EP2640723A1 - Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as jak inhibitors - Google Patents

Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as jak inhibitors

Info

Publication number
EP2640723A1
EP2640723A1 EP11791155.2A EP11791155A EP2640723A1 EP 2640723 A1 EP2640723 A1 EP 2640723A1 EP 11791155 A EP11791155 A EP 11791155A EP 2640723 A1 EP2640723 A1 EP 2640723A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
pyrimidin
cyclobutyl
pyrazol
pyrrolo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11791155.2A
Other languages
German (de)
English (en)
French (fr)
Inventor
James D. Rodgers
Wenyu Zhu
Lixin Shao
Joseph Glenn
Stacey Shepard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Incyte Holdings Corp
Original Assignee
Incyte Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Incyte Corp filed Critical Incyte Corp
Publication of EP2640723A1 publication Critical patent/EP2640723A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/08Antiseborrheics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/04Artificial tears; Irrigation solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/10Drugs for disorders of the endocrine system of the posterior pituitary hormones, e.g. oxytocin, ADH
    • A61P5/12Drugs for disorders of the endocrine system of the posterior pituitary hormones, e.g. oxytocin, ADH for decreasing, blocking or antagonising the activity of the posterior pituitary hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • C07D491/107Spiro-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring

Definitions

  • the present invention provides cyclobutyl substituted pyrrolopyrimidines and pyrrolopyridines, as well as their compositions and methods of use, that modulate the activity of Janus kinases (JAKs) and are useful in the treatment of diseases related to the activity of JAKs including, for example, inflammatory disorders, autoimmune disorders, cancer, and other diseases.
  • JAKs Janus kinases
  • Protein kinases regulate diverse biological processes including cell growth, survival, differentiation, organ formation, morphogenesis, neovascularization, tissue repair, and regeneration, among others. Protein kinases also play specialized roles in a host of human diseases including cancer. Cytokines, low-molecular weight polypeptides or glycoproteins, regulate many pathways involved in the host inflammatory response to sepsis. Cytokines influence cell differentiation, proliferation and activation, and can modulate both pro-inflammatory and anti-inflammatory responses to allow the host to react appropriately to pathogens.
  • JAKs Janus kinase family
  • JAK2 Janus kinase- 1
  • JAK2 JAK2
  • JAK3 also known as Janus kinase, leukocyte
  • JAKL protein-tyrosine kinase 2
  • TYK2 protein-tyrosine kinase 2
  • autoimmune diseases e.g., asthma, systemic lupus erythematosus, thyroiditis, myocarditis
  • illnesses such as scleroderma and osteoarthritis (Ortmann, R. A., T. Cheng, et al. (2000) Arthritis Res 2(1): 16-32).
  • JAKs Deficiencies in expression of JAKs are associated with many disease states. For example, Jakl-/- mice are runted at birth, fail to nurse, and die perinatally (Rodig, S. J., M. A. Meraz, et al. (1998) Cell 93(3): 373-83). Jak2-/- mouse embryos are anemic and die around day 12.5 postcoitum due to the absence of definitive erythropoiesis.
  • the JAK/STAT pathway and in particular all four JAKs, are believed to play a role in the pathogenesis of asthmatic response, chronic obstructive pulmonary disease, bronchitis, and other related inflammatory diseases of the lower respiratory tract.
  • cytokines that signal through JAKs have been linked to inflammatory diseases/conditions of the upper respiratory tract, such as those affecting the nose and sinuses ⁇ e.g., rhinitis and sinusitis) whether classically allergic reactions or not.
  • the JAK/STAT pathway has also been implicated in inflammatory diseases/conditions of the eye and chronic allergic responses.
  • JAK STAT Activation of JAK STAT in cancers may occur by cytokine stimulation ⁇ e.g. IL-6 or GM-CSF) or by a reduction in the endogenous suppressors of JAK signaling such as SOCS (suppressor or cytokine signaling) or PIAS (protein inhibitor of activated STAT) (Boudny, V., and Kovarik, J., Neoplasm. 49:349-355, 2002).
  • SOCS suppressor or cytokine signaling
  • PIAS protein inhibitor of activated STAT
  • Activation of STAT signaling, as well as other pathways downstream of JAKs ⁇ e.g., Akt has been correlated with poor prognosis in many cancer types (Bowman, T., et al. Oncogene 19:2474-2488, 2000). Elevated levels of circulating cytokines that signal through JAK/STAT play a causal role in cachexia and/or chronic fatigue. As such, JAK inhibition may be beneficial
  • JAK2 tyrosine kinase can be beneficial for patients with myeloproliferative disorders, e.g., polycythemia vera (PV), essential thrombocythemia (ET), myeloid metaplasia with myelofibrosis (MMM) (Levin, et al, Cancer Cell, vol. 7, 2005: 387- 397).
  • PV polycythemia vera
  • ET essential thrombocythemia
  • MMM myeloid metaplasia with myelofibrosis
  • Inhibition of the JAK2V617F kinase decreases proliferation of hematopoietic cells, suggesting JAK2 as a potential target for pharmacologic inhibition in patients with PV, ET, and MMM.
  • Inhibition of the JAKs may benefit patients suffering from skin immune disorders such as psoriasis, and skin sensitization.
  • the maintenance of psoriasis is believed to depend on a number of inflammatory
  • JAK inhibitors including pyrrolopyridine and pyrrolopyrimidines, are reported in U.S. Ser. No. 11/637,545, filed December 12, 2006.
  • new or improved agents which inhibit kinases such as JAKs are continually needed for developing new and more effective pharmaceuticals that are aimed at augmentation or suppression of the immune and inflammatory pathways (such as immunosuppressive agents for organ transplants), as well as agents for the prevention and treatment of autoimmune diseases, diseases involving a hyperactive inflammatory response (e.g., eczema), allergies, cancer (e.g., prostate, leukemia, multiple myeloma), and some immune reactions (e.g. , skin rash or contact dermatitis or diarrhea) caused by other therapeutics.
  • the compounds of the invention, as well as its compositions and methods described herein are directed toward these needs and other ends.
  • the present invention provides, inter alia, compounds of Formula I:
  • the present invention further provides pharmaceutical compositions comprising a compound of Formula I as described herein, or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable carrier.
  • the present invention further provides methods of modulating an activity of JAK1 comprising contacting JAK1 with a compound of Formula I as described herein, or a pharmaceutically acceptable salt thereof.
  • the present invention further provides methods of treating a disease or a disorder associated with abnormal kinase expression or activity in a patient by administering to a patient a therapeutically effective amount of a compound of Formula I as described herein, or a pharmaceutically acceptable salt thereof.
  • the present invention further provides methods of treating an autoimmune disease, a cancer, a myeloproliferative disorder, an inflammatory disease, a bone resorption disease, or organ transplant rejection in a patient in need thereof, comprising administering to said patient a therapeutically effective amount of a compound of Formula I as described herein, or a pharmaceutically acceptable salt thereof.
  • the present invention also provides compounds of Formula I as described herein, or pharmaceutically acceptable salts thereof, as described herein for use in methods of treating autoimmune diseases, cancer, myeloproliferative disorders, inflammatory diseases, a bone resorption disease, or organ transplant rejection.
  • the present invention further provides compounds of Formula I as described herein, or pharmaceutically acceptable salts thereof, for use in methods of modulating a JAK1.
  • the present invention also provides uses of compounds of Formula I as described herein, or pharmaceutically acceptable salts thereof, for the preparation of medicaments for use in treating autoimmune diseases, cancer, myeloproliferative disorders, inflammatory diseases, a bone resorption disease, or organ transplant rejection.
  • the present invention further provides uses of compounds of Formula I as described herein, or pharmaceutically acceptable salts thereof, for the preparation of medicaments for use in methods of modulating a JAK1.
  • the present invention provides, inter alia, a compound of Formula I:
  • X is CH or N
  • Y is H, cyano, halo, Ci_ 3 alkyl, or Ci_ 3 haloalkyl;
  • Z is CR 4 or N
  • W is CH or N
  • R 1 , R 2 , R 3 , and R 4 are each independently H, hydroxy, halo, Ci_ 3 alkyl, or Ci_ 3 haloalkyl;
  • each R 5 is independently hydroxy, Ci_ 4 alkoxy, fluorine, Ci_ 4 alkyl, hydroxy-Ci_ 4 - alkyl, Ci_ 4 alkoxy-Ci_ 4 -alkyl, or Ci_ 4 fluoroalkyl;
  • each R 6 is, independently, H or Ci_ 4 alkyl; or two R 6 groups, together with the carbon atom to which they are attached, form a 3-, 4-, 5-, or 6-membered cycloalkyl ring;
  • R 7 is H or Ci_ 4 alkyl
  • R 7a is H, OH, CN, Ci_4 alkoxy, or Ci_ 4 alkyl;
  • each R a , R c , R d , R e , and R f is independently selected from H, Ci_ 6 alkyl, Ci_ 6 haloalkyl, C 2 _ 6 alkenyl, C 2 _ 6 alkynyl, C 3 _io cycloalkyl, C 3 _io cycloalkyl-Ci_ 4 -alkyl, C 2 _io heterocycloalkyl, C 2 _io heterocycloalkyl-Ci_ 4 -alkyl, C 6 -io aryl, C 6 -io aryl-C 1-4 -alkyl, C 1-10 heteroaryl, and C 1-10 heteroaryl-Ci_ 4 -alkyl; wherein said Ci_ 6 alkyl, C 2 _ 6 alkenyl, C 2 _ 6 alkynyl, C 3 _i 0 cycloalkyl, C 3 _i 0 cycloalkyl-
  • heterocycloalkyl-Ci_ 3 -alkyl, phenyl, phenyl-Ci_ 3 -alkyl, Ci_ 7 heteroaryl, and Ci_ 7 heteroaryl-Ci_ 3 -alkyl are each optionally substituted with 1, 2, 3, or 4 independently selected R h groups;
  • each R al , R cl , R dl , R el , and R fl is independently selected from H, Ci_ 6 alkyl, Ci_ 6 haloalkyl, C 2 _ 6 alkenyl, C 2 _ 6 alkynyl, C 3 _ 7 cycloalkyl, C 3 _ 7 cycloalkyl-Ci_ 3 -alkyl, C 2 _ 7 heterocycloalkyl, C 2 _ 7 heterocycloalkyl-Ci_ 3 -alkyl, phenyl, phenyl-Ci_ 3 -alkyl, Ci_ 7 heteroaryl, and Ci_ 7 heteroaryl-Ci_ 3 -alkyl; wherein said Ci_ 6 alkyl, C 2 _ 6 alkenyl, C 2 _ 6 alkynyl, C 3 _ 7 cycloalkyl, C 3 _ 7 cycloalkyl-Ci_ 3 -alkyl, C 2 _
  • heterocycloalkyl-Ci_ 3 -alkyl, phenyl, phenyl-Ci_ 3 -alkyl, Ci_ 7 heteroaryl, and Ci_ 7 heteroaryl-Ci_ 3 -alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R h groups;
  • each R bl is independently selected from Ci_ 6 alkyl, Ci_ 6 haloalkyl, C 2 _ 6 alkenyl, C 2 _ 6 alkynyl, C 3 _ 7 cycloalkyl, C 3 _ 7 cycloalkyl-Ci_ 3 -alkyl, C 2 _ 7 heterocycloalkyl, C 2 _ 7 heterocycloalkyl-Ci_ 3 -alkyl, phenyl, phenyl-Ci_ 3 -alkyl, Ci_ 7 heteroaryl, and Ci_ 7 heteroaryl-Ci_ 3 -alkyl; wherein said Ci_ 6 alkyl, C 2 _ 6 alkenyl, C 2 _ 6 alkynyl, C 3 _ 7 cycloalkyl, C3-7 cycloalkyl-Ci_3-alkyl, C 2 -7 heterocycloalkyl, C 2 - 7 heterocycloalkyl-Ci_3-alkyl,
  • each R h is independently selected from cyano, halo, hydroxy, Ci_ 4 alkyl, Ci_ 4 haloalkyl, Ci_ 4 alkoxy, Ci_ 4 haloalkoxy, amino, Ci_ 4 alkylamino, di-Ci_ 4 -alkylamino, hydroxy-Ci_ 4 alkyl, Ci_ 4 alkoxy-Ci_ 4 alkyl, cyano-Ci_ 4 alkyl, thio, Ci_ 6 alkylthio, Ci_ 6 alkylsulfinyl, Ci_ 6 alkylsulfonyl, carbamyl, Ci_ 6 alkylcarbamyl, di(Ci_ 6 alkyl)carbamyl, carboxy, Ci_ 6 alkylcarbonyl, Ci_ 6 alkoxycarbonyl, Ci_ 6 alkylcarbonylamino, Ci_ 6 alkylsulfonylamino, aminosulfonyl, Ci_ 6 alkylaminosulf
  • n 0, 1, or 2;
  • n 0, 1, 2, 3, or 4.
  • X is CH or N
  • Y is H, cyano, halo, Ci_3 alkyl, or Ci_3 haloalkyl;
  • Z is CR 4 or N
  • W is CH or N
  • R 1 , R 2 , R 3 , and R 4 are each independently H, hydroxy, halo, Ci_3 alkyl, or Ci_3 haloalkyl;
  • each R 5 is independently hydroxy, Ci_ 4 alkoxy, fluorine, Ci_ 4 alkyl, hydroxy-Ci_ 4 - alkyl, Ci_ 4 alkoxy-Ci_ 4 -alkyl, or Ci_ 4 fluoroalkyl;
  • each R 6 is, independently, H or Ci_ 4 alkyl
  • R 6 groups together with the carbon atom to which they are attached, form a 3-, 4-, 5-, or 6-membered cycloalkyl ring;
  • R is H or Ci_ 4 alkyl;
  • each R a , R c , R d , R e , and R f is independently selected from H, Ci_ 6 alkyl, Ci_ 6 haloalkyl, C 2 _ 6 alkenyl, C 2 _ 6 alkynyl, C 3 _io cycloalkyl, C 3 _io cycloalkyl-Ci_ 4 -alkyl, C 2 _io heterocycloalkyl, C 2 _io heterocycloalkyl-Ci_ 4 -alkyl, C 6 _io aryl, C 6 _io aryl-C 1-4 -alkyl, C 1-10 heteroaryl, and C 1-10 heteroaryl-Ci_ 4 -alkyl; wherein said Ci_ 6 alkyl, C 2 _ 6 alkenyl, C 2 _ 6 alkynyl, C 3 _io cycloalkyl, C 3 _io cycloalkyl-Ci
  • each R b is independently selected from Ci_ 6 alkyl, Ci_ 6 haloalkyl, C 2 _ 6 alkenyl, C 2 _ 6 alkynyl, C 3 _io cycloalkyl, C 3 _io cycloalkyl-Ci_ 4 -alkyl, C 2 _io heterocycloalkyl, C 2 _io heterocycloalkyl-Ci_ 4 -alkyl, C 6 -io aryl, C 6 -io aryl-C 1-4 -alkyl, C 1-10 heteroaryl, and C 1-10 heteroaryl-Ci_ 4 -alkyl; wherein said Ci_ 6 alkyl, C 2 _ 6 alkenyl, C 2 _ 6 alkynyl, C 3 _i 0 cycloalkyl, C 3 _io cycloalkyl-Ci_4-alkyl, C 2 _io heterocycloalkyl, C 2
  • heterocycloalkyl-Ci_ 3 -alkyl, phenyl, phenyl-Ci_ 3 -alkyl, Ci_ 7 heteroaryl, and Ci_ 7 heteroaryl-Ci_ 3 -alkyl are each optionally substituted with 1, 2, 3, or 4 independently selected R h groups;
  • each R al , R cl , R dl , R el , and R fl is independently selected from H, Ci_ 6 alkyl, Ci_ 6 haloalkyl, C 2 _ 6 alkenyl, C 2 _ 6 alkynyl, C 3 _ 7 cycloalkyl, C 3 _ 7 cycloalkyl-Ci_ 3 -alkyl, C 2 _ 7 heterocycloalkyl, C 2 _ 7 heterocycloalkyl-Ci_ 3 -alkyl, phenyl, phenyl-Ci_ 3 -alkyl, Ci_ 7 heteroaryl, and Ci_ 7 heteroaryl-Ci_ 3 -alkyl; wherein said Ci_ 6 alkyl, C 2 _ 6 alkenyl, C 2 _ 6 alkynyl, C 3 _ 7 cycloalkyl, C 3 _ 7 cycloalkyl-Ci_ 3 -alkyl, C 2 _
  • heterocycloalkyl-Ci_ 3 -alkyl, phenyl, phenyl-Ci_ 3 -alkyl, Ci_ 7 heteroaryl, and Ci_ 7 heteroaryl-Ci_ 3 -alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R h groups;
  • each R bl is independently selected from Ci_ 6 alkyl, Ci_ 6 haloalkyl, C 2 _ 6 alkenyl, C 2 _ 6 alkynyl, C 3 _ 7 cycloalkyl, C 3 _ 7 cycloalkyl-Ci_ 3 -alkyl, C 2 _ 7 heterocycloalkyl, C 2 _ 7 heterocycloalkyl-Ci_ 3 -alkyl, phenyl, phenyl-Ci_ 3 -alkyl, Ci_ 7 heteroaryl, and Ci_ 7 heteroaryl-Ci_ 3 -alkyl; wherein said Ci_ 6 alkyl, C 2 _ 6 alkenyl, C 2 _ 6 alkynyl, C 3 _ 7 cycloalkyl, C 3 _ 7 cycloalkyl-Ci_ 3 -alkyl, C 2 _ 7 heterocycloalkyl, C 2 _ 7 heterocycloalkyl-Ci_ 3
  • each R h is independently selected from cyano, halo, hydroxy, Ci_ 4 alkyl, Ci_ 4 haloalkyl, Ci_ 4 alkoxy, Ci_ 4 haloalkoxy, amino, Ci_ 4 alkylamino, di-Ci_ 4 -alkylamino, thio, Ci_6 alkylthio, Ci_ 6 alkylsulfinyl, Ci_ 6 alkylsulfonyl, carbamyl, Ci_ 6 alkylcarbamyl, di(Ci_ 6 alkyl)carbamyl, carboxy, Ci_ 6 alkylcarbonyl, Ci_ 6 alkoxycarbonyl, Ci_ 6 alkylcarbonylamino, Ci_ 6 alkylsulfonylamino, aminosulfonyl, Ci_ 6 alkylaminosulfonyl, di(Ci_6 alkyl)aminosulfonyl, aminosulfonylamino, Ci_ 6 alkyl
  • n 0, 1, or 2;
  • n 0, 1, 2, 3, or 4.
  • X is N.
  • Z is N.
  • Z is CH.
  • W is N.
  • R 6 is H.
  • R 7 is H or methyl.
  • R 7a is CN
  • R 6 is H
  • R 7 is H or methyl
  • R 7a is CN
  • W is CH.
  • L is O.
  • Y is cyano.
  • R 1 , R 2 , R 3 , and R 4 are each H.
  • n 0, 1, or 2.
  • n 0.
  • m is 1.
  • A is Ci_ 6 alkyl, optionally substituted with p independently selected R 8 substituents.
  • A is C 3-10 cycloalkyl, optionally substituted with p independently selected R 8 substituents.
  • A is C 6 -io aryl, optionally substituted with p independently selected R 8 substituents.
  • A is C 2-10 heterocycloalkyl, optionally substituted with p independently selected R 8 substituents.
  • A is C 1-10 heteroaryl, optionally substituted with p independently selected R 8 substituents.
  • A is methyl, ethyl, cyclopropyl, phenyl, a pyrrolidine ring, a piperidine ring, a pyridine ring, a pyrimidine ring, a thiazole ring, or a pyrazine ring; each of which is optionally substituted with p independently selected R 8 substituents.
  • each R 8 is independently selected from halo, cyano, nitro, Ci_6 alkyl, Ci_ 6 haloalkyl, C 3-10 cycloalkyl, C 3-10 cycloalkyl-Ci_4-alkyl, C 2-10
  • each R 8 is independently selected from halo, cyano, Ci_ 6 alkyl, Ci_ 6 haloalkyl, -OR a , or -NR e R f ; wherein said Ci_ 6 alkyl is optionally substituted by 1, 2, 3, or 4 independently selected R g groups.
  • heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 independently selected R h groups.
  • each R g is independently selected from C 2 -7
  • heterocycloalkyl and -NR el R fl wherein said C 2 -7 heterocycloalkyl is optionally substituted by 1, 2, 3, or 4 independently selected R h groups.
  • each R g is independently selected from C 2 -7
  • heterocycloalkyl -OR al , -NR el R fl ; wherein said C 2 -7 heterocycloalkyl is optionally substituted by 1 or 2 R h groups independently selected from fluoro, OH, Ci_ 3 alkyl, Ci_ 3 alkoxy, and hydroxy-Ci_4 alkyl; and wherein each R al , R el and R fl are independently selected from H, C 3 _ 7 cycloalkyl, and Ci_ 6 alkyl.
  • each R h is independently Ci_ 4 alkyl.
  • each R h is independently selected from fluoro, OH, Ci_ 3 alkyl, Ci_ 3 alkoxy, and hydroxy-Ci_ 4 alkyl.
  • each R a , R c , R d , R e , and R f is independently selected from H, Ci_ 6 alkyl, and Ci_ 6 haloalkyl;
  • each R b is independently selected from Ci_ 6 alkyl and Ci_ 6 haloalkyl;
  • each R al , R cl , R dl , R el , and R fl is independently selected from H, Ci_ 6 alkyl, and Ci_6 haloalkyl;
  • each R bl is independently selected from Ci_ 6 alkyl and Ci_ 6 haloalkyl.
  • p is 1, 2, or 3.
  • X is N
  • R 1 , R 2 , and R 3 are each H;
  • Y is cyano
  • R a , R c , R d , R e , and R f is independently selected from H, Ci_ 6 alkyl, and Ci_ 6 haloalkyl
  • each R b is independently selected from Ci_ 6 alkyl and Ci_ 6 haloalkyl;
  • each R al , R cl , R dl , R el , and R fl is independently selected from H, Ci_ 6 alkyl, and Ci_6 haloalkyl;
  • n 0;
  • X is N
  • R 1 , R 2 , and R 3 are each H;
  • Y is cyano
  • each R b is independently selected from Ci_ 6 alkyl and Ci_ 6 haloalkyl;
  • each R al , R cl , R dl , R el , and R fl is independently selected from H, Ci_ 6 alkyl, and
  • each R bl is independently selected from Ci_ 6 alkyl and Ci_ 6 haloalkyl;
  • n 0;
  • X is N
  • R 1 , R 2 , and R 3 are each H;
  • Y is cyano
  • W is CH and L is O;
  • A is Ci_6 alkyl, C 3 _i 0 cycloalkyl, C 2 _i 0 heterocycloalkyl, C 6 _io aryl, or Ci_i 0 heteroaryl; wherein said Ci_ 6 alkyl, C 3 _io cycloalkyl, C 2 _io heterocycloalkyl, C 6 -io aryl, and Ci_io heteroaryl are each optionally substituted with p independently selected R 8 substituents; wherein p is 1, 2, 3, 4, or 5; each R 8 is independently selected from halo, cyano, Ci_ 6 alkyl, Ci_ 6 haloalkyl, -OR a , or -NR e R f ; wherein said Ci_ 6 alkyl is optionally substituted by 1, 2, 3, or 4 independently selected R g groups;
  • each R g is independently selected from C 2 -7 heterocycloalkyl and -NR el R fl ; wherein said C 2 -7 heterocycloalkyl is optionally substituted by 1, 2, 3, or 4 independently selected R h groups;
  • each R h is independently selected from Ci_ 4 alkyl
  • each R a , R e , and R f is independently selected from H, Ci_ 6 alkyl, and Ci_ 6 haloalkyl;
  • each R al , R el , and R fl is independently selected from H, Ci_ 6 alkyl, and Ci_ 6 haloalkyl;
  • n 0;
  • X is N
  • R 1 , R 2 , and R 3 are each H;
  • Y is cyano
  • R 6 is H
  • R 7 is H or methyl
  • A is methyl, ethyl, cyclopropyl, phenyl, a pyrrolidine ring, a piperidine ring, a pyridine ring, a pyrimidine ring, a thiazole ring, or a pyrazine ring; each of which is optionally substituted with p independently selected R 8 substituents; wherein p is 1, 2, or 3;
  • each R 8 is independently selected from halo, cyano, Ci_ 6 alkyl, Ci_ 6 haloalkyl, -OR a , or -NR e R f ; wherein said Ci_ 6 alkyl is optionally substituted by 1, 2, 3, or 4 independently selected R g groups; each R g is independently selected from C 2 -7 heterocycloalkyl and -NR el R fl ; wherein said C 2 _7 heterocycloalkyl is optionally substituted by 1, 2, 3, or 4 independently selected R h groups;
  • each R h is independently Ci_ 4 alkyl
  • each R a , R e , and R f is independently selected from H, Ci_ 6 alkyl, and Ci_ 6 haloalkyl;
  • each R al , R el , and R fl is independently selected from H, Ci_ 6 alkyl, and Ci_ 6 haloalkyl;
  • n 0;
  • X is N
  • R 1 , R 2 , and R 3 are each H;
  • Y is cyano
  • W is CH and L is O;
  • R 6 is H
  • R 7 is H or methyl
  • A is phenyl, which is optionally substituted with p independently selected R 8 substituents; wherein p is 1, 2, or 3;
  • each R 8 is independently selected from halo, cyano, Ci_ 6 alkyl, Ci_ 6 haloalkyl, -OR a , or -NR e R f ; wherein said Ci_ 6 alkyl is optionally substituted by p independently selected R g groups;
  • each R g is independently selected from C 2 -7 heterocycloalkyl and -NR el R fl ; wherein said C 2 -7 heterocycloalkyl is optionally substituted by 1, 2, 3, or 4 independently selected R h groups;
  • each R h is independently Ci_ 4 alkyl
  • each R a , R e , and R f is independently selected from H, Ci_ 6 alkyl, and Ci_ 6 haloalkyl; each R al , R el , and R fl is independently selected from H, Ci_ 6 alkyl, and Ci_ 6 haloalkyl;
  • n 0;
  • X is N
  • R 1 , R 2 , and R 3 are each H;
  • Y is cyano
  • W is CH and L is O;
  • R 6 is H
  • R 7 is H or methyl
  • R 7a is CN
  • A is H, methyl, ethyl, propyl, isopropyl, isobutyl, sec-butyl, 1 ,2-dimethylpropyl, l-(tert-butyl)methyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, a tetrahydropyran ring, a pyrrolidine ring, a piperidine ring, a pyridine ring, a pyrimidine ring, a thiazole ring, or a pyrazine ring; wherein said methyl, ethyl, propyl, isopropyl, isobutyl, sec-butyl, 1 ,2-dimethylpropyl, l-(tert-butyl)methyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, a
  • each R g is independently selected from C 2 _ 7 heterocycloalkyl, -OR al , -NR el R fl ; wherein said C 2 _ 7 heterocycloalkyl is optionally substituted by 1 or 2 R h groups independently selected from fluoro, OH, Ci_ 3 alkyl, Ci_ 3 alkoxy, and hydroxy-Ci_4 alkyl; and wherein each R al , R el and R fl are independently selected from H, C 3 _ 7 cycloalkyl, and Ci_6 alkyl;
  • p is 1 , 2, or 3;
  • n 1 ;
  • n 0.
  • X is N
  • Y is cyano
  • W is CH and L is O;
  • R 6 is H
  • R 7 is H or methyl
  • A is methyl, ethyl, propyl, isopropyl, isobutyl, sec-butyl, 1 ,2-dimethylpropyl, 1- (tert-butyl)methyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, a tetrahydropyran ring, a pyrrolidine ring, a piperidine ring, a pyridine ring, a pyrimidine ring, a thiazole ring, or a pyrazine ring; each of which is optionally substituted with p independently selected R 8 substituents;
  • each R g is independently selected from C 2 _ 7 heterocycloalkyl, -OR al , -NR el R fl ; wherein said C 2 _ 7 heterocycloalkyl is optionally substituted by 1 or 2 R h groups independently selected from fluoro, OH, Ci_ 3 alkyl, Ci_ 3 alkoxy, and hydroxy-Ci_4 alkyl; and wherein each R al , R el and R fl are independently selected from H, C 3 _ 7 cycloalkyl, and Ci_6 alkyl; p is 1, 2, or 3;
  • n 1 ;
  • n 0.
  • the compound is a compound of Formula II:
  • the compound is a compound of Formula III:
  • the compound is a compound of Formula IV:
  • the com ound is a compound of V:
  • the compound is a compound selected from:
  • the cyclobutyl ring in Formula I is the cis form.
  • the cyclobutyl ring in Formula I is the trans form.
  • R 5 is hydroxy or Ci_ 4 alkoxy and n is not 0, then R 5 is not attached to a carbon adjacent to a nitrogen ring member.
  • divalent linking substituents are described. It is specifically intended that each divalent linking substituent include both the forward and backward forms of the linking substituent. For example, -NR(CR'R") n - includes both -NR(CR'R")n- and -(CR'R") practicNR-. Where the structure clearly requires a linking group, the Markush variables listed for that group are understood to be linking groups.
  • n-membered where n is an integer typically describes the number of ring-forming atoms in a moiety where the number of ring-forming atoms is n.
  • piperidinyl is an example of a 6-membered heterocycloalkyl ring
  • pyrazolyl is an example of a 5-membered heteroaryl ring
  • pyridyl is an example of a 6-membered heteroaryl ring
  • 1,2,3,4-tetrahydro-naphthalene is an example of a 10-membered cycloalkyl group.
  • each variable can be a different moiety independently selected from the group defining the variable.
  • the two R groups can represent different moieties independently selected from the group defined for R.
  • an optionally multiple substituent is designated in the form:
  • substituent R can occur p number of times on the ring, and R can be a different moiety at each occurrence. It is to be understood that each R group may replace any hydrogen atom attached to a ring atom, including one or both of the (CH 2 ) n hydrogen atoms. Further, in the above example, should the variable Q be defined to include hydrogens, such as when Q is the to be CH 2 , NH, etc., any floating substituent such as R in the above example, can replace a hydrogen of the Q variable as well as a hydrogen in any other non-variable component of the ring.
