DESCRIPCIÓN
Forma de dosificación resistente a la manipulación para opioides sensibles a la oxidación
La invención se refiere a una forma de dosificación farmacéutica que contiene un opiopide con una estabilidad de almacenamiento mejorada.
Muchos compuestos farmacológicamente activos son de potencial abuso y, por ello, se proporcionan ventajosamente como formas de dosificación farmacéutica resistentes a la manipulación. Son ejemplos principales de dichos compuestos farmacológicamente activos los opioides.
Es conocido que los abusadores trituran las tabletas convencionales, que contienen opiáceos, para romper el “microencapsulado” de liberación retardada y después ingerir los polvos obtenidos vía oral, intranasal, rectal o por inyección.
Se han desarrollado diversos conceptos para evitar el abuso de fármacos. Un concepto se basa en las propiedades mecánicas de las formas de dosificación farmacéutica, particularmente en una mayor resistencia a la rotura (resistencia a la trituración). La ventaja principal de estas formas de dosificación farmacéutica es que la trituración, en particular la pulverización, por medios convencionales, tal como molienda en mortero o fracturación con un martillo, resulta imposible o al menos se ve esencialmente impedida.
Dichas formas de dosificación farmacéutica resultan útiles para evitar el abuso de fármacos del compuesto farmacológicamente activo contenido en las mismas, ya que no pueden pulverizarse por medios convencionales y, por ello, no pueden administrarse en forma de polvos, por ejemplo nasalmente. Las propiedades mecánicas, en particular la elevada resistencia a la rotura de estas formas de dosificación farmacéutica las convierte en resistentes a la manipulación. En el contexto de estas formas de dosificación farmacéutica resistentes a la manipulación se puede hacer referencia a las patentes WO n° 2005/016313, n° 2005/016314, n° 2005/063214, n° 2005/102286, n° 2006/002883, n° 2006/002884, n° 2006/002886, n° 2006/082097, n° 2006/082099 y n° 2008/107149.
Un problema de la fabricación de formas de dosificación farmacéutica que contienen opiáceos, tales como oximorfona, hidromorfona e oxicodona, es su sensibilidad frente a la degradación oxidativa y la descomposición. La oxidación puede estar causada por oxígeno molecular o por radicales o peróxidos generados por compuestos que entran en estrecha proximidad con dichos opiáceos sensibles a la oxidación. Los excipientes farmacéuticos como tales, por ejemplo los polietilenglicoles, pueden provocar o catalizar la degradación oxidativa, por ejemplo durante el procedimiento de preparación de las formas de dosificación farmacéutica. Además, el oxígeno molecular puede generar dichos radicales o peróxidos.
Típicamente, la descomposición se controla mediante ensayos de estabilidad de almacenamiento estándares, por ejemplo bajo condiciones de almacenamiento aceleradas, tales como 40°C/75% de humedad relativa. Bajo estas condiciones, la degradación y descomposición se producen más rápidamente que bajo las condiciones ambientales. Las autoridades de aprobación de fármacos, como la CHMP y FDA, y las uniones de armonización internacional, como ICH, tienen umbrales estándares fijados de estabilidad de almacenamiento que deben cumplirse para conseguir la aprobación de una forma de dosificación farmacéutica.
Surgen problemas particulares cuando el opiáceo sensible a la oxidación requiere una exposición a temperaturas elevadas durante el procedimiento de fabricación, tal como extrusión por fusión en caliente, recubrimiento con película y similares. Bajo estas condiciones, los opiáceos son incluso más sensibles a la oxidación. Por ejemplo, varios procedimientos conocidos de preparación de formas de dosificación farmacéutica que tienen una resistencia a la rotura incrementada requieren que una composición farmacéutica que contiene el ingrediente activo sea sometida a una presión específica a una temperatura elevada determinada durante un periodo de tiempo especifico. Dependiendo de los constituyentes de la composición farmacéutica y de su cantidad, la temperatura, presión y tiempo pueden modificarse dentro de determinados límites. Sin embargo, si no se satisfacen los requisitos mínimos, la resistencia a la rotura de la forma de dosificación farmacéutica resultante se ve excesivamente reducida.
En consecuencia, ciertos procedimientos convencionales para preparar formas de dosificación farmacéutica, particularmente formas de dosificación farmacéutica que presentan una resistencia a la rotura incrementada, requieren condiciones de procedimiento comparativamente exigentes y, por ello, hasta el momento no resultan aplicables a los opiáceos sensibles a la oxidación. En particular, la ruptura de cadena de excipientes farmacéuticos tales como el óxido de polietileno durante la extrusión por fusión en caliente conlleva el riesgo de que se formen radicales libres, incrementando así adicionalmente el estrés oxidativo.
Con frecuencia, dosis más bajas de opiáceos sensibles a la oxidación muestran un porcentaje más alto de degradación y descomposición oxidativas que dosis más altas. Así, con referencia a la estabilidad de almacenamiento, las formas de
dosificación farmacéutica que contienen dosis más bajas de opiáceos sensibles a la oxidación requieren atención particular.
El efecto de los mecanismos de oxidación y de las interacciones químicas sobre la estabilidad de los sistemas poliméricos para el A9-tetrahidrocanabinol amorfo (un no opiáceo) producido mediante un método de fusión en caliente se describe en M. Munjal y col., J. Pharm. Sciences 95(11): 2473-85, 2006. El estudio ha demostrado para este fármaco altamente inestable la naturaleza compleja de las interacciones, incluyendo la compatibilidad fármaco-excipiente, la utilización de antioxidantes, la reticulación de matrices poliméricas, el pH microambiental y el efecto de la humedad.
K. C. Waterman y col., Pharm. Develop. Tech. 7(1):1-32, 2002, revisan la estabilización de los farmacéuticos frente a la degradación oxidativa. Se recomiendan diversos métodos para reducir la oxidación. Los autores concluyen que, finalmente, cada fármaco presenta una situación única.
La WO 2008/107149 describe formas de dosificación oral que tienen una resistencia a la rotura incrementada que pueden contener estabilizadores redox, tales como agentes acomplejantes, por ejemplo EDTA.
La WO 2008/086804 se refiere a composiciones de liberación controlada que contienen una composición de matriz que comprende:a) un polímero o una mezcla de polímeros, b) una sustancia farmacológica activa y opcionalmente c) uno o más excipientes farmacéuticamente aceptables, es decir, sin liberación rápida de la dosis inducida por alcohol, y tienen propiedades excelentes con respecto a la prevención del abuso de fármacos. Preferentemente, la composición es resistente al aislamiento y/o a la disolución de la sustancia farmacológica activa de la composición mediante trituración, fusión y/o extracción con etanol, de manera que la composición es resistente al abuso de fármacos. Puede estar presente ácido cítrico como agente saborizante. El Ejemplo 2 se refiere a una composición que contiene un 7% en peso de ácido cítrico.
La WO 2008/148798 describe una composición en capas de liberación extendida para un efecto prolongado y un modo de garantizar el efecto prolongado, por ejemplo la administración de una vez al día, es garantizar la absorción óptima de la sustancia activa en el tracto gastrointestinal, es decir del estómago al recto.
No existe un concepto general que suprima con éxito la degradación oxidativa de los fármacos sensibles a la oxidación en las formas de dosificación farmacéutica. Los complejos mecanismos individuales de oxidación que resultan relevantes para un fármaco particular, así como la pluralidad de posibles factores que influyenen los procesos de oxidación requieren investigaciones extensas en cada caso particular considerando las circunstancias particulares.
Es también conocido que el resto de los ingredientes de las formas de dosificación farmacéutica pueden mostrar problemas de estabilidad al exponerse a las exigentes condiciones del procedimiento. Por ejemplo, el óxido de polietileno de alto peso molecular tiene a degradarse con la extrusión por fusión en caliente. Sin embargo, la degradación del polímero puede resultar en un perfil de liberación no controlado, particularmente cuando el ingrediente activo está incluido en una matriz de óxido de polietileno, y ésta puede ser otra causa de degradación oxidativa de los ingredientes activos debido a radicales. Al añadir excipientes adecuados con el fin de estabilizar el óxido de polietileno de alto peso molecular, tal como a-tocoferol, debe considerarse que dichos excipientes, a su vez, pueden tener un efecto perjudicial sobre la estabilidad de otros ingredientes de la dosis farmacéutica, por ejemplo del compuesto farmacológicamente activo.
Es un objeto de la presente invención proporcionar formas de dosificación farmacéutica resistentes a la manipulación que contienen opioides, en particular opioides sensibles a la oxidación, que tienen ventajas respecto a las formas de dosificación farmacéutica de la técnica anterior. Las formas de dosificación farmacéutica deberían mostrar una estabilidad de almacenamiento mejorada, de manera que puedan contener opiáceos sensibles a la oxidación incluso en dosis comparativamente reducidas. Además, debería resultar posible preparar las formas de dosificación farmacéutica por procedimientos convencionales bajo condiciones convencionales, tales como temperatura y presión elevadas (por ejemplo durante el termoformado mediante extrusión por fusión en caliente).
Este objeto se resuelve mediante el objeto de las reivindicaciones de patente.
La invención se refiere a una forma de dosificación farmacéutica termoformada que tiene una resistencia a la rotura de al menos 300 N y que comprende:
-un opioide (A),
-un ácido fisiológicamente aceptable libre (B) en una cantidad entre un 0,05 y un 1,50% en peso con respecto al peso total de la forma de dosificación farmacéutica, y
-un óxido de polialquileno (C) con un peso molecular medio en peso, Mw, de al menos 200.000 g/mol.
Sorprendentemente se ha encontrado que determinados derivados morfinano, tales como oximorfona, se degradan oxidativamente a N-óxidos (por ejemplo N-óxido de oximorfona, con frecuencia se dice en general que los N-óxidos resultan tóxicos y posiblemente cancerígenos) tras la fabricación y almacenamiento de las formas de dosificación
correspondientes, y que la formación de dichos N-óxidos y otros productos de descomposición puede suprimirse mediante la presencia de cantidades adecuadas de ácido (B) en las formas de dosificación farmacéutica según la invención.
Aunque sin pretender limitarse a una teoría, el efecto estabilizador del ácido (B) podría relacionarse con el valor pKa de los opioides sensibles a la oxidación. El valor pKa de la oximorfona es 8,3. Las formulaciones convencionales de oximorfona, que son resistentes a la manipulación debido a su mayor resistencia a la rotura, pero que no tienen la vida en almacenamiento deseada, dan un pH de aproximadamente 7,5 cuando se dispersan en agua. Bajo estas condiciones, una cantidad considerable de oximorfona está presente en forma de base libre (es decir, no protonada), que podría ser más sensible a la oxidación que la forma salina (protonada). Este concepto está también corroborado por el hecho de que, en ausencia de ácido (B), las formas de dosificación tienden a adoptar un color amarillento, mientras que la presencia de ácido (B) conduce a tabletas más blancas, por ejemplo incoloras. Así, la presencia de ácido (B) podría reducir el pH dentro de la forma de dosificación, mejorando de esta manera la resistencia del fármaco frente a la degradación oxidativa.
Sorprendentemente se ha encontrado que los excipientes farmacéuticos que se utilizan convencionalmente para mejorar la resistencia del fármaco a la degradación oxidativa, en particular determinados antioxidantes, por ejemplo a-tocoferol, pueden resultar contraproducentes y deteriorar, no mejorar, la resistencia del fármaco a la degradación oxidativa.
Además, existen evidencias experimentales de que, sorprendentemente, el ácido (B) también es capaz de estabilizar contra la degradación óxidos de polialquileno de alto peso molecular, por ejemplo los óxidos de polialquileno (C) con un peso molecular promedio en peso Mw de al menos 200.000 g/mol.
La forma de dosificación farmacéutica según la invención está termoformada, preferentemente por extrusión, aunque pueden utilizarse otros métodos de termoformado para preparar la forma de dosificación farmacéutica según la invención, tales como moldeo en prensa a temperatura elevada o calentamiento de tabletas fabricadas por compresión convencional en una primera etapa y después calentamiento por encima de la temperatura de ablandamiento del polímero de la tableta en una segunda etapa para formar tabletas duras. A este respecto, el termoformado se refiere a la formación o moldeo de una masa tras la aplicación de calor. En una realización preferente, la forma de dosificación farmacéutica se termoforma mediante extrusión por fusión en caliente.
Preferentemente, la forma de dosificación farmacéutica es una masa monolítica. La forma de dosificación farmacéutica preferentemente se prepara mediante extrusión por fusión en caliente. Las hebras extruidas por fusión preferentemente se cortan formando monolitos, que después preferentemente se conforman en tabletas. A este respecto, el término “tabletas” preferentemente no debe entenderse como formas de dosificación preparadas mediante compresión de polvos o gránulos (compresión) sino como extruidos conformados.
La forma de dosificación farmacéutica de la invención contiene, como componente (A), un opioide (A), preferentemente un opioide sensible a la oxidación (A), más preferentemente oximorfona u oxicodona. Para el propósito de esta descripción, el término opioide (A) también incluye la base libre y sales fisiológicamente aceptables de la misma.
Según el índice ATC, los opiáceos se clasifican en alcaloides naturales opiáceos, derivados de fenilpiperidina, derivados de difenilpropilamina, derivados de benzomorfano, derivados de oripavina, derivados de morfinano y otros. Ejemplos de alcaloides opiáceos naturales son morfina, opio, hidromorfona, nicomorfina, oxicodona, dihidrocodeína, diamorfina, papaveretum y codeína. Son opiáceos (A) adicionales, por ejemplo, etilmorfina, hidrocodona, oximorfona y derivados fisiológicamente aceptables de los mismos o compuestos, preferentemente sus sales y sus solvatos, preferentemente sus clorhidratos, enantiómeros, estereoisómeros, diastereómeros y racematos fisiológicamente aceptables y sus derivados fisiológicamente aceptables, preferentemente éteres, ésteres o amidas.
