EP3128039B1 - High-purity copper sputtering target or high-purity copper alloy sputtering target - Google Patents

High-purity copper sputtering target or high-purity copper alloy sputtering target Download PDF

Info

Publication number
EP3128039B1
EP3128039B1 EP16190070.9A EP16190070A EP3128039B1 EP 3128039 B1 EP3128039 B1 EP 3128039B1 EP 16190070 A EP16190070 A EP 16190070A EP 3128039 B1 EP3128039 B1 EP 3128039B1
Authority
EP
European Patent Office
Prior art keywords
inclusions
less
purity copper
purity
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16190070.9A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3128039A1 (en
Inventor
Atsushi Fukushima
Yuichiro Shindo
Susumu Shimamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Publication of EP3128039A1 publication Critical patent/EP3128039A1/en
Application granted granted Critical
Publication of EP3128039B1 publication Critical patent/EP3128039B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Definitions

  • the present invention relates to a high-purity copper or high-purity copper alloy sputtering target, a process for manufacturing the foregoing sputtering target, and a high-purity copper or high-purity copper alloy sputtered film.
  • % and ppm as used herein respectively represent “mass%” and “mass ppm”.
  • purity represents the purity excluding C, O, N and H as gas components.
  • the sputtering method is to form a film on a substrate by utilizing the phenomenon where atoms configuring the target are discharged into space and accumulated on the opposing substrate based on the momentum exchange that occurs when the accelerated charged particles collide with the target surface.
  • the sputtering target is usually in the shape of a discoid or rectangular plate, and is used as the sputter source for forming, on the substrate, an electrode, gate, element, insulating film, protective film and the like for various semiconductor devices by way of sputtering.
  • an aluminum and aluminum alloy target a copper and copper alloy target, a high-melting-point metal and alloy target, a metal silicide target and the like are used.
  • an important target is a copper and copper alloy target that is used in forming a copper wiring as an alternative of a conventional aluminum wiring.
  • nodules protrusions having a size of several ⁇ m to several mm, referred to as nodules, sometimes arise on the eroded portion of the sputtering target.
  • nodules will burst as a result of colliding with the charged particles during the sputtering process, and thereby cause the generation of particles (cluster-state coarse fragments) on the substrate.
  • the generation of particles will increase in proportion to the amount of nodules on the eroded surface of the target, and a major issue is to prevent the generation of nodules in order to reduce the problematic particles.
  • particles directly adhere to the thin film that is formed on the substrate, or once adhere to and accumulate on the peripheral wall or component of the sputtering device and thereafter flake off and once again adhere to the thin film; and it causes problems such as the disconnection or short circuit of the wiring.
  • the generation of particles is becoming a major problem pursuant to the advancement of higher integration and miniaturization of the electronic device circuit as described above.
  • Patent Document 1 describes cleaning electrolyte based on solvent extraction.
  • Patent Document 2 describes eliminating Sb and Bi with chelate resin.
  • Patent Document 3 describes adding a diaphragm and glue in copper electrolysis to smooth the electrolyzed surface, and thereby reducing the uptake of impurities.
  • Patent Document 4 describes bringing anolite into contact with activated carbon in copper electrolysis to eliminate glue.
  • Patent Document 5 describes performing electrolysis once again in copper electrolysis.
  • Patent Document 6 describes smoothing the electrode surface based on periodic reverse-current electrolysis in copper electrolysis to prevent the inclusion of suspended solids and electrolyte.
  • Patent Document 7 describes adding a macromolecular additive to improve the surface condition and using electrolyte containing urea in copper electrolysis to produce high-purity copper with a low silver and sulfur content.
  • Patent Document 8 describes that the three metallurgical characteristics of a sputtering target affecting the performance of the target are: the uniformity of the material (no precipitate, void, inclusion and other defects); crystal grain size (finer crystal grain size is generally more preferable than coarse crystal grain size); and texture (texture relates to the strength of a specific crystallographic orientation, that is, a "weak” texture includes substantially random distribution of the crystallographic orientation, and a "strong” texture includes a preferential crystallographic orientation in the distribution of the crystallographic orientation). Patent Document 8 further describes that it is generally necessary to reduce defects such as inclusions in the target.
  • Patent Document 9 discloses a titanium sputtering target in which the number of inclusions of 1 ⁇ m or more existing at the crystal grain boundary of titanium configuring the target is 100 inclusions or less per 1cm 2 of the target plane. Patent Document 9 additionally describes that the inclusions existing at the crystal grain boundary of titanium are a composite compound based on a combination of one or more types among oxides, nitrides, carbides, sulfides, and hydrides of metal components of titanium or iron, nickel, chromium, aluminum, silicon, tungsten and molybdenum, and that the oxides can be decomposed by heat treatment.
  • Patent Document 10 and Patent Document 11 describe that the number of inclusions in an aluminum or aluminum alloy target is reduced to be 40 inclusions/cm 2 or less per unit area; splashes can be reduced by bringing the maximum length of the inclusions to 20 ⁇ m or less; to reduce the inclusions in the sputtering target is particularly important in order to inhibit the generation of particles and splashes; and inclusions are reduced by filtering molten metal with a ceramic filter.
