CN1902776A - 具有组成与尺寸相关的电极活性材料粉末及其制备方法 - Google Patents

具有组成与尺寸相关的电极活性材料粉末及其制备方法 Download PDF

Info

Publication number
CN1902776A
CN1902776A CNA2004800392657A CN200480039265A CN1902776A CN 1902776 A CN1902776 A CN 1902776A CN A2004800392657 A CNA2004800392657 A CN A2004800392657A CN 200480039265 A CN200480039265 A CN 200480039265A CN 1902776 A CN1902776 A CN 1902776A
Authority
CN
China
Prior art keywords
active material
electrode active
particle
composition
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800392657A
Other languages
English (en)
Other versions
CN1902776B (zh
Inventor
延斯·马丁·保尔森
朴洪奎
金汶柱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Energy Solution Ltd
Original Assignee
LG Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34738854&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1902776(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by LG Chemical Co Ltd filed Critical LG Chemical Co Ltd
Publication of CN1902776A publication Critical patent/CN1902776A/zh
Application granted granted Critical
Publication of CN1902776B publication Critical patent/CN1902776B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明涉及锂过渡金属氧化物LiaMbO2的具有粒度分布颗粒的粉末状的电极活性材料及其制备方法,其中0.9<a<1.1,0.9<b<1.1,且M主要是选自Mn、Co和Ni的过渡金属,其中,组分M随粒度改变。本发明还涉及电化学电池,尤其是使用粉末状的电极活性材料的可再充电锂电池。

