胞は、異なる方向の流れに従う。デバイス内における流れは層流条件で生じる。
本発明の方法は、例えば粒子が接触する場合、水力学的に相互に作用する場合、または別の粒子の周囲における流れの分布に作用を及ぼす場合に、濃縮済みの試料を使用することができる。例えば、このような方法では、ヒトのドナーに由来する全血中の白血球と赤血球を分離することができる。ヒトの血液は典型的には、容積比で約45%の細胞を含む。細胞は、アレイを通過する場合に物理的に接触した状態にあるか、および/または水力学的に相互に結合した状態にある。細胞がアレイの内部に高密度で詰められて、相互に物理的に相互作用可能なことを図32に図式的に示す。
濃縮
1つの態様では、本発明の方法は、所望の流体力学的サイズの粒子が濃縮された試料を生成するために使用される。このような濃縮の応用は、粒子、例えば極めて少ない細胞を濃縮する段階、およびサイズ分画、例えばサイズフィルタリング(特定のサイズ範囲の細胞を選択すること)を含む。このような方法は、細胞の成分、例えば核を濃縮するために使用することもできる。核または他の細胞成分は、試料の操作、例えば本明細書に記載された溶解法によって生成可能なほか、試料中に、例えばアポトーシスもしくはネクローシスによって天然の状態で存在する場合がある。望ましくは、本発明の方法は、初期混合物と比較して、所望の粒子を1個もしくは複数の所望されていない粒子に対して少なくとも1倍、10倍、100倍、1000倍、10,000倍、100,000倍、またはさらには1,000,000倍に潜在的に濃縮しながら、所望の粒子の少なくとも1%、10%、30%、50%、75%、80%、90%、95%、98%、または99%を保持する。濃縮によって、当初の試料と比較して分離対象粒子が希釈される可能性もあるが、試料中の他の粒子に対して、分離対象粒子の濃度は上昇する。好ましくは、希釈率は最大で90%、例えば最大で75%、50%、33%、25%、10%、または1%である。
好ましい態様では、このような方法で、極めて少ない粒子、例えば細胞が濃縮された試料が生成される。一般に、極めて少ない粒子は、試料の10%未満で存在する粒子である。例示的な極めて少ない粒子には、個々の試料に依存して、胎児細胞、(例えば胎児または母体の)有核赤血球、(例えば未分化の)幹細胞、癌細胞、(宿主または移植用の)免疫系細胞、上皮細胞、結合組織細胞、細菌、菌類、ウイルス、寄生虫、および(例えば細菌または原生動物の)病原体などがある。このような極めて少ない粒子は、体液、例えば血液、または環境中の供給源、例えば水性試料中の病原体を含む試料から分離することができる。胎児細胞、例えば有核RBCは母体の末梢血から、例えば発生中の胎児を対象とした性別の判定、および異数性または遺伝的特徴、例えば変異の同定の目的で濃縮することができる。癌細胞も、診断および治療の進行をモニタリングする目的で末梢血から濃縮することができる。体液試料または環境試料を、病原体または寄生虫に関して、例えば大腸菌型の細菌、敗血症などの血液由来の疾患、または細菌性もしくはウイルス性の髄膜炎に関してスクリーニングすることもできる。極めて少ない細胞は、別の生物中に存在する一種の生物体に由来する細胞、例えば移植臓器に由来する細胞も含む。
極めて少ない粒子の濃縮に加えて、本発明の方法を、調製目的の応用に使用することができる。例示的な調製目的の応用には、血液由来の細胞パックの生成などがある。本発明の方法は、血小板、赤血球、および白血球が濃縮されたフラクションが生成されるように構成することができる。多重型デバイスまたはマルチステージ型デバイスを使用することで、3種全ての細胞フラクションを、同一の試料から並列的または直列的に生成させることができる。他の態様では、このような方法で、有核細胞を除核細胞から、例えば臍帯血供給源から分離することができる。
本発明の方法の使用は、濃縮対象の粒子が損傷または他の分解を受ける状況において有利である。本明細書に記載されているように、本発明のデバイスは細胞を、細胞と障害物間の衝突数を最小限に抑えて濃縮するように設計することができる。このような衝突の最小化によって、細胞の機械的な損傷が減り、衝突に起因する細胞の細胞内活性化も防がれる。こうした細胞の慎重な扱いによって、限られた数の極めて少ない細胞が試料中に保持され、細胞内成分の混入または分解に至る細胞の破裂が防がれ、および細胞、例えば幹細胞や血小板の成熟または活性化が防がれる。好ましい態様では、細胞は30%未満、10%未満、5%未満、1%未満、0.1%未満、またはさらには0.01%未満が活性化されるか、または機械的に溶解されるように濃縮される。
図33は、ヒト末梢血中の細胞の典型的なサイズ分布を示す。白血球は約4μm〜約18μmの範囲であり、赤血球は約1.5μm(短軸)である。赤血球から白血球を分離するように設計されたアレイは典型的には2〜4μmのカットオフサイズ(すなわち臨界サイズ)を有し、および最大通過サイズは18μmを上回る。
別の態様では、デバイスは、赤血球の異常の検出器として機能する場合がある。選別の決定論的な原理によって、デバイス内で偏向される除核細胞のパーセンテージの予測が可能となる。マラリア感染や鎌状赤血球貧血などの疾患状態では、赤血球の形状のゆがみや可動性は、偏向される細胞のパーセンテージを大きく変化させる場合がある。この変化は、疾患であると判断するために、赤血球の形状およびサイズに関する顕微鏡観察による追跡対象となる病的生理の可能性を知らせる第1レベルの監視によってモニタリングすることができる。このような方法は、試料中の粒子の可動性に関する任意の変化に関して広く応用可能なモニタリング法でもある。
別の態様では、デバイスは、血小板凝集の検出器として機能する場合がある。選別の決定論的な原理により、デバイス内で偏向される遊離の血小板のパーセンテージが予測可能となる。活性化された血小板は凝集体を形成する可能性があり、凝集体は偏向される可能性がある。この変化は、輸液用の血小板パックの有効性の劣化を知らせる、第1レベルの監視としてモニタリング可能である。この方法は一般に、例えば試料中の粒子の集塊に起因するサイズ上の任意の変化のモニタリングにも応用可能である。
改変
本発明の方法の他の態様では、対象細胞を、懸濁物中で粒子または流体に化学的または物理的に改変可能な改変用試薬を接触させる。このような応用には、精製法、緩衝液交換法、標識法(例えば免疫組織化学的な標識、磁気による標識、および組織化学的な標識、細胞染色、およびフローインサイチュー蛍光ハイブリダイゼーション(FISH))、細胞の固定、細胞の安定化、細胞の溶解、ならびに細胞の活性化などがある。
このような方法によって、粒子を試料から異なる液体中に移動させることができる。図34Aは、この作用を単ステージ型デバイスに関して図示したものであり、図34Bは、この作用をマルチステージ型デバイスに関して示したものであり、図34Cは、この作用を、複式アレイに関して示したものであり、および図34Dは、この効果を、マルチステージ型の複式アレイに関して示したものである。このような方法によって、血液細胞を血漿から分離することができる。1つの液体から別の液体への、粒子のこのような輸送は、一連の改変、例えばオンチップの血液のライト(Wright)染色を実施する際にも使用することができる。このような一連の改変は、粒子を第1の試薬に反応させる段階、ならびに続いて粒子を洗浄用緩衝液に移した後に別の試薬に移す段階を含む場合がある
図35A、図35B、図35Cは、2本のバイパス流路を有する2ステージ型デバイスにおける改変の他の例を示す。この例では、大きな血液粒子が血液から緩衝液へ動かされてステージ1で回収され、中程度の血液粒子が血液からステージ2の緩衝液へ動かされ、ならびに続いてステージ1およびステージ2において血液から除去されない小さな血液粒子が回収される。図35Bは、2つのステージのサイズのカットオフを示し、および図35Cは、回収された3つのフラクションのサイズ分布を示す。
図36は、アレイの側方の縁と流路壁の間に配置されたバイパス流路を有する2ステージ型デバイスにおける改変の例を示す。図37は、2つのステージが流体流路によって連結されている点を除いては、図36のデバイスと同様のデバイスを示す。図38は、小さなフットプリントを備えた2つのステージを有するデバイスにおける改変を示す。図39A〜39Bは、第1および第2のステージからの排出が1本の流路で捕捉されるデバイスにおける改変を示す。図40は、本発明の方法で使用される別のデバイスを示す。
図41は、粒子を対象に複数の経時的な改変を実施するためのデバイスの使用を示す。この方法では、血液粒子が血液から、粒子と反応する試薬中に動かされ、次に反応済みの粒子が緩衝液中に動かされることによって、未反応の試薬または反応副産物が除去される。追加的な段階を加えることができる。
別の態様では、試薬が試料に、試料中の粒子の流体力学的サイズを選択的または非選択的に大きくするために添加される。このような修飾型の試料は後に、障害物アレイを通して送込まれる。粒子は膨張して、長い流体力学的直径を有するので、より大きく、かつより容易に生成されるギャップサイズを有する障害物アレイを使用することが可能であろう。好ましい態様では、膨張およびサイズベースの濃縮の段階は、デバイス上で集積された様式で実施される。適切な試薬は、任意の低張液、例えば脱イオン水、2%糖溶液、または純粋な非水性溶媒を含む。他の試薬には、ビーズ、例えば(例えば抗体もしくはアビジン-ビオチンを介して)選択的に、または非選択的に結合する磁気粒子もしくはポリマーなどがある。
別の態様では、試料中の粒子の流体力学的サイズを選択的または非選択的に小さくするために、試薬が試料が添加される。試料中の粒子の非均一な縮小は、粒子間の流体力学的サイズの差を広げることになる。例えば有核細胞は、細胞を高浸透圧によって収縮させることで、除核細胞から分離される。除核細胞は、非常に小さな粒子に収縮する場合がある一方で、有核細胞は、核のサイズ未満には収縮しない場合がある。例示的な収縮試薬には高張液などがある。
別の態様では、試料中に存在する他の粒子に対して対象粒子の容積を高めるために、親和性官能基を付与したビーズが使用されることで、より大きく、かつより容易に作製可能なギャップサイズを有する障害物アレイの操作が可能となる。
濃縮および改変は組み合わせることが可能であり、例えば所望の細胞を溶解試薬および細胞成分、例えば核と接触させてサイズを基に濃縮することができる。別の例では、粒子に粒状標識、例えば粒子に結合する磁気ビーズを接触させることができる。非結合状態の粒状標識は、サイズを基に除去することができる。
他の濃縮法の併用
本発明のデバイスを使用する濃縮法および改変法を、他の粒状試料の操作法と組み合わせることができる。特に、粒子のさらなる濃縮または精製が望ましい場合がある。さらなる濃縮は、親和性濃縮を含む任意の手法で可能な場合がある。適切な親和性濃縮法には、対象粒子と、流路壁または障害物のアレイに結合した親和性薬剤の接触などがある。
流体はデバイスを通して、能動的または受動的のいずれかによって駆動され得る。流体は、電場、遠心力場、圧力駆動性の流体の流れ、電気浸透流、および毛細管作用を使用して送込むことが可能である。好ましい態様では、場の平均的な方向は、アレイを含む流路の壁に平行となる。
優先的溶解法
本発明はさらに、例えば臨床情報を細胞成分、例えば対象細胞の核から得るために、試料中の対象細胞を優先的に溶解させる方法を提供する。一般に、この方法では、試料中における対象細胞と他の細胞(例えば他の有核細胞)間の差次的な溶解を利用する。
溶解
対象細胞は、任意の適切な方法で溶解させることができる。本発明の方法の1つの態様では、細胞に、優先的な溶解を引き起こす溶液を接触させることで溶解させることができる。このような細胞の溶解液には、補体媒介性溶解を開始させるための補体カスケード中の細胞特異的IgM分子およびタンパク質を含めることができる。他の溶解液には、特定の細胞型に感染して、複製の結果として溶解を引き起こすウイルスを含めることができる(例えばPawlik et al., Cancer 2002, 95:1171-81を参照)。他の溶解液は、細胞の浸透圧バランスを破壊する溶液、例えば溶解を引き起こす低張液または高張液(例えば蒸留水)を含む。他の溶解液は当技術分野で既知である。溶解は機械的手段によって、例えば細胞を、機械的に細胞を破壊するふるい、または他の構造に通すことによって、細胞を溶解させる熱、音響エネルギー、もしくは光のエネルギーを加えることで、またはアポトーシスやネクローシスなどの細胞調節型の過程によって生じる場合もある。細胞は、細胞を対象に凍結および融解の1回もしくは複数回のサイクルを行うことで溶解させる場合もある。加えて、界面活性剤を使用して、細胞膜を可溶化し、細胞を溶解して内容物を放出させることができる。
1つの態様では、対象細胞は、極めて少ない細胞、例えば循環性の癌細胞、胎児細胞(胎児有核赤血球など)、血液細胞(母体および/または胎児の有核赤血球を含む有核赤血球など)、免疫細胞、結合組織細胞、寄生虫、または病原体(細菌、原生動物、および真菌など)である。大半の循環性の極めて少ない対象細胞は、宿主のRES(細網内皮係)に起因する免疫攻撃の結果として膜の完全性が損なわれており、このため溶解に対する感受性が高い。
1つの態様では、対象細胞は、例えばWO 2004/029221およびWO 2004/113877に記載されているように、または本明細書に記載されているように、マイクロ流体デバイスを流れることで溶解する。別の態様では、対象細胞は最初に、例えば米国特許第5,837,115号に記載されているように、マイクロ流体デバイス内において障害物と結合した後に溶解する。この態様では、対象細胞の細胞成分は障害物から解放されるが、所望されていない細胞の細胞成分は結合状態を保つ。
細胞成分の回収
所望の細胞成分は、例えば任意の適切な方法によって、例えばサイズ、重量、形状、変化、親水性/疎水性、化学反応性、もしくは不活性、または親和性を基に、細胞溶解物から分離することができる。例えば、核酸、イオン、タンパク質、および他の荷電性分子種をイオン交換樹脂で捕捉するか、または電気泳動によって分離することができる。細胞成分は、サイズまたは重量を基に、サイズ排除クロマトグラフィー、遠心分離、または濾過によって分離することもできる。細胞成分は、親和性機構(すなわち抗体-抗原相互作用および核酸の相補的な相互作用などの特異的な結合相互作用)、例えばアフィニティクロマトグラフィー、表面に結合された親和性分子種に対する結合、および親和性ベースの沈殿法で分離することもできる。特に核酸、例えばゲノムDNAを、例えばビーズまたはアレイに結合させた配列特異的なプローブとのハイブリダイゼーションによって分離することができる。細胞成分は、形状もしくは変形性、または非特異的な化学的相互作用、例えばクロマトグラフィーもしくは逆相クロマトグラフィー、または塩もしくは他の試薬、例えば有機溶媒を使用する沈殿法を基に回収することもできる。細胞成分は、化学反応、例えば遊離のアミンまたはチオールの結合を基に回収することもできる。回収に先立ち、細胞成分を、特定の回収様式を可能とするように、または促進するように、例えば変性、酵素による切断(プロテアーゼ、エンドヌクレアーゼ、エキソヌクレアーゼ、もしくは制限エンドヌクレアーゼを介する切断など)、または標識もしくは他の化学反応を介して改変しておくこともできる。
回収対象の細胞成分に必要な純度のレベルは、使用される特定の操作に依存し、および当業者によって決定され得る。ある態様では、細胞成分は、例えば対象細胞成分が他の細胞成分に干渉することなく解析可能か、または操作可能な場合に、溶解物からの分離が必要ではない場合がある。親和性ベースの操作(例えば、検出可能な標識を使用する場合と使用しない場合のある、核酸プローブもしくはプライマー、アプタマー、抗体、または配列特異的な挿入剤との反応)は、細胞成分の精製を行わない場合の使用に適している。
1つの態様では、例えば米国特許出願第2004/0144651号に記載されているか、または本明細書に記載されたデバイスが、対象となる粒状細胞成分、例えば核を、溶解物からサイズを基に分離するために使用される。この態様では、対象となる粒状細胞成分を他の粒状細胞成分および完全な細胞から、デバイスを使用して分離することができる。
細胞成分の操作
溶解によって解放されるか、または例えば本明細書に記載されたサイズベースの分離法によって得られたら、所望の細胞成分をさらに操作すること、例えば同定したり、列挙したり、反応させたり、単離したり、または破壊したりすることができる。1つの態様では、細胞成分は核酸、例えば核、ミトコンドリア、および核または細胞質のDNAもしくはRNAを含む。特に核酸は、mRNAもしくはrRNAなどのRNA、または例えば切断可能な染色体DNAなどのDNA、またはアポトーシス過程を受けたDNAを含む場合がある。細胞成分中の核酸の遺伝的解析は、任意の適切な方法、例えばPCR、FISH、および配列決定法で実施することができる。遺伝情報に基づいて、疾患、遺伝病の保因者としての状態、または病原体もしくは寄生虫の感染を診断することができる。仮に、胎児細胞から獲得されれば、性別、父性、変異(例えば嚢胞性線維症)、および異数性(例えばトリソミー21)に関連する遺伝情報を得ることができる。いくつかの態様では、胎児細胞またはこの成分の解析によって、染色体、DNA、またはRNAの異常などの遺伝子異常の有無が判定される。常染色体異常の例には、アンジェルマン症候群(15q11.2-q13)、猫鳴き症候群(5p-)、ディジョージ症候群および口蓋心顔面(Velo-cardiofacial)症候群(22q11.2)、ミラー・ディッカー症候群(17p13.3)、プラダー・ウィリー症候群(15q11.2-q13)、網膜芽腫(13q14)、スミス・マジェニス症候群(17p11.2)、トリソミー13、トリソミー16、トリソミー18、トリソミー21(ダウン症候群)、三倍性、ウィリアムス症候群(7q11.23)、およびウォルフ・ヒルシュホーン症候群(4p-)などがあるが、これらに限定されない。性染色体異常の例には、カルマン症候群(Xp22.3)、steroid sulfate deficiency(STS)(Xp22.3)、X連鎖性魚鱗癬(Xp22.3)、クラインフェルター症候群(XXY);脆弱X症候群;ターナー症候群;超雌またはトリソミーX;およびモノソミーXなどがあるが、これらに限定されない。本明細書に記載されたシステムによって解析可能な他のそれほど一般的ではない染色体異常には、欠失(短い喪失切片);微小欠失(単一遺伝子のみを含む場合のある材料の微量の喪失);転座(染色体の一部分が別の染色体に結合した状態);ならびに逆位(染色体の一部分が切り出されて上下が逆になって再挿入された状態)などがあるが、これらに限定されない。いくつかの態様では、胎児細胞またはこの成分の解析ではSNPが解析され、およびそのようなSNPに基づいて胎児の状態が推定される。仮に、癌細胞から獲得されれば、腫瘍原性特性に関する遺伝情報が得られる場合がある。仮に、ウイルスまたは細菌細胞から得られれば、病原性および分類に関する遺伝情報が得られる場合がある。非遺伝性の細胞成分の場合は、このような成分を解析して、疾患を診断するか、または健康状態をモニタリングすることができる。例えば、極めて少ない細胞、例えば胎児細胞に由来するタンパク質または代謝物を、親和性ベースのアッセイ法(例えばELISA)または他の解析法、例えばクロマトグラフィーや質量分析を含む、任意の適切な方法で解析することができる。
一般的事項
本明細書に記載された方法では、試料を精製、例えば特定の成分の安定化および除去を行うか、行わないかにかかわらず使用することができる。試料の一部を、デバイス内への導入前に希釈したり、濃縮したりすることができる。
本発明の方法の別の態様では、複数の障害物を含むマイクロ流体デバイスに試料を、例えば米国特許第5,837,115号に記載された、または本明細書に記載された手順で接触させる。対象細胞は、このようなデバイス内で障害物に結合された親和性部分に結合することで、例えばWO 2004/029221に記載されているように、所望されていない細胞に対して濃縮される。
類似のデバイスを使用する本発明の方法の別の態様では、非対象細胞は、例えばWO 2004/029221に記載されたように、対象細胞の濃縮された試料に至る、対象細胞の通過を可能としながら、障害物に結合された親和性部分と結合する。サイズベースの方法および親和性ベースの方法を2段階の方法で組み合わせることで、対象細胞について試料をさらに濃縮することができる。
本発明の方法の別の態様では、細胞試料を、例えば米国特許出願第2004/0144651号に記載されているように、または本明細書に記載されているように、特定のサイズを上回る粒子が、流体の流れの平均的な方向に平行でない方向に移動するように偏向されるように配置された複数の障害物を含むマイクロ流体デバイスに接触させることで事前に濾過する。
実施例
実施例1
14の3ステージ型複式アレイを多重化したシリコンデバイス
図42A〜42Eは、以下の特徴を有する本発明の例示的なデバイスを示す。
寸法:90 mm×34 mm×1 mm
アレイ設計:3ステージ型、第1、第2、および第3のステージの各ギャップサイズ=18μm、12μm、および8μm。分岐比=1/10。複式;単バイパス流路。
デバイス設計:多重化された14の複式アレイ;流れを安定化させるためのフローレジスター。
デバイスの作製:アレイおよび流路をシリコン中に、標準的なフォトリソグラフィーおよびディープシリコン反応性エッチング法で作製した。エッチング深度は150μmである。流体が通過する孔をKOH湿式エッチング法で作製する。シリコン基質でエッチング面をシールして、血液適合性の圧力感受性接着剤(9795, 3M, St Paul, MN)を使用して、閉じた状態の流体流路を作製した。
デバイスのパッケージング:血液および緩衝液をデバイスに送るするために、および生じたフラクションを抽出するために、デバイスを機械的に、外部に流体リザーバーを備えたプラスチック製マニホールドに接続した。
デバイスの操作:外部圧力源を使用して2.4 PSIの圧力を緩衝液および血液リザーバーに加え、パッケージ済みのデバイスからの流体輸送および抽出を調節した。
実験条件:同意を得た成人ドナーから得たヒト血液を、K2EDTAバキュテナー(366643, Becton Dickinson, Franklin Lakes, NJ)中に回収した。非希釈状態の血液を、上記の例示的なデバイス(図42F)を使用して、採血から9時間以内に室温で処理した。血液に由来する有核細胞を除核細胞(赤血球および血小板)から分離し、ならびに血漿を、1%ウシ血清アルブミン(BSA)(A8412-100ML, Sigma-Aldrich, St Louis, MO)含む、カルシウムおよびマグネシウムを含まないダルベッコリン酸緩衝食塩水(14190-144, Invitrogen, Carlsbad, CA)の緩衝液流中に移動させた。
測定法:全血球数を、コールターインピーダンスヘマトロジーアナライザー(COULTER(登録商標) Ac・T diff(商標), Beckman Coulter, Fullerton, CA)を使用して決定した。
結果:図43A〜43Fは、血液試料および廃液(緩衝液、血漿、赤血球、および血小板)、ならびにデバイスによって生成された生成物(緩衝液および有核細胞)フラクションから、ヘマトロジーアナライザーによって得られた典型的なヒストグラムを示す。以下の表は、5種類の異なる血液試料に関する結果を示す。
Figure 2008538283
実施例2
14の単ステージ型複式アレイを多重化したシリコンデバイス
図44は、以下を特徴とする、本発明の例示的なデバイスを示す。
寸法:90 mm×34 mm×1 mm
アレイ設計:単ステージ、ギャップサイズ=24μm。分岐比=1/60。複式;二重バイパス流路。
デバイス設計:多重化された14の複式アレイ;流れを安定化させるためのフローレジスター。
デバイスの作製:アレイおよび流路をシリコン中に、標準的なフォトリソグラフィーおよびディープシリコン反応性エッチング法で作製した。エッチング深度は150μmとする。流体用の貫通孔をKOH湿式エッチング法で作製した。シリコン基質をエッチング面で密封して、密封された流体流路を、血液適合性の圧力感受性接着剤(9795, 3M, St Paul, MN)を使用して作製した。
デバイスのパッケージング:デバイスを、血液および緩衝液をデバイスに送込み、生成したフラクションを抽出するための、流体リザーバーを外部に備えたプラスチック製マニホールドに機械的に接続した。
デバイスの操作:パッケージングされたデバイスからの流体の輸送および抽出を調節するために、外部圧力源を使用して2.4 PSIの圧力を緩衝液および血液リザーバーに加えた。
実験条件:同意を得た成人ドナーから得たヒト血液を、K2EDTAバキュテナー(366643, Becton Dickinson, Franklin Lakes, NJ)中に回収した。非希釈状態の血液を、上記の例示的なデバイスを使用して、採血から9時間以内に室温で処理した。血液に由来する有核細胞を、除核細胞(赤血球および血小板)から分離し、ならびに血漿を、1%ウシ血清アルブミン(BSA)(A8412-100ML, Sigma-Aldrich, St Louis, MO)を含む、カルシウムおよびマグネシウムを含まないダルベッコリン酸緩衝食塩水(14190-144, Invitrogen, Carlsbad, CA)の緩衝液流中に移動させた。
測定法:全血数を、コールターインピーダンスヘマトロジーアナライザー(COULTER(登録商標) Ac・T diff(商標), Beckman Coulter, Fullerton, CA)を使用して決定した。
結果:デバイスを17 mL/hr操作し、99%を上回る赤血球の除去、95%を上回る有核細胞の保持、および98%を上回る血小板の除去が達成された。
実施例3
胎児の臍帯血の分離
図45は、胎児の臍帯血から有核細胞を分離する際に使用されたデバイスの略図を示す。
寸法:100 mm×28 mm×1 mm
アレイ設計:3つのステージ、第1、第2、および第3のステージの各ギャップサイズ=18μm、12μm、および8μm。分岐比=1/10。複式;単バイパス流路。
デバイス設計:多重型の10の複式アレイ;流れを安定化させるためのフローレジスター。
デバイスの作製:アレイおよび流路を、標準的なフォトリソグラフィー法、およびディープシリコン反応性エッチング法でシリコン中に作製した。エッチング深度は140μmとする。流体用の貫通孔をKOH湿式エッチング法で作製する。シリコン基質をエッチング面上でシールし、血液適合性の圧力感受性接着剤(9795, 3M, St Paul, MN)を使用して、閉じられた流体流路を形成した。
デバイスのパッケージング:血液および緩衝液をデバイスに輸送して、生成したフラクションを抽出するために、デバイスを、外部に流体リザーバーを備えたプラスチック製マニホールドに機械的に接続した。
デバイスの操作:パッケージングされたデバイスからの流体の輸送および抽出を調節するために、外部圧力源を使用して2.0 PSIの圧力を緩衝液および血液リザーバーに加えた。
実験条件:ヒト胎児の臍帯血を、クエン酸デキストロース抗凝固剤を含むリン酸緩衝食塩水中に採取した。1ミリリットルの血液を、上記のデバイスを使用し、採血から48時間以内に室温で3 mL/hrで処理した。血液由来の有核細胞を除核細胞(赤血球および血小板)から分離し、ならびに血漿を、1%ウシ血清アルブミン(BSA)(A8412-100ML, Sigma-Aldrich, St Louis, MO)、および2 mM EDTA (15575-020, Invitrogen, Carlsbad, CA)を含む、カルシウムおよびマグネシウムを含まないダルベッコリン酸緩衝食塩水(14190-144, Invitrogen, Carlsbad, CA)の緩衝液流中に輸送した。
測定法:生成物フラクションおよび廃液フラクションの細胞塗抹(図46A〜46B)を作製し、改変ライト-ギムザ(WG16, Sigma Aldrich, St. Louis, MO)で染色した。
結果:胎児の有核赤血球は、生成物フラクション(図46A)中の観察されたが、廃液フラクション(図46B)中には認められなかった。
実施例4
母体血液からの胎児細胞の分離
実施例1に詳細に記載されたデバイスおよび工程を、免疫磁気親和性濃縮法と組み合わせて使用することで、母体血液から胎児細胞を分離可能なことが明らかとなった。
実験条件:男児を妊娠中の、同意を得た母体ドナーから得た血液を、妊娠の選択的終結の直後に、K2EDTAバキュテナー(366643, Becton Dickinson, Franklin Lakes, NJ)中に採取した。希釈されていない血液を、実施例1に記載されたデバイスを使用して、採血から9時間以内に室温で処理した。血液由来の有核細胞を除核細胞(赤血球および血小板)から分離し、ならびに血漿を、1%ウシ血清アルブミン(BSA)(A8412-100ML, Sigma-Aldrich, St Louis, MO)を含む、カルシウムおよびマグネシウムを含まないダルベッコリン酸緩衝食塩水(14190-144, Invitrogen, Carlsbad, CA)の緩衝液流中に輸送した。続いて、有核細胞のフラクションを、抗CD71マイクロビーズ(130-046-201, Miltenyi Biotech Inc., Auburn, CA)で標識し、およびMiniMACS(商標) MSカラム(130-042-201, Miltenyi Biotech Inc., Auburn, CA)を使用して、製造業者の仕様書に従って濃縮した。最終的に、CD71陽性のフラクションをガラススライド上に滴下した。
測定法:滴下済みのスライドを、蛍光インサイチューハイブリダイゼーション(FISH)法で、製造業者の仕様書に従って、Vysisプローブ(Abbott Laboratories, Downer's Grove, IL)を使用して染色した。試料は、X染色体およびY染色体の存在によって染色された。1つの例では、トリソミー21の妊娠が既知である調製試料も、第21染色体に関して染色された。
結果:胎児細胞が分離されたことは、有核細胞フラクションから調製されたCD71陽性集団中における男児細胞の確実な存在によって確認された(図47)。検討された1つの異常な例では、トリソミー21病理も同定された(図48)。
以下の例は、本発明のデバイスの特定の態様を示す。各デバイスに関する記述を、直列のステージの数、各ステージのギャップサイズ、ε(流れ角)、およびデバイス1台あたりの流路数(アレイ/チップ)について行う。各デバイスはシリコンからDRIEで作製し、各デバイスに熱による酸化被膜を施した。
実施例5
このデバイスは、1つのアレイ内に5つのステージを含む。
アレイ設計:5ステージ型、非対称アレイ
ギャップサイズ:ステージ1:8μm
ステージ2:10μm
ステージ3:12μm
ステージ4:14μm
ステージ5:16μm
流れ角:1/10
アレイ/チップ:1
実施例6
このデバイスは、各ステージがバイパス流路を有する複式である3つのステージを含む。デバイスの高さは125μmとした。
アレイ設計:中央に回収用流路を有する対称な3ステージ型のアレイ
ギャップサイズ:ステージ1:8μm
ステージ2:12μm
ステージ3:18μm
ステージ4:
ステージ5:
流れ角:1/10
アレイ/チップ:1
その他:中央に回収用流路
図49Aは、デバイスの作製に使用されるマスクを示す。図49B〜49Dは、流入口、アレイ、および流出口を規定するマスクの一部の拡大図である。図50A〜50Gは、実際のデバイスのSEMを示す。