Entre los opioides (A) preferentes se incluyen N-(1-metil-2-piperidinetil)-N-(2-1,1-(3-dimetilamino-3-fenilpentametilen)-6-fluor-1,3,4,9-tetrahidropirano[3,4-b]indol, en particular su hemicitrato; 1,1-[3-piridil)propionamida, (1R,2R)-3-(3-dimetilamino-1-etil-2-metilpropil)fenol, (1R,2R,4S)-2-(dimetilamino)metil-4-(p-fluorobenciloxi)-1-(mmetoxifenil)ciclohexanol, (1R,2R)-3-(2-dimetilaminometil-ciclohexil)fenol, (1S,2S)-3-(3-dimetilamino-1-etil-2-metilpropil)fenol, (2R,3R)-1-dimetilamino-3-(3-metoxifenil)-2-metilpentan-3-ol, (1RS,3Rs,6RS)-6-dimetilaminometil-1-(3-metoxifenil)ciclohexano-1,3-diol, preferentemente en forma de racemato, 2-(4-isobutilfenil)propionato de 3-(2-dimetilaminometil-1-hidroxiciclohexil)fenilo, 2-(6-metoxinaftalen-2-il)propionato de 3-(2-dimetilaminometil-1-hidroxiciclohexil)fenilo, 2-(4-isobutilfenil)propionato de 3-(2-dimetilaminometil-ciclohex-1-enil)fenilo, 2-(6-metoxinaftalen-2-il)propionato de 3-(2-dimetilaminometil-ciclohex-1-enil)fenilo, 3-(2-dimetilaminometil-1-hidroxiciclohexil)fenil éster de ácido (RR-SS)-2-acetoxi-4-trifluorometilbenzoico, 3-(2-dimetilaminometil-1-hidroxiciclohexil)fenil éster de ácido (RR-SS)-2-hidroxi-4-trifluorometilbenzoico, 3-(2-dimetilaminometil-1-hidroxi-ciclohexil)fenil éster de ácido (RR-SS)-4-cloro-2-hidroxibenzoico, 3-(2-dimetilaminometil-1-hidroxiciclohexil)fenil éster de ácido (RR-SS)-2-hidroxi-4-metil-benzoico, 3-(2-dimetilaminometil-1-hidroxiciclohexil)fenil éster de ácido (RR-SS)-2-hidroxi-4-metoxibenzoico, 3-(2-dimetilaminometil-1-hidroxiciclohexil)fenil éster de ácido (RR-SS)-2-hidroxi-5-nitrobenzoico, 3-(2-dimetilaminometil-1-hidroxi-ciclohexil)fenil ester de ácido (RR-SS)-2',4'-difluor-3-hidroxibifenil-4-carboxílico, dimetilamino-3-(2-tienil)pentametilen]-1,3,4,9-tetrahidropirano[3,4-b]indol, en particular su citrato; y 1,1-[3-dimetilamino-3-(2-tienil)pentametilen]-1,3,4,9-tetrahidropirano[3,4-b]-6-fluoroindol, en particular su hemicitrato, y compuestos estereoisoméricos correspondientes, en cada caso sus derivados correspondientes, enantiómeros, estereoisómeros, diastereómeros y racematos de los mismos
y derivados fisiológicamente aceptables de los mismos, por ejemplo éteres, ésteres o amidas, y en cada caso compuestos fisiológicamente aceptables de los mismos, en particular sus sales y solvatos, por ejemplo clorhidratos.
Los opioides (A) preferentes tienen la fórmula general (I):
donde:
R1 es -H, -OH o -O-alquilo(C1-6),
R2 es -H o alquilo(C1-6),
R3 es -H u -OH y R4 es -H, o R3 y R4 son en conjunto =O, y
---- es un doble enlace opcional,
o las sales fisiológicamente aceptables de los mismos.
Opioides (A) particularmente preferentes incluyen oximorfona, oxicodona, hidromorfona y sus sales fisiológicamente aceptables.
El contenido del opioide (A) en la forma de dosificación farmacéutica no está limitado.
Preferentemente, su contenido está comprendido en el intervalo de entre 0,01% y 80% en peso, más preferentemente de entre 0,1% y 50% en peso, todavía más preferentemente de entre 1% y 25% en peso, con respecto al peso total de la forma de dosificación farmacéutica. En una realización preferente, el contenido de opioide (A) está dentro del intervalo de 7±6% en peso, más preferentemente de 7±5% en peso, todavía más preferentemente de 5±4% en peso, de 7±4% en peso o de 9±4% en peso, todavía más preferentemente de 5±3% en peso, de 7±3% en peso o de 9±3% en peso, y en particular de 5±2% en peso, de 7±2% en peso o de 9±2% en peso, basado en el peso total de la forma de dosificación farmacéutica. En otra realización preferente, el contenido en opioide (A) está dentro del intervalo 11±10% en peso, más preferentemente 11±9% en peso, todavía más preferentemente 9±6% en peso, 11±6% en peso, 13±6% en peso o 15±6% en peso, con total preferencia 11±4% en peso, 13±4% en pesoo 15±4% en peso, y en particular 11±2% en peso, 13±2% en peso o 15±2% en peso, con respecto al peso total de la forma de dosificación farmacéutica. En una realización preferente adicional, el contenido de opioide (A) está comprendido en el intervalo 20±6% en peso, más preferentemente de 20±5% en peso, todavía más preferentemente de 20±4% en peso, todavía más preferentemente de 20±3% en peso, y en particular de 20±2% en peso, con respecto al peso total de la forma de dosificación farmacéutica.
Preferentemente, la cantidad total de opioide (A) contenida en la forma de dosificación farmacéutica está en el intervalo de entre 0,01 y 200 mg, más preferentemente de entre 0,1 y 190 mg, todavía más preferentemente de entre 1,0 y 180 mg, todavía más preferentemente de entre 1,5 y 160 mg, todavía más preferentemente de entre 2,0 y 100 mg, y en particular de entre 2,5 y 80 mg.
En una realización preferente, el opioide (A) está contenido en la forma de dosificación en una cantidad de 7,5±5 mg, 10±5 mg, 20±5 mg, 30±5 mg, 40±5 mg, 50±5 mg, 60±5 mg, 70±5 mg, 80±5 mg, 90±5 mg, 100±5 mg, 110±5 mg, 120±5 mg, 130±5, 140±5 mg, 150±5 mg o 160±5 mg. En otra realización preferente, el opioide (A) está contenido en la forma de dosificación farmacéutica en una cantidad de 5±2,5 mg, 7,5±2,5 mg, 10±2,5 mg, 15±2,5 mg, 20±2,5 mg, 25±2,5 mg, 30±2,5 mg, 35±2,5 mg, 40±2,5 mg, 45±2,5 mg, 50±2,5 mg, 55±2,5 mg, 60±2,5 mg, 65±2,5 mg, 70±2,5 mg, 75±2,5 mg, 80±2,5 mg, 85±2,5 mg, 90±2,5 mg, 95±2,5 mg, 100±2,5 mg, 105±2,5 mg, 110±2,5 mg, 115±2,5 mg, 120±2,5 mg, 125±2,5 mg, 130±2,5 mg, 135±2,5 mg, 140±2,5 mg, 145±2,5 mg, 150±2,5 mg, 155±2,5 mg o 160±2,5 mg.
En una realización particularmente preferente, el opioide (A) es oximorfona, preferentemente su sal HCl, y la forma de dosificación farmacéutica está adaptada para su administración dos veces al día. En esta realización, el opioide (A) preferentemente está contenido en la forma de dosificación farmacéutica en una cantidad de entre 5 y 40 mg. En otra realización particularmente preferente, el opioide (A) es oximorfona, preferentemente su HCl, y la forma de dosificación farmacéutica está adaptada para su administración una vez al día. En esta realización, el opioide (A) preferentemente está contenido en la forma de dosificación farmacéutica en una cantidad de entre 10 y 80 mg.
En otra realización particularmente preferente, el opioide (A) es oxicodona, preferentemente su sal HCl, y la forma de dosificación farmacéutica está adaptada para su administración dos veces al día. En esta realización, el opioide (A) preferentemente está contenido en la forma de dosificación farmacéutica en una cantidad de entre 5 y 80 mg. En otra realización particularmente preferente, el opioide (A) es oxicodona, preferentemente su HCl, y la forma de dosificación farmacéutica está adaptada para su administración una vez al día. En esta realización, el opioide (A) preferentemente está contenido en la forma de dosificación farmacéutica en una cantidad de entre 10 y 320 mg.
En todavía otra realización particularmente preferente, el opioide (A) es hidromorfona, preferentemente su sal HCl, y la forma de dosificación farmacéutica está adaptada para su administración dos veces al día. En esta realización, el opioide (A) preferentemente está contenido en la forma de dosificación farmacéutica en una cantidad de entre 2 y 52 mg. En otra realización particularmente preferente, el opioide (A) es hidromorfona, preferentemente su HCl, y la forma de dosificación farmacéutica está adaptada para su administración una vez al día. En esta realización, el opioide (A) preferentemente está contenido en la forma de dosificación farmacéutica en una cantidad de entre 4 y 104 mg.
La forma de dosificación farmacéutica según la invención se caracteriza por una excelente estabilidad de almacenamiento. Preferentemente, tras el almacenamiento durante 4 semanas a 40°C y 75% de humedad relativa, el contenido de opioide (A) alcanza al menos el 98,0%, más preferentemente al menos el 98,5%, todavía más preferentemente al menos el 99,0%, todavía más preferentemente al menos el 99,2%, todavía más preferentemente al menos el 99,4% y en particular al menos el 99,6% de su contenido original antes del almacenamiento. Los métodos adecuados para medir el contenido del opioide (A) en la forma de dosificación farmacéutica son conocidos por el experto en la materia. A este respecto, se hace referencia al Eur. Ph. o al USP, especialmente análisis HPLC de fase inversa. Preferentemente, la forma de dosificación farmacéutica se almacena en recipientes cerrados, preferentemente sellados, preferentemente tal como se describe en la sección experimental, más preferentemente equipadocon un secuestrador de oxígeno, en particular un secuestrador de oxígeno que resulta eficaz incluso a una humedad relativa reducida.
La forma de dosificación farmacéutica según la invención contiene, como componente (B), un ácido fisiológicamente aceptable libre en una cantidad entre el 0,05 y el 1,50% en peso, con respecto al peso total de la forma de dosificación farmacéutica. El ácido (B) puede ser orgánico o inorgánico, líquido o sólido. Los ácidos sólidos son preferentes, en particular los ácidos cristalinos orgánicos o inorgánicos.
El ácido (B) se encuentra libre. Esto significa que los grupos funcionales ácidos del ácido (B) no son conjuntamente constituyentes de una sal del opioide (A). En caso de que el opioide (A) esté presente como sal de un ácido, por ejemplo en forma de clorhidrato, la forma de dosificación farmacéutica según la invención preferentemente contiene como componente (B) otro ácido químicamente diferente que no está presente como constituyente de la sal del opioide (A). En otras palabras, los monoácidos que forman una sal con el opioide (A) no deben considerarse ácidos libres (B) en el sentido de la presente invención. Cuando el ácido (B) tiene más de un único grupo funcional ácido (por ejemplo ácido fosfórico), el ácido (B) puede estar presente como constituyente de una sal del opioide (A), con la condición de que al menos uno de los grupos funcionales ácidos del ácido (B) no esté implicado en la formación de la sal, es decir, esté libre. Preferentemente, sin embargo, cada grupo funcional ácido, y la totalidad de los mismos, del ácido (B) no está implicado en la formación de una sal con el opioide (A). También es posible, sin embargo, que el ácido libre (B) y el ácido que forma una sal con el opioide (A) sean idénticos. Bajo esta circunstancia, el ácido (B) preferentemente está presente en exceso molar en comparación con el opioide (A).
En una realización preferente, el ácido (B) contiene al menos un grupo funcional ácido (por ejemplo CO2 H, -SO3 H, -PO3 H2 , -OH y similares) con un valor pKa comprendido en el intervalo de 2,00±1,50, más preferentemente de 2,00±1,25, todavía más preferentemente 2,00±1,00, todavía más preferentemente 2,00±0,75, todavía más preferentemente 2,00±0,50, y en particular 2,00±0,25. En otra realización preferente, el ácido (B) contiene al menos un grupo funcional ácido con un valor pKA comprendido en el intervalo de 2,25±1,50, más preferentemente de 2,25±1,25, todavía más preferentemente 2,25±1,00, todavía más preferentemente 2,25±0,75, todavía más preferentemente 2,25±0,50, y en particular 2,25±0,25. En otra realización preferente, el ácido (B) contiene al menos un grupo funcional ácido con un valor pKa comprendido en el intervalo de 2,50±1,50, más preferentemente de 2,50±1,25, todavía más preferentemente 2,50±1,00, todavía más preferentemente 2,50±0,75, todavía más preferentemente 2,50±0,50, y en particular 2,50±0,25. En otra realización preferente, el ácido (B) contiene al menos un grupo funcional ácido con un valor pKa comprendido en el intervalo de 2,75±1,50, más preferentemente de 2,75±1,25, todavía más preferentemente 2,75±1,00, todavía más preferentemente 2,75±0,75, todavía más preferentemente 2,75±0,50, y en particular 2,75±0,25. En otra realización preferente, el ácido (B) contiene al menos un grupo funcional ácido con un valor pKa comprendido en el intervalo de 3,00±1,50, más preferentemente de 3,00±1,25, todavía más preferentemente 3,00±1,00, todavía más preferentemente 3,00±0,75, todavía más preferentemente 3,00±0,50, y en particular 3,00±0,25. En todavía otra realización preferente, el ácido (B) contiene al menos un grupo funcional ácido con un valor pKa comprendido en el intervalo de 3,25±1,50, más preferentemente de 3,25±1,25, todavía más preferentemente 3,25±1,00, todavía más preferentemente 3,25±0,75, todavía más preferentemente 3,25±0,50, y en particular 3,25±0,25.
En todavía otra realización preferente, el ácido (B) contiene al menos un grupo funcional ácido con un valor pKa comprendido en el intervalo de 4,50±1,50, más preferentemente de 4,50±1,25, todavía más preferentemente 4,50±1,00, todavía más preferentemente 4,50±0,75, todavía más preferentemente 4,50±0,50, y en particular 4,50±0,25. En todavía otra realización preferente, el ácido (B) contiene al menos un grupo funcional ácido con un valor pKa comprendido en el
intervalo de 4,75±1,50, más preferentemente de 4,75±1,25, todavía más preferentemente 4,75±1,00, todavía más preferentemente 4,75±0,75, todavía más preferentemente 4,75±0,50, y en particular 4,75±0,25. En todavía otra realización preferente, el ácido (B) contiene al menos un grupo funcional ácido con un valor pKa comprendido en el intervalo de 5,00±1,50, más preferentemente de 5,00±1,25, todavía más preferentemente 5,00±1,00, todavía más preferentemente 5,00±0,75, todavía más preferentemente 5,00±0,50, y en particular 5,00±0,25.
Preferentemente, el ácido (B) es un ácido orgánico carboxílico o sulfónico, particularmente un ácido carboxílico. Los ácidos multicarboxílicos y/o hidroxicarboxílicos son especialmente preferentes.
En el caso de los ácidos multicarboxílicos, las sales parciales de los mismos también deben considerarse ácidos multicarboxílicos, por ejemplo sales parciales sódicas, potásicas o amónicas. Por ejemplo, el ácido cítrico es un ácido multicarboxílico con tres grupos carboxilo. Con la condición de que quede al menos un grupo carboxilo protonado (por ejemplo dihidrogenocitrato sódico o hidrogenocitrato disódico), la sal debe considerarse un ácido multicarboxílico. Preferentemente, sin embargo, todos los grupos carboxilo del ácido multicarboxílico están protonados.
Preferentemente, el ácido (B) es de bajo peso molecular, es decir no está polimerizado. Típicamente, el peso molecular del ácido (B) es inferior a 500 g/mol.
Ejemplos de ácidos incluyen ácidos monocarboxílicos saturados o insaturados, ácidos bicarboxílicos saturados e insaturados, ácidos tricarboxílicos, a-hidroxiácidos y p-hidroxiácidos de ácidos monocarboxílicos, a-hidroxiácidos y phidroxiácidos de ácidos bicarboxílicos, a-hidroxiácidos y p-hidroxiácidos de ácidos tricarboxílicos, cetoácidos, acetoácidos y p-cetoácidos de ácidos policarboxílicos, de ácidos polihidroximonocarboxílicos, de ácidos polihidroxibicarboxílicos y de ácidos polihidroxitricarboxílicos.
