JP2006092969A - 非水電解質二次電池用負極活物質及び非水電解質二次電池 - Google Patents

非水電解質二次電池用負極活物質及び非水電解質二次電池 Download PDF

Info

Publication number
JP2006092969A
JP2006092969A JP2004278267A JP2004278267A JP2006092969A JP 2006092969 A JP2006092969 A JP 2006092969A JP 2004278267 A JP2004278267 A JP 2004278267A JP 2004278267 A JP2004278267 A JP 2004278267A JP 2006092969 A JP2006092969 A JP 2006092969A
Authority
JP
Japan
Prior art keywords
active material
secondary battery
electrolyte secondary
negative electrode
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004278267A
Other languages
English (en)
Other versions
JP4519592B2 (ja
Inventor
Tomokazu Morita
朋和 森田
Norio Takami
則雄 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004278267A priority Critical patent/JP4519592B2/ja
Priority to US11/175,294 priority patent/US20060068287A1/en
Priority to CNA2005101380193A priority patent/CN1794494A/zh
Priority to KR1020050088938A priority patent/KR20060051615A/ko
Publication of JP2006092969A publication Critical patent/JP2006092969A/ja
Application granted granted Critical
Publication of JP4519592B2 publication Critical patent/JP4519592B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】
高容量かつ高初回充放電効率である非水電解質二次電池の負極活物質を提供することができ、さらに高容量な非水電解質二次電池を提供することができる。
【解決手段】
本発明は、微細なSi相および、シリコン酸化物と炭素質物の三相を含む複合体の表面が炭素被覆されていることを特徴とする非水電解質二次電池用負極活物質及びこれを用いた非水電解質二次電池である。
【選択図】 図1