実施例7
このデバイスは、各ステージがバイパス流路を有する複式である3つのステージを含む。「フィン」が、バイパス流路に隣接することで、バイパス流路からの流体がアレイに再侵入するのを防ぐように設計されている。同チップは、オンチップのフローレジスター、すなわちアレイより大きな流体抵抗を保持する流入口および流出口も含むようにした。デバイスの高さは117μmであった。
アレイ設計:3ステージ型の対称アレイ
ギャップサイズ:ステージ1:8μm
ステージ2:12μm
ステージ3:18μm
ステージ4:
ステージ5:
流れ角:1/10
アレイ/チップ:10
その他:大きなフィンを有する回収用流路
オンチップのフローレジスター
図51Aは、デバイスの作製に使用されたマスクを示す。図51B〜51Dは、流入口、アレイ、および流出口を規定するマスクの一部の拡大図である。図52A〜52Fは、実際のデバイスのSEMを示す。
実施例8
このデバイスは、各ステージが、バイパス流路を有する複式である3つのステージを含む。バイパス流路に隣接するように「フィン」が、バイパス流路に由来する流体が、アレイに再侵入しないように設計された。アレイに最も近いフィンの縁は、アレイの形状に似るように設計されている。チップは、オンチップのフローレジスター、すなわちアレイより大きな流体抵抗を有する流入口および流出口も含む。デバイスの高さは138μmであった。
Figure 2008538283
図45Aは、デバイスの作製に使用されたマスクを示す。図45B〜45Dは、流入口、アレイ、および流出口を規定するマスクの一部の拡大図である。図532A〜532Fは、実際のデバイスのSEMを示す。
実施例9
このデバイスは、各ステージがバイパス流路を有する複式である3つのステージを含む。「フィン」は、バイパス流路に隣接するように、バイパス流路に由来する流体がアレイ内に再侵入しないように、Femlabを使用して最適化された。アレイに最も近いフィンの縁は、アレイの形状に似るように設計された。チップは、オンチップのフローレジスター、すなわちアレイより大きい流体抵抗を有する流入口および流出口も含むようにした。デバイスの高さは139μmまたは142μmであった。
アレイ設計:3ステージ型の対称アレイ
ギャップサイズ:ステージ1:8μm
ステージ2:12μm
ステージ3:18μm
ステージ4:
ステージ5:
流れ角:1/10
アレイ/チップ:10
その他:Femlabにより、中央の回収用流路(Femlab I)を最適化
オンチップのフローレジスター
図54Aは、デバイスの作製に使用されたマスクを示す。図54B〜54Dは、流入口、アレイ、および流出口を規定するマスクの一部の拡大図である。図55A〜55Sは、実際のデバイスのSEMを示す。
実施例10
このデバイスは、両アレイの末端からの排出を受けるように配置されたバイパス流路を有する、単ステージ型の複式デバイスを含む。このデバイス内における障害物は楕円形である。アレイの境界はFemlabでモデル化された。チップは、オンチップのフローレジスター、すなわちアレイより大きい流体抵抗を有する流入口および流出口も含むようにした。デバイスの高さは152μmであった。
アレイ設計:単ステージ型の対称アレイ
ギャップサイズ:ステージ1:24μm
ステージ2:
ステージ3:
ステージ4:
ステージ5:
流れ角:1/60
アレイ/チップ:14
その他:中央に障害物
楕円形のポスト
オンチップのレジスター
Femlabによってモデル化されたアレイ境界
図44Aは、デバイスの作製に使用されたマスクを示す。図44B〜44Dは、流入口、アレイ、および流出口を規定するマスクの一部の拡大図である。図56A〜56Cは、実際のデバイスのSEMを示す。
実施例11
以下の実施例では、母体の全血に由来する、循環性の胎児細胞の精製後の核の集団の抽出に焦点を当てるが、記載された方法は、他の細胞からの細胞成分の分離に関して一般的な方法である。
胎児核の分離
図57は、母体血液試料から胎児核を分離する方法のフローチャートを示す。この方法では、赤血球が優先的に溶解される(図58)。
ゲノム解析を目的として、対象循環細胞から、全血に由来する核の精製集団を分離する方法の複数の態について以下に説明する。
(a)この方法では、本明細書に記載されたように、全血を、(1)1〜3 logの除核赤血球および血小板の数を枯渇させることによって有核細胞の濃縮試料を得るために、(2)濃縮有核試料のマイクロ流体処理によって胎児核を放出させることで、残存性の除核赤血球、除核網状赤血球、および有核赤血球を、有核母体白血球に対して優先的に溶解させるために、(3)母体有核白血球から核を、サイズベースのデバイスによるマイクロ流体処理によって分離するために、および(4)胎児ゲノムを市販の遺伝子解析ツールを使用して解析するために、マイクロ流体処理によって分離する。
(b)この方法は、態様1の段階1および段階2が、マイクロ流体デバイスを通過後に、段階3用の下流のデバイス、または大型のデバイスのコンポーネントの使用を可能とするように設計され得る(図59および図60を参照)。図59は、濃縮および溶解を同時に行うためのマイクロ流体デバイスの概略図を示す。このデバイスは、より大きな細胞を、溶解液を含む中央の流路内に試料が導入されるデバイスの縁から偏向させる障害物の2つの領域を利用する(例えば本明細書に記載された複式デバイス)。母体血液の場合、障害物の領域は、胎児の有核赤血球および他の有核細胞が中央の流路内に偏向されながら、母体の除核赤血球および血小板がデバイスの端に残存するように配置される。中央の流路内に偏向されると、胎児赤血球(対象細胞)は溶解する。図60は、非溶解細胞から核(対象となる細胞成分)を分離するためのマイクロ流体デバイスの概略図を示す。このデバイスは、障害物が、核がデバイスの端に維持されながら、より大きな粒子は中央の流路へ偏向されるように配置される点を除いて、図59のデバイスと似ている。
(c)母体血液試料中の胎児核のマイクロ流体ベースの生成と、これに続く母体細胞から胎児核を分離する密度勾配遠心分離法などのバルク処理法の併用(図61参照)。
(d)方法および原理の証明。
有核赤血球の選択的な溶解および分別
満期における臍帯血をがスパイクされたドナー血液試料中に混入する赤血球を、低張性および塩化アンモニウムによる溶解の2つの方法で溶解した。除核赤血球は低張液中では有核細胞より速く溶解するので、低張液中における混合細胞集団の曝露時間を制御することで、細胞集団が、この時間を基に差次的に溶解される。この方法では、細胞は、沈降してペレットを生じ、ペレット上の血漿が吸引される。次に脱イオン水を添加し、ペレットを水と混合する。除核赤血球の95%を上回る部分を、有核赤血球の溶解を最小限に抑えながら溶解させるためには15秒間の曝露で十分であり、有核赤血球の70%を上回るが、他の有核細胞が15%未満の部分の溶解には15〜30秒間の曝露で十分であるが、他の有核細胞の溶解のパーセンテージは30秒間以上の曝露によってが高まる。所望の曝露時間後に、10×HBSS(高張平衡塩)溶液を添加すると、溶液は等張条件に戻る。標準濃度(例えば0.15 Mの等張液)の塩化アンモニウム溶解液への曝露は、赤血球のバルクを、有核細胞への影響を最小限に抑えながら溶解させる。低張性の塩化アンモニウム溶液を調製するために、溶解液の重量モル浸透圧濃度が低下する場合は、有核赤血球のバルクを成熟赤血球とともに溶解させる。
密度遠心分離法で、濃縮されたリンパ球集団が得られる。これらのリンパ球のアリコートを、低張性の塩化アンモニウム溶液に、95%を上回る細胞を溶解させるのに十分な時間、曝露した。次にこれらの核を、2本鎖DNAのATに富む領域に特異的な染色剤であるHoechst 33342(ビスベンズイミドH33342)で標識し、当初のリンパ球集団に再び添加して、90:10(細胞:核)の混合物を得た。この混合物を、図60に記載されているように、細胞をサイズを基に核から分離するデバイス内に入れ、廃液および生成物のフラクションを回収し、ならびに各フラクションに含まれる細胞:核の比を測定した。
溶解生成物の密度勾配遠心分離。差次的な溶解法で処理された混合細胞懸濁液の溶解した核は、溶解物にショ糖のクッション溶液を添加することで濃縮できる。次に同混合物を、純粋なショ糖クッション溶液上に重層した後に遠心分離し、濃縮状態の核ペレットを得た。非溶解細胞および残渣を上清から吸引し;核ペレットを緩衝液に再懸濁した後に、ガラススライド上でサイトスピンする。
酸アルコールによる全細胞溶解、および標的細胞同定のための核RNAのFISH。図60に記載されたように、サイズを基に細胞を分離するデバイスから得られた生成物を、酸アルコール溶液(メタノール:酢酸3:1、体積比)に氷上で30分間曝露したところ、99%を上回る除核細胞が溶解され、および99.0%を上回る有核細胞が溶解した。核を膨張させるための、細胞を塩溶液(0.6% NaCl)に30分間、曝露する低張処理と、これに続く酸アルコールによる溶解を含めることもできる。放出された核を、サイトスピンによってガラススライド上に定量的に沈着させることが可能であり、FISHが可能である(図66aおよび図66b)。胎児有核赤血球などの対象細胞を、正の選択用にゼータ-グロビン、イプシロン-グロビン、ガンマ-グロビンなどのプローブを使用し、および負の選択用にベータ-グロビンなどのプローブを使用するRNA-FISHで同定することができるほか、またはテロメア長を解析することができる。胎児細胞と胎児以外の細胞を区別する他の方法は当技術分野で既知であり、例えば、米国特許第5,766,843号に記載されている。
実施例12
図62は、血液中の粒子の分離に最適化されたデバイスを示す。これは、固定ギャップ幅が22μmで、試料の平行処理用の48の多重化アレイを備えた単ステージ型デバイスである。デバイスのパラメータを以下に示す。
Figure 2008538283
妊娠中のボランティアのドナーから血液を得て、ダルベッコリン酸緩衝食塩水(カルシウムおよびマグネシウムを含まない)(iDPBS)で1:1に希釈した。血液およびランニング緩衝液(1% BSAおよび2 mM EDTAを含むiDPBS)を、0.8 PSIの有効圧力を加えて、実施例13に記載されたようにマニホールドに接続されたデバイスに輸送した。血液は、ランニング緩衝液中の有核細胞と、ランニング緩衝液中の除核細胞および血漿タンパク質の2つの成分に分離された。いずれの成分とも、標準的なインピーダンスカウンターを使用して解析した。有核細胞を含む成分はさらに、総有核細胞損失を決定するために、標準的なNageotteカウント用チャンバーとともに、ヨウ化プロピジウム染色液を使用することをさらに特徴とする。回収されたデータを使用して、血液処理量(mL)、血液処理速度(mL/hr)、RBC/血小板の除去、および有核細胞の保持を決定した。以下の表に、このデバイスを使用時の細胞濃縮の結果を示す。
Figure 2008538283
実施例13
内部に本発明のマイクロ流体デバイスが挿入された例示的なマニホールドを図63に示す。マニホールドは、間に本発明のマイクロ流体デバイスが配置された2つの片割れ(half)を有する。マニホールドの一方の片割れは、それぞれが対応する流体リザーバーに接続された、血液用および緩衝液用の別個の流入口を含む。デバイス内の流路は、デバイス内の貫通孔を介してリザーバーに連結されるように向けられている。典型的には、デバイスは垂直に向けられ、処理された血液が生成物流出口から滴下することで回収される。マイクロ流体デバイスの生成物流出口の周囲の領域も、疎水性物質によって、例えば、生じる液滴のサイズを制限するために、永久的なマーカーからマークされる場合がある。デバイスは、2つの疎水性ベントフィルター、例えば0.2μm径のPTFEフィルターも含む。このようなフィルターによって、デバイス内に捕捉された空気が、水溶液によって排気されることが可能となるが、低圧力、例えば5 psi未満の圧力では液体を通過させない。
デバイスを始動するためには、緩衝液、例えば1%ウシ血清アルブミン(w/v)および2 mM EDTAを含むダルベッコPBSを、5〜10分間、減圧下で攪拌しながら脱気する。次に緩衝液を、マニホールド中の緩衝液流入口を介してデバイス内に5 psi未満の圧力で送込む。次に緩衝液で、疎水性ベントフィルターを介して空気を置換することで緩衝液チャンバーを満たした後に、マイクロ流体デバイスおよび血液チャンバー内の流路を満たす。血液チャンバーに接続された疎水性ベントフィルターによって、チャンバー内の空気の排出が可能となる。血液チャンバーが満たされると、緩衝液が血液流入口内に送込まれる。ある態様では、1 psiにおける1分間のプライミングの後に、血液流入口を閉じられ、3分間かけて圧力を3 psiに高められる。
実施例14
本明細書に記載された任意のデバイスによって濃縮された胎児nRBC集団を対象に、大容量の低イオン強度の緩衝液、例えば脱イオン水を添加して低張ショックを加えることで、除核RBCおよびnRBCを選択的に溶解して、個々の核を放出させる。次に、等量の高イオン強度の緩衝液を添加して低張ショックを終了させる。イオジキサノール水溶液、ρ=1.32 g/mLへの通過などの勾配遠心分離法で後に回収可能な放出された核を解析する。
図64は、溶解条件への曝露の時間の関数としての、母体nRBCに対する胎児nRBCの選択的な溶解を示す。この選択的溶解手順で、胎児nRBC、母体nRBC、除核の胎児および母体のRBC、ならびに胎児および母体の白血球を含む細胞集団中の胎児nRBCを選択的に溶解させることもできる。低張ショックを任意の時間、誘導するために蒸留水を使用し、続いてPBSなどの等量の10x塩溶液を添加することでこれを停止させたところ、胎児nRBCおよび母体nRBCは、溶解した(生きていない)胎児nRBCの数が10倍増加し、溶解した母体nRBCの数が、これより小さな倍率で増加した時間で溶解した。任意の時点において、溶解した細胞をヨウ化プロピジウムで染色し、勾配遠心分離法で濃縮して、溶解した胎児nRBCと母体nRBCの比を決定した。最適化された時間を決定することで、胎児nRBCの核の選択的な濃縮に応用することができる。
実施例15
除核RBCおよび母体の有核RBCを選択的に溶解させるために、胎児nRBCが濃縮された試料を、アセタゾラミドなどの炭酸脱水酵素阻害剤(例えば0.1〜100 mM)を添加した0.155 M NH4Cl、0.01 M KHCO3、2 mM EDTA、1% BSAなどのRBC溶解緩衝液で処理して、溶解を誘導した後に、10x容量の1xPBS、または4,4'-ジイソチオシアノスチルベン-2,2'-ジスルホン酸(DIDS)などのイオン交換流路阻害剤が添加された1xPBSなどの平衡塩緩衝液などの大量の平衡塩緩衝液を使用して溶解過程を終了させる。次に、生存している胎児細胞を対象に、追加のラウンドの選択および解析を行うことが可能である。
白血球を刺激するために、K562細胞をHoechst、およびcalcein AMで30分間かけて室温で標識した(図65)。標識後のK562細胞を血液標本に添加した後に、緩衝液(0.155 M NH4Cl、0.01 M KHCO3、2 mM EDTA、1% BSA、および10 mMアセタゾラミド)(スパイクされた血液容量に対する緩衝液容量の比は3:2)を添加した。スパイクされた血液標本を室温で4時間、定期的に穏やかに攪拌しながらインキュベートした。個々のスパイク済み標本中の生細胞のフラクションを、610 nmにおける緑色蛍光を複数の時点で測定することで判定した。細胞の溶解は、処理のわずか3分後に(DIDSの非存在下で)観察される。
実施例16
胎児nRBCが、例えば本明細書に記載された任意のデバイスまたは方法で濃縮された試料を溶解して、遺伝子の内容を解析することができる。細胞の溶解、および所望の細胞または細胞成分の分離の可能な方法は、以下を含む:
(a)胎児nRBCが濃縮された試料を対象に全細胞溶解を行って、細胞質を除去して核を分離することができる。核は、カルノア液などの固定液による処理、およびガラススライドへの吸着によって固定化することができる。胎児核は、核タンパク質および転写因子の免疫染色による、または胎児のプレmRNAの差次的ハイブリダイゼーション、RNA FISHによる内因性の胎児標的の存在によって同定できる。(Gribnau et al. Mol Cell 2000. 377-86; Osborne et al., Nat Gene. 2004. 1065-71;Wang et al., Proc. Natl. Acad. Sci. 1991. 7391-7395;Alfonso-Pizarro et al., Nucleic Acids Research. 1984. 8363-8380)。このような内因性の胎児標的は、ゼータ-グロビン、イプシロン-グロビン、ガンマ-グロビン、デルタ-グロビン、ベータ-グロビン、アルファ-グロビンなどのグロビン、およびI-分岐酵素(Yu et al., Blood. 2003 101:2081)、N-アセチルグルコサミン転移酵素、またはIgnTなどの非グロビン標的を含む場合がある。RNA FISHに使用されるオリゴヌクレオチドプローブは、所望の標的を特異的に同定可能な、イントロン-エキソン境界に対応するものか、または他の領域に対応するもののいずれかの場合があるほか、またはテロメア長の解析を行うことができる。
(b)胎児nRBCが濃縮された試料を、実施例15に記載された緩衝液およびイオン交換阻害剤で処理して選択的に溶解させることで、胎児細胞を分離することができる。生存している胎児細胞は、グロビンやI-分岐ベータ1,6-N-アセチルグルコサミニル転移酵素などの細胞内マーカーか、または抗原Iなどの表面マーカーの有無によって、さらに選択することができる。別の態様では、濃縮された胎児nRBCを対象に選択的溶解を行って、実施例15に記載されたように除核RBCと母体nRBCの両方を除去した後に、あらゆる有核白血球上に存在する表面抗原であるCD45に対する抗体を使用する、補体による細胞溶解を行うことができる。結果として得られる完全な胎児nRBCは、他の任意の混入細胞を含まないはずである。
(c)胎児nRBCが濃縮された試料を、実施例14に記載された手順で低張ショックで溶解して、胎児核を分離することができる。核は、カルノア液などの固定液で処理して固定化し、ガラススライドに接着させることができる。
分離されたら、所望の細胞または細胞成分(核など)を遺伝子の内容に関して解析することができる。FISHによって、第13染色体および第18染色体における欠損、またはトリソミー21やXXYなどの他の染色体異常を同定することができる。染色体の異数性も、比較ゲノムハイブリダイゼーションなどの方法で検出することができる。さらに、同定された胎児細胞を微小切断法で調べることができる。抽出後に、胎児細胞の核酸を対象に、1回もしくは複数回のPCR、または全ゲノム増幅と、これに続く比較ゲノムハイブリダイゼーション、またはショートタンデムリピート(STR)解析、単一ヌクレオチド点突然変異(SNP)、欠失、または転座などの遺伝子変異解析を行うことができる。
実施例17
3 mlの赤血球の1xPBS溶液を含む、図60に記載されたデバイスで得られた生成物を、50 mMの亜硝酸ナトリウム/0.1 mMアセタゾラミドで10分間、処理する。次に細胞に、0.155 M NH4Cl、0.01 M KHCO3、2 mM EDTA、1% BSA、および0.1 mMアセタゾラミドの溶解緩衝液に接触させ、溶解反応を、4,4'-ジイソチオシアノスチルベン-2,2'-ジスルホン酸(DIDS)などのBAND 3イオン交換チャネル阻害剤を含むクエンチング溶液中に直接滴下して停止させる。除核RBCおよび有核RBCを、ライト-ギムザ染色後にカウントし、ならびにFISHで胎児nRBCをカウントする。次に値を、非溶解対照と比較する。このような1つの実験の結果を以下に示す。
Figure 2008538283
実施例18
カオトロピック塩または界面活性剤による全溶解、およびオリゴヌクレオチドによる胎児有核RBCからのアポトーシスDNAの濃縮
図60に記載された手順でデバイスから得られた生成物を、緩衝用の塩酸グアニジニウム溶液(少なくとも4.0 M)、グアニジニウムチオシアナート(少なくとも4.0 M)、またはSDSを添加したトリス緩衝液などの緩衝界面活性剤溶液などのカオトロピック塩溶液に溶解させる。次に細胞溶解物を、10μlの50 mg/mlのプロテアーゼKとともに55℃で20分間とインキュベートしてタンパク質を除去した後に、95℃で5分間、インキュベートすることでプロテアーゼを不活性化する。胎児nRBCは母体の血液循環に入るとアポトーシスを起こし、このアポトーシス過程によって、胎児nRBCのDNAが断片化する。胎児nRBCのDNAのサイズが小さいこと、およびオリゴヌクレオチドを介した濃縮による、より短いDNA断片の分離効率が完全なゲノムDNAの場合より高いという利点を利用することで、アポトーシスを起こした胎児nRBCのDNAを、ショートタンデムリピート(STR)などの1つしかない分子マーカーを同定するために、ビーズに結合した状態の、またはアレイもしくは他の表面に結合した状態のオリゴヌクレオチドの溶液に対するハイブリダイゼーションによって選択的に濃縮することができる。ハイブリダイゼーション後に、所望されていない核酸、または他の混入物を、10 mM Tris HCl pH 7.5を溶媒とする150 mM塩化ナトリウムなどの高塩緩衝液で洗浄して除去し、次に、捕捉された標的を、10 mM Tris pH 7.8などの緩衝液または蒸留水中に放出させることができる。次に濃縮されたアポトーシスDNAを、例えば実施例16に記載されたような、遺伝子の内容を解析する方法で解析する。
実施例19
図67は、母体の血液試料を対象に実施可能な多様な溶解手順の詳細を記載したフローチャートを示す。例えば本明細書に記載されたデバイスおよび方法で生成される、「濃縮生成物」から開始されるように記載されているが、この過程は、任意の母体血液試料を対象に実施可能である。チャートから溶解が、(i)所望の細胞(例えば胎児細胞)を選択的に溶解させるために、(ii)所望の細胞およびその核を選択的に溶解させるために、(iii)全ての細胞を溶解させるために、(iv)全ての細胞およびその核を溶解させるために、(v)所望されていない細胞(例えば母体のRBC、WBC、血小板、またはこれらの組み合わせ)を溶解させるために、(vi)所望されていない細胞およびその核を溶解させるために、ならびに(vii)全ての細胞の溶解、および所望されていない細胞の核の選択的な溶解に使用可能なことがわかる。チャートは、放出された核を分離する例示的な方法(本発明のデバイスおよび方法は、この目的でも請求される)、ならびに結果を調べる方法も示している。
実施例20
この実施例は、マイクロ流体環境内における全細胞溶解物の滴定の例である。本明細書に記載されたサイズベースの分離によって濃縮された血液試料を4つの等しい容量に分けた。そのうち3つを、デバイス内の一定の経路長で細胞を第1の所定の溶媒中に、および続いて、回収用の第2の所定の溶媒中に輸送可能なマイクロ流体デバイスで処理した。容積測定用の細胞懸濁物の流速は変動するため、第2の所定の溶媒に接触する前の、一定の経路長に沿った第1の所定の溶媒によるインキュベーション時間の制御が可能となる。この例では、第1の所定の溶媒としてDI水を使用し、および第2の所定の溶媒として2xPBSを使用した。流速を調節して、等張液を調製するために細胞を2×PBSと混合する前の、DI水中におけるインキュベーション時間を10秒、20秒、または30秒とすることができる。3つの処理容量、および残存する非処理容量の総細胞数を血球計数器を使用して計算した。
Figure 2008538283
他の態様
本明細書で言及された全ての出版物、特許、および特許出願は、参照により本明細書に組み入れられる。本発明の記載の方法および系のさまざまな変形および変更は、本発明の範囲および意図から逸脱することなく、当業者には明らかであろう。本発明を特定の態様と関連して説明したが、請求される発明が、そのような特定の態様に過度に制限されるべきではないと理解されたい。実際、当業者に明らかな、本発明の記載された実施様式のさまざまな偏向は、本発明の範囲に含まれることが意図される。
他の態様は請求項に含まれている。
図1A〜1Eは、決定論的な側方変位を基に細胞を分離するアレイの概略図を示す:(A)後続の行の側方変位を示す;(B)ギャップを流れる流体が、どのように後続の行内における障害物の周囲で不均等に分けられるかを示す;(C)臨界サイズを上回る流体力学的サイズを有する粒子が、どのようにデバイス内で側方に動かされるかを示す;(D)円筒形の障害物のアレイを示す;および(E)楕円形の障害物のアレイを示す。 後続の行内における障害物の周囲におけるギャップを通る流れの不均等な分割を示す説明図。 臨界サイズが、この例では放物型である流れプロファイルにどのように依存するかを示す説明図。 形状が、デバイスを通して粒子の移動にどのように影響するかの説明。 変形性が、デバイスを介する粒子の移動にどのように影響するかの説明。 決定論的な側方変位の説明図。臨界サイズを上回る流体力学的サイズを有する粒子は、アレイの縁に向かって動く一方で、臨界サイズに満たない流体力学的サイズを有する粒子は、側方に変位することなくデバイスを通過する。 3ステージ型デバイスの概略図。 図7のデバイスの最大サイズおよびカットオフサイズ(すなわち臨界サイズ)の概略図。 バイパス流路の概略図。 バイパス流路の概略図。 共通のバイパス流路を有する3ステージ型デバイスの概略図。 共通のバイパス流路を有する3ステージ型の複式デバイスの概略図。 デバイスを流れる流れが実質的に一定である、共通のバイパス流路を有する3ステージ型デバイスの概略図。 デバイスを流れる流れが実質的に一定である、共通のバイパス流路を有する3ステージ型の複式デバイスの概略図。 バイパス流路および隣接するステージにおける流体抵抗が実質的に一定である、共通のバイパス流路を有する3ステージ型デバイスの概略図。 バイパス流路および隣接するステージにおける流体抵抗が実質的に一定である、共通のバイパス流路を有する3ステージ型の複式デバイスの概略図。 2つの別個のバイパス流路を有する3ステージ型デバイスの概略図。 任意の配置の、2つの別個のバイパス流路を有する3ステージ型デバイスの概略図。 3つの別個のバイパス流路を有する3ステージ型の複式デバイスの概略図。 各ステージを通過する流れが実質的に一定である、2つの別個のバイパス流路を有する3ステージ型デバイスの概略図。 各ステージを通過する流れが実質的に一定である、3つの別個のバイパス流路を有する3ステージ型の複式デバイスの概略図。 流れ-抽出境界の概略図。 流れ-供給境界の概略図。 バイパス流路を含む流れ-供給境界の概略図。 中央のバイパス流路に隣接する2つの流れ-供給境界の概略図。 オンチップのフローレジスターとして作用する、4本の流路を有するデバイスの概略図。 デバイス内を流れる2つの流体の相対的な幅にオンチップのレジスターが及ぼす作用の概略図。 デバイス内を流れる2つの流体の相対的な幅にオンチップのレジスターが及ぼす作用の概略図。 2つの外部領域用に共通の流入口を有する複式デバイスの概略図。 図30Aは、デバイス上のマルチアレイの概略図。図30Bは、デバイス上に共通の流入口および生成物流出口を備えたマルチアレイの概略図。 小さなフットプリントを備えたマルチステージ型デバイスの概略図。 デバイスを通過する血液の概略図。 血液細胞の流体力学的サイズの分布を示すグラフ。 単ステージ型デバイス(A)、3ステージ型デバイス(B)、複式デバイス(C)、または3ステージ型の複式(D)デバイス内における、試料から緩衝液中への粒子の移動を示す概略図。 図35Aは、粒子を血液から緩衝液中へ動かして、3つの生成物を得るために使用される2ステージ型デバイスの概略図。図35Bは、2つのステージの最大サイズおよびカットオフサイズを示す図式的グラフ。図35Cは、3つの生成物の組成の図式的グラフ。 各ステージがバイパス流路を有する、改変用の2ステージ型デバイスの概略図。 デバイス内の2つのステージを連結する流体流路の使用の概略図。 2つのステージが小さなフットプリントを備えたアレイとして設定された、デバイス内の2つのステージを連結する流体流路の使用の概略図。 図39Aは、両ステージから排出を受けるバイパス流路を有する2ステージ型デバイスの概略図。図39Bは、このデバイスで達成され得る、生成物のサイズの範囲の図式的グラフ。 各ステージに隣接し、および同じ流出口に流れ込むバイパス流路を有する、改変用の2ステージ型デバイスの概略図。 粒子の連続的な動きおよび改変用のデバイスの概略図。 図42Aは、本発明のデバイスの写真。図42B〜42Eは、本発明のデバイスの作製に使用されるマスクの図。図42Fは、血液および緩衝液を含むデバイスの一連の写真。 図43A〜43Fは、血液試料および廃液(緩衝液、血漿、赤血球、および血小板)、ならびに図42のデバイスで生成された生成物(緩衝液および有核細胞)のフラクションに由来する、ヘマトロジーアナライザーによって作成された典型的なヒストグラム。 図44A〜44Dは、本発明のデバイスの組み立てに使用されるマスクの描写。 図45A〜45Dは、本発明のデバイスの組み立てに使用されるマスクの描写。 図46Aは、胎児赤血球が濃縮された試料の顕微鏡写真。図46Bは、母体赤血球廃液の顕微鏡写真。 男児胎児細胞の正の同定を示す一連の顕微鏡写真(青=核、赤=X染色体、緑=Y染色体)。 性別およびトリソミー21の正の同定を示す一連の顕微鏡写真。 図49A〜49Dは、本発明のデバイスの組み立てに使用されるマスクの描写。 図50A〜50Gは、図49のデバイスの電子顕微鏡写真。 図51A〜51Dは、本発明のデバイスの組み立てに使用されるマスクの描写。 図52A〜52Fは、図51のデバイスの電子顕微鏡写真。 図53A〜53Fは、図45のデバイスの電子顕微鏡写真。 図54A〜54Dは、本発明のデバイスの組み立てに使用されるマスクの描写。 図55A〜55Sは、図54のデバイスの電子顕微鏡写真。 図56A〜56Cは、図44のデバイスの電子顕微鏡写真。 胎児赤血球の核の分離を示すフローチャート。 母体血液試料中における細胞の溶解の経過を示す図式的グラフ。 濃縮試料における、対象細胞を濃縮し、および対象細胞を優先的に溶解させるマイクロ流体法の概略図。試料は最初に、対象細胞のサイズベースの方向によって好ましい流路内に濃縮され、次に対象細胞が、溶解液中における滞留時間の制御によって選択的に溶解される。 非対象の非溶解の全ての細胞に由来する、溶解した対象細胞の核のサイズベースの分離のマイクロ流体法の概略図。非対象の細胞は廃液中に誘導される一方で、核は所望の生成物流中に保持される。 母体白血球から胎児核を分離する別の方法を示すフローチャート。 実質的に一定のギャップ幅、ならびに流れ-供給境界および流れ-抽出境界を利用する本発明のデバイスの概略図。 図63Aは、本発明のマニホールドの概略図。図63Bは、本発明のマニホールドの写真。 低張性溶解液に対する曝露の時間の関数としての、生きた細胞のパーセンテージを示すグラフ。 溶解緩衝液中における、時間の関数としての、全血の溶解のグラフ。 図66Aは、本明細書に記載された、カルノア固定液による全細胞溶解法を使用する、サイトスピン後の核の回収を示す表。図66Bは、カルノア固定液による全細胞溶解を使用した、核を対象としたFISHの結果の例を示す一連の蛍光顕微鏡写真。核を対象に、X(水色)、Y(緑色)、およびY(赤)に関してFISHを行い、DAPIによって対比染色した。 細胞および核の溶解のさまざまなオプションの詳細を示すフローチャート。