  • the phrase "optionally substituted” means unsubstituted or substituted.
  • substituted means that a hydrogen atom is removed and replaced by a substituent. It is to be understood that substitution at a given atom is limited by valency.
  • C n _ m indicates a range which includes the endpoints, wherein n and m are integers and indicate the number of carbons. Examples include C 1-4 , Ci_ 6 , and the like.
  • C n _ m alkyl refers to a saturated hydrocarbon group that may be straight-chain or branched, having n to m carbons.
  • the alkyl group contains from 1 to 6 carbon atoms, from 1 to 4 carbon atoms, from 1 to 3 carbon atoms, or 1 to 2 carbon atoms.
  • alkyl moieties include, but are not limited to, chemical groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, isobutyl, sec -butyl; higher homo logs such as 2 -methyl- 1 -butyl, n-pentyl, 3-pentyl, n-hexyl, 1,2,2-trimethylpropyl, and the like.
  • alkylene employed alone or in combination with other terms, refers to a divalent alkyl linking group.
  • alkylene groups include, but are not limited to, ethan-l,2-diyl, propan-l,3-diyl, propan-l,2-diyl, butan-l,4-diyl, butan- 1,3-diyl, butan-l,2-diyl, 2-methyl-propan-l,3-diyl, and the like.
  • C n _ m alkenyl refers to an alkyl group having one or more double carbon-carbon bonds and having n to m carbons.
  • the alkenyl moiety contains 2 to 6 or to 2 to 4 carbon atoms.
  • Example alkenyl groups include, but are not limited to, ethenyl, n-propenyl, isopropenyl, n-butenyl, sec-butenyl, and the like.
  • C n _ m alkynyl refers to an alkyl group having one or more triple carbon-carbon bonds and having n to m carbons.
  • Example alkynyl groups include, but are not limited to, ethynyl, propyn-l-yl, propyn-2-yl, and the like.
  • the alkynyl moiety contains 2 to 6 or 2 to 4 carbon atoms.
  • C n _ m alkoxy refers to a group of formula -O-alkyl, wherein the alkyl group has n to m carbons.
  • Example alkoxy groups include methoxy, ethoxy, propoxy (e.g., n-propoxy and isopropoxy), t-butoxy, and the like.
  • the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
  • C n _ m alkylamino refers to a group of formula
  • the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
  • the term "di-C n _ m -alkylamino" refers to a group of formula - N(alkyl) 2 , wherein the two alkyl groups each has, independently, n to m carbon atoms. In some embodiments, each alkyl group independently has 1 to 6 or 1 to 4 carbon atoms.
  • C n _ m alkoxycarbonyl refers to a group of formula -C(0)0-alkyl, wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
  • C n _ m alkylcarbonyl refers to a group of formula -C(O)- alkyl, wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
  • C n _ m alkylcarbonylamino refers to a group of formula -NHC(0)-alkyl, wherein the alkyl group has n to m carbon atoms.
  • the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
  • C n _ m alkylsulfonylamino refers to a group of formula -NHS(0) 2 -alkyl, wherein the alkyl group has n to m carbon atoms.
  • the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
  • aminosulfonyl employed alone or in combination with other terms, refers to a group of formula -S(0) 2 NH 2 .
  • C n _ m alkylaminosulfonyl refers to a group of formula -S(0) 2 NH(alkyl), wherein the alkyl group has n to m carbon atoms.
  • the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
  • di(C n _ m alkyl)aminosulfonyl refers to a group of formula -S(0) 2 N(alkyl) 2 , wherein each alkyl group independently has n to m carbon atoms. In some embodiments, each alkyl group has, independently, 1 to 6 or 1 to 4 carbon atoms.
  • aminosulfonylamino refers to a group of formula - NHS(0) 2 NH 2 .
  • C n _ m alkylaminosulfonylamino refers to a group of formula -NHS(0) 2 NH(alkyl), wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
  • di(C n _ m alkyl)aminosulfonylamino refers to a group of formula -NHS(0)2N(alkyl) 2 , wherein each alkyl group independently has n to m carbon atoms. In some embodiments, each alkyl group has, independently, 1 to 6 or 1 to 4 carbon atoms.
  • aminocarbonylamino refers to a group of formula
  • C n _ m alkylaminocarbonylamino refers to a group of formula -NHC(0)NH(alkyl), wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
  • di(C n _ m alkyl)aminocarbonylamino refers to a group of formula -NHC(0)N(alkyl) 2 , wherein each alkyl group independently has n to m carbon atoms. In some embodiments, each alkyl group has, independently, 1 to 6 or 1 to 4 carbon atoms.
  • C n _ m alkylcarbamyl refers to a group of formula -C(O)- NH(alkyl), wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
  • di(C n _ m -alkyl)carbamyl refers to a group of formula - C(0)N(alkyl) 2 , wherein the two alkyl groups each has, independently, n to m carbon atoms. In some embodiments, each alkyl group independently has 1 to 6 or 1 to 4 carbon atoms.
  • thio refers to a group of formula -SH.
  • C n _ m alkylthio refers to a group of formula -S-alkyl, wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
  • C n _ m alkylsulfmyl refers to a group of formula -S(O)- alkyl, wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
  • C n _ m alkylsulfonyl refers to a group of formula -S(0) 2 - alkyl, wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
  • amino refers to a group of formula -NH 2 .
  • hydroxy-C n _ m -alkyl refers to a group of formula - alkylene-OH, wherein said alkylene group has n to m carbon atoms.
  • the alkylene group has 1 to 4 carbon atoms.
  • C 0 _ p alkoxy-C n _ m -alkyl refers to a group of formula - alkylene-O-alkyl, wherein said alkylene group has n to m carbon atoms and said alkyl group has o to p carbon atoms.
  • the alkyl and alkylene groups each independently have 1 to 4 carbon atoms.
  • cyano-C n _ m -alkyl refers to a group of formula - alkylene-CN, wherein said alkylene group has n to m carbon atoms.
  • the alkylene group has 1 to 4 carbon atoms.
  • aryl refers to a monocyclic or polycyclic (e.g., having 2, 3 or 4 fused rings) aromatic hydrocarbon, such as, but not limited to, phenyl, 1-naphthyl, 2-naphthyl, anthracenyl, phenanthrenyl, and the like.
  • aryl is C 6 -io aryl.
  • the aryl group is a naphthalene ring or phenyl ring.
  • the aryl group is phenyl.
  • arylalkyl refers to a group of formula -alkylene-aryl. In some embodiments, arylalkyl is C6 -10 aryl-Ci_ 3 alkyl. In some embodiments, arylalkyl is benzyl.
  • carboxylate refers to a group of formula -C(0)NH 2 .
  • carbonyl employed alone or in combination with other terms, refers to a -C(O)- group.
  • carboxy refers to a group of formula -C(0)OH.
  • cycloalkyl refers to a non-aromatic cyclic hydrocarbon moiety, which may optionally contain one or more alkenylene groups as part of the ring structure.
  • Cycloalkyl groups can include mono- or polycyclic (e.g., having 2, 3 or 4 fused rings) ring systems.
  • moieties that have one or more aromatic rings fused (i.e., having a bond in common with) to the cycloalkyl ring, for example, benzo derivatives of cyclopentane, cyclopentene, cyclohexane, and the like.
  • cycloalkyl is C 3 _i 2 cycloalkyl, which is monocyclic or bicyclic.
  • Examplary cycloalkyl groups include 1 ,2,3,4-tetrahydro-naphthalene, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclopentenyl, cyclohexenyl, cyclohexadienyl, cycloheptatrienyl, norbornyl, norpinyl, norcarnyl, adamantyl, and the like.
  • the cycloalkyl group is cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.
  • cycloalkylalkyl refers to a group of formula -alkylene- cycloalkyl.
  • cycloalkylalkyl is C 3 _i 2 cycloalkyl-Ci_ 3 alkyl, wherein the cycloalkyl portion is monocyclic or bicyclic.
  • C n _ m haloalkoxy refers to a group of formula -O-haloalkyl having n to m carbon atoms.
  • An example haloalkoxy group is OCF 3 .
  • the haloalkoxy group is fluorinated only.
  • the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
  • C n _ m haloalkyl refers to an alkyl group having from one halogen atom to 2s+l halogen atoms which may be the same or different, where "s" is the number of carbon atoms in the alkyl group, wherein the alkyl group has n to m carbon atoms.
  • the haloalkyl group is fluorinated only.
  • the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
  • C n _ m fluoroalkyl refers to a C n _ m haloalkyl wherein the halogen atoms are selected from fluorine.
  • fluorinated C n _ m haloalkyl is fluoromethyl, difluoromethyl, or trifluoromethyl.
  • the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
  • heteroaryl refers to a monocyclic or polycyclic (e.g., having 2, 3 or 4 fused rings) aromatic hydrocarbon moiety, having one or more heteroatom ring members selected from nitrogen, sulfur and oxygen.
  • heteroaryl is 5- to 10- membered Ci_9 heteroaryl, which is monocyclic or bicyclic and which has 1 , 2, 3, or 4 heteroatom ring members independently selected from nitrogen, sulfur and oxygen.
  • heteroaryl group contains more than one heteroatom ring member
  • the heteroatoms may be the same or different.
  • Example heteroaryl groups include, but are not limited to, pyridine, pyrimidine, pyrazine, pyridazine, pyrrole, pyrazole, azolyl, oxazole, thiazole, imidazole, furan, thiophene, quinoline, isoquinoline, indole, benzothiophene, benzofuran, benzisoxazole, imidazo[l ,2-b]thiazole, purine, or the like.
  • a five-membered ring heteroaryl is a heteroaryl with a ring having five ring atoms wherein one or more (e.g., 1 , 2, or 3) ring atoms are independently selected from N, O, and S.
  • Exemplary five-membered ring heteroaryls are thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, pyrazolyl, isothiazolyl, isoxazolyl, 1 ,2,3-triazolyl, tetrazolyl, 1 ,2,3-thiadiazolyl, 1 ,2,3-oxadiazolyl, 1 ,2,4-triazolyl, 1 ,2,4-thiadiazolyl, 1 ,2,4- oxadiazolyl, 1 ,3,4-triazolyl, 1 ,3,4-thiadiazolyl, and 1 ,3,4-oxadiazolyl.
  • a six-membered ring heteroaryl is a heteroaryl with a ring having six ring atoms wherein one or more (e.g., 1 , 2, or 3) ring atoms are independently selected from N, O, and S.
  • Exemplary six-membered ring heteroaryls are pyridyl, pyrazinyl, pyrimidinyl, triazinyl and pyridazinyl.
  • heteroarylalkyl refers to a group of formula -alkylene- heteroaryl.
  • heteroarylalkyl is Ci_g heteroaryl-Ci_3 alkyl, wherein the heteroaryl portion is monocyclic or bicyclic and has 1 , 2, 3, or 4 heteroatom ring members independently selected from nitrogen, sulfur and oxygen.
  • heterocycloalkyl refers to non-aromatic ring system, which may optionally contain one or more alkenylene or alkynylene groups as part of the ring structure, and which has at least one heteroatom ring member independently selected from nitrogen, sulfur and oxygen.
  • heterocycloalkyl groups contains more than one heteroatom, the heteroatoms may be the same or different.
  • Heterocycloalkyl groups can include mono- or polycyclic (e.g., having 2, 3 or 4 fused rings) ring systems.
  • heterocycloalkyl moieties that have one or more aromatic rings fused (i.e., having a bond in common with) to the non-aromatic ring, for example, 1 ,2,3,4- tetrahydro-quinoline and the like.
  • the carbon atoms or heteroatoms in the ring(s) of the heterocycloalkyl group can be oxidized to form a carbonyl, or sulfonyl group (or other oxidized linkage) or a nitrogen atom can be quaternized.
  • heterocycloalkyl is 5- to 10-membered C2-9 heterocycloalkyl, which is monocyclic or bicyclic and which has 1 , 2, 3, or 4 heteroatom ring members independently selected from nitrogen, sulfur and oxygen.
  • heterocycloalkyl groups include 1 ,2,3,4- tetrahydro-quinoline, azetidine, azepane, pyrrolidine, piperidine, piperazine, morpholine, thiomorpholine, pyran, and a 2-oxo-l ,3-oxazolidine ring.
  • heterocycloalkylalkyl refers to a group of formula -alkylene-heterocycloalkyl.
  • heterocycloalkylalkyl is C2-9 heterocycloalkyl-Ci_3 alkyl, wherein the heterocycloalkyl portion is monocyclic or bicyclic and has 1 , 2, 3, or 4 heteroatom ring members independently selected from nitrogen, sulfur and oxygen.
  • the compounds described herein can be asymmetric (e.g., having one or more stereocenters). All stereoisomers, such as enantiomers and diastereomers, are intended unless otherwise indicated.
  • asymmetrically substituted carbon atoms can be isolated in optically active or racemic forms.
  • Methods on how to prepare optically active forms from optically inactive starting materials are known in the art, such as by resolution of racemic mixtures or by stereoselective synthesis.
  • Cis and trans geometric isomers of the compounds of the present invention are described and may be isolated as a mixture of isomers or as separated isomeric forms.
  • Resolution of racemic mixtures of compounds can be carried out by any of numerous methods known in the art.
  • An example method includes fractional
  • Suitable resolving agents for fractional recrystallization methods are, for example, optically active acids, such as the D and L forms of tartaric acid, diacetyltartaric acid, dibenzoyltartaric acid, mandelic acid, malic acid, lactic acid or the various optically active camphorsulfonic acids such as ⁇ -camphorsulfonic acid.
  • optically active acids such as the D and L forms of tartaric acid, diacetyltartaric acid, dibenzoyltartaric acid, mandelic acid, malic acid, lactic acid or the various optically active camphorsulfonic acids such as ⁇ -camphorsulfonic acid.
  • resolving agents suitable for fractional crystallization methods include stereoisomerically pure forms of a- methylbenzylamine (e.g., S and R forms, or diastereomerically pure forms), 2- phenylglycinol, norephedrine, ephedrine, N-methylephedrine, cyclohexylethylamine, 1,2- diaminocyclohexane, and the like.
  • Resolution of racemic mixtures can also be carried out by elution on a column packed with an optically active resolving agent (e.g., dinitrobenzoylphenylglycine).
  • an optically active resolving agent e.g., dinitrobenzoylphenylglycine
  • Suitable elution solvent composition can be determined by one skilled in the art.
  • Tautomeric forms result from the swapping of a single bond with an adjacent double bond together with the concomitant migration of a proton.
  • Tautomeric forms include prototropic tautomers which are isomeric protonation states having the same empirical formula and total charge.
  • Example prototropic tautomers include ketone - enol pairs, amide - imidic acid pairs, lactam - lactim pairs, amide - imidic acid pairs, enamine - imine pairs, and annular forms where a proton can occupy two or more positions of a heterocyclic system, for example, IH- and 3H-imidazole, 1H-, 2H- and 4H- 1,2,4-triazole, IH- and 2H- isoindole, and IH- and 2H-pyrazole.
  • Tautomeric forms can be in equilibrium or sterically locked into one form by appropriate substitution.
  • Compounds of the invention can also include all isotopes of atoms occurring in the intermediates or final compounds.
  • Isotopes include those atoms having the same atomic number but different mass numbers.
  • isotopes of hydrogen include tritium and deuterium.
  • 1, 2, or 3 CH 2 or CH groups in the cyclobutyl ring of Formula I are replaced by a CHD or CD 2 group.
  • some embodiments of the compounds of Formula I may have a deuterium atom attached to one atom of the cyclobutyl ring:
  • compound as used herein is meant to include all stereoisomers, geometric iosomers, tautomers, and isotopes of the structures depicted.
  • Compounds herein identified by name or structure as one particular tautomeric form are intended to include other tautomeric forms unless otherwise specified (e.g., in the case of purine rings, unless otherwise indicated, when the compound name or structure has the 9H tautomer, it is understood that the 7H tautomer is also encompassed).
  • All compounds, and pharmaceutically acceptable salts thereof, can be found together with other substances such as water and solvents (e.g. hydrates and solvates) or can be isolated.
  • the compounds of the invention, or salts thereof are substantially isolated.
  • substantially isolated is meant that the compound is at least partially or substantially separated from the environment in which it was formed or detected.
  • Partial separation can include, for example, a composition enriched in the compounds of the invention.
  • Substantial separation can include compositions containing at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%), at least about 95%, at least about 97%, or at least about 99% by weight of the compounds of the invention, or salt thereof. Methods for isolating compounds and their salts are routine in the art.
  • phrases "pharmaceutically acceptable” is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
  • ambient temperature and “room temperature,” as used herein, are understood in the art, and refer generally to a temperature, e.g. a reaction temperature, that is about the temperature of the room in which the reaction is carried out, for example, a temperature from about 20 °C to about 30 °C.
  • the present invention also includes pharmaceutically acceptable salts of the compounds described herein.
  • pharmaceutically acceptable salts refers to derivatives of the disclosed compounds wherein the parent compound is modified by converting an existing acid or base moiety to its salt form.
  • examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.
  • the pharmaceutically acceptable salts of the present invention include the conventional non-toxic salts of the parent compound formed, for example, from nontoxic inorganic or organic acids.
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods.
  • such salts can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, non-aqueous media like ether, ethyl acetate, alcohols (e.g., methanol, ethanol, iso-propanol, or butanol) or acetonitrile (ACN) are preferred.
  • non-aqueous media like ether, ethyl acetate, alcohols (e.g., methanol, ethanol, iso-propanol, or butanol) or acetonitrile (ACN) are preferred.
  • non-aqueous media like ether, ethyl acetate, alcohols (e.g., methanol, ethanol, iso-propanol, or butanol) or acetonitrile (ACN) are preferred.
  • ACN acetonitrile
  • the reactions for preparing compounds of the invention can be carried out in suitable solvents which can be readily selected by one of skill in the art of organic synthesis.
  • suitable solvents can be substantially non-reactive with the starting materials (reactants), the intermediates, or products at the temperatures at which the reactions are carried out, e.g., temperatures which can range from the solvent's freezing temperature to the solvent's boiling temperature.
  • a given reaction can be carried out in one solvent or a mixture of more than one solvent.
  • suitable solvents for a particular reaction step can be selected by the skilled artisan.
  • Preparation of compounds of the invention can involve the protection and deprotection of various chemical groups.
  • the need for protection and deprotection, and the selection of appropriate protecting groups, can be readily determined by one skilled in the art.
  • the chemistry of protecting groups can be found, for example, in Wuts and Greene, Protective Groups in Organic Synthesis, 4th ed., John Wiley & Sons: New Jersey, (2007), which is incorporated herein by reference in its entirety.
  • Reactions can be monitored according to any suitable method known in the art.
  • product formation can be monitored by spectroscopic means, such as nuclear magnetic resonance spectroscopy (e.g., 1H or 13 C), infrared spectroscopy, spectrophotometry (e.g., UV-visible), mass spectrometry, or by chromatographic methods such as high performance liquid chromatography (HPLC) or thin layer chromatography (TLC).
  • spectroscopic means such as nuclear magnetic resonance spectroscopy (e.g., 1H or 13 C), infrared spectroscopy, spectrophotometry (e.g., UV-visible), mass spectrometry, or by chromatographic methods such as high performance liquid chromatography (HPLC) or thin layer chromatography (TLC).
  • HPLC high performance liquid chromatography
  • TLC thin layer chromatography
  • Useful intermediates 3-4 can be made according to the methods outlined in Scheme 1.
  • the heterocycloalkyl ring compound 3-1 (such as tert-butyl 4- hydroxypiperidine-l-carboxylate) can be reacted with phenol 7-2 under Mitsunobu coupling reaction condition to afford ether 3-3.
  • the amino protecting group Pg 1 can be removed to afford intermediate 3-4.
  • Pg 1 is an amine protecting
  • Compounds of Formula I, wherein W is CH, can also be made by the methods shown in Scheme 2. Accordingly, compound 4-2 can be formed by reaction of the cyclobutanone 4-1 with a Horner- Wadsworth-Emmons reagent. A protected pyrazol-4- yl-pyrrolo[2,3-d]pyrimidineor pyrrol-3-yl-pyrrolo[2,3-d]pyrimidineof formula 4-3 is reacted with a protected alkene 4-2 in a Michael addition in the presence of a coupling agent to give compound 4-4. The ether protecting group can be removed from compound 4-4 to give an alcohol derivative 4-5, which can be oxidized to give the compound 4-6. Compound 4-6 can be converted to compound of formula 4-7 and 4-8 via reductive amination, which can be deprotected to remove Pi to give the compound of Formula I.
  • Reductive alkylation of a Boc-protected compound g with this ketone employing a zinc-modified reducing reagent produced by the combination of zinc (II) chloride and sodium cyanoborohydride (J. Org. Chem. 1985, 50, pp. 1927-1932) can provide the cis- and trans- isomers h and i in roughly equal proportions. These may be separated by chiral HPLC into the individual isomers, and the stereochemistry can be determined by nOe.
  • Removal of the Boc protecting group can be effected by stirring with aqueous HC1 in THF to afford the base, which can then be functionalized according to the following methods, then deprotected by the use of TFA in DCM followed by ethylenediamine in methanol to afford compounds described herein.
  • amides can be formed by reaction with carboxylic acids using BOP or HATU as coupling agents, in the presence of either of the aforementioned bases.
  • Ureas are formed from the cis- or trans- cyclobutylpiperazine starting materials either by reaction (in the presence of base) with an isocyanate, or with an intermediate formed by the combination of phosgene with an amine, or with a carbamoyl chloride.
  • Sulfonamides are formed by reaction of the piperazine with sulfonyl chlorides or sulfamoyl chlorides in the presence of base.
  • L CO for amides: AC0 2 H, BOP or HATU, TEA or DIPEA; or ACOCI, base
  • L CO for ureas: ANCO, base; or A-H, COCI 2 , base; or ACOCI, base (e.g. carbamoyl chloride)
  • Compound of Formula I can also be made by the methods shown in Scheme IV. Accordingly formula 4-2 can be formed by reaction of the cyclobutanone of formula 4-1 with a Horner- Wadsworth-Emmons reagent. A protected pyrazol-4-yl-pyrrolo[2,3- d]pyrimidine or pyrrol-3-yl-pyrrolo[2,3-d]pyrimidine of formula 4-3 is reacted with a protected alkene of formula 4-2 in a Michael addition in the presence of a coupling agent to give the compound of formula 4-4. Removal of ether protecting group of formula 4-4 gives an alcohol derivative of formula 4-5, which can be oxidized to give the compound of formula 4-6. The compound of formula 4-6 can be converted to compound of formula 4-7 and 4-8 via reductive amination, which can be deprotected to remove Pi to give the compound of Formula I.
  • Compounds of the invention are JAK inhibitors, and the majority of the compounds of the invention are JAKl selective inhibitors.
  • a JAKl selective inhibitor a compound that inhibits JAKl activity preferentially over other Janus kinases.
  • the compounds of the invention preferentially inhibit JAKl over one or more of JAK2, JAK3, and TYK2.
  • the compounds inhibit JAKl preferentially over JAK2 (e.g., have a JAK1/JAK2 IC 50 ratio >1).
  • JAKl plays a central role in a number of cytokine and growth factor signaling pathways that, when dysregulated, can result in or contribute to disease states. For example, IL-6 levels are elevated in rheumatoid arthritis, a disease in which it has been suggested to have detrimental effects (Fonesca, J.E. et al, Autoimmunity Reviews, 8:538-42, 2009). Because IL-6 signals, at least in part, through JAKl, antagonizing IL-6 directly or indirectly through JAKl inhibition is expected to provide clinical benefit (Guschin, D., N., et al Embo J 14: 1421, 1995; Smolen, J. S., et al. Lancet 371 :987, 2008).
  • JAKl is mutated resulting in constitutive undesirable tumor cell growth and survival (Mullighan CG, Proc Natl Acad Sci U S A.106:9414-8, 2009; Flex E., et al.J Exp Med. 205:751-8, 2008).
  • JAKl inhibition In other autoimmune diseases and cancers elevated systemic levels of inflammatory cytokines that activate JAKl may also contribute to the disease and/or associated symptoms. Therefore, patients with such diseases may benefit from JAKl inhibition.