Description

本発明は、負極活物質を改良した非水電解質二次電池用負極活物質及び非水電解質二次電池に係わる。
近年、急速なエレクトロニクス機器の小型化技術の発達により、種々の携帯電子機器が普及しつつある。そして、これら携帯電子機器の電源である電池にも小型化が求められており、高エネルギー密度を持つ非水電解質二次電池が注目を集めている。
金属リチウムを負極活物質として用いた非水電解質二次電池は、非常に高いエネルギー密度を持つが、充電時にデンドライトと呼ばれる樹枝状の結晶が負極上に析出するため電池寿命が短く、またデンドライトが成長して正極に達し内部短絡を引き起こす等、安全性にも問題があった。そこでリチウム金属に替わる負極活物質として、リチウムを吸蔵・脱離する炭素材料、特に黒鉛質炭素が用いられるようになった。しかし、黒鉛質炭素の容量はリチウム金属・リチウム合金等に比べ小さく、大電流特性が低い等の問題がある。そこで、シリコン、スズなどのリチウムと合金化する元素、非晶質カルコゲン化合物などリチウム吸蔵容量が大きく、密度の高い物質を用いる試みがなされてきた。中でもシリコンはシリコン原子1に対してリチウム原子を4.4の比率までリチウムを吸蔵することが可能であり、重量あたりの負極容量は黒鉛質炭素の約10倍となる。しかし、シリコンは、充放電サイクルにおけるリチウムの挿入脱離に伴なう体積の変化が大きく活物質粒子の微粉化などサイクル寿命に問題があった。
特開2000-215887公報(特許文献1)には、Si粒子の負極材料に炭素被覆をすることが記載されており、不純物としてSiO2も含有されてもよい旨が記載されている。
しかし、この公知例の負極材料の出発原料であるSi粉末は0.1μm以上の大きいもので、通常の充放電サイクルにおける活物質の微粉化や割れを防ぐことは困難である。例えば実施例では、出発原料のSiとして和光純製薬の試薬1級珪素粉末を使用しているが、これは結晶シリコンを粉末にしたもので、負極材料の粉末X線回折測定におけるSi(220)面の回折ピークは0.1℃以下のきわめて低い値となる。この様な負極活物質材料では、さらなる高容量かつ高サイクル特性の電池を実現することは困難であった。
即ち、本発明者らは鋭意実験を重ねた結果、公知ではない事実ではあるが、微細な一酸化珪素と炭素質物とを複合化し焼成した活物質において、微結晶SiがSiと強固に結合するSiOに包含または保持された状態で炭素質物中に分散した活物質を得られ、高容量化およびサイクル特性の向上を達成できることを見出した。しかしながら、このような活物質では初回の充放電サイクルにおける充電量に対する放電量が小さい、すなわち初回サイクルの充放電効率が比較的低くより高容量な電池を得る上で障害となるという問題があった。
特開2000-215887公報
公知ではないが、本発明に最も近い従来技術として、微細な一酸化珪素と炭素質物とを複合化し焼成した負極活物質を使用した非水電解質二次電池を挙げれば、初回サイクルの充放電効率が低く、さらなる電池の高容量化を阻害するという問題があった。
本発明は、上記問題点の解決を鑑みてなされたもので、従来の非水電解質二次電池と比較して、高容量かつ高サイクル特性を有する非水電解質二次電池用負極活物質及び非水電解質二次電池を提供することを課題とする。
上記課題を解決するために、請求項1の非水電解質二次電池用負極活物質は、炭素質物中にシリコン及びシリコン酸化物が分散された複合体粒子と、この複合体粒子の全面を被覆する炭素質物の被覆層とを有し、粉末X線回折測定におけるSi(220)面の回折ピークの半値幅が1.5°以上、8.0°以下であることを特徴とする。この様な負極活物質は、を得る製造方法、SiOx(0.8≦X≦1.5)とカーボンまたは有機材料を力学的に複合化した前駆体にカーボン材料を被覆し、不活性雰囲気中で850℃以上1300℃以下で焼成することで得ることが可能である。
請求項2の非水電解質二次電池用負極活物質は、請求項1において、前記被覆層の比表面積が0.5m2/g以上10m2/g以下であることを特徴とする。
請求項3の非水電解質二次電池は、正極と、この正極に対向して形成され負極活物質を有する負極と、この負極と前記正極の間に介在する非水電解質とを具備する非水電解質二次電池において、前記負極活物質が、炭素質物中にシリコン及びシリコン酸化物が分散された複合体粒子と、この複合体粒子の全面を被覆する炭素質物の被覆層とを有し、粉末X線回折測定におけるSi(220)面の回折ピークの半値幅が1.5°以上、8.0°以下であることを特徴とする。
請求項4の非水電解質二次電池は、請求項3において、前記被覆層が、ハードカーボンであることを特徴とする。
請求項5の非水電解質二次電池は、請求項3において、前記被覆層の比表面積が0.5m2/g以上10m2/g以下であることを特徴とする。
本発明によれば、高容量かつ高初回充放電効率である非水電解質二次電池の負極活物質を提供することができ、さらに高容量な非水電解質二次電池を提供することができる。
以下、本発明の負極活物質の詳細について記述する。
本発明の負極活物質の望ましい態様は、SiとSiOおよびSiO2と炭素質物からなり、かつこれらが細かく複合化された粒子の表面を、炭素で被覆したものである。Si相は多量のリチウムを挿入脱離し、負極活物質の容量を大きく増進させる。Si相への多量のリチウムの挿入脱離による膨張収縮を、Si相を他の2相のなかに分散することにより緩和して活物質粒子の微粉化を防ぐとともに、炭素質物相は負極活物質として重要な導電性を確保し、SiO2相はSiと強固に結合し微細化されたSiを保持するバッファーとして粒子構造の維持に大きな効果がある。表面を被覆する炭素には、初回充放電時における表面副反応を抑制し初回充放電効率を向上させる効果がある。一酸化珪素と炭素質物の力学的複合体の焼成物において初回充電時に充放電効率が低くなるのは、一酸化珪素と炭素質物の複合化の工程で力学的に複合化された結果、比表面積が大きくなり、かつ表面にひずみや欠陥等が生じるなどして大きな表面エネルギーを蓄えており、表面副反応が起こりやすいためであると考えられる。このような表面を炭素で被覆することで比表面積が減少し、表面エネルギーが低減されるため初回充電時の副反応が抑制され充放電効率が向上すると推定される。従って、粒子表面を均一かつ十分に被覆することが好ましく、被覆量としては重量比で2%以上、40%以下の範囲であることが好ましい。
Si相はリチウムを吸蔵放出する際の膨張収縮が大きく、この応力を緩和するためにできるだけ微細化されて分散されていることが好ましい。具体的には数nmのクラスターから、大きくても300nm以下のサイズで分散されていることが好ましい。
SiO2相は非晶質、結晶質などの構造が採用できるが、Si相に結合しこれを包含または保持する形で活物質粒子中に偏りなく分散されていることが好ましい。
粒子内部でSi相と複合化される炭素質物は、グラファイト、ハードカーボン、ソフトカーボン、アモルファス炭素またはアセチレンブラックなどが良く、1つ又は数種からなり、好ましくはグラファイトのみ、あるいはグラファイトとハードカーボンの混合物が良い。グラファイトは活物質の導電性を高める点で好ましく、ハードカーボン活物質全体を被覆し膨張収縮を緩和する効果が大きい。炭素質物はSi相、SiO2相を内包する形状となっていることが好ましい。
表面を被覆する炭素質物にはハードカーボン、あるいはソフトカーボンが好ましい。ハードカーボンはリチウムの挿入脱離に伴う体積変化がほとんど無く、応力に対する耐性が大きいことから特に好ましい。
負極活物質の粒径は5μm以上100μm以下、比表面積は0.5m2/g以上10m2/g以下であることが好ましい。活物質の粒径および比表面積はリチウムの挿入脱離反応の速度に影響し、負極特性に大きな影響をもつが、この範囲の値であれば安定して特性を発揮することができる。
また、活物質の粉末X線回折測定におけるSi(220)面の回折ピークの半値幅は、1.5°以上、8.0°以下であることが必要である。Si(220)面の回折ピーク半値幅はSi相の結晶粒が成長するほど小さくなり、Si相の結晶粒が大きく成長するとリチウムの挿入脱離に伴う膨張収縮に伴い活物質粒子に割れ等を生じやすくなるが、このため半値幅が1.5°以上、8.0°以下の範囲内であればこの様な問題が表面化することを避けられる。
Si相、SiO2相、炭素質物相の比率は、Siと炭素のモル比が0.2≦Si/炭素≦2の範囲であることが好ましい。Si相とSiO2相の量的関係はモル比が0.6≦Si/SiO2≦1.5であることが、負極活物質として大きな容量と良好なサイクル特性を得ることができるため望ましい。
次に本実施の形態の非水二次電池用負極活物質材料の製造方法について説明する。
力学的な複合化処理としては、例えば、ターボミル、ボールミル、メカノフュージョン、ディスクミル・・・などを挙げることが出来る。
Si原料はSiOX(0.8≦X≦1.5)を用いることが好ましい。特にSiO(X ≒1)を用いることが、Si相とSiO2 相の量的関係を好ましい比率とする上で望ましい。また、SiOXの形状は塊状でも良いが、処理時間短縮のため細かい粉末であること好ましく、粒径は平均して100μm以下 0.5μm以上であることが好ましい。これは以下に説明する理由によるものである。平均粒径が100μmを超えると、粒子中心部ではSi相を絶縁体のSiO2 相が厚く覆うこととなり、活物質のリチウム挿入脱離反応が阻害される恐れがある。一方、平均粒径を0.5μm未満にすると、表面積が大きくなるため、粒子表面がSiO2 になって組成が不安定となる可能性がある。
有機材料としては、グラファイト、コークス、低温焼成炭、ピッチなどの炭素材料および炭素材料前駆体のうち少なくとも一方を用いることが出来る。特に、ピッチなど加熱により溶融するものはミル処理中に溶融して複合化が良好に進まないため、コークス・グラファイトなど溶融しないものと混合して使用すると良い。