Preferentemente, el ácido (B) se selecciona de entre el grupo consistente en los ácidos bencenosulfónico, cítrico, aglucoheptanoico, D-glucónico, glicólico, láctico, málico, malónico, mandélico, propanoico, succínico, tartárico (D, L o DL), tósico (ácido toluensulfónico), valérico, palmítico, pamoico, sebácico, esteárico, láurico, acético, adípico, glutárico, 4-clorobencenosulfónico, etanodisulfónico, etilsuccínico, fumárico, galactárico (ácido múcico), D-glucurónico, 2-oxoglutárico, glicerofosfórico, hipúrico, isetiónico (ácido etanosulfónico), lactobiónico, maleico, maleínico, 1,5-naftalendisulfónico, 2-naftalensulfónico, piválico, tereftálico, tiociánico, cólico, n-dodecilsulfato, 3-hidroxi-2-naftoico, 1-hidroxi-2-naftoico, oleico, undecilénico, ascórbico, (+)-canfórico, d-canforsulfónico, dicloroacético, etanosulfónico, fórmico, metanosulfónico, nicotínico, orótico, oxálico, pícrico, L-piroglutámico, sacarina, ácido salicílico, ácido gentísico y/o ácido 4-acetamidobenzoico.
El contenido de ácido (B) está dentro del intervalo de entre 0,05% y 1,5% en peso, preferentemente de entre 0,005% y 2,5% en peso, más preferentemente de entre 0,1% y 1,0% en peso y en particular de entre el 0,2% al 0,9% en peso, con respecto al peso total de la forma de dosificación farmacéutica.
Preferentemente, el ácido (B) es un ácido multicarboxílico. Más preferentemente, el ácido multicarboxílico se selecciona de entre el grupo consistente en ácido cítrico, ácido maleico y ácido fumárico.
Resulta particularmente preferente el ácido cítrico.
El ácido multicarboxílico, preferentemente el ácido cítrico, puede encontrarse presente en su forma anhidra o en forma de solvato e hidrato, respectivamente, por ejemplo como monohidrato.
En una realización preferente, el contenido de ácido (B), preferentemente ácido cítrico, está en el intervalo de 0,2±0,15% en peso, más preferentemente de 0,2±0,12% en peso, todavía más preferentemente de 0,2±0,09% en peso, todavía más preferentemente de 0,2±0,06% en peso, y en particular de 0,2±0,03% en peso, con respecto al peso total de la forma de dosificación farmacéutica.
En otra realización preferente, el contenido de ácido (B), preferentemente ácido cítrico, está en el intervalo de 0,3±0,18% en peso, más preferentemente de 0,3±0,15% en peso, todavía más preferentemente de 0,3±0,12% en peso, todavía más preferentemente de 0,3±0,09% en peso, todavía más preferentemente de 0,3±0,06% en peso, y en particular de 0,3±0,03% en peso, con respecto al peso total de la forma de dosificación farmacéutica.
En todavía otra realización preferente, el contenido de ácido (B), preferentemente ácido cítrico, está en el intervalo de 0,4±0,18% en peso, más preferentemente de 0,4±0,15% en peso, todavía más preferentemente de 0,4±0,12% en peso, todavía más preferentemente de 0,4±0,09% en peso, todavía más preferentemente de 0,4±0,06% en peso, y en particular de 0,4±0,03% en peso, con respecto al peso total de la forma de dosificación farmacéutica.
En todavía otra realización preferente, el contenido de ácido (B), preferentemente ácido cítrico, está en el intervalo de 0,5±0,18% en peso, más preferentemente de 0,5±0,15% en peso, todavía más preferentemente de 0,5±0,12% en peso, todavía más preferentemente de 0,5±0,09% en peso, todavía más preferentemente de 0,5±0,06% en peso, y en particular de 0,5±0,03% en peso, con respecto al peso total de la forma de dosificación farmacéutica.
En todavía otra realización preferente, el contenido de ácido (B), preferentemente ácido cítrico, está en el intervalo de 0,6±0,18% en peso, más preferentemente de 0,6±0,15% en peso, todavía más preferentemente de 0,6±0,12% en peso, todavía más preferentemente de 0,6±0,09% en peso, todavía más preferentemente de 0,6±0,06% en peso, y en particular de 0,6±0,03% en peso, con respecto alpeso total de la forma de dosificación farmacéutica.
En todavía otra realización preferente, el contenido de ácido (B), preferentemente ácido cítrico, está en el intervalo de 0,7±0,18% en peso, más preferentemente de 0,7±0,15% en peso, todavía más preferentemente de 0,7±0,12% en peso, todavía más preferentemente de 0,7±0,09% en peso, todavía más preferentemente de 0,7±0,06% en peso, y en particular de 0,7±0,03% en peso, con respecto alpeso total de la forma de dosificación farmacéutica.
En todavía otra realización preferente, el contenido de ácido (B), preferentemente ácido cítrico, está en el intervalo de 0,8±0,18% en peso, más preferentemente de 0,8±0,15% en peso, todavía más preferentemente de 0,8±0,12% en peso, todavía más preferentemente de 0,8±0,09% en peso, todavía más preferentemente de 0,8±0,06% en peso, y en particular de 0,8±0,03% en peso, con respecto alpeso total de la forma de dosificación farmacéutica.
En todavía otra realización preferente, el contenido de ácido (B), preferentemente ácido cítrico, está en el intervalo de 0,85±0,18% en peso, más preferentemente de 0,85±0,15% en peso, todavía más preferentemente de 0,85±0,12% en peso, todavía más preferentemente de 0,85±0,09% en peso, todavía más preferentemente de 0,85±0,06% en peso, y en particular de 0,85±0,03% en peso, con respecto alpeso total de la forma de dosificación farmacéutica.
En todavía otra realización preferente, el contenido de ácido (B), preferentemente ácido cítrico, está en el intervalo de 0,9±0,18% en peso, más preferentemente de 0,9±0,15% en peso, todavía más preferentemente de 0,9±0,12% en peso, todavía más preferentemente de 0,9±0,09% en peso, todavía más preferentemente de 0,9±0,06% en peso, y en particular de 0,9±0,03% en peso, con respecto alpeso total de la forma de dosificación farmacéutica.
En una realización preferente adicional, el contenido de ácido (B), preferentemente ácido cítrico, está en el intervalo de 1,0±0,18% en peso, más preferentemente de 1,0±0,15% en peso, todavía más preferentemente de 1,0±0,12% en peso, todavía más preferentemente de 1,0±0,09% en peso, todavía más preferentemente de 1,0±0,06% en peso, y en particular de 1,0±0,03% en peso, con respecto alpeso total de la forma de dosificación farmacéutica.
La forma de dosificación farmacéutica según la invención comprende, como componente (C), un óxido de polialquileno (C) con un peso molecular promedio en peso, Mw, de al menos 500.000 g/mol, preferentemente de al menos 750.000 g/mol, todavía más preferentemente de al menos 1.000.000 g/mol, todavía más preferentemente de al menos 2.000.000 g/mol, y en particular comprendido en el intervalo de entre 500.000 y 15.000.000 g/mol.
Preferentemente, el óxido de polialquileno se selecciona de entre el grupo consistente en óxido de polimetileno, óxido de polietileno y óxido de polipropileno, copolímeros y mezclas de los mismos.
El óxido de polialquileno (C) puede comprender un único óxido de polialquileno con un peso molecular medio particular, o una mezcla (mezcla uniforme) de diferentes polímeros, tal como dos, tres, cuarto o cinco polímeros, por ejemplo polímeros de la misma naturaleza química pero diferente peso molecular medio, polímeros de diferente naturaleza química pero el mismo peso molecular medio, o polímeros de diferente naturaleza química así como diferente peso molecular.
Para el propósito de la descripción, un polialquilenglicol tiene un peso molecular de hasta 20.000 g/mol, mientras que un óxido de polialquileno tiene un peso molecular superior a 20.000 g/mol. En una realización preferente, el peso medio de todos los pesos moleculares de todos los óxidos de polialquileno contenidos en la forma de dosificación farmacéutica es de por lo menos 200.000 g/mol. Así, los polialquilenglicoles, en caso de encontrarse presente alguno, preferentemente no se consideran durante la determinación del peso molecular medio en peso del óxido de polialquileno (C).
Preferentemente, el contenido de óxido de polialquileno (C) está comprendido en el intervalo de entre 20% y 99% en peso, preferentemente de entre 25% y 95% en peso, más preferentemente de entre 30% y 90% en peso, todavía más preferentemente de entre 30% y 85% en peso, todavía más preferentemente de entre 30% y 80% en peso, y en particular de entre 30% y 75% en peso, basado en el peso total de la forma de dosificación farmacéutica. En una realización preferente, el contenido de óxido de polialquileno es de al menos el 20% en peso, más preferentemente de al menos el 25% en peso, todavía más preferentemente de al menos el 30% en peso, todavía más preferentemente de al menos el 35% en peso, y en particular de al menos el 40% en peso.
En una realización preferente, el contenido total de óxido de polialquileno (C) está en el intervalo de 25±20% en peso, más preferentemente de 25±15% en peso, todavía más preferentemente de 25±10% en peso, y en particular de 25±5% en peso. En otra realización preferente, el contenido total de óxido de polialquileno (C) está en el intervalo de 35±20% en peso, más preferentemente de 35±15% en peso, todavía más preferentemente de 35±10% en peso, y en particular de 35±5% en peso. En todavía otra realización preferente, el contenido total de óxido de polialquileno (C) está en el intervalo de 45±20% en peso, más preferentemente de 45±15% en peso, todavía más preferentemente de 45±10% en peso, y en particular de 45±5% en peso. En todavía otra realización preferente, el contenido total de óxido de polialquileno (C) está en el intervalo de 55±20% en peso, más preferentemente de 55±15% en peso, todavía más preferentemente de 55±10% en peso, y en particular de 55±5% en peso. En una realización preferente, el contenido total de óxido de polialquileno (C)
está en el intervalo de 65±20% en peso, más preferentemente de 65±15% en peso, todavía más preferentemente de 65±10% en peso, y en particular de 65±5% en peso. En una realización preferente, el contenido total de óxido de polialquileno (C) está en el intervalo de 75±20% en peso, más preferentemente de 75±15% en peso, todavía más preferentemente de 75±10% en peso, y en particular de 75±5% en peso. En una realización preferente, el contenido total de óxido de polialquileno (C) está en el intervalo de 80±15% en peso, todavía más preferentemente de 80±10% en peso, y en particular de 80±5% en peso.
En una realización preferente, el óxido de polialquileno (C) se encuentra homogéneamente distribuido en la forma de dosificación farmacéutica según la invención. Preferentemente, el óxido de polialquileno (C) forma una matriz en la que el opioide (A) se encuentra embebido. En una realización particularmente preferente, el opioide (A) y el óxido de polialquileno (C) se encuentran distribuidos de manera íntimamente homogénea en la forma de dosificación farmacéutica, de manera que la forma de dosificación farmacéutica no contiene ningún segmento en el que ni el opioide (A) está presente en ausencia de óxido de polialquileno (C) ni en el que el óxido de polialquileno (C) está presente en ausencia de opioide (A).
Cuando la forma de dosificación farmacéutica se recubra con una película, el óxido de polialquileno (C) preferentemente se distribuye homogéneamente en el núcleo de la forma de dosificación farmacéutica, es decir, el recubrimiento de película preferentemente no contiene óxido de polialquileno (C). Sin embargo, el recubrimiento de película como tal evidentemente puede contener uno o más polímeros que, sin embargo, preferentemente son diferentes del óxido de polialquileno (C) contenido en el núcleo.
El óxido de polialquileno (C) puede combinarse con uno o más polímeros diferentes seleccionados de entre el grupo consistente en óxido de polialquileno, preferentemente óxido de polimetileno, óxido de polietileno, óxido de polipropileno; polietileno, polipropileno, cloruro de polivinilo, policarbonato, poliestireno, polivinilpirrolidona, poli(alq)acrilato, poli(hidroxi ácidos grasos), por ejemplo poli(3-hidroxibutirato-co-3-hidroxivalerato) (Biopol®), poli(ácido hidroxivalérico), policaprolactona, alcohol polivinílico, poliesteramida, succinato de polietileno, polilactona, poliglicólido, poliuretano, poliamida, poliláctido, poliacetal (por ejemplo polisacáridos opcionalmente con cadenas laterales modificadas), poliláctido/glicólido, polilactona, poliglicólido, poliortoéster, polianhídrido, polímeros en bloque de polietilenglicol y polibutilen-tereftalato (Polyactive®), polianhídrido (Polifeprosan), copolímeros de los mismos, copolímeros en bloque de los mismos, y mezclas de al menos dos de los polímeros indicados, o de otros polímeros que tengan las características anteriormente indicadas.
Preferentemente, la dispersión de peso molecular, MW/Mn, del óxido de polialquileno (C) está comprendida en el intervalo de 2,5±2,0, más preferentemente de 2,5±1,5, todavía más preferentemente de 2,5±1,0, todavía más preferentemente de 2,5±0,8, todavía más preferentemente de 2,5±0,6, y en particular de 2,5±0,4.
El óxido de polialquileno (C) preferentemente tiene una viscosidad a 25°C de entre 30 y 17. 600 cP, más preferentemente de entre 55 y 17. 600 cP, todavía más preferentemente de entre 600 y 17. 600 cP, y todavía más preferentemente de entre 4. 500 y 17. 600 cP, medido en solución acuosa al 5% en peso utilizando un viscosímetro Brookfield modelo RVF (huso n° 2/velocidad de rotación:2 rpm); de entre 400 y 4. 000 cP, más preferentemente de entre 400 y 800 cP, o de entre 2. 000 y 4. 000 cP, medido en solución acuosa al 2% en peso utilizando el viscosímetro anteriormente indicado (huso n° 1 ó 3/velocidad de rotación:10 rpm); o de entre 1. 650 y 10. 000 cP, más preferentemente de entre 1. 650 y 5. 500 cP, de entre 5. 500 y 7. 500 cP, o de entre 7. 500 y 10. 000 cP, medido en solución acuosa al 1% en peso utilizando el viscosímetro anteriormente indicado (huso n° 2/velocidad de rotación:2 rpm).
En una realización preferente según la invención, el óxido de polialquileno (C) con un peso molecular medio en peso de al menos 200.000 g/mol se combina con al menos un polímero adicional, preferentemente, aunque no necesariamente, que también tiene un peso molecular medio en peso (Mw) de al menos 200.000 g/mol, seleccionado de entre el grupo consistente en polietileno, polipropileno, cloruro de polivinilo, policarbonato, poliestireno, poliacrilato, poli(hidroxi ácidos grasos), policaprolactona, alcohol polivinílico, poliesteramida, succinato de polietileno, polilactona, poliglicólido, poliuretano, polivinilpirrolidona, poliamida, poliláctido, poliláctido/glicólido, polilactona, poliglicólido, poliortoéster, polianhídrido, polímeros en bloque de polietilenglicol y tereftalato de polibutileno, polianhídrido, poliacetal, ésteres de celulosa, éteres de celulosa y copolímeros de los mismos. Los ésteres y éteres de celulosa resultan particularmente preferentes, por ejemplo metilcelulosa, etilcelulosa, hidroximetilcelulosa, hidroxietilcelulosa, hidroxipropilcelulosa, hidroxipropilmetilcelulosa, carboximetilcelulosa y similares.
En una realización preferente, dicho polímero adicional no es ni un óxido de polialquileno ni un polialquilenglicol. Sin embargo, la forma de dosificación farmacéutica puede contener polialquilenglicol, por ejemplo como plastificante, aunque en este caso la forma de dosificación farmacéutica preferentemente es una mezcla ternaria de polímeros:óxido de polialquileno (C) polímero adicional plastificante.