  • Patent Document 12 discloses a high-purity copper or copper alloy sputtering target, wherein the target has an oxygen content of 100ppm or less, a carbon content of 150ppm or less, a nitrogen content of 50ppm or less, and a sulfur content of 200ppm or less, or the number of indications having a flat-bottomed hole diameter of 0.5mm or more is 0.014 indications/cm 2 or less on an ultrasonic inspection performed from the target surface; and a process for manufacturing a high-purity copper or copper alloy sputtering target having an oxygen content of 100ppm or less, a carbon content of 150ppm or less, a nitrogen content of 50ppm or less, and a sulfur content of 200ppm or less, wherein used is a high-purity copper or copper alloy ingot obtained by melting and casting based on electron beam melting or vacuum induction skull melting.
  • inclusions large enough to be detected on the ultrasonic inspection are not observed in current high-purity copper targets.
  • Patent Document 13 describes that oxygen, nitrogen and carbon as gas components contained in the copper alloy sputtering target form inclusions at the crystal grain boundary and cause the generation of particles, and that it is desirable to reduce such gas components as much as possible since they cause the unexpected generation of particles during the sputter life. Patent Document 13 also describes that unavoidable impurities excluding gas components are reduced to 10wtppm or less.
  • Patent Document 14 discloses copper sputtering targets with a 6N or higher purity.
  • the purity and structure of the target must be improved in order to inhibit the generation of particles and, needless to say, the raw material itself must be of high purity.
  • the selection of the raw material is important, there is a high possibility of incorporation of impurities during the process of producing the target.
  • Nonmetal inclusions exist even in a high-purity copper target having a purity level of 6N or even 7N.
  • Nonmetal inclusions of oxide system such as alumina and magnesia were generally considered as the harmful impurities. These elements need to be reduced as a matter of course, but it has been discovered that, rather than the foregoing oxide system inclusions, carbon system inclusions particularly have an adverse effect in the process of producing copper wirings (especially those which are 0.18 ⁇ m or less) of semiconductor devices. These inclusions get mixed as particles in the film that is formed by sputtering the target containing the foregoing nonmetal inclusions.
  • the carbon system inclusions are more likely to have an adverse effect.
  • the reason for this is because, for instance, if graphite is incorporated as particles in the film that is formed by sputtering, since it has low electrical resistance, it is difficult to detect the wiring portion containing the particles, and it may not be possible to detect such particles as defects.
  • measures were not taken for eliminating such carbon system inclusions (especially graphite) in advance.
  • oxide system inclusions can be easily eliminated with CMP (Chemical Mechanical Polishing) during the process of forming the wiring after deposition, since carbon system inclusions (especially graphite) are chemically stable, they tend to remain without being eliminated and become a nuisance once they are incorporated in the film.
  • CMP Chemical Mechanical Polishing
  • the used target was checked.
  • a liquid particle counter even though it was a high-purity copper target having a purity of 6N and a carbon content of 1ppm or less, nonmetal inclusions having a particle size of 0.5 ⁇ m or more and 20 ⁇ m or less were detected in a quantity of approximately 60,000 inclusions/g in the target structure.
  • the foregoing nonmetal inclusions or the carbon system inclusions of carbon or carbide were measured with the "light scattering automatic particle counter for liquid" (manufactured by Kyushu RION Corporation).
  • the measurement method is based on sorting the particle size in the liquid and measuring the particle concentration and particle count.
  • the foregoing measuring equipment is also known as a “liquid particle counter” and is based on JIS B 9925 (this measuring equipment is hereinafter referred to as the "liquid particle counter").
  • the target structure 5g of the target structure were sampled and slowly dissolved in 200c of acid so that the inclusions will not be dissolved, it is diluted with deionized water to be 500cc, and 10cc of this was taken and measured with the liquid particle counter. For example, if the number of inclusions is 800 inclusions/cc, this means that 0.1g of the sample was analyzed in 10cc, and the number of inclusions will be 8000 inclusions/g.
  • an object of the present invention is to reduce the percent defect of wirings of semiconductor device during sputter deposition so as to ensure favorable repeatability, as a result of using high-purity copper or high-purity copper alloy from which harmful inclusions of P, S, C and O system have been reduced as the raw material, controlling the existence form of nonmetal inclusions in the raw material, in particular reducing carbon system inclusions, and thereby improving the purity and the structure of the high-purity copper or high-purity copper alloy target itself.
  • the present inventors made the following discovery. Specifically, the present inventors discovered that it is possible to reduce the percent defective of wirings of semiconductor device that were formed by sputtering a high-purity copper or high-purity copper alloy target, as a result of reducing the abundance of nonmetal inclusions having a particle size of 0.5 ⁇ m or more and 20 ⁇ m or less in high-purity copper and high-purity copper alloy, and additionally reducing carbon system inclusions.
  • the present invention provides:
  • the present invention additionally provides:
  • the present invention also provides:
  • P, S, O and C are particularly problematic as impurities that cause the generation of inclusions. Since the solubility of these elements in copper is extremely low, many of these become inclusions in copper. Particularly in achieving a high-purity copper of the present invention, it is a taboo to add organic additives such as glue or polymer for smoothing or the like as is conventionally done. This is because the addition of such additives will increase the existence of P, S, O and C.