複合化処理の運転条件は機器ごとにことなるが、十分に粉砕・複合化が進行するまで行なうことが好ましい。しかしながら、複合化の際に出力を上げすぎる、あるいは時間を掛けすぎるとSiとCが反応してLiの挿入反応に対し不活性なSiCが生成する。そのため、処理の条件は、粉砕・複合化が十分進行し、かつSiCの生成が起こらない適度な条件を定める必要がある。
次の工程として複合化処理によって得られた粒子に炭素被覆を行う。被覆に用いる材料としては、ピッチ、樹脂、ポリマーなど不活性雰囲気下で加熱されて炭素質物となるものを用いることが出来る。具体的には石油ピッチ、メソフェーズピッチ、フラン樹脂、セルロース、ゴム類など1200℃程度の焼成でよく炭化されるものが好ましい。これは焼成処理の項で後述するが、1400℃より高い温度では焼成を行うことができないためである。被覆方法は、モノマー中に複合体粒子を分散した状態で重合し固化したものを炭化焼成に供する。または、ポリマーを溶媒中に溶解し、複合体粒子を分散したのち溶媒を蒸散し得られた固形物を炭化焼成に供する。また、炭素被覆に用いる別の方法としてCVDによる炭素被覆を行うこともできる。この方法は800〜1000℃に加熱した試料上に不活性ガスをキャリアガスとして気体炭素源を流し、試料表面上で炭化させる方法である。この場合、炭素源としてはベンゼン、トルエン、スチレンなどを用いることができる。また、CVDによる炭素被覆を行った際、試料は800〜1000℃で加熱されるため、次に述べる焼成工程は必ずしも行わなくてもよい。
炭化焼成は、Ar中等の不活性雰囲気下にて行なわれる。炭化焼成においては、ポリマーまたはピッチが炭化されると共に、SiOxは不均化反応によりSiとSiO2の2相に分離する。x=1のとき反応は下の式(1)で表される。
2SiO → Si +SiO2 ・・・(1)
この不均化反応は800℃より高温で進行し、微小なSi相とSiO相に分離する。反応温度が上がるほどSi相の結晶は大きくなり、Si(220)のピークの半値幅は小さくなる。好ましい範囲の半値幅が得られる焼成温度は850℃〜1600℃の範囲である。また、不均化反応により生成したSiは1400℃より高い温度では炭素と反応してSiCに変化する。SiCはリチウムの挿入に対して全く不活性であるためSiCが生成すると活物質の容量は低下する。従って、炭化焼成の温度は850℃以上1400℃以下であることが好ましく、さらに好ましくは900℃以上1100℃以下である。焼成時間は、1時間から12時間程度の間であることが好ましい。
以上のような合成方法により本発明の負極活物質が得られる。炭化焼成後の生成物は各種ミル、粉砕装置、グラインダー等を用いて粒径、比表面積等を調製してもよい。
以下、本発明の負極活物質を用いた非水電解質二次電池の作製について詳述する。
1)正極
正極は、活物質を含む正極活物質層が正極集電体の片面もしくは両面に担持された構造を有する。
前記正極活物質層の片面の厚さは1.0μm〜150μmの範囲であることが
電池の大電流放電特性とサイクル寿命の保持の点から望ましい。従って正極集電体の両面に担持されている場合は正極活物質層の合計の厚さは20μm〜300μmの範囲となることが望ましい。片面のより好ましい範囲は30μm〜120μmである。この範囲であると大電流放電特性とサイクル寿命は向上する。
正極活物質層は、正極活物質の他に導電剤を含んでいてもよい。
また、正極活物質層は正極材料同士を結着する結着剤を含んでいてもよい。
正極活物質としては、種々の酸化物、例えば二酸化マンガン、リチウムマンガン複合酸化物、リチウム含有ニッケルコバルト酸化物(例えばLiCOO)、リチウム含有ニッケルコバルト酸化物(例えばLiNi0.8CO0.2)、リチウムマンガン複合酸化物(例えばLiMn、LiMnO)を用いると高電圧が得られるために好ましい。
導電剤としてはアセチレンブラック、カーボンブラック、黒鉛などを挙げることができる。
結着材の具体例としては例えばポリテトラフルオロエチレン(PTFE)、ポリ弗化ビニリデン(PVdF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等を用いることができる。
正極活物質、導電剤および結着剤の配合割合は、正極活物質80〜95重量%、導電剤3〜20%、結着剤2〜7重量%の範囲にすることが、良好な大電流放電特性とサイクル寿命を得られるために好ましい。
集電体としては、多孔質構造の導電性基板かあるいは無孔の導電性基板を用いることができる。集電体の厚さは5〜20μmであることが望ましい。この範囲であると電極強度と軽量化のバランスがとれるからである。
2)負極
負極は、負極材料を含む負極活物質が負極集電体の片面もしくは両面に担持された構造を有する。
前記負極活物質層の厚さは1.0〜150μmの範囲であることが望ましい。従って負極集電体の両面に担持されている場合は負極活物質層の合計の厚さは20〜300μmの範囲となる。片面の厚さのより好ましい範囲は30〜100μmである。この範囲であると大電流放電特性とサイクル寿命は大幅に向上する。
負極活物質層は負極材料同士を結着する結着剤を含んでいてもよい。結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリ弗化ビニリデン(PVdF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等を用いることができる。
また、負極活物質層は導電剤を含んでいてもよい。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛などを挙げることができる。
集電体としては、多孔質構造の導電性基板か、あるいは無孔の導電性基板を用いることができる。これら導電性基板は、例えば、銅、ステンレスまたはニッケルから形成することができる。集電体の厚さは5〜20μmであることが望ましい。この範囲であると電極強度と軽量化のバランスがとれるからである。
3)電解質
電解質としては非水電解液、電解質含浸型ポリマー電解質、高分子電解質、あるいは無機固体電解質を用いることができる。
非水電解液は、非水溶媒に電解質を溶解することにより調製される液体状電解液で、電極群中の空隙に保持される。
非水溶媒としては、プロピレンカーボネート(PC)やエチレンカーボネート(EC)とPCやECより低粘度である非水溶媒(以下第2溶媒と称す)との混合溶媒を主体とする非水溶媒を用いることが好ましい。
第2溶媒としては、例えば鎖状カーボンが好ましく、中でもジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、プロピオン酸エチル、プロピオン酸メチル、γ−ブチロラクトン(BL)、アセトニトリル(AN)、酢酸エチル(EA)、トルエン、キシレンまたは、酢酸メチル(MA)等が挙げられる。これらの第2溶媒は、単独または2種以上の混合物の形態で用いることができる。特に、第2溶媒はドナー数が16.5以下であることがより好ましい。
第2溶媒の粘度は、25℃において2.8cmp以下であることが好ましい。混合溶媒中のエチレンカーボネートまたはプロピレンカーボネートの配合量は、体積比率で1.0%〜80%であることが好ましい。より好ましいエチレンカーボネートまたはプロピレンカーボネートの配合量は体積比率で20%〜75%である。
非水電解液に含まれる電解質としては、例えば過塩素酸リチウム(LiClO)、六弗化リン酸リチウム(LiPF)、ホウ弗化リチウム(LiBF)、六弗化砒素リチウム(LiAsF)、トリフルオロメタスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CFSO]等のリチウム塩(電解質)が挙げられる。中でもLiPF、LiBFを用いるのが好ましい。
電解質の非水溶媒に対する溶解量は、0.5〜2.0mol/Lとすることが望ましい。
3)セパレータ
非水電解液を用いる場合、および電解質含浸型ポリマー電解質を用いる場合においてはセパレータを用いることができる。セパレータは多孔質セパレータを用いる。セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン、またはポリ弗化ピニリデン(PVdF)を含む多孔質フィルム、合成樹脂製不織布等を用いることができる。中でも、ポリエチレンか、あるいはポリプロピレン、または両者からなる多孔質フィルムは、二次電池の安全性を向上できるため好ましい。
セパレータの厚さは、30μm以下にすることが好ましい。厚さが30μmを越えると、正負極間の距離が大きくなって内部抵抗が大きくなる恐れがある。また、厚さの下限値は、5μmにすることが好ましい。厚さを5μm未満にすると、セパレータの強度が著しく低下して内部ショートが生じやすくなる恐れがある。厚さの上限値は、25μmにすることがより好ましく、また、下限値は1.0μmにすることがより好ましい。
セパレータは、120℃の条件で1時間おいたときの熱収縮率が20%以下であることが好ましい。熱収縮率が20%を超えると、加熱により短絡が起こる可能性が大きくなる。熱収縮率は、15%以下にすることがより好ましい。
セパレータは、多孔度が30〜70%の範囲であることが好ましい。これは次のような理由によるものである。多孔度を30%未満にすると、セパレータにおいて高い電解質保持性を得ることが困難になる恐れがある。一方、多孔度が60%を超えると十分なセパレータ強度を得られなくなる恐れがある。多孔度のより好ましい範囲は、35〜70%である。
セパレータは、空気透過率が500秒/1.00cm以下であると好ましい。空気透過率が500秒/1.00cmを超えると、セパレータにおいて高いリチウムイオン移動度を得ることが困難になる恐れがある。また、空気透過率の下限値は、30秒/1.00cmである。空気透過率を30秒/1.00cm未満にすると、十分なセパレータ強度を得られなくなる恐れがあるからである。