En una realización particularmente preferente, dicho polímero adicional es un éster o éter de celulosa hidrofílico, preferentemente hidroxipropilmetilcelulosa (HPMC), hidroxipropilcelulosa (HPC) o hidroxietilcelulosa (HEC), preferentemente con una viscosidad media (preferentemente medida por viscosimetría capilar o viscosimetría rotacional) de entre 1.000 y 150.000 mPas, más preferentemente de entre 3.000 y 150.000. En una realización preferente, la viscosidad media está comprendida en el intervalo de 110.000±50.000 mPas, más preferentemente de 110.000±40.000
mPas, todavía más preferentemente de 110.000±30.000 mPas, todavía más preferentemente de 110.000±20.000 mPas, y en particular de 100.000±10.000 mPas.
En una realización preferente, la proporción en peso relativa entre dicho óxido de polialquileno (C) y dicho polímero adicional está comprendida en el intervalo de entre 20:1 y 1:20, más preferentemente de entre 10:1 y 1:10, todavía más preferentemente de entre 7:1 y 1:5, todavía más preferentemente de entre 5:1 y 1:1, todavía más preferentemente de entre 4:1 y 1,5:1, y en particular de entre 3:1 y 2:1. En una realización preferente, la proporción en peso relativa entre dicho óxido de polialquileno (C) y dicho polímero adicional está en el intervalo de entre 10:1 y 5:1, más preferentemente de entre 8:1 y 5:1, más preferentemente de entre 7:1 y 5:1.
Preferentemente, el contenido de dicho polímero adicional es de entre 0,5% y 25% en peso, más preferentemente de entre 1,0% y 20% en peso, todavía más preferentemente de entre 2,0% y 22,5% en peso, todavía más preferentemente de entre 3,0% y 20% en peso, y todavía más preferentemente de entre 4,0% y 17,5% en peso, y en particular de entre 5,0% y 15% en peso, con respecto al peso total de la forma de dosificación farmacéutica.
En una realización preferente, el polímero adicional es un éster o éter de celulosa, preferentemente HPMC, con un contenido en el intervalo de entre 10±4% en peso, más preferentemente de 10±6% en peso, todavía más preferentemente de 10±5% en peso, todavía más preferentemente de 10±4% en peso, todavía más preferentemente de 10±3% en peso, y en particular de 10±2% en peso, con respecto al peso total de la forma de dosificación farmacéutica.
En otra realización preferente, el polímero adicional es un éster o éter de celulosa, preferentemente HPMC, con un contenido comprendido en el intervalo de entre 14±8% en peso, más preferentemente de 14±6% en peso, todavía más preferentemente de 14±5% en peso, todavía más preferentemente de 14±4% en peso, todavía más preferentemente de 14±3% en peso, y en particular de 14±2% en peso, con respecto al peso total de la forma de dosificación farmacéutica.
Preferentemente todos los polímeros se utilizan en forma de polvo. Pueden ser solubles en agua.
Además del opioide (A), el ácido (B) y el óxido de polialquileno (C), la forma de dosificación farmacéutica según la invención puede contener otros constituyentes, tales como excipientes farmacéuticos convencionales.
Preferentemente, la forma de dosificación farmacéutica comprende un antioxidante. Entre los antioxidantes adecuados se incluyen ácido ascórbico, a-tocoferol (vitamina E), butilhidroxianisol, butilhidroxitolueno, sales de ácido ascórbico (vitamina C), palmitato de ascorbilo, monotioglicerina, benzoato de coniferilo, ácido nordihidroguajarético, ésteres de ácido gálico, ácido fosfórico, y derivados de los mismos, tales como succinato de vitamina E o palmitato de vitamina E y/o bisulfito sódico, en especial butilhidroxitolueno (BHT) o butilhidroxianisol (BHA) y/o a-tocoferol.
Preferentemente, el contenido de antioxidante está en el intervalo de entre 0,001% y 5,0% en peso, más preferentemente de entre 0,002% y 2,5% en peso, todavía más preferentemente de entre 0,003% y 1,5% en peso, todavía más preferentemente de entre 0,005% y 1,0% en peso, todavía más preferentemente de entre 0,01% y 0,5% en peso, más preferentemente de entre 0,05% y 0,4% en peso, y en particular de entre 0,1% y 0,3% en peso, con respecto al peso total de la forma de dosificación farmacéutica.
Un antioxidante particularmente preferente es a-tocoferol. Sorprendentemente se ha encontrado que el a-tocoferol estabiliza el óxido de polialquileno y simultáneamente desestabiliza determinados opioides (A), tales como oximorfona. Así, en una realización preferente, el contenido de a-tocoferol se equilibra entre una estabilidad suficiente del óxido de polialquileno por una parte y una estabilidad suficiente del opioide (A), por la otra.
En una realización preferente, el contenido de a-tocoferol preferentemente está en el intervalo de 0,2±0,18% en peso, más preferentemente de 0,2±0,15% en peso, todavía más preferentemente de 0,2±0,12% en peso, todavía más preferentemente de 0,2±0,09% en peso, todavía más preferentemente de 0,2±0,06% en peso, y en particular de 0,2±0,03% en peso, con respecto al peso total de la forma de dosificación farmacéutica.
En una realización preferente, la proporción en peso relativa entre el ácido (B), preferentemente ácido cítrico, y el antioxidante, preferentemente a-tocoferol, está en el intervalo de entre 10:1 y 1:10, más preferentemente de entre 8:1 y 1:8, todavía más preferentemente de entre 6:1 y 1:6, todavía más preferentemente de entre 5:1 y 1:4, todavía más preferentemente de entre 4:1 y 1:3, y en particular de entre 3:1 y 1:2.
La forma de dosificación farmacéutica según la invención también puede contener una cera natural, semisintética o sintética. Las ceras con un punto de ablandamiento de al menos 50°C, en especial de 60°C, resultan preferentes. La cera carnauba y la cera de abeja resultan particularmente preferentes, especialmente la cera carnauba.
Preferentemente, el perfil de liberación del opioide (A) es de liberación retardada a partir de una matriz. Preferentemente, el opioide (A) está embebido en una matriz que comprende el óxido de polialquileno, controlando dicha matriz la liberación del opioide (A) a partir de la forma de dosificación farmacéutica.
Pueden utilizarse como materiales de matriz suplementarios, materiales fisiológicamente aceptables conocidos por el experto en la materia. Los polímeros, con particular preferencia éteres de celulosa, ésteres de celulosa y/o resinas acrílicas, preferentemente se utilizan como materiales de matriz hidrofílica. La etilcelulosa, hidroxipropilmetilcelulosa, hidroxipropilcelulosa, hidroximetilcelulosa, hidroxietilcelulosa, ácido poli(meta)acrílico y/o sus derivados, tales como sales, amidas o ésteres, se utilizan muy particularmente preferentemente como materiales de matriz. También resultan preferentes materiales de matriz preparados a partir de materiales hidrófobos, tales como polímeros hidrófobos, ceras, grasas, ácidos grasos de cadena larga, alcoholes grasos, o los ésteres o éteres correspondientes, o mezclas de los mismos. Los monoglicéridos o diglicéridos de los ácidos grasos C12-C30 y/o los alcoholes grasos C12-C30 y/o las ceras o sus mezclas se utilizan particularmente preferentemente como materiales hidrófobos. También resulta posible utilizar mezclas de los materiales hidrofílicos e hidrofóbicos anteriormente indicados como materiales de matriz.
Preferentemente, la proporción en peso relativa entre el óxido de polialquileno y el opioide (A) es de al menos 0,5:1, más preferentemente de al menos 1:1, al menos 2:1, al menos 3:1, al menos 4:1, al menos 5:1, al menos 6:1, al menos 7:1, al menos 8:1, al menos 9:1, al menos 10:1, al menos 15:1, todavía más preferentemente de al menos 20:1, todavía más preferentemente de al menos 30:1, y en particular de al menos 40:1. En una realización preferente, la proporción en peso relativa entre el óxido de polialquileno y el opioide (A) está en el intervalo de entre 3:1 y 50:1, más preferentemente de entre 3:1 y 40:1, y en particular de entre 3:1 y 30:1.
La forma de dosificación farmacéutica según la invención preferentemente contiene un plastificante. El plastificante mejora la procesabilidad del óxido de polialquileno. Un plastificante preferente es un polialquilenglicol, por ejemplo polietilenglicol, triacetina, ácidos grasos, ésteres de ácido graso, ceras y/o ceras microcristalinas. Plastificantes particularmente preferentes son polietilenglicoles, tales como PEG 6000.
Preferentemente, el contenido de plastificante está comprendido en el intervalo de entre 0,1% y 25% en peso, más preferentemente de entre 0,5% y 22,5% en peso, más preferentemente de entre 1,0% y 20% en peso, todavía más preferentemente de entre 2,5% y 17,5% en peso, todavía más preferentemente de entre 5,0% y 15% en peso, y en particular de entre 7,5% y 12,5% en peso, con respecto al peso total de la forma de dosificación farmacéutica.
En una realización preferente, el plastificante es un polialquilenglicol en un contenido comprendido en el intervalo de entre 10±8% en peso, más preferentemente de 10±6% en peso, todavía más preferentemente de 10±5% en peso, todavía más preferentemente de 10±4% en peso, todavía más preferentemente de 10±3% en peso, y en particular de 10±2% en peso, con respecto al peso total de la forma de dosificación farmacéutica.
En otra realización preferente, el plastificante es un polialquilenglicol en un contenido comprendido en el intervalo de entre 15±8% en peso, más preferentemente de 15±6% en peso, todavía más preferentemente de 15±5% en peso, todavía más preferentemente de 15±4% en peso, todavía más preferentemente de 15±3% en peso, y en particular de 15±2% en peso, con respecto al peso total de la forma de dosificación farmacéutica.
En una realización preferente, la proporción en peso relativa entre el óxido de polialquileno y el polialquilenglicol está comprendida en el intervalo de 4,2±2:1, más preferentemente 4,2±1,5:1, todavía más preferentemente 4,2±1:1, todavía más preferentemente 4,2±0,5:1, todavía más preferentemente 4,2±0,2:1, y en particular 4,2±0,1:1. Esta proporción satisface los requisitos de un contenido relativo elevado de óxido de polialquileno y buena extrusionabilidad.
Durante la preparación de las formas de dosificación a partir de secciones que se obtienen mediante el corte del extruido, el peso de las secciones determina el peso de la forma de dosificación resultante. La pronunciada variación del peso de estas secciones resulta en una desviación correspondiente del peso de las formas de dosificación respecto al peso diana. La variación del peso de las secciones depende fuertemente de las propiedades superficiales del extruido. Una hebra con una superficie uniformemente lisa permite obtener secciones con una variación de peso reducida. Por el contrario, una hebra ondulada o de piel de tiburón resulta en secciones con una variación del peso más alta, incrementando así el número de rechazos.
Ahora sorprendentemente se ha descubierto que las propiedades superficiales del extruido pueden inducirse a partir de la proporción en peso óxido de polialquileno:polialquilenglicol.
Las composiciones preferentes X1 a X32 de la forma de dosificación farmacéutica según la invención se resumen en las tablas a continuación:
En una realización preferente, la forma de dosificación farmacéutica tiene un peso total comprendido en el intervalo de 100±75 mg, más preferentemente de 100±50 mg, todavía más preferentemente de 100±25 mg. En otra realización preferente, la forma de dosificación farmacéutica tiene un peso total dentro del intervalo de 200±75 mg, más preferentemente de 200±50 mg, todavía más preferentemente de 200±25 mg. En otra realización preferente, la forma de dosificación preferente presenta un peso total comprendido dentro del intervalo de 250±75 mg, más preferentemente de 250±50 mg, todavía más preferentemente de 250±25 mg. En todavía otra realización preferente, la forma de dosificación farmacéutica tiene un peso total dentro del intervalo de 300±75 mg, más preferentemente de 300±50 mg, todavía más preferentemente de 300±25 mg. En todavía otra realización preferente, la forma de dosificación farmacéutica tiene un peso total dentro del intervalo de 400±75 mg, más preferentemente de 400±50 mg y todavía más preferentemente de 400±25 mg.
En una realización preferente, la forma de dosificación farmacéutica tiene un peso total dentro del intervalo de 500±250 mg, más preferentemente de 500±200 mg, todavía más preferentemente de 500±150 mg. En otra realización preferente, la forma de dosificación farmacéutica tiene un peso total dentro del intervalo de 750±250 mg, más preferentemente de 750±200 mg, todavía más preferentemente de 750±150 mg. En otra realización preferente, la forma de dosificación preferente tiene un peso total dentro del intervalo de 1.000±250 mg, más preferentemente de 1.000±200 mg, todavía más preferentemente de 1.000±150 mg. En todavía otra realización preferente, la forma de dosificación farmacéutica tiene un peso total dentro del intervalo de 1.250±250 mg, más preferentemente de 1.250±200 mg y todavía más preferentemente de 1.250±150 mg.
En una realización preferente, la forma de dosificación farmacéutica según la invención presenta una densidad total dentro del intervalo de 1,19±0,30 g/cm3, más preferentemente de 1,19±0,25 g/cm3, todavía más preferentemente de 1,19±0,20 g/cm3, todavía más preferentemente de 1,19±0,15 g/cm3, todavía más preferentemente de 1,19±0,10 g/cm3, y en particular de 1,19±0,05 g/cm3. Preferentemente, la densidad total de la forma de dosificación farmacéutica según la invención es de 1,17±0,02 g/cm3, de 1,19±0,02 g/cm3 o de 1,21±0,02 g/cm3. Los métodos para medir la densidad de una forma de dosificación son conocidos por el experto en la materia. La densidad total de una forma de dosificación puede determinarse, por ejemplo, por el método de porosimetría de mercurio o del picnómetro de helio, tal como se describe en la Ph. Eur.
Preferentemente, la forma de dosificación farmacéutica según la invención está adaptada para la administración oral. Sin embargo, también es posible administrar la forma de dosificación farmacéutica por diferentes vías y, así, la forma de dosificación farmacéutica alternativamente puede adaptarse para la administración bucal, lingual, rectal o vaginal. También son posibles los implantes.
En una realización preferente, la forma de dosificación farmacéutica según la invención está adaptada para la administración una vez al día. En otra realización preferente, la forma de dosificación farmacéutica según la invención está adaptada para la administración dos veces al día. En todavía otra realización preferente, la forma de dosificación farmacéutica según la invención está adaptada para la administración tres veces al día.
Para el propósito de la descripción, la expresión “dos veces al día” se refiere a intervalos de tiempo iguales o prácticamente iguales, es decir, aproximadamente cada 12 horas, o a intervalos de tiempo diferentes, por ejemplo 8 y 16 horas, ó 10 y 14 horas, entre las administraciones individuales.
Para el propósito de la memoria, la expresión “tres veces al día” se refiere a intervalos de tiempo iguales o prácticamente iguales, es decir, aproximadamente cada 8 horas, o a intervalos de tiempo diferentes, por ejemplo 6, 6 y 12 horas, ó 7, 7 y 10 horas, entre las administraciones individuales.
Preferentemente, la forma de dosificación farmacéutica según la invención causa una liberación al menos parcialmente retardada o prolongada del opioide (A).