  • Selective inhibitors of JAKl may be efficacious while avoiding unnecessary and potentially undesirable effects of inhibiting other JAK kinases.
  • JAKl erythropoietin
  • Tpo thrombopoietin
  • Epo is a key growth factor for red blood cells production; hence a paucity of Epo-dependent signaling can result in reduced numbers of red blood cells and anemia (Kaushansky K, NEJM 354:2034-45, 2006).
  • Tpo another example of a JAK2-dependent growth factor, plays a central role in controlling the proliferation and maturation of megakaryocytes - the cells from which platelets are produced (Kaushansky K, NEJM 354:2034-45, 2006). As such, reduced Tpo signaling would decrease megakaryocyte numbers (megakaryocytopenia) and lower circulating platelet counts (thrombocytopenia). This can result in undesirable and/or uncontrollable bleeding. Reduced inhibition of other JAKs, such as JAK3 and Tyk2, may also be desirable as humans lacking functional version of these kinases have been shown to suffer from numerous maladies such as severe-combined immunodeficiency or
  • JAK1 inhibitor with reduced affinity for other JAKs would have significant advantages over a less-selective inhibitor with respect to reduced side effects involving immune suppression, anemia and thrombocytopenia.
  • a JAK-associated disease can include any disease, disorder or condition that is directly or indirectly linked to expression or activity of the JAK, including overexpression and/or abnormal activity levels.
  • a JAK-associated disease can also include any disease, disorder or condition that can be prevented, ameliorated, or cured by modulating JAK activity.
  • the JAK-associated disease is a JAK1 -associated disease.
  • JAK-associated diseases include diseases involving the immune system including, for example, organ transplant rejection (e.g., allograft rejection and graft versus host disease).
  • organ transplant rejection e.g., allograft rejection and graft versus host disease.
  • JAK-associated diseases include autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, juvenile arthritis, psoriatic arthritis, type I diabetes, lupus, psoriasis, inflammatory bowel disease, ulcerative colitis, Crohn's disease, myasthenia gravis, immunoglobulin nephropathies, myocarditis, autoimmune thyroid disorders, and the like.
  • the autoimmune disease is an autoimmune bullous skin disorder such as pemphigus vulgaris (PV) or bullous pemphigoid (BP).
  • JAK-associated diseases include allergic conditions such as asthma, food allergies, atopic dermatitis and rhinitis.
  • Further examples of JAK- associated diseases include viral diseases such as Epstein Barr Virus (EBV), Hepatitis B, Hepatitis C, HIV, HTLV 1 , Varicella-Zoster Virus (VZV) and Human Papilloma Virus (HPV).
  • EBV Epstein Barr Virus
  • HBV Epstein Barr Virus
  • Hepatitis B Hepatitis C
  • HIV HTLV 1
  • VZV Varicella-Zoster Virus
  • HPV Human Papilloma Virus
  • JAK-associated disease examples include diseases associated with cartilage turnover, for example, gouty arthritis, septic or infectious arthritis, reactive arthritis, reflex sympathetic dystrophy, algodystrophy, Tietze syndrome, costal athropathy, osteoarthritis deformans endemica, Mseleni disease, Handigodu disease, degeneration resulting from fibromyalgia, systemic lupus erythematosus, scleroderma, or ankylosing spondylitis.
  • diseases associated with cartilage turnover for example, gouty arthritis, septic or infectious arthritis, reactive arthritis, reflex sympathetic dystrophy, algodystrophy, Tietze syndrome, costal athropathy, osteoarthritis deformans endemica, Mseleni disease, Handigodu disease, degeneration resulting from fibromyalgia, systemic lupus erythematosus, scleroderma, or ankylosing spondylitis.
  • JAK-associated disease examples include congenital cartilage malformations, including hereditary chrondro lysis, chrondrodysplasias, and
  • pseudochrondrodysplasias e.g., microtia, enotia, and metaphyseal chrondrodysplasia.
  • JAK-associated diseases or conditions include skin disorders such as psoriasis (for example, psoriasis vulgaris), atopic dermatitis, skin rash, skin irritation, skin sensitization (e.g., contact dermatitis or allergic contact dermatitis).
  • skin disorders such as psoriasis (for example, psoriasis vulgaris), atopic dermatitis, skin rash, skin irritation, skin sensitization (e.g., contact dermatitis or allergic contact dermatitis).
  • certain substances including some pharmaceuticals when topically applied can cause skin sensitization.
  • co-administration or sequential administration of at least one JAK inhibitor of the invention together with the agent causing unwanted sensitization can be helpful in treating such unwanted sensitization or dermatitis.
  • the skin disorder is treated by topical administration of at least one JAK inhibitor of the invention.
  • the JAK-associated disease is cancer including those characterized by solid tumors (e.g., prostate cancer, renal cancer, hepatic cancer, pancreatic cancer, gastric cancer, breast cancer, lung cancer, cancers of the head and neck, thyroid cancer, glioblastoma, Kaposi's sarcoma, Castleman's disease, melanoma etc.), hematological cancers (e.g., lymphoma, leukemia such as acute lymphoblastic leukemia, acute myelogenous leukemia (AML) or multiple myeloma), and skin cancer such as cutaneous T-cell lymphoma (CTCL) and cutaneous B-cell lymphoma.
  • CTCLs include Sezary syndrome and mycosis fungoides.
  • the JAK inhibitors described herein, or in combination with other JAK inhibitors, such as those reported in U.S. Ser. No. 1 1/637,545, which is incorporated herein by reference in its entirety, can be used to treat inflammation- associated cancers.
  • the cancer is associated with inflammatory bowel disease.
  • the inflammatory bowel disease is ulcerative colitis.
  • the inflammatory bowel disease is Crohn's disease.
  • the inflammation-associated cancer is colitis-associated cancer.
  • the inflammation-associated cancer is colon cancer or colorectal cancer.
  • the cancer is gastric cancer, gastrointestinal carcinoid tumor, gastrointestinal stromal tumor (GIST), adenocarcinoma, small intestine cancer, or rectal cancer.
  • JAK-associated diseases can further include those characterized by expression of: JAK2 mutants such as those having at least one mutation in the pseudo-kinase domain (e.g., JAK2V617F); JAK2 mutants having at least one mutation outside of the pseudo- kinase domain; JAK1 mutants; JAK3 mutants; erythropoietin receptor (EPOR) mutants; or deregulated expression of CRLF2.
  • JAK2 mutants such as those having at least one mutation in the pseudo-kinase domain (e.g., JAK2V617F); JAK2 mutants having at least one mutation outside of the pseudo- kinase domain; JAK1 mutants; JAK3 mutants; erythropoietin receptor (EPOR) mutants; or deregulated expression of CRLF2.
  • JAK-associated diseases can further include myeloproliferative disorders (MPDs) such as polycythemia vera (PV), essential thrombocythemia (ET), myelofibrosis with myeloid metaplasia (MMM), primary myelofibrosis (PMF), chronic myelogenous leukemia (CML), chronic myelomonocytic leukemia (CMML), hypereosinophilic syndrome (HES), systemic mast cell disease (SMCD), and the like.
  • MPDs myeloproliferative disorders
  • PV polycythemia vera
  • E essential thrombocythemia
  • MMM myelofibrosis with myeloid metaplasia
  • PMF primary myelofibrosis
  • CML chronic myelogenous leukemia
  • CMML chronic myelomonocytic leukemia
  • HES hypereosinophilic syndrome
  • SMCD systemic mast cell disease
  • the myeloproliferative disorder is myelofibrosis (e.g., primary
  • PMF myelofibrosis
  • Post-PV/ET MF post polycythemia vera/essential thrombocythemia myelofibrosis
  • the present invention further provides methods of treating psoriasis or other skin disorders by administration of a topical formulation containing a compound of the invention.
  • JAK inhibitors described herein can be used to treat pulmonary arterial hypertension.
  • the present invention further provides a method of treating dermatological side effects of other pharmaceuticals by administration of the compound of the invention.
  • numerous pharmaceutical agents result in unwanted allergic reactions which can manifest as acneiform rash or related dermatitis.
  • Example pharmaceutical agents that have such undesirable side effects include anti-cancer drugs such as gefitinib, cetuximab, erlotinib, and the like.
  • the compounds of the invention can be administered systemically or topically (e.g., localized to the vicinity of the dermatitis) in combination with (e.g., simultaneously or sequentially) the pharmaceutical agent having the undesirable dermatological side effect.
  • the compound of the invention can be administered topically together with one or more other pharmaceuticals, where the other pharmaceuticals when topically applied in the absence of a compound of the invention cause contact dermatitis, allergic contact sensitization, or similar skin disorder.
  • compositions of the invention include topical formulations containing the compound of the invention and a further pharmaceutical agent which can cause dermatitis, skin disorders, or related side effects.
  • JAK-associated diseases include inflammation and inflammatory diseases.
  • Example inflammatory diseases include sarcoidosis, inflammatory diseases of the eye (e.g., crizis, uveitis, scleritis, conjunctivitis, or related disease), inflammatory diseases of the respiratory tract (e.g. , the upper respiratory tract including the nose and sinuses such as rhinitis or sinusitis or the lower respiratory tract including bronchitis, chronic obstructive pulmonary disease, and the like), inflammatory myopathy such as
  • the JAK inhibitors described herein can further be used to treat ischemia reperfusion injuries or a disease or condition related to an inflammatory ischemic event such as stroke or cardiac arrest.
  • the JAK inhibitors described herein can further be used to treat anorexia, cachexia, or fatigue such as that resulting from or associated with cancer.
  • the JAK inhibitors described herein can further be used to treat restenosis, sclerodermas, or fibrosis.
  • the JAK inhibitors described herein can further be used to treat conditions associated with hypoxia or astrogliosis such as, for example, diabetic retinopathy, cancer, or neurodegeneration. See, e.g., Dudley, A.C. et al. Biochem. J.
  • JAK inhibitors described herein can be used to treat Alzheimer's disease.
  • the JAK inhibitors described herein can further be used to treat other
  • SIRS systemic inflammatory response syndrome
  • JAK inhibitors described herein can further be used to treat gout and increased prostate size due to, e.g., benign prostatic hypertrophy or benign prostatic hyperplasia.
  • JAK-associated diseases include bone resorption diseases such as osteoporosis, osteoarthritis. Bone resorption can also be associated with other conditions such as hormonal imbalance and/or hormonal therapy, autoimmune disease (e.g. osseous sarcoidosis), or cancer (e.g. myeloma).
  • the reduction of the bone resorption due to the JAK inhibitors can be about 10%, about 20%>, about 30%>, about 40%>, about 50%>, about 60%, about 70%, about 80%, or about 90%.
  • JAK inhibitors described herein can further be used to treat a dry eye disorder.
  • dry eye disorder is intended to encompass the disease states summarized in a recent official report of the Dry Eye Workshop (DEWS), which defined dry eye as "a multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbance, and tear film instability with potential damage to the ocular surface. It is accompanied by increased osmolality of the tear film and inflammation of the ocular surface.” Lemp, "The Definition and
  • the dry eye disorder is selected from aqueous tear-deficient dry eye (ADDE) or evaporative dry eye disorder, or appropriate combinations thereof.
  • the dry eye disorder is Sjogren syndrome dry eye (SSDE).
  • the dry eye disorder is non-Sjogren syndrome dry eye (NSSDE).
  • the present invention provides a method of treating conjunctivitis, uveitis (including chronic uveitis), chorioditis, retinitis, cyclitis, sclieritis, episcleritis, or ulceris; treating inflammation or pain related to corneal transplant, LASIK (laser assisted in situ keratomileusis), photorefractive keratectomy, or LASEK (laser assisted sub-epithelial keratomileusis); inhibiting loss of visual acuity related to corneal transplant, LASIK, photorefractive keratectomy, or LASEK; or inhibiting transplant rejection in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of the compound of the invention, or a pharmaceutically acceptable salt thereof.
  • the compounds of the invention can be used to treat respiratory dysfunction or failure associated with viral infection, such as influenza and SARS.
  • the present invention provides a compound of Formula I, pharmaceutically acceptable salt thereof, as described in any of the embodiments herein, for use in a method of treating any of the diseases or disorders described herein.
  • the present invention provides the use of a compound of Formula I as described in any of the embodiments herein, for the preparation of a medicament for use in a method of treating any of the diseases or disorders described herein.
  • the present invention provides a compound of Formula I as described herein, or a pharmaceutically acceptable salt thereof, for use in a method of modulating a JAK1.
  • the present invention also provides use of a compound of Formula I as described herein, or a pharmaceutically acceptable salt thereof, for the preparation of a medicament for use in a method of modulating a JAK1.
  • contacting refers to the bringing together of indicated moieties in an in vitro system or an in vivo system.
  • "contacting" a JAK with a compound of the invention includes the administration of a compound of the present invention to an individual or patient, such as a human, having a JAK, as well as, for example, introducing a compound of the invention into a sample containing a cellular or purified preparation containing the JAK.
  • the phrase "therapeutically effective amount” refers to the amount of active compound or pharmaceutical agent that elicits the biological or medicinal response that is being sought in a tissue, system, animal, individual or human by a researcher, veterinarian, medical doctor or other clinician.
  • the term "treating" or “treatment” refers to one or more of (1) preventing the disease; for example, preventing a disease, condition or disorder in an individual who may be predisposed to the disease, condition or disorder but does not yet experience or display the pathology or symptomatology of the disease; (2) inhibiting the disease; for example, inhibiting a disease, condition or disorder in an individual who is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e., arresting further development of the pathology and/or symptomatology); and (3) ameliorating the disease; for example, ameliorating a disease, condition or disorder in an individual who is experiencing or displaying the pathology or
  • symptomatology of the disease, condition or disorder i.e., reversing the pathology and/or symptomatology
  • decreasing the severity of disease i.e., decreasing the severity of disease.
  • One or more additional pharmaceutical agents such as, for example,
  • chemotherapeutics anti-inflammatory agents, steroids, immunosuppressants, as well as Bcr-Abl, Flt-3, RAF and FAK kinase inhibitors such as, for example, those described in WO 2006/056399, which is incorporated herein by reference in its entirety, or other agents can be used in combination with the compounds described herein for treatment of JAK-associated diseases, disorders or conditions.
  • the one or more additional pharmaceutical agents can be administered to a patient simultaneously or sequentially.
  • Example chemotherapeutic include proteosome inhibitors ⁇ e.g., bortezomib), thalidomide, revlimid, and DNA-damaging agents such as melphalan, doxorubicin, cyclophosphamide, vincristine, etoposide, carmustine, and the like.
  • Example steroids include coriticosteroids such as dexamethasone or prednisone.
  • Example Bcr-Abl inhibitors include the compounds, and pharmaceutically acceptable salts thereof, of the genera and species disclosed in U.S. Pat. No. 5,521,184, WO 04/005281, and U.S. Ser. No. 60/578,491, all of which are incorporated herein by reference in their entirety.
  • Example suitable Flt-3 inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 03/037347, WO 03/099771, and WO 04/046120, all of which are incorporated herein by reference in their entirety.
  • Example suitable RAF inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 00/09495 and WO 05/028444, both of which are incorporated herein by reference in their entirety.
  • Example suitable FAK inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 04/080980, WO 04/056786, WO 03/024967, WO 01/064655, WO 00/053595, and WO 01/014402, all of which are incorporated herein by reference in their entirety.
  • one or more of the compounds of the invention can be used in combination with one or more other kinase inhibitors including imatinib, particularly for treating patients resistant to imatinib or other kinase inhibitors.
  • one or more JAK inhibitors of the invention can be used in combination with a chemotherapeutic in the treatment of cancer, such as multiple myeloma, and may improve the treatment response as compared to the response to the chemotherapeutic agent alone, without exacerbation of its toxic effects.
  • additional pharmaceutical agents used in the treatment of multiple myeloma can include, without limitation, melphalan, melphalan plus prednisone [MP],
  • doxorubicin doxorubicin
  • dexamethasone dexamethasone
  • Velcade bortezomib
  • Further additional agents used in the treatment of multiple myeloma include Bcr-Abl, Flt-3, RAF and FAK kinase inhibitors. Additive or synergistic effects are desirable outcomes of combining a JAK inhibitor of the present invention with an additional agent.
  • resistance of multiple myeloma cells to agents such as dexamethasone may be reversible upon treatment with a JAK inhibitor of the present invention.
  • the agents can be combined with the present compounds in a single or continuous dosage form, or the agents can be administered simultaneously or sequentially as separate dosage forms.
  • a corticosteroid such as dexamethasone is administered to a patient in combination with at least one JAK inhibitor where the dexamethasone is administered intermittently as opposed to continuously.
  • combinations of one or more JAK inhibitors of the invention with other therapeutic agents can be administered to a patient prior to, during, and/or after a bone marrow transplant or stem cell transplant.
  • the additional therapeutic agent is fluocinolone acetonide (Retisert®), or rimexolone (AL-2178, Vexol, Alcon).
  • the additional therapeutic agent is cyclosporine
  • the additional therapeutic agent is a corticosteroid.
  • the corticosteroid is triamcinolone, dexamethasone, fluocinolone, cortisone, prednisolone, or flumetholone.
  • the additional therapeutic agent is selected from:
  • the additional therapeutic agent is an anti-angiogenic agent, cholinergic agonist, TRP-1 receptor modulator, a calcium channel blocker, a mucin secretagogue, MUC 1 stimulant, a calcineurin inhibitor, a corticosteroid, a P2Y2 receptor agonist, a muscarinic receptor agonist, another JAK inhibitor, Bcr-Abl kinase inhibitor, Flt-3 kinase inhibitor, RAF kinase inhibitor, and FAK kinase inhibitor such as, for example, those described in WO 2006/056399, which is incorporated herein by reference in its entirety.
  • the additional therapeutic agent is a tetracycline derivative (e.g., minocycline or doxycline).
  • the additional therapeutic agent(s) are demulcent eye drops (also known as "artificial tears"), which include, but are not limited to, compositions containing polyvinylalcohol, hydroxypropyl methylcellulose, glycerin, polyethylene glycol (e.g. PEG400), or carboxymethyl cellulose. Artificial tears can help in the treatment of dry eye by compensating for reduced moistening and lubricating capacity of the tear film.
  • the additional therapeutic agent is a mucolytic drug, such as N-acetyl-cysteine, which can interact with the mucoproteins and, therefore, to decrease the viscosity of the tear film.
  • the additional therapeutic agent includes an antibiotic, antiviral, antifungal, anesthetic, anti-inflammatory agents including steroidal and nonsteroidal anti-inflammatories, and anti-allergic agents.
  • suitable medicaments include aminoglycosides such as amikacin, gentamycin, tobramycin, streptomycin, netilmycin, and kanamycin; fluoroquinolones such as ciprofloxacin, norfloxacin, ofloxacin, trovafloxacin, lomefloxacin, levofloxacin, and enoxacin; naphthyridine;
  • rifampins sulfonamides
  • polymyxin chloramphenicol; neomycin; paramomycin; colistimethate; bacitracin; vancomycin; tetracyclines; rifampin and its derivatives ("rifampins");
  • cycloserine beta-lactams; cephalosporins; amphotericins; fluconazole; flucytosine;
  • natamycin natamycin; miconazole; ketoconazole; corticosteroids; diclofenac; flurbiprofen;
  • ketorolac ketorolac
  • suprofen cromolyn
  • lodoxamide levocabastin
  • naphazoline antazoline
  • the compounds of the invention can be administered in the form of pharmaceutical compositions.
  • These compositions can be prepared in a manner well known in the pharmaceutical art, and can be administered by a variety of routes, depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including transdermal, epidermal, ophthalmic and to mucous membranes including intranasal, vaginal and rectal delivery), pulmonary ⁇ e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intratracheal or intranasal), oral or parenteral.
  • Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal intramuscular or injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration.
  • Parenteral administration can be in the form of a single bolus dose, or may be, for example, by a continuous perfusion pump.
  • formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders.
  • Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.
  • compositions which contain, as the active ingredient, the compound of the invention or a pharmaceutically acceptable salt thereof, in combination with one or more pharmaceutically acceptable carriers
  • composition is suitable for topical
  • the active ingredient is typically mixed with an excipient, diluted by an excipient or enclosed within such a carrier in the form of, for example, a capsule, sachet, paper, or other container.
  • an excipient serves as a diluent, it can be a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient.
  • compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, suppositories, sterile injectable solutions, and sterile packaged powders.
  • the active compound can be milled to provide the appropriate particle size prior to combining with the other ingredients. If the active compound is substantially insoluble, it can be milled to a particle size of less than 200 mesh. If the active compound is substantially water soluble, the particle size can be adjusted by milling to provide a substantially uniform distribution in the formulation, e.g. about 40 mesh.
  • the compounds of the invention may be milled using known milling procedures such as wet milling to obtain a particle size appropriate for tablet formation and for other formulation types.
  • Finely divided (nanoparticulate) preparations of the compounds of the invention can be prepared by processes known in the art, e.g., see International App. No. WO 2002/000196.
  • excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, and methyl cellulose.
  • the formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents.
  • the compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
  • compositions can be formulated in a unit dosage form, each dosage containing from about 5 to about 1,000 mg (1 g), more usually about 100 mg to about 500 mg, of the active ingredient.
  • unit dosage forms refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient.
  • the compositions of the invention contain from about 5 mg to about 50 mg of the active ingredient.
  • the active ingredient contains from about 5 mg to about 50 mg.
  • One having ordinary skill in the art will appreciate that this embodies compounds or compositions containing about 5 mg to about 10 mg, about 10 mg to about 15 mg, about 15 mg to about 20 mg, about 20 mg to about 25 mg, about 25 mg to about 30 mg, about 30 mg to about 35 mg, about 35 mg to about 40 mg, about 40 mg to about 45 mg, or about 45 mg to about 50 mg of the active ingredient.
  • the compositions of the invention contain from about 50 mg to about 500 mg of the active ingredient.