空気透過率の上限値は300秒/1.00cmにすることがより好ましく、また、下限値は50秒/1.00cmにするとより好ましい。
本発明に係わる非水電解質二次電池の一例である円筒形非水電解質二次電池を図1を参照して詳細に説明する。
ステンレスからなる有底円筒状の容器1は底部に絶縁体2が配置されている。電極群3は、前記容器1に収納されている。前記電極群3は、正極4、セパレータ5、負極6及びセパレータ5を積層した帯状物を前記セパレータ5が外側に位置するように渦巻状に捲回した構造になっている。
前記容器1内には、電解液が収容されている。中央部が開口された絶縁紙7は、前記容器1内の前記電極群3の上方に配置されている。絶縁封口板8は、前記容器1の上部開口部に配置され、かつ前記上部開口部付近を内側にかしめ加工することにより前記封口板8は前記容器1に固定されている。正極端子9は、前記絶縁封口板8の中央に嵌合されている。正極リード1.0の一端は、前記正極4に、他端は前記正極端子9にそれぞれ接続されている。前記負極6は、図示しない負極リードを介して負極端子である前記容器1に接続されている。
なお、前述した図1において、円筒形非水電解質二次電池に適用した例を説明したが、角型非水電解質二次電池にも同様に適用できる。また、前記電池の容器内に収納される電極群は、渦巻き系に限らず、正極、セパレータ及び負極をこの順序で複数積層した形態にしてもよい。
また、前述した図1においては、金属缶からなる外装体を使用した非水電解質二次電池に適用した例を説明したが、フィルム材からなる外装体を使用した非水電解質二次電池にも同様に適用することができる。フィルム材としては、熱可塑性樹脂とアルミニウム層を含むラミネートフィルムが好ましい。
以上説明した本発明に係わる非水電解質二次電池用負極活物質は、SiとSiO2と炭素質物の三相を含む化合物であることを特徴とするものである。
このような負極活物質は高い充放電容量と長いサイクル寿命を同時に達成することができるため、放電容量が向上された長寿命な非水電解質二次電池を実現することができる。
以下に本発明の具体的な実施例(各実施例で説明する夫々の条件で図1で説明した電池を具体的に作成した例)を挙げ、その効果について述べる。但し、本発明は実施例に限定されるものではない。
(実施例1)
遊星ボールミル(FRITSCH社製型番P−5)を用いて、次のような原料組成、ボールミル運転条件、焼成条件により合成を行なった。
ボールミルの際には容積が250mlのステンレス製容器と10mmφのボールを用いた。試料の投入量は20gとした。原料には平均粒径が45μmのSiO粉末を8gと、炭素材料として平均粒径が6μmの黒鉛粉末を12gとを用いた。ボールミルの回転数は150rpmとし処理時間は18hとした。
ボールミル処理により得られた複合体粒子に次のような方法で炭素被覆を行った。フルフリルアルコール3.0gとエタノール3.5gと水0.125gの混合液に複合体粒子を3g加え混練した。さらにフルフリルアルコールの重合触媒となる希塩酸を0.2g加え室温で放置して被覆された複合体粒子(焼結前の複合体粒子として、炭素質物中にシリコン酸化物0.3μm〜2μm直径の微小粒子が分散され、さらにこの微小粒子中にシリコン5nm〜15nm直径の超微小粒子が分散されている)を得た。
得られた炭素被覆複合体を1000℃で3h、Arガス中にて焼成し、室温まで冷却後、粉砕し30μm径のふるいをかけて負極活物質(焼結後の複合体粒子表面に被覆層としてのハードカーボン(2800℃〜3000℃で焼成しても黒鉛化しないカーボン)が形成されている)を得た。
実施例1において得られた活物質について、以下に説明する充放電試験、円筒型セル(図1)による充放電試験、X線回折測定、BET測定を行い、充放電特性および物性を評価した。
(充放電試験)
得られた試料に平均径6μのグラファイト30wt%、ポリフッ化ビニリデン12wt%を分散媒としてN-メチルピロリドンを用いて混練し厚さ12μmの銅箔上に塗布して圧延した後、100℃で12時間真空乾燥し試験電極とした。対極および参照極を金属Li、電解液を1MLiPFのEC・DEC(体積比1:2)溶液とした電池をアルゴン雰囲気中で作製し充放電試験を行った。充放電試験の条件は、参照極と試験電極間の電位差0.01Vまで1mA/cmの電流密度で充電、さらに0.01Vで8時間の定電圧充電を行い、放電は1mA/cmの電流密度で1.5Vまで行った。
(円筒型セルによる充放電試験)
負極としては充放電試験に使用したものと同様にして集電体の両面に活物質を塗布し圧延したものを試験電極として利用した。正極はLiNiO2を活物質、アセチレンブラックを導電剤、ポリフッ化ビニリデンを結着剤として厚み20μmのAl箔集電体に両面塗布したものを用いた。電解液には1MLiPFのEC・DEC(体積比1:2)溶液をもちいた。電極は正極・ポリプロピレン製セパレーター・負極を円筒形に捲回し、100℃で12時間真空乾燥した。次にアルゴン雰囲気中でを電解液と共に直径18mm、高さ650mm円筒形電池用のステンレス製缶に封入し円筒形電池を得た。充放電試験の条件は、初回のみ4.2Vまで200mAの電流で充電、さらに4.2Vで3時間の定電圧充電を行い充電終了後12時間放置した。放電は500mAの電流で2.7Vまで行った。2サイクル目以降は充電時、4.2Vまで1Aの電流で充電、さらに4.2Vで3時間の定電圧充電を行い、放電時は1Aで2.7Vまで放電した。この条件で5サイクルの充放電を行い、5サイクル目の放電容量を電池容量として測定した。
(X線回折測定)
得られた粉末試料について粉末X線回折測定を行い、Si(220)面のピークの半値幅を測定した。測定は株式会社マック・サイエンス社製X線回折測定装置(型式M18XHF22)を用い、以下の条件で行った。
対陰極:Cu
管電圧:50kv
管電流:300mA
走査速度:1°(2θ)/min
時定数:1sec
受光スリット:0.15mm
発散スリット:0.5°
散乱スリット:0.5°
回折パターンより、d=1.92Å(2θ=47.2°)に現れるSiの面指数(220)のピークの半値幅(°(2θ))を測定した。また、Si(220)のピークが活物質中に含有される他の物質のピークと重なりをもつ場合には、ピークを単離し半値幅を測定した。
(比表面積測定)
比表面積測定には、Nガスを用いたBET測定により行った。
表1に充放電試験における放電容量および初回充放電効率50サイクル後の放電容量維持率、粉末X線回折から得たSi(220)ピークの半値幅とBET測定による比表面積測定結果を示す。
Figure 2006092969
以下の実施例と比較例に関しても上記表1にまとめた。以下の実施例および比較例については実施例1と異なる部分のみ説明し、その他の合成および評価手順については実施例1と同様に行ったので説明を省略する。
(実施例2)
実施例1と同様な方法で複合化した一酸化珪素−炭素複合体粒子を用いて、炭素被覆処理を次のような方法で行った。
ポリスチレンを用いて炭素被覆を行った。トルエン5gに5mm大のポリスチレン粒2.25gを溶解した液に複合体粒子を3g加え混練した。得られたスラリー状の混合物を室温で放置してトルエンを蒸散させて被覆された複合体粒子を得た。これを実施例1と同条件で焼成し負極活物質を得た。
(実施例3)
実施例1と同様な方法で複合化した一酸化珪素−炭素複合体粒子を用いて、炭素被覆処理を次のような方法で行った。
セルロースを用いて炭素被覆を行った。カルボキシメチルセルロース1gを水30gに溶解し、複合体粒子3gを分散し混練した。得られたスラリーを室温で放置して水分を蒸散させて被覆された複合体粒子を得た。これを実施例1と同条件で焼成し負極活物質を得た。
(実施例4)
実施例1と同様な方法で複合化した一酸化珪素−炭素複合体粒子を用いて、炭素被覆処理を次のような方法で行った。
炭素被覆をCVDにより行った。活物質3gを横置きのAr雰囲気の管状電気炉内に設置し950℃に昇温後、ベンゼン蒸気を含むArガスを120ml/minの流量で導入した。このCVD処理を3h行い、炭素被覆複合体粒子を得た。この活物質については焼成処理は行わなかった。
(実施例5)
実施例1と同様の方法で複合化および被覆処理を行って得られた炭素被覆複合体を1300℃で1h、Arガス中にて焼成し、室温まで冷却後、粉砕し30μm径のふるいをかけて負極活物質を得た。
(実施例6)
実施例1と同様の方法で複合化および被覆処理を行って得られた炭素被覆複合体を850℃℃で4h、Arガス中にて焼成し、室温まで冷却後、粉砕し30μm径のふるいをかけて負極活物質を得た。
(比較例1)
実施例1と同様な方法で複合化した一酸化珪素−炭素複合体粒子を用いて、炭素被覆処理を行わずに焼成処理し、活物質を得た。
(比較例2)
実施例1におけるボールミル処理の原料を一酸化珪素ではなく、粒径5μmのシリコン粉末5gと平均粒径6μmの黒鉛粉末を12gとした。後の工程は実施例2と同様にフルフリルアルコールを用いて炭素被覆および焼成を行い活物質を得た。
(比較例3)
実施例1と同様の方法で複合化および被覆処理を行って得られた炭素被覆複合体を780℃で6h、Arガス中にて焼成し、室温まで冷却後、粉砕し30μm径のふるいをかけて負極活物質を得た。
(比較例4)
比較例2と同様に粒径5μmのシリコン粉末5gと平均粒径6μmの黒鉛粉末を12gを複合化した。さらにあらかじめ粉砕した石油ピッチ5gを遊星ボールミルにより複合化した。得られた炭素被覆複合体粒子を2000℃1h、Arガス中にて焼成し、室温まで冷却後、粉砕し30μm径のふるいをかけて負極活物質を得た。
本発明に係わる非水電解質二次電池の部分断面図。
符号の説明
1・・・外装体、
3・・・電極群、
4・・・正極、
5・・・セパレータ、
6・・・負極、
8・・・封口板、
9・・・正極端子。