Por liberación controlada o prolongada preferentemente se entiende, según la invención, un perfil de liberación donde el opioide (A) se libera durante un periodo relativamente largo a una frecuencia de ingesta reducida con el fin de proporcionar una acción terapéutica extendida. Preferentemente, el significado de la expresión “liberación prolongada” se corresponde con la directriz europea sobre nomenclatura del perfil de liberación de las formas de dosificación farmacéutica (CHMP). Esto se consigue en particular mediante la administraicón peroral. La expresión “ liberación al menos parcialmente retardada o prolongada” abarca según la invención cualquier forma de dosificación farmacéutica que garantice la liberación modificada de los opioides (A) contenidos en la misma. Las formas de dosificación farmacéutica preferentemente comprenden formas de dosificación farmacéutica recubiertos o no recubiertos producidos con sustancias auxiliares específicas mediante procedimientos particulares o mediante una combinación de las dos posibles opciones, con el fin de modificar deliberadamente la tasa de liberación o el sitio de liberación.
En el caso de las formas de dosificación farmacéutica según la invención, el perfil temporal de liberación de una forma de liberación controlada puede modificarse, por ejemplo, de la manera siguiente: liberación extendida, liberación repetida de activo, liberación prolongada y liberación sostenida.
Para el propósito de la memoria, la expresión “liberación controlada” preferentemente se refiere a un producto en el que la liberación del compuesto activo con el tiempo se encuentra controlada por el tipo y la composición de la formulación. Para el propósito de la descripción, la expresión “ liberación extendida” preferentemente se refiere a un producto en el que la liberación del compuesto activo se retarda durante un tiempo de retardo finito, después del cual la liberación se produce sin obstáculos. Para el propósito de la memoria, la expresión “liberación repetida de activo” preferentemente se refiere a un producto en el que una primera parte del compuesto activo se libera inicialmente, seguido de al menos una parte adicional de compuesto activo que se libera posteriormente. Para el propósito de la memoria, la expresión “liberación prolongada” preferentemente se refiere a un producto en el que la tasa de liberación del compuesto activo a partir de la formulación tras la administración se reduce con el tiempo con el fin de mantener la actividad terapéutica, reducir los efectos tóxicos o para algún otro propósito terapéutico. Para el propósito de la memoria, la expresión “liberación sostenida” preferentemente se refiere a un modo de formulación de una medicina para que sea liberada en el cuerpo uniformemente durante un periodo de tiempo prolongado, reduciendo asi la frecuencia de dosificación. Para más detalles, puede hacerse referencia a, por ejemplo, K. H. Bauer, Lehrbuch der Pharmazeutischen Technologie, 6a edición, WVG Stuttgart, 1999; y Eur. Ph.
La forma de dosificación farmacéutica según la invención puede comprender uno o más opioides (A) al menos en parte en una forma de liberación controlada adicional, donde la liberación controlada puede llevarse a cabo con la asistencia de materiales y procedimientos convencionales conocidos del experto en la materia, por ejemplo incluyendo la sustancia en una matriz de liberación controlada o aaplicando uno o más recubrimientos de liberación controlada. Sin embargo, la liberación de la sustancia debe controlarse de manera que la adición de los materiales de liberación retardada no perjudique la necesaria resistencia a la rotura. La liberación controlada a partir de la forma de dosificación farmacéutica según la invención preferentemente se lleva a cabo incluyendo la sustancia en una matriz. Preferentemente, el óxido de polialquileno (C) sirve como tal matriz. Las sustancias auxiliares que actúan como materiales de matriz controlan la liberación. Los materiales de matriz pueden ser, por ejemplo, hidrofílicos, materiales formadores de gel, a partir de los que se produce la liberación principalmente por difusión, o materiales hidrofóbicos, a partir de los que se produce la liberación principalmente por difusión a través de los poros en la matriz.
Preferentemente, el perfil de liberación es controlado esencialmente por la matriz, preferentemente incluyendo el opioide (A) en una matriz que comprende óxido de polialquileno (C) y opcionalmente materiales de matriz adicionales. Preferentemente, el perfil de liberación no está regulado osmóticamente. Preferentemente, la cinética de liberación no es de orden cero.
Preferentemente, bajo condiciones fisiológicas, la forma de dosificación farmacéutica según la invención ha liberado, tras 30 minutos, de 0,1% a 75%, tras 240 minutos, 0,5% a 95%, tras 480 minutos, 1,0% a 100%, y tras 720 minutos, 2,5% a 100% del opioide (A). Los perfiles de liberación preferentes adicionales R1 a R6 se resumen en la tabla siguiente [todos los datos se expresan en % en peso de opioide (A) liberado]:
Otros perfiles de liberación preferentes adicionales R1 a R6 se resumen en la tabla siguiente [todos los datos se expresan en % en peso de opioide (A) liberado]:
Preferentemente, el perfil de liberación de la forma de dosificación farmacéutica según la presente invención es estable durante el almacenamiento, preferentemente durante el almacenamiento a temperatura elevada, por ejemplo a 37°C durante 3 meses en recipientes sellados. A este especto, el término “estable” se refiere a que, al comparar el perfil de liberación inicial con el perfil de liberación tras el almacenamiento, en cualquier punto temporal dado, los perfiles de
liberación se desvían unos de otros en no más de un 20%, más preferentemente en no más de un 15%, todavía más preferentemente en no más de un 10%, todavía más preferentemente en no más de un 7,5%, todavía más preferentemente en no más de un 5,0%, y en particular en no más de un 2,5%.
Preferentemente, bajo condiciones in vitro, la forma de dosificación farmacéutica ha liberado tras 0,5 horas 1,0% a 35% en peso, tras 1 hora 5,0% a 45% en peso, tras 2 horas 10% a 60% en peso, tras 4 horas al menos 15% en peso, tras 6 horas al menos 20% en peso, tras 8 horas al menos 25% en peso y tras 12 horas al menos 30% en peso del opioide (A) que se encontra originalmente contenido en la forma de dosificación farmacéutica.
Las condiciones in vitro adecuadas son conocidas del experto en la materia. A este respecto puede hacerse referencia a, por ejemplo, la Eur. Ph. Preferentemente, el perfil de liberación se mide bajo las condiciones siguientes:aparato de paleta dotado de un dispositivo de inmersión, 50 rpm, 37±5°C, 900 ml de líquido intestinal simulado, pH 6,8 (tampón fosfato) o pH 4,5. En una realización preferente, la velocidad de rotación de la paleta se incrementa a 100 rpm.
En una realización preferente, tras la administración preferentemente oral de la forma de dosificación farmacéutica según la invención, el nivel plasmático máximo medio (Cmax) in vivo se alcanza en promedio de tras un tmax 4,0±2,5 h, más preferentemente tras tmax 4,0±2,0 h, todavía más preferentemente tras tmax 4,0±1,5 horas, más preferentemente tras tmax 4,0±1,0 hora y en particular tras tmax 4,0±0,5 horas. En otra realización preferente, tras la administración preferentemente oral de la forma de dosificación farmacéutica según la invención, el nivel plasmático máximo medio (Cmax) in vivo se alcanza en un promedio de tras tmax 5,0±2,5 horas, más preferentemente tras tmax 5,0±2,0 horas, todavía más preferentemente tras tmax 5,0±1,5 horas, más preferentemente tras tmax 5,0±1,0 hora, y en particular tras tmax 5,0±0,5 horas. En todavía otra realización preferente, tras la administración preferentemente oral de la forma de dosificación farmacéutica según la invención, el nivel plasmático máximo medio (Cmax) in vivo se alcanza en un promedio de tras tmax 6,0±2,5 horas, más preferentemente tras tmax 6,0±2,0 horas, todavía más preferentemente tras tmax 6,0±1,5 horas, más preferentemente tras tmax 6,0±1,0 hora, y en particular tras tmax 6,0±0,5 horas.
En una realización preferente, el valor medio t-i/2 tras preferentemente la administración oral de la forma de dosificación farmacéutica según la invención in vivo es de 4,0±2,5 horas, más preferentemente de 4,0±2,0 horas, todavía más preferentemente de 4,0±1,5 horas, más preferentemente de 4,0±1,0 horas, y en particular de 4,0±0,5 horas. En otra realización preferente, el valor medio t-i/2 tras preferentemente la administración oral de la forma de dosificación farmacéutica según la invención in vivo es preferentemente 5,0±2,5 horas, más preferentemente de 5,0±2,0 horas, todavía más preferentemente de 5,0±1,5 horas, todavía más preferentemente de 5,0±1,0 horas, y en particular de 5,0±0,5 horas. En todavía otra realización preferente, el valor medio t-i/2 tras preferentemente la administración oral de la forma de dosificación farmacéutica según la invención in vivo es preferentemente 6,0±2,5 horas, más preferentemente de 6,0±2,0 horas, todavía más preferentemente de 6,0±1,5 horas, todavía más preferentemente de 6,0±1,0 horas, y en particular de 6,0±0,5 horas.
Preferentemente, la forma de dosificación farmacéutica según la descripción contiene un recubrimiento, preferentemente un recubrimiento de película. Los materiales de recubrimiento adecuados son conocidos del experto en la materia. En el comercio existen materiales de recubrimiento adecuados, por ejemplo bajo las marcas comerciales Opadry® y Eudragit®.
Ejemplos de materiales adecuados incluyen ésteres y éteres de celulosa, tales como metilcelulosa (MC), hidroxipropilmetilcelulosa (HPMC), hidroxipropilcelulosa (HPC), hidroxietilcelulosa (HEC), carboximetilcelulosa sódica (Na-cMc), etilcelulosa (EC), ftalato-acetato de celulosa (CAP), ftalato de hidroxipropilmetilcelulosa (HPMCP); poli(met)acrilatos, tales como copolímeros de aminoalquilmetacrilato, copolímeros de etilacrilato metilmetacrilato, copolímeros de ácido metacrílico metilmetacrilato; polímeros de vinilo, tales como polivinilpirrolidona, polivinilacetatoftalato, alcohol polivinílico, acetato de polivinilo y formadores naturales de película, tales como goma laca.
En una realización particularmente preferente, el recubrimiento es soluble en agua. En una realización preferente, el recubrimiento se basa en un alcohol polivinílico, tal como un alcohol polivinílico parcialmente hidrolizado, y adicionalmente puede contener polietilenglicol, tal como macrogol 3350 y/o pigmentos. En otra realización preferente, el recubrimiento se basa en hidroxipropilmetilcelulosa, preferentemente hipromelosa tipo 2910 con una viscosidad de entre 3 y 15 mPas.
El recubrimiento de la forma de dosificación farmacéutica puede incrementar su estabilidad de almacenamiento.
El recubrimiento puede ser resistente a los jugos gástricos y disolverse en función del pH del ambiente de liberación. Gracias a dicho recubrimiento es posible garantizar que la forma de dosificación farmacéutica según la invención pase a través del estómago sin disolverse y que el compuesto activo únicamente se libere en el intestino. El recubrimiento, que es resistente a los jugos gástricos, preferentemente se disuelve a un pH de entre 5 y 7,5. Los materiales y métodos correspondientes para la liberación retardada de compuestos activos y para la aplicación de recubrimientos que son resistentes a los jugos gástricos son conocidos del experto en la materia, por ejemplo de “Coated Pharmaceutical dosage forms - Fundamentals, Manufacturing Techniques, Biopharmaceutical Aspects, Test Methods and Raw Materials”, de Kurt H. Bauer, K. Lehmann, Hermann P. Osterwald, Rothgang, Gerhart, 1a edición, 1998, Medpharm Scientific Publishers.
En una realización preferente, la forma de dosificación farmacéutica según la invención no contiene sustancias que irriten las vías nasales y/o la faringe, es decir, sustancias que, al administrarse por las vías nasales y/o la faringe, producen una
reacción física que es tan desagradable para el paciente que no desee o no pueda continuar con la administración, por ejemplo quemazón, o que fisiológicamente contrarresta la ingesta del compuesto activo correspondiente, por ejemplo debido a un incremento de la secreción nasal o del estornudo. Ejemplos adicionales de sustancias que irritan las vías nasales y/o la faringe son aquellos que provocan quemazón, irritación, deseo de estornudar, generáción incrementada de secreciones, o una combinación de al menos dos de estos estímulos. Las sustancias correspondientes y la cantidad de las mismas que convencionalmente deben utilizarse son conocidas del experto en la materia. Ciertas sustancias que irritan las vías nasales y/o la faringe se basan, de acuerdo con lo anterior, en uno o más constituyentes, o en una o más partes de una planta de una sustancia farmacológica picante. Las sustancias farmacológicas picantes correspondientes son conocidas per sedel experto en la materia y se describen en, por ejemplo, “Pharmazeutische Biologie - Drogen und ihre Inhaltsstoffe”, del Prof. Dr. Hildebert Wagner, 2a edición, edición revisada, Gustav Fischer Verlag, Stuttgart-New York, 1982, páginas 82 et seq. La descripción correspondiente se proporciona aquí como referencia y se considera parte de la descripción.
Además, la forma de dosificación farmacéutica según la invención preferentemente no contiene antagonistas del opioide (A), preferentemente ningún antagonista de sustancias psicotrópicas, en particular ningún antagonista del opioide (A). Los antagonistas adecuados para un opioide dado (A) son conocidos del experto en la materia y pueden estar presentes sin modificación o en forma de derivados correspondientes, en particular ésteres o éteres, o en cada caso en forma de compuestos fisiológicamente aceptables correspondientes, en particular en forma de sales o solvatos de los mismos. La forma de dosificación farmacéutica según la invención preferentemente no contiene antagonistas seleccionados de entre el grupo que comprende naloxona, naltrexona, nalmefeno, nalida, nalmexona, nalorfina o nalufina, en cada caso opcionalmente en forma de un compuesto fisiológicamente aceptable correspondiente, en particular en forma de una base, sal o solvato; y ningún neuroléptico, por ejemplo un compuesto seleccionado de entre el grupo que comprende haloperidol, prometacina, flufenazina, perfenazina, levomepromazina, tioridazina, perazina, clopromazina, clorprotixina, zuclopentixol, flupentixol, protipendilo, zotepina, benperidol, pipamperona, melperona y bromoperidol.
Además, la forma de dosificación farmacéutica según la invención preferentemente no contiene ningún emético. Los eméticos son conocidos del experto en la materia y pueden estar presentes sin modificación o en forma de derivados correspondientes, en particular ésteres o éteres, o en cada caso en forma de compuestos fisiológicamente aceptables correspondientes, en particular en forma de sales o solvatos de los mismos. La forma de dosificación farmacéutica según la invención preferentemente no contiene ningún emético basado en uno o más constituyentes de la raíz de ipecacuanha (ipepac), por ejemplo basado en el constituyente emetina, tal como se describe en, por ejemplo, “Pharmazeutische Biologie - Drogen und ihre Inhaltsstoffe”, del Prof. Dr. Hildebert Wagner, 2a edición revisada, Gustav Fischer Verlag, Stuttgart, New York, 1982. La descripción correspondiente de la literatura se proporciona en la presente memoria como referencia y se considera parte de la exposición. La forma de dosificación farmacéutica según la invención preferentemente tampoco contiene apomorfina como emético.
Finalmente, la forma de dosificación farmacéutica según la invención preferentemente tampoco contiene ninguna sustancia amarga. Las sustancias amargas y la cantidad efectivade uso pueden encontrarse en la patente US n° 2003/0064099 A1, la exposición correspondiente de la cual debe considerarse la exposición de la presente solicitud y en la presente memoria se proporciona como referencia. Son ejemplos de sustancias amargas, aceites aromáticos, tales como aceite de menta, aceite de eucalipto, aceite de almendra amarga, mentol, sustancias aromáticas de frutas, sustancias aromáticas de limones, naranjas, limas, pomelos o mezclas de los mismos, y/o benzoato de denatonio.