  • the active ingredient contains from about 50 mg to about 500 mg of the active ingredient.
  • One having ordinary skill in the art will appreciate that this embodies compounds or compositions containing about 50 mg to about 100 mg, about 100 mg to about 150 mg, about 150 mg to about 200 mg, about 200 mg to about 250 mg, about 250 mg to about 300 mg, about 350 mg to about 400 mg, or about 450 mg to about 500 mg of the active ingredient.
  • the compositions of the invention contain from about 500 mg to about 1 ,000 mg of the active ingredient.
  • the active ingredient One having ordinary skill in the art will appreciate that this embodies compounds or compositions containing about 500 mg to about 550 mg, about 550 mg to about 600 mg, about 600 mg to about 650 mg, about 650 mg to about 700 mg, about 700 mg to about 750 mg, about 750 mg to about 800 mg, about 800 mg to about 850 mg, about 850 mg to about 900 mg, about 900 mg to about 950 mg, or about 950 mg to about 1,000 mg of the active ingredient.
  • the active compound may be effective over a wide dosage range and is generally administered in a pharmaceutically effective amount. It will be understood, however, that the amount of the compound actually administered will usually be determined by a physician, according to the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
  • the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention.
  • a solid preformulation composition containing a homogeneous mixture of a compound of the present invention.
  • the active ingredient is typically dispersed evenly throughout the composition so that the composition can be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules.
  • This solid preformulation is then subdivided into unit dosage forms of the type described above containing from, for example, about 0.1 to about 1000 mg of the active ingredient of the present invention.
  • the tablets or pills of the present invention can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action.
  • the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former.
  • the two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release.
  • enteric layers or coatings such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.
  • liquid forms in which the compounds and compositions of the present invention can be incorporated for administration orally or by injection include aqueous solutions, suitably flavored syrups, aqueous or oil suspensions, and flavored emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil, or peanut oil, as well as elixirs and similar pharmaceutical vehicles.
  • compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders.
  • the liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra.
  • the compositions are administered by the oral or nasal respiratory route for local or systemic effect.
  • compositions in can be nebulized by use of inert gases. Nebulized solutions may be breathed directly from the nebulizing device or the nebulizing device can be attached to a face masks tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions can be administered orally or nasally from devices which deliver the formulation in an appropriate manner.
  • Topical formulations can contain one or more conventional carriers.
  • ointments can contain water and one or more hydrophobic carriers selected from, for example, liquid paraffin, polyoxyethylene alkyl ether, propylene glycol, white vaseline, and the like.
  • Carrier compositions of creams can be based on water in combination with glycerol and one or more other components, e.g.
  • topical formulations contain at least about 0.1, at least about 0.25, at least about 0.5, at least about 1 , at least about 2, or at least about 5 wt % of the compound of the invention.
  • the topical formulations can be suitably packaged in tubes of, for example, 100 g which are optionally associated with instructions for the treatment of the select indication, e.g., psoriasis or other skin condition.
  • compositions can be administered to a patient already suffering from a disease in an amount sufficient to cure or at least partially arrest the symptoms of the disease and its complications. Effective doses will depend on the disease condition being treated as well as by the judgment of the attending clinician depending upon factors such as the severity of the disease, the age, weight and general condition of the patient, and the like.
  • compositions administered to a patient can be in the form of pharmaceutical compositions described above. These compositions can be sterilized by conventional sterilization techniques, or may be sterile filtered. Aqueous solutions can be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile aqueous carrier prior to administration.
  • the pH of the compound preparations typically will be between 3 and 11, more preferably from 5 to 9 and most preferably from 7 to 8. It will be understood that use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of pharmaceutical salts.
  • the therapeutic dosage of a compound of the present invention can vary according to, for example, the particular use for which the treatment is made, the manner of administration of the compound, the health and condition of the patient, and the judgment of the prescribing physician.
  • the proportion or concentration of a compound of the invention in a pharmaceutical composition can vary depending upon a number of factors including dosage, chemical characteristics (e.g., hydrophobicity), and the route of administration.
  • the compounds of the invention can be provided in an aqueous physiological buffer solution containing about 0.1 to about 10% w/v of the compound for parenteral administration. Some typical dose ranges are from about 1 ⁇ g/kg to about 1 g/kg of body weight per day.
  • the dose range is from about 0.01 mg/kg to about 100 mg/kg of body weight per day.
  • the dosage is likely to depend on such variables as the type and extent of progression of the disease or disorder, the overall health status of the particular patient, the relative biological efficacy of the compound selected, formulation of the excipient, and its route of administration. Effective doses can be extrapolated from dose-response curves derived from in vitro or animal model test systems.
  • compositions of the invention can further include one or more additional pharmaceutical agents such as a chemotherapeutic, steroid, anti-inflammatory compound, or immunosuppressant, examples of which are listed hereinabove.
  • additional pharmaceutical agents such as a chemotherapeutic, steroid, anti-inflammatory compound, or immunosuppressant, examples of which are listed hereinabove.
  • the compound, or pharmaceutically acceptable salt thereof is administered as an ophthalmic composition.
  • the methods comprise administration of the compound, or pharmaceutically acceptable salt thereof, and an ophthalmically acceptable carrier.
  • the ophthalmic composition is a liquid composition, semi-solid composition, insert, film, microparticles or nanoparticles.
  • the ophthalmic composition is a liquid composition. In some embodiments, the ophthalmic composition is a semi-solid composition. In some embodiments, the ophthalmic composition is an topical composition.
  • the topical compositions include, but are not limited to liquid and semi-solid compositions. In some embodiments, the ophthalmic composition is a topical composition.
  • the topical composition comprises aqueous solution, an aqueous suspension, an ointment or a gel.
  • the ophthalmic composition is topically applied to the front of the eye, under the upper eyelid, on the lower eyelid and in the cul-de-sac.
  • the ophthalmic composition is sterilized. The sterilization can be accomplished by known techniques like sterilizing filtration of the solution or by heating of the solution in the ampoule ready for use.
  • the ophthalmic compositions of the invention can further contain pharmaceutical excipients suitable for the preparation of ophthalmic formulations. Examples of such excipients are preserving agents, buffering agents, chelating agents, antioxidant agents and salts for regulating the osmotic pressure.
  • the term "ophthalmically acceptable carrier” refers to any material that can contain and release the compound, or pharmaceutically acceptable salt thereof, and that is compatible with the eye.
  • the ophthalmically acceptable carrier is water or an aqueous solution or suspension, but also includes oils such as those used to make ointments and polymer matrices such as used in ocular inserts.
  • the composition may be an aqueous suspension comprising the compound, or pharmaceutically acceptable salt thereof.
  • Liquid ophthalmic compositions, including both ointments and suspensions may have a viscosity that is suited for the selected route of administration. In some embodiments, the ophthalmic composition has a viscosity in the range of from about 1,000 to about 30,000 centipoise.
  • the ophthalmic compositions may further comprise one or more of surfactants, adjuvants, buffers, antioxidants, tonicity adjusters, preservatives (e.g., EDTA, BAK (benzalkonium chloride), sodium chlorite, sodium perborate, polyquaterium-1), thickeners or viscosity modifiers (e.g., carboxymethyl cellulose, hydroxymethyl cellulose, polyvinyl alcohol, polyethylene glycol, glycol 400, propylene glycol hydroxymethyl cellulose, hydroxpropyl-guar, hyaluronic acid, and hydroxypropyl cellulose) and the like.
  • Additives in the formulation may include, but are not limited to, sodium chloride, sodium bicarbonate, sorbic acid, methyl paraben, propyl paraben, chlorhexidine, castor oil, and sodium perborate.
  • Aqueous ophthalmic compositions generally do not contain physiologically or ophthalmically harmful constituents.
  • purified or deionized water is used in the composition.
  • the pH may be adjusted by adding any physiologically and ophthalmically acceptable pH adjusting acids, bases or buffers to within the range of about 5.0 to 8.5.
  • Ophthalmically acceptable examples of acids include acetic, boric, citric, lactic, phosphoric, hydrochloric, and the like
  • bases include sodium hydroxide, sodium phosphate, sodium borate, sodium citrate, sodium acetate, sodium lactate, tromethamine, trishydroxymethylamino-methane, and the like.
  • Salts and buffers include citrate/dextrose, sodium bicarbonate, ammonium chloride and mixtures of the aforementioned acids and bases.
  • the methods involve forming or supplying a depot of the therapeutic agent in contact with the external surface of the eye.
  • a depot refers to a source of therapeutic agent that is not rapidly removed by tears or other eye clearance mechanisms. This allows for continued, sustained high concentrations of therapeutic agent to be present in the fluid on the external surface of the eye by a single application.
  • absorption and penetration may be dependent on both the dissolved drug concentration and the contact duration of the external tissue with the drug containing fluid. As the drug is removed by clearance of the ocular fluid and/or absorption into the eye tissue, more drug is provided, e.g.
  • the use of a depot may more easily facilitate loading of the ocular tissue for more insoluble therapeutic agents.
  • the depot can remain for up to eight hours or more.
  • the ophthalmic depot forms includes, but is not limited to, aqueous polymeric suspensions, ointments, and solid inserts.
  • the ophthalmic composition is an ointment or gel.
  • the ophthalmic composition is an oil-based delivery vehicle.
  • the composition comprises a petroleum or lanolin base to which is added the active ingredient, usually as 0.1 to 2%, and excipients. Common bases may include, but are not limited to, mineral oil, petrolatum and combinations thereof.
  • the ointment is applied as a ribbon onto the lower eyelid.
  • the ophthalmic composition is an ophthalmic insert.
  • the ophthalmic insert is biologically inert, soft, bio-erodible, viscoelastic, stable to sterilization after exposure to therapeutic agents, resistant to infections from air borne bacteria, bio- erodible, biocompatible, and/or viscoelastic.
  • the insert comprises an ophthalmically acceptable matrix, e.g., a polymer matrix.
  • the matrix is typically a polymer and the therapeutic agent is generally dispersed therein or bonded to the polymer matrix.
  • the therapeutic agent may be slowly released from the matrix through dissolution or hydrolysis of the covalent bond.
  • the polymer is bioerodible (soluble) and the dissolution rate thereof can control the release rate of the therapeutic agent dispersed therein.
  • the polymer matrix is a biodegradable polymer that breaks down such as by hydrolysis to thereby release the therapeutic agent bonded thereto or dispersed therein.
  • the matrix and therapeutic agent can be surrounded with an additional polymeric coating to further control release.
  • the insert comprises a biodegradable polymer such as polycaprolactone (PCL), an
  • the therapeutic agent is dispersed into the matrix material or dispersed amongst the monomer composition used to make the matrix material prior to
  • the amount of therapeutic agent is from about 0.1 to about 50%, or from about 2 to about 20%.
  • the biodegradable or bioerodible polymer matrix is used so that the spent insert does not have to be removed. As the biodegradable or bioerodible polymer is degraded or dissolved, the therapeutic agent is released.
  • the ophthalmic insert comprises a polymer, including, but are not limited to, those described in Wagh, et al, "Polymers used in ocular dosage form and drug delivery systems", Asian J. Pharm., pages 12-17 (Jan. 2008), which is incorporated herein by reference in its entirety.
  • the insert comprises a polymer selected from polyvinylpyrrolidone (PVP), an acrylate or methacrylate polymer or copolymer (e.g., Eudragit® family of polymers from Rohm or Degussa), hydroxymethyl cellulose, polyacrylic acid, poly(amidoamine) dendrimers, poly(dimethyl siloxane), polyethylene oxide, poly(lactide-co-glycolide), poly(2- hydroxyethylmethacrylate), poly(vinyl alcohol), or poly(propylene fumarate).
  • the insert comprises Gelfoam® R.
  • the insert is a polyacrylic acid of 450 kDa-cysteine conjugate.
  • the ophthalmic composition is a ophthalmic film.
  • the film is a soft-contact lens, such as ones made from copolymers of ⁇ , ⁇ -diethylacrylamide and methacrylic acid crosslinked with ethyleneglycol dimethacrylate.
  • the ophthalmic compositon comprises microspheres or nanoparticles.
  • the microspheres comprise gelatin.
  • the microspheres are injected to the posterior segment of the eye, in the chroroidal space, in the sclera, intravitreally or sub-retinally.
  • the microspheres or nanoparticles comprises a polymer including, but not limited to, those described in Wagh, et al. (ibid), which is incorporated herein by reference in its entirety.
  • the polymer is chitosan, a polycarboxylic acid such as polyacrylic acid, albumin particles, hyaluronic acid esters, polyitaconic acid,
  • the microspheres or nanoparticles comprise solid lipid particles.
  • the ophthalmic composition comprises an ion-exchange resin.
  • the ion-exchange resin is an inorganic zeolite or synthetic organic resin.
  • the ion-exchange resin includes, but is not limited to, those described in Wagh, et al. (ibid), which is incorporated herein by reference in its entirety.
  • the ion-exhange resin is a partially neutralized polyacrylic acid.
  • the ophthalmic composition is an aqueous polymeric suspension.
  • the therapeutic agent or a polymeric suspending agent is suspended in an aqueous medium.
  • the aqueous polymeric suspensions may be formulated so that they retain the same or substantially the same viscosity in the eye that they had prior to administration to the eye. In some embodiments, they may be formulated so that there is increased gelation upon contact with tear fluid.
  • Another aspect of the present invention relates to labeled compounds of the invention (radio-labeled, fluorescent-labeled, etc.) that would be useful not only in imaging techniques but also in assays, both in vitro and in vivo, for localizing and quantitating JAK in tissue samples, including human, and for identifying JAK ligands by inhibition binding of a labeled compound. Accordingly, the present invention includes JAK assays that contain such labeled compounds.
  • the present invention further includes isotopically-labeled compounds of the invention.
  • An “isotopically” or “radio-labeled” compound is a compound of the invention where one or more atoms are replaced or substituted by an atom having an atomic mass or mass number different from the atomic mass or mass number typically found in nature (i.e., naturally occurring). Suitable radionuclides that may be
  • incorporated in compounds of the present invention include but are not limited to 3 H (also written as T for tritium), U C, 13 C, 14 C, 13 N, 15 N, 15 0, 17 0, 18 0, 18 F, 35 S, 36 C1, 82 Br, 75 Br,
  • radionuclide that is incorporated in the instant radio-labeled compounds will depend on the specific application of that radio-labeled compound. For example, for in vitro JAK labeling and competition assays, compounds
  • a “radio-labeled” or “labeled compound” is a compound that has incorporated at least one radionuclide. In some embodiments the
  • radionuclide is selected from the group consisting of H, C, I , S and Br.
  • the compound incorporates 1, 2, or 3 deuterium atoms.
  • the present invention can further include synthetic methods for incorporating radio-isotopes into compounds of the invention. Synthetic methods for incorporating radio-isotopes into organic compounds are well known in the art, and an ordinary skill in the art will readily recognize the methods applicable for the compounds of invention.
  • a labeled compound of the invention can be used in a screening assay to identify/evaluate compounds.
  • a newly synthesized or identified compound (i.e., test compound) which is labeled can be evaluated for its ability to bind a JAK by monitoring its concentration variation when contacting with the JAK, through tracking of the labeling.
  • a test compound (labeled) can be evaluated for its ability to reduce binding of another compound which is known to bind to a JAK (i.e., standard compound). Accordingly, the ability of a test compound to compete with the standard compound for binding to the JAK directly correlates to its binding affinity.
  • the standard compound is labeled and test compounds are unlabeled. Accordingly, the concentration of the labeled standard compound is monitored in order to evaluate the competition between the standard compound and the test compound, and the relative binding affinity of the test compound is thus ascertained.
  • kits useful for example, in the treatment or prevention of JAK-associated diseases or disorders, such as cancer, which include one or more containers containing a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention.
  • kits can further include, if desired, one or more of various conventional pharmaceutical kit components, such as, for example, containers with one or more pharmaceutically acceptable carriers, additional containers, etc., as will be readily apparent to those skilled in the art.
  • kits can also be included in the kit.
  • Example 1 a 3- [(4- ⁇ cis-3-(cyanomethyl)-3- [4-(7H-pyrrolo [2,3-d] pyrimidin-4-yl)- 1H- pyrazol-l-yl] cyclobutyl ⁇ piperazin-l-yl)methyl]-5-fluorobenzonitrile
  • tetrahydrofuran 80 mL was added. During the course of the addition, additional tetrahydrofuran (50 mL) was added into the receiving flask to facilitate stirring. Upon complete addition of the ketone, the bath was removed and the reaction allowed to reach room temperature and stirred overnight. The reaction mixture was partitioned between water and ethyl acetate and the aqueous was extracted with ethyl acetate a total of three times. The combined extracts were washed with brine, dried over sodium sulfate, decanted and concentrated.
  • Step 5 cis and trans ⁇ 3- ⁇ [tert-butyl(diphenyl)silyl] oxy ⁇ - 1- [4-(7- ⁇ [2- (Mmethylsilyl)ethoxyJmethyl ⁇ -7H ⁇ yrrolo[2,3-dJpyrimidin-4-yl)-lH-pyrazol-l- yljcyclobutylj acetonitrile
  • Step 6 cis and trans ⁇ 3-hydroxy-l-[4-(7- ⁇ [2-(trimethylsilyl)ethoxy]methyl ⁇ -7H- pyrrolo[2,3-d]pyrimidin-4-yl)-lH- razol-l-yl]cyclobutyl ⁇ acetonitrile
  • Step 7 ⁇ 3-oxo-l-[4-(7- ⁇ [2-(trimethylsilyl)ethoxyJmethyl ⁇ -7H ⁇ yrrolo[2 -dJpyrimidin-4- yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • Step 8 tert-butyl 4- ⁇ cis-3-(cyanomethyl)-3-[4-(7- ⁇ [2-(trimethylsilyl)ethoxy]methyl ⁇ -7H- pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ piperazine-l-carboxylate; and tert-butyl 4- ⁇ trans-3-(cyanomethyl)-3-[4-(7- ⁇ [2-(trimethylsilyl)ethoxy]methyl ⁇ -7H- pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ piperazine-l-carboxylate
  • Step 9 ⁇ cis-3-piperazin-l-yl-l-[ 4-(7- ⁇ [ 2-(trimethylsilyl)ethoxy] methyl ⁇ -7H-pyrrolo [ 2, 3- d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • Tetrakis(triphenylphosphine)palladium(0) (0.04 g, 0.03 mmol) was added, the reaction vessel was sealed and heated in the microwave to 120 °C for 30 minutes. The mixture was partitioned between water and ethyl acetate. The aqueous was extracted with ethyl acetate a total of three times. The combined extracts were washed with water, then brine, dried over sodium sulfate, decanted and concentrated. The crude product was stirred in a 1 : 1 mix of TFA:DCM (4 mL) for 2 hours. The solvents were evaporated, and the residue was stirred with 0.3 mL ethylenediamine in methanol (4 mL) overnight.
  • Example 2a 3-[(4- ⁇ cis-3-(cyanomethyl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH- pyrazol-l-yl]cyclobutyl ⁇ piperazin-l-yl)methyl]-6-(dimethylamino)-2- fluorobenzonitrile
  • the reaction mixture was partitioned between IN NaOH, brine and DCM. The layers were separated, and the aqueous layer was extracted with a further two portions of DCM. The combined organic extracts were dried over sodium sulfate, decanted and concentrated.
  • the product was deprotected by stirring with 1 : 1 TFA:DCM for 2 hours. The solvent was then removed in vacuo, and the residue was stirred in a solution of methanol (1.5 mL) containing 0.3 mL ethylenediamine.
  • the product was purified via preparative HPLC-MS (CI 8, eluting with a gradient of H 2 0/MeCN containing 0.15% NH 4 OH).
  • Example 2b 3- [(4- ⁇ tr ans-3-(cyanomethyl)-3- [4-(7H-pyr rolo [2,3-d] pyrimidin-4-yl)- lH-pyrazol-l-yl]cyclobutyl ⁇ piperazin-l-yl)methyl]-6-(dimethylamino)-2- fluorobenzonitrile
  • Example 2a The procedure as for Example 2a was followed, using ⁇ trans-3-piperazin-l-yl-l- [4-(7- ⁇ [2-(trimethylsilyl)ethoxy]methyl ⁇ -7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol- l-yl]cyclobutyl ⁇ acetonitrile (0.030 g, 0.061 mmol, from Example lb, Step 1) as starting material to afford product as the free base, in the same yield (0.015 g, 46%).
  • Example 3a 4- ⁇ cis-3-(cyanomethyl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH- pyrazol-l-yl]cyclobutyl ⁇ -N-[4-fluoro-2-(trifluoromethyl)phenyl]piperazine-l- carboxamide 2.4 x (trifluoroacetate) salt
  • Example 3b 4- ⁇ 3-(cyanomethyl)-3- [4-(7H-pyrrolo [2,3-d] pyrimidin-4-yl)- 1H- pyrazol-l-yl]cyclobutyl ⁇ -N-[4-fluoro-2-(trifluoromethyl)phenyl]piperazine-l- carboxamide 2.3 x (trifluoroacetate salt
  • Example 4a ⁇ cis-3-(4- ⁇ [(2S)-2-methylpyrrolidin-l-yl]carbonyl ⁇ piperazin-l-yl)-l-[4- (7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • Example 4b ⁇ trans-3-(4- ⁇ [(2S)-2-methylpyrrolidin-l-yl]carbonyl ⁇ piperazin-l-yl)-l- [4-(7H-pyr rolo [2,3-d] pyrimidin-4-yl)- -pyrazol- 1-yl] cyclobutyl ⁇ acetonitrile
  • Triethylamine (0.0339 mL, 0.244 mmol) was again added followed by acetonitrile (0.3 mL) and tetrahydrofuran (0.32 mL) .
  • acetonitrile 0.3 mL
  • tetrahydrofuran 0.32 mL
  • To this solution was added ⁇ trans- 3-piperazin-l-yl-l-[4-(7- ⁇ [2-(trimethylsilyl)ethoxy]methyl ⁇ -7H-pyrrolo[2,3-d]pyrimidin- 4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile (0.030 g, 0.061 mmol, from Example lb, Step 1) and the reaction was stirred overnight. The solvent was then removed in vacuo.
  • Example 6a ⁇ cis-3- ⁇ 4-[3-fluoro-2-(trifluoromethyl)isonicotinoyl]piperazin-l-yl ⁇ -l- [4-(7H-pyr rolo [2,3-d] pyrimidin-4-y - lH-pyrazol- 1-yl] cyclobutyl ⁇ acetonitrile
  • the deprotection was completed by stirring with excess ethylenediamine (2.4 mL total added in portions) in methanol (20 mL). The reaction mixture was partitioned between water and ethyl acetate. The aqueous portion was extracted three times. The combined extracts were washed with brine, dried over sodium sulfate, decanted and concentrated. Flash chromatography, eluting with a gradient from 0-10% MeOH in DCM was used to purify product. The product, as a glass, was reconstituted in MeCN/H 2 0, frozen and lyophilized (260 mg, 39%).