Claims (5)

  1. 炭素質物中にシリコン及びシリコン酸化物が分散された複合体粒子と、この複合体粒子の全面を被覆する炭素質物の被覆層とを有し、粉末X線回折測定におけるSi(220)面の回折ピークの半値幅が1.5°以上、8.0°以下であることを特徴とする非水電解質二次電池用負極活物質。
  2. 前記被覆層の比表面積が0.5m2/g以上10m2/g以下であることを特徴とする請求項1に記載の非水電解質二次電池用負極活物質。
  3. 正極と、この正極に対向して形成され負極活物質を有する負極と、この負極と前記正極の間に介在する非水電解質とを具備する非水電解質二次電池において、前記負極活物質が、炭素質物中にシリコン及びシリコン酸化物が分散された複合体粒子と、この複合体粒子の全面を被覆する炭素質物の被覆層とを有し、粉末X線回折測定におけるSi(220)面の回折ピークの半値幅が1.5°以上、8.0°以下であることを特徴とする非水電解質二次電池。
  4. 前記被覆層が、ハードカーボンであることを特徴とする請求項3に記載の非水電解質二次電池。
  5. 前記被覆層の比表面積が0.5m2/g以上10m2/g以下であることを特徴とする請求項3に記載の非水電解質二次電池。


JP2004278267A 2004-09-24 2004-09-24 非水電解質二次電池用負極活物質及び非水電解質二次電池 Active JP4519592B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004278267A JP4519592B2 (ja) 2004-09-24 2004-09-24 非水電解質二次電池用負極活物質及び非水電解質二次電池
US11/175,294 US20060068287A1 (en) 2004-09-24 2005-07-07 Negative electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CNA2005101380193A CN1794494A (zh) 2004-09-24 2005-09-22 用于非水电解质二次电池的负极活性材料和非水电解质二次电池
KR1020050088938A KR20060051615A (ko) 2004-09-24 2005-09-23 비수전해질 2차 전지용 음극 활성 물질 및 비수전해질 2차전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004278267A JP4519592B2 (ja) 2004-09-24 2004-09-24 非水電解質二次電池用負極活物質及び非水電解質二次電池

Publications (2)

Publication Number Publication Date
JP2006092969A true JP2006092969A (ja) 2006-04-06
JP4519592B2 JP4519592B2 (ja) 2010-08-04

Family

ID=36099591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004278267A Active JP4519592B2 (ja) 2004-09-24 2004-09-24 非水電解質二次電池用負極活物質及び非水電解質二次電池

Country Status (4)

Country Link
US (1) US20060068287A1 (ja)
JP (1) JP4519592B2 (ja)
KR (1) KR20060051615A (ja)
CN (1) CN1794494A (ja)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192488A (ja) * 2007-02-06 2008-08-21 Nec Tokin Corp 非水電解質二次電池
JP2008198610A (ja) * 2007-02-14 2008-08-28 Samsung Sdi Co Ltd 負極活物質、その製造方法及びそれを採用した負極とリチウム電池
JP2009164130A (ja) * 2008-01-08 2009-07-23 Samsung Sdi Co Ltd 電極組立体及びそれを含むリチウム二次電池
JP2010501970A (ja) * 2006-08-22 2010-01-21 ビーティーアール・ニュー・エナジー・マテリアルズ・インク リチウムイオン電池の珪素・炭素複合陰極材料及びその製造方法
WO2010074243A1 (ja) * 2008-12-26 2010-07-01 積水化学工業株式会社 電極用炭素粒子の製造方法、電極用炭素粒子及びリチウムイオン二次電池用負極材料
JP2011090869A (ja) * 2009-10-22 2011-05-06 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材料、非水電解質二次電池用負極材の製造方法並びに非水電解質二次電池用負極及び非水電解質二次電池
WO2011135649A1 (ja) * 2010-04-26 2011-11-03 トヨタ自動車株式会社 電極活物質の製造方法
JP2011222151A (ja) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
JP2011222153A (ja) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
JP2012051870A (ja) * 2010-08-02 2012-03-15 Asahi Organic Chemicals Industry Co Ltd 経口投与用吸着剤及びその製造方法並びにそれを用いた薬剤
JP2013051216A (ja) * 2012-12-10 2013-03-14 Nec Energy Devices Ltd 非水電解質二次電池
JP2013073764A (ja) * 2011-09-27 2013-04-22 Toshiba Corp 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用負極活物質の製造方法
JP2013125662A (ja) * 2011-12-15 2013-06-24 Sanyo Electric Co Ltd 非水電解質二次電池用負極及びその製造方法
WO2013099267A1 (ja) * 2011-12-29 2013-07-04 パナソニック株式会社 非水電解質二次電池
WO2013099280A1 (ja) * 2011-12-29 2013-07-04 パナソニック株式会社 非水電解質二次電池
WO2013183525A1 (ja) * 2012-06-04 2013-12-12 日本電気株式会社 リチウムイオン二次電池
WO2014069117A1 (ja) * 2012-10-30 2014-05-08 日立マクセル株式会社 非水二次電池用負極活物質および非水二次電池
JP2014199827A (ja) * 2014-08-01 2014-10-23 Necエナジーデバイス株式会社 二次電池およびその製造方法
JP2015011870A (ja) * 2013-06-28 2015-01-19 Jsr株式会社 電極活物質、電極及び蓄電デバイス
JP2015115138A (ja) * 2013-12-10 2015-06-22 三星精密化学株式会社Samsung Fine Chemicals Co., Ltd. リチウムイオン(lithiumion)二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、リチウムイオン二次電池、及びリチウムイオン二次電池の充電方法
WO2015098024A1 (ja) * 2013-12-25 2015-07-02 三洋電機株式会社 非水電解質二次電池用負極活物質及びその負極活物質を用いた非水電解質二次電池
JP2015532514A (ja) * 2012-10-22 2015-11-09 ハイドロ−ケベック リチウム−イオン二次電池のための電極材料を製造する方法およびその電極材料を使用するリチウム−イオン電池
JPWO2013168727A1 (ja) * 2012-05-09 2016-01-07 信越化学工業株式会社 リチウムのプリドープ方法、リチウムプリドープ電極、及び蓄電デバイス
KR20160012152A (ko) * 2013-05-23 2016-02-02 신에쓰 가가꾸 고교 가부시끼가이샤 비수전해질 이차전지용 부극재 및 이차전지
JP2016506029A (ja) * 2013-10-31 2016-02-25 エルジー・ケム・リミテッド リチウム二次電池用負極活物質及びその製造方法
WO2016035274A1 (ja) * 2014-09-01 2016-03-10 三洋電機株式会社 非水電解質二次電池用負極活物質
JP2016100179A (ja) * 2014-11-20 2016-05-30 三星電子株式会社Samsung Electronics Co.,Ltd. リチウムイオン(lithiumion)二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、リチウムイオン二次電池、及びリチウムイオン二次電池の充電方法
JP2016100178A (ja) * 2014-11-20 2016-05-30 三星電子株式会社Samsung Electronics Co.,Ltd. リチウムイオン(lithiumion)二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、リチウムイオン二次電池、及びリチウムイオン二次電池の充電方法
JP2017088437A (ja) * 2015-11-06 2017-05-25 国立大学法人 新潟大学 黒鉛被覆珪素複合体の製造方法
JP2019506701A (ja) * 2015-12-18 2019-03-07 ノルウェージャン ユニバーシティ オブ サイエンス アンド テクノロジー(エヌティーエヌユー) 珪藻被殻を含むアノード
US10312544B2 (en) 2010-03-26 2019-06-04 Toyota Jidosha Kabushiki Kaisha Method for manufacturing electrode active material
US10374219B2 (en) 2011-06-10 2019-08-06 Nec Corporation Lithium ion secondary battery
JP2021108245A (ja) * 2019-12-27 2021-07-29 リグナイト株式会社 リチウムイオン二次電池用負極材料の製造方法、リチウムイオン二次電池用負極層の製造方法及びリチウムイオン二次電池の製造方法