En consecuencia, la forma de dosificación farmacéutica según la invención preferentemente no contiene sustancias que irritan las vías nasales y/o la faringe, ni antagonistas del opioide (A), ni eméticos, ni sustancias amargas.
La forma de dosificación farmacéutica según la invención preferentemente está adaptada para la administración oral.
Típicamente, la forma de dosificación farmacéutica según la invención está en forma de tableta. Preferentemente, la forma de dosificación farmacéutica no está ni en forma de película ni de multiparticulado.
La forma de dosificación farmacéutica según la invención preferentemente es resistente a la manipulación. Preferentemente, la resistencia a la manipulación se consigue en basea las propiedades mecánicas de la forma de dosificación farmacéutica, de manera que se evita la trituración o al menos se impide esencialmente. Según la invención, el término “trituración” se refiere a la pulverización de la forma de dosificación farmacéutica utilizando medios convencionales habitualmente disponibles para un abusador, por ejemplo un mortero con mano, un martillo, un mazo u otro medio convencional para pulverizar ejerciendo fuerza. Así, la resistencia a la manipulación preferentemente se refiere a que se evita, o al menos se impide esencialmente, la pulverización de la forma de dosificación farmacéutica utilizando medios convencionales.
Preferentemente, las propiedades mecánicas de la forma de dosificación farmacéutica según la invención, en particular su resistencia a la rotura, esencialmente se basan en la presencia y distribución espacial del óxido de polialquileno (C), aunque su mera presencia típicamente no resulta suficiente para conseguir dichas propiedades. Las propiedades mecánicas ventajosas de la forma de dosificación farmacéutica según la invención pueden no conseguirse automáticamente mediante el simple procesamiento del opioide (A), el ácido (B), el óxido de polialquileno (C) y opcionalmente excipientes adicionales por métodos convencionales para la preparación de formas de dosificación
farmacéutica. De hecho, habitualmente deben seleccionarse aparatos adecuados para la preparación y deben ajustarse parámetros de procesamiento críticos, particularmente presión/fuerza, temperatura y tiempo. Así, incluso en el caso de que se utilicen aparatos convencionales, los protocolos de procedimiento habitualmente deben adaptarse para cumplir los criterios requeridos.
La forma de dosificación farmacéutica según la invención tiene una resistencia a la rotura de al menos 300 N, preferentemente de al menos 400 N, más preferentemente de al menos 500 N, todavía más preferentemente de al 750 N, todavía más preferentemente de al menos 1.000 N, todavía más preferentemente de al menos 1.250 N, y en particular de al menos 1.500 N.
La “resistencia a la rotura” (resistencia a la trituración) de una forma de dosificación farmacéutica es conocida por el experto en la materia. A este respecto puede hacerse referencia a, por ejemplo, W. A. Ritschel, Die Tablette, 2. Auflage, Editio Cantor Verlag Aulendorf, 2000; H. Liebermann et al., Pharmaceutical dosage forms:Tablets, vol. 2, Informa Healthcare, 2a edición, 1990; y Encyclopedia of Pharmaceutical Technology, Informa Healthcare, 1a edición.
Para el propósito de la descripción, la resistencia a la rotura preferentemente se define como la fuerza necesaria para fracturar la forma de dosificación farmacéutica (=fuerza de rotura ). Por tanto, para el propósito de la descripción, la forma de dosificación farmacéutica preferentemente no tiene la resistencia a la rotura deseada en el momento en que se fractura, es decir, en el momento en que se fractura en al menos dos partes independientes que se separan. Sin embargo, en otra realización preferente, la forma de dosificación farmacéutica se considera que se ha fracturado en el caso de que la fuerza se reduzca en un 25% (valor umbral) de la fuerza más alta medida durante la medición (ver posteriormente).
Las formas de dosificación farmacéutica según la invención se distinguen de las formas de dosificación farmacéutica convencionales en que, debido a su resistencia a la rotura, no pueden ser pulverizadas por la aplicación de una fuerza por medios convencionales, por ejemplo con un mortero con mano, un martillo, un mazo u otros medios habituales de pulverización, en particular dispositivos desarrollados con este fin (trituradores de tabletas). A este respecto, el término “pulverización” se refiere al desmenuzamiento en partículas pequeñas que inmediatamente liberarían el compuesto farmacológicamente activo (A) en un medio adecuado. Evitar la pulverización prácticamente descarta la posibilidad de abuso vía oral o parenteral, en particular intravenosa o nasal.
Las tabletas convencionales típicamente tienen una resistencia a la rotura muy inferior a 200 N en cualquier dirección de extensión. La resistencia a la rotura de las tabletas redondas convencionales puede estimarse según la fórmula empírica siguiente: Resistencia a la rotura [en N] = 10 x Diámetro de la tableta [en mm]. De esta manera, según dicha fórmula empírica, una tableta redonda que presenta una resistencia a la rotura de al menos 300 N requeriría un diámetro de al menos 30 mm. Sin embargo, este tipo de tableta no podría tragarse. La fórmula empírica anteriormente indicada preferentemente no resulta aplicable a las formas de dosificación farmacéutica de la invención, que no son convencionales sino especiales.
Además, la fuerza de masticación media real es aproximadamente 220 N (ver, por ejemplo, P. A. Proeschel y col., J. Dent. Res. 81(7):464-468, 2002). Esto implica que las tabletas convencionales con una resistencia a la rotura muy inferior a 200 N pueden ser trituradas por la masticación espontánea, mientras que las formas de dosificación farmacéutica según la invención no.
Además, al aplicar una aceleración gravitacional de aproximadamente 9,81 m/s2, 300 N corresponden a una fuerza gravitacional superior a 30 kg, es decir, las formas de dosificación farmacéutica según la invención pueden resistir preferentemente un peso superior a 30 kg sin resultar pulverizadas.
Los métodos para medir la resistencia a la rotura de una forma de dosificación farmacéutica son conocidos del experto en la materia. Se encuentran comercialmente disponibles dispositivos adecuados.
Por ejemplo, la resistencia a la rotura (resistencia a la trituración) puede medirse según Eur. Phr. 5.0, 2.9.8 o 6.0, 2.09.08, “Resistance to Crushing of Tablets”. El ensayo pretende determinar, bajo condiciones definidas, la resistencia a la trituración de tabletas, medida mediante la fuerza necesaria para romperlas por trituración. El aparato consiste de 2 garras enfrentadas, una de las cuales se mueve hacia la otra. Las superficies planas de las garras son perpendiculares a la dirección del movimiento. Las superficies de trituración de las garras son planas y más grandes que la zona de contacto con la tableta. El aparato se calibra utilizando un sistema con una precisión de 1 Newton. La tableta se coloca entre las garras, considerando, en caso aplicable, la forma, la marca de rotura y la inscripción, para cada medición la tableta se orienta de la misma manera con respecto a la dirección de aplicación de la fuerza (y la dirección de extensión en la que debe medirse la resistencia a la rotura ). La medición se lleva a cabo en 10 tabletas, procurando que todos los fragmentos de tableta hayan sido retirados antes de cada determinación. El resultado se expresa como media, y valores mínimo y máximo de las fuerzas medidas, todas expresadas en Newton.
Puede encontrarse una descripción similar de la resistencia a la rotura (fuerza de rotura) en la USP. La resistencia a la rotura alternativamente puede medirse según el método descrito en la misma, donde se indica que la resistencia a la rotura es la fuerza necesaria para provocar que una tableta falle (es decir, se rompa) en un plano específico. Las tabletas generalmente se colocan entre dos placas, una de las cuales se mueve con el fin de aplicar suficiente fuerza en la tableta
para causar la fractura. Para tabletas redondas (sección transversal circular) convencionales, la carga se produce por el diámetro (en ocasiones denominada carga diametral) y la fractura se produce en el plano. La fuerza de rotura de las tabletas comúnmente se denomina dureza en la literatura farmacéutica; sin embargo, la utilización de este termino es engañosa. En la ciencia de materiales, el término dureza se refiere a la resistencia de una superficie a la penetración o indentación por una sonda pequeña. La expresión “resistencia a la trituración” también se utiliza frecuentemente para describir la resistencia de las tabletas a la aplicación de una carga compresiva. Aunque dicha expresión describe la naturaleza real del ensayo de manera más exacta que la dureza, implica que las tabletas resultan realmente trituradas durante el ensayo, lo que con frecuencia no es el caso.
Alternativamente, puede medirse la resistencia a la rotura (resistencia a la trituración) según las patentes WO n° 2005/016313, n° 2005/016314 y n° 2006/082099, que puede considerarse una modificación del método descrito en Eur. Ph. El aparato utilizado para la medición preferentemente es un aparato de ensayo de materiales “Zwick Z2. 5”, Fmax=2,5 kN, con un estiramiento máximo de 1. 150 mm, que debe configurarse con una columna y un husillo, un hueco posterior de 100 mm y una velocidad de ensayo ajustable a un valor entre 0,1 y 800 mm/minuto con un programa testControl. La medición se lleva a cabo utilizando un pistón de presión con inserciones roscables y un cilindro (diámetro: 10 mm), un transductor de fuerza, Fmax 1 kN, diámetro=8 mm, clase 0,5 a partir de 10 N, clase 1 a partir de 2 N a ISO 7500-1, con certificado de ensayo M del fabricante según la norma DIN 55350-18 (fuerza bruta de Zwick Fmax=1,45 kN) (todos los aparatos de Zwick GmbH & Co. KG, Ulm, Alemania) con orden n° BTC-FR 2. 5 TH. D09 para el aparato de ensayo, orden n° BTC-LC 0050N. P01 para el transductor de fuerza, orden n° BO 70000 S06 para el dispositivo de centrado.
En una realización preferente de la invención, la resistencia a la rotura se mide con un aparato de ensayo de resistencia a la rotura, por ejemplo Sotax® , tipo HT100 o tipo HT1 (Allschwil, Suiza). Ambos, el Sotax® HT100 y el Sotax® HT1, pueden medir la resistencia a la rotura según dos principios de medición diferentes:velocidad constante (en la que la garra de ensayo se mueve a una velocidad constante ajustable entre 5 y 200 mm/minuto) o fuerza constante (en la que la garra de ensayo incrementa la fuerza linealmente entre 5 y 100 N/s). En principio, ambos principios de medida resultan adecuados para medir la resistencia a la rotura de la forma de dosificación farmacéutica según la invención. Preferentemente, la resistencia a la rotura se mide a velocidad constante, preferentemente a una velocidad constante de 120 mm/minuto.
En una realización preferente, la forma de dosificación farmacéutica se considera rota cuando se fractura al menos en dos trozos separados.
La forma de dosificación farmacéutica según la invención preferentemente tiene resistencia mecánica en un amplio intervalo de temperaturas, además de la resistencia a la rotura (resistencia a la trituración), opcionalmente también suficiente dureza, resistencia al impacto, elasticidad de impacto, resistencia ténsil y/o módulo de elasticidad, opcionalmente también a temperaturas bajas (por ejemplo inferiores a -24°C, inferiores a -40°C o en nitrógeno líquido), para que resulte virtualmente imposible pulverizarla por masticación espontánea, molido en mortero, golpeado, etc. De esta manera, preferentemente, la resistencia a la rotura comparativamente elevada de la forma de dosificación farmacéutica según la invención se mantiene incluso a temperaturas bajas o muy bajas, por ejemplo en el caso de que la forma de dosificación farmacéutica se enfríe inicialmente para incrementar su fragilidad, por ejemplo a temperaturas inferiores a -25°C, inferiores a -40°C o incluso en nitrógeno líquido.
La forma de dosificación farmacéutica según la invención se caracteriza por un determinado grado de resistencia a la rotura. Lo anterior no significa que la forma de dosificación farmacéutica debe mostrar también un determinado grado de dureza. La dureza y la resistencia a la rotura son propiedades físicas diferentes. Por tanto, la resistencia a la manipulación de la forma de dosificación farmacéutica no depende necesariamente de la dureza de la forma de dosificación farmacéutica. Por ejemplo, debido a su resistencia a la rotura, resistencia al impacto, módulo de elasticidad y resistencia ténsil, respectivamente, la forma de dosificación farmacéutica preferentemente puede deformarse, por ejemplo plásticamente, al ejercer una fuerza exterior, por ejemplo utilizando un martillo, pero no puede pulverizarse, por ejemplo desmenuzarse en un número elevado de fragmentos. En otras palabras, la forma de dosificación farmacéutica según la invención se caracteriza por un determinado grado de resistencia a la rotura, pero no necesariamente también por un determinado grado de estabilidad de forma.
Así, en el contexto de la descripción, una forma de dosificación farmacéutica que se deforma al exponerla a una fuerza en una dirección particular de extensión pero que no se rompe (deformación plástica o flujo plástico) preferentemente se considera que tiene la resistencia a la rotura deseada en dicha dirección de extensión.
Una realización particularmente preferente de la descripcion se refiere a una forma de dosificación farmacéutica resistente a la manipulación que tiene una resistencia a la rotura de al menos 300 N y a su termoformado mediante extrusión en caliente, comprendiendo dicha forma de dosificación farmacéutica:
- un opioide (A) seleccionado de entre el grupo consistente en oximorfona, oxicodona, hidromorfona, y sus sales fisiológicamente aceptables,
- un ácido multicarboxílico (B) fisiológicamente aceptable libre, preferentemente ácido cítrico, estando el contenido de ácido (B) dentro del intervalo de entre 0,05% y 1,50% en peso, con respecto al peso total de la forma de dosificación farmacéutica,
- un antioxidante, estabdo el contenido de antioxidante, preferentemente a-tocoferol, dentro del intervalo de entre 0,001% y 5,0% en peso, con respecto al peso total de la forma de dosificación farmacéutica, y
-un óxido de polialquileno (C) con un peso molecular promedio en peso, MW , de al menos 200.000 g/mol,
donde:
- el opioide (A) está incluido en una matriz que comprende el óxido de polialquileno (C), controlando dicha matriz la liberación del opioide (A) desde la forma de dosificación farmacéutica, y
- tras el almacenamiento durante 4 semanas a 40°C y 75% de humedad relativa, el contenido de opioide (A) supone al menos el 98,0% de su contenido original antes del almacenamiento.
La forma de dosificación farmacéutica según la invención puede producirse mediante diferentes procedimientos, de entre los que aquellos particularmente preferentes se explican en mayor detalle posteriormente. Ya se han descrito en la técnica anterior diversos procedimientos adecuados. A este respecto puede hacerse referencia a, por ejemplo, las patentes WO n° 2005/016313, n° 2005/016314, n° 2005/063214, n° 2005/102286, n° 2006/002883, n° 2006/002884, n° 2006/002886, n° 2006/082097 y n° 2006/082099.
Asimismo, la presente invención se refiere a formas de dosificación farmacéutica que se obtienen por cualquiera de los procedimientos descritos aquí posteriormente.
En general, el procedimiento para la producción de la forma de dosificación farmacéutica según la invención preferentemente comprende las etapas siguientes:
a) mezclar todos los ingredientes,
b) opcionalmente preformar la mezcla obtenida en la etapa (a), preferentemente aplicando calor y/o fuerza a la mezcla obtenida en la etapa (a), preferentemente no siendo suficiente la cantidad de calor suministrado para calentar el óxido de polialquileno (C) hasta su punto de ablandamiento,
c) endurecer la mezcla por la aplicación de calor y fuerza, resultando posible suministrar el calor durante y/o antes de la aplicación de fuerza, y siendo suficiente la cantidad de calor suministrado para calentar el óxido de polialquileno (C) al menos hasta su punto de ablandamiento,
d) opcionalmente singularizar la mezcla endurecida,
e) opcionalmente conformar la forma de dosificación farmacéutica, y
f) opcionalmente proporcionar un recubrimiento en película.