  • Example 6b ⁇ trans-3- ⁇ 4-[3-fluoro-2-(trifluoromethyl)isonicotinoyl]piperazin-l-yl ⁇ - l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4- -lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • N,N-dimethylformamide (6 mL) was prestirred for 10 minutes, followed by the addition of ⁇ trans-3-piperazin- 1 -yl- 1 -[4-(7- ⁇ [2-(trimethylsilyl)ethoxy]methyl ⁇ -7H-pyrrolo[2,3- d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile (0.600 g, 1.22 mmol, from Example lb, Step 1) in N,N-dimethylformamide (6 mL). The reaction was stirred overnight. The reaction mixture was partitioned between saturated sodium bicarbonate and ethyl acetate.
  • the reaction mixture was partitioned between water and ethyl acetate, and the aqueous portion extracted a total of three times with ethyl acetate.
  • the combined organic extracts were dried over sodium sulfate, decanted and concentrated. Flash chromatography, eluting with a gradient from 0-10%) MeOH/DCM was used to purify product.
  • the product so obtained was re -purified by preparative HPLC-MS (C18, eluting with a gradient of H 2 0/MeCN containing 0.15% NH 4 OH).
  • the eluent containing the desired mass was frozen and lyophilized to afford product as the free base (0.2 g, 30%).
  • Example 7a [cis- 1- [4-(7H-pyrrolo [2,3-d] yrimidin-4-yl)- lH-pyrazol- 1-yl] -3-(4- ⁇ [2- (trifluoromethyl)pyrimidin-4-yl]carbonyl ⁇ piperazin-l-yl)cyclobutyl]acetonitrile
  • the reaction was stirred overnight, then was diluted with ethyl acetate, and saturated sodium bicarbonate and brine were added. The layers separated and the organic layer was washed with dilute HC1, dried over sodium sulfate, decanted and concentrated.
  • the crude product was deprotected by stirring with 1 :1 TFA:DCM for 2 hours, then solvents were evaporated and the deprotection was completed by stirring with excess ethylenediamine in methanol.
  • the product was purified by preparative HPLC-MS (C18, eluting with a gradient of H 2 0/MeCN containing 0.15% NH 4 OH).
  • Example 7b [trans- 1- [4-(7H-pyrrolo [2,3-d] pyrimidin-4-yl)- ⁇ -pyr azol- 1-yl] -3-(4- ⁇ [2-(trifluoromethyl)pyrimidin-4-yl]carbon l ⁇ piperazin-l-yl)cyclobutyl]acetonitrile
  • Deprotection was effected by first stirring with trifluoroacetic acid (10 mL) in methylene chloride (10 mL) for 2 hours, followed by evaporation of solvent in vacuo, then stirring with methanol (6 mL, 200 mmol) containing ethylenediamine (0.5 mL, 7 mmol) overnight.
  • the reaction mixture was partitioned between water and ethyl acetate, and the aqueous portion was extracted a further two times with ethyl acetate.
  • the combined extracts were dried over sodium sulfate, filtered and concentrated. Flash chromatography was used to purify product, eluting with a gradient from 0-10% MeOH in DCM.
  • the product was repurified preparative HPLC-MS (CI 8, eluting with a gradient of H 2 0/MeCN containing 0.1% TFA).Acetonitrile was removed from the eluent containing the desired mass via rotary evaporation, then the remaining aqueous solution was neutralized by the addition of sodium bicarbonate and extracted with ethyl acetate several times. The combined organic extracts were dried over sodium sulfate, filtered and concentrated. The product was re- purified by preparative HPLC-MS (CI 8, eluting with a gradient of H 2 0/MeCN containing 0.15% NH 4 OH).
  • Example 8a ⁇ cis-3- [4-(3,5-difluorobenzoyl)piperazin-l-yl] -1- [4-(7H-pyrrolo [2,3- d] py r imidin-4-yl)- 1 H-py r azol- 1 -yl] cy clobutyl ⁇ acetonitrile
  • Example 8b ⁇ trans-3-[4-(3,5-difluorobenzoyl)piperazin-l-yl]-l-[4-(7H-pyrrolo[2,3- d] py r imidin-4-yl)- 1 H-py r azol- 1 -yl] cy clobutyl ⁇ acetonitrile
  • Example 9b ⁇ trans-3- ⁇ 4-[(2-chloro-5-fluoropyridin-3-yl)carbonyl]piperazin-l-yl ⁇ -l- [4-(7H-pyr rolo [2,3-d] pyrimidin-4-yl)- lH- razol- 1-yl] cyclobutyl ⁇ acetonitrile
  • Example 10a ⁇ cis-3- ⁇ 4-[(5-fluoropyridin-3-yl)carbonyl]piperazin-l-yl ⁇ -l-[4-(7H- pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l- l]cyclobutyl ⁇ acetonitrile
  • the reaction was stirred for 3 hours, and was purified via preparative HPLC- MS (C18, eluting with a gradient of H 2 0/MeCN containing 0.15% NH 4 OH).
  • the eluent containing the desired mass was evaporated to afford the clean SEM-protected intermediate.
  • This was hydrogenated under 55 psi of hydrogen overnight in a degassed mixture of ethanol (5 mL) containing palladium on carbon (0.011 g, 0.010 mmol, 10%, wet Degussa type) and sodium bicarbonate (0.0259 g, 0.304 mmol).
  • the reaction mixture was filtered, rinsed with ethanol and the solvent was removed in vacuo.
  • Example 10b ⁇ trans-3- ⁇ 4-[(5-fluoropyridin-3-yl)carbonyl]piperazin-l-yl ⁇ -l-[4-(7H- pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • Example 11a ⁇ cis-3- ⁇ 4-[2-(difluoromethyl)-3-fluoroisonicotinoyl]piperazin-l-yl ⁇ -l- [4-(7H-pyr rolo [2,3-d] pyrimidin-4-yl)- lH- razol- 1-yl] cyclobutyl ⁇ acetonitrile
  • Tetrakis(triphenylphosphine)palladium(0) (0.59 g, 0.51 mmol) was added and the mixture was similarly degassed for a further 10 minutes.
  • the reaction vessel was sealed and heated in the microwave for 25 minutes at 135 °C.
  • the reaction mixture was filtered and purified using preparative HPLC (UV-detection) eluting with a gradient of
  • Step 6 ⁇ cis-3- ⁇ 4-[2-(difluoromethyl)-3-fluoroisonicotinoyl]piperazin-l-yl ⁇ -l-[ 4-(7H- pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l- l]cyclobutyl ⁇ acetonitrile
  • Example 12a 3-[(4- ⁇ cis-3-(cyanomethyl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH- pyrazol-l-yl]cyclobutyl ⁇ piperazin-l-yl)carbonyl]-5-fluorobenzonitrile
  • Example 12b 3- [(4- ⁇ trans-3-(cyanomethyl)-3- [4-(7H-pyr rolo [2,3-d] pyrimidin-4-yl)- lH-pyrazol-l-yl]cyclobutyl ⁇ piperazin-l-yl)carbonyl]-5-fluorobenzonitrile
  • Example 11a, Step 6 The procedure of Example 11a, Step 6 was followed, using ⁇ trans-3-piperazin-l- yl- 1 -[4-(7- ⁇ [2-(trimethylsilyl)ethoxy]methyl ⁇ -7H-pyrrolo[2,3-d]pyrimidin-4-yl)- 1 H- pyrazol-l-yl]cyclobutyl ⁇ acetonitrile (0.030 g, 0.061 mmol, prepared as in Example lb, Step 1) and 3-cyano-5-fluorobenzoic acid (0.015 g, 0.091 mmol, Oakwood) to afford product (0.01 g, 30%).
  • Example 13a [cis-1- [4-(7H-pyrrolo [2,3-d] pyrimidin-4-yl)-lH-pyrazol-l-yl] -3-(4- ⁇ [4- (trifluoromethyl)- 1 ,3-thiazol-2-yl] carbonyl ⁇ piperazin- l-yl)cyclobutyl] acetonitrile
  • Example 13b [trans-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]-3-(4- ⁇ [4-(trifluoromethyl)-l,3-thiazol-2-yl]carbonyl ⁇ piperazin-l-yl)cyclobutyl]acetonitrile
  • the product was deprotected by stirring with 1 : 1 TFA:DCM for 2 hours, followed by removal of solvent in vacuo, then stirred with ethylenediamine 0.2 mL in methanol until deprotection was complete.
  • the product was purified via preparative HPLC-MS (CI 8, eluting with a gradient of H 2 0/MeCN containing 0.15% NH 4 OH). The eluent containing the desired mass was frozen and lyophilized to afford product as the free base (0.007 g, 20%).
  • Example 14a [cis-1- [4-(7H-pyrrolo [2,3-d] pyrimidin-4-yl)-l H-pyrazol- 1-yl] -3-(4- ⁇ [6- (trifluoromethyl)pyrazin-2-yl]carbonyl ⁇ piperazin-l-yl)cyclobutyl]acetonitrile
  • Example 15a ⁇ cis-3-[4-(3,4-difluorobenzoyl)piperazin-l-yl]-l-[4-(7H-pyrrolo[2,3- d] py r imidin-4-yl)- 1 H-py r azol- 1 -yl] cy clobutyl ⁇ acetonitrile
  • Example 15b ⁇ trans-3-[4-(3,4-difluorobenzoyl)piperazin-l-yl]-l-[4-(7H-pyrrolo[2,3- d] py r imidin-4-yl)- 1 H-py r azol- 1 -yl] cy clobutyl ⁇ acetonitrile
  • Example 15a The procedure of Example 15a was followed, on the same scale, using ⁇ trans-3- piperazin-l-yl-l-[4-(7- ⁇ [2-(trimethylsilyl)ethoxy]methyl ⁇ -7H-pyrrolo[2,3-d]pyrimidin-4- yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile (prepared as in Example lb, Step 1) to afford product as the free base (0.01 g, 30%).
  • Example 16a ⁇ cis-3-[4-(2-chloro-3,6-difluorobenzyl)piperazin-l-yl]-l-[4-(7H- pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyraz -l-yl]cyclobutyl ⁇ acetonitrile
  • Example 16b ⁇ trans-3- [4-(2-chloro-3,6-difluor Plumbingzyl)piperazin- 1-yl] - 1- [4-(7H- pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyraz -l-yl]cyclobutyl ⁇ acetonitrile
  • Example 16a The procedure of Example 16a was followed, on the same scale, using ⁇ trans-3- piperazin-l-yl-l-[4-(7- ⁇ [2-(trimethylsilyl)ethoxy]methyl ⁇ -7H-pyrrolo[2,3-d]pyrimidin-4- yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile (0.030 g, 0.061 mmol, prepared as in Example lb, Step 1) to afford product as the free base (0.015 g, 47%).
  • Example 15a The procedure of Example 15a was followed, using 3-fluoro-5- (trifluoromethyl)benzoyl chloride (17 mg, 0.076 mmol, Aldrich) and ⁇ cis-3-piperazin-l- yl- 1 -[4-(7- ⁇ [2-(trimethylsilyl)ethoxy]methyl ⁇ -7H-pyrrolo[2,3-d]pyrimidin-4-yl)- 1 H- pyrazol-l-yl]cyclobutyl ⁇ acetonitrile (0.025 g, 0.051 mmol, prepared as in Example la, Step 9) to afford product as the free base (11 mg, 40%).
  • Example 20a ⁇ cis-1- [4-(7H-pyrrolo [2,3-d] pyrimidin-4-yl)-l H-pyrazol- 1-yl] -3-(4- ⁇ [6- (trifluoromethyl)pyridin-2-yl]carbonyl ⁇ piperazin-l-yl)cyclobutyl ⁇ acetonitrile
  • Example 11a The method of Example 11a, Step 6 was followed, using 6- (trifluoromethyl)pyridine-2-carboxylic acid (0.014 g, 0.076 mmol, Matrix) and ⁇ cis-3- piperazin- 1 -yl- 1 -[4-(7- ⁇ [2-(trimethylsilyl)ethoxy]methyl ⁇ -7H-pyrrolo[2,3 -d]pyrimidin-4- yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile (0.025 g, 0.051 mmol, prepared as in Example la, Step 9) to afford product as the free base (0.007 g, 20%).
  • 6- (trifluoromethyl)pyridine-2-carboxylic acid 0.014 g, 0.076 mmol, Matrix
  • Example 20b ⁇ trans-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]-3-(4- ⁇ [6-(trifluoromethyl)pyridin-2-yl]carbonyl ⁇ piperazin-l-yl)cyclobutyl ⁇ acetonitrile
  • Example 11a The method of Example 11a was followed, using 6-(trifluoromethyl)pyridine-2- carboxylic acid (0.012 g, 0.061 mmol, Matrix) and ⁇ trans-3-piperazin-l-yl-l-[4-(7- ⁇ [2- (trimethylsilyl)ethoxy]methyl ⁇ -7H-pyrrolo[2,3-d]pyrimidin-4-yl)- 1 H-pyrazol- 1 - yl]cyclobutyl ⁇ acetonitrile (0.020 g, 0.040 mmol, prepared as in Example lb, Step 1) to afford product as the free base (0.006 g, 30%).
  • Example 21a ⁇ cis-3-(4- ⁇ [6-(difluoromethyl)pyridin-2-yl]carbonyl ⁇ piperazin-l-yl)-l- [4-(7H-pyr rolo [2,3-d] pyrimidin-4-yl)- 1 H- razol- 1-yl] cyclobutyl ⁇ acetonitrile
  • Example 11a The procedure of Example 11a (Step 6) was followed, using 6- (difluoromethyl)pyridine-2-carboxylic acid (0.016 g, 0.091 mmol, from Step 2) and ⁇ cis- 3-piperazin-l-yl-l-[4-(7- ⁇ [2-(trimethylsilyl)ethoxy]methyl ⁇ -7H-pyrrolo[2,3-d]pyrimidin- 4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile (0.030 g, 0.061 mmol, prepared as in Example la, Step 9), except that in the work up after coupling, dilute HC1 wash was omitted.
  • Example 21b ⁇ trans-3-(4- ⁇ [6-(difluoromethyl)pyridin-2-yl]carbonyl ⁇ piperazin-l-yl)- l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • Example 11a The procedure of Example 11a (Step 6) was followed, using 6- (difluoromethyl)pyridine-2-carboxylic acid (0.016 g, 0.091 mmol, Example 21a, Step 2) and ⁇ trans-3 -piperazin- 1 -yl- 1-[4-(7- ⁇ [2-(trimethylsilyl)ethoxy]methyl ⁇ -7H- pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile (0.030 g, 0.061 mmol, prepared as in Example lb, Step 1) except that in the workup after coupling, the dilute HCl wash was omitted.
  • Example 22 ⁇ cis-3- ⁇ 4-[2-fluoro-3-(trifluoromethyl)benzoyl]piperazin-l-yl ⁇ -l-[4-(7H- pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • Example 8b The procedure of Example 8b was followed, using ⁇ cis-3-piperazin-l-yl-l-[4-(7- ⁇ [2-(trimethylsilyl)ethoxy]methyl ⁇ -7H-pyrrolo[2,3-d]pyrimidin-4-yl)- 1 H-pyrazol- 1 - yl]cyclobutyl ⁇ acetonitrile (25 mg, 0.051 mmol, from Example la, Step 9) and 2-fluoro-3- (trifluoromethyl)benzoyl chloride (23 mg, 0.101 mmol). Purification afforded product as the free base (15 mg, 54%).
  • Example 23a ⁇ cis-3- ⁇ 4-[(5-fluoropyridin-3-yl)methyl]piperazin-l-yl ⁇ -l-[4-(7H- pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • the reaction mixture was partitioned between water and ethyl acetate. The aqueous portion was extracted a further two times with ethyl acetate. The combined extracts were washed with water, then brine, dried over sodium sulfate, decanted and concentrated.
  • the crude product was deprotected by first stirring the residue in a 1 : 1 mix of TFA:DCM (4 mL) for 2 hours, followed by removal of the solvents in vacuo and then stirring with 0.2 mL ethylenediamine in 2 mL methanol overnight. The solution was filtered and the product was purified via preparative HPLC-MS (CI 8, eluting with a gradient of H 2 0/MeCN containing 0.15% NH 4 OH).
  • Example 23b ⁇ trans-3- ⁇ 4-[(5-fluoropyridin-3-yl)methyl]piperazin-l-yl ⁇ -l-[4-(7H- pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • Example 23a The procedure of Example 23a was followed, using ⁇ trans-3-piperazin-l-yl-l-[4- (7- ⁇ [2-(trimethylsilyl)ethoxy]methyl ⁇ -7H-pyrrolo[2,3-d]pyrimidin-4-yl)- 1 H-pyrazol- 1 - yl]cyclobutyl ⁇ acetonitrile (0.030 g, 0.061 mmol, prepared as in Example lb, Step 1) and 5-fluoronicotinaldehyde (0.011 g, 0.085 mmol). Purification by the same method afforded product as the free base (0.01 g, 30%).
  • Example 24a ⁇ cis-3- ⁇ 4-[(2-isopropylpyrimidin-4-yl)carbonyl]piperazin-l-yl ⁇ -l-[4- (7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • Step 3 of Example 21a was followed, using 2-isopropylpyrimidine-4-carboxylic acid (0.013 g, 0.076 mmol, ChemBridge), and ⁇ cis-3-piperazin-l-yl-l-[4-(7- ⁇ [2- (trimethylsilyl)ethoxy]methyl ⁇ -7H-pyrrolo[2,3-d]pyrimidin-4-yl)- 1 H-pyrazol- 1 - yl]cyclobutyl ⁇ acetonitrile (0.025 g, 0.051 mmol, prepared according to the procedure in Example la) to afford the product as the free base (0.010 g, 38%).
  • 2-isopropylpyrimidine-4-carboxylic acid 0.013 g, 0.076 mmol, ChemBridge
  • Example 25 ⁇ trans-3-[4-(piperidin-l-ylcarbonyl)piperazin-l-yl]-l-[4-(7H- pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • Piperidine (0.020 mL, 0.203 mmol, Aldrich) was dissolved in methylene chloride (0.18 mL) and acetonitrile (0.5 mL), and 1.89 M phosgene in toluene (0.161 mL, 0.304 mmol) was introduced, followed by diisopropylethylamine (0.177 mL, 1.01 mmol). The reaction mixture was stirred for 1 hour, and the solvent and excess phosgene was removed in vacuo. N,N-Diisopropylethylamine (0.100 mL, 0.574 mmol) was again added, followed by acetonitrile (0.5 mL).
  • the crude product was deprotected by stirring with 1 : 1 TFA:DCM for 2 hours, then evaporation, followed by stirring with excess ethylenediamine in methanol until deprotection was complete.
  • the product was purified via preparative HPLC-MS (CI 8, eluting with a gradient of H 2 0/MeCN containing 0.15% NH 4 OH).
  • the eluent containing the desired mass was frozen and lyophilized to afford product as the free base (0.02 g, 40%).
  • Example 26 ⁇ cis-3- ⁇ 4- [4-fluoro-3-(trifluor omethoxy)benzoyl] piperazin- 1-yl ⁇ - 1- [4- (7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • the mixture was stirred for one hour and was diluted with ethyl acetate and water. The mixture was shaken and the layers separated. The organic layer was washed with water, 0. IN NaOH and sat. NaCl solution, dried over sodium sulfate, decanted and concentrated. The residue was dissolved in a 1 : 1 mixture of DCM:TFA, and stirred for 1 hour. The solvents were removed in vacuo and the residue was dissolved in 1 mL methanol and 0.2 ml ethylenediamine. This solution was stirred for one hour. The product was purified via preparative HPLC-MS (CI 8, eluting with a gradient of H 2 0/MeCN containing 0.15% NH 4 OH).
  • Example 27 ⁇ cis-3-(4- ⁇ [3-fluoro-5-(trifluoromethyl)pyridin-2-yl] carbonyl ⁇ piperazin- l-yl)-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • Example 24b ⁇ trans-3- ⁇ 4- [(2-isopropylpyrimidin-4-yl)carbonyl] piperazin- 1-yl ⁇ - 1- [4- (7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • Step 3 of Example 21a was followed, using 2-isopropylpyrimidine-4-carboxylic acid (0.010 g, 0.061 mmol, ChemBridge), and ⁇ trans-3-piperazin-l-yl-l-[4-(7- ⁇ [2- (trimethylsilyl)ethoxy]methyl ⁇ -7H-pyrrolo[2,3-d]pyrimidin-4-yl)- 1 H-pyrazol- 1 - yl]cyclobutyl ⁇ acetonitrile (0.020 g, 0.040 mmol, prepared according to the procedure in Example lb, Step 1) to afford the product as the free base (0.008 g, 40%).
  • 2-isopropylpyrimidine-4-carboxylic acid 0.010 g, 0.061 mmol, ChemBridge
  • Example 9a ⁇ cis-3- ⁇ 4- [(2-chloro-5-fluoropyridin-3-yl)carbonyl] piperazin-l-yl ⁇ -l- [4- (7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • Example 28 ⁇ cis-3- ⁇ 4-[4-chlorobenzoyl]piperazin-l-yl ⁇ -l-[4-(7H-pyrrolo[2,3- d] py r imidin-4-yl)- 1 H-p razol- 1 -yl] cy clobutyl ⁇ acetonitrile
  • Example 8b The procedure of Example 8b was followed, using ⁇ cis-3-piperazin-l-yl-l-[4-(7- ⁇ [2-(trimethylsilyl)ethoxy]methyl ⁇ -7H-pyrrolo[2,3-d]pyrimidin-4-yl)- 1 H-pyrazol- 1 - yl]cyclobutyl ⁇ acetonitrile (25 mg, 0.051 mmol, from Example la, Step 9) and 4- Chlorobenzoic acid chloride (17.8 mg, 0.101 mmol), to afford product as the free base (15 mg, 59%).
  • Example 29 ⁇ cis-3- ⁇ 4-[2-fluoro-4-(trifluoromethyl)benzoyl]piperazin-l-yl ⁇ -l-[4-(7H- pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile 2.3 x
  • the reaction mixture was partitioned between 1 N NaOH and ethyl acetate. The organic layer was dried over sodium sulfate, decanted and concentrated.
  • the crude product was deprotected by stirring in a solution of 1 : 1 DCM: TFA for 1 hour, then evaporation, and stirring with excess ethylenediamine in methanol until deprotection was complete.
  • the product was purified via preparative HPLC-MS (C18, eluting with a gradient of H 2 0/MeCN containing 0.1% TFA). The eluent containing the desired mass was frozen and lyophilized to afford product as the 2.3 x TFA salt.
  • Step 1 tert-butyl 4- ⁇ cis-3-(cyanomethyl)-3-[4-(7- ⁇ [2- (trimethylsilyl)ethoxy]methyl ⁇ -7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l- ylj cyclobutyljpiperazine-l -carboxylate-dl and tert-butyl 4- ⁇ trans-3-(cyanomethyl)-3-[4- (7- ⁇ [ 2-(trimethylsilyl)ethoxy] methyl ⁇ - 7H-pyrrolo[ 2, 3-d]pyrimidin-4-yl)-lH-pyrazol-l- ylj cyclobutyljpiperazine-l -carbox late-dl
  • Example 30 The procedure of Example 30, Step 2 was followed, using Peak 2 produced in Example 30, Step 1 : tert-butyl 4- ⁇ trans-3-(cyanomethyl)-3-[4-(7- ⁇ [2- (trimethylsilyl)ethoxy]methyl ⁇ -7H-pyrrolo[2,3-d]pyrimidin-4-yl)- 1 H-pyrazol- 1 - yl]cyclobutyl ⁇ piperazine-l-carboxylate-dl (0.076 g, 0.13 mmol) to afford the trans- product, which was used without further purification (47 mg, 74%).
  • LCMS (M+H) + 494.0.
  • N,N-Diisopropylethylamine (0.10 mL, 0.57 mmol) followed by N,N- Dimethylcarbamoyl chloride (25 ⁇ , 0.27 mmol, Aldrich) were added. After a reaction time of 1.5 hours, solvent was removed in vacuo. The crude product was stirred with 1 : 1 TFA:DCM for 2 hours, then evaporated and stirred with excess ethylenediamine (0.2 mL) in methanol until deprotection was complete. The product was purified via preparative HPLC-MS (C 18 , eluting with a gradient of H 2 0/MeCN containing 0.15% NH 4 OH).
  • Example 33 ⁇ trans-3-(4- ⁇ 3-[(dimethylamino)methyl]-5-fluorobenzoyl ⁇ piperazin-l- yl)-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • Example 34 ⁇ trans-3-(4- ⁇ 3-[(dimethylamino)methyl]-5-fluorobenzyl ⁇ piperazin-l- yl)-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • Example 35 ⁇ trans-3-[4-(ethylsulfonyl)piperazin-l-yl]-l-[4-(7H-pyrrolo[2,3- d] py r imidin-4-yl)- 1 H-py r azol- 1 -yl] cy clobutyl ⁇ acetonitrile
  • Example 36 ⁇ trans-3-[4-(cyclopropylsulfonyl)piperazin-l-yl]-l-[4-(7H-pyrrolo[2,3- d] py r imidin-4-yl)- 1 H-py r azol- 1 -yl] cy clobutyl ⁇ acetonitrile
  • Example 37 4- ⁇ trans-3-(cyanomethyl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH- pyrazol-l-yl]cyclobutyl ⁇ -N,N-dimethylpiperazine-l-sulfonamide
  • Example 39 ⁇ trans-3- ⁇ 4-[3-[(dimethylamino)methyl]-5- (trifluoromethyl)benzoyl]piperazin-l-yl ⁇ -l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)- lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • the reaction was continued for 2 hours.
  • the reaction mixture was diluted with ethyl acetate and water, shaken, and the layers separated.
  • the organic layer was washed with water, 0. IN NaOH and saturated NaCl solution, dried over sodium sulfate and concentrated.
  • the residue was dissolved in a 1 : 1 mixture of DCM:TFA, stirred for 1 hour, and solvents were removed in vacuo.
  • the residue was dissolved in 1 mL methanol, and 0.2 mL of ethylenediamine was added. The reaction was stirred until deprotection was complete.
  • Example 40 ⁇ cis-3-(4- ⁇ 3-[(dimethylamino)methyl]-5-fluorophenoxy ⁇ piperidin-l-yl)- l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile; and ⁇ trans-3-(4- ⁇ 3-[(dimethylamino)methyl]-5-fluorophenoxy ⁇ piperidin-l-yl)-l-[4-(7H- pyrrolo[2,3-d]pyrimi in-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • Step 4 ⁇ 3-oxo-l-[4-(7- ⁇ [2-(trimethylsilyl)ethoxyJmethyl ⁇ -7H ⁇ yrrolo[2 -dJpyrimidin-4- yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • the tube was sealed and evacuated and refilled with N 2 (3x). The sealed tube was then heated at 80 °C for 20 hours. The reaction was diluted with water and ethyl acetate. The aqueous layer was extracted with ethyl acetate once. The combined organic solutions were washed with brine, dried over Na 2 S0 4 , filtered and concentrated. The crude was purified with preparative LCMS (CI 8 column eluting with a gradient of ACN/H 2 0 containing 0.1% TFA) to afford the desired product (180 mg, 89%). LCMS (M+H) + : 353.2.
  • Step 8 ⁇ cis-3-(4- ⁇ 3-[ (dimethylamino)methyl]-5-fluorophenoxy ⁇ piperidin-l-yl)-l-[4-(7- ⁇ [2-(trimethylsilyl)ethoxy]methyl ⁇ -7H-pyrrolo[2,3-d]pyrimidin-4-yl ⁇ yl] cyclobutyljacetonitrile; and ⁇ trans-3-(4- ⁇ 3-[ (dimethylamino)methyl] -5- fluorophenoxyjpiperidin-l-yl)-l-[4-(7- ⁇ [2-(trimethylsilyl)ethoxy]methylj-7H- pyrrolof 2, 3-dJpyrimidin-4-yl)-lH-pyrazol-l-ylJ cyclobutyljacetonitrile
  • Step 9 ⁇ cis-3-(4- ⁇ 3-[ (dimethylamino)methyl]-5-fluorophenoxyjpiperidin-l-yl)-l-[4-(7H- pyrrolo [2, 3-d] pyrimidin-4-yl)- lH-pyrazol- 1-yl] cyclobutyljacetonitrile; and ⁇ trans-3-(4- ⁇ 3-[(dimethylamino)methyl]-5-fluorophenoxyjpiperidin-l-yl)-l-[4-(7H-pyrrolo[2,3- d]pyrimidin-4-yl)-lH-pyrazol-l-yl] cyclobutyljacetonitrile
  • Trans isomer was prepared in same manner, using ⁇ trans-3-(4- ⁇ 3- [(dimethylamino)methyl]-5-fluorophenoxy ⁇ piperidin-l -yl)- 1 -[4-(7- ⁇ [2- (trimethylsilyl)ethoxy]methyl ⁇ -7H-pyrrolo[2,3-d]pyrimidin-4-yl)- 1 H-pyrazol- 1 - yl]cyclobutyl ⁇ acetonitrile (isomer 2 from last step) as starting material.
  • Example 41 ⁇ cis-3-[4-(3-fluoro-5- ⁇ [(2S)-2-methylpyrrolidin-l- yl]methyl ⁇ phenoxy)piperidin-l-yl]-l-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-lH- pyrazol-l-yl]cyclobutyl ⁇ acetonitrile; and ⁇ trans-3-[4-(3-fluoro-5- ⁇ [(2S)-2- methylpyrrolidin-l-yl]methyl ⁇ phenoxy)piperidin-l-yl]-l-[4-(7H-pyrrolo[2,3- d]pyrimidin-4- -lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile
  • Step 4 ⁇ cis-3-[4-(3-fluoro-5- ⁇ [ (2S)-2-methylpyrrolidin-l-yl]methyl ⁇ phenoxy)piperidin-l- ylJ-l-[4-(7- ⁇ f2-(trimethylsilyl)ethoxyJmethyl ⁇ -7H ⁇ yrrolof2 -dJpyrimidin-4-yl)-lH ⁇ pyrazol-l -ylj cyclobutylj acetonitrile; and ⁇ trans-3-[4-(3-fluoro-5- ⁇ [ (2S)-2- methylpyrrolidin-l -yl] methyl jphenoxy)piperidin-l -ylj-l -f4-(7- ⁇ [2- (trimethylsilyl)ethoxyJmethyl ⁇ -7H ⁇ yrrolo[2 -dJpyrimidin-4-yl)-lH-pyrazol-l- yl] cyclobutylj acetonitrile
  • Step 5 ⁇ cis-3-[4-(3-fluoro-5- ⁇ [ (2S)-2-methylpyrrolidin-l-yl]methyl ⁇ phenoxy)piperidin-l- yl]-l-[ 4-(7H-pyrrolo[2, 3-d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile; and ⁇ trans-3-[4-(3-fluoro-5- ⁇ [(2S)-2-methylpyrrolidin-l -ylJmethyl ⁇ phenoxy)piperidin-l-ylJ- l-[4-(7H-pyrrolo [2,3-d] 'pyrimidin-4-yl)-lH-pyrazol-l-ylJcyclobutyl ⁇ acetonitrile
  • Example 136 The title compound was prepared according to the method of Example 136, using ⁇ cis-3-piperazin- 1 -yl- 1 -[4-(7- ⁇ [2-(trimethylsilyl)ethoxy]methyl ⁇ -7H-pyrrolo[2,3- d]pyrimidin-4-yl)-lH-pyrazol-l-yl]cyclobutyl ⁇ acetonitrile (40.0 mg, 0.0812 mmol, from Step 9 of Example la) to afford product as the free base (12.3 mg, 28%).
  • the reaction mixture was partitioned between ethyl acetate and water. The organic layer was washed with water, 0.1 N NaOH and sat. NaCl, dried over sodium sulfate and concentrated. The residue was dissolved in N,N- dimethylformamide (1.0 mL) and zinc cyanide (57 mg, 0.48 mmol) was added. The reaction mixture was degassed by bubbling a stream of nitrogen through the mixture for 10 minutes. Tetrakis(triphenylphosphine)palladium(0) (19 mg, 0.016 mmol) was added. The reaction was heated in the microwave to 120 °C for 30 minutes. The reaction was worked up by partition between water and ethyl acetate.
EP11791155.2A 2010-11-19 2011-11-18 Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as jak inhibitors Withdrawn EP2640723A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41570510P 2010-11-19 2010-11-19
PCT/US2011/061374 WO2012068450A1 (en) 2010-11-19 2011-11-18 Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as jak inhibitors