  • electrolyte of a sulfuric acid system that particularly causes incorporation of nonmetal inclusions, in particular S was not used, and electrolyte of nitric acid or hydrochloric acid system was used. Nevertheless, even when taking the foregoing measures, the inclusion of large amounts of P, S, O and C as impurities was acknowledged. Thus, it was necessary to seek the cause of increase in impurities elsewhere; that is, other than the increase due to electrolyte itself.
  • SiO 2 , C (carbon and carbide), and AS 2 O 3 may be incorporated by: elution of organics from electrolytic device, particularly pipes or the like for supplying and circulating the electrolyte, into the electrolyte during electrolytic refining; circumstances in which the electrolytic device is placed; and the adhesion to the anode.
  • P, S and O contained in the electrolyte exist as the suspended solids of CuP, CuS and CuO, and it has also been discovered that these suspended solids are sometimes caught in the copper during the electrolysis at the cathode, and that these suspended solids are the primary cause of contamination.
  • the impurities are organics
  • the electrolytic copper containing organics of several ppm or more in a high concentration is to be melted by way of high frequency melting in order to achieve high purity
  • carbon (C) that is formed as a result of the decomposition of the organics will be incorporated in the melted copper as is, or as carbide.
  • nonmetal inclusions refers to the solids existing in the copper structure. Once these solids are incorporated, they cannot be sufficiently eliminated in the melting process.
  • carbon or carbide having carbon as its component is particularly harmful as described above.
  • carbon or carbide is incorporated during the semiconductor production process, it becomes extremely difficult to eliminate such carbon or carbide.
  • impurities cause defects in the semiconductor equipment and become even a greater problem pursuant to the miniaturization of such semiconductor equipment.
  • an important process for eliminating impurities on a raw material level is to provide a diaphragm between the anode and the cathode and pass the electrolyte extracted from the anode-side electrolytic cell (anode box) or the additional electrolyte through an activated carbon filter immediately before supplying such electrolyte to the cathode-side electrolytic cell (cathode box), and thereafter to supply the electrolyte to cathode-side electrolytic cell in order to perform electrolytic refining.
  • the electrolytic production process for producing the high-purity copper was described above, and the high-purity copper of the present invention can only be obtained with the foregoing process.
  • the starting material a commercially available high-purity copper material having a purity level of 5N or less can be used. Nevertheless, this starting material contains metal components other than Cu, nonmetal components (SiO 2 , Al 2 O 3 and so on), P, S, O, C and their compounds (CuP, CuS, CuO and so on) each in the amount of several ppm to several thousand ppm.
  • the high-purity copper of the present invention uses the foregoing starting material as the raw material; it is desirable to yield a high-purity copper of which the purity is 6N or higher and in which the content of the respective components of P, S, O and C is 1ppm or less and the number of nonmetal inclusions having a particle size of 0.5 ⁇ m or more and 20 ⁇ m or less is 10,000 inclusions/g or less, more preferably 5,000 inclusions/g or less.
  • the components of P, S, O and C all become impurities in copper and form phosphides, sulfides, carbides and oxides that do not become a solid solution in the copper, and these may cause the formation of nonmetal inclusions.
  • these components of 1ppm or less respectively, the nonmetal inclusions can be reduced and the characteristics of high-purity copper can improve.
  • the high-purity copper produced as described above is used to prepare a target.
  • the present invention is to bring the number of nonmetal inclusions having a particle size of 0.5 ⁇ m or more and 20 ⁇ m or less contained in the high-purity copper or high-purity copper alloy sputtering target to 30,000 inclusions/g or less, and the volume of such nonmetal inclusions is the problem. If the number of nonmetal inclusions in the high-purity copper or high-purity copper alloy as the raw material exceeds 10,000 inclusions/g, the nonmetal inclusions in the target will reach a level of becoming problematic and become protrusive foreign matter during the erosion of the target, and abnormal discharge is easily generated at such protrustive foreign matter. This causes the generation of particles during sputtering.
  • the value of 30,000 inclusions/g or less is not necessarily a large amount. This value cannot be achieved simply by reducing the content of impurities configuring the nonmetal inclusions to be 1ppm or less.
  • the number of nonmetal inclusions having a particle size of 0.5 ⁇ m or more and 20 ⁇ m or less is 15,000 inclusions/g or less.
  • the existence of inclusions of carbon or carbide is harmful, and it is desirable to reduce the nonmetal inclusions containing carbon or carbide having a particle size of 0.5 ⁇ m or more and 20 ⁇ m or less to 15,000 inclusions/g or less. It is more preferable to reduce such inclusions to 10,000 inclusions/g or less, and even more preferable to reduce those to 5,000 inclusions/g or less so that it will be 50% or less of the overall nonmetal inclusions. Since the carbon or carbide is often contaminated from organics as described above, the use of organics in electrolytic refining must be avoided.
  • a high-purity copper alloy sputtering target can be produced by additionally adding an alloy element to the foregoing high-purity copper as the base material.
  • the sputtering target may be produced by adding one type or two types or more among the normally added elements of Al, Ag, B, Cr, Ge, Mg, Mn, Nd, Si, Sn, Ti and Zr to the high-purity copper at a rate of 10% or less.
  • high-purity copper materials and the aforementioned alloy component materials may be used as the raw material of the high-purity copper or high-purity copper alloy to be used in producing the sputtering target of the present invention.