El calor puede suministrarse directamente, por ejemplo por contacto o con un gas caliente, tal como aire caliente, o con asistencia de ultrasonidos. Puede aplicarse fuerza y/o la forma de dosificación farmacéutica puede conformarse, por ejemplo por tableteo directo o con ayuda de una extrusora adecuada, particularmente con una extrusora de husillo de doble husillo (extrusora de doble husillo) o con una extrusoraplanetaria.
La forma final de la forma de dosificación farmacéutica puede conseguirse durante el endurecimiento de la mezcla mediante la aplicación de calor y fuerza (etapa (c)) o en una etapa posterior (etapa (e)). En ambos casos, la mezcla de todos los componentes preferentemente se lleva a cabo en el estado plastificado, es decir, preferentemente el conformado se lleva a cabo a una temperatura al menos superior al punto de ablandamiento del óxido de polialquileno (C). Sin embargo, la extrusión a temperaturas inferiores, por ejemplo a temperatura ambiente, también resulta posible y puede resultar preferente.
El conformado puede llevarse a cabo, por ejemplo, con de una prensa tableteadora que comprende una matriz y punzones de forma apropiada.
Un procedimiento particularmente preferente para preparar la forma de dosificación farmacéutica de la invención implica la extrusión en caliente. En este procedimiento, la forma de dosificación farmacéutica según la invención se produce mediante termoconformado con ayuda de una extrusora, preferentemente sin que se produzca una decoloración posterior observable del extruido. Sorprendentemente se ha encontrado que el ácido (B) es capaz de suprimir la decoloración. En ausencia de ácido (B), el extruido tiende a desarrollar una coloración beige a amarillenta, mientras que en presencia de ácido (B), el extruido es esencialmente incoloro, es decir, blanco.
Este procedimiento se caracteriza porque:
a) se mezclan todos los componentes,
b) la mezcla resultante se calienta en la extrusoraal menos hasta el punto de ablandamiento del óxido de polialquileno (C) y se extruye a través del orificio de salida dela extrusora mediante la aplicación de fuerza,
c) el extruido todavía plástico se singulariza y conforma en la forma de dosificación farmacéutica o
d) el extruido singularizado enfriado y opcionalmente recalentado se conforma en la forma de dosificación farmacéutica.
La mezcla de los componentes en la etapa de procedimiento a) también puede producirse en la extrusora.
Los componentes también pueden mezclarse en un mezclador conocido por el experto en la materia. El mezclador puede ser, por ejemplo, un mezclador de rodillos, agitador, un mezclador de cizalla o un mezclador forzado.
Antes de mezclar con los restantes componentes, preferentemente se proporciona el óxido de polialquileno (C) según la invención con un antioxidante, preferentemente a-tocoferol. Esto puede llevarse a cabo mezclandolos dos componentes, óxido de polialquileno (C) y antioxidante, preferentemente por la disolución o suspensión del antioxidante en un disolvente altamente volátil y mezclando homogéneamente esta solución o suspensión con el óxido de polialquileno (C) y eliminando el disolvente por secado, preferentemente bajo atmósfera de gas inerte.
La mezcla, preferentemente fundida, que se ha calentado en la extrusora al menos hasta el punto de ablandamiento del óxido de polialquileno (C) se extrusiona desde la extrusora a través de una matriz que tiene al menos un orificio.
El procedimiento según la invención requiere el uso de extrusoras adecuadas, preferentemente extrusoras de husillo. Las extrusoras de husillo con dos husillos (extrusoras de doble husillo) son particularmente preferentes.
La extrusión preferentemente se lleva a cabo de manera que la expansión de la hebra debido a la extrusión no es superior al 30%, es decir, al utilizar una matriz con un orificio que presenta un diámetro de, por ejemplo, 6 mm, la hebra extruida debería presentar un diámetro no superior a 8 mm. Más preferentemente, la expansión de la hebra no es superior al 25%, todavía más preferentemente no es superior a 20%, todavía más preferentemente no es superior a 15%, y en particular no es superior a 10%.
Preferentemente, la extrusión se lleva a cabo en ausencia de agua, es decir no se añade agua. Sin embargo, pueden estar presentes trazas de agua (por ejemplo debidas a la humedad atmosférica).
El extrusor preferentemente comprende al menos dos zonas de temperatura, produciéndose el calentamiento de la mezcla hasta al menos el punto de ablandamiento del óxido de polialquileno (C) en la primera zona, que se encuentra aguas abajo de una zona de alimentación y opcionalmente una zona de mezcla. El rendimiento de mezcla preferentemente está entre 1,0 kg y 15 kg/hora. En una realización preferente, el rendimiento está entre 1 y 3,5 kg/hora. En otra realización preferente, el rendimiento está entre 4 y 15 kg/hora.
En una realización preferente, la presión del cabezal de extrusión está comprendida en el intervalo de entre 25 y 100 bar. La presión del cabezal de extrusión puede ajustarse mediante, inter alia, la geometría de la matriz, el perfil de temperatura y la velocidad de extrusión.
La geometría de la matriz o la geometría de los orificios se selecciona libremente. La matriz o los orificios correspondientemente pueden tener una sección transversal circular, oblonga u oval, donde la sección transversal circular preferentemente tiene un diámetro de entre 0,1 mm y 15 mm y la sección transversal oblonga preferentemente tiene una extensión longitudinal máxima de 21 mm y una extensión cruzada de 10 mm. Preferentemente, la matriz o los orificios tienen una sección transversal circular. La carcasa dela extrusora utilizada según la invención puede calentarse o enfriarse. El control de temperatura correspondiente, es decir, el calentamiento o enfriamiento, se organiza de manera que la mezcla a extruirtengaal menos una temperatura media (temperatura de producto) correspondiente a la temperatura de ablandamiento del óxido de polialquileno (C) y no se incremente por encima de una temperatura a la que el opioide (A) a procesar pueda resultar dañado. Preferentemente, la temperatura de la mezcla a extruir se ajusta a un valor inferior a 180°C, preferentemente inferior a 150°C, pero a al menos la temperatura de ablandamiento del óxido de polialquileno (C). Temperaturas de extrusión típicas son 120°C y 130°C.
En una realización preferente, el par de torsión dela extrusora está comprendido en el intervalo de entre 30% y 95%. El par de torsión puede ajustarse mediante, inter alia, la geometría de la matriz, el perfil de temperatura y la velocidad de extrusión.
Tras la extrusión de la mezcla fundida y el enfriamiento opcional de la hebra o hebras extruídas, los extruidos preferentemente se singularizan. Esta singularización preferentemente puede llevarse a cabo cortando los extruidos con cuchillas giratorias, cortadoras por chorro de agua, alambres, hojas o con ayuda de cortadoras láser.
Preferentemente, el almacenamiento intermedio o final del extruido opcionalmente singularizado o de la forma final de la forma de dosificación farmacéutica según la invención se lleva a cabo bajo atmósfera anóxica, que puede conseguirse, por ejemplo, con secuestradores de oxígeno.
El extruido singularizado puede conformarse con una prensa en tabletas con el fin de proporcionarle la forma final a la forma de dosificación farmacéutica.
La aplicación de fuerza en la extrusora sobre la mezcla al menos plastificada se ajusta mediante el control de la velocidad de rotación del dispositivo de transporte en la extrusora y su geometría, y mediante el dimensionado del orificio de salida de manera que la presión necesaria para la extrusión de la mezcla plastificada se incremente en el interior dela extrusora, preferentemente inmediatamente antes de la extrusión. Los parámetros de la extrusión que, para cada composición particular, resultan necesarios para dar lugar a una forma de dosificación farmacéutica con las propiedades mecánicas deseadas, puede establecerse mediante sencillos ensayos preliminares.
Por ejemplo, aunque sin limitación, la extrusión puede llevarse a cabo con una extrusora de doble husillo tipo ZSE18 o ZSE27 (Leistritz, Nürnberg, Alemania), con diámetros de husillo de 18 ó 27 mm. Pueden utilizarse husillos de extremos excéntricos. Puede utilizarse una matriz calentable con un orificio circular con un diámetro de 7, 8 ó 9 mm. Los parámetros de extrusión pueden ajustarse, por ejemplo a los valores siguientes:velocidad de rotación de los husillos:120 Upm; tasa de extrusión 2 kg/h para ZSE18 ó 8 kg/h para ZSE27; temperatura del producto; delante de la matriz:125°C, detrás de la matriz:135°C; y temperatura de la camisa:110°C.
Preferentemente, la extrusión se lleva a cabo con extrusoras de doble husillo o epicicloidales, resultando particularmente preferentes las extrusoras de doble husillo (cogiratorias o contrarrotatorias)
La forma de dosificación farmacéutica según la invención preferentemente se produce mediante termoformado con ayuda de una extrusora sin ninguna decoloración subsiguiente observable en los extruidos.
El procedimiento para la preparación de la forma de dosificación farmacéutica según la invención preferentemente se lleva a cabo en continuo. Preferentemente, el procedimiento implica la extrusión de una mezcla homogénea de todos los componentes. Resulta particularmente ventajoso que el intermedio así obtenido, por ejemplo la hebra obtenida mediante extrusión, muestre propiedades uniformes. Resultan particularmente deseables la densidad uniforme, la distribución uniforme del compuesto activo, propiedades mecánicas uniformes, porosidad uniforme, apariencia superficial uniforme, etc. Únicamente bajo estas circunstancias puede garantizarse la uniformidad de las propiedades farmacológicas, tales como la estabilidad del perfil de liberación, y puede mantenerse en un nivel bajo la cantidad de rechazos.
Un aspecto adicional de la invención se refiere a un envase que contiene una forma de dosificación farmacéutica según la invención y un secuestrador de oxígeno. Entre los envases adecuados se incluyen blísteres y botellas, tales como botellas de vidrio o botellas de polímeros termoplásticos.
Los secuestradores de oxígeno adecuados son conocidos del experto en la materia. El secuestrador de oxígeno puede ser cualquiera conocido en la técnica por secuestrar oxígeno. Pueden utilizarse secuestradores de oxígeno tanto orgánicos como inorgánicos.
En una realización, el secuestrador de oxígeno es cualquier complejo metálico que muestre actividad de secuestro de oxígeno. Como ejemplos se incluyen complejos que contienen uno o más de entre aluminio, ferrosilicio aluminio, antimonio, berilio, calcio silicio, cerio, cobalto, galio, hafnio, hierro, aleación de magnesio, catalizador de níquel, selenio, silicio, plata, estroncio, titanio, zinc y/o circonio.
En todavía otra realización, puede utilizarse como secuestradores de oxígeno uno o más elementos del Grupo IA de la tabla periódica y sus aleaciones y compuestos. Entre los ejemplos de elementos del Grupo IA se incluyen cesio, litio, potasio y sodio. Entre los ejemplos adicionales de secuestradores inorgánicos de oxígeno se incluyen uno o más de entre azida sódica (NaN3), sulfito sódico (Na2SO3), hidrazina e hidroxilamina.
En una realización, el secuestrador de oxígeno es un compuesto orgánico. Entre los ejemplos se incluyen uno o más de los politerpenos, ácido ascórbico, ácido aminopolicarboxílico, ciclohexanodiona, tetrametilpiperidona, y compuestos heterocíclicos con grupos amino N-sustituidos.
Los secuestradores de oxígeno y la aplicación delos mismos en el envase farmacéutico son conocidos del experto en la materia. En una realización preferente, el secuestrador de oxígeno se selecciona de entre el grupo consistente en polimeros orgánicos oxidables catalizados por un metal y antioxidantes. Resultan particularmente preferentes aquellos secuestradores de oxígeno que son capaces de funcionar en un ambiente seco, de humedad relativa inferior al 60%, preferentemente inferior al 30%, y que se combinan con un desecante. Entre los ejemplos de secuestradores de oxígeno comerciales que satisfacen estos requisitos se incluyen Pharmakeep® KD10 y KD20.
Soprendentemente se ha encontrado que la estabilidad de almacenamiento de la forma de dosificación farmacéutica puede incrementarse al mantener el contenido de oxígeno de la atmósfera del interior del envase a un nivel bajo. Los métodos para el envasado de formas de dosificación farmacéutica y la aplicación de secuestradores de oxígeno adecuados son conocidos del experto en la materia. A este respecto puede hacerse referencia a, por ejemplo, D. A. Dean, Pharmaceutical Packaging Technology, Taylor & Francis, 1a edición; F. A. Paine y col., Packaging Pharmaceutical and Healthcare Products, Springer, 1a edición, y O. G. Piringer y col., Plastic Packaging:Interactions with Food and Pharmaceuticals, Wiley-VCH, 2a edición.
Respecto al envase, son preferentes las botellas redondas hechas de poliolefinas, preferentemente HDPE. El grosor de la pared de la botella preferentemente es de al menos 0,25 mm, más preferentemente de al menos 0,5 mm, o de lo contrario la botella podría colapsarse.
Respecto a la tapa del envase, el envase preferentemente se sella por inducción o por calor con una hoja de aluminio. Sorprendentemente se ha encontrado que, seleccionando una forma apropiada para el envase y para el sellado, el vacío que se produce por el efecto del secuestrador de oxígeno (infrapresión de aproximadamente 20.000 Pa=2 N/cm2) puede soportarse sin causar el colapso del envase. Resulta preferente el sellado por inducción (por ejemplo 3 segundos de energía). Al sellar una botella de 75 ml con una abertura de 2,5 cm (una pulgada) de diámetro utilizando una hoja de aluminio, una infrapresión de 20.000 Pa debido al secuestro del oxígeno resulta en una fuerza de aproximadamente 10 N correspondiente a la fuerza ejercida por un peso de 1 kg.
La estabilidad mecánica del sellado puede someterse a ensayo introduciendo una cantidad apropiada de secuestrador de oxígeno en la botella, sellándola y esperando durante un periodo de tiempo suficiente, por ejemplo 2 días, para que el oxígeno resulte secuestrado y se haya desarrollado una infrapresión de aproximadamente 20.000 Pa. Alternativamente, la botella puede sellarse sin ningún secuestrador de oxígeno en su interior y colocarse un peso de 1 kg sobre la hoja de aluminio externamente, simulando así la fuerza.
Un aspecto adicional de la invención se refiere al uso de un opioide (A) para la preparación de la forma de dosificación farmacéutica tal como se ha descrito anteriormente para el tratamiento del dolor.
Un aspecto adicional de la invención se refiere al uso de una forma de dosificación farmacéutica tal como se ha descrito anteriormente para evitar o dificultar el abuso del opioide (A) contenido en la misma.
Un aspecto adicional de la invención se refiere al uso de una forma de dosificación farmacéutica tal como se ha descrito anteriormente para evitar o dificultar la sobredosis involuntaria del opioide (A) contenido en la misma.