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119176A (ja) * 2002-09-26 2004-04-15 Toshiba Corp 非水電解質二次電池用負極活物質及び非水電解質二次電池
US20050048369A1 (en) * 2003-08-28 2005-03-03 Matsushita Electric Industrial Co., Ltd. Negative electrode for non-aqueous electrolyte secondary battery, production method thereof and non-aqueous electrolyte secondary battery
JP4321584B2 (ja) * 2006-12-18 2009-08-26 ソニー株式会社 二次電池用負極および二次電池
KR100903503B1 (ko) * 2007-11-02 2009-06-17 삼성에스디아이 주식회사 음극활물질, 그 제조방법 및 그 음극활물질을 구비한 리튬이차전지
KR100898293B1 (ko) * 2007-11-27 2009-05-18 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이의 제조 방법
KR101502897B1 (ko) * 2007-12-28 2015-03-17 삼성에스디아이 주식회사 음극 활물질용 복합물, 이를 포함하는 음극 활물질 및 리튬전지
KR20110005807A (ko) * 2008-03-24 2011-01-19 쓰리엠 이노베이티브 프로퍼티즈 컴파니 고전압 캐쏘드 조성물
KR101002539B1 (ko) * 2008-04-29 2010-12-17 삼성에스디아이 주식회사 리튬이차전지용 음극활물질 및 이를 포함하는 리튬이차전지
JP5503858B2 (ja) * 2008-09-22 2014-05-28 株式会社東芝 非水電解質電池用負極活物質及び非水電解質電池
JP5438299B2 (ja) * 2008-10-14 2014-03-12 株式会社東芝 非水電解質電池および電池パック
KR101030041B1 (ko) 2009-05-07 2011-04-20 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
JP5310251B2 (ja) * 2009-05-18 2013-10-09 信越化学工業株式会社 非水電解質二次電池用負極材の製造方法
WO2011039891A1 (ja) * 2009-10-02 2011-04-07 トヨタ自動車株式会社 リチウム二次電池及び該電池用正極
US20170040598A1 (en) 2015-08-07 2017-02-09 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US9553303B2 (en) * 2010-01-18 2017-01-24 Enevate Corporation Silicon particles for battery electrodes
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
KR101107079B1 (ko) * 2010-05-06 2012-01-20 삼성에스디아이 주식회사 에너지 저장 장치용 음극 및 이를 포함하는 에너지 저장 장치
WO2011158459A1 (ja) * 2010-06-14 2011-12-22 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
CN103003986A (zh) * 2010-07-20 2013-03-27 株式会社大阪钛技术 锂离子二次电池负极材料用粉末、锂离子二次电池负极及电容器负极、以及锂离子二次电池及电容器
WO2012049826A1 (ja) * 2010-10-15 2012-04-19 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、リチウムイオン二次電池負極およびキャパシタ負極、ならびに、リチウムイオン二次電池およびキャパシタ
US20130260245A1 (en) 2010-12-17 2013-10-03 Sumitomo Osaka Cement Co., Ltd. Electrode material and method for producing the same
JP5844048B2 (ja) * 2011-02-01 2016-01-13 三洋電機株式会社 非水電解質二次電池
CN103443991B (zh) * 2011-03-28 2015-12-16 日本电气株式会社 二次电池和电解液
US9005823B2 (en) 2011-05-04 2015-04-14 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
KR101342600B1 (ko) 2011-05-11 2013-12-17 삼성에스디아이 주식회사 음극 활물질, 그의 제조방법 및 이를 포함하는 리튬 전지
US11502326B2 (en) 2011-09-21 2022-11-15 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
JP5621740B2 (ja) * 2011-09-22 2014-11-12 住友大阪セメント株式会社 電極材料及び電極並びに電極材料の製造方法
KR101772113B1 (ko) 2011-11-08 2017-08-29 삼성에스디아이 주식회사 음극 활물질, 그 제조방법, 이를 포함하는 전극 및 이를 채용한 리튬 전지
EP2806488A4 (en) * 2012-02-28 2015-10-28 Lg Chemical Ltd ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND METHOD OF MANUFACTURING THE SAME
KR20140137399A (ko) * 2012-03-02 2014-12-02 코넬 유니버시티 실리콘 나노합성물 나노섬유들
WO2013136488A1 (ja) 2012-03-15 2013-09-19 株式会社 東芝 固体電解質二次電池用電極、固体電解質二次電池および電池パック
WO2013145108A1 (ja) 2012-03-26 2013-10-03 株式会社 東芝 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用負極活物質の製造方法
KR101501804B1 (ko) * 2012-04-19 2015-03-12 주식회사 엘지화학 규소계 음극 활물질 및 이를 포함하는 이차전지
JP5686441B2 (ja) * 2012-04-19 2015-03-18 エルジー・ケム・リミテッド ケイ素系正極活物質及びこれを含む二次電池
US9512523B2 (en) 2012-04-19 2016-12-06 Lg Chem, Ltd. Porous electrode active material and secondary battery including the same
US20130344391A1 (en) * 2012-06-18 2013-12-26 Sila Nanotechnologies Inc. Multi-shell structures and fabrication methods for battery active materials with expansion properties
JP2014002890A (ja) 2012-06-18 2014-01-09 Toshiba Corp 非水電解質二次電池用負極材料、非水電解質二次電池用負極活物質、非水電解質二次電池用負極、非水電解質二次電池、及び電池パック
KR101578262B1 (ko) * 2012-07-24 2015-12-28 주식회사 엘지화학 다공성 규소계 전극 활물질 및 이를 포함하는 이차전지
KR101634843B1 (ko) * 2012-07-26 2016-06-29 주식회사 엘지화학 이차전지용 전극 활물질
CN103208615B (zh) * 2012-10-25 2014-06-04 郴州杉杉新材料有限公司 一种硅碳复合材料及其制备方法和用途
WO2014084611A1 (ko) * 2012-11-30 2014-06-05 주식회사 엘지화학 복합체 및 이를 포함하는 음극 슬러리의 제조방법
US9806335B2 (en) 2012-11-30 2017-10-31 Lg Chem, Ltd. Composite including conductive material and binder on surface of (semi) metal oxide and method of preparing anode slurry including the same
KR101610995B1 (ko) * 2012-11-30 2016-04-08 주식회사 엘지화학 규소계 복합체 및 이의 제조방법
US9590238B2 (en) 2012-11-30 2017-03-07 Lg Chem, Ltd. Composite for anode active material and method of preparing the same
IN2014MN02637A (ja) * 2012-12-06 2015-10-16 Lg Chemical Ltd
WO2014097819A1 (ja) * 2012-12-17 2014-06-26 日本電気株式会社 リチウムイオン二次電池用負極材及びその評価方法
JP6499083B2 (ja) * 2012-12-20 2019-04-10 ユミコア 再充電可能電池用の負極材料およびその製造方法
US9705128B2 (en) * 2012-12-20 2017-07-11 Umicore Negative electrode material for a rechargeable battery and method for producing the same
JP2014179291A (ja) 2013-03-15 2014-09-25 Sumitomo Osaka Cement Co Ltd 電極材料及び電極並びにリチウムイオン電池
CN103165862B (zh) * 2013-03-22 2015-10-21 浙江瓦力新能源科技有限公司 一种高性能锂离子电池负极材料及其制备方法
JP6100610B2 (ja) * 2013-05-27 2017-03-22 信越化学工業株式会社 負極活物質及び非水電解質二次電池並びにそれらの製造方法
CN103326023A (zh) * 2013-06-07 2013-09-25 浙江瓦力新能源科技有限公司 一种高性能锂离子电池硅碳负极材料及其制备方法
JP6508870B2 (ja) * 2013-08-14 2019-05-08 東ソー株式会社 リチウム二次電池用複合活物質およびその製造方法
JP2015072809A (ja) * 2013-10-03 2015-04-16 信越化学工業株式会社 珪素含有材料並びに非水電解質二次電池用負極及び非水電解質二次電池並びにそれらの製造方法
CN103715412A (zh) * 2013-12-18 2014-04-09 江苏科捷锂电池有限公司 高电压锂电池正极材料镍钴锰酸锂的制备方法
JP6065848B2 (ja) 2014-01-07 2017-01-25 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
WO2016009590A1 (ja) * 2014-07-15 2016-01-21 信越化学工業株式会社 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
CN104577084A (zh) 2015-01-20 2015-04-29 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用纳米硅复合负极材料、制备方法及锂离子电池
JP6500578B2 (ja) * 2015-04-27 2019-04-17 株式会社デンソー 非水電解質二次電池用電極活物質及びその製造方法、並びに非水電解質二次電池
KR20160150577A (ko) * 2015-06-22 2016-12-30 일진전기 주식회사 이차전지용 음극활물질 및 이를 포함한 이차전지
CN107710467B (zh) * 2015-07-02 2021-07-09 昭和电工株式会社 锂离子电池用负极材料和其用途
JP6636758B2 (ja) * 2015-09-16 2020-01-29 株式会社東芝 電池用活物質、電極、非水電解質電池、電池パック及び車
JP6433442B2 (ja) * 2016-01-04 2018-12-05 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池、並びに非水電解質二次電池用負極活物質の製造方法
TW201824621A (zh) * 2016-09-09 2018-07-01 日商昭和電工股份有限公司 鋰離子二次電池用負極材料
CN109716563B (zh) * 2016-09-19 2022-02-11 优美科公司 可再充电电化学电池和电池组
PL3471177T3 (pl) * 2016-12-23 2021-10-04 Lg Chem, Ltd. Materiał czynny elektrody ujemnej i zawierająca go elektroda ujemna
KR102307911B1 (ko) * 2017-04-27 2021-10-01 삼성에스디아이 주식회사 리튬이차전지용 음극 활물질 및 이를 포함하는 음극을 구비한 리튬이차전지
CN107565115B (zh) * 2017-08-30 2020-10-30 北方奥钛纳米技术有限公司 硅碳负极材料的制备方法、硅碳负极材料以及锂离子电池
EP3721489A1 (en) 2017-12-07 2020-10-14 Enevate Corporation Composite comprising silicon carbide and carbon particles
US11063253B2 (en) 2018-11-30 2021-07-13 National Cheng Kung University Composite particle for electrode
US10879530B2 (en) * 2018-12-13 2020-12-29 National Chung-Shan Institute Of Science And Technology Anode material of nano-silicon having multilayer-graphene as carrier and coated with silicon suboxide and with amorphous carbon layer and method for fabricating the same
US20220069280A1 (en) * 2020-08-28 2022-03-03 GM Global Technology Operations LLC Composite electrode materials and methods of making the same
US20230163309A1 (en) 2021-11-22 2023-05-25 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same
CN117727916A (zh) * 2024-02-07 2024-03-19 长沙矿冶研究院有限责任公司 一种含有碳化硅涂层的硅氧碳复合材料及其制备方法、应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268879A (ja) * 1999-03-18 2000-09-29 Hitachi Ltd リチウム二次電池
JP2002255530A (ja) * 2001-03-02 2002-09-11 Samsung Sdi Co Ltd 炭素質材料及びリチウム二次電池及び炭素質材料の製造方法
JP2003303588A (ja) * 2002-02-07 2003-10-24 Hitachi Maxell Ltd 電極材料およびその製造方法、並びに非水二次電池用負極および非水二次電池
JP2004071542A (ja) * 2002-06-14 2004-03-04 Japan Storage Battery Co Ltd 負極活物質、それを用いた負極、それを用いた非水電解質電池、ならびに負極活物質の製造方法
JP2004119176A (ja) * 2002-09-26 2004-04-15 Toshiba Corp 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP2004139886A (ja) * 2002-10-18 2004-05-13 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2004259485A (ja) * 2003-02-24 2004-09-16 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2004349057A (ja) * 2003-05-21 2004-12-09 Japan Storage Battery Co Ltd 非水電解質電池
JP2005025991A (ja) * 2003-06-30 2005-01-27 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2005243431A (ja) * 2004-02-26 2005-09-08 Japan Storage Battery Co Ltd 非水電解質二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243396A (ja) * 1999-02-23 2000-09-08 Hitachi Ltd リチウム二次電池とその製造方法及びその負極材並びに電気機器
KR100315232B1 (ko) * 1999-02-24 2001-11-26 김순택 리튬 이차 전지용 음극 활물질 및 그 제조 방법
KR100595896B1 (ko) * 2003-07-29 2006-07-03 주식회사 엘지화학 리튬 이차 전지용 음극 활물질 및 그의 제조 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268879A (ja) * 1999-03-18 2000-09-29 Hitachi Ltd リチウム二次電池
JP2002255530A (ja) * 2001-03-02 2002-09-11 Samsung Sdi Co Ltd 炭素質材料及びリチウム二次電池及び炭素質材料の製造方法
JP2003303588A (ja) * 2002-02-07 2003-10-24 Hitachi Maxell Ltd 電極材料およびその製造方法、並びに非水二次電池用負極および非水二次電池
JP2004071542A (ja) * 2002-06-14 2004-03-04 Japan Storage Battery Co Ltd 負極活物質、それを用いた負極、それを用いた非水電解質電池、ならびに負極活物質の製造方法
JP2004119176A (ja) * 2002-09-26 2004-04-15 Toshiba Corp 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP2004139886A (ja) * 2002-10-18 2004-05-13 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2004259485A (ja) * 2003-02-24 2004-09-16 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2004349057A (ja) * 2003-05-21 2004-12-09 Japan Storage Battery Co Ltd 非水電解質電池
JP2005025991A (ja) * 2003-06-30 2005-01-27 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2005243431A (ja) * 2004-02-26 2005-09-08 Japan Storage Battery Co Ltd 非水電解質二次電池