Claims (168)

  1. 第1および第2の外部領域が流路内において平行に配列され、セクションにおいて臨界サイズを上回る流体力学的サイズを有する粒子を第1の方向に、および該臨界サイズに満たない流体力学的サイズを有する粒子を第2の方向に確定的に誘導する構造をそれぞれが含む、第1および第2の外部領域を含む第1のセクションを含む流路を含む複式デバイス。
  2. 個々の構造が、ギャップのネットワークを形成する障害物のアレイを含み、該ギャップを通過する流体が、臨界サイズを上回る流体力学的サイズを有する粒子が該ネットワーク内において側方に動かされ、および該臨界サイズに満たない流体力学的サイズを有する粒子が該ネットワーク内において側方に動かされず、第1の外部領域において該臨界サイズを上回る流体力学的サイズを有する粒子が第2の外部領域に向かうか、または該第2の外部領域から離れるように、メジャーフラックスとマイナーフラックスに不均等に分けられる、請求項1記載のデバイス。
  3. 障害物のアレイが第1および第2の行を含み、第2の行が、第1の行内におけるギャップを通過する流体が第2の行内における2つのギャップに不均等に分けられるように、第1の行に対して側方に動かされる、請求項2記載のデバイス。
  4. 第1のセクション内における第1の外部領域と第2の外部領域の間に配置されたバイパス流路をさらに含み、個々の外部領域が独立に、臨界サイズを上回る流体力学的サイズを有する粒子を該バイパス流路の方へ、または該バイパス流路から離れるように誘導する、請求項1記載のデバイス。
  5. 中央領域に隣接するように配置されたアレイの縁が流れ-抽出境界を含み、流体が、該中央領域における流体のフラックスが実質的に一定となるように中央領域から抽出される、請求項4記載のデバイス。
  6. 臨界サイズを上回る流体力学的サイズを有する粒子がネットワーク内において側方に動かされ、および臨界サイズに満たない流体力学的サイズを有する粒子が該ネットワーク内において側方に動かされないように、ギャップを通過する流体がメジャーフラックスとマイナーフラックスに不均等に分けられる、それぞれが、ギャップのネットワークを形成する障害物のアレイを含み、第1の外部領域において該臨界サイズを上回る流体力学的サイズを有する粒子が、第2の外部領域か、または該第2の外部領域から離れるように誘導される、第1および第2の外部領域、ならびに
    該臨界サイズを上回る流体力学的サイズを有する粒子が誘導される、第2のセクション内において第1の外部領域の側に配置された第1のバイパス流路を含む第3の領域
    の3つの領域を含む第2のセクションをさらに含む、請求項2記載のデバイス。
  7. 第1の外部領域が、臨界サイズを上回る流体力学的サイズを有する粒子を第2の外部領域から離れるように誘導し、および第2の外部領域が、臨界サイズを上回る流体力学的サイズを有する粒子を第1の外部領域から離れるように誘導する、該臨界サイズを上回る流体力学的サイズを有する粒子が誘導され、第2のセクション内において第2の外部領域の側に配置された第2のバイパス流路をさらに含む、請求項6記載のデバイス。
  8. 第1のバイパス流路が、第2のセクション内における第1の外部領域と第2の外部領域の間に配置され、ならびに第1の領域および第2の領域が、臨界サイズを上回る流体力学的サイズを有する粒子を該第1のバイパス流路の方向に誘導する、請求項6記載のデバイス。
  9. 第1および第2の外部領域における粒子の方向が、第1のバイパス流路に向かう、請求項4記載のデバイス。
  10. 構造が、有核血液細胞をバイパス流路内に偏向させ、および除核血液細胞を第1または第2の外部領域内に保持させることが可能である、請求項4記載のデバイス。
  11. (i)各セクションが、第1および第2の縁を有する構造を含み、該セクションにおいて、臨界サイズを上回る流体力学的サイズを有する粒子を第1の方向に、および該臨界サイズに満たない流体力学的サイズを有する粒子を第2の方向に該構造が確定的に誘導する、直列に配置された第1および第2のセクション;ならびに
    (ii)流体排出が第2のセクションを通過しない、第1のセクションの第1または第2の縁から流体排出を受けるように配置された第1のバイパス流路
    を含む、マルチステージ型デバイス。
  12. 個々の構造が、ギャップのネットワークを形成する障害物のアレイを含む流路を含み、臨界サイズを上回る流体力学的サイズを有する粒子が該ネットワーク内において第1の縁の方向へ側方に動かされ、および該臨界サイズに満たない流体力学的サイズを有する粒子が、該ネットワーク内において第1の縁の方向へ側方に動かされないように、アレイが第1および第2の縁を有し、ならびに該ギャップを通過する流体がメジャーフラックスとマイナーフラックスに不均等に分けられる、請求項11記載のデバイス。
  13. 各セクションにおける障害物のアレイが第1および第2の行を含み、第1の行内におけるギャップを通過する流体が、第2の行内における2つのギャップに不均等に分けられるように、第2の行が第1の行に対して側方に動かされる、請求項12記載のデバイス。
  14. 第1および第2のセクションが異なる臨界サイズを有する、請求項11記載のデバイス。
  15. 第1のバイパス流路が、第1および第2のセクションの第1または第2の縁から流体排出を受けるように配置される、請求項11記載のデバイス。
  16. 各セクションに隣接するバイパス流路の幅が、同セクション内におけるアレイと実質的に同じ流体抵抗を持たせるようなサイズで設けられる、請求項15記載のデバイス。
  17. 第1のバイパス流路が、第1のセクションの第1または第2の縁から流体排出を受けるように配置され、および第2のバイパス流路が、第2のセクションの第1または第2の縁から流体排出を受けるように配置される第2のバイパス流路をさらに含む、請求項11記載のデバイス。
  18. 第3のセクションが、ギャップのネットワークを形成する障害物のアレイを含む流路を含み、アレイが、流体の流れの方向に平行な第1および第2の縁を有し、ならびに該ギャップを通過する流体が、臨界サイズを上回る流体力学的サイズを有する粒子が、該ネットワーク内において第1の縁の方向へ側方に動かされ、および該臨界サイズに満たない流体力学的サイズを有する粒子が、該ネットワーク内において第1の縁の方向へ側方に動かされないように、メジャーフラックスとマイナーフラックスに不均等に分けられる、第3のセクションをさらに含む、請求項12記載のデバイス。
  19. 第1のセクションが第2のセクションより大きい臨界サイズを有し、および該第2のセクションが第3のセクションより大きい臨界サイズを有する、請求項18記載のデバイス。
  20. 第2のセクションおよび第1のバイパス流路が、第1および第2のセクションにおいて実質的に一定の流体フラックスを維持するようなサイズで設けられる、請求項11記載のデバイス。
  21. 各流路が、流入口、流出口、および該流路内において、臨界サイズを上回る流体力学的サイズを有する粒子を第1の方向に、および該臨界サイズに満たないサイズを有する粒子を第2の方向に確定的に誘導する構造を含む複数の流路を含む、多重型デバイス。
  22. 臨界サイズを上回る流体力学的サイズを有する粒子が、ネットワーク内において側方に動かされ、および該臨界サイズに満たない流体力学的サイズを有する粒子が、該ネットワーク内において側方に動かされないように、ギャップを通過する流体がメジャーフラックスとマイナーフラックスに不均等に分けられる、構造がギャップのネットワークを形成する障害物のアレイを含む、請求項21記載のデバイス。
  23. 複数の流入口が流体連結された、請求項21記載のデバイス。
  24. 複数の流出口が流体連結された、請求項21記載のデバイス。
  25. 第1の行内においてギャップを通過する流体が、第2の行内において2つのギャップに不均等に分けられるように、障害物のアレイが第1および第2の行を含み、第2の行が第1の行に対して側方に動かされる、請求項22記載のデバイス。
  26. 2つの構造の間に配置、かつ流体連結されたバイパス流路をさらに含む、請求項21記載のデバイス。
  27. 個々の構造が、直列に配置された第1および第2のセクションを含むマルチステージ型構造であり、各セクションが、第1および第2の縁を有する構造を含み、該構造が該セクション内において、臨界サイズを上回る流体力学的サイズを有する粒子を第1の方向に、および該臨界サイズに満たない流体力学的サイズを有する粒子を第2の方向に確定的に誘導し、ならびに流体排出が該第2のセクションを通過しない該第1のセクションの第1または第2の縁から流体排出を受けるように配置された第1のバイパス流路を含む、請求項21記載のデバイス。
  28. ネットワーク内において、臨界サイズを上回る流体力学的サイズを有する細胞が該ネットワーク内において側方に動かされ、および該臨界サイズに満たない流体力学的サイズを有する細胞が側方に動かされないように、ギャップを通過する血液中の流体がメジャーフラックスとマイナーフラックスに不均等に分けられる、10〜30μmの実質的に一定の幅のギャップのネットワークを形成する障害物のアレイを含む流路を含むデバイス。
  29. 障害物のアレイが第1および第2の行を含み、第1の行内におけるギャップを通過する流体が第2の行内における2つのギャップに、流体中の粒子が個々のサイズを基に差次的に誘導されるように不均等に分けられるように、第2の行が第1の行に対して側方に動かされる、請求項28記載のデバイス。
  30. ギャップの幅が18〜24μmである、請求項28記載のデバイス。
  31. 流路が、1つの流れ-供給境界および1つの流れ-抽出境界を有し、ならびにギャップの幅が約18μmまたは20μmである、請求項28記載のデバイス。
  32. 体液に由来する臨界サイズを上回る流体力学的サイズを有する細胞がネットワーク内において側方に動かされ、および体液に由来する該臨界サイズに満たない流体力学的サイズを有する細胞が該ネットワークにおいて側方に動かされないように、ギャップを通過する流体がメジャーフラックスとマイナーフラックスに不均等に分けられる、実質的に一定の幅のギャップのネットワークを形成する障害物のアレイを含む流路を含むデバイス。
  33. 体液が、汗、涙、耳液(ear flow)、痰、リンパ液、骨髄懸濁液、尿、唾液、精液、膣液(vaginal flow)、脳脊髄液、脳内液(brain flow)、腹水、乳汁、呼吸器、腸管、もしくは尿生殖路の分泌物、または羊水を含む、請求項32記載のデバイス。
  34. 構造が、臨界サイズを上回る流体力学的サイズを有する粒子を第1の縁の方向へ確定的に偏向させ、第1の縁または第2の縁が、流れ-抽出境界または流れ-供給境界を含む、第1およびセクションの縁を有する構造を含む流路を含むデバイス。
  35. 構造が、ギャップのネットワークを形成する障害物のアレイを含み、同アレイが第1および第2の縁を有し、ならびに該ギャップを通過する流体が、臨界サイズを上回る流体力学的サイズを有する粒子が該ネットワーク内において側方に動かされ、および該臨界サイズに満たない流体力学的サイズを有する粒子が該ネットワーク内において側方に動かされないように、メジャーフラックスとマイナーフラックスに不均等に分けられる、請求項34記載のデバイス。
  36. 障害物のアレイが第1および第2の行を含み、第1の行内においてギャップを通過する流体が、第2の行内において2つのギャップに不均等に分けられるように、第2の行が第1の行に対して側方に動かされる、請求項35記載のデバイス。
  37. 第1の血液成分を第1の方向に、および第2の血液成分を第2の方向に確定的に偏向させるように配置された分離領域を含む流路を含むデバイス。
  38. 分離領域が、ギャップのネットワークを形成する障害物のアレイを含み、該ギャップを通過する流体が、臨界サイズを上回る流体力学的サイズを有する粒子が該ネットワーク内において側方に動かされ、および該臨界サイズに満たない流体力学的サイズを有する粒子が該ネットワーク内において側方に動かされないように、メジャーフラックスとマイナーフラックスに不均等に分けられ、第1の血液成分が該臨界サイズを上回る流体力学的サイズを有し、および第2の血液成分が該臨界サイズに満たない流体力学的サイズを有する、請求項37記載のデバイス。
  39. 障害物のアレイが第1および第2の行を含み、第1の行内においてギャップを通過する流体が、第2の行内において2つのギャップに不均等に分けられるように、第2の行が第1の行に対して側方に動かされる、請求項38記載のデバイス。
  40. 第1の成分が胎児有核細胞を含み、および第2の成分が母体除核赤血球を含む、請求項37記載のデバイス。
  41. 胎児有核細胞が、有核胎児赤血球を含む、請求項40記載のデバイス。
  42. 第2の成分が、母体除核赤血球を含む、請求項41記載のデバイス。
  43. 各セクションが、第1および第2の縁を有する構造を含む流路を含み、該構造が、臨界サイズを上回る流体力学的サイズを有する粒子を第1の縁の方向へ確定的に偏向させ、第1のセクションと第2のセクションとの間の境界が、流体の流れの方向に対して垂直ではない、直列に配置された第1および第2のセクションを含む流路を含むデバイス。
  44. 構造が、ギャップのネットワークを形成する障害物のアレイを含み、同アレイが第1および第2の縁を有し、ならびに該ギャップを通過する流体が、臨界サイズを上回る流体力学的サイズを有する粒子が該ネットワーク内において該第1の縁の方向へ側方に動かされるように、メジャーフラックスとマイナーフラックスに不均等に分けられる、請求項43記載のデバイス。
  45. 障害物のアレイが第1および第2の行を含み、第1の行内においてギャップを通過する流体が、第2の行内において2つのギャップに不均等に分けられるように、第2の行が第1の行に対して側方に動かされる、請求項44記載のデバイス。
  46. 第1の行内においてギャップを通過する流体が、臨界サイズを上回る流体力学的サイズを有する粒子がネットワーク内において側方に動かされ、および該臨界サイズに満たない流体力学的サイズを有する粒子が該ネットワーク内において側方に動かされないように、メジャーフラックスとマイナーフラックスに不均等に分けられるように、第2の行が第1の行に対して側方に動かされ、分岐比が最大で1/2である、第1および第2の行を含む障害物のアレイを含む流路を含むデバイス。
  47. 比が最大で1/60である、請求項46記載のデバイス。
  48. 流れの平均的な方向に対して垂直な障害物の横断面積が、流れの平均的な方向に平行な該障害物の横断面積より大きい、請求項46記載のデバイス。
  49. 赤血球が、臨界サイズに満たない流体力学的サイズを有し、白血球が、該臨界サイズを上回る流体力学的サイズを有し、および該白血球がアレイをブロックしない、請求項46記載のデバイス。
  50. 臨界サイズを上回る流体力学的サイズを有する粒子がネットワーク内において側方に動かされ、ならびに該臨界サイズに満たない流体力学的サイズを有する粒子が該ネットワーク内において側方に動かされないように、ギャップを通過する流体がメジャーフラックスとマイナーフラックスに不均等に分けられ、第1および第2の流入口がアレイより大きい流体抵抗を有する、第1および第2の流入口、ならびにギャップのネットワークを形成する障害物のアレイを含む流路を含むデバイス。
  51. 障害物のアレイが第1および第2の行を含み、第1の行内においてギャップを通過する流体が、第2の行内において2つのギャップに不均等に分けられるように、第2の行が第1の行に対して側方に動かされる、請求項50記載のデバイス。
  52. ギャップを通過する流体が、臨界サイズを上回る流体力学的サイズを有する粒子がネットワーク内において側方に動かされ、ならびに該臨界サイズに満たない流体力学的サイズを有する粒子が、該ネットワーク内において側方に動かされないように、メジャーフラックスとマイナーフラックスに不均等に分けられ、第1および第2の流出口がアレイより大きな流体抵抗を有する、ギャップのネットワークを形成する障害物のアレイの下流に、第1および第2の流出口を含む流路を含むデバイス。
  53. 障害物のアレイが第1および第2の行を含み、第1の行内においてギャップを通過する流体が、第2の行内において2つのギャップに不均等に分けられるように、第2の行が第1の行に対して側方に動かされる、請求項52記載のデバイス。
  54. デバイスが、該デバイスからの排出を画像化するための機器に接続されている、請求項1、11、21、28、34、37、46、50、および52のいずれか一項記載のデバイス。
  55. 構造が、臨界サイズを上回る流体力学的サイズを有する粒子を第1の縁の方向へ確定的に偏向させ、第1の縁または第2の縁が、第1または第2の流路の壁から少なくとも臨界サイズを隔てて配置される、第1の流路壁に隣接する第1の縁、および第2の流路壁に隣接するセクションの縁を有する構造を含む流路を含むデバイス。
  56. 構造が、ギャップのネットワークを形成する障害物のアレイを含み、同アレイが第1および第2の縁を有し、ならびに該ギャップを通過する流体が、臨界サイズを上回る流体力学的サイズを有する粒子が該ネットワーク内において該第1の縁の方向へ側方に動かされ、ならびに該臨界サイズに満たない流体力学的サイズを有する粒子が該ネットワーク内において該第1の縁の方へ側方に動かされないように、メジャーフラックスとマイナーフラックスに不均等に分けられる、請求項55記載のデバイス。
  57. 障害物のアレイが第1および第2の行を含み、第1の行内においてギャップを通過する流体が、第2の行内において2つのギャップに不均等に分けられるように、第2の行が第1の行に対して側方に動かされる、請求項56記載のデバイス。
  58. 以下の段階を含む、第1の生物学的粒子が濃縮された試料を生成する方法:
    (a)生物学的試料を、請求項1記載のデバイスの第1または第2の外部領域に導入する段階;および
    (b)該生物学的試料中に存在する任意の該第1の生物学的粒子が第1または第2の方向に誘導されることで、該第1の生物学的粒子が濃縮された該試料が生成される、該生物学的試料を該デバイスに流すことを可能とする段階。
  59. デバイスが請求項4記載のデバイスであり、ならびに第1および第2の外部領域が、臨界サイズを上回る流体力学的サイズを有する粒子をバイパス流路の方向に誘導し、ならびに希釈液を、該第1の生物学的粒子が該バイパス流路内に誘導される該バイパス流路内に流す段階をさらに含む、請求項58記載の方法。
  60. 以下の段階を含む、第1の生物学的粒子が濃縮された試料を生成する方法:
    (a)生物学的試料を、請求項11記載のデバイスの第1のセクション内に導入する段階;および
    (b)該生物学的試料中に存在する任意の該第1の生物学的粒子が、該第1のセクションの第1または第2の方向に誘導されることで、該第1の生物学的粒子が濃縮された該試料が生成される、該生物学的試料を該デバイスに流すことを可能とする段階。
  61. 第1の生物学的粒子が、第1のセクションの第1の方向に、および第1のバイパス流路内に誘導される、請求項60記載の方法。
  62. 第1のセクションの第1の方向に誘導されない流体が、第2のセクション内に流れることを可能とし、ここで第2の生物学的粒子が該第2のセクションの第1の方向に誘導される段階をさらに含む、請求項61記載の方法。
  63. デバイスが請求項17記載のデバイスであり、第2の生物学的粒子が第2のバイパス流路内に誘導される、請求項62記載の方法。
  64. 第3の生物学的粒子が、第2のセクションの第2の方向に誘導される、請求項63記載の方法。
  65. 第1の生物学的粒子が白血球を含み、第2の生物学的粒子が赤血球を含み、および第3の生物学的粒子が血小板を含む、請求項64記載の方法。
  66. 以下の段階を含む、第1の生物学的粒子が濃縮された試料を生成する方法:
    (a)生物学的試料を、請求項21記載のデバイスの各流路の流入口内に導入する段階;および
    (b)該生物学的試料中に存在する任意の該第1の生物学的粒子が、第1または第2の方向に誘導されることで、該生物学的粒子が濃縮された該試料が生成する、該生物学的試料が該デバイスに流れることを可能とする段階。
  67. 第1の生物学的粒子が濃縮された試料を回収する段階をさらに含む、請求項58、60、および66のいずれか一項記載の方法。
  68. 第1の生物学的粒子の濃度が、生物学的試料に対して濃縮試料中で高くなる、請求項58、60、および66のいずれか一項記載の方法。
  69. 生物学的試料が細胞試料を含む、請求項58、60、および66のいずれか一項記載の方法。
  70. 細胞試料が血液を含む、請求項69記載の方法。
  71. 生物学的試料が母体血液を含み、および第1の粒子が胎児細胞である、請求項58、60、および66のいずれか一項記載の方法。
  72. 胎児細胞が有核赤血球である、請求項71記載の方法。
  73. 胎児細胞を、性別、異数性、タンパク質発現、コード核酸もしくは非コード核酸、または代謝状態に関して解析する段階をさらに含む、請求項71記載の方法。
  74. 以下の段階を含む、第1の生物学的粒子が濃縮された試料を生成する方法:
    (a)生物学的試料を、請求項28記載のデバイス内に導入する段階;および
    (b)該生物学的試料中に存在する任意の該第1の生物学的粒子が第1または第2の方向に誘導されることで、該第1の生物学的粒子が濃縮された該試料が生成される、該生物学的試料が、ギャップのネットワークを流れることを可能とする段階。
  75. 第1の生物学的粒子が、癌細胞、病原体、寄生虫、細菌、ウイルス、真菌細胞、宿主免疫細胞、幹細胞、移植免疫細胞、樹状細胞、結合組織細胞、または真核細胞成分である、請求項58、60、66、および74のいずれか一項記載の方法。
  76. 生物学的試料が第1の生物体から得られ、および第1の生物学的粒子が第2の生物体から得られる、請求項58、60、66、および74のいずれか一項記載の方法。
  77. 第1および第2の生物体が異なるヒトである、請求項58、60、66、および74のいずれか一項記載の方法。
  78. 第1の生物学的粒子の流体力学的半径を増加させるために、該第1の生物学的粒子に膨張試薬を、段階(b)前または段階(b)の間のいずれかにおいて接触させる段階をさらに含む、請求項58、60、66、および74のいずれか一項記載の方法。
  79. 第1の生物学的粒子の流体力学的半径を減少させるために、該第1の生物学的粒子に収縮試薬を、段階(b)前または段階(b)の間のいずれかにおいて接触させる段階を含む、請求項58、60、66、および74のいずれか一項記載の方法。
  80. 生物学的試料が最大90%の液体を含む、請求項58、60、66、および74のいずれか一項記載の方法。
  81. 濃縮試料が、生物学的試料中に存在する第1の生物学的粒子の少なくとも75%を含む、請求項58、60、66、および74のいずれか一項記載の方法。
  82. 第1の生物学的粒子が、生物学的試料に対して少なくとも2倍濃縮される、請求項58、60、66、および74のいずれか一項記載の方法。
  83. 第1の生物学的粒子が、10倍を超えて希釈されない、請求項58、60、66、および74のいずれか一項記載の方法。
  84. 第1の生物学的粒子中に濃縮された試料を、該第1の生物学的粒子に選択的に結合するか、または第2の生物学的粒子に選択的に結合する結合成分に接触させる段階をさらに含む、請求項58、60、66、および74のいずれか一項記載の方法。
  85. 第1の生物学的試料中に濃縮された試料を、胎児核を検出するためにRNA FISHで解析する段階をさらに含む、請求項58、60、66、および74のいずれか一項記載の方法。
  86. 第1の生物学的粒子が胎児有核細胞である、請求項58、60、66、および74のいずれか一項記載の方法。
  87. 胎児有核細胞が、赤血球、トロホブラスト、内皮細胞、または幹細胞である、請求項86記載の方法。
  88. 以下の段階を含む、第1の生物学的粒子を改変する方法:
    (a)アレイが、流体の流れの方向に平行な第1および第2の縁を有し、ならびにギャップを通過する流体が、メジャーフラックスの平均的な方向が第1の縁の方向へ向かい、およびマイナーフラックスの平均的な方向が第1の縁の方向へ向かわないように、メジャーフラックスとマイナーフラックスに不均等に分けられる、第1の流入口、第2の流入口、第1の流出口、第2の流出口、およびギャップのネットワークを形成する障害物のアレイを含む流路を含むデバイスを提供する段階;
    (b)生物学的試料を該第1の流入口に導入し、および改変途上の液体を該第2の流入口に導入する段階;ならびに
    (c)細胞試料中に存在する任意の該第1の生物学的粒子が、該メジャーフラックス中に、および該改変途上の液体中に誘導されることで、該第1の生物学的粒子が改変される、該生物学的試料を該ギャップのネットワークに流すことを可能とする段階。
  89. 改変途上の液体が、希釈用試薬または標識試薬を含む、請求項88記載の方法。
  90. 標識試薬が、巨核球、放射性同位体、フルオロフォア、ビーズ、または抗体を含む、請求項88記載の方法。
  91. 改変途上の液体が安定化試薬を含む、請求項88記載の方法。
  92. 安定化用試薬が、アポトーシス阻害剤、固定剤、抗酸化剤、または糖を含む、請求項91記載の方法。
  93. 糖が、ショ糖またはトレハロースである、請求項92記載の方法。
  94. 固定剤がアルデヒドである、請求項92記載の方法。
  95. デバイスが、請求項1、11、21、28、34、37、46、50、および52のいずれか一項記載のデバイスである、請求項88記載の方法。
  96. 以下の段階を含む、第1の細胞またはこの成分の、濃縮された活性化されていない試料を生成する方法:
    (a)アレイが、流体の流れの方向に平行な第1および第2の縁を有し、ならびにギャップを通過する流体が、メジャーフラックスの平均的な方向が第1の縁の方向に向かい、およびマイナーフラックスの平均的な方向が第1の縁の方向に向かわないように、メジャーフラックスとマイナーフラックスに不均等に分けられる、ギャップのネットワークを形成する障害物のアレイを含む流路を含むデバイスを提供する段階;
    (b)細胞試料を該アレイ内に導入する段階;ならびに
    (c)該細胞試料中に存在する任意の該第1の細胞またはこの成分が該メジャーフラックス中に誘導され、ならびに該第1の細胞またはこの成分の10%未満が、該第1の細胞またはこの成分と該障害物の1つとの衝突の結果として細胞内活性化を受けることで、該第1の細胞またはこの成分の、該濃縮された活性化されていない試料が生成される、該細胞試料を該ギャップのネットワークに流すことを可能とする段階。
  97. 第1の細胞が、血小板、幹細胞、顆粒球、単球、または内皮細胞である、請求項96記載の方法。
  98. デバイスが、請求項1、11、21、28、34、37、46、50、および52のいずれか一項記載のデバイスである、請求項96記載の方法。
  99. 以下の段階を含む、第1の粒子が濃縮された試料を生成する方法:
    (a)アレイが、流体の流れの方向に平行な第1および第2の縁を有し、およびギャップを通過する流体が、メジャーフラックスの平均的な方向が第1の縁の方向へ向かい、およびマイナーフラックスの平均的な方向が第1の縁の方向へ向かわないように、メジャーフラックスとマイナーフラックスに不均等に分けられる、ギャップのネットワークを形成する障害物のアレイを含む流路を含むデバイスを提供する段階;
    (b)容積比で少なくとも0.1%の粒子を含む試料を該アレイ内に導入する段階;ならびに
    (c)該試料中に存在する任意の該第1の粒子が、該メジャーフラックス中に誘導されることで、該第1の粒子が濃縮された該試料が生成される、該試料を該ギャップのネットワークに流すことを可能とする段階。
  100. 試料が血液を含む、請求項99記載の方法。
  101. デバイスが、請求項1、11、21、28、34、37、46、50、および52のいずれか一項記載のデバイスである、請求項99記載の方法。
  102. 以下の段階を含む、第1の血液成分が濃縮された試料を生成する方法:
    (a)請求項37記載のデバイスを提供する段階;
    (b)血液を含む試料をアレイ内に導入する段階;および
    (c)該第1の血液成分が第2の血液成分から確定的に分離されることで、該第1の血液成分が濃縮された該試料が生成されるように、該試料を該デバイスに流すことを可能とする段階。
  103. デバイスが請求項38記載のデバイスである、請求項102記載の方法。
  104. 以下の段階を含む、対象細胞から細胞成分を回収する方法:
    (a)対象細胞を含む試料を処理して、対象細胞が濃縮された試料を生成する段階;
    (b)細胞成分またはこの対応物を含む他の細胞より、濃縮試料中の対象細胞を優先的に溶解させる段階;および
    (c)溶解した対象細胞から細胞成分を回収する段階。
  105. 回収された細胞成分を、同定、列挙、または疾患の診断の目的で解析する段階をさらに含む、請求項103記載の方法。
  106. 対象細胞が胎児赤血球である、請求項103記載の方法。
  107. 細胞成分が胎児赤血球の核である、請求項106記載の方法。
  108. 試料が血液試料である、請求項103記載の方法。
  109. 試料が母体血液試料である、請求項108記載の方法。
  110. 対象細胞が、癌細胞、病原体、寄生虫、細菌、ウイルス、真菌細胞、宿主免疫細胞、幹細胞、移植免疫細胞、樹状細胞、または結合組織細胞である、請求項103記載の方法。
  111. 細胞成分が、細胞小器官、ポリマーもしくは分子の複合体、または細胞内化学種である、請求項103記載の方法。
  112. 細胞小器官が、核、核周囲区画、核膜、ミトコンドリア、葉緑体、細胞膜、または細胞内寄生虫である、請求項111記載の方法。
  113. ポリマーもしくは分子の複合体が、脂質、多糖、タンパク質、核酸、ウイルス粒子、またはリボソームである、請求項111記載の方法。
  114. 細胞内化学種が、ホルモン、イオン、補因子、または薬剤である、請求項111記載の方法。
  115. 段階(a)で、臨界サイズを上回る流体力学的サイズを有する粒子を、セクション内における流れの平均的な方向に平行でない方向に確定的に偏向させる構造を含む流路を含むデバイスを使用する、請求項103記載の方法。
  116. 段階(a)および段階(b)が同時に行われる、請求項115記載の方法。
  117. 以下の段階を含む、血液試料中の循環性細胞から遺伝情報を得る方法:
    (a)該血液試料を処理して除核赤血球および血小板を実質的に除去して、濃縮された有核細胞試料を生成する段階;
    (b)他の有核細胞より、対象有核細胞を優先的に溶解させる段階;
    (c)溶解した対象細胞の細胞成分を含む核酸を回収する段階;ならびに
    (d)回収された細胞成分中の核酸を解析することで、対象細胞から遺伝情報を得る段階。
  118. 対象細胞が胎児赤血球である、請求項117記載の方法。
  119. 対象細胞が、癌細胞、病原体、寄生虫、細菌、ウイルス、真菌細胞、宿主免疫細胞、幹細胞、移植免疫細胞、樹状細胞、または結合組織細胞である、請求項117記載の方法。
  120. 細胞成分が、細胞小器官、ポリマーもしくは分子の複合体、または細胞内化学種である、請求項117記載の方法。
  121. 細胞小器官が、核、核周囲区画、核膜、ミトコンドリア、葉緑体、細胞膜、または細胞内寄生虫である、請求項120記載の方法。
  122. ポリマーもしくは分子の複合体が、脂質、多糖、タンパク質、核酸、ウイルス粒子、またはリボソームである、請求項120記載の方法。
  123. 細胞内化学種が、ホルモン、イオン、補因子、または薬剤である、請求項120記載の方法。
  124. 遺伝情報が、疾患状態、性別、父性、異数性、または変異の有無を含む、請求項117記載の方法。
  125. 段階(a)で、臨界サイズを上回る流体力学的サイズを有する粒子を、セクション内における流れの平均的方向に平行でない方向に確定的に偏向させる構造を含む流路を含むデバイスを使用する、請求項117記載の方法。
  126. 段階(a)および段階(b)が同時に行われる、請求項125記載の方法。
  127. (a)第1のリザーバー、該第1のリザーバーと流体連絡する第1の流入口、および該第1のリザーバーと流体連絡する第1の疎水性ベント;ならびに
    (b)該第1のリザーバーおよび流出口が、マイクロ流体デバイスが係合されている時には流体連絡状態であり、および該マイクロ流体デバイスが係合されていない時には流体連絡状態ではなく、マニホールドが、試料の第2の成分に対して、試料中の第1の粒子の濃縮を可能とするマイクロ流体デバイスと係合するように、サイズ、形状、変形性、または親和性を基に形成され、およびサイズが決定される流出口
    を含むマニホールド。
  128. 第1のリザーバー、第2のリザーバー、および流出口が、マイクロ流体デバイスが係合されている時には流体連絡された状態にあり、および該マイクロ流体デバイスが係合されていない時には流体連絡された状態にない、第2のリザーバー、該第2のリザーバーと流体連絡された第2の流入口、および任意で該第2のリザーバーと流体連絡された第2の疎水性ベントをさらに含む、請求項127記載のマニホールド。
  129. 第1または第2の疎水性ベントが1μm未満の孔を含む、請求項128記載のマニホールド。
  130. マニホールドが、2つの片割れ(half)を含み、マイクロ流体デバイスが、該片割れと片割れとの間に配置されることによって係合可能である、請求項127記載のマニホールド。
  131. 第1のリザーバーがマイクロ流体デバイス内の流路と、該デバイス内の孔を介して流体連絡する、請求項127記載のマニホールド。
  132. 第1および第2のリザーバーがマイクロ流体デバイス内の流路と、該デバイス内の孔を介して流体連絡する、請求項128記載のマニホールド。
  133. 複数のマイクロ流体デバイスと係合するように形成されてサイズが決定される、請求項127または128記載のマニホールド。
  134. マイクロ流体デバイスが、臨界サイズを上回る流体力学的サイズを有する粒子を第1の方向に、および該臨界サイズに満たない流体力学的サイズを有する粒子を第2の方向に、確定的に偏向させる構造を有する流路を含む、請求項128記載のマニホールド。
  135. マイクロ流体デバイスが、請求項1〜57のいずれか一項記載のデバイスである、請求項134記載のマニホールド。
  136. 係合されるマイクロ流体デバイスをさらに含む、請求項127または128記載のマニホールド。
  137. マイクロ流体デバイスが、それぞれが試料中の第1の粒子を該試料の第2の成分に対して、サイズ、形状、変形性、または親和性を基に独立に濃縮可能な複数の流路を含む、請求項127または128記載のマニホールド。
  138. 複数の流路が、少なくとも5、10、15、20、25、または30である、請求項137記載のマニホールド。
  139. 各流路が独立に、第1および/または第2のリザーバーに、デバイス内の孔を介して連結される、請求項137記載のマニホールド。
  140. 第1の粒子が、癌細胞、病原体、寄生虫、細菌、ウイルス、真菌細胞、宿主免疫細胞、幹細胞、移植免疫細胞、樹状細胞、結合組織細胞、または真核細胞の成分を含む、請求項127〜139のいずれか一項記載のマニホールド。
  141. 第1の粒子が有核赤血球を含む、請求項127〜139のいずれか一項記載のマニホールド。
  142. 第1の粒子が胎児有核赤血球を含む、請求項141記載のマニホールド。
  143. 以下の段階を含む、試料中において第2の成分に対して第1の粒子を濃縮する方法:
    (a)該試料を、第1の流入口を介して、請求項136記載のマイクロ流体デバイスと係合されたマニホールド中に導入する段階であって、ここで該試料が第1のリザーバーを少なくとも部分的に満たす段階;および
    (b)該試料を、該マイクロ流体デバイスを通過させて、該第1の粒子を該第2の成分に対して、サイズ、形状、変形性、または親和性を基に濃縮することを可能とする段階。
  144. マニホールドが請求項128記載のマニホールドであり、および段階(b)に先立って、第2の液体を第2の流入口を介してマニホールド中に導入する段階であって、該第2の液体が第2のリザーバーを少なくとも部分的に満たし、段階(b)の間に該第2の液体が該試料と相互作用する段階をさらに含む、請求項143記載の方法。
  145. マイクロ流体デバイスが、臨界サイズを上回る流体力学的サイズを有する粒子を第1の方向に、および該臨界サイズに満たない流体力学的サイズを有する粒子を第2の方向に確定的に誘導する構造を有する流路を含む、請求項144記載の方法。
  146. マイクロ流体デバイスが、請求項1〜57のいずれか一項記載のデバイスである、請求項145記載の方法。
  147. マニホールドが、請求項129〜142のいずれか一項記載のマニホールドである、請求項143記載の方法。
  148. 以下の段階を含む、液体をマニホールド中に導入する方法:
    (a)マイクロ流体デバイスをさらに含む、請求項127記載のマニホールドを提供する段階であって、該マニホールドおよびデバイスが液体で満たされていない段階;
    (b)液体を第1の流入口を介してマニホールド中に導入する段階であって、該液体が第1のリザーバーを少なくとも部分的に満たし、および第1のリザーバー内に存在する気体を、第1の疎水性ベントを介して置き換え、該導入段階が、液体を該第1のベントを介して強制的に動かすのに不十分な圧力下で行われる段階;ならびに
    (c)液体をマイクロ流体デバイス内に進め、流出口を通過させることを可能とする段階。
  149. マニホールドが請求項128記載のマニホールドであり、段階(c)前、段階(c)の間、または段階(c)後に、液体が第1のリザーバーからマイクロ流体デバイスを通して第2のリザーバー内に流れ、該液体が第2の疎水性ベントを通して気体と置き換わる、請求項148記載の方法。
  150. マニホールドが、請求項129〜142のいずれか一項記載のマニホールドである、請求項148記載の方法。
  151. 以下の段階を含む、母体細胞に対して胎児細胞について試料を濃縮する方法:
    (a)母体血液試料を、胎児有核細胞を母体細胞に対して、サイズ、形状、変形性、または親和性を基に濃縮可能なマイクロ流体デバイス内に導入することで、濃縮された試料を生成する段階;
    (b)該濃縮試料中の該胎児有核細胞を溶解させることで、胎児核を放出させる段階;および
    (c)該胎児核を検出する段階。
  152. 段階(b)が、濃縮試料中の全ての細胞を溶解させる段階、および胎児核を回収する段階を含む、請求項151記載の方法。
  153. 段階(b)が、胎児有核細胞を母体細胞に対して選択的に溶解させる段階を含む、請求項151記載の方法。
  154. マイクロ流体デバイスが、胎児有核細胞を第1の方向に、および少なくとも一部の母体細胞を第2の方向に、決定論的な側方変位を基に確定的に誘導する構造を有する流路を含む、請求項151記載の方法。
  155. マイクロ流体デバイスが、請求項1〜57のいずれか一項記載のデバイスである、請求項154記載の方法。
  156. 段階(c)が、胎児核の正または負の選択にRNA FISHを使用する段階を含む、請求項151記載の方法。
  157. 以下の段階を含む、胎児細胞中の母体血液試料を濃縮する方法:
    (a)該母体血液試料を提供する段階;
    (b)該試料に、アンモニウムイオンおよび重炭酸イオンを含む緩衝液、ならびに炭酸脱水酵素阻害剤を接触させ、胎児赤血球に対して母体赤血球の選択的な溶解を誘導する段階;ならびに
    (c)band 3アニオン輸送体の阻害剤を導入して溶解を停止させる段階。
  158. 段階(a)における試料が、胎児細胞について、該胎児細胞を母体細胞に対して、サイズ、形状、変形性、または親和性を基に濃縮可能なマイクロ流体デバイスを介して濃縮される、請求項157記載の方法。
  159. マイクロ流体デバイスが、胎児有核細胞を第1の方向に、および少なくとも一部の母体細胞を第2の方向に、決定論的な側方変位を基に確定的に誘導する構造を有する流路を含む、請求項158記載の方法。
  160. マイクロ流体デバイスが、請求項1〜57のいずれか一項記載のデバイスである、請求項159記載の方法。
  161. 炭酸脱水酵素阻害剤がアセタゾラミドを含む、請求項157記載の方法。
  162. band 3アニオン輸送体の阻害剤がDIDSを含む、請求項157記載の方法。
  163. 以下の段階を含む、胎児細胞中の母体血液試料を濃縮する方法:
    (a)該母体血液試料を提供する段階;ならびに
    (b)該試料に、胎児赤血球に対して母体の赤血球および白血球の選択的な溶解を誘導可能な1種類または複数の緩衝液を接触させる段階。
  164. 以下の段階を含む、試料中の胎児細胞を解析する方法:
    (a)母体血液試料を提供する段階;
    (b)該試料に、以下の溶解手順の1つを実施する段階:
    (i)胎児核を完全な状態に維持しながら、母体細胞に対して胎児細胞を選択的に溶解させる段階;
    (ii)母体核を完全な状態に維持しながら、胎児細胞に対して母体細胞を選択的に溶解させる段階;
    (iii)核を完全な状態に維持しながら、全ての細胞を溶解させる段階;
    (iv)胎児核を完全な状態に維持しながら、全ての細胞および母体核を溶解させる段階;
    (v)胎児細胞に対して母体細胞およびその核を選択的に溶解させる段階;
    (vi)全ての細胞およびその核を溶解させる段階;ならびに
    (vii)母体細胞に対して胎児細胞およびその核を選択的に溶解させる段階;ならびに
    (c)段階(b)で放出された、胎児核、胎児核酸、胎児タンパク質、または胎児代謝物を解析する段階。
  165. 段階(a)における試料が、胎児細胞について、該胎児細胞を母体細胞に対して、サイズ、形状、変形性、または親和性を基に濃縮可能なマイクロ流体デバイスを介して濃縮される、請求項164記載の方法。
  166. マイクロ流体デバイスが、胎児有核細胞を第1の方向に、および少なくとも一部の母体細胞を第2の方向に、決定論的な側方変位を基に確定的に誘導する構造を有する流路を含む、請求項165記載の方法。
  167. マイクロ流体デバイスが、請求項1〜57のいずれか一項記載のデバイスである、請求項165記載の方法。
  168. 段階(c)が、該胎児核、胎児核酸、胎児タンパク質、または胎児代謝物を、RNAもしくはDNAのFISH、PCR、テロメア長解析、親和性に基づくアッセイ法、またはDNAもしくはRNAのハイブリダイゼーションによって解析する段階を含む、請求項164記載の方法。
JP2008505514A 2005-04-05 2006-04-05 細胞および他の粒子を濃縮および改変するためのデバイスおよび方法 Withdrawn JP2008538283A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US66841505P 2005-04-05 2005-04-05
US70406705P 2005-07-29 2005-07-29
PCT/US2006/012820 WO2006108101A2 (en) 2005-04-05 2006-04-05 Devices and method for enrichment and alteration of cells and other particles