  • radioactive elements such as U and Th as impurities affect the MOS with their radiation, alkali metals and alkali earth metals such as Na and K deteriorate the MOS interface characteristics, and transition metals or heavy metals such as Fe, Ni and Co generate an interface state or cause a junction leak. These elements may contaminate the semiconductor equipment through the copper film.
  • a target is usually prepared by melting and casting the raw material, performing plastic forming processes such as forging and rolling as well as heat treatment in order to achieve the appropriate crystal structure, particle size and the like of the cast material, and performing finish processing to obtain the final target size in a discoid shape or the like.
  • the quality of the target such as its crystal orientation can be controlled by appropriately combining the plastic forming process such as forging and rolling, and the heat treatment process.
  • the primary inclusions in the copper and copper alloy are oxides, nitrides, carbides and sulfides, and they are generated during the process of melting and casting the raw material.
  • melting and casting are performed in a nonoxidizing atmosphere, or preferably in a vacuum for efficiently eliminating oxygen, nitrogen and sulfur as the inclusion sources.
  • electron beam melting using a water-cooled copper crucible is suitable in order to avoid the contamination of carbon and oxygen from the graphite crucible that is used in conventional high frequency melting.
  • the vacuum arc remelting process it is preferable to use the high-purity copper as the electrode, and it is further preferable to use high-purity copper with as few inclusions as the melted raw material. Moreover, with the cold crucible melting process, it is also effective to add the arc melting function of using the high-purity copper as the electrode in order to assist the melting process.
  • the reduction of impurities and inclusions of the target is reflected in the thin film, and a thin film having the same inclusion level of impurities and inclusions as the target can be obtained.
  • the target raw material preferably used is high-purity copper of which the purity is 6N or higher and in which the content of the respective components of P, S, O and C is 1ppm or less and the number of nonmetal inclusions having a particle size of 0.5 ⁇ m or more and 20 ⁇ m or less is 10,000 inclusions/g or less.
  • 4N-Cu was used as the raw material anode and electrolytic refining was performed using electrolyte of nitric acid series.
  • electrolysis was performed by separating the cathode and the anode with a diaphragm, extracting the Cu ion-containing electrolyte that was eluted from the anode, and passing it through an activated carbon filter immediately before being put into the cathode box.
  • the number of detected nonmetal inclusions having a particle size of 0.5 ⁇ m or more and 20 ⁇ m or less was 8,000 inclusions/g.
  • the contents of P, S, O and C in the electrodeposited copper were 1ppm or less respectively.
  • 50kg of the raw material was subject to cold crucible melting to obtain an ingot, further subject to the processes of homogenization heat treatment, forging, rolling, and heat treatment to produce a sputtering target.
  • Conventional methods may be used as the processes of homogenization heat treatment, forging, rolling, and heat treatment of the target.
  • the number of nonmetal inclusions having a particle size of 0.5 ⁇ m or more and 20 ⁇ m or less was 20,000 inclusions/g.
  • 40% was inclusions of the carbon system (including carbon and carbide).
  • the number of carbon system inclusions having a particle size of 0.5 ⁇ m or more and 20 ⁇ m or less was 8000 inclusions/g.
  • the number of particles having a particle size of 0.05 ⁇ m or more was 17 particles/square inch.
  • the number of carbon system particles having a particle size of 0.05 ⁇ m or more was small at 10 particles/square inch, and a favorable sputtered film was obtained.
  • Example 1 50kg of the same raw material as Example 1 was subject to a combination of cold crucible melting and vacuum induction melting to prepare an ingot, and similarly subject to the processes of homogenization heat treatment, forging, rolling, and heat treatment to produce a sputtering target.
  • the number of nonmetal inclusions having a particle size of 0.5 ⁇ m or more and 20 ⁇ m or less was 10,000 inclusions/g.
  • 30% was inclusions composed mostly of the carbon system (including carbon and carbide). Specifically, the number of carbon system inclusions having a particle size of 0.5 ⁇ m or more and 20 ⁇ m or less was 3000 inclusions/g.
  • the number of particles having a particle size of 0.05 ⁇ m or more was 8 particles/square inch.
  • the number of carbon system particles having a particle size of 0.05 ⁇ m or more was small at 4 particles/square inch, and a favorable sputtered film was obtained.
  • Example 1 50kg of the same raw material as Example 1 was melted by way of vacuum induction melting using a high-purity and high-density graphite crucible to prepare an ingot.
  • the ingot was subject to the processes of homogenization heat treatment, forging, rolling, and heat treatment to produce a sputtering target.
  • the number of nonmetal inclusions having a particle size of 0.5 ⁇ m or more and 20 ⁇ m or less was large at 40,000 inclusions/g.
  • the number of particles having a particle size of 0.05 ⁇ m or more was 80 particles/square inch.
  • the number of carbon system particles having a particle size of 0.05 ⁇ m or more was 60 particles/square inch.
  • a high-purity copper or high-purity copper alloy from which harmful inclusions of P, S, C and O system have been reduced.
  • the present invention is effective as a high-purity copper and copper alloy target suitable for forming a copper wiring or the like that is capable of preventing problems such as short circuits and disconnections.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Non-Insulated Conductors (AREA)
  • Electrodes Of Semiconductors (AREA)
EP16190070.9A 2008-09-30 2009-09-24 High-purity copper sputtering target or high-purity copper alloy sputtering target Active EP3128039B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008253052 2008-09-30
EP09817676.1A EP2330231B1 (en) 2008-09-30 2009-09-24 Process for manufacturing a high-purity copper- or a high-purity copper alloy sputtering target
PCT/JP2009/066480 WO2010038642A1 (ja) 2008-09-30 2009-09-24 高純度銅又は高純度銅合金スパッタリングターゲット、同スパッタリングターゲットの製造方法及び高純度銅又は高純度銅合金スパッタ膜