Publications (1)

Publication Number Publication Date
EP2640723A1 true EP2640723A1 (en) 2013-09-25

Family

ID=45094278

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11791155.2A Withdrawn EP2640723A1 (en) 2010-11-19 2011-11-18 Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as jak inhibitors

Country Status (22)

Country Link
US (3) US8933085B2 (es)
EP (1) EP2640723A1 (es)
JP (1) JP5917545B2 (es)
KR (1) KR20140019300A (es)
CN (1) CN103415515B (es)
AR (1) AR083933A1 (es)
AU (1) AU2011329734B2 (es)
BR (1) BR112013012502A2 (es)
CA (1) CA2818542A1 (es)
CL (1) CL2013001412A1 (es)
CO (1) CO6761386A2 (es)
CR (1) CR20130280A (es)
EA (1) EA026201B1 (es)
EC (1) ECSP13012703A (es)
IL (1) IL226407A (es)
MX (1) MX344478B (es)
NZ (1) NZ611151A (es)
PE (1) PE20140146A1 (es)
SG (1) SG190839A1 (es)
TW (1) TW201249845A (es)
UA (1) UA113156C2 (es)
WO (1) WO2012068450A1 (es)

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI468162B (zh) 2005-12-13 2015-01-11 英塞特公司 作為傑納斯激酶(JANUS KINASE)抑制劑之經雜芳基取代之吡咯并〔2,3-b〕吡啶及吡咯并〔2,3-b〕嘧啶
SG10201509887UA (en) 2007-06-13 2016-01-28 Incyte Corp Salts of the janus kinase inhibitor (r)-3-(4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h-pyrazol-1-yl)-3-cyclopentylpropanenitrile
CL2008001709A1 (es) 2007-06-13 2008-11-03 Incyte Corp Compuestos derivados de pirrolo [2,3-b]pirimidina, moduladores de quinasas jak; composicion farmaceutica; y uso en el tratamiento de enfermedades tales como cancer, psoriasis, artritis reumatoide, entre otras.
JOP20190230A1 (ar) 2009-01-15 2017-06-16 Incyte Corp طرق لاصلاح مثبطات انزيم jak و المركبات الوسيطة المتعلقة به
EA025520B1 (ru) 2009-05-22 2017-01-30 Инсайт Холдингс Корпорейшн N-(ГЕТЕРО)АРИЛПИРРОЛИДИНОВЫЕ ПРОИЗВОДНЫЕ ПИРАЗОЛ-4-ИЛ-ПИРРОЛО[2,3-d]ПИРИМИДИНОВ И ПИРРОЛ-3-ИЛ-ПИРРОЛО[2,3-d]ПИРИМИДИНОВ В КАЧЕСТВЕ ИНГИБИТОРОВ ЯНУС-КИНАЗЫ
SG176111A1 (en) 2009-05-22 2011-12-29 Incyte Corp 3-[4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h-pyrazol-1-yl]octane- or heptane-nitrile as jak inhibitors
JP5677425B2 (ja) 2009-06-29 2015-02-25 インサイト・コーポレイションIncyte Corporation Pi3k阻害剤としてのピリミジノン
WO2011028685A1 (en) 2009-09-01 2011-03-10 Incyte Corporation Heterocyclic derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors
MX347851B (es) 2010-03-10 2017-05-16 Incyte Corp Derivados de piperidin-4-il azetidina como inhibidores de janus cinasa 1 (jak1).
EP2574168B9 (en) 2010-05-21 2016-10-05 Incyte Holdings Corporation Topical formulation for a jak inhibitor
WO2012068450A1 (en) 2010-11-19 2012-05-24 Incyte Corporation Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as jak inhibitors
US9034884B2 (en) 2010-11-19 2015-05-19 Incyte Corporation Heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines as JAK inhibitors
EP2655374B1 (en) 2010-12-20 2019-10-23 Incyte Holdings Corporation N-(1-(substituted-phenyl)ethyl)-9h-purin-6-amines as pi3k inhibitors
AU2012219395B2 (en) 2011-02-18 2017-05-25 Incyte Corporation mTOR/JAK inhibitor combination therapy
CA2839767A1 (en) 2011-06-20 2012-12-27 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as jak inhibitors
WO2013023119A1 (en) 2011-08-10 2013-02-14 Novartis Pharma Ag JAK P13K/mTOR COMBINATION THERAPY
TW201313721A (zh) 2011-08-18 2013-04-01 Incyte Corp 作為jak抑制劑之環己基氮雜環丁烷衍生物
KR102507287B1 (ko) 2011-09-02 2023-03-07 인사이트 홀딩스 코포레이션 Pi3k 억제제로서 헤테로시클릴아민
SI2753606T1 (sl) * 2011-09-02 2017-10-30 Purdue Pharma Lp Pirimidini kot blokatorji natrijevih kanalov
UA111854C2 (uk) 2011-09-07 2016-06-24 Інсайт Холдінгс Корпорейшн Способи і проміжні сполуки для отримання інгібіторів jak
AR090548A1 (es) 2012-04-02 2014-11-19 Incyte Corp Azaheterociclobencilaminas biciclicas como inhibidores de pi3k
US9193733B2 (en) 2012-05-18 2015-11-24 Incyte Holdings Corporation Piperidinylcyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors
MX2015005428A (es) 2012-11-01 2015-07-21 Incyte Corp Derivados triciclicos fusionados de tiofeno como inhibidores de la cinasa janus (jak).
BR112015010663B1 (pt) 2012-11-15 2022-12-06 Incyte Holdings Corporation Formas de dosagem oral de liberação sustentada, e uso de ruxolitinib ou de sal farmaceuticamente aceitável do mesmo
SG11201503573WA (en) * 2012-11-16 2015-06-29 Hoffmann La Roche Process for the preparation of 2-trifluoromethyl isonicotinic acid and esters
WO2014110574A1 (en) 2013-01-14 2014-07-17 Incyte Corporation Bicyclic aromatic carboxamide compounds useful as pim kinase inhibitors
SG10201705662WA (en) 2013-01-15 2017-08-30 Incyte Corp Thiazolecarboxamides and pyridinecarboxamide compounds useful as pim kinase inhibitors
US20160123982A1 (en) 2013-02-04 2016-05-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for assaying jak2 activity in red blood cells and uses thereof
CN105189509B (zh) 2013-03-06 2017-12-19 因赛特公司 用于制备jak抑制剂的方法及中间体
TR201905814T4 (tr) * 2013-05-17 2019-05-21 Incyte Corp Jak inhibitörü olarak bipirazol tuzu.
RS60469B1 (sr) 2013-08-07 2020-07-31 Incyte Corp Dozni oblici sa produženim oslobađanjem za jak1 inhibitor
TW201529074A (zh) 2013-08-20 2015-08-01 Incyte Corp 在c-反應蛋白含量較高之實體腫瘤患者中的存活益處
PE20160532A1 (es) 2013-08-23 2016-05-21 Incyte Corp Compuesto de carboxamida de furo y tienopiridina utiles como inhibidores de cinasas pim
CN104804001B9 (zh) * 2014-01-24 2022-02-08 江苏柯菲平医药股份有限公司 4-取代吡咯并[2,3-d]嘧啶化合物及其用途
DK3110409T3 (en) * 2014-02-28 2018-10-22 Incyte Corp JAK1 INHIBITORS FOR THE TREATMENT OF MYELODYSPLASTIC SYNDROMES
MX2020004398A (es) 2014-04-08 2022-06-06 Incyte Corp Tratamiento de neoplasias malignas de linfocitos b mediante una combinacion de inhibidores de janus cinasa (jak) y fosfatidilinositol 3 cinasa (pi3k).
MA39987A (fr) 2014-04-30 2017-03-08 Incyte Corp Procédés de préparation d'un inhibiteur de jak1 et nouvelles formes associées
WO2015184305A1 (en) * 2014-05-30 2015-12-03 Incyte Corporation TREATMENT OF CHRONIC NEUTROPHILIC LEUKEMIA (CNL) AND ATYPICAL CHRONIC MYELOID LEUKEMIA (aCML) BY INHIBITORS OF JAK1
US10077277B2 (en) 2014-06-11 2018-09-18 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors
BR112016029662B1 (pt) 2014-06-19 2023-10-24 Takeda Pharmaceutical Company Limited COMPOSTO DE FÓRMULA Bf OU UMA FORMA FARMACEUTICAMENTE ACEITÁVEL DO MESMO, COMPOSIÇÃO FARMACÊUTICA COMPREENDENDO O MESMO E SEU USO
US9580418B2 (en) 2014-07-14 2017-02-28 Incyte Corporation Bicyclic aromatic carboxamide compounds useful as Pim kinase inhibitors
WO2016010897A1 (en) 2014-07-14 2016-01-21 Incyte Corporation Bicyclic heteroaromatic carboxamide compounds useful as pim kinase inhibitors
JP6718451B2 (ja) * 2014-09-08 2020-07-08 ヤンセン・サイエンシズ・アイルランド・アンリミテッド・カンパニー インフルエンザウィルス感染に使用するためのピロロピリミジン
US9586949B2 (en) 2015-02-09 2017-03-07 Incyte Corporation Aza-heteroaryl compounds as PI3K-gamma inhibitors
PE20180129A1 (es) 2015-02-27 2018-01-18 Incyte Corp Sales de inhibidor de pi3k y procesos de preparacion
WO2016144702A1 (en) 2015-03-06 2016-09-15 Pharmakea, Inc. Lysyl oxidase-like 2 inhibitors and uses thereof
SG11201707246YA (en) * 2015-03-06 2017-10-30 Pharmakea Inc Fluorinated lysyl oxidase-like 2 inhibitors and uses thereof
US9988401B2 (en) 2015-05-11 2018-06-05 Incyte Corporation Crystalline forms of a PI3K inhibitor
US9732097B2 (en) 2015-05-11 2017-08-15 Incyte Corporation Process for the synthesis of a phosphoinositide 3-kinase inhibitor
WO2016183071A1 (en) 2015-05-11 2016-11-17 Incyte Corporation Hetero-tricyclic compounds and their use for the treatment of cancer
WO2016196244A1 (en) 2015-05-29 2016-12-08 Incyte Corporation Pyridineamine compounds useful as pim kinase inhibitors
WO2017027717A1 (en) 2015-08-12 2017-02-16 Incyte Corporation Bicyclic fused pyrimidine compounds as tam inhibitors
WO2017035366A1 (en) 2015-08-26 2017-03-02 Incyte Corporation Pyrrolopyrimidine derivatives as tam inhibitors
TWI734699B (zh) 2015-09-09 2021-08-01 美商英塞特公司 Pim激酶抑制劑之鹽
EP4219482A1 (en) * 2015-09-25 2023-08-02 Dizal (Jiangsu) Pharmaceutical Co., Ltd. Compounds and methods for inhibiting jak
TW201718546A (zh) 2015-10-02 2017-06-01 英塞特公司 適用作pim激酶抑制劑之雜環化合物
MA43169B1 (fr) 2015-11-06 2022-05-31 Incyte Corp Composés héterocycliques en tant qu' inhibiteurs pi3k-gamma
WO2017120194A1 (en) 2016-01-05 2017-07-13 Incyte Corporation Pyridine and pyridimine compounds as pi3k-gamma inhibitors
KR102558066B1 (ko) 2016-03-28 2023-07-25 인사이트 코포레이션 Tam 억제제로서 피롤로트리아진 화합물
AR108875A1 (es) 2016-06-24 2018-10-03 Incyte Corp COMPUESTOS HETEROCÍCLICOS COMO INHIBIDORES DE PI3K-g
MX2019000542A (es) * 2016-07-14 2019-07-04 Lilly Co Eli Derivados de pirazolilaminobenzimidazol como inhibidores de jak.
CN107759623B (zh) * 2016-08-23 2020-08-14 苏州旺山旺水生物医药有限公司 Jak抑制剂的中间体及其制备方法
KR102587178B1 (ko) 2016-09-07 2023-10-06 파마케아, 인크. 리실 옥시다아제-유사 2 억제제의 결정질 형태 및 제조 방법
EP3509594A4 (en) * 2016-09-07 2020-05-06 Pharmakea, Inc. USE OF A LYSYLOXIDASE-LIKE 2 INHIBITOR
EP4059934A1 (en) 2016-09-09 2022-09-21 Novartis AG Compounds and compositions as inhibitors of endosomal toll-like receptors
WO2018167283A1 (en) 2017-03-17 2018-09-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the diagnosis and treatment of pancreatic ductal adenocarcinoma associated neural remodeling
WO2018189335A1 (en) 2017-04-13 2018-10-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the diagnosis and treatment of pancreatic ductal adenocarcinoma
KR20200088308A (ko) 2017-09-27 2020-07-22 인사이트 코포레이션 Tam 억제제로서 유용한 피롤로트리아진 유도체의 염
LT3697789T (lt) 2017-10-18 2021-12-10 Incyte Corporation Kondensuoti imidazolo dariniai, pakeisti tretinėmis hidroksigrupėmis, kaip pi3k-gama inhibitoriai
WO2019089667A1 (en) 2017-11-01 2019-05-09 Bristol-Myers Squibb Company Bridged bicyclic compounds as farnesoid x receptor modulators
US10981906B2 (en) 2017-11-03 2021-04-20 Aclaris Therapeutics, Inc. Substituted pyrrolopyridine JAK inhibitors and methods of making and using the same
US10596161B2 (en) 2017-12-08 2020-03-24 Incyte Corporation Low dose combination therapy for treatment of myeloproliferative neoplasms
WO2019152374A1 (en) 2018-01-30 2019-08-08 Incyte Corporation Processes for preparing (1 -(3-fluoro-2-(trifluoromethyl)isonicotinyl)piperidine-4-one)
CA3091339A1 (en) 2018-02-16 2019-08-22 Incyte Corporation Jak1 pathway inhibitors for the treatment of cytokine-related disorders
MX2022012285A (es) * 2018-03-30 2023-08-15 Incyte Corp Tratamiento de la hidradenitis supurativa mediante el uso de inhibidores de actividad de la cinasa janus (jak).
MA52655A (fr) 2018-03-30 2021-02-17 Incyte Corp Biomarqueurs pour maladie cutanée inflammatoire
MX2020010815A (es) 2018-04-13 2020-12-11 Incyte Corp Biomarcadores para enfermedad de injerto contra hospedero.
BR112020024427A2 (pt) 2018-06-01 2021-03-23 Incyte Corporation regime de dosagem para o tratamento de distúrbios relacionados a pi3k
MA53010A (fr) 2018-06-29 2021-05-05 Incyte Corp Formulations d'un inhibiteur de axl/mer
JP2021534244A (ja) 2018-08-10 2021-12-09 アクラリス セラピューティクス,インコーポレイテッド ピロロピリミジンitk阻害剤
MA53561A (fr) 2018-09-05 2022-05-11 Incyte Corp Formes cristallines d'un inhibiteur de phosphoinositide 3-kinase (pi3k)
TW202023386A (zh) 2018-09-13 2020-07-01 瑞士商先正達合夥公司 殺有害生物活性唑-醯胺化合物
MX2021004946A (es) 2018-10-31 2021-07-15 Incyte Corp Terapia combinada para tratamiento de enfermedades hematológicas.
WO2020092015A1 (en) 2018-11-02 2020-05-07 University Of Rochester Therapeutic mitigation of epithelial infection
CN111320633B (zh) * 2018-12-14 2022-09-27 中国医药研究开发中心有限公司 吡咯/咪唑并六元杂芳环类化合物及其制备方法和医药用途
CA3123596A1 (en) 2018-12-19 2020-06-25 Incyte Corporation Jak1 pathway inhibitors for the treatment of gastrointestinal disease
US11406640B2 (en) 2019-03-05 2022-08-09 Incyte Corporation JAK1 pathway inhibitors for the treatment of chronic lung allograft dysfunction
EP3941474A2 (en) 2019-03-19 2022-01-26 Incyte Corporation Biomarkers for vitiligo
BR112021021477A2 (pt) 2019-05-02 2021-12-21 Aclaris Therapeutics Inc Composto, composição farmacêutica e método para tratar uma doença mediada por jak em um indivíduo necessitando do mesmo
WO2021022178A1 (en) * 2019-07-31 2021-02-04 Aclaris Therapeutics, Inc. Substituted sulfonamide pyrrolopyridines as jak inhibitors
US20210123930A1 (en) 2019-10-10 2021-04-29 Incyte Corporation Biomarkers for graft-versus-host disease
WO2021072098A1 (en) 2019-10-10 2021-04-15 Incyte Corporation Biomarkers for graft-versus-host disease
JP2023506118A (ja) 2019-10-16 2023-02-15 インサイト・コーポレイション 皮膚エリテマトーデス及び扁平苔癬(lp)の治療のためのjak1阻害剤の使用
CN115038443A (zh) 2019-11-22 2022-09-09 因西特公司 包含alk2抑制剂和jak2抑制剂的组合疗法
BR112022024632A2 (pt) 2020-06-02 2023-02-28 Incyte Corp Processos para preparar um inibidor de jak1
US11833155B2 (en) 2020-06-03 2023-12-05 Incyte Corporation Combination therapy for treatment of myeloproliferative neoplasms
BR112022024729A2 (pt) 2020-06-05 2023-02-28 Kinnate Biopharma Inc Inibidores de quinases do receptor do fator de crescimento de fibroblastos
EP4200278A1 (en) 2020-08-18 2023-06-28 Incyte Corporation Process and intermediates for preparing a jak1 inhibitor
MX2023002037A (es) 2020-08-18 2023-06-12 Incyte Corp Proceso e intermediarios para preparar un inhibidor de las cinasas de janus (jak).
MX2023006638A (es) 2020-12-04 2023-08-22 Incyte Corp Inhibidor de la cinasa janus (jak) con un análogo de la vitamina d para el tratamiento de enfermedades de la piel.
EP4259131A1 (en) 2020-12-08 2023-10-18 Incyte Corporation Jak1 pathway inhibitors for the treatment of vitiligo
CA3207859A1 (en) 2021-01-11 2022-07-14 Incyte Corporation Combination therapy comprising jak pathway inhibitor and rock inhibitor
CA3219092A1 (en) 2021-05-03 2022-11-10 Incyte Corporation Jak1 pathway inhibitors for the treatment of prurigo nodularis
EP4174077A1 (en) * 2021-10-27 2023-05-03 Merck Patent GmbH Electronic switching device
WO2024030600A1 (en) 2022-08-05 2024-02-08 Incyte Corporation Treatment of urticaria using jak inhibitors