Publications (2)

Publication Number Publication Date
JP2008538283A true JP2008538283A (ja) 2008-10-23
JP2008538283A5 JP2008538283A5 (ja) 2009-05-21

Family

ID=37071048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008505514A Withdrawn JP2008538283A (ja) 2005-04-05 2006-04-05 細胞および他の粒子を濃縮および改変するためのデバイスおよび方法

Country Status (9)

Country Link
US (7) US20070196820A1 (ja)
EP (3) EP2664666B1 (ja)
JP (1) JP2008538283A (ja)
CN (1) CN101918527B (ja)
AU (1) AU2006232103A1 (ja)
CA (1) CA2601480A1 (ja)
GB (1) GB2429774A (ja)
HK (1) HK1175494A1 (ja)
WO (1) WO2006108101A2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010099052A (ja) * 2008-10-27 2010-05-06 Olympus Corp 細胞分離方法
JP2010187664A (ja) * 2009-01-23 2010-09-02 Shibaura Institute Of Technology 三次元誘電泳動デバイス
JP2011252776A (ja) * 2010-06-01 2011-12-15 Hiroshima Univ 解析装置及び解析装置の製造方法
JP2014521354A (ja) * 2011-08-04 2014-08-28 セイジ サイエンス,インコーポレイティド 流体を処理するためのシステム及び方法
US9421543B2 (en) 2011-06-24 2016-08-23 Samsung Electronics Co., Ltd. Hydrodynamic filter unit, hydrodynamic filter including the hydrodynamic filter unit, and method of filtering target material by using the hydrodynamic filter unit and the hydrodynamic filter
JP2018030057A (ja) * 2016-08-22 2018-03-01 国立大学法人東京工業大学 微粒子分離デバイスおよび微粒子の分離方法
WO2019187618A1 (ja) * 2018-03-30 2019-10-03 株式会社日立製作所 細胞製造装置
JP2021510516A (ja) * 2018-01-19 2021-04-30 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 粒子の精製および分画のための方法およびマイクロ流体装置
US11458474B2 (en) 2018-01-19 2022-10-04 International Business Machines Corporation Microfluidic chips with one or more vias
US11566982B2 (en) 2018-01-19 2023-01-31 International Business Machines Corporation Microscale and mesoscale condenser devices

Families Citing this family (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6692952B1 (en) * 1999-11-10 2004-02-17 Massachusetts Institute Of Technology Cell analysis and sorting apparatus for manipulation of cells
US6913697B2 (en) 2001-02-14 2005-07-05 Science & Technology Corporation @ Unm Nanostructured separation and analysis devices for biological membranes
US8895298B2 (en) * 2002-09-27 2014-11-25 The General Hospital Corporation Microfluidic device for cell separation and uses thereof
US20040171091A1 (en) * 2003-02-27 2004-09-02 Cell Work, Inc. Standardized evaluation of therapeutic efficacy based on cellular biomarkers
WO2004113877A1 (en) * 2003-06-13 2004-12-29 The General Hospital Corporation Microfluidic systems for size based removal of red blood cells and platelets from blood
US8158410B2 (en) 2005-01-18 2012-04-17 Biocept, Inc. Recovery of rare cells using a microchannel apparatus with patterned posts
US20060252087A1 (en) * 2005-01-18 2006-11-09 Biocept, Inc. Recovery of rare cells using a microchannel apparatus with patterned posts
US20090136982A1 (en) * 2005-01-18 2009-05-28 Biocept, Inc. Cell separation using microchannel having patterned posts
KR20070116585A (ko) 2005-01-18 2007-12-10 바이오셉트 인코포레이티드 패턴화된 포스트를 갖는 마이크로채널을 이용하는 세포분리법
EP2594631A1 (en) * 2005-04-05 2013-05-22 Cellpoint Diagnostics Devices and method for detecting circulating tumor cells and other particles
US20070196820A1 (en) 2005-04-05 2007-08-23 Ravi Kapur Devices and methods for enrichment and alteration of cells and other particles
US20070026417A1 (en) * 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20060223178A1 (en) * 2005-04-05 2006-10-05 Tom Barber Devices and methods for magnetic enrichment of cells and other particles
US20070026413A1 (en) * 2005-07-29 2007-02-01 Mehmet Toner Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026415A1 (en) * 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026414A1 (en) * 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070059680A1 (en) * 2005-09-15 2007-03-15 Ravi Kapur System for cell enrichment
US8921102B2 (en) 2005-07-29 2014-12-30 Gpb Scientific, Llc Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026416A1 (en) * 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20090181421A1 (en) * 2005-07-29 2009-07-16 Ravi Kapur Diagnosis of fetal abnormalities using nucleated red blood cells
US20070059718A1 (en) * 2005-09-15 2007-03-15 Mehmet Toner Systems and methods for enrichment of analytes
US20070059683A1 (en) * 2005-09-15 2007-03-15 Tom Barber Veterinary diagnostic system
US20070059719A1 (en) * 2005-09-15 2007-03-15 Michael Grisham Business methods for prenatal Diagnosis
US20070059781A1 (en) * 2005-09-15 2007-03-15 Ravi Kapur System for size based separation and analysis
US20070059716A1 (en) * 2005-09-15 2007-03-15 Ulysses Balis Methods for detecting fetal abnormality
US20070059774A1 (en) * 2005-09-15 2007-03-15 Michael Grisham Kits for Prenatal Testing
US7695956B2 (en) * 2006-01-12 2010-04-13 Biocept, Inc. Device for cell separation and analysis and method of using
EP2423334A3 (en) 2006-02-02 2012-04-18 The Board of Trustees of The Leland Stanford Junior University Non-invasive fetal genetic screening by digital analysis
WO2007137245A2 (en) 2006-05-22 2007-11-29 Columbia University Systems and methods of microfluidic membraneless exchange using filtration of extraction fluid outlet streams
EP2029779A4 (en) 2006-06-14 2010-01-20 Living Microsystems Inc HIGHLY PARALLEL SNP GENOTYPING UTILIZATION FOR FETAL DIAGNOSIS
US20080090239A1 (en) * 2006-06-14 2008-04-17 Daniel Shoemaker Rare cell analysis using sample splitting and dna tags
US8137912B2 (en) 2006-06-14 2012-03-20 The General Hospital Corporation Methods for the diagnosis of fetal abnormalities
EP2589668A1 (en) 2006-06-14 2013-05-08 Verinata Health, Inc Rare cell analysis using sample splitting and DNA tags
US20080050739A1 (en) * 2006-06-14 2008-02-28 Roland Stoughton Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats
US20080007838A1 (en) * 2006-07-07 2008-01-10 Omnitech Partners, Inc. Field-of-view indicator, and optical system and associated method employing the same
US20100288689A1 (en) * 2006-08-22 2010-11-18 Agency For Science, Technology And Research Microfluidic filtration unit, device and methods thereof
EP2142279A2 (en) 2007-04-16 2010-01-13 The General Hospital Corporation d/b/a Massachusetts General Hospital Systems and methods for particle focusing in microchannels
WO2008131035A2 (en) * 2007-04-16 2008-10-30 Cellpoint Diagnotics, Inc. Methods for diagnosing, prognosing, or theranosing a condition using rare cells
AP2937A (en) * 2007-04-20 2014-07-31 Gen Hospital Corp Method for counting cells
US20100112590A1 (en) 2007-07-23 2010-05-06 The Chinese University Of Hong Kong Diagnosing Fetal Chromosomal Aneuploidy Using Genomic Sequencing With Enrichment
PT2183693E (pt) 2007-07-23 2014-01-14 Univ Hong Kong Chinese Diagnóstico de aneuploidia cromossómica fetal utilizando sequenciação genómica
WO2009026566A1 (en) * 2007-08-23 2009-02-26 Cynvenio Biosystems, Llc Trapping magnetic sorting system for target species
US20110300608A1 (en) * 2007-09-21 2011-12-08 Streck, Inc. Nucleic acid isolation in preserved whole blood
WO2009058997A2 (en) * 2007-11-01 2009-05-07 Biocept Inc. Non-invasive isolation of fetal nucleic acid
AU2009212396A1 (en) * 2008-02-04 2009-08-13 The Trustees Of Columbia University In The City Of New York Fluid separation devices, systems and methods
US8008032B2 (en) 2008-02-25 2011-08-30 Cellective Dx Corporation Tagged ligands for enrichment of rare analytes from a mixed sample
US20110127222A1 (en) * 2008-03-19 2011-06-02 Cynvenio Biosystems, Inc. Trapping magnetic cell sorting system
EP2271919A1 (en) * 2008-04-16 2011-01-12 Cynvenio Biosystems, Inc. Magnetic separation system with pre and post processing modules
FR2931141B1 (fr) 2008-05-13 2011-07-01 Commissariat Energie Atomique Systeme microfluidique et procede pour le tri d'amas de cellules et de preference pour leur encapsulation en continu suite a leur tri
FR2931085B1 (fr) 2008-05-13 2011-05-27 Commissariat Energie Atomique Procede de tri de particules ou d'amas de particules dans un fluide circulant dans un canal
US9427688B2 (en) 2008-07-10 2016-08-30 Steven H. Reichenbach Method and apparatus for sorting particles using asymmetrical particle shifting
CN102282176A (zh) * 2008-07-18 2011-12-14 诺华有限公司 由母体全血进行非侵入性胎儿RhD基因型分型
JP5795255B2 (ja) 2008-07-18 2015-10-14 キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッドCanon U.S. Life Sciences, Inc. 微小流体dna試料調製のための方法およびシステム
PT2562268T (pt) 2008-09-20 2017-03-29 Univ Leland Stanford Junior Diagnóstico não invasivo de aneuploidia fetal por sequenciação
IT1391408B1 (it) * 2008-10-02 2011-12-23 Silicon Biosystems Spa Camera di separazione
WO2010041231A2 (en) 2008-10-10 2010-04-15 Cnrs-Dae Cell sorting device
US8162149B1 (en) 2009-01-21 2012-04-24 Sandia Corporation Particle sorter comprising a fluid displacer in a closed-loop fluid circuit
WO2010085815A1 (en) * 2009-01-26 2010-07-29 Artemis Health, Inc. Methods and compositions for identifying a fetal cell
SG175282A1 (en) * 2009-04-21 2011-11-28 Genetic Technologies Ltd Methods for obtaining fetal genetic material
EP2437887B1 (en) 2009-06-04 2016-05-11 Lockheed Martin Corporation Multiple-sample microfluidic chip for dna analysis
PL2440941T3 (pl) * 2009-06-10 2017-10-31 Cynvenio Biosystems Inc Sposoby i urządzenia z przepływem laminarnym
FR2946895A1 (fr) 2009-06-19 2010-12-24 Commissariat Energie Atomique Systeme microfluidique et procede correspondant pour le transfert d'elements entre phases liquides et utilisation de ce systeme pour extraire ces elements
EP2470636A1 (en) * 2009-08-28 2012-07-04 The Trustees of Columbia University in the City of New York Multi-layer blood component exchange devices, systems, and methods
US8584535B2 (en) * 2009-09-17 2013-11-19 Innova Prep LLC Liquid to liquid biological particle concentrator with disposable fluid path
CN102713919B (zh) * 2009-11-13 2016-07-06 贝克曼考尔特公司 用于使用聚类来检测生物学状态的存在的系统和方法
US9034658B2 (en) 2009-11-23 2015-05-19 The General Hospital Corporation Microfluidic devices for the capture of biological sample components
US8961878B2 (en) 2009-12-07 2015-02-24 Yale University Label-free cellular manipulation and sorting via biocompatible ferrofluids
SG181676A1 (en) 2009-12-23 2012-07-30 Cytovera Inc A system and method for particle filtration
US8187979B2 (en) * 2009-12-23 2012-05-29 Varian Semiconductor Equipment Associates, Inc. Workpiece patterning with plasma sheath modulation
JP5846609B2 (ja) 2010-01-21 2016-01-20 バイオセップ リミテッド 希少細胞の磁気分離
US9458489B2 (en) 2010-03-04 2016-10-04 Massachusetts Institute Of Technology Microfluidics sorter for cell detection and isolation
US8774488B2 (en) 2010-03-11 2014-07-08 Cellscape Corporation Method and device for identification of nucleated red blood cells from a maternal blood sample
US20110293558A1 (en) * 2010-03-22 2011-12-01 Massachusetts Institute Of Technology Material properties of t cells and related methods and compositions
US8590710B2 (en) * 2010-06-10 2013-11-26 Samsung Electronics Co., Ltd. Target particles-separating device and method using multi-orifice flow fractionation channel
US20140031250A1 (en) 2010-10-07 2014-01-30 David Tsai Ting Biomarkers of Cancer
MX2013004184A (es) 2010-10-15 2013-07-29 Lockheed Corp Diseño optico microfluidico.
US9999855B2 (en) 2010-10-28 2018-06-19 Yale University Microfluidic processing of target species in ferrofluids
AU2015268583B2 (en) * 2010-10-28 2017-06-15 Yale University Microfluidic Processing Of Target Species In Ferrofluids
KR101768123B1 (ko) * 2010-12-03 2017-08-16 삼성전자주식회사 수력학 필터, 이를 구비한 필터링 장치 및 이에 의한 필터링 방법
AU2012211957B2 (en) * 2011-02-04 2017-02-23 The Trustees Of The University Of Pennsylvania A method for detecting chromosome structure and gene expression simultaneously in single cells
EP2490020A1 (en) * 2011-02-18 2012-08-22 Koninklijke Philips Electronics N.V. Measurement chip, microfluidic device and method of measurement chip manufacture
EP2490005A1 (en) * 2011-02-18 2012-08-22 Koninklijke Philips Electronics N.V. Microfluidic resistance network and microfluidic device
US9541480B2 (en) 2011-06-29 2017-01-10 Academia Sinica Capture, purification, and release of biological substances using a surface coating
US9404864B2 (en) 2013-03-13 2016-08-02 Denovo Sciences, Inc. System for imaging captured cells
US9174216B2 (en) 2013-03-13 2015-11-03 DeNovo Science, Inc. System for capturing and analyzing cells
US10466160B2 (en) 2011-08-01 2019-11-05 Celsee Diagnostics, Inc. System and method for retrieving and analyzing particles
CN103998394B (zh) 2011-08-01 2016-08-17 德诺弗科学公司 细胞捕获系统和使用方法
WO2013063035A1 (en) 2011-10-24 2013-05-02 The General Hospital Corporation Biomarkers of cancer
KR101933618B1 (ko) 2011-11-29 2018-12-31 삼성전자주식회사 표적 물질 검출 및 분리 장치, 및 이를 이용한 표적 물질 검출 및 분리 방법
BR112014013756A2 (pt) 2011-12-07 2017-06-13 Cytovera Inc método e dispositivo para o processamento de amostra
US9322054B2 (en) 2012-02-22 2016-04-26 Lockheed Martin Corporation Microfluidic cartridge
FR2987282B1 (fr) * 2012-02-24 2017-12-29 Fonds De L'espci Georges Charpak Microcanal avec dispositif d'ouverture et/ou fermeture et/ou pompage
AU2013318647B2 (en) 2012-09-21 2017-10-26 Massachusetts Institute Of Technology Micro-fluidic device and uses thereof
US9599590B2 (en) 2012-10-12 2017-03-21 Sage Science, Inc. Side-eluting molecular fractionator
WO2014065861A1 (en) 2012-10-26 2014-05-01 The Trustees Of The University Of Pennsylvania Compositions, methods and microfluidics device for telomerase based in vitro diagnostic assays for detecting circulating tumor cells (ctc)
US9494500B2 (en) 2012-10-29 2016-11-15 Academia Sinica Collection and concentration system for biologic substance of interest and use thereof
US9752181B2 (en) 2013-01-26 2017-09-05 Denovo Sciences, Inc. System and method for capturing and analyzing cells
US8934700B2 (en) * 2013-03-04 2015-01-13 Caliper Life Sciences, Inc. High-throughput single-cell imaging, sorting, and isolation
US20160008778A1 (en) * 2013-03-06 2016-01-14 President And Fellows Of Harvard College Devices and methods for forming relatively monodisperse droplets
US9707562B2 (en) 2013-03-13 2017-07-18 Denovo Sciences, Inc. System for capturing and analyzing cells
US9888283B2 (en) 2013-03-13 2018-02-06 Nagrastar Llc Systems and methods for performing transport I/O
USD758372S1 (en) * 2013-03-13 2016-06-07 Nagrastar Llc Smart card interface
WO2014145237A1 (en) * 2013-03-15 2014-09-18 Dialyflux, Llc Surfaces for manipulating particle flow
US20150064153A1 (en) 2013-03-15 2015-03-05 The Trustees Of Princeton University High efficiency microfluidic purification of stem cells to improve transplants
CN105264127B (zh) * 2013-03-15 2019-04-09 Gpb科学有限责任公司 颗粒的片上微流体处理
US20160299132A1 (en) 2013-03-15 2016-10-13 Ancera, Inc. Systems and methods for bead-based assays in ferrofluids
WO2014144782A2 (en) 2013-03-15 2014-09-18 Ancera, Inc. Systems and methods for active particle separation
CN113512522A (zh) 2013-03-15 2021-10-19 普林斯顿大学理事会 用于高通量纯化的方法和设备
US10391490B2 (en) 2013-05-31 2019-08-27 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US9856535B2 (en) 2013-05-31 2018-01-02 Denovo Sciences, Inc. System for isolating cells
US9656262B2 (en) * 2013-06-11 2017-05-23 Euveda Biosciences, Inc. Microfluidic grid-based design for high throughput assays
DE102013215570A1 (de) * 2013-08-07 2015-02-12 Robert Bosch Gmbh Verfahren und Vorrichtung zum Aufbereiten einer Zielzellen und Begleitzellen enthaltenden Probe biologischen Materials zum Extrahieren von Nukleinsäuren der Zielzellen
DE102013215575A1 (de) * 2013-08-07 2015-02-12 Robert Bosch Gmbh Verfahren und Vorrichtung zum Aufbereiten einer Zielzellen und Begleitzellen enthaltenden Probe biologischen Materials zum Extrahieren von Nukleinsäuren der Zielzellen
WO2015058206A1 (en) 2013-10-18 2015-04-23 The General Hosptial Corporation Microfluidic sorting using high gradient magnetic fields
CN105980057B (zh) * 2013-11-19 2019-08-16 普拉托德公司 生产血小板的射流装置
US20160279637A1 (en) 2013-11-22 2016-09-29 The General Hospital Corporation Microfluidic methods and systems for isolating particle clusters
EP3107995B1 (en) 2014-02-18 2019-10-30 Massachusetts Institute Of Technology Biophysically sorted osteoprogenitors from culture expanded bone marrow derived mesenchymal stromal cells (mscs)
JP2015166707A (ja) * 2014-03-04 2015-09-24 キヤノン株式会社 マイクロ流路デバイス
TW201623605A (zh) 2014-04-01 2016-07-01 中央研究院 用於癌症診斷及預後之方法及系統
CN106459863A (zh) 2014-05-01 2017-02-22 阿卜杜拉国王科技大学 分离细胞的微流体装置
DK3174976T3 (da) 2014-08-01 2020-11-23 Gpb Scient Inc Fremgangsmåder og systemer til forarbejdning af partikler
US10391491B2 (en) 2014-08-07 2019-08-27 The General Hospital Corporation Platelet-targeted microfluidic isolation of cells
KR102323205B1 (ko) 2014-08-22 2021-11-08 삼성전자주식회사 표적물질 분리장치 및 표적물질 분리방법
EP2998026B1 (en) 2014-08-26 2024-01-17 Academia Sinica Collector architecture layout design
US10806845B2 (en) 2014-09-17 2020-10-20 Massachusetts Institute Of Technology System and method for inertial focusing microfiltration for intra-operative blood salvage autotransfusion
CN105296340B (zh) * 2014-09-19 2018-03-27 青岛市中心医院 一种肠道内容物部分成分提取装置
WO2016057387A1 (en) 2014-10-06 2016-04-14 The Trustees Of The University Of Pennsylvania Compositions and methods for isolation of circulating tumor cells (ctc)
EP3207163B1 (en) 2014-10-15 2020-05-27 Sage Science, Inc. Apparatuses, methods and systems for automated processing of nucleic acids and electrophoretic sample preparation
CA2966611C (en) 2014-11-03 2024-02-20 The General Hospital Corporation Sorting particles in a microfluidic device
US9835538B2 (en) * 2014-11-26 2017-12-05 International Business Machines Corporation Biopolymer separation using nanostructured arrays
US9636675B2 (en) * 2014-11-26 2017-05-02 International Business Machines Corporation Pillar array structure with uniform and high aspect ratio nanometer gaps
KR102360072B1 (ko) * 2014-12-08 2022-02-08 삼성전자주식회사 미세입자 분리 장치
JP6367493B2 (ja) 2015-01-07 2018-08-01 インディー.インコーポレイテッド 機械的及び流体力学的マイクロ流体形質移入の方法ならびにそのための装置
KR101583633B1 (ko) * 2015-01-12 2016-01-08 한국항공대학교산학협력단 음의 유전 영동력 기반의 입자 분리 장치 및 이를 이용한 입자 분리 방법
US10364467B2 (en) 2015-01-13 2019-07-30 The Chinese University Of Hong Kong Using size and number aberrations in plasma DNA for detecting cancer
AU2016209521A1 (en) * 2015-01-23 2017-08-17 Unimed Biotech (Shanghai) Co., Ltd Microfluidics based fetal cell detection and isolation for non-invasive prenatal testing
KR101749796B1 (ko) * 2015-02-24 2017-06-22 고려대학교 산학협력단 혈소판 검사용 칩
SG11201706826VA (en) * 2015-02-27 2017-09-28 Toppan Printing Co Ltd Method for separating cells, and device therefor
US10156568B2 (en) 2015-04-30 2018-12-18 International Business Machines Corporation Immunoassay for detection of virus-antibody nanocomplexes in solution by chip-based pillar array
USD864968S1 (en) 2015-04-30 2019-10-29 Echostar Technologies L.L.C. Smart card interface
SG10202110399WA (en) 2015-06-05 2021-11-29 Novartis Ag Flow-through paramagnetic particle-based cell separation and paramagnetic particle removal
WO2016210348A2 (en) 2015-06-26 2016-12-29 Ancera, Inc. Background defocusing and clearing in ferrofluid-based capture assays
CN108025304B (zh) * 2015-07-22 2022-01-21 北卡罗来纳-查佩尔山大学 含有具有空间分离的珠保留和信号检测段的珠孔几何结构的流体装置和相关方法
US10976232B2 (en) 2015-08-24 2021-04-13 Gpb Scientific, Inc. Methods and devices for multi-step cell purification and concentration
WO2017087979A1 (en) 2015-11-20 2017-05-26 Washington University Preparative electrophoretic method for targeted purification of genomic dna fragments
RU2711956C1 (ru) * 2016-01-22 2020-01-23 Зе Боард Оф Трастиз Оф Зе Лилэнд Стэнфорд Джуниор Юниверсити Микрофлюидное устройство для выборочного отбора высокоподвижных и морфологически нормальных сперматозоидов из необработанной семенной жидкости
US10107726B2 (en) 2016-03-16 2018-10-23 Cellmax, Ltd. Collection of suspended cells using a transferable membrane
JP6965272B2 (ja) * 2016-04-22 2021-11-10 パーデュー・リサーチ・ファウンデーションPurdue Research Foundation 高スループット粒子捕捉および分析
EP3473317A4 (en) * 2016-06-20 2020-03-25 Toppan Printing Co., Ltd. METHOD FOR REPLACING A LIQUID MEDIUM AND FLOW PATH DEVICE FOR THIS METHOD
CN106053456B (zh) * 2016-06-24 2018-11-27 许毅 一种尿液浓缩装置
CN111500534B (zh) * 2016-07-11 2022-11-29 山东亚大药业有限公司 分离纯化胎儿有核红细胞的试剂盒
SG11201900442PA (en) 2016-07-21 2019-02-27 Berkeley Lights Inc Sorting of t lymphocytes in a microfluidic device
US11207683B2 (en) * 2016-08-02 2021-12-28 Imec Vzw Method and arrangement for focusing objects in a flow
CA3033911A1 (en) * 2016-08-26 2018-03-01 Juno Therapeutics, Inc. Methods of enumerating particles present in a cell composition
WO2018052847A1 (en) * 2016-09-13 2018-03-22 Gulamari Ltd. Microfluidic filter devices and methods
US10386276B2 (en) 2016-09-20 2019-08-20 International Business Machines Corporation Phosphoprotein detection using a chip-based pillar array
US10253350B2 (en) * 2016-09-20 2019-04-09 International Business Machines Corporation Separation of molecules using nanopillar arrays
US10010883B2 (en) * 2016-09-20 2018-07-03 International Business Machines Corporation Deterministic lateral displacement arrays
DK3529611T3 (da) * 2016-10-23 2023-02-06 Berkeley Lights Inc Fremgangsmåder til screening af b-cellelymfocytter
WO2018085453A1 (en) 2016-11-01 2018-05-11 California Institute Of Technology Microfluidic devices and methods for purifying rare antigen-specific t cell populations
US10603647B2 (en) * 2016-12-01 2020-03-31 Imagine Tf, Llc Microstructure flow mixing devices
US10471425B2 (en) 2017-02-16 2019-11-12 International Business Machines Corporation Automated machine for sorting of biological fluids
EP3602034B1 (en) 2017-03-28 2024-05-15 Chromatan Inc. Continuous countercurrent spiral chromatography
US11867661B2 (en) 2017-04-07 2024-01-09 Sage Science, Inc. Systems and methods for detection of genetic structural variation using integrated electrophoretic DNA purification
DE102017003455B4 (de) * 2017-04-10 2020-12-10 Forschungszentrum Jülich GmbH Vorrichtung und Verfahren zur Umwandlung von Wärme, chemischer Energie oder elektrischer Energie in Bewegungsenergie sowie Verwendung der Vorrichtung
CN110520735A (zh) 2017-04-14 2019-11-29 文塔纳医疗系统公司 解离固定组织的基于尺寸的分离
US11648559B2 (en) * 2017-08-04 2023-05-16 University Of Georgia Research Foundation, Inc. Devices and methods for separating circulating tumor cells from biological samples
US10391493B2 (en) 2017-08-29 2019-08-27 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US10844353B2 (en) 2017-09-01 2020-11-24 Gpb Scientific, Inc. Methods for preparing therapeutically active cells using microfluidics
CN111212900B (zh) * 2017-10-03 2023-09-29 Nok株式会社 细胞捕获装置
CN107723207B (zh) * 2017-11-01 2019-01-01 深圳市瑞格生物科技有限公司 一种分离捕获细胞的芯片及其在肿瘤细胞分选中的应用
WO2019153032A1 (en) * 2018-02-07 2019-08-15 University Of South Australia Pre-natal cell isolation
US11229912B2 (en) 2018-03-27 2022-01-25 Hewlett-Packard Development Company, L.P. Particle separation
WO2019190490A1 (en) * 2018-03-27 2019-10-03 Hewlett-Packard Development Company, L.P. Nucleic acid separation
CN109874316B (zh) * 2018-05-25 2022-10-11 江苏汇先医药技术有限公司 用于从样本中富集筛选目标物例如细胞、细菌或生物分子的装置
US11185861B2 (en) 2018-06-13 2021-11-30 International Business Machines Corporation Multistage deterministic lateral displacement device for particle separation
DE102018210665A1 (de) * 2018-06-29 2020-01-02 Robert Bosch Gmbh Mikrofluidische Flusszelle und Verfahren zur Separierung von Zellen
US10697719B2 (en) * 2018-08-09 2020-06-30 International Business Machines Corporation Monitoring a recirculating cooling system for bacterial growth
US10898895B2 (en) * 2018-09-13 2021-01-26 Talis Biomedical Corporation Vented converging capillary biological sample port and reservoir
WO2020069350A1 (en) 2018-09-27 2020-04-02 Grail, Inc. Methylation markers and targeted methylation probe panel
US10967375B2 (en) 2018-10-23 2021-04-06 International Business Machines Corporation Microfluidic devices with multiple inlets and outlets
US11440002B2 (en) * 2018-10-23 2022-09-13 International Business Machines Corporation Microfluidic chips with one or more vias filled with sacrificial plugs
SG11202104030TA (en) * 2018-10-25 2021-05-28 Tl Genomics Inc Pretreatment of blood for classifying blood cells using microchannel
WO2020097048A1 (en) * 2018-11-05 2020-05-14 Micromedicine, Inc. Systems and methods for sorting particles using hydrodynamic sizing
US10633693B1 (en) 2019-04-16 2020-04-28 Celsee Diagnostics, Inc. System and method for leakage control in a particle capture system
US11578322B2 (en) 2019-05-07 2023-02-14 Bio-Rad Laboratories, Inc. System and method for automated single cell processing
US11273439B2 (en) 2019-05-07 2022-03-15 Bio-Rad Laboratories, Inc. System and method for target material retrieval from microwells
CN114302643B (zh) 2019-06-14 2024-02-27 伯乐实验室有限公司 用于自动化单细胞处理和分析的系统和方法
WO2021011907A1 (en) 2019-07-18 2021-01-21 Gpb Scientific, Inc. Ordered processing of blood products to produce therapeutically active cells
CN115209996A (zh) 2019-12-28 2022-10-18 Gpb科学有限公司 用于处理颗粒和细胞的微流体盒
CN110862905B (zh) * 2020-01-09 2023-03-31 北京航空航天大学合肥创新研究院 用于细胞迁移实验的芯片装置、制备方法及实验方法
US11211147B2 (en) 2020-02-18 2021-12-28 Tempus Labs, Inc. Estimation of circulating tumor fraction using off-target reads of targeted-panel sequencing
US11211144B2 (en) 2020-02-18 2021-12-28 Tempus Labs, Inc. Methods and systems for refining copy number variation in a liquid biopsy assay
US11475981B2 (en) 2020-02-18 2022-10-18 Tempus Labs, Inc. Methods and systems for dynamic variant thresholding in a liquid biopsy assay
US11504719B2 (en) 2020-03-12 2022-11-22 Bio-Rad Laboratories, Inc. System and method for receiving and delivering a fluid for sample processing
US11738288B2 (en) 2020-06-29 2023-08-29 Jacques Chammas Automated system and method to isolate specific cells from blood or bone marrow
CN111733138B (zh) * 2020-07-30 2021-03-30 首都医科大学附属北京友谊医院 一种循环肿瘤细胞高通量磁力分选方法
FR3117884B1 (fr) 2020-12-21 2024-02-16 Commissariat Energie Atomique Système de tri par taille de particules expulsées par centrifugation et procédé de configuration d'un tel système
CN113214959B (zh) * 2021-04-06 2022-08-26 深圳市儿童医院 一种用于分离捕获尤文肉瘤循环肿瘤细胞的芯片
CN114196521A (zh) * 2021-12-30 2022-03-18 中国科学院上海微系统与信息技术研究所 一种荧光原位杂交芯片及荧光原位杂交方法