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP09817676.1A Division EP2330231B1 (en) 2008-09-30 2009-09-24 Process for manufacturing a high-purity copper- or a high-purity copper alloy sputtering target
EP09817676.1A Division-Into EP2330231B1 (en) 2008-09-30 2009-09-24 Process for manufacturing a high-purity copper- or a high-purity copper alloy sputtering target

Publications (2)

Publication Number Publication Date
EP3128039A1 EP3128039A1 (en) 2017-02-08
EP3128039B1 true EP3128039B1 (en) 2019-05-01

Family

ID=42073407

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16190070.9A Active EP3128039B1 (en) 2008-09-30 2009-09-24 High-purity copper sputtering target or high-purity copper alloy sputtering target
EP09817676.1A Active EP2330231B1 (en) 2008-09-30 2009-09-24 Process for manufacturing a high-purity copper- or a high-purity copper alloy sputtering target

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09817676.1A Active EP2330231B1 (en) 2008-09-30 2009-09-24 Process for manufacturing a high-purity copper- or a high-purity copper alloy sputtering target

Country Status (7)

Country Link
US (1) US9441289B2 (ko)
EP (2) EP3128039B1 (ko)
JP (1) JP4680325B2 (ko)
KR (1) KR101290856B1 (ko)
CN (1) CN102165093B (ko)
TW (1) TWI437113B (ko)
WO (1) WO2010038642A1 (ko)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8192596B2 (en) * 2004-01-29 2012-06-05 Jx Nippon Mining & Metals Corporation Ultrahigh-purity copper and process for producing the same
KR101058765B1 (ko) 2008-09-30 2011-08-24 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 고순도 구리 및 전해에 의한 고순도 구리의 제조 방법
JP5441854B2 (ja) * 2010-08-31 2014-03-12 Jx日鉱日石金属株式会社 インジウムターゲットの製造方法及びインジウムターゲット
JP5723171B2 (ja) * 2011-02-04 2015-05-27 株式会社神戸製鋼所 Al基合金スパッタリングターゲット
CN103415633B (zh) 2011-03-07 2015-09-09 吉坤日矿日石金属株式会社 铜或铜合金、接合线、铜的制造方法、铜合金的制造方法及接合线的制造方法
KR20140091734A (ko) 2011-09-14 2014-07-22 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 고순도 구리망간 합금 스퍼터링 타깃
CN104053814B (zh) 2012-01-12 2016-08-24 吉坤日矿日石金属株式会社 高纯度铜溅射靶
US9165750B2 (en) 2012-01-23 2015-10-20 Jx Nippon Mining & Metals Corporation High purity copper—manganese alloy sputtering target
US10297429B2 (en) 2012-01-25 2019-05-21 Jx Nippon Mining & Metals Corporation High-purity copper-chromium alloy sputtering target
JP5950632B2 (ja) * 2012-03-09 2016-07-13 古河電気工業株式会社 スパッタリングターゲットの製造方法
CN102703869A (zh) * 2012-05-30 2012-10-03 深圳市华星光电技术有限公司 制备tft-lcd阵列基板铜导线用靶材的方法及靶材
JP6091911B2 (ja) * 2013-01-29 2017-03-08 株式会社Shカッパープロダクツ Cu−Mn合金スパッタリングターゲット材、Cu−Mn合金スパッタリングターゲット材の製造方法、および半導体素子
JP5893797B2 (ja) 2013-03-07 2016-03-23 Jx金属株式会社 銅合金スパッタリングターゲット
JP5752736B2 (ja) * 2013-04-08 2015-07-22 三菱マテリアル株式会社 スパッタリング用ターゲット
US9922807B2 (en) 2013-07-08 2018-03-20 Jx Nippon Mining & Metals Corporation Sputtering target and method for production thereof
JP6727749B2 (ja) 2013-07-11 2020-07-22 三菱マテリアル株式会社 高純度銅スパッタリングターゲット用銅素材及び高純度銅スパッタリングターゲット
JP2016079450A (ja) * 2014-10-15 2016-05-16 Jx金属株式会社 Cu−Ga合金スパッタリングターゲット
JP6636799B2 (ja) * 2015-03-25 2020-01-29 Jx金属株式会社 銅合金スパッタリングターゲット及びその評価方法
JP6435981B2 (ja) * 2015-04-28 2018-12-12 三菱マテリアル株式会社 銅合金スパッタリングターゲット
JP6720087B2 (ja) * 2015-05-21 2020-07-08 Jx金属株式会社 銅合金スパッタリングターゲット及びその製造方法
JP6661951B2 (ja) * 2015-10-08 2020-03-11 三菱マテリアル株式会社 高純度銅スパッタリングターゲット材
JP6651737B2 (ja) * 2015-08-24 2020-02-19 三菱マテリアル株式会社 高純度銅スパッタリングターゲット材
JP6662087B2 (ja) * 2016-02-22 2020-03-11 三菱マテリアル株式会社 高純度銅スパッタリングターゲット材
JP6662088B2 (ja) * 2016-02-22 2020-03-11 三菱マテリアル株式会社 高純度銅スパッタリングターゲット材
JP6661953B2 (ja) * 2015-10-08 2020-03-11 三菱マテリアル株式会社 高純度銅スパッタリングターゲット材
WO2017033694A1 (ja) * 2015-08-24 2017-03-02 三菱マテリアル株式会社 高純度銅スパッタリングターゲット材
JP6661952B2 (ja) * 2015-10-08 2020-03-11 三菱マテリアル株式会社 高純度銅スパッタリングターゲット材
JP6066007B1 (ja) 2016-05-10 2017-01-25 日立金属株式会社 精製銅の製造方法及び電線の製造方法
JP6339625B2 (ja) * 2016-05-25 2018-06-06 古河電気工業株式会社 スパッタリングターゲット
JP6066010B1 (ja) * 2016-06-28 2017-01-25 日立金属株式会社 精製銅並びに電線の製造方法
JP2018145518A (ja) * 2017-03-06 2018-09-20 三菱マテリアル株式会社 Cu−Ni合金スパッタリングターゲット
WO2018163861A1 (ja) * 2017-03-06 2018-09-13 三菱マテリアル株式会社 Cu-Ni合金スパッタリングターゲット及びその製造方法
KR102249087B1 (ko) 2019-11-13 2021-05-07 (주)하나금속 판형 구리 스퍼터링 타겟 및 그 제조 방법
TW202138575A (zh) * 2020-03-06 2021-10-16 日商三菱綜合材料股份有限公司 純銅板
WO2022038795A1 (ja) * 2020-08-17 2022-02-24 松田産業株式会社 貴金属スパッタリングターゲット
JP7140164B2 (ja) * 2020-08-17 2022-09-21 松田産業株式会社 貴金属スパッタリングターゲット
CN113667860A (zh) * 2021-08-17 2021-11-19 宁波微泰真空技术有限公司 一种超高纯铜铝铸锭及其制备方法和用途
CN113737011B (zh) * 2021-09-08 2023-11-07 宁波江丰电子材料股份有限公司 一种超高纯铜锰合金的制备方法
CN114774864A (zh) * 2022-03-23 2022-07-22 宁波建锡新材料有限公司 一种高纯铜合金靶材的制备装置、制备方法及应用