Family Cites Families (291)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2985589A (en) 1957-05-22 1961-05-23 Universal Oil Prod Co Continuous sorption process employing fixed bed of sorbent and moving inlets and outlets
US3832460A (en) 1971-03-19 1974-08-27 C Kosti Anesthetic-vasoconstrictor-antihistamine composition for the treatment of hypertrophied oral tissue
US4140755A (en) 1976-02-13 1979-02-20 Hoffmann-La Roche Inc. Sustained release tablet formulations
DE3036390A1 (de) 1980-09-26 1982-05-13 Troponwerke GmbH & Co KG, 5000 Köln Neue pyrrolo-pyrimidine, verfahren zu ihrer herstellung und ihre verwendung bei der herstellung von biologischen wirkstoffen
DE3220113A1 (de) 1982-05-28 1983-12-01 Basf Ag, 6700 Ludwigshafen Difluormethoxiphenylthiophosphorsaeureester
US4402832A (en) 1982-08-12 1983-09-06 Uop Inc. High efficiency continuous separation process
US4548990A (en) 1983-08-15 1985-10-22 Ciba-Geigy Corporation Crosslinked, porous polymers for controlled drug delivery
US4498991A (en) 1984-06-18 1985-02-12 Uop Inc. Serial flow continuous separation process
NL8403224A (nl) 1984-10-24 1986-05-16 Oce Andeno Bv Dioxafosforinanen, de bereiding ervan en de toepassing voor het splitsen van optisch actieve verbindingen.
CA1306260C (en) 1985-10-18 1992-08-11 Shionogi & Co., Ltd. Condensed imidazopyridine derivatives
US4921947A (en) 1986-03-31 1990-05-01 Eli Lilly And Company Process for preparing macrolide derivatives
US5378700A (en) 1989-10-11 1995-01-03 Teijin Limited Fused pyrimidine derivative, process for preparation of same and pharmaceutical preparation comprising same as active ingredient
IT1258781B (it) 1992-01-16 1996-02-29 Zambon Spa Composizione farmaceutica oftalmica contenente n-acetilcisteina e polivinilalcol
US5521184A (en) 1992-04-03 1996-05-28 Ciba-Geigy Corporation Pyrimidine derivatives and processes for the preparation thereof
FR2695126B1 (fr) 1992-08-27 1994-11-10 Sanofi Elf Dérivés d'acide thiényl ou pyrrolyl carboxyliques, leur préparation et médicaments les contenant.
AU671491B2 (en) 1992-12-18 1996-08-29 F. Hoffmann-La Roche Ag N-oxycarbonyl substituted 5'-deoxy-5-fluorcytidines
JPH0710876A (ja) 1993-06-24 1995-01-13 Teijin Ltd 4位に環状アミノ基を有するピロロ[2,3―d]ピリミジン
EP0727217A3 (en) 1995-02-10 1997-01-15 Suntory Ltd Pharmaceutical and cosmetic compositions containing God-type ellagitannin as an active ingredient
US5856326A (en) 1995-03-29 1999-01-05 Merck & Co., Inc. Inhibitors of farnesyl-protein transferase
IL117580A0 (en) 1995-03-29 1996-07-23 Merck & Co Inc Inhibitors of farnesyl-protein transferase and pharmaceutical compositions containing them
CN1105113C (zh) 1995-07-05 2003-04-09 纳幕尔杜邦公司 杀真菌嘧啶酮
MX9800215A (es) 1995-07-06 1998-03-31 Novartis Ag Pirrolopirimidas y procesos para su preparacion.
US5630943A (en) 1995-11-30 1997-05-20 Merck Patent Gesellschaft Mit Beschrankter Haftung Discontinuous countercurrent chromatographic process and apparatus
GB9604361D0 (en) 1996-02-29 1996-05-01 Pharmacia Spa 4-Substituted pyrrolopyrimidine compounds as tyrosine kinase inhibitors
JP2000504023A (ja) 1996-04-03 2000-04-04 メルク エンド カンパニー インコーポレーテッド 癌治療方法
EP0952842A2 (en) 1996-04-18 1999-11-03 Merck & Co., Inc. A method of treating cancer
US5795909A (en) 1996-05-22 1998-08-18 Neuromedica, Inc. DHA-pharmaceutical agent conjugates of taxanes
WO1997045412A1 (en) 1996-05-30 1997-12-04 Merck & Co., Inc. A method of treating cancer
US6624138B1 (en) 2001-09-27 2003-09-23 Gp Medical Drug-loaded biological material chemically treated with genipin
JP2001524079A (ja) 1997-04-07 2001-11-27 メルク エンド カンパニー インコーポレーテッド ガンの治療方法
US6063284A (en) 1997-05-15 2000-05-16 Em Industries, Inc. Single column closed-loop recycling with periodic intra-profile injection
US6060038A (en) 1997-05-15 2000-05-09 Merck & Co., Inc. Radiolabeled farnesyl-protein transferase inhibitors
US5919779A (en) 1997-08-11 1999-07-06 Boehringer Ingelheim Pharmaceuticals, Inc. 5,6-Heteroaryl-dipyrido(2,3-B:3', 2'-F) azepines and their use in the prevention or treatment of HIV infection
US6075056A (en) 1997-10-03 2000-06-13 Penederm, Inc. Antifungal/steroid topical compositions
US6025366A (en) 1998-04-02 2000-02-15 Merck & Co., Inc. Antagonists of gonadotropin releasing hormone
US6232320B1 (en) 1998-06-04 2001-05-15 Abbott Laboratories Cell adhesion-inhibiting antiinflammatory compounds
IL139811A0 (en) 1998-06-04 2002-02-10 Abbott Lab Cell adhesion-inhibiting antinflammatory compounds
PA8474101A1 (es) 1998-06-19 2000-09-29 Pfizer Prod Inc Compuestos de pirrolo [2,3-d] pirimidina
KR100415791B1 (ko) 1998-06-19 2004-01-24 화이자 프로덕츠 인코포레이티드 피롤로[2,3-디]피리미딘 화합물
EP1107964B8 (en) 1998-08-11 2010-04-07 Novartis AG Isoquinoline derivatives with angiogenesis inhibiting activity
JP2000119271A (ja) 1998-08-12 2000-04-25 Hokuriku Seiyaku Co Ltd 1h―イミダゾピリジン誘導体
WO2000015195A1 (en) 1998-09-10 2000-03-23 Nycomed Danmark A/S Quick release pharmaceutical compositions of drug substances
US6375839B1 (en) 1998-10-29 2002-04-23 Institut Francais Du Petrole Process and device for separation with variable-length chromatographic zones
FR2785196B1 (fr) 1998-10-29 2000-12-15 Inst Francais Du Petrole Procede et dispositif de separation avec des zones chromatographiques a longueur variable
US6413419B1 (en) 1998-10-29 2002-07-02 Institut Francais Du Petrole Process and device for separation with variable-length chromatographic
US6133031A (en) 1999-08-19 2000-10-17 Isis Pharmaceuticals Inc. Antisense inhibition of focal adhesion kinase expression
WO2000051614A1 (en) 1999-03-03 2000-09-08 Merck & Co., Inc. Inhibitors of prenyl-protein transferases
GB9905075D0 (en) 1999-03-06 1999-04-28 Zeneca Ltd Chemical compounds
US6217895B1 (en) 1999-03-22 2001-04-17 Control Delivery Systems Method for treating and/or preventing retinal diseases with sustained release corticosteroids
US6239113B1 (en) 1999-03-31 2001-05-29 Insite Vision, Incorporated Topical treatment or prevention of ocular infections
WO2000063168A1 (en) 1999-04-16 2000-10-26 Coelacanth Chemical Corporation Synthesis of azetidine derivatives
US6921763B2 (en) 1999-09-17 2005-07-26 Abbott Laboratories Pyrazolopyrimidines as therapeutic agents
WO2001027104A1 (fr) 1999-10-13 2001-04-19 Banyu Pharmaceutical Co., Ltd. Derives d'imidazolidinone a substitution
WO2001042246A2 (en) 1999-12-10 2001-06-14 Pfizer Products Inc. PYRROLO[2,3-d]PYRIMIDINE COMPOUNDS
CA2699568C (en) 1999-12-24 2013-03-12 Aventis Pharma Limited Azaindoles
GB0004890D0 (en) 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
US7235551B2 (en) 2000-03-02 2007-06-26 Smithkline Beecham Corporation 1,5-disubstituted-3,4-dihydro-1h-pyrimido[4,5-d]pyrimidin-2-one compounds and their use in treating csbp/p38 kinase mediated diseases
TR200302105T4 (tr) 2000-04-07 2004-02-23 Laboratoire Medidom S. A. Siklosporin, hiyalüronik asit ve polisorbat içeren göz formülasyonları.
WO2001081345A1 (fr) 2000-04-20 2001-11-01 Mitsubishi Pharma Corporation Composes d'amides aromatiques
WO2001081346A2 (en) 2000-04-25 2001-11-01 Icos Corporation Inhibitors of human phosphatidyl-inositol 3-kinase delta
US7498304B2 (en) 2000-06-16 2009-03-03 Curis, Inc. Angiogenesis-modulating compositions and uses
US20030022819A1 (en) 2000-06-16 2003-01-30 Ling Leona E. Angiogenesis-modulating compositions and uses
US6335342B1 (en) 2000-06-19 2002-01-01 Pharmacia & Upjohn S.P.A. Azaindole derivatives, process for their preparation, and their use as antitumor agents
ATE465756T1 (de) 2000-06-23 2010-05-15 Mitsubishi Tanabe Pharma Corp Antitumoreffekt-verstärker
ATE423120T1 (de) 2000-06-26 2009-03-15 Pfizer Prod Inc Pyrroloä2,3-düpyrimidin verbindungen als immunosuppressive wirkstoffe
CZ303572B6 (cs) 2000-06-28 2012-12-12 Smithkline Beecham P. L. C. Jemne rozmelnený prostredek a zpusob jeho prípravy
AU2001278790A1 (en) 2000-08-22 2002-03-04 Hokuriku Seiyaku Co. Ltd 1h-imidazopyridine derivatives
WO2002046184A1 (en) 2000-12-05 2002-06-13 Vertex Pharmaceuticals Incorporated Inhibitors of c-jun n-terminal kinases (jnk) and other protein kinases
GB0100622D0 (en) 2001-01-10 2001-02-21 Vernalis Res Ltd Chemical compounds V111
WO2002055496A1 (en) 2001-01-15 2002-07-18 Glaxo Group Limited Aryl piperidine and piperazine derivatives as inducers of ldl-receptor expression
US20040102455A1 (en) 2001-01-30 2004-05-27 Burns Christopher John Method of inhibiting kinases
WO2002092573A2 (en) 2001-05-16 2002-11-21 Vertex Pharmaceuticals Incorporated Heterocyclic substituted pyrazoles as inhibitors of src and other protein kinases
US7301023B2 (en) 2001-05-31 2007-11-27 Pfizer Inc. Chiral salt resolution
GB0115109D0 (en) 2001-06-21 2001-08-15 Aventis Pharma Ltd Chemical compounds
GB0115393D0 (en) 2001-06-23 2001-08-15 Aventis Pharma Ltd Chemical compounds
JP4286134B2 (ja) 2001-08-01 2009-06-24 メルク エンド カムパニー インコーポレーテッド ベンズイミダゾ[4,5−f]イソキノリノン誘導体
NZ531378A (en) 2001-09-19 2006-11-30 Aventis Pharma S Indolizines as kinase protein inhibitors suitable for treating solid tumours
US6429231B1 (en) 2001-09-24 2002-08-06 Bradley Pharmaceuticals, Inc. Compositions containing antimicrobials and urea for the treatment of dermatological disorders and methods for their use
PT1441737E (pt) 2001-10-30 2006-12-29 Dana Farber Cancer Inst Inc Derivados de estrutura como inibidores da actividade do receptor de tirosina cinase flt3
JP2003155285A (ja) 2001-11-19 2003-05-27 Toray Ind Inc 環状含窒素誘導体
EP1460059A4 (en) 2001-11-30 2005-01-05 Teijin Ltd PROCESS FOR PRODUCING 5- (3-CYANOPHENYL) -3-FORMYLBENZOIC ACID COMPOUND
GT200200234A (es) 2001-12-06 2003-06-27 Compuestos cristalinos novedosos
US6995144B2 (en) 2002-03-14 2006-02-07 Eisai Co., Ltd. Nitrogen containing heterocyclic compounds and medicines containing the same
TW200403058A (en) 2002-04-19 2004-03-01 Bristol Myers Squibb Co Heterocyclo inhibitors of potassium channel function
US7304061B2 (en) 2002-04-26 2007-12-04 Vertex Pharmaceuticals Incorporated Heterocyclic inhibitors of ERK2 and uses thereof
AU2003241326B2 (en) 2002-05-02 2008-05-01 Merck & Co., Inc. Tyrosine kinase inhibitors
WO2003094888A1 (en) 2002-05-07 2003-11-20 Control Delivery Systems, Inc. Processes for forming a drug delivery device
CN100558715C (zh) 2002-05-23 2009-11-11 西托匹亚有限公司 蛋白激酶抑制剂
AR037647A1 (es) 2002-05-29 2004-12-01 Novartis Ag Derivados de diarilurea utiles para el tratamiento de enfermedades dependientes de la cinasa de proteina
CA2490340A1 (en) 2002-06-26 2004-01-08 Idemitsu Kosan Co., Ltd. Hydrogenated copolymer, production process for the same and hot melt adhesive composition using the same
GB0215676D0 (en) 2002-07-05 2002-08-14 Novartis Ag Organic compounds
GB0215844D0 (en) 2002-07-09 2002-08-14 Novartis Ag Organic compounds
JPWO2004007472A1 (ja) 2002-07-10 2005-11-17 小野薬品工業株式会社 Ccr4アンタゴニストおよびその医薬用途
WO2004026406A1 (en) 2002-09-20 2004-04-01 Alcon, Inc. Use of cytokine synthesis inhibitors for the treatment of dry eye disorders
US20040204404A1 (en) 2002-09-30 2004-10-14 Robert Zelle Human N-type calcium channel blockers
CA2506773A1 (en) 2002-11-04 2004-05-21 Vertex Pharmaceuticals Incorporated Heteroaryl-pyramidine derivatives as jak inhibitors
US8034831B2 (en) 2002-11-06 2011-10-11 Celgene Corporation Methods for the treatment and management of myeloproliferative diseases using 4-(amino)-2-(2,6-Dioxo(3-piperidyl)-isoindoline-1,3-dione in combination with other therapies
TWI335913B (en) 2002-11-15 2011-01-11 Vertex Pharma Diaminotriazoles useful as inhibitors of protein kinases
US20040099204A1 (en) 2002-11-25 2004-05-27 Nestor John J. Sheet, page, line, position marker
EP1572213A1 (en) 2002-11-26 2005-09-14 Pfizer Products Inc. Method of treatment of transplant rejection
UA80767C2 (en) 2002-12-20 2007-10-25 Pfizer Prod Inc Pyrimidine derivatives for the treatment of abnormal cell growth
UY28126A1 (es) 2002-12-24 2004-06-30 Alcon Inc Uso de glucocorticoides selectivos para la superficie ocular en el tratamiento de la sequedad ocular
TW200418806A (en) 2003-01-13 2004-10-01 Fujisawa Pharmaceutical Co HDAC inhibitor
US7444183B2 (en) 2003-02-03 2008-10-28 Enteromedics, Inc. Intraluminal electrode apparatus and method
EP1611125A1 (en) 2003-02-07 2006-01-04 Vertex Pharmaceuticals Incorporated Heteroaryl substituted pyrolls useful as inhibitors of protein kinases
GB0305929D0 (en) 2003-03-14 2003-04-23 Novartis Ag Organic compounds
EP1615906A1 (en) 2003-04-03 2006-01-18 Vertex Pharmaceuticals Incorporated Compositions useful as inhibitors of protein kinases
SE0301373D0 (sv) 2003-05-09 2003-05-09 Astrazeneca Ab Novel compounds
SE0301372D0 (sv) 2003-05-09 2003-05-09 Astrazeneca Ab Novel compounds
FR2857454B1 (fr) 2003-07-08 2006-08-11 Aventis Pasteur Dosage des acides techoiques des bacteries gram+
US20050043346A1 (en) 2003-08-08 2005-02-24 Pharmacia Italia S.P.A. Pyridylpyrrole derivatives active as kinase inhibitors
EP1663204B1 (en) 2003-08-29 2014-05-07 Exelixis, Inc. C-kit modulators and methods of use
WO2005026129A1 (en) 2003-09-15 2005-03-24 Gpc Biotech Ag Pharmaceutically active 4,6-disubstituted aminopyrimidine derivatives as modulators of protein kinases
PE20050952A1 (es) 2003-09-24 2005-12-19 Novartis Ag Derivados de isoquinolina como inhibidores de b-raf
ES2357801T3 (es) 2003-10-24 2011-04-29 Santen Pharmaceutical Co., Ltd. Agente terapéutico para trastorno queratoconjuntival.
MY141220A (en) 2003-11-17 2010-03-31 Astrazeneca Ab Pyrazole derivatives as inhibitors of receptor tyrosine kinases
JP2007512316A (ja) 2003-11-25 2007-05-17 ファイザー・プロダクツ・インク アテローム性動脈硬化症の治療方法
AU2004305317A1 (en) 2003-12-17 2005-07-07 Pfizer Products Inc. Pyrrolo [2,3-D] pyrimidine compounds for treating transplant rejection
CA2550361C (en) 2003-12-19 2014-04-29 Prabha Ibrahim Compounds and methods for development of ret modulators
US7338968B2 (en) 2003-12-19 2008-03-04 Schering Corporation Thiadiazoles AS CXC- and CC- chemokine receptor ligands
AU2004303602C1 (en) 2003-12-23 2009-05-28 Astex Therapeutics Limited Pyrazole derivatives as protein kinase modulators
WO2005069865A2 (en) 2004-01-13 2005-08-04 Ambit Biosciences Corporation Pyrrolopyrimidine derivatives and analogs and their use in the treatment and prevention of diseases
CA2559285A1 (en) 2004-03-18 2005-09-29 Brigham And Women's Hospital, Inc. Methods for the treatment of synucleinopathies
EP2786995A1 (en) 2004-03-30 2014-10-08 Vertex Pharmaceuticals Incorporated Azaindoles useful as inhibitors of JAK and other protein kinases
JP2007533743A (ja) 2004-04-20 2007-11-22 メルク エンド カムパニー インコーポレーテッド アルツハイマー病治療のためのβ−セクレターゼ阻害薬として有用な1,3,5−置換フェニル誘導体化合物
WO2005117909A2 (en) 2004-04-23 2005-12-15 Exelixis, Inc. Kinase modulators and methods of use
US20060106020A1 (en) 2004-04-28 2006-05-18 Rodgers James D Tetracyclic inhibitors of Janus kinases
US7558717B2 (en) 2004-04-28 2009-07-07 Vertex Pharmaceuticals Incorporated Crystal structure of human JAK3 kinase domain complex and binding pockets thereof
EP2363149A1 (en) 2004-05-03 2011-09-07 Novartis AG Combinations comprising a S1P receptor agonist and a JAK3 kinase inhibitor
MXPA06013250A (es) 2004-05-14 2007-02-28 Abbott Lab Inhibidores de quinasa como agentes terapeuticos.
PE20060426A1 (es) 2004-06-02 2006-06-28 Schering Corp DERIVADOS DE ACIDO TARTARICO COMO INHIBIDORES DE MMPs, ADAMs, TACE Y TNF-alfa
MY144044A (en) 2004-06-10 2011-07-29 Irm Llc Compounds and compositions as protein kinase inhibitors
EP1760071A4 (en) 2004-06-23 2008-03-05 Ono Pharmaceutical Co COMPOUND WITH S1P RECEPTOR BINDING ABILITY AND USE THEREOF
CA2572058A1 (en) 2004-06-30 2006-01-12 Vertex Pharmaceuticals Incorporated Azaindoles useful as inhibitors of protein kinases
US7138423B2 (en) 2004-07-20 2006-11-21 Bristol-Myers Squibb Company Arylpyrrolidine derivatives as NK-1 /SSRI antagonists
FR2873691B1 (fr) 2004-07-29 2006-10-06 Sanofi Synthelabo Derives d'amino-piperidine, leur preparation et leur application en therapeutique
WO2006013114A1 (en) 2004-08-06 2006-02-09 Develogen Aktiengesellschaft Use of a timp-2 secreted protein product for preventing and treating pancreatic diseases and/or obesity and/or metabolic syndrome
CN101006186A (zh) 2004-08-23 2007-07-25 财团法人牧岩生命工学研究所 用于检测sars冠状病毒的引物和探针,包括该引物和/或探针的试剂盒及其检测方法
US20070054916A1 (en) 2004-10-01 2007-03-08 Amgen Inc. Aryl nitrogen-containing bicyclic compounds and methods of use
DE602005007623D1 (de) 2004-10-13 2008-07-31 Hoffmann La Roche Als cdk2- und angiogenese-inhibitoren und für die behandlung von brust-, kolon-, lungen- und prostatakrebs geeignete disubstituierte pyrazolobenzodiazepine
MY179032A (en) 2004-10-25 2020-10-26 Cancer Research Tech Ltd Ortho-condensed pyridine and pyrimidine derivatives (e.g.purines) as protein kinase inhibitors
UY29177A1 (es) 2004-10-25 2006-05-31 Astex Therapeutics Ltd Derivados sustituidos de purina, purinona y deazapurina, composiciones que los contienen métodos para su preparación y sus usos
PT1812440E (pt) 2004-11-04 2011-01-25 Vertex Pharma Pirazolo[1,5-a]pirimidinas úteis enquanto inibidores de proteínas cinases
KR20070085433A (ko) 2004-11-24 2007-08-27 노파르티스 아게 Jak 저해제들과 bcr-abl, flt-3, fak 또는raf 키나제 저해제들 중 하나 이상의 조합물
US7517870B2 (en) 2004-12-03 2009-04-14 Fondazione Telethon Use of compounds that interfere with the hedgehog signaling pathway for the manufacture of a medicament for preventing, inhibiting, and/or reversing ocular diseases related with ocular neovascularization
WO2006065916A1 (en) 2004-12-14 2006-06-22 Alcon, Inc. Method of treating dry eye disorders using 13(s)-hode and its analogs
AR053992A1 (es) 2004-12-22 2007-05-30 Astrazeneca Ab Compuestos quimicos con actividad anticancerosa, un procedimiento para su preparacion, su uso en la preparacion de medicamentos y composicion farmaceutica.
AR054416A1 (es) 2004-12-22 2007-06-27 Incyte Corp Pirrolo [2,3-b]piridin-4-il-aminas y pirrolo [2,3-b]pirimidin-4-il-aminas como inhibidores de las quinasas janus. composiciones farmaceuticas.
CA2595574A1 (en) 2005-01-20 2006-07-27 Pfizer Limited. Chemical compounds
CN101142218B (zh) 2005-02-03 2013-02-06 沃泰克斯药物股份有限公司 可用作蛋白激酶抑制剂的吡咯并嘧啶
US7683171B2 (en) 2005-02-04 2010-03-23 Bristol-Myers Squibb Company 1H-imidazo[4,5-d]thieno[3,2-b]pyridine based tricyclic compounds and pharmaceutical compositions comprising same
US20080188483A1 (en) * 2005-03-15 2008-08-07 Irm Llc Compounds and Compositions as Protein Kinase Inhibitors
RU2007140903A (ru) 2005-04-05 2009-05-20 Фармакопия, Инк. (Us) Производные пурина и имидазопиридина для иммуносупрессии
GB0510139D0 (en) 2005-05-18 2005-06-22 Addex Pharmaceuticals Sa Novel compounds B1
GB0510390D0 (en) 2005-05-20 2005-06-29 Novartis Ag Organic compounds
EP1881983B1 (en) 2005-05-20 2012-01-11 Vertex Pharmaceuticals, Inc. Pyrrolopyridines useful as inhibitors of protein kinase
US7491732B2 (en) 2005-06-08 2009-02-17 Rigel Pharmaceuticals, Inc. Compositions and methods for inhibition of the JAK pathway
WO2006136823A1 (en) 2005-06-21 2006-12-28 Astex Therapeutics Limited Heterocyclic containing amines as kinase b inhibitors
BRPI0611863B1 (pt) 2005-06-22 2021-11-23 Plexxikon, Inc Composto, bem como composição e kit compreendendo o mesmo, composto intermediário na preparação do mesmo, método para tratamento e uso do mesmo
EP2251341A1 (en) 2005-07-14 2010-11-17 Astellas Pharma Inc. Heterocyclic Janus kinase 3 inhibitors
FR2889662B1 (fr) 2005-08-11 2011-01-14 Galderma Res & Dev Emulsion de type huile-dans-eau pour application topique en dermatologie
WO2007025090A2 (en) 2005-08-25 2007-03-01 Kalypsys, Inc. Heterobicyclic and - tricyclic inhibitors of mapk/erk kinase
US20070149506A1 (en) 2005-09-22 2007-06-28 Arvanitis Argyrios G Azepine inhibitors of Janus kinases
SG151327A1 (en) 2005-09-30 2009-04-30 Vertex Pharmaceuticals Incopor Deazapurines useful as inhibitors of janus kinases
WO2007044894A2 (en) 2005-10-11 2007-04-19 Chembridge Research Laboratories, Inc. Cell-free protein expression systems and methods of use thereof
EP1937664B1 (en) 2005-10-14 2011-06-15 Sumitomo Chemical Company, Limited Hydrazide compound and pesticidal use of the same
PT1945631E (pt) 2005-10-28 2012-10-15 Astrazeneca Ab Derivados de 4-(3-aminopirazole)pirimidina para utilização como inibidores da tirosina-cinase no tratamento do cancro
PT1951684T (pt) 2005-11-01 2016-10-13 Targegen Inc Inibidores de cinases de tipo biaril-meta-pirimidina
WO2007062459A1 (en) 2005-11-29 2007-06-07 Cytopia Research Pty Ltd Selective kinase inhibitors based on pyridine scaffold
TWI468162B (zh) 2005-12-13 2015-01-11 英塞特公司 作為傑納斯激酶(JANUS KINASE)抑制劑之經雜芳基取代之吡咯并〔2,3-b〕吡啶及吡咯并〔2,3-b〕嘧啶
US20130137681A1 (en) 2005-12-13 2013-05-30 Incyte Corporation HETEROARYL SUBSTITUTED PYRROLO[2,3-b]PYRIDINES AND PYRROLO[2,3-b]PYRIMIDINES AS JANUS KINASE INHIBITORS
WO2007076423A2 (en) 2005-12-22 2007-07-05 Smithkline Beecham Corporation INHIBITORS OF Akt ACTIVITY
MX2008008320A (es) 2005-12-23 2008-09-03 Smithkline Beecham Corp Inhibidores de azaindol de aurora cinasas.
JP4643455B2 (ja) 2006-01-12 2011-03-02 株式会社ユニバーサルエンターテインメント 遊技システム
AR060316A1 (es) 2006-01-17 2008-06-11 Vertex Pharma Azaindoles de utilidad como inhibidores de janus quinasas
US20070208053A1 (en) 2006-01-19 2007-09-06 Arnold Lee D Fused heterobicyclic kinase inhibitors
JP2009525350A (ja) 2006-02-01 2009-07-09 スミスクライン ビーチャム コーポレーション Rafキナーゼ阻害薬として有用なピロロ[2,3,b]ピリジン誘導体
US7745477B2 (en) 2006-02-07 2010-06-29 Hoffman-La Roche Inc. Heteroaryl and benzyl amide compounds
WO2007105637A1 (ja) 2006-03-10 2007-09-20 Ono Pharmaceutical Co., Ltd. 含窒素複素環誘導体およびそれらを有効成分とする薬剤
ES2453372T3 (es) 2006-04-03 2014-04-07 Astellas Pharma Inc. Derivados de oxadiazol como agonistas de S1P1
JP2009532475A (ja) 2006-04-05 2009-09-10 バーテックス ファーマシューティカルズ インコーポレイテッド ヤヌスキナーゼの阻害剤として有用なデアザプリン
US20090124636A1 (en) 2006-04-12 2009-05-14 Pfizer Inc. Chemical compounds
WO2007129195A2 (en) 2006-05-04 2007-11-15 Pfizer Products Inc. 4-pyrimidine-5-amino-pyrazole compounds
JP2009537505A (ja) 2006-05-18 2009-10-29 バイエル・ヘルスケア・アクチェンゲゼルシャフト インプリタピドを含む薬学的組成物およびこの薬学的組成物の使用方法
US7691811B2 (en) 2006-05-25 2010-04-06 Bodor Nicholas S Transporter-enhanced corticosteroid activity and methods and compositions for treating dry eye
TWI398252B (zh) 2006-05-26 2013-06-11 Novartis Ag 吡咯并嘧啶化合物及其用途
BRPI0713187A2 (pt) 2006-07-20 2012-10-16 Mehmet Kahraman método de inibir rho-quinase, método de tratamento de doença mediada por rho-quinase, composto e composição farmacêutica
WO2008013622A2 (en) 2006-07-27 2008-01-31 E. I. Du Pont De Nemours And Company Fungicidal azocyclic amides
US8492378B2 (en) 2006-08-03 2013-07-23 Takeda Pharmaceutical Company Limited GSK-3β inhibitor
ATE517868T1 (de) 2006-08-16 2011-08-15 Boehringer Ingelheim Int Pyrazinverbindungen, ihre verwendung und herstellungsverfahren
CN101511783A (zh) 2006-09-08 2009-08-19 诺瓦提斯公司 用于治疗淋巴细胞相互作用介导的疾病的n-联芳(杂)芳基磺酰胺衍生物
WO2008035376A2 (en) 2006-09-19 2008-03-27 Council Of Scientific & Industrial Research A novel bio-erodible insert for ophthalmic applications and a process for the preparation thereof
CL2007002866A1 (es) 2006-10-04 2008-07-04 Pharmacopeia Inc Compuestos derivados de 6-sustituidos-2-(bencimidazolil) purina y purinona; composicion farmaceutica que comprende a dicho compuesto; y uso del compuesto en el tratamiento de enfermedades autoinmunes, enfermedad inflamatoria, enfermedad mediada por m
US7915268B2 (en) 2006-10-04 2011-03-29 Wyeth Llc 8-substituted 2-(benzimidazolyl)purine derivatives for immunosuppression
US20120225057A1 (en) 2006-10-11 2012-09-06 Deciphera Pharmaceuticals, Llc Methods and compositions for the treatment of myeloproliferative diseases and other proliferative diseases
KR101546493B1 (ko) 2006-11-06 2015-08-21 톨레로 파마수티컬스, 인크. 이미다조[1,2-b]피리다진 및 피라졸로[1,5-a]피리미딘 유도체 및 단백질 키나제 억제제로서의 이의 용도
US20080119496A1 (en) 2006-11-16 2008-05-22 Pharmacopeia Drug Discovery, Inc. 7-Substituted Purine Derivatives for Immunosuppression
ES2689444T3 (es) 2006-11-22 2018-11-14 Incyte Holdings Corporation Imidazotriazinas e imidazopirimidinas como inhibidores de la quinasa
WO2008067119A2 (en) 2006-11-27 2008-06-05 Smithkline Beecham Corporation Novel compounds
AU2007334436A1 (en) 2006-12-15 2008-06-26 Abbott Laboratories Novel oxadiazole compounds
CA2672438A1 (en) 2006-12-20 2008-07-03 Amgen Inc. Substituted heterocycles and methods of use
ES2387471T3 (es) 2006-12-20 2012-09-24 Amgen Inc. Compuestos heterocíclicos y su uso en el tratamiento de la inflamación, la angiogénesis y el cáncer
EA016795B1 (ru) 2006-12-22 2012-07-30 Сигма-Тау Индустрие Фармасьютике Риуните С.П.А. Гель, применимый для доставки офтальмологических лекарственных средств
US8513270B2 (en) 2006-12-22 2013-08-20 Incyte Corporation Substituted heterocycles as Janus kinase inhibitors
KR20080062876A (ko) 2006-12-29 2008-07-03 주식회사 대웅제약 신규한 항진균성 트리아졸 유도체
WO2008082839A2 (en) 2006-12-29 2008-07-10 Abbott Laboratories Pim kinase inhibitors as cancer chemotherapeutics
WO2008082840A1 (en) 2006-12-29 2008-07-10 Abbott Laboratories Pim kinase inhibitors as cancer chemotherapeutics
MX2009009304A (es) 2007-03-01 2009-11-18 Novartis Ag Inhibidores de cinasa pim y metodos para su uso.
PT2137184E (pt) 2007-04-03 2013-08-01 Array Biopharma Inc Compostos imidazo[1,2-a]piridina como inibidores do receptor de tirosina quinase
US8188178B2 (en) 2007-05-07 2012-05-29 3M Innovative Properties Company Cold shrinkable article including an epichlorohydrin composition
GB0709031D0 (en) 2007-05-10 2007-06-20 Sareum Ltd Pharmaceutical compounds
CA2687931C (en) 2007-05-31 2016-05-24 Boehringer Ingelheim International Gmbh Ccr2 receptor antagonists and uses thereof
GB0710528D0 (en) 2007-06-01 2007-07-11 Glaxo Group Ltd Novel compounds
SG10201509887UA (en) 2007-06-13 2016-01-28 Incyte Corp Salts of the janus kinase inhibitor (r)-3-(4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h-pyrazol-1-yl)-3-cyclopentylpropanenitrile
CL2008001709A1 (es) 2007-06-13 2008-11-03 Incyte Corp Compuestos derivados de pirrolo [2,3-b]pirimidina, moduladores de quinasas jak; composicion farmaceutica; y uso en el tratamiento de enfermedades tales como cancer, psoriasis, artritis reumatoide, entre otras.
CA2691914C (en) 2007-07-11 2012-06-26 Pfizer Inc. Pharmaceutical compositions and methods of treating dry eye disorders
KR20100038119A (ko) 2007-08-01 2010-04-12 화이자 인코포레이티드 피라졸 화합물 및 raf 억제제로서 이의 용도
WO2009049028A1 (en) 2007-10-09 2009-04-16 Targegen Inc. Pyrrolopyrimidine compounds and their use as janus kinase modulators
WO2009064486A2 (en) 2007-11-15 2009-05-22 Musc Foundation For Research Development Inhibitors of pim protein kinases, compositions, and methods for treating cancer
MY152948A (en) 2007-11-16 2014-12-15 Incyte Corp 4-pyrazolyl-n-arylpyrimidin-2-amines and 4-pyrazolyl-n-heteroarylpyrimidin-2-amines as janus kinase inhibitors
GB0723815D0 (en) 2007-12-05 2008-01-16 Glaxo Group Ltd Compounds
PL3133080T3 (pl) 2008-01-18 2018-12-31 Inst Of Organic Chemistry And Biochemistry Of The Academy Of Sciences Of The Czech Republic Nowe cytostatyczne nukleozydy 7-deazapurynowe
US8273744B2 (en) 2008-02-04 2012-09-25 Mercury Therapeutics, Inc. AMPK modulators
PE20091577A1 (es) 2008-03-03 2009-11-05 Novartis Ag Inhibidores de cinasa pim y metodos para su uso
ES2602577T3 (es) 2008-03-11 2017-02-21 Incyte Holdings Corporation Derivados de azetidina y ciclobutano como inhibidores de JAK
CN102015686B (zh) 2008-03-21 2014-07-02 诺华股份有限公司 杂环化合物及其用途
JP2011525892A (ja) 2008-06-18 2011-09-29 メルク・シャープ・エンド・ドーム・コーポレイション Janusキナーゼの阻害剤
BRPI0914630A2 (pt) 2008-06-26 2019-09-24 Anterios Inc liberação dérmica
TWI461423B (zh) 2008-07-02 2014-11-21 Astrazeneca Ab 用於治療Pim激酶相關病狀及疾病之噻唑啶二酮化合物
FR2933409B1 (fr) 2008-07-03 2010-08-27 Centre Nat Rech Scient NOUVEAUX PYRROLO °2,3-a! CARBAZOLES ET LEUR UTILISATION COMME INHIBITEURS DES KINASES PIM
WO2010022081A1 (en) 2008-08-19 2010-02-25 Array Biopharma Inc. Triazolopyridine compounds as pim kinase inhibitors
TWI496779B (zh) 2008-08-19 2015-08-21 Array Biopharma Inc 作為pim激酶抑制劑之三唑吡啶化合物
RU2493157C2 (ru) 2008-08-20 2013-09-20 Пфайзер Инк. ПРОИЗВОДНЫЕ ПИРРОЛО[2,3-d]ПИРИМИДИНА
EP2342190A1 (en) 2008-09-02 2011-07-13 Novartis AG Bicyclic kinase inhibitors
US8759338B2 (en) 2008-09-02 2014-06-24 Novartis Ag Heterocyclic kinase inhibitors
CN103333157A (zh) 2008-09-02 2013-10-02 诺瓦提斯公司 作为激酶抑制剂的吡啶甲酰胺衍生物
CL2009001884A1 (es) 2008-10-02 2010-05-14 Incyte Holdings Corp Uso de 3-ciclopentil-3-[4-(7h-pirrolo[2,3-d]pirimidin-4-il)-1h-pirazol-1-il)propanonitrilo, inhibidor de janus quinasa, y uso de una composición que lo comprende para el tratamiento del ojo seco.
EP2350054A4 (en) 2008-10-17 2012-03-28 Merck Canada Inc AZETIDINE DERIVATIVES AS INHIBITORS OF THE STEAROYL COENZYME A DELTA 9 DESATURASE
US20100197924A1 (en) 2008-12-22 2010-08-05 Millennium Pharmaceuticals, Inc. Preparation of aminotetralin compounds
JOP20190230A1 (ar) 2009-01-15 2017-06-16 Incyte Corp طرق لاصلاح مثبطات انزيم jak و المركبات الوسيطة المتعلقة به
EP2210890A1 (en) 2009-01-19 2010-07-28 Almirall, S.A. Oxadiazole derivatives as S1P1 receptor agonists
US8263601B2 (en) 2009-02-27 2012-09-11 Concert Pharmaceuticals, Inc. Deuterium substituted xanthine derivatives
EA025520B1 (ru) 2009-05-22 2017-01-30 Инсайт Холдингс Корпорейшн N-(ГЕТЕРО)АРИЛПИРРОЛИДИНОВЫЕ ПРОИЗВОДНЫЕ ПИРАЗОЛ-4-ИЛ-ПИРРОЛО[2,3-d]ПИРИМИДИНОВ И ПИРРОЛ-3-ИЛ-ПИРРОЛО[2,3-d]ПИРИМИДИНОВ В КАЧЕСТВЕ ИНГИБИТОРОВ ЯНУС-КИНАЗЫ
SG176111A1 (en) 2009-05-22 2011-12-29 Incyte Corp 3-[4-(7h-pyrrolo[2,3-d]pyrimidin-4-yl)-1h-pyrazol-1-yl]octane- or heptane-nitrile as jak inhibitors
UA110324C2 (en) 2009-07-02 2015-12-25 Genentech Inc Jak inhibitory compounds based on pyrazolo pyrimidine
CN102574857B (zh) 2009-07-08 2015-06-10 利奥制药有限公司 作为jak受体和蛋白酪氨酸激酶抑制剂的杂环化合物
US20120157500A1 (en) 2009-08-24 2012-06-21 Weikang Tao Jak inhibition blocks rna interference associated toxicities
TW201111385A (en) 2009-08-27 2011-04-01 Biocryst Pharm Inc Heterocyclic compounds as janus kinase inhibitors
WO2011028685A1 (en) 2009-09-01 2011-03-10 Incyte Corporation Heterocyclic derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors
CN102625807B (zh) 2009-09-08 2016-03-09 霍夫曼-拉罗奇有限公司 4-取代的吡啶-3-基-甲酰胺化合物和使用方法
EP2305660A1 (en) 2009-09-25 2011-04-06 Almirall, S.A. New thiadiazole derivatives
US8486902B2 (en) 2009-10-09 2013-07-16 Incyte Corporation Hydroxyl, keto, and glucuronide derivatives of 3-(4-(7H-pyrrolo[2,3-d] pyrimidin-4-yl)-1H-pyrazol-1-yl)-3-cyclopentylpropanenitrile
KR20120102601A (ko) 2009-10-20 2012-09-18 셀좀 리미티드 Jak 저해제로서의 헤테로시클릴 피라졸로피리미딘 유사체
EP2332917B1 (en) 2009-11-11 2012-08-01 Sygnis Bioscience GmbH & Co. KG Compounds for PIM kinase inhibition and for treating malignancy
WO2011066374A2 (en) 2009-11-24 2011-06-03 Alder Biopharmaceuticals, Inc. Antagonists of il-6 to prevent or treat cachexia, weakness, fatigue, and/or fever
EP2506852A4 (en) 2009-12-04 2013-06-19 Univ Texas INTERFERONTHERAPIES IN COMBINATION WITH BLOCKING OF STAT3 ACTIVATION
MX2012008049A (es) 2010-01-12 2012-08-01 Hoffmann La Roche Compuestos heterociclicos triciclicos, composiciones y metodos de uso de los mismos,.
SA111320200B1 (ar) 2010-02-17 2014-02-16 ديبيوفارم اس ايه مركبات ثنائية الحلقة واستخداماتها كمثبطات c-src/jak مزدوجة
JP5858434B2 (ja) 2010-02-18 2016-02-10 インサイト・ホールディングス・コーポレイションIncyte Holdings Corporation Janusキナーゼ阻害薬としてのシクロブタンおよびメチルシクロブタン誘導体
MX347851B (es) 2010-03-10 2017-05-16 Incyte Corp Derivados de piperidin-4-il azetidina como inhibidores de janus cinasa 1 (jak1).
NZ603446A (en) 2010-04-14 2014-05-30 Array Biopharma Inc 5, 7-substituted-imidazo [1, 2-c] pyrimidines as inhibitors of jak kinases
EP2390252A1 (en) 2010-05-19 2011-11-30 Almirall, S.A. New pyrazole derivatives
EP2574168B9 (en) 2010-05-21 2016-10-05 Incyte Holdings Corporation Topical formulation for a jak inhibitor
US8637529B2 (en) 2010-06-11 2014-01-28 AbbYie Inc. Pyrazolo[3,4-d]pyrimidine compounds
WO2012003457A1 (en) 2010-07-01 2012-01-05 Mtm Research Llc Anti-fibroblastic fluorochemical emulsion therapies
EP2621489A1 (en) 2010-09-30 2013-08-07 Portola Pharmaceuticals, Inc. Combinations of 4-(cyclopropylamino)-2-(4-(4-(ethylsulfonyl)piperazin-1-yl)phenylamino)pyrimidine-5-carboxamide and fludarabine
WO2012068450A1 (en) 2010-11-19 2012-05-24 Incyte Corporation Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as jak inhibitors
US9034884B2 (en) 2010-11-19 2015-05-19 Incyte Corporation Heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines as JAK inhibitors
JP2013544260A (ja) 2010-12-03 2013-12-12 ワイエム・バイオサイエンシズ・オーストラリア・ピーティーワイ・リミテッド Jak2で投薬治療された状態の治療
AU2012219395B2 (en) 2011-02-18 2017-05-25 Incyte Corporation mTOR/JAK inhibitor combination therapy
CA2839767A1 (en) 2011-06-20 2012-12-27 Incyte Corporation Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as jak inhibitors
WO2013007768A1 (en) 2011-07-13 2013-01-17 F. Hoffmann-La Roche Ag Tricyclic heterocyclic compounds, compositions and methods of use thereof as jak inhibitors
WO2013007765A1 (en) 2011-07-13 2013-01-17 F. Hoffmann-La Roche Ag Fused tricyclic compounds for use as inhibitors of janus kinases
WO2013023119A1 (en) 2011-08-10 2013-02-14 Novartis Pharma Ag JAK P13K/mTOR COMBINATION THERAPY
TW201313721A (zh) 2011-08-18 2013-04-01 Incyte Corp 作為jak抑制劑之環己基氮雜環丁烷衍生物
UA111854C2 (uk) 2011-09-07 2016-06-24 Інсайт Холдінгс Корпорейшн Способи і проміжні сполуки для отримання інгібіторів jak
US9193733B2 (en) 2012-05-18 2015-11-24 Incyte Holdings Corporation Piperidinylcyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors
US10155987B2 (en) 2012-06-12 2018-12-18 Dana-Farber Cancer Institute, Inc. Methods of predicting resistance to JAK inhibitor therapy
US20150246043A1 (en) 2012-07-27 2015-09-03 Ratiopharm Gmbh Oral dosage forms for modified release comprising ruxolitinib
JP2015526520A (ja) 2012-08-31 2015-09-10 プリンシピア バイオファーマ インコーポレイテッド Itk阻害剤としてのベンズイミダゾール誘導体
MX2015005428A (es) 2012-11-01 2015-07-21 Incyte Corp Derivados triciclicos fusionados de tiofeno como inhibidores de la cinasa janus (jak).
BR112015010663B1 (pt) 2012-11-15 2022-12-06 Incyte Holdings Corporation Formas de dosagem oral de liberação sustentada, e uso de ruxolitinib ou de sal farmaceuticamente aceitável do mesmo
CN105189509B (zh) 2013-03-06 2017-12-19 因赛特公司 用于制备jak抑制剂的方法及中间体
TR201905814T4 (tr) 2013-05-17 2019-05-21 Incyte Corp Jak inhibitörü olarak bipirazol tuzu.
RS60469B1 (sr) 2013-08-07 2020-07-31 Incyte Corp Dozni oblici sa produženim oslobađanjem za jak1 inhibitor
TW201529074A (zh) 2013-08-20 2015-08-01 Incyte Corp 在c-反應蛋白含量較高之實體腫瘤患者中的存活益處
DK3110409T3 (en) 2014-02-28 2018-10-22 Incyte Corp JAK1 INHIBITORS FOR THE TREATMENT OF MYELODYSPLASTIC SYNDROMES
MX2020004398A (es) 2014-04-08 2022-06-06 Incyte Corp Tratamiento de neoplasias malignas de linfocitos b mediante una combinacion de inhibidores de janus cinasa (jak) y fosfatidilinositol 3 cinasa (pi3k).
MA39987A (fr) 2014-04-30 2017-03-08 Incyte Corp Procédés de préparation d'un inhibiteur de jak1 et nouvelles formes associées
EP4233870A3 (en) 2014-05-28 2024-01-24 Onco Tracker, Inc. Anti-cancer effects of jak2 inhibitors in combination with thalidomide derivatives and glucocorticoids
WO2015184305A1 (en) 2014-05-30 2015-12-03 Incyte Corporation TREATMENT OF CHRONIC NEUTROPHILIC LEUKEMIA (CNL) AND ATYPICAL CHRONIC MYELOID LEUKEMIA (aCML) BY INHIBITORS OF JAK1