Family Cites Families (464)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009435A (en) 1973-10-19 1977-02-22 Coulter Electronics, Inc. Apparatus for preservation and identification of particles analyzed by flow-through apparatus
US3924947A (en) 1973-10-19 1975-12-09 Coulter Electronics Apparatus for preservation and identification of particles analyzed by flow-through apparatus
US3906929A (en) 1973-11-23 1975-09-23 Lynn Lawrence Augspurger Processes for reproduction of cellular bodies
DE2502621C3 (de) 1975-01-23 1978-09-14 Kernforschungsanlage Juelich Gmbh, 5170 Juelich Messung elastischer und dielektrischer Eigenschaften der Membran lebender Zellen
US4115534A (en) 1976-08-19 1978-09-19 Minnesota Mining And Manufacturing Company In vitro diagnostic test
US4190535A (en) 1978-02-27 1980-02-26 Corning Glass Works Means for separating lymphocytes and monocytes from anticoagulated blood
DE3274800D1 (en) * 1981-02-05 1987-02-05 Asahi Chemical Ind Apparatus for separating blood components
US4415405A (en) 1981-08-19 1983-11-15 Yale University Method for engraving a grid pattern on microscope slides and slips
US4584268A (en) 1981-10-13 1986-04-22 Ceriani Roberto Luis Method and compositions for carcinoma diagnosis
US4434156A (en) 1981-10-26 1984-02-28 The Salk Institute For Biological Studies Monoclonal antibodies specific for the human transferrin receptor glycoprotein
US5310674A (en) 1982-05-10 1994-05-10 Bar-Ilan University Apertured cell carrier
IL68507A (en) 1982-05-10 1986-01-31 Univ Bar Ilan System and methods for cell selection
US4508625A (en) 1982-10-18 1985-04-02 Graham Marshall D Magnetic separation using chelated magnetic ions
EP0162907B1 (en) 1983-11-08 1992-01-15 Bar Ilan University System and methods for cell selection
US4675286A (en) 1985-01-28 1987-06-23 Aspen Diagnostics, Inc. Fetal cell separation and testing
WO1986006170A1 (en) 1985-04-10 1986-10-23 Immunicon Corporation Direct homogeneous assay
US4990326A (en) * 1985-05-31 1991-02-05 Summa Medical Corporation Method for detecting blood platelets
US5164598A (en) * 1985-08-05 1992-11-17 Biotrack Capillary flow device
US4963498A (en) 1985-08-05 1990-10-16 Biotrack Capillary flow device
US4664796A (en) 1985-09-16 1987-05-12 Coulter Electronics, Inc. Flux diverting flow chamber for high gradient magnetic separation of particles from a liquid medium
US4790640A (en) 1985-10-11 1988-12-13 Nason Frederic L Laboratory slide
US4999283A (en) 1986-01-10 1991-03-12 University Of Kentucky Research Foundation Method for x and y spermatozoa separation
US5447841A (en) 1986-01-16 1995-09-05 The Regents Of The Univ. Of California Methods for chromosome-specific staining
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
JPS62217973A (ja) 1986-03-20 1987-09-25 東レ株式会社 液体を分別する装置
US4906439A (en) 1986-03-25 1990-03-06 Pb Diagnostic Systems, Inc. Biological diagnostic device and method of use
US4789628A (en) 1986-06-16 1988-12-06 Vxr, Inc. Devices for carrying out ligand/anti-ligand assays, methods of using such devices and diagnostic reagents and kits incorporating such devices
US4814098A (en) 1986-09-06 1989-03-21 Bellex Corporation Magnetic material-physiologically active substance conjugate
US4925788A (en) 1986-10-24 1990-05-15 Immunicon Corporation Immunoassay system and procedure based on precipitin-like interaction between immune complex and Clq or other non-immunospecific factor
JP2662215B2 (ja) 1986-11-19 1997-10-08 株式会社日立製作所 細胞保持装置
US4886761A (en) 1987-03-26 1989-12-12 Yellowstone Diagnostics Corporation Polysilicon binding assay support and methods
US4971904A (en) 1987-06-26 1990-11-20 E. I. Du Pont De Nemours And Company Heterogeneous immunoassay
JP2559760B2 (ja) 1987-08-31 1996-12-04 株式会社日立製作所 細胞搬送方法
US4977078A (en) 1987-12-22 1990-12-11 Olympus Optical Co., Ltd. Plate substrate immunoassay device and method for performing a multi-test immunoassay on a specimen
US5039426A (en) 1988-05-17 1991-08-13 University Of Utah Process for continuous particle and polymer separation in split-flow thin cells using flow-dependent lift forces
US5215926A (en) 1988-06-03 1993-06-01 Cellpro, Inc. Procedure for designing efficient affinity cell separation processes
EP0440749B1 (en) 1988-08-31 1997-05-28 Aprogenex, Inc. Manual in situ hybridization assay
US5183744A (en) 1988-10-26 1993-02-02 Hitachi, Ltd. Cell handling method for cell fusion processor
US5101825A (en) 1988-10-28 1992-04-07 Blackbox, Inc. Method for noninvasive intermittent and/or continuous hemoglobin, arterial oxygen content, and hematocrit determination
ATE141957T1 (de) 1988-11-15 1996-09-15 Univ Yale In-situ-unterdrückungs-hybridisierung und verwendungen
US4984574A (en) 1988-11-23 1991-01-15 Seth Goldberg Noninvasive fetal oxygen monitor using NMR
ATE161960T1 (de) 1988-12-06 1998-01-15 Flinders Technologies Pty Ltd Isolierung von fetalen zellen aus mütterlichem blut zur ausführung von pränataler diagnostik
CA1340565C (en) 1989-06-29 1999-05-25 Thomas B. Okarma Device and process for cell capture and recovery
US5698271A (en) 1989-08-22 1997-12-16 Immunivest Corporation Methods for the manufacture of magnetically responsive particles
ATE162631T1 (de) 1989-11-13 1998-02-15 Childrens Medical Center Ein nichtinvasives verfahren zur trennung und zum nachweis von fetaler dna
US5641628A (en) 1989-11-13 1997-06-24 Children's Medical Center Corporation Non-invasive method for isolation and detection of fetal DNA
WO1991007661A1 (en) 1989-11-20 1991-05-30 Hill Vincent E A method of detecting drugs in living and post-mortem skin and a kit therefor
EP0502037A1 (en) 1989-11-24 1992-09-09 Isis Innovation Limited Prenatal genetic determination
GB8926781D0 (en) 1989-11-27 1990-01-17 Nat Res Dev Identification of micro-organisms
AU647741B2 (en) 1989-12-01 1994-03-31 Regents Of The University Of California, The Methods and compositions for chromosome-specific staining
GB8929057D0 (en) 1989-12-22 1990-02-28 Gen Electric Co Plc Sensor
FR2657543B1 (fr) 1990-01-26 1992-12-18 Biocom Sa Dispositif modulaire pour le recueil, l'incubation, la filtration d'echantillons multiples.
AU7340891A (en) 1990-02-24 1991-09-18 Hatfield Polytechnic Higher Education Corporation (U.K.) Biorheological measurement
JPH03247276A (ja) 1990-02-27 1991-11-05 Hitachi Ltd 細胞の配列方法及び装置
US5770029A (en) 1996-07-30 1998-06-23 Soane Biosciences Integrated electrophoretic microdevices
US5750015A (en) 1990-02-28 1998-05-12 Soane Biosciences Method and device for moving molecules by the application of a plurality of electrical fields
US6054034A (en) 1990-02-28 2000-04-25 Aclara Biosciences, Inc. Acrylic microchannels and their use in electrophoretic applications
US5858188A (en) 1990-02-28 1999-01-12 Aclara Biosciences, Inc. Acrylic microchannels and their use in electrophoretic applications
US6176962B1 (en) 1990-02-28 2001-01-23 Aclara Biosciences, Inc. Methods for fabricating enclosed microchannel structures
FR2659347B1 (fr) 1990-03-12 1994-09-02 Agronomique Inst Nat Rech Dispositif de culture de cellules assurant leur immobilisation.
US5153117A (en) 1990-03-27 1992-10-06 Genetype A.G. Fetal cell recovery method
JPH05507404A (ja) 1990-04-23 1993-10-28 セルプロ インコーポレイティド 母体血液からの胎児細胞の富化のための方法
US5147606A (en) 1990-08-06 1992-09-15 Miles Inc. Self-metering fluid analysis device
EP0549709B1 (en) 1990-09-20 1997-01-29 Amoco Corporation Probe compositions for chromosome identification and methods
US6277569B1 (en) 1990-09-20 2001-08-21 Vysis, Inc. Methods for multiple direct label probe detection of multiple chromosomes or regions thereof by in situ hybridization
US5622831A (en) 1990-09-26 1997-04-22 Immunivest Corporation Methods and devices for manipulation of magnetically collected material
US5541072A (en) 1994-04-18 1996-07-30 Immunivest Corporation Method for magnetic separation featuring magnetic particles in a multi-phase system
US5135627A (en) 1990-10-15 1992-08-04 Soane Technologies, Inc. Mosaic microcolumns, slabs, and separation media for electrophoresis and chromatography
US5217627A (en) 1990-11-06 1993-06-08 Pall Corporation System and method for processing biological fluid
US5466574A (en) 1991-03-25 1995-11-14 Immunivest Corporation Apparatus and methods for magnetic separation featuring external magnetic means
US5646001A (en) 1991-03-25 1997-07-08 Immunivest Corporation Affinity-binding separation and release of one or more selected subset of biological entities from a mixed population thereof
US5186827A (en) 1991-03-25 1993-02-16 Immunicon Corporation Apparatus for magnetic separation featuring external magnetic means
US5173158A (en) 1991-07-22 1992-12-22 Schmukler Robert E Apparatus and methods for electroporation and electrofusion
US5672481A (en) 1991-10-23 1997-09-30 Cellpro, Incorporated Apparatus and method for particle separation in a closed field
US5240856A (en) 1991-10-23 1993-08-31 Cellpro Incorporated Apparatus for cell separation
US5846708A (en) 1991-11-19 1998-12-08 Massachusetts Institiute Of Technology Optical and electrical methods and apparatus for molecule detection
WO1993021345A1 (en) 1992-04-21 1993-10-28 The Regents Of The University Of California Multicolor in situ hybridization methods for genetic testing
CA2134478C (en) 1992-05-01 2001-12-18 Peter Wilding Microfabricated detection structures
US5637469A (en) 1992-05-01 1997-06-10 Trustees Of The University Of Pennsylvania Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems
US5304487A (en) 1992-05-01 1994-04-19 Trustees Of The University Of Pennsylvania Fluid handling in mesoscale analytical devices
US5296375A (en) 1992-05-01 1994-03-22 Trustees Of The University Of Pennsylvania Mesoscale sperm handling devices
US5498392A (en) 1992-05-01 1996-03-12 Trustees Of The University Of Pennsylvania Mesoscale polynucleotide amplification device and method
US5726026A (en) 1992-05-01 1998-03-10 Trustees Of The University Of Pennsylvania Mesoscale sample preparation device and systems for determination and processing of analytes
US5486335A (en) 1992-05-01 1996-01-23 Trustees Of The University Of Pennsylvania Analysis based on flow restriction
US6156270A (en) 1992-05-21 2000-12-05 Biosite Diagnostics, Inc. Diagnostic devices and apparatus for the controlled movement of reagents without membranes
US6143576A (en) 1992-05-21 2000-11-07 Biosite Diagnostics, Inc. Non-porous diagnostic devices for the controlled movement of reagents
US5629147A (en) 1992-07-17 1997-05-13 Aprogenex, Inc. Enriching and identifying fetal cells in maternal blood for in situ hybridization
AU2593192A (en) 1992-09-14 1994-04-12 Oystein Fodstad Detection of specific target cells in specialized or mixed cell population and solutions containing mixed cell populations
US5275933A (en) 1992-09-25 1994-01-04 The Board Of Trustees Of The Leland Stanford Junior University Triple gradient process for recovering nucleated fetal cells from maternal blood
US5489506A (en) 1992-10-26 1996-02-06 Biolife Systems, Inc. Dielectrophoretic cell stream sorter
US6953668B1 (en) 1992-11-05 2005-10-11 Sloan-Kettering Institute For Cancer Research Prostate-specific membrane antigen
US5457024A (en) 1993-01-22 1995-10-10 Aprogenex, Inc. Isolation of fetal erythrocytes
US5427663A (en) 1993-06-08 1995-06-27 British Technology Group Usa Inc. Microlithographic array for macromolecule and cell fractionation
US5714325A (en) 1993-09-24 1998-02-03 New England Medical Center Hospitals Prenatal diagnosis by isolation of fetal granulocytes from maternal blood
US5472842A (en) 1993-10-06 1995-12-05 The Regents Of The University Of California Detection of amplified or deleted chromosomal regions
CA2174140C (en) 1993-10-28 2004-04-06 Kenneth L. Beattie Microfabricated, flowthrough porous apparatus for discrete detection of binding reactions
US6315953B1 (en) 1993-11-01 2001-11-13 Nanogen, Inc. Devices for molecular biological analysis and diagnostics including waveguides
US6068818A (en) 1993-11-01 2000-05-30 Nanogen, Inc. Multicomponent devices for molecular biological analysis and diagnostics
US6331274B1 (en) 1993-11-01 2001-12-18 Nanogen, Inc. Advanced active circuits and devices for molecular biological analysis and diagnostics
NL9401260A (nl) 1993-11-12 1995-06-01 Cornelis Johannes Maria Van Ri Membraan voor microfiltratie, ultrafiltratie, gasscheiding en katalyse, werkwijze ter vervaardiging van een dergelijk membraan, mal ter vervaardiging van een dergelijk membraan, alsmede diverse scheidingssystemen omvattende een dergelijk membraan.
US5432054A (en) 1994-01-31 1995-07-11 Applied Imaging Method for separating rare cells from a population of cells
NO180658C (no) 1994-03-10 1997-05-21 Oeystein Fodstad Fremgangsmåte og anordning for deteksjon av spesifikke målceller i spesialiserte eller blandede cellepopulasjoner og opplösninger som inneholder blandede cellepopulasjoner
US5563067A (en) 1994-06-13 1996-10-08 Matsushita Electric Industrial Co., Ltd. Cell potential measurement apparatus having a plurality of microelectrodes
US6071394A (en) 1996-09-06 2000-06-06 Nanogen, Inc. Channel-less separation of bioparticles on a bioelectronic chip by dielectrophoresis
US5637458A (en) 1994-07-20 1997-06-10 Sios, Inc. Apparatus and method for the detection and assay of organic molecules
US5648222A (en) 1994-07-27 1997-07-15 The Trustees Of Columbia University In The City Of New York Method for preserving cells, and uses of said method
US6001229A (en) 1994-08-01 1999-12-14 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing microfluidic manipulations for chemical analysis
US5840502A (en) * 1994-08-31 1998-11-24 Activated Cell Therapy, Inc. Methods for enriching specific cell-types by density gradient centrifugation
US5707799A (en) 1994-09-30 1998-01-13 Abbott Laboratories Devices and methods utilizing arrays of structures for analyte capture
US5662813A (en) 1994-10-21 1997-09-02 Bioseparations, Inc. Method for separation of nucleated fetal erythrocytes from maternal blood samples
CN1110369C (zh) 1994-11-14 2003-06-04 宾夕法尼亚州大学信托人 用于测定和加工分析物的中尺度样品制备设备和系统
US5750339A (en) 1994-11-30 1998-05-12 Thomas Jefferson University Methods for identifying fetal cells
US5648220A (en) 1995-02-14 1997-07-15 New England Medical Center Hospitals, Inc. Methods for labeling intracytoplasmic molecules
US6207369B1 (en) 1995-03-10 2001-03-27 Meso Scale Technologies, Llc Multi-array, multi-specific electrochemiluminescence testing
FR2733055B1 (fr) 1995-04-12 1997-12-19 Chemodyne Sa Nouveau dispositif d'etude de cultures organotypiques et ses applications en electrophysiologie
US5709943A (en) 1995-05-04 1998-01-20 Minnesota Mining And Manufacturing Company Biological adsorption supports
DE19520298A1 (de) * 1995-06-02 1996-12-05 Bayer Ag Sortiervorrichtung für biologische Zellen oder Viren
US5639669A (en) 1995-06-07 1997-06-17 Ledley; Robert Separation of fetal cells from maternal blood
US5715946A (en) * 1995-06-07 1998-02-10 Reichenbach; Steven H. Method and apparatus for sorting particles suspended in a fluid
US6454945B1 (en) 1995-06-16 2002-09-24 University Of Washington Microfabricated devices and methods
US5922210A (en) 1995-06-16 1999-07-13 University Of Washington Tangential flow planar microfabricated fluid filter and method of using thereof
US5856174A (en) 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
US6130098A (en) 1995-09-15 2000-10-10 The Regents Of The University Of Michigan Moving microdroplets
CA2237589A1 (en) 1995-11-16 1997-05-22 Michael W. Dahm Method of quantifying tumour cells in a body fluid and a suitable test kit
US5863502A (en) 1996-01-24 1999-01-26 Sarnoff Corporation Parallel reaction cassette and associated devices
US5830679A (en) 1996-03-01 1998-11-03 New England Medical Center Hospitals, Inc. Diagnostic blood test to identify infants at risk for sepsis
US5972721A (en) 1996-03-14 1999-10-26 The United States Of America As Represented By The Secretary Of The Air Force Immunomagnetic assay system for clinical diagnosis and other purposes
US5891651A (en) 1996-03-29 1999-04-06 Mayo Foundation For Medical Education And Research Methods of recovering colorectal epithelial cells or fragments thereof from stool
AU2438497A (en) 1996-04-05 1997-10-29 Johns Hopkins University, The A method of enriching rare cells
US6399023B1 (en) 1996-04-16 2002-06-04 Caliper Technologies Corp. Analytical system and method
US6387707B1 (en) 1996-04-25 2002-05-14 Bioarray Solutions Array Cytometry
US6958245B2 (en) 1996-04-25 2005-10-25 Bioarray Solutions Ltd. Array cytometry
WO1997040385A1 (en) 1996-04-25 1997-10-30 Bioarray Solutions, Llc Light-controlled electrokinetic assembly of particles near surfaces
US5989835A (en) 1997-02-27 1999-11-23 Cellomics, Inc. System for cell-based screening
US6890426B2 (en) 1996-06-07 2005-05-10 Immunivest Corporation Magnetic separation apparatus and methods
WO1997046882A1 (en) 1996-06-07 1997-12-11 Immunivest Corporation Magnetic separation employing external and internal gradients
US6267858B1 (en) 1996-06-28 2001-07-31 Caliper Technologies Corp. High throughput screening assay systems in microscale fluidic devices
IT1294964B1 (it) 1996-07-12 1999-04-23 Domenico Valerio Isolamento e cultura di cellule fetali dal sangue periferico materno
US6074827A (en) * 1996-07-30 2000-06-13 Aclara Biosciences, Inc. Microfluidic method for nucleic acid purification and processing
US6280967B1 (en) 1996-08-02 2001-08-28 Axiom Biotechnologies, Inc. Cell flow apparatus and method for real-time of cellular responses
US6100029A (en) 1996-08-14 2000-08-08 Exact Laboratories, Inc. Methods for the detection of chromosomal aberrations
AU4164597A (en) 1996-08-26 1998-03-19 Princeton University Reversibly sealable microstructure sorting devices
DK0925494T3 (da) 1996-09-04 2002-07-01 Scandinavian Micro Biodevices Mikrostrømningssystem til partikelseparation og analyse
US5858187A (en) 1996-09-26 1999-01-12 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing electrodynamic focusing on a microchip
US6120666A (en) 1996-09-26 2000-09-19 Ut-Battelle, Llc Microfabricated device and method for multiplexed electrokinetic focusing of fluid streams and a transport cytometry method using same
US6110343A (en) 1996-10-04 2000-08-29 Lockheed Martin Energy Research Corporation Material transport method and apparatus
US5731156A (en) 1996-10-21 1998-03-24 Applied Imaging, Inc. Use of anti-embryonic hemoglobin antibodies to identify fetal cells
US6008010A (en) 1996-11-01 1999-12-28 University Of Pittsburgh Method and apparatus for holding cells
WO1998022819A1 (de) 1996-11-16 1998-05-28 Nmi Naturwissenschaftliches Und Medizinisches Institut An Der Universität Tübingen In Reutlingen Stiftung Bürgerlichen Rechts Mikroelementenanordnung, verfahren zum kontaktieren von in einer flüssigen umgebung befindlichen zellen und verfahren zum herstellen einer mikroelementenanordnung
DE19712309A1 (de) 1996-11-16 1998-05-20 Nmi Univ Tuebingen Mikroelementenanordnung, Verfahren zum Kontaktieren von in einer flüssigen Umgebung befindlichen Zellen und Verfahren zum Herstellen einer Mikroelementenanordnung
US6083761A (en) 1996-12-02 2000-07-04 Glaxo Wellcome Inc. Method and apparatus for transferring and combining reagents
DE69723297D1 (de) * 1996-12-11 2003-08-07 Amersham Plc Little Chalfont Selektives verfahren zur lyse von zellen
WO1998028623A1 (en) 1996-12-20 1998-07-02 Gamera Bioscience Corporation An affinity binding-based system for detecting particulates in a fluid
US6235474B1 (en) 1996-12-30 2001-05-22 The Johns Hopkins University Methods and kits for diagnosing and determination of the predisposition for diseases
US6087134A (en) 1997-01-14 2000-07-11 Applied Imaging Corporation Method for analyzing DNA from a rare cell in a cell population
US5879624A (en) 1997-01-15 1999-03-09 Boehringer Laboratories, Inc. Method and apparatus for collecting and processing blood
US6306584B1 (en) 1997-01-21 2001-10-23 President And Fellows Of Harvard College Electronic-property probing of biological molecules at surfaces
US6008007A (en) 1997-01-31 1999-12-28 Oncotech, Inc. Radiation resistance assay for predicting treatment response and clinical outcome
US6056859A (en) 1997-02-12 2000-05-02 Lockheed Martin Energy Research Corporation Method and apparatus for staining immobilized nucleic acids
SK118099A3 (en) * 1997-02-28 2000-05-16 Burstein Lab Inc Laboratory in a disk
GB9704444D0 (en) 1997-03-04 1997-04-23 Isis Innovation Non-invasive prenatal diagnosis
WO1998040746A1 (en) 1997-03-08 1998-09-17 The University Of Dundee Prenatal diagnostic methods
GB9704876D0 (en) 1997-03-08 1997-04-23 Univ Dundee Diagnostic methods
WO1998043067A1 (en) 1997-03-25 1998-10-01 Immunivest Corporation Apparatus and methods for capture and analysis of particulate entities
US6391622B1 (en) 1997-04-04 2002-05-21 Caliper Technologies Corp. Closed-loop biochemical analyzers
US6066449A (en) 1997-04-15 2000-05-23 The Trustees Of Columbia University In The City Of New York Method of detecting metastatic thyroid cancer
CN1105914C (zh) 1997-04-25 2003-04-16 卡钳技术有限公司 改进了通道几何结构的微型流体装置
WO1998049344A1 (en) 1997-04-28 1998-11-05 Lockheed Martin Energy Research Corporation Method and apparatus for analyzing nucleic acids
US6169816B1 (en) 1997-05-14 2001-01-02 Applied Imaging, Inc. Identification of objects of interest using multiple illumination schemes and finding overlap of features in corresponding multiple images
US6632619B1 (en) 1997-05-16 2003-10-14 The Governors Of The University Of Alberta Microfluidic system and methods of use
US6156273A (en) 1997-05-27 2000-12-05 Purdue Research Corporation Separation columns and methods for manufacturing the improved separation columns
US5869004A (en) 1997-06-09 1999-02-09 Caliper Technologies Corp. Methods and apparatus for in situ concentration and/or dilution of materials in microfluidic systems
US7560237B2 (en) 1997-06-12 2009-07-14 Osmetech Technology Inc. Electronics method for the detection of analytes
US5882465A (en) 1997-06-18 1999-03-16 Caliper Technologies Corp. Method of manufacturing microfluidic devices
SG81234A1 (en) 1997-07-04 2001-06-19 Toyko Electron Ltd Process solution supplying apparatus
US5876675A (en) 1997-08-05 1999-03-02 Caliper Technologies Corp. Microfluidic devices and systems
US6368871B1 (en) * 1997-08-13 2002-04-09 Cepheid Non-planar microstructures for manipulation of fluid samples
JP2001515216A (ja) 1997-08-13 2001-09-18 シーフィード 流体試料を操作するための微小構造体
US7214298B2 (en) 1997-09-23 2007-05-08 California Institute Of Technology Microfabricated cell sorter
US6540895B1 (en) 1997-09-23 2003-04-01 California Institute Of Technology Microfabricated cell sorter for chemical and biological materials
US5842787A (en) 1997-10-09 1998-12-01 Caliper Technologies Corporation Microfluidic systems incorporating varied channel dimensions
US6241894B1 (en) 1997-10-10 2001-06-05 Systemix High gradient magnetic device and method for cell separation or purification
US5962234A (en) 1997-10-20 1999-10-05 Applied Imaging Corporation Use of anti-embryonic epsilon hemoglobin antibodies to identify fetal cells
US5962250A (en) 1997-10-28 1999-10-05 Glaxo Group Limited Split multi-well plate and methods
CA2253965C (en) 1997-11-22 2003-01-21 Robert A. Levine Method for the detection, identification, enumeration and confirmation of circulating cancer cells and/or hematologic progenitor cells in whole blood
US6197523B1 (en) 1997-11-24 2001-03-06 Robert A. Levine Method for the detection, identification, enumeration and confirmation of circulating cancer and/or hematologic progenitor cells in whole blood
DE59801410D1 (de) 1997-12-17 2001-10-11 Ecole Polytech Positionierung und elektrophysiologische charakterisierung einzelner zellen und rekonstituierter membransysteme auf mikrostrukturierten trägern
US6210889B1 (en) 1998-01-28 2001-04-03 The Universite Laval Method for enrichment of fetal cells from maternal blood and use of same in determination of fetal sex and detection of chromosomal abnormalities
US20020172987A1 (en) 1998-02-12 2002-11-21 Terstappen Leon W.M.M. Methods and reagents for the rapid and efficient isolation of circulating cancer cells
EP1062515B1 (en) 1998-02-12 2009-11-25 Immunivest Corporation Methods and reagents for the rapid and efficient isolation of circulating cancer cells
US20010018192A1 (en) 1998-02-12 2001-08-30 Terstappen Leon W.M.M. Labeled cells for use as an internal functional control in rare cell detection assays
US6537505B1 (en) 1998-02-20 2003-03-25 Bio Dot, Inc. Reagent dispensing valve
US6036857A (en) 1998-02-20 2000-03-14 Florida State University Research Foundation, Inc. Apparatus for continuous magnetic separation of components from a mixture
US6251343B1 (en) 1998-02-24 2001-06-26 Caliper Technologies Corp. Microfluidic devices and systems incorporating cover layers
WO1999044064A1 (en) 1998-02-27 1999-09-02 Cli Oncology, Inc. Method and compositions for differential detection of primary tumor cells and metastatic cells
US6210910B1 (en) 1998-03-02 2001-04-03 Trustees Of Tufts College Optical fiber biosensor array comprising cell populations confined to microcavities
US6027623A (en) * 1998-04-22 2000-02-22 Toyo Technologies, Inc. Device and method for electrophoretic fraction
US6100033A (en) 1998-04-30 2000-08-08 The Regents Of The University Of California Diagnostic test for prenatal identification of Down's syndrome and mental retardation and gene therapy therefor
US6200765B1 (en) 1998-05-04 2001-03-13 Pacific Northwest Cancer Foundation Non-invasive methods to detect prostate cancer
AU763433B2 (en) 1998-05-22 2003-07-24 California Institute Of Technology Microfabricated cell sorter
US6306589B1 (en) 1998-05-27 2001-10-23 Vysis, Inc. Biological assays for analyte detection
US6296752B1 (en) 1998-06-05 2001-10-02 Sarnoff Corporation Apparatus for separating molecules
US6529835B1 (en) 1998-06-25 2003-03-04 Caliper Technologies Corp. High throughput methods, systems and apparatus for performing cell based screening assays
EP1092144A1 (de) 1998-06-29 2001-04-18 Evotec BioSystems AG Verfahren und vorrichtung zur manipulation von partikeln in mikrosystemen
US6045990A (en) 1998-07-09 2000-04-04 Baust; John M. Inclusion of apoptotic regulators in solutions for cell storage at low temperature
US6897073B2 (en) 1998-07-14 2005-05-24 Zyomyx, Inc. Non-specific binding resistant protein arrays and methods for making the same
US6576478B1 (en) 1998-07-14 2003-06-10 Zyomyx, Inc. Microdevices for high-throughput screening of biomolecules
US6274339B1 (en) 1999-02-05 2001-08-14 Millennium Pharmaceuticals, Inc. Methods and compositions for the diagnosis and treatment of body weight disorders, including obesity
FR2782730B1 (fr) 1998-08-25 2002-05-17 Biocom Sa Procede de separation cellulaire pour l'isolation de cellules pathogeniques, notamment cancereuses rares, equipement et reactif pour la mise en oeuvre du procede et application du procede
US20030166132A1 (en) 1998-08-26 2003-09-04 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
US6245227B1 (en) * 1998-09-17 2001-06-12 Kionix, Inc. Integrated monolithic microfabricated electrospray and liquid chromatography system and method
ES2172353T3 (es) 1998-09-18 2002-09-16 Micromet Ag Amplificacion del adn de una unica celula.
US6656697B1 (en) * 1998-09-28 2003-12-02 Lifescan, Inc. Diagnostics based on tetrazolium compounds
US6637463B1 (en) 1998-10-13 2003-10-28 Biomicro Systems, Inc. Multi-channel microfluidic system design with balanced fluid flow distribution
US6086740A (en) 1998-10-29 2000-07-11 Caliper Technologies Corp. Multiplexed microfluidic devices and systems
US6277489B1 (en) 1998-12-04 2001-08-21 The Regents Of The University Of California Support for high performance affinity chromatography and other uses
US6062261A (en) 1998-12-16 2000-05-16 Lockheed Martin Energy Research Corporation MicrofluIdic circuit designs for performing electrokinetic manipulations that reduce the number of voltage sources and fluid reservoirs
EP1144092A4 (en) 1998-12-23 2002-10-29 Nanogen Inc INTEGRATED PORTABLE BIOLOGICAL DETECTION SYSTEM
US6636498B1 (en) * 1999-01-08 2003-10-21 Cisco Technology, Inc. Mobile IP mobile router
US6150119A (en) 1999-01-19 2000-11-21 Caliper Technologies Corp. Optimized high-throughput analytical system
WO2000047998A1 (en) 1999-02-10 2000-08-17 Cell Works Inc. Class characterization of circulating cancer cells isolated from body fluids and methods of use
ATE469699T1 (de) * 1999-02-23 2010-06-15 Caliper Life Sciences Inc Manipulation von mikroteilchen in mikrofluiden systemen
JP3863373B2 (ja) 1999-03-02 2006-12-27 クオリジエン・インコーポレイテツド 生物学的流体の分離のための装置を用いる方法
US6942978B1 (en) 1999-03-03 2005-09-13 The Board Of Trustees Of The University Of Arkansas Transmembrane serine protease overexpressed in ovarian carcinoma and uses thereof
US6858439B1 (en) 1999-03-15 2005-02-22 Aviva Biosciences Compositions and methods for separation of moieties on chips
TW496775B (en) 1999-03-15 2002-08-01 Aviva Bioscience Corp Individually addressable micro-electromagnetic unit array chips
CN1185492C (zh) 1999-03-15 2005-01-19 清华大学 可单点选通式微电磁单元阵列芯片、电磁生物芯片及应用
ATE526580T1 (de) 1999-03-19 2011-10-15 Life Technologies Corp Methode zum sichten von mutierten zellen
US6368562B1 (en) 1999-04-16 2002-04-09 Orchid Biosciences, Inc. Liquid transportation system for microfluidic device
US6942771B1 (en) 1999-04-21 2005-09-13 Clinical Micro Sensors, Inc. Microfluidic systems in the electrochemical detection of target analytes