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3253910A (en) * 1964-08-31 1966-05-31 Chase Brass & Copper Co Copper base alloys and the method of treating the same to improve their machinability
US3778318A (en) * 1969-02-24 1973-12-11 Cooper Range Co Copper base composition
DE3303170A1 (de) * 1983-01-31 1984-08-02 Siemens AG, 1000 Berlin und 8000 München Verfahren zum herstellen von kupfer-chrom-schmelzlegierungen als kontaktwerkstoff fuer vakuum-leistungsschalter
JPS6184389A (ja) * 1984-09-28 1986-04-28 Sumitomo Metal Mining Co Ltd 高純度電気銅の製造方法
JPS63153291A (ja) 1986-12-17 1988-06-25 Nippon Mining Co Ltd 銅の電解精製方法
JPS648289A (en) 1986-12-19 1989-01-12 Nippon Mining Co Method for electrolyzing copper
US4792369A (en) * 1987-02-19 1988-12-20 Nippon Mining Co., Ltd. Copper wires used for transmitting sounds or images
JPS63297583A (ja) 1987-05-29 1988-12-05 Nippon Mining Co Ltd 高純度電気銅製造方法
JPS6455394A (en) 1987-08-26 1989-03-02 Nippon Mining Co Production of high-purity electrolytic copper
JP2622559B2 (ja) 1987-12-10 1997-06-18 株式会社ジャパンエナジー 高純度銅の製造方法
JPH08990B2 (ja) 1989-01-11 1996-01-10 同和鉱業株式会社 超高純度銅の製造方法
US5206430A (en) * 1990-10-31 1993-04-27 Mitsui Toatsu Chemicals, Incorporated Method for obtaining high-purity cinnamic acid
JP3974945B2 (ja) 1992-01-30 2007-09-12 東ソー株式会社 チタンスパッタリングターゲット
JPH0648289A (ja) 1992-08-04 1994-02-22 Tokico Ltd マスタシリンダ
JP2785908B2 (ja) 1995-05-08 1998-08-13 日鉱金属株式会社 超電導用の銅管材の製造方法
JP3560393B2 (ja) 1995-07-06 2004-09-02 株式会社日鉱マテリアルズ アルミニウム合金スパッタリングターゲットの製造方法
JP3713332B2 (ja) 1996-06-21 2005-11-09 同和鉱業株式会社 単結晶銅ターゲット及びその製造方法
US6254702B1 (en) * 1997-02-18 2001-07-03 Dowa Mining Co., Ltd. Copper base alloys and terminals using the same
JP3403918B2 (ja) * 1997-06-02 2003-05-06 株式会社ジャパンエナジー 高純度銅スパッタリングタ−ゲットおよび薄膜
JPH11106842A (ja) 1997-09-30 1999-04-20 Nippon Mining & Metals Co Ltd 溶媒抽出法を用いた銅電解液の浄液方法
JP3189767B2 (ja) * 1997-10-31 2001-07-16 日本電気株式会社 銅配線の製造方法
JPH11229172A (ja) 1998-02-16 1999-08-24 Permelec Electrode Ltd 高純度銅の製造方法及び製造装置
TW476797B (en) * 1998-02-23 2002-02-21 Kobe Steel Ltd Sputtering target material and its production
JP3081602B2 (ja) 1998-02-23 2000-08-28 株式会社神戸製鋼所 スパッタリングターゲット材料及びその製造方法
JP3539878B2 (ja) 1998-10-06 2004-07-07 大陽東洋酸素株式会社 無機物質成形物からなる充填物の製造方法
JP3856581B2 (ja) * 1999-01-18 2006-12-13 日鉱金属株式会社 フレキシブルプリント回路基板用圧延銅箔およびその製造方法
JP2000239836A (ja) 1999-02-23 2000-09-05 Japan Energy Corp 高純度銅または銅合金スパッタリングターゲットおよびその製造方法
JP3383615B2 (ja) * 1999-08-05 2003-03-04 日鉱金属株式会社 電子材料用銅合金及びその製造方法
US6896788B2 (en) * 2000-05-22 2005-05-24 Nikko Materials Company, Limited Method of producing a higher-purity metal
AU6512601A (en) * 2000-06-02 2001-12-17 Honeywell Int Inc Sputtering method, apparatus, and target for reduced arcing
US6946039B1 (en) * 2000-11-02 2005-09-20 Honeywell International Inc. Physical vapor deposition targets, and methods of fabricating metallic materials
TW541350B (en) * 2000-12-29 2003-07-11 Solar Applied Material Technol Method for producing metal target for sputtering
CN1370853A (zh) * 2001-02-23 2002-09-25 光洋应用材料科技股份有限公司 金属溅镀靶材的制造方法
EP1247872A1 (en) * 2001-03-13 2002-10-09 Solar Applied Material Technology Corp. Method for producing metal sputtering target