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501970A (ja) * 2006-08-22 2010-01-21 ビーティーアール・ニュー・エナジー・マテリアルズ・インク リチウムイオン電池の珪素・炭素複合陰極材料及びその製造方法
JP2008192488A (ja) * 2007-02-06 2008-08-21 Nec Tokin Corp 非水電解質二次電池
JP2008198610A (ja) * 2007-02-14 2008-08-28 Samsung Sdi Co Ltd 負極活物質、その製造方法及びそれを採用した負極とリチウム電池
JP2009164130A (ja) * 2008-01-08 2009-07-23 Samsung Sdi Co Ltd 電極組立体及びそれを含むリチウム二次電池
WO2010074243A1 (ja) * 2008-12-26 2010-07-01 積水化学工業株式会社 電極用炭素粒子の製造方法、電極用炭素粒子及びリチウムイオン二次電池用負極材料
JP2011090869A (ja) * 2009-10-22 2011-05-06 Shin-Etsu Chemical Co Ltd 非水電解質二次電池用負極材料、非水電解質二次電池用負極材の製造方法並びに非水電解質二次電池用負極及び非水電解質二次電池
US10312544B2 (en) 2010-03-26 2019-06-04 Toyota Jidosha Kabushiki Kaisha Method for manufacturing electrode active material
JP2011222153A (ja) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
JP2011222151A (ja) * 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池
JP5445878B2 (ja) * 2010-04-26 2014-03-19 トヨタ自動車株式会社 電極活物質の製造方法
WO2011135649A1 (ja) * 2010-04-26 2011-11-03 トヨタ自動車株式会社 電極活物質の製造方法
JP2012051870A (ja) * 2010-08-02 2012-03-15 Asahi Organic Chemicals Industry Co Ltd 経口投与用吸着剤及びその製造方法並びにそれを用いた薬剤
US10374219B2 (en) 2011-06-10 2019-08-06 Nec Corporation Lithium ion secondary battery
JP2013073764A (ja) * 2011-09-27 2013-04-22 Toshiba Corp 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用負極活物質の製造方法
US8835047B2 (en) 2011-09-27 2014-09-16 Kabushiki Kaisha Toshiba Negative electrode active material for non-aqueous electrolyte secondary battery cell, non-aqueous electrolyte secondary battery cell, battery pack and method for manufacturing the negative electrode active material for non-aqueous electrolyte secondary battery cell
JP2013125662A (ja) * 2011-12-15 2013-06-24 Sanyo Electric Co Ltd 非水電解質二次電池用負極及びその製造方法
WO2013099280A1 (ja) * 2011-12-29 2013-07-04 パナソニック株式会社 非水電解質二次電池
WO2013099267A1 (ja) * 2011-12-29 2013-07-04 パナソニック株式会社 非水電解質二次電池
JP2016189331A (ja) * 2012-05-09 2016-11-04 信越化学工業株式会社 蓄電デバイス用電極の製造方法
JPWO2013168727A1 (ja) * 2012-05-09 2016-01-07 信越化学工業株式会社 リチウムのプリドープ方法、リチウムプリドープ電極、及び蓄電デバイス
WO2013183525A1 (ja) * 2012-06-04 2013-12-12 日本電気株式会社 リチウムイオン二次電池
US11545668B2 (en) 2012-10-22 2023-01-03 Hydro-Quebec Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
JP2015532514A (ja) * 2012-10-22 2015-11-09 ハイドロ−ケベック リチウム−イオン二次電池のための電極材料を製造する方法およびその電極材料を使用するリチウム−イオン電池
WO2014069117A1 (ja) * 2012-10-30 2014-05-08 日立マクセル株式会社 非水二次電池用負極活物質および非水二次電池
JP2013051216A (ja) * 2012-12-10 2013-03-14 Nec Energy Devices Ltd 非水電解質二次電池
KR102084496B1 (ko) 2013-05-23 2020-03-04 신에쓰 가가꾸 고교 가부시끼가이샤 비수전해질 이차전지용 부극재 및 이차전지
KR20160012152A (ko) * 2013-05-23 2016-02-02 신에쓰 가가꾸 고교 가부시끼가이샤 비수전해질 이차전지용 부극재 및 이차전지
JP2015011870A (ja) * 2013-06-28 2015-01-19 Jsr株式会社 電極活物質、電極及び蓄電デバイス
JP2016506029A (ja) * 2013-10-31 2016-02-25 エルジー・ケム・リミテッド リチウム二次電池用負極活物質及びその製造方法
US10355272B2 (en) 2013-10-31 2019-07-16 Lg Chem, Ltd. Anode active material for lithium secondary battery and method of preparing the same
JP2015115138A (ja) * 2013-12-10 2015-06-22 三星精密化学株式会社Samsung Fine Chemicals Co., Ltd. リチウムイオン(lithiumion)二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、リチウムイオン二次電池、及びリチウムイオン二次電池の充電方法
WO2015098024A1 (ja) * 2013-12-25 2015-07-02 三洋電機株式会社 非水電解質二次電池用負極活物質及びその負極活物質を用いた非水電解質二次電池
JPWO2015098024A1 (ja) * 2013-12-25 2017-03-23 三洋電機株式会社 非水電解質二次電池用負極活物質及びその負極活物質を用いた非水電解質二次電池
JP2014199827A (ja) * 2014-08-01 2014-10-23 Necエナジーデバイス株式会社 二次電池およびその製造方法
CN106797025B (zh) * 2014-09-01 2019-06-18 三洋电机株式会社 非水电解质二次电池用负极活性物质
US10062903B2 (en) 2014-09-01 2018-08-28 Sanyo Electric Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary battery
JPWO2016035274A1 (ja) * 2014-09-01 2017-06-15 三洋電機株式会社 非水電解質二次電池用負極活物質
WO2016035274A1 (ja) * 2014-09-01 2016-03-10 三洋電機株式会社 非水電解質二次電池用負極活物質
US10741833B2 (en) 2014-09-01 2020-08-11 Sanyo Electric Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary battery
CN106797025A (zh) * 2014-09-01 2017-05-31 三洋电机株式会社 非水电解质二次电池用负极活性物质
JP2016100178A (ja) * 2014-11-20 2016-05-30 三星電子株式会社Samsung Electronics Co.,Ltd. リチウムイオン(lithiumion)二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、リチウムイオン二次電池、及びリチウムイオン二次電池の充電方法
JP2016100179A (ja) * 2014-11-20 2016-05-30 三星電子株式会社Samsung Electronics Co.,Ltd. リチウムイオン(lithiumion)二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、リチウムイオン二次電池、及びリチウムイオン二次電池の充電方法
JP2017088437A (ja) * 2015-11-06 2017-05-25 国立大学法人 新潟大学 黒鉛被覆珪素複合体の製造方法
JP2019506701A (ja) * 2015-12-18 2019-03-07 ノルウェージャン ユニバーシティ オブ サイエンス アンド テクノロジー(エヌティーエヌユー) 珪藻被殻を含むアノード
JP2021108245A (ja) * 2019-12-27 2021-07-29 リグナイト株式会社 リチウムイオン二次電池用負極材料の製造方法、リチウムイオン二次電池用負極層の製造方法及びリチウムイオン二次電池の製造方法
JP7252626B2 (ja) 2019-12-27 2023-04-05 リグナイト株式会社 リチウムイオン二次電池用負極材料の製造方法、リチウムイオン二次電池用負極層の製造方法及びリチウムイオン二次電池の製造方法