US6511967B1 (en) * 1999-04-23 2003-01-28 The General Hospital Corporation Use of an internalizing transferrin receptor to image transgene expression
US6174683B1 (en) 1999-04-26 2001-01-16 Biocept, Inc. Method of making biochips and the biochips resulting therefrom
US6589791B1 (en) 1999-05-20 2003-07-08 Cartesian Technologies, Inc. State-variable control system
DE10084613T1 (de) 1999-05-21 2002-09-26 Univ Leland Stanford Junior Mikrofluidvorrichtung und Verfahren zum Erzeugen pulsierender Mikrofluidstrahlen in einer Flüssigumgebung
US6635163B1 (en) 1999-06-01 2003-10-21 Cornell Research Foundation, Inc. Entropic trapping and sieving of molecules
US6664104B2 (en) 1999-06-25 2003-12-16 Cepheid Device incorporating a microfluidic chip for separating analyte from a sample
US6818395B1 (en) 1999-06-28 2004-11-16 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences
US6395232B1 (en) 1999-07-09 2002-05-28 Orchid Biosciences, Inc. Fluid delivery system for a microfluidic device using a pressure pulse
US6524456B1 (en) 1999-08-12 2003-02-25 Ut-Battelle, Llc Microfluidic devices for the controlled manipulation of small volumes
US6762059B2 (en) 1999-08-13 2004-07-13 U.S. Genomics, Inc. Methods and apparatuses for characterization of single polymers
US6613581B1 (en) * 1999-08-26 2003-09-02 Caliper Technologies Corp. Microfluidic analytic detection assays, devices, and integrated systems
FR2798673B1 (fr) 1999-09-16 2004-05-28 Exonhit Therapeutics Sa Methodes et compositions pour la detection d'evenements pathologiques
US6623945B1 (en) 1999-09-16 2003-09-23 Motorola, Inc. System and method for microwave cell lysing of small samples
US20030113528A1 (en) 1999-09-17 2003-06-19 Wilson Moya Patterned porous structures
EP1218547A4 (en) 1999-10-15 2005-04-20 Ventana Med Syst Inc METHOD FOR DETECTING UNIQUE GENE IN SITU COPIES
WO2001037958A2 (en) 1999-11-04 2001-05-31 Princeton University Electrodeless dielectrophoresis for polarizable particles
US20060128006A1 (en) 1999-11-10 2006-06-15 Gerhardt Antimony L Hydrodynamic capture and release mechanisms for particle manipulation
US6692952B1 (en) 1999-11-10 2004-02-17 Massachusetts Institute Of Technology Cell analysis and sorting apparatus for manipulation of cells
AU1592501A (en) 1999-11-10 2001-06-06 Massachusetts Institute Of Technology Cell analysis and sorting apparatus for manipulation of cells
US6361958B1 (en) 1999-11-12 2002-03-26 Motorola, Inc. Biochannel assay for hybridization with biomaterial
US6875619B2 (en) 1999-11-12 2005-04-05 Motorola, Inc. Microfluidic devices comprising biochannels
AU2427301A (en) 1999-12-01 2001-06-12 Regents Of The University Of California, The Electric-field-assisted fluidic assembly of inorganic and organic materials, molecules and like small things including living cells
US6309889B1 (en) 1999-12-23 2001-10-30 Glaxo Wellcome Inc. Nano-grid micro reactor and methods
DE60038127T2 (de) 2000-01-06 2009-03-05 Caliper Life Sciences, Inc., Mountain View Methoden und syteme zur überwachung intrazellulärer bindereaktionen
CA2397341A1 (en) 2000-01-13 2001-07-19 Dhanesh Gohel Ferrofluid based arrays
AU2001263793A1 (en) 2000-03-20 2001-10-03 Adnagen Ag Kit, method and microarray for determining the sex of a human foetus
ATE469242T1 (de) 2000-03-27 2010-06-15 Univ Jefferson Zusammensetzungen und methoden zur identifizierung und zum targeting von krebszellen aus dem verdauungskanal
EP1268554A2 (de) 2000-03-31 2003-01-02 IPF Pharmaceuticals GmbH Diagnostik- und arzneimittel zur untersuchung des zelloberflächenproteoms von tumor- und entzündungszellen sowie zur behandlung von tumorerkrankungen und entzündlichen erkrankungen vorzugsweise mit hilfe einer spezifischen chemokinrezeptor-analyse und der chemokinrezeptor-ligand-interaktion
US20030170631A1 (en) 2000-04-03 2003-09-11 Corixa Corporation Methods, compositions and kits for the detection and monitoring of breast cancer
ES2281416T3 (es) 2000-04-03 2007-10-01 Corixa Corporation Metodos, composiciones y sistemas para la deteccion y monitorizacion del cancer de mama.
WO2001079529A1 (en) 2000-04-17 2001-10-25 Purdue Research Foundation Biosensor and related method
DE10019877A1 (de) 2000-04-20 2001-10-25 Clariant Gmbh Wasch- und Reinigungsmittel enthaltend bleichaktive Dendrimer-Liganden und deren Metall-Komplexe
WO2001081621A2 (de) 2000-04-20 2001-11-01 Adnagen Ag Verfahren, diagnose-kit und mikroarray zur bestimmung des rhesus-faktors
GB0009784D0 (en) 2000-04-20 2000-06-07 Simeg Limited Methods for clinical diagnosis
US7641856B2 (en) 2004-05-14 2010-01-05 Honeywell International Inc. Portable sample analyzer with removable cartridge
DE60113287D1 (de) 2000-06-14 2005-10-13 Univ Texas Systeme und verfahren zur zellteilbevölkerungsanalyse
EP1311839B1 (en) 2000-06-21 2006-03-01 Bioarray Solutions Ltd Multianalyte molecular analysis using application-specific random particle arrays
JP2004501665A (ja) * 2000-07-03 2004-01-22 ゼオトロン コーポレイション 光生成試薬を用いて化学反応を行なうためのデバイスおよび方法
US6791424B2 (en) 2000-07-17 2004-09-14 Toyo Communication Equipment Co., Ltd. Piezoelectric oscillator
DE10035433C2 (de) 2000-07-20 2002-07-18 Tuma Wolfgang Schonende Hochanreicherung von fetalen Zellen aus pripherem Blut und Verwendung derselben
AU2000274922A1 (en) * 2000-08-08 2002-02-18 Aviva Biosciences Corporation Methods for manipulating moieties in microfluidic systems
US20040005582A1 (en) * 2000-08-10 2004-01-08 Nanobiodynamics, Incorporated Biospecific desorption microflow systems and methods for studying biospecific interactions and their modulators
US6610499B1 (en) 2000-08-31 2003-08-26 The Regents Of The University Of California Capillary array and related methods
US6818424B2 (en) 2000-09-01 2004-11-16 E. I. Du Pont De Nemours And Company Production of cyclic terpenoids
EP1315829B1 (en) 2000-09-09 2010-07-28 The Research Foundation Of State University Of New York Method and compositions for isolating metastatic cancer cells, and use in measuring metastatic potential of a cancer thereof
US20020164825A1 (en) 2000-09-09 2002-11-07 Wen-Tien Chen Cell separation matrix
EP2299256A3 (en) 2000-09-15 2012-10-10 California Institute Of Technology Microfabricated crossflow devices and methods
WO2002028523A2 (en) 2000-09-30 2002-04-11 Aviva Biosciences Corporation Apparatuses containing multiple force generating elements and uses thereof
US6689615B1 (en) 2000-10-04 2004-02-10 James Murto Methods and devices for processing blood samples
WO2002031506A1 (en) 2000-10-09 2002-04-18 Aviva Biosciences Coropration Compositions and methods for separation of moieties on chips
CA2424941A1 (en) 2000-10-10 2002-04-18 Aviva Biosciences Corporation An integrated biochip system for sample preparation and analysis
US20050100951A1 (en) 2000-10-26 2005-05-12 Biocept, Inc. 3D format biochips and method of use
US20030007894A1 (en) 2001-04-27 2003-01-09 Genoptix Methods and apparatus for use of optical forces for identification, characterization and/or sorting of particles
US20020108859A1 (en) 2000-11-13 2002-08-15 Genoptix Methods for modifying interaction between dielectric particles and surfaces
US20020115163A1 (en) 2000-11-13 2002-08-22 Genoptix Methods for sorting particles by size and elasticity
US6744038B2 (en) 2000-11-13 2004-06-01 Genoptix, Inc. Methods of separating particles using an optical gradient
US6784420B2 (en) 2000-11-13 2004-08-31 Genoptix, Inc. Method of separating particles using an optical gradient
US6833542B2 (en) 2000-11-13 2004-12-21 Genoptix, Inc. Method for sorting particles
US20020123112A1 (en) 2000-11-13 2002-09-05 Genoptix Methods for increasing detection sensitivity in optical dielectric sorting systems
EP1368369A4 (en) 2000-11-15 2006-02-22 Hoffmann La Roche METHOD AND REAGENTS FOR IDENTIFYING RARE FOETAL CELLS IN THE MATERIAL CIRCUIT
US6521188B1 (en) 2000-11-22 2003-02-18 Industrial Technology Research Institute Microfluidic actuator
WO2002044689A2 (en) 2000-11-28 2002-06-06 The Regents Of The University Of California Storing microparticles in optical switch which is transported by micro-fluidic device
US6495340B2 (en) 2000-11-28 2002-12-17 Medis El Ltd. Cell carrier grids
US6778724B2 (en) 2000-11-28 2004-08-17 The Regents Of The University Of California Optical switching and sorting of biological samples and microparticles transported in a micro-fluidic device, including integrated bio-chip devices
US6849423B2 (en) 2000-11-29 2005-02-01 Picoliter Inc Focused acoustics for detection and sorting of fluid volumes
US6893836B2 (en) 2000-11-29 2005-05-17 Picoliter Inc. Spatially directed ejection of cells from a carrier fluid
US20020064808A1 (en) 2000-11-29 2002-05-30 Mutz Mitchell W. Focused acoustic energy for ejecting cells from a fluid
WO2002043866A2 (en) * 2000-12-01 2002-06-06 Burstein Technologies, Inc. Apparatus and methods for separating components of particulate suspension
FR2817967B1 (fr) 2000-12-08 2003-02-28 Diagast Procede de magnetisation de marqueurs chimiques ou biologiques
US6770434B2 (en) 2000-12-29 2004-08-03 The Provost, Fellows And Scholars Of The College Of The Holy & Undivided Trinity Of Queen Elizabeth Near Dublin Biological assay method
US6453928B1 (en) 2001-01-08 2002-09-24 Nanolab Ltd. Apparatus, and method for propelling fluids
US7205157B2 (en) 2001-01-08 2007-04-17 Becton, Dickinson And Company Method of separating cells from a sample
US20020160363A1 (en) 2001-01-31 2002-10-31 Mcdevitt John T. Magnetic-based placement and retention of sensor elements in a sensor array
US20020106715A1 (en) 2001-02-02 2002-08-08 Medisel Ltd System and method for collecting data from individual cells
US20020110835A1 (en) 2001-02-13 2002-08-15 Rajan Kumar Microfluidic devices and methods
US6913697B2 (en) 2001-02-14 2005-07-05 Science & Technology Corporation @ Unm Nanostructured separation and analysis devices for biological membranes
WO2002065515A2 (en) 2001-02-14 2002-08-22 Science & Technology Corporation @ Unm Nanostructured devices for separation and analysis
US20030190602A1 (en) 2001-03-12 2003-10-09 Monogen, Inc. Cell-based detection and differentiation of disease states
CN1554025A (zh) 2001-03-12 2004-12-08 Īŵ���ɷ����޹�˾ 患病状态的细胞为基础的检测和鉴别
US7323140B2 (en) 2001-03-28 2008-01-29 Handylab, Inc. Moving microdroplets in a microfluidic device
WO2002081934A2 (en) 2001-04-03 2002-10-17 Micronics, Inc. Pneumatic valve interface for use in microfluidic structures
US20020173043A1 (en) 2001-04-04 2002-11-21 Eddine Merabet Cyanide-free reagent, and method for detecting hemoglobin
US20030036100A1 (en) 2001-04-10 2003-02-20 Imperial College Innovations Ltd. Simultaneous determination of phenotype and genotype
US20030040119A1 (en) * 2001-04-11 2003-02-27 The Regents Of The University Of Michigan Separation devices and methods for separating particles
US7713705B2 (en) 2002-12-24 2010-05-11 Biosite, Inc. Markers for differential diagnosis and methods of use thereof
FR2824144B1 (fr) 2001-04-30 2004-09-17 Metagenex S A R L Methode de diagnostic prenatal sur cellule foetale isolee du sang maternel
US6805841B2 (en) 2001-05-09 2004-10-19 The Provost Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Liquid pumping system
US7262030B2 (en) 2001-05-09 2007-08-28 Virginia Commonwealth University Multiple sequencible and ligatible structures for genomic analysis
US20020166760A1 (en) * 2001-05-11 2002-11-14 Prentiss Mara G. Micromagentic systems and methods for microfluidics
US6743636B2 (en) 2001-05-24 2004-06-01 Industrial Technology Research Institute Microfluid driving device
DE10127079A1 (de) 2001-06-02 2002-12-12 Ulrich Pachmann Verfahren zum quantitativen Nachweis vitaler epithelialer Tumorzellen in einer Körperflüssigkeit
US7419574B2 (en) 2001-06-20 2008-09-02 Cummings Eric B Dielectrophoresis device and method having non-uniform arrays for manipulating particles
CA2451753A1 (en) 2001-06-20 2003-01-03 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US20060019235A1 (en) 2001-07-02 2006-01-26 The Board Of Trustees Of The Leland Stanford Junior University Molecular and functional profiling using a cellular microarray
CN1494453A (zh) 2001-08-03 2004-05-05 �ձ�������ʽ���� 分离器以及生产分离器的方法
CA2396408C (en) 2001-08-03 2006-03-28 Nec Corporation Fractionating apparatus having colonies of pillars arranged in migration passage at interval and process for fabricating pillars
BR0212124A (pt) 2001-08-23 2004-07-20 Immunivest Corp Composições, métodos e aparelhos para conservar espécimes biológicos e amostras de sangue suspeitas de conter células tumorais circulantes, e, composição celular estabilizada
US7863012B2 (en) 2004-02-17 2011-01-04 Veridex, Llc Analysis of circulating tumor cells, fragments, and debris
EP2283924B1 (en) 2001-08-28 2013-04-17 Gyros Patent Ab Inlet unit with means supporting liquid entrance into a microchannel structure
CA2458704A1 (en) 2001-09-04 2003-03-13 Iq Corporation B.V. Determination and quantification of red blood cell populations in samples
DE10143776A1 (de) 2001-09-06 2003-04-03 Adnagen Ag Verfahren und Kit zur Diagnostik oder Behandlungskontrolle von Brustkrebs
ATE309393T1 (de) 2001-09-06 2005-11-15 Adnagen Ag Verfahren zum qualitativen und/oder quantitativen nachweis von zellen
US7202045B2 (en) 2001-09-19 2007-04-10 Regents Of The University Of Michigan Detection and treatment of cancers of the lung
US8980568B2 (en) 2001-10-11 2015-03-17 Aviva Biosciences Corporation Methods and compositions for detecting non-hematopoietic cells from a blood sample
DK1439897T3 (da) 2001-10-11 2011-01-03 Aviva Biosciences Corp Fremgangsmåder til adskillelse af sjældne celler fra væskeprøver
US20030072682A1 (en) 2001-10-11 2003-04-17 Dan Kikinis Method and apparatus for performing biochemical testing in a microenvironment
US7166443B2 (en) 2001-10-11 2007-01-23 Aviva Biosciences Corporation Methods, compositions, and automated systems for separating rare cells from fluid samples
US6783647B2 (en) 2001-10-19 2004-08-31 Ut-Battelle, Llc Microfluidic systems and methods of transport and lysis of cells and analysis of cell lysate
JP2005507997A (ja) 2001-10-26 2005-03-24 イムニベスト・コーポレイション 同一試料についての包括的核酸および形態学的特徴のマルチパラメーター分析
US20030082148A1 (en) 2001-10-31 2003-05-01 Florian Ludwig Methods and device compositions for the recruitment of cells to blood contacting surfaces in vivo
US20050069886A1 (en) 2001-11-07 2005-03-31 Zairen Sun Prostate cancer genes
US20030232350A1 (en) 2001-11-13 2003-12-18 Eos Biotechnology, Inc. Methods of diagnosis of cancer, compositions and methods of screening for modulators of cancer
US20050244843A1 (en) 2001-11-16 2005-11-03 Wen-Tien Chen Blood test prototypes and methods for the detection of circulating tumor and endothelial cells
CN1585898A (zh) * 2001-11-20 2005-02-23 日本电气株式会社 分离装置,分离方法和生产分离装置的方法
EP1448792A1 (de) 2001-11-22 2004-08-25 Adnagen AG Diagnose-kit, dns-chip sowie verfahren zur diagnostik oder behandlungskontrolle bei hodenkrebs
CA2469878C (en) 2001-12-11 2011-06-28 Netech Inc. Blood cell separating system
WO2003058201A2 (en) 2001-12-31 2003-07-17 Quark Biotech, Inc. Methods for identifying marker genes for cancer
WO2003060486A1 (en) 2002-01-10 2003-07-24 Board Of Regents, The University Of Texas System Flow sorting system and methods regarding same
US7383134B2 (en) 2002-01-15 2008-06-03 Piper James R Method and/or system for analyzing biological samples using a computer system
US7318902B2 (en) 2002-02-04 2008-01-15 Colorado School Of Mines Laminar flow-based separations of colloidal and cellular particles
CA2759764C (en) 2002-02-14 2017-06-13 Veridex, Llc Methods and algorithms for cell enumeration in a low-cost cytometer
US7053967B2 (en) 2002-05-23 2006-05-30 Planar Systems, Inc. Light sensitive display
FR2836071B1 (fr) 2002-02-21 2005-02-04 Commissariat Energie Atomique Composant pour microsysteme d'analyse biologique ou biochimique
FR2836072B1 (fr) 2002-02-21 2004-11-12 Commissariat Energie Atomique Composant utilisant un materiau composite et destine a un microsysteme d'analyse biologique ou biochimique
US6958119B2 (en) 2002-02-26 2005-10-25 Agilent Technologies, Inc. Mobile phase gradient generation microfluidic device
US7223371B2 (en) 2002-03-14 2007-05-29 Micronics, Inc. Microfluidic channel network device
SE0200860D0 (sv) 2002-03-20 2002-03-20 Monica Almqvist Microfluidic cell and method for sample handling
AU2003285849A1 (en) 2002-03-20 2004-03-29 Advanced Sensor Technologies, Inc. Personal monitor to detect exposure to toxic agents
WO2003085379A2 (en) 2002-04-01 2003-10-16 Fluidigm Corporation Microfluidic particle-analysis systems
US7312085B2 (en) 2002-04-01 2007-12-25 Fluidigm Corporation Microfluidic particle-analysis systems
US20040241707A1 (en) 2002-04-01 2004-12-02 Gao Chun L. Enhanced diagnostic potential of prostate-specific antigen expressing cells
US7141369B2 (en) 2002-04-25 2006-11-28 Semibio Technology, Inc. Measuring cellular metabolism of immobilized cells
WO2003093795A2 (en) 2002-05-03 2003-11-13 Immunivest Corporation Device and method for analytical cell imaging
CA2526950C (en) 2002-05-27 2012-06-26 Leif Hakansson Method for determining immune system affecting compounds
SE0201738D0 (sv) * 2002-06-07 2002-06-07 Aamic Ab Micro-fluid structures
US20040005247A1 (en) 2002-07-03 2004-01-08 Nanostream, Inc. Microfluidic closed-end metering systems and methods
US20040101444A1 (en) 2002-07-15 2004-05-27 Xeotron Corporation Apparatus and method for fluid delivery to a hybridization station
US20040018611A1 (en) 2002-07-23 2004-01-29 Ward Michael Dennis Microfluidic devices for high gradient magnetic separation
US20040019300A1 (en) * 2002-07-26 2004-01-29 Leonard Leslie Anne Microfluidic blood sample separations
US7214348B2 (en) 2002-07-26 2007-05-08 Applera Corporation Microfluidic size-exclusion devices, systems, and methods
US7118676B2 (en) * 2003-09-04 2006-10-10 Arryx, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
US9435799B2 (en) 2002-07-31 2016-09-06 Janssen Diagnostics, Inc. Methods and reagents for improved selection of biological materials
EP1529211A1 (en) 2002-08-08 2005-05-11 Nanostream, Inc. Systems and methods for high-throughput microfluidic sample analysis
US20060008807A1 (en) 2002-08-23 2006-01-12 O'hara Shawn M Multiparameter analysis of comprehensive nucleic acids and morphological features on the same sample
US20040043506A1 (en) 2002-08-30 2004-03-04 Horst Haussecker Cascaded hydrodynamic focusing in microfluidic channels
US7094345B2 (en) 2002-09-09 2006-08-22 Cytonome, Inc. Implementation of microfluidic components, including molecular fractionation devices, in a microfluidic system
US6878271B2 (en) 2002-09-09 2005-04-12 Cytonome, Inc. Implementation of microfluidic components in a microfluidic system
US7455770B2 (en) 2002-09-09 2008-11-25 Cytonome, Inc. Implementation of microfluidic components in a microfluidic system
US6806543B2 (en) 2002-09-12 2004-10-19 Intel Corporation Microfluidic apparatus with integrated porous-substrate/sensor for real-time (bio)chemical molecule detection
JP2006500074A (ja) 2002-09-27 2006-01-05 オリディス・ビオメド・フォルシュングス−ウント・エントヴィックルングス・ゲーエムベーハー ポリペプチドおよびこれらをコード化する核酸ならびに肝臓障害および上皮癌の防止、診断、または処置のためのその使用
US8895298B2 (en) * 2002-09-27 2014-11-25 The General Hospital Corporation Microfluidic device for cell separation and uses thereof
WO2004037374A2 (en) * 2002-10-23 2004-05-06 The Trustees Of Princeton University Method for continuous particle separation using obstacle arrays asymmetrically aligned to fields
US6811385B2 (en) 2002-10-31 2004-11-02 Hewlett-Packard Development Company, L.P. Acoustic micro-pump
US7122384B2 (en) 2002-11-06 2006-10-17 E. I. Du Pont De Nemours And Company Resonant light scattering microparticle methods
AU2002952696A0 (en) 2002-11-14 2002-11-28 Genomics Research Partners Pty Ltd Status determination
CN1720438A (zh) * 2002-11-29 2006-01-11 日本电气株式会社 分离设备和分离方法
JP2004354364A (ja) * 2002-12-02 2004-12-16 Nec Corp 微粒子操作ユニット、それを搭載したチップと検出装置、ならびにタンパク質の分離、捕獲、および検出方法
DE10259703A1 (de) 2002-12-19 2004-07-08 Ivonex Gmbh Trennungsverfahren
US6746503B1 (en) 2003-01-30 2004-06-08 The Regents Of The University Of California Precision gap particle separator
JP4593557B2 (ja) 2003-02-27 2010-12-08 ベリデックス・リミテッド・ライアビリティ・カンパニー 循環腫瘍細胞(ctc):転移癌患者における増悪までの時間、生存および療法に対する応答の早期評価
DE10313201A1 (de) 2003-03-21 2004-10-07 Steag Microparts Gmbh Mikrostrukturierte Trennvorrichtung und mikrofluidisches Verfahren zum Abtrennen von flüssigen Bestandteilen aus einer Flüssigkeit, die Partikel enthält
US20040197832A1 (en) 2003-04-03 2004-10-07 Mor Research Applications Ltd. Non-invasive prenatal genetic diagnosis using transcervical cells
WO2004101762A2 (en) 2003-05-12 2004-11-25 The Regents Of The University Of Michigan Detection and treatment of cancers of the colon
US6962658B2 (en) 2003-05-20 2005-11-08 Eksigent Technologies, Llc Variable flow rate injector
KR101203402B1 (ko) 2003-06-06 2012-11-23 마이크로닉스 인코포레이티드. 마이크로 유체 장치상에서의 가열, 냉각 및 열 순환 시스템및 방법
WO2004113877A1 (en) 2003-06-13 2004-12-29 The General Hospital Corporation Microfluidic systems for size based removal of red blood cells and platelets from blood
JP2005037346A (ja) * 2003-06-25 2005-02-10 Aisin Seiki Co Ltd マイクロ流体制御システム
CA2536360C (en) 2003-08-28 2013-08-06 Celula, Inc. Methods and apparatus for sorting cells using an optical switch in a microfluidic channel network
AU2004286201B2 (en) 2003-09-10 2010-09-09 Altheadx, Inc. Expression profiling using microarrays
WO2005028663A2 (en) 2003-09-18 2005-03-31 Immunivest Corporation Operator independent programmable sample preparation and analysis system
WO2005042713A2 (en) 2003-10-28 2005-05-12 The Johns Hopkins University Quantitative multiplex methylation-specific pcr
MXPA06004810A (es) 2003-10-29 2007-03-15 Mec Dynamics Corp Metodos y sistemas micromecanicos para efectuar ensayos.
AU2004286307A1 (en) 2003-10-31 2005-05-12 Vitatex, Inc. Blood test prototypes and methods for the detection of circulating tumor and endothelial cells
WO2005049168A2 (en) 2003-11-17 2005-06-02 Immunivest Corporation Method and apparatus for pre-enrichment and recovery of cells from densified whole blood
US7329391B2 (en) 2003-12-08 2008-02-12 Applera Corporation Microfluidic device and material manipulating method using same
JP5060134B2 (ja) 2003-12-12 2012-10-31 ガバメント オブ ザ ユナイテッド ステイツ オブ アメリカ・アズ リプレゼンテッド バイ ザ セクレタリー・デパートメント オブ ヘルス アンド ヒューマン サービシーズ ヒト細胞傷害性Tリンパ球のエピトープ及びそのMUC−1の非VNTR(non−variablenumberoftandemrepeatsequence)由来のアゴニストエピトープ
US7939249B2 (en) 2003-12-24 2011-05-10 3M Innovative Properties Company Methods for nucleic acid isolation and kits using a microfluidic device and concentration step
US20050147977A1 (en) 2003-12-29 2005-07-07 Tae-Woong Koo Methods and compositions for nucleic acid detection and sequence analysis
KR101352853B1 (ko) 2004-01-07 2014-02-04 조마 테크놀로지 리미티드 M-csf-특이적 단일클론 항체 및 그것의 사용
US7277876B2 (en) * 2004-01-23 2007-10-02 Solomon Research Llc Dynamic adaptive distributed computer system
EP1561507A1 (en) 2004-01-27 2005-08-10 Future Diagnostics B.V. System for characterising a fluid, microfluidic device for characterising or analysing concentration components, a method of characterising or analysing such concentrations and a measurement device
WO2005072399A2 (en) 2004-01-29 2005-08-11 Massachusetts Institute Of Technology Microscale sorting cytometer
US20050181353A1 (en) 2004-02-17 2005-08-18 Rao Galla C. Stabilization of cells and biological specimens for analysis
US20050191636A1 (en) 2004-03-01 2005-09-01 Biocept, Inc. Detection of STRP, such as fragile X syndrome
WO2005085861A2 (en) 2004-03-03 2005-09-15 Oridis Biomed Forschungs- Und Entwicklungs Gmbh Nucleic acids and encoded polypeptides for use in liver disorders and epithelial cancer
US20050282293A1 (en) 2004-03-03 2005-12-22 Cosman Maury D System for delivering a diluted solution
CA2557819A1 (en) 2004-03-03 2005-09-15 The General Hospital Corporation Magnetic device for isolation of cells and biomolecules in a microfluidic environment
US20060121624A1 (en) 2004-03-03 2006-06-08 Huang Lotien R Methods and systems for fluid delivery
AU2005222931A1 (en) 2004-03-12 2005-09-29 The Regents Of The University Of California Methods and apparatus for integrated cell handling and measurements
SE0400662D0 (sv) * 2004-03-24 2004-03-24 Aamic Ab Assay device and method
US7390388B2 (en) 2004-03-25 2008-06-24 Hewlett-Packard Development Company, L.P. Method of sorting cells on a biodevice
WO2005098046A2 (en) 2004-04-01 2005-10-20 Immunivest Corporation Methods for the determination of cell specific biomarkers
US20050282196A1 (en) 2004-04-30 2005-12-22 Jose Costa Methods and compositions for cancer diagnosis
US20080195326A1 (en) 2004-05-03 2008-08-14 Martin Munzer Method And System For Comprehensive Knowledge-Based Anonymous Testing And Reporting, And Providing Selective Access To Test Results And Report
US7468249B2 (en) 2004-05-05 2008-12-23 Biocept, Inc. Detection of chromosomal disorders
US20080213821A1 (en) 2004-05-06 2008-09-04 Nanyang Technological University Microfluidic Cell Sorter System
US7858040B2 (en) 2004-05-07 2010-12-28 Saryna Biotechnologies Llc Direct mixing and injection for high throughput fluidic systems
US20050252840A1 (en) 2004-05-13 2005-11-17 Eksigent Technologies, Llc Micromixer
US7622281B2 (en) 2004-05-20 2009-11-24 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for clonal amplification of nucleic acid
WO2005116264A2 (en) 2004-05-24 2005-12-08 Immunivest Corporation A blood test to monitor the genetic changes of progressive cancer using immunomagnetic enrichment and fluorescence in situ hybridization (fish)
EP1607485A1 (en) 2004-06-14 2005-12-21 Institut National De La Sante Et De La Recherche Medicale (Inserm) Method for quantifying VEGF121 isoform in a biological sample
DE102004036669A1 (de) 2004-07-28 2006-03-23 Otto Bock Healthcare Gmbh Pumpe mit einem mit wenigstens einer flexiblen Wandung abgeschlossenen Fluidvolumen
US20060051265A1 (en) 2004-09-08 2006-03-09 Health Research, Inc. Apparatus and method for sorting microstructures in a fluid medium
US20080106853A1 (en) 2004-09-30 2008-05-08 Wataru Suenaga Process for Producing Porous Sintered Metal
DE102004047953A1 (de) 2004-10-01 2006-04-20 Rudolf Rigler Selektion von Partikeln im laminaren Fluss
US20060246575A1 (en) 2005-01-13 2006-11-02 Micronics, Inc. Microfluidic rare cell detection device
US8158410B2 (en) * 2005-01-18 2012-04-17 Biocept, Inc. Recovery of rare cells using a microchannel apparatus with patterned posts
KR20070116585A (ko) 2005-01-18 2007-12-10 바이오셉트 인코포레이티드 패턴화된 포스트를 갖는 마이크로채널을 이용하는 세포분리법
US20060252087A1 (en) 2005-01-18 2006-11-09 Biocept, Inc. Recovery of rare cells using a microchannel apparatus with patterned posts
US7981696B2 (en) 2005-02-18 2011-07-19 The United States of America, as represented by the Secretary of Commerce, The National Institute of Standards and Technology Microfluidic platform of arrayed switchable spin-valve elements for high-throughput sorting and manipulation of magnetic particles and biomolecules
EP2594631A1 (en) 2005-04-05 2013-05-22 Cellpoint Diagnostics Devices and method for detecting circulating tumor cells and other particles
US20070026413A1 (en) 2005-07-29 2007-02-01 Mehmet Toner Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20060223178A1 (en) 2005-04-05 2006-10-05 Tom Barber Devices and methods for magnetic enrichment of cells and other particles
US20070026417A1 (en) 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026415A1 (en) 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026414A1 (en) 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026418A1 (en) 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070196820A1 (en) 2005-04-05 2007-08-23 Ravi Kapur Devices and methods for enrichment and alteration of cells and other particles
CA2651367A1 (en) * 2005-05-11 2006-11-16 Genetic Technologies Limited Methods of enriching fetal cells
US20070026419A1 (en) 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026416A1 (en) 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US8921102B2 (en) 2005-07-29 2014-12-30 Gpb Scientific, Llc Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070059680A1 (en) 2005-09-15 2007-03-15 Ravi Kapur System for cell enrichment
US20070059716A1 (en) 2005-09-15 2007-03-15 Ulysses Balis Methods for detecting fetal abnormality
US20070059774A1 (en) 2005-09-15 2007-03-15 Michael Grisham Kits for Prenatal Testing
US20070059718A1 (en) 2005-09-15 2007-03-15 Mehmet Toner Systems and methods for enrichment of analytes
US20070059781A1 (en) 2005-09-15 2007-03-15 Ravi Kapur System for size based separation and analysis
US20070059719A1 (en) 2005-09-15 2007-03-15 Michael Grisham Business methods for prenatal Diagnosis
US20070059683A1 (en) 2005-09-15 2007-03-15 Tom Barber Veterinary diagnostic system
EP1931800A4 (en) 2005-09-15 2011-06-15 Artemis Health Inc SYSTEMS AND METHODS FOR ENRICHING ANALYTES
WO2007046108A2 (en) * 2005-10-21 2007-04-26 Monaliza Medical Ltd. Methods and kits for analyzing genetic material of a fetus
EP2423334A3 (en) * 2006-02-02 2012-04-18 The Board of Trustees of The Leland Stanford Junior University Non-invasive fetal genetic screening by digital analysis
US20080038733A1 (en) * 2006-03-28 2008-02-14 Baylor College Of Medicine Screening for down syndrome
EP2040843B1 (en) * 2006-06-01 2020-02-26 The Trustees of Princeton University Apparatus for continuous particle separation