KR100603130B1 (ko) * 2001-08-01 2006-07-20 닛코킨조쿠 가부시키가이샤 고순도 니켈의 제조방법, 고순도 니켈, 동 고순도 니켈로부터 이루어진 스퍼터링 타겟트 및 이 스퍼터링 타겟트에 의해 형성된 박막
EP1471164B1 (en) * 2002-01-30 2013-01-23 JX Nippon Mining & Metals Corporation Copper alloy sputtering target and method for manufacturing the target
JP4794802B2 (ja) * 2002-11-21 2011-10-19 Jx日鉱日石金属株式会社 銅合金スパッタリングターゲット及び半導体素子配線
US7740721B2 (en) * 2003-03-17 2010-06-22 Nippon Mining & Metals Co., Ltd Copper alloy sputtering target process for producing the same and semiconductor element wiring
KR100762084B1 (ko) * 2003-12-25 2007-10-01 닛코킨조쿠 가부시키가이샤 동 또는 동합금 타겟트/동합금 백킹 플레이트 조립체
JP4041803B2 (ja) * 2004-01-23 2008-02-06 株式会社神戸製鋼所 高強度高導電率銅合金
US8192596B2 (en) * 2004-01-29 2012-06-05 Jx Nippon Mining & Metals Corporation Ultrahigh-purity copper and process for producing the same
MY143219A (en) * 2004-02-27 2011-03-31 Furukawa Electric Co Ltd Copper alloy
JP4518262B2 (ja) 2004-03-23 2010-08-04 三菱マテリアル株式会社 高純度電気銅とその製造方法
US8715431B2 (en) * 2004-08-17 2014-05-06 Kobe Steel, Ltd. Copper alloy plate for electric and electronic parts having bending workability
WO2006093140A1 (ja) * 2005-02-28 2006-09-08 The Furukawa Electric Co., Ltd. 銅合金
CN101151398B (zh) * 2005-03-28 2012-06-27 Jx日矿日石金属株式会社 深锅状铜溅射靶及其制造方法
JP4750112B2 (ja) 2005-06-15 2011-08-17 Jx日鉱日石金属株式会社 超高純度銅及びその製造方法並びに超高純度銅からなるボンディングワイヤ
JP4680765B2 (ja) * 2005-12-22 2011-05-11 株式会社神戸製鋼所 耐応力緩和特性に優れた銅合金
US8268098B2 (en) * 2006-05-26 2012-09-18 Kobe Steel, Ltd. Copper alloy having high strength, high electric conductivity and excellent bending workability
JP4890546B2 (ja) * 2006-06-12 2012-03-07 Jx日鉱日石金属株式会社 粗化処理面を備えた圧延銅又は銅合金箔及び圧延銅又は銅合金箔の粗化方法
JP4950584B2 (ja) * 2006-07-28 2012-06-13 株式会社神戸製鋼所 高強度および耐熱性を備えた銅合金
EP2014787B1 (en) * 2006-10-03 2017-09-06 JX Nippon Mining & Metals Corporation Cu-Mn ALLOY SPUTTERING TARGET
CN101199988B (zh) 2007-11-13 2011-06-22 北京有色金属研究总院 一种制备超高纯铜铸锭的方法
JP5092939B2 (ja) * 2008-07-01 2012-12-05 日立電線株式会社 Tft用平板型銅スパッタリングターゲット材及びスパッタリング方法
KR101058765B1 (ko) * 2008-09-30 2011-08-24 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 고순도 구리 및 전해에 의한 고순도 구리의 제조 방법
EP2682499A4 (en) * 2011-03-01 2014-09-03 Jx Nippon Mining & Metals Corp CATHODE COPPER-TITANIUM ALLOY SPUTTER TARGET, SEMICONDUCTOR WIRING LINE FORMED USING THE CATHODIC SPUTTER TARGET, AND SEMICONDUCTOR ELEMENT AND DEVICE EQUIPPED WITH EACH OF THE SEMICONDUCTOR WIRING LINE
CN103415633B (zh) * 2011-03-07 2015-09-09 吉坤日矿日石金属株式会社 铜或铜合金、接合线、铜的制造方法、铜合金的制造方法及接合线的制造方法
KR20140091734A (ko) * 2011-09-14 2014-07-22 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 고순도 구리망간 합금 스퍼터링 타깃
WO2013038962A1 (ja) * 2011-09-14 2013-03-21 Jx日鉱日石金属株式会社 高純度銅マンガン合金スパッタリングターゲット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US9441289B2 (en) 2016-09-13
EP3128039A1 (en) 2017-02-08
CN102165093A (zh) 2011-08-24
CN102165093B (zh) 2013-09-25
EP2330231A1 (en) 2011-06-08
KR20110042235A (ko) 2011-04-25
JP4680325B2 (ja) 2011-05-11
TW201026869A (en) 2010-07-16
EP2330231A4 (en) 2012-11-21
KR101290856B1 (ko) 2013-07-29
JPWO2010038642A1 (ja) 2012-03-01
TWI437113B (zh) 2014-05-11
EP2330231B1 (en) 2017-02-22
WO2010038642A1 (ja) 2010-04-08
US20110163447A1 (en) 2011-07-07