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012068450A1 *

Also Published As

Publication number Publication date
CN103415515B (zh) 2015-08-26
KR20140019300A (ko) 2014-02-14
NZ611151A (en) 2015-06-26
SG190839A1 (en) 2013-07-31
TW201249845A (en) 2012-12-16
IL226407A (en) 2017-04-30
AR083933A1 (es) 2013-04-10
BR112013012502A2 (pt) 2019-03-06
US20150087632A1 (en) 2015-03-26
UA113156C2 (xx) 2016-12-26
US20120149681A1 (en) 2012-06-14
PE20140146A1 (es) 2014-02-06
CA2818542A1 (en) 2012-05-24
CN103415515A (zh) 2013-11-27
US20190135813A1 (en) 2019-05-09
EA201390736A1 (ru) 2013-11-29
CO6761386A2 (es) 2013-09-30
JP5917545B2 (ja) 2016-05-18
AU2011329734B2 (en) 2015-05-28
CR20130280A (es) 2013-08-09
EA026201B1 (ru) 2017-03-31
US10640506B2 (en) 2020-05-05
MX2013005603A (es) 2013-06-13
US8933085B2 (en) 2015-01-13
ECSP13012703A (es) 2013-08-30
MX344478B (es) 2016-12-16
AU2011329734A1 (en) 2013-05-02
CL2013001412A1 (es) 2013-12-20
IL226407A0 (en) 2013-07-31
WO2012068450A1 (en) 2012-05-24
JP2014500260A (ja) 2014-01-09

Similar Documents

Publication Publication Date Title
US10640506B2 (en) Cyclobutyl substituted pyrrolopyridine and pyrrolopyrimidines derivatives as JAK inhibitors
US20230043959A1 (en) Piperidin-4-yl azetidine derivatives as jak1 inhibitors
US9193733B2 (en) Piperidinylcyclobutyl substituted pyrrolopyridine and pyrrolopyrimidine derivatives as JAK inhibitors
EP2721028B1 (en) Azetidinyl phenyl, pyridyl or pyrazinyl carboxamide derivatives as jak inhibitors
EP2640725B1 (en) Heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines as jak inhibitors
WO2011028685A1 (en) Heterocyclic derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors
WO2013026025A1 (en) Cyclohexyl azetidine derivatives as jak inhibitors
AU2017201801B2 (en) Piperidin-4-yl azetidine derivatives as jak1 inhibitors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130607

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1189581

Country of ref document: HK

17Q First examination report despatched

Effective date: 20141007

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INCYTE CORPORATION

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150814

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INCYTE HOLDINGS CORPORATION

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160105

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1189581

Country of ref document: HK