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010099052A (ja) * 2008-10-27 2010-05-06 Olympus Corp 細胞分離方法
JP2010187664A (ja) * 2009-01-23 2010-09-02 Shibaura Institute Of Technology 三次元誘電泳動デバイス
JP2011252776A (ja) * 2010-06-01 2011-12-15 Hiroshima Univ 解析装置及び解析装置の製造方法
US9421543B2 (en) 2011-06-24 2016-08-23 Samsung Electronics Co., Ltd. Hydrodynamic filter unit, hydrodynamic filter including the hydrodynamic filter unit, and method of filtering target material by using the hydrodynamic filter unit and the hydrodynamic filter
JP2014521354A (ja) * 2011-08-04 2014-08-28 セイジ サイエンス,インコーポレイティド 流体を処理するためのシステム及び方法
JP2018030057A (ja) * 2016-08-22 2018-03-01 国立大学法人東京工業大学 微粒子分離デバイスおよび微粒子の分離方法
US11566982B2 (en) 2018-01-19 2023-01-31 International Business Machines Corporation Microscale and mesoscale condenser devices
US11872560B2 (en) 2018-01-19 2024-01-16 International Business Machines Corporation Microfluidic chips for particle purification and fractionation
JP2021510516A (ja) * 2018-01-19 2021-04-30 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 粒子の精製および分画のための方法およびマイクロ流体装置
US11754476B2 (en) 2018-01-19 2023-09-12 International Business Machines Corporation Microscale and mesoscale condenser devices
US11458474B2 (en) 2018-01-19 2022-10-04 International Business Machines Corporation Microfluidic chips with one or more vias
WO2019187618A1 (ja) * 2018-03-30 2019-10-03 株式会社日立製作所 細胞製造装置
JP7048940B2 (ja) 2018-03-30 2022-04-06 株式会社日立製作所 細胞製造装置
JP2019176793A (ja) * 2018-03-30 2019-10-17 株式会社日立製作所 細胞製造装置