Similar Documents

Publication Publication Date Title
EP3128039B1 (en) High-purity copper sputtering target or high-purity copper alloy sputtering target
EP2330224B1 (en) High-purity copper and process for electrolytically producing high-purity copper
CN107109633B (zh) 铜合金溅射靶及其制造方法
KR20130135307A (ko) 고순도 란탄의 제조 방법, 고순도 란탄, 고순도 란탄으로 이루어지는 스퍼터링 타깃 및 고순도 란탄을 주성분으로 하는 메탈 게이트막
KR100773238B1 (ko) 고순도 Ni―V 합금, 동Ni―V 합금으로 이루어진타겟트 및 동Ni―V 합금 박막과 고순도 Ni―V 합금의제조방법
KR20090096537A (ko) 구리 애노드 또는 인 함유 구리 애노드, 반도체 웨이퍼에 대한 전기 구리 도금 방법 및 파티클 부착이 적은 반도체 웨이퍼
JP2005330591A (ja) スパッタリングターゲット
JP4198811B2 (ja) 高純度チタンの製造方法
JP6636799B2 (ja) 銅合金スパッタリングターゲット及びその評価方法
JP2000212678A (ja) 薄膜形成用高純度タンタル及びその製造方法
CN114107704A (zh) 一种金属锰的提纯方法
TWI683040B (zh) Co陽極及使用有Co陽極之Co電鍍方法
WO2015099119A1 (ja) 高純度銅又は銅合金スパッタリングターゲット及びその製造方法
KR20140012190A (ko) 고순도 이트륨, 고순도 이트륨의 제조 방법, 고순도 이트륨 스퍼터링 타깃, 고순도 이트륨 스퍼터링 타깃을 이용하여 성막한 메탈 게이트막 그리고 그 메탈 게이트막을 구비하는 반도체 소자 및 디바이스

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 2330231

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

17P Request for examination filed

Effective date: 20170426

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2330231

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1126981

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009058196

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190501

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190901

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190801

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190801

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190802

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1126981

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009058196

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

26N No opposition filed

Effective date: 20200204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190924

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190924

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090924

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230808

Year of fee payment: 15

Ref country code: DE

Payment date: 20230802

Year of fee payment: 15