Also Published As

Publication number Publication date
CN1794494A (zh) 2006-06-28
JP4519592B2 (ja) 2010-08-04
KR20060051615A (ko) 2006-05-19
US20060068287A1 (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP4519592B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池
JP5329858B2 (ja) 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質
JP5503858B2 (ja) 非水電解質電池用負極活物質及び非水電解質電池
TWI697148B (zh) 非水電解質二次電池用負極活性物質及非水電解質二次電池、以及非水電解質二次電池用負極材料之製造方法
US7303838B2 (en) Negative electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5851541B2 (ja) 非水電解質電池
JP5636351B2 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用負極活物質の製造方法
JP5235282B2 (ja) 非水電解質二次電池用正極活物質及び電池
JP5172564B2 (ja) 非水電解質二次電池
JP5060010B2 (ja) 非水電解質二次電池
JP5601536B2 (ja) 非水電解質二次電池
US20090191458A1 (en) Porous network negative electrodes for non-aqueous electrolyte secondary battery
CN111668473A (zh) 非水电解质二次电池
CN111370695B (zh) 负极活性材料及使用其的电化学装置和电子装置
JP5992198B2 (ja) 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質
JPH103920A (ja) リチウム二次電池及びその製造方法
KR20170036637A (ko) 리튬 이차전지용 음극활물질 및 그 제조방법
JPH10189044A (ja) 非水電解液二次電池
JP2013127860A (ja) 非水電解質二次電池用の負極とその製造方法、及び非水電解質二次電池
KR102250897B1 (ko) 리튬 이차전지용 음극 활물질, 이를 포함하는 음극 및 상기 음극을 포함하는 리튬 이온 이차 전지
WO2015140984A1 (ja) 非水電解質電池用電極、非水電解質二次電池及び電池パック
JP2023505134A (ja) 二次電池、当該二次電池を含む電池モジュール、電池パック及び装置
JPH09245830A (ja) 非水電解液二次電池
JPH10312807A (ja) リチウム二次電池及び負極の製造方法
KR20190091001A (ko) 리튬 이차전지용 음극 활물질, 이를 포함하는 음극 및 상기 음극을 포함하는 리튬 이온 이차 전지

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4519592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4