Also Published As

Publication number Publication date
CN101918527A (zh) 2010-12-15
US8021614B2 (en) 2011-09-20
WO2006108101A3 (en) 2009-04-16
US10786817B2 (en) 2020-09-29
EP2664666A3 (en) 2014-03-12
US20120196273A1 (en) 2012-08-02
AU2006232103A1 (en) 2006-10-12
CA2601480A1 (en) 2006-10-12
EP1866410B1 (en) 2012-08-08
US20160144378A1 (en) 2016-05-26
GB2429774A (en) 2007-03-07
EP2492339B1 (en) 2014-03-19
US8585971B2 (en) 2013-11-19
US20070196820A1 (en) 2007-08-23
HK1175494A1 (en) 2013-07-05
US20190001344A1 (en) 2019-01-03
US20120225473A1 (en) 2012-09-06
US20070026381A1 (en) 2007-02-01
GB0612648D0 (en) 2006-08-16
US20210178403A1 (en) 2021-06-17
EP1866410A4 (en) 2009-11-04
EP2664666A2 (en) 2013-11-20
EP2492339A1 (en) 2012-08-29
US9174222B2 (en) 2015-11-03
CN101918527B (zh) 2012-06-27
EP1866410A2 (en) 2007-12-19
US9956562B2 (en) 2018-05-01
EP2664666B1 (en) 2017-06-07
WO2006108101A2 (en) 2006-10-12

Similar Documents

Publication Publication Date Title
US20210178403A1 (en) Devices And Method For Enrichment And Alteration Of Cells And Other Particles
US11052392B2 (en) Microfluidic device for cell separation and uses thereof
US20060223178A1 (en) Devices and methods for magnetic enrichment of cells and other particles
JP2009511001A (ja) 細胞及びその他の粒子を磁気濃縮するためのデバイス並びに方法
Talebjedi et al. Exploiting microfluidics for extracellular vesicle isolation and characterization: potential use for standardized embryo quality assessment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20100913

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101005