A este respecto, la descripción también se refiere al uso de un opioide (A) tal como se ha descrito anteriormente y/o de un óxido de polialquileno (C) tal como se ha descrito anteriormente para la preparación de la forma de dosificación farmacéutica según la invención para la profilaxis y/o el tratamiento de un trastorno, previniendo así una sobredosis del opioide (A), particularmente debido a la trituración de la forma de dosificación farmacéutica poruna acción mecánica. Además, la invención se refiere a un método para la profilaxis y/o el tratamiento de un trastorno, que comprende la administración de la forma de dosificación farmacéutica según la invención, previniendo así una sobredosis del opioide (A), particularmente debido a la trituración de la forma de dosificación farmacéutica por una acción mecánica. Preferentemente, la acción mecánica se selecciona de entre el grupo consistente en masticación, molido en mortero, golpeado y utilización de aparatos para pulverizar formas de dosificación farmacéutica convencionales.
Los ejemplos siguientes ilustran adicionalmente la invención, aunque no deben interpretarse como limitativos del alcance de la misma.
Ejemplo 1
Se prepararon tabletas por extrusión en caliente de diversas mezclas constituyentes homogéneas bajo las condiciones de extrusión idénticas siguientes:
tipo de extrusora:Extrusor Leistritz ZSE18PH 40D dotado de husillos de alta cizalla y una matriz de 9 mm de diámetro. rendimiento:1,0 kg/h
velocidad de rotación:100 rpm
temperatura del barril:100°C
temperatura del extruido:120°C
El extruido se cortó en secciones de 325 mg que contenían aproximadamente 5 mg de clorhidrato de oximorfona.
Los constituyentes individuales de las mezclas extruídas, así como la cantidad total de productos de descomposición antes y después del almacenamiento bajo condiciones de almacenamiento acelerado se resumen en la tabla siguiente:
(A): clorhidrato de oximorfona
PEO : óxido de polietileno Mw 7 pg/mol
PEG : polietilenglicol 6000
HPMC : hipromelosa 100. 000 Pa*s
a-toc, : a-tocoferol
oNo : N-óxido de oximorfona (mezcla)
S: suma de todas las impurezas
1: tras la extrusión, antes del almacenamiento
2 : tras el almacenamiento, botellas de vidrio ámbar, tapa de plástico, 4 semanas, 40°C, 75% de humedad relativa
Se analizaron los productos de descomposición por HPLC-UV. El pico de elución para el N-óxido de oximorfona no pudo separarse lo suficiente de la línea base respecto a un pico de un producto de degradación desconocido (denominado “UK 0,83”). Así, ambos picos se integraron conjuntamente. Resulta evidente a partir de una comparación entre los ejemplos Ai a A5 que el contenido de N-óxido de oximorfona antes del almacenamiento (oNo1) no cambia sustancialmente al reducir el contenido del antioxidante a-tocoferol de 1,5% en peso a 1,0% en peso, 0,5% en peso, 0,2% en peso e incluso 0% en peso. Sin embargo, tras el almacenamiento (oNo2), el contenido de N-óxido de oximorfona era proporcional al contenido de a-tocoferol. Esto resulta muy inesperado, debido a que el N-óxido de oximorfona es un producto de oxidación y sería de esperar que los antioxidantes habitualmente suprimiesen y no apoyasen la formación de productos de oxidación.
Sin embargo, la omisión completa de antioxidante (a-tocoferol) tiene desventajas. Puede demostrarse mediante mediciones de la viscosidad que el óxido de polietileno de alto peso molecular se degrada tras la extrusión y/o almacenamiento en ausencia de antioxidante. Inesperadamente se ha encontrado que resulta suficiente aproximadamente un 0,2% en peso de a-tocoferol para estabilizar el óxido de polietileno; contenidos más altos de atocoferol no resultan en viscosidades más altas del óxido de polialquileno y, por ello, no impiden más pronunciadamente la degradación del PEO. Así, el contenido de antioxidante (a-tocoferol) preferentemente se equilibra de manera que, por una parte, el óxido de polietileno de alto peso molecular resulte suficientemente estabilizado y que, por otra parte, la formación no deseada de N-óxido de oximorfona se mantenga baja durante el almacenamiento.
Además, se pone de manifiesto a partir de una comparación entre los ejemplos B1 a B4 y entre los ejemplos C1 a C4 que la sustitución parcial del óxido de polietileno de alto peso molecular o la sustitución total del polietilenglicol por un plastificante alternativo no resulta en una reducción sustancial del contenido de N-óxido de oximorfona no deseada. Esto resulta inesperado debido a que se esperaría que el óxido de polietileno y el polietilenglicol fuesen portadores potenciales de peróxido, y que una reducción de los mismos resultaría en uan reducción de los procesos oxidativos, tales como la oxidación de la oximorfona en N-óxido de oximorfona.
Además, se pone de manifiesto a partir de una comparación entre los ejemplos D1 a D5 y entre E1 a E4 que la adición de un ácido fisiológicamente aceptable, particularmente ácido cítrico, conduce a una reducción de la formación de N-óxido de oximorfona. Este efecto es más pronunciado cuando aumenta la cantidad de ácido. A una concentración del 0,1% en
peso, el efecto es comparativamente débil, pero a una concentración del 0,2% en peso, el efecto es más fuerte y resulta adicionalmente incrementado cuando se incrementa la concentración de ácido cítrico. No sólo se reduce la cantidad de N-óxido de oximorfona, sino también la cantidad total de productos de descomposición, particularmente de aquellos con tiempos de retención altos en la HPLC.
Ejemplo 2
Las tabletas que habían sido preparadas análogamente a los ejemplos A1, B1, C1, D1 y E1 anteriormente dado se envasaron en diferentes materiales de envasado, y se almacenaron a 40°C y 75% de humedad relativa. Los productos de descomposición antes y después del almacenamiento bajo condiciones de almacenamiento acelerado se resumen en la tabla siguiente:
Las botellas de HDPE tenían un volumen de 75 ml. El secuestrador de oxígeno era Pharmakeep® KD20 (Mitsubishi, Japón).
Sorprendentemente, se ha encontrado que la inclusión de un secuestrador de oxígeno en el envase resulta en una estabilización adicional de la forma de dosificación, de manera que se limita la formación de productos de descomposición a valores extremadamente bajos.
Ejemplo 3
Se prepararon tabletas tal como se describe en el Ejemplo 1, se envasaron en botellas de HDPE de 75 ml de volumen junto con un secuestrador de oxígeno combinado con un desecante (Pharmakeep 20 KD), cerrado con una tapa de plástico con sello de inducción.
Los constituyentes individuales de las mezclas extruidas, la cantidad total de productos de descomposición antes y después del almacenamiento bajo condiciones de almacenamiento acelerado se resumen en la tabla siguiente.
(A) : clorhidrato de oximorfona
PEO : óxido de polietileno Mw 7 pg/mol
PEG : polietilenglicol 6000
HPMC : hipromelosa 100. 000 Pa*s
a-toc, : a-tocoferol
oNo : N-óxido de oximorfona (mezcla)
S: suma de todas las impurezas
1: tras la extrusión, antes del almacenamiento
2: tras el almacenamiento, botellas de HDPE, tapa de plástico con sello de inducción, secuestrador de oxígeno,
4 semanas, 40°C, 75% humedad relativa
3: tras el almacenamiento, botellas de HDPE, tapa de plástico con sello de inducción, secuestrador de oxígeno,
8 semanas, 40°C, 75% de humedad relativa
Los resultados muestran que la pureza del producto es muy alta tras la fabricación y que el producto muestra estabilidad durante un almacenamiento de 8 semanas bajo condiciones aceleradas de 40°C/75% de humedad relativa.
Ejemplo 4
Se prepararon tabletas tal como se describe en el Ejemplo 1, aunque se cortaron en secciones de 215 mg que tenían 5 mg o 40 mg de HCl de oximorfona; tras formar las tabletas, se recubrió cada una con aproximadamente 6,5 mg de un alcohol polivinílico convencional que contenía recubrimiento de película Opadry II como excipiente formador de película, envasado en botellas de HDPE de 75 ml de volumen junto con un secuestrador de oxígeno combinado con un desecante (Pharmakeep 20 KD), cerrado con una tapa de plástico con sello de inducción.
Los constituyentes individuales de las mezclas extruidas, la cantidad total de productos de descomposición antes y después del almacenamiento bajo condiciones de almacenamiento acelerado se resumen en la tabla siguiente.
(A) : clorhidrato de oximorfona
PEO : óxido de polietileno Mw 7 pg/mol
PEG : polietilenglicol 6000
HPMC : hipromelosa 100. 000 Pa*s
a-toc, : a-tocoferol
oNo : N-óxido de oximorfona (mezcla)
S: suma de todas las impurezas
1: tras la extrusión, antes del almacenamiento
2: tras el almacenamiento, botellas de HDPE, tapa de plástico con sello de inducción, secuestrador de oxígeno 1 mes, 40°C, 75% de humedad relativa.
Ejemplo 5
La forma de dosificación más preferente según el Ejemplo 3 también resulta adecuada para la estabilización de la oxicodona. Esto pudo demostrarse para una formulación que contenía 80 mg de HCl de oxicodona preparado análogamente al Ejemplo 1 aunque el extruido se cortó en secciones de 400 mg:
(A) : oxicodona
PEO : óxido de polietileno Mw 7 pg/mol
PEG : polietilenglicol 6000
HPMC : hipromelosa 100. 000 Pa*s
a-toc, : a-tocoferol
oNo : N-óxido de oxicodona (impureza D+E)
i : tras la extrusión, antes del almacenamiento
2- tras el almacenamiento, botellas de vidrio ámbar, tapa de plástico, secuestrador de oxígeno con desecante (Pharmakeep 20KD), 1 mes, 40°C, 75% de humedad relativa
Ejemplo 6
En un estudio de dosis única (40 mg de HCl de oximorfona, tabletas del Ejemplo 4) aleatorizado cruzado de tres vías con 1 semana entre tratamientos, los sujetos se sometieron a ayuno durante la noche y se sirvieron alimentos 4 y 10 horas después de la dosificación. No se proporcionó agua en ±1 hora de la dosificación. Todas las tabletas se ingirieron con 240 ml de agua (Ejemplo T).
Se extrajeron muestras farmacocinéticas para oximorfona y 6-OH-oximorfona predosis y hasta 48 horas después de la dosificación.
Se comparó la bioequivalencia a Opana ER® (referencia R).
Los resultados se resumen en las tablas siguientes:
IC = intervalo de confianza
Resulta evidente que las formas de dosificación según la invención con una resistencia a la rotura incrementada son bioequivalentes a las formas de dosificación convencionales (Opana ER®).
Ejemplo 7
Se prepararon tabletas bajo condiciones idénticas mediante extrusión en caliente de dos mezclas constituyentes homogéneas I1 e I2:
bajo las condiciones de extrusión idénticas siguientes:
tipo de extrusora: extrusora Leistritz tipo Micro 27 GL 40 D cpn husillos de cizalla media y una matriz de 8 mm de diámetro
rendimiento: 10 kg/h
velocidad de rotación: 120 rpm
tiempo de fabricación: 30 minutos
temperatura de la zona de calentamiento más caliente: 100°C
temperatura de la matriz: 130°C,
El extruido se cortó en secciones de 360 mg que contenía aproximadamente 40 mg de clorhidrato de oximorfona,
Se pesaron individualmente 100 secciones y se calculó la desviación estándar del peso. Las secciones de la composición I1 (PEO:PEG=6,82:1) mostraron una desviación estándar de 2,3%, mientras que las secciones de composición I2 (PEO:PEG=4,21:1) mostraron una desviación estándar de únicamente 1,6%.
Resulta evidente a partir de estos ensayos comparativos que inesperadamente puede mejorarse la procesabilidad de la masa extruida ajustando la proporción entre PEO y PEG.
Ejemplo 8
Para investigar si también otros ácidos multicarboxílicos diferentes del ácido cítrico podían perjudicar a la formación de N-óxido de oximorfona, se fabricaron tabletas que contenían ácido maleínico o ácido fumárico tal como se describe en el Ejemplo 1. A título comparativo, también se prepararon tabletas que contenían la sal inorgánica NaH2PO4. Las muestras se almacenaron en platos abiertos a 40°C y 75% de humedad relativa durante 4 semanas.
Los constituyentes individuales de las mezclas extruidas, así como la cantidad total de productos de descomposición antes y después del almacenamiento bajo condiciones de almacenamiento acelerado se resumen en la tabla siguiente:
(A) : clorhidrato de oximorfona
PEO : óxido de polietileno Mw 7 pg/mol
PEG : polietilenglicol 6000
HPMC : hipromelosa 100. 000 Pa*s
a-toc, : a-tocoferol
*NaH2PO4: como 1,3% del dihidrato
oNo : N-óxido de oximorfona (mezcla)
S: suma de todas las impurezas: ácido maleínico , ácido fumárico y compuestos relacionados restados de la suma de impurezas
1: tras la extrusión, antes del almacenamiento
2: tras almacenamiento, plato abierto, 4 semanas, 40°C, 75% de humedad relativa
En el caso de los ácidos maleínico y fumárico, estos compuestos, y para el ácido maleínico otro compuesto relacionado, fueron detectados durante los ensayos de pureza como impurezas (hasta aproximadamente 40%). Se han restado sus valores de la suma de impurezas.
Resulta evidente a partir de una comparación entre los ejemplos J1 y J2 con A 1 y B1 que la presencia de los ácidos maleínico y fumárico protegieron a la oximorfona totalmente frente a la oxidación a N-óxido y en gran medida frente a otro tipo de degradación, a pesar de que las muestras se almacenaron en platos abiertos y no en botellas cerradas. Estos resultados son comparables a los obtenidos con ácido cítrico (Ejemplo 1, D4 y E2-E4). Las muestras que contenían NaH2 PO4 (J3 ) mostraron protección frente a la formación de N-óxido y a otro tipo de degradación en comparación con las formulaciones sin ningún compuesto ácido (A1 y B1 ), pero en menor grado que los ácidos multicarboxílicos tales como los ácidos cítrico, maleínico y fumárico.
Ejemplo 9
Con el fin de investigar si la presencia de ácido cítrico también protegía a los opioides sensibles a la oxidación diferentes de la oximorfona frente a la N-oxidación, se prepararon tabletas que contenían clorhidrato de oxicodona tal como se describe en el Ejemplo 1.
A título comparativo, también se prepararon tabletas que contenían menores cantidades de a-tocoferol. Las muestras se almacenaron en platos abiertos a 40°C y 75% de humedad relativa durante 4 semanas.
Los constituyentes individuales de las mezclas extruidas, así como la cantidad total de productos de descomposición antes y después del almacenamiento bajo condiciones de almacenamiento acelerado se resumen en la tabla siguiente:
(A) : clorhidrato de oxicodona
PEO : óxido de polietileno Mw 7 pg/mol
PEG : polietilenglicol 6000
HPMC : hipromelosa 100. 000 Pa*s
a-toc. : a-tocoferol
oNo : N-óxido de oxicodona
S: suma de todas las impurezas
i : tras la extrusión, antes del almacenamiento
2 - tras almacenamiento, plato abierto, 4 semanas, 40°C, 75% de humedad relativa
Estos resultados demuestran que el ácido cítrico protegió a la oxicodona totalmente frente a la oxidación a N-óxido y en gran medida frente a otro tipo de degradación, a pesar de que las muestras se almacenaron en platos abiertos y no en botellas cerradas. La reducción de la cantidad de a-tocoferol resultó en un nivel menor de degradación al utilizar formulaciones que no contenían ácido cítrico. Estos resultados son comparables a los obtenidos con oximorfona.