Description

具有组成与尺寸相关的电极活性材料粉末及其制备方法
技术领域
本申请要求于2003.12.31提交的美国临时专利申请No.60/533225的优先权,其内容在此引入作为参考。
本发明涉及锂过渡金属氧化物LiaMbO2的具有粒度分布颗粒的粉末状的电极活性材料及其制备方法,其中0.9<a<1.1,0.9<b<1.1,且M主要是选自Mn、Co和Ni的过渡金属,其中,组分M随粒度改变。本发明还涉及电化学电池,尤其是使用粉末状的电极活性材料的可再充电锂电池。
背景技术
常规的电池使用均一的电极活性材料。小颗粒和大颗粒的(平均)组成是一样的。相同的材料在单个颗粒的内侧部分和外部也具有类似的组成。
对于可逆容量、重量能量,尤其是体积能量来说,能充电至4.4V或更高电压的LiCoO2是优良的材料。不幸地是,观察到充电至≥4.4V的LiCoO2显示出高容量衰减,低安全性,并与电解质反应性(电解质氧化)相关。
市售的可再充电锂电池基本上都使用LiCoO2作为阴极活性材料。如果充电至4.2V,LiCoO2产生137mAh/g的可逆容量;如果充电至4.3V,产生约155mAh/g的可逆容量;如果充电至4.4V,产生约170mAh/g的可逆容量;如果充电至4.5V,产生约185mAh/g可逆容量。与标准的4.2V充电相比,充电电压增加至4.4或4.5V能够有效地提高电池的能量密度。不幸地是,由于差的容量记忆和差的安全性,未保护的LiCoO2不能在>4.3V下循环。
已经建议使用LiCoO2颗粒涂层以保护表面防止在电解质和充电的(去锂化的)LixCoO2之间的不利反应。涂覆的方法例如在Y.J.Kimet all.,J.Electrochem.Soc.149 A1337,J.Cho et all.,J.Electrochem.Soc.149 A127,J.Cho et all.,J.Electrochem.Soc.149 A288,Z.Chen et all.,J.Electrochem.Soc.149 A1604,Z.Chen,J.Dahn Electrochem.andsolid-state letters,6,A221(2003),J.Cho et all.,Electrochem.andsolid-state letters,6,2,607(1999),J.Cho and G.Kim,Electrochem.andsolid-state letters,2,253(1999),J.Cho et all.,J.Electrochem.Soc.149A1110(2001),J.Cho et all.,Electrochem.and solid-state letters,3,362,(2000),J.Cho et all.,Electrochem.and solid-state letters,4,A159,(2001),Z.Whang et all.,J.Electrochem.Soc.149A466(2002),J.Cho,Solid State Ionics,160(2003)241-245中描述。
涂层可以在一定程度上改善某些性质,诸如衰减和安全性。然而,并不清楚这是否由于涂层引起。在Z.Chen,J.Dahn Electrochem.andsolid-state letters,6,A221(2003)以及Z.Chen,J.Dahn,Abs 329,204thECSMeeting,Orlando中,无需施加涂层的类似处理(洗涤+热)能获得循环稳定性的同样提高。然而,提高是暂时性的,并在阳极储藏后消失。
不同的机理会引起诸如LiCoO2的阴极活性材料的衰减。第一,降解电解质的反应产物沉积在形成电阻表面层的LiCoO2表面上。第二,在电解质的存在下LiCoO2发生化学分解,因此在化学上和结构上改变了外部本体。第三,在没有电解质的情况下,LiCoO2本体(bulk)发生降解。该降解可以是晶体结构降解(例如转变为尖晶石)或形态分解(电化学研磨,引起微晶的电接触损失)。第一个和第二个机理可以通过涂覆消除或减少。第三个需要对本体进行改造。
与容量衰减类似,安全性问题也通过不同的机理引起。第一,去锂化的LiCoO2有氧化电解质的趋势,其为强烈的放热反应。如果局部温度足够高,则电解质氧化变得更快,产生更多的热,且电池可能产生热失控。第二,本体中的去锂化的LiCoO2本身是不稳定的,并可能向坍缩(collapse)成为较致密相,释放出中等量的热。反应不涉及电解质。第一个机理可以通过涂覆消除或减少。第二个需要对本体进行改造。
在大部分的情况下,涂层少于阴极活性材料重量的2-5%。总阴极活性材料的化学计量仅略微改变,涂覆的活性材料基本是均一的材料,这是由于小颗粒和大颗粒的组成是类似的,且内侧部分和外部的组成也基本一样。
所述的涂覆方法不能完全解决在>4.3V下的稳定性问题。尤其不能解决的问题是如下的一个或多个:
—表面的非完全涂覆。例如,用凝胶或溶液润湿阴极活性材料粉末接着进行干燥,通常无法获得完全覆盖的表面。
—在涂层和阴极活性材料之间的不充分粘合性。在电极处理中和在循环(LiCoO2的结晶单元电池体积的改变是充电状态的函数)中会产生显著的应变。该应变导致涂层的剥落,使大量的区域得不到保护。如果涂层和阴极活性材料未形成固态溶液的话,该问题尤其显著。
—无耐化学性(chemical incapability)。在涂覆后通常施加加热步骤。在涂层加热中,阴极活性材料可能发生分解。例如,用锂锰尖晶石涂覆LiCoO2是很难或者不可能的,这是由于尖晶石与彼此接触的LiCoO2会发生分解形成氧化钴和Li2MnO3
—传导问题,建议将绝缘体(如Al2O3、ZrO2…)用于涂层。完全被绝缘体覆盖的颗粒是电化学惰性的。如果表面被完全覆盖,则涂层必须非常薄(允许电子的“隧道效应”)。问题是是否可以获得如此薄的层和它们是否能防止电解质表面反应。
—涂层必须薄至能提高安全性。
—明显的两相界面。如果LiCoO2和涂层没有固态溶液,则晶格应力局限于界面处,其使机械稳定性降低。在更多的循环中可能发生颗粒的分裂(braking)。
已经公开了具有层结构的复合(complex)阴极活性材料。如果在>4.3V下循环,一些显示出了比LiCoO2更好的循环稳定性,并且它们显示出了更好的稳定性。典型的例子是在三元体系LiMn1/2Ni1/2O2-LiNiO2-Li[Li1/3Mn2/3]O2-LiCoO2中为固态溶液的层状阴极活性材料。以下,将使用短的符号用于过渡金属组成,“ABC”是指具有过渡金属组成M=MnANiBCoC的锂过渡金属氧化物。
一些例子是:
“110”-LiNi1/2Mn1/2O2或Lix[(Mn1/2Ni1/2)1-x]O2,x≥0,|x|<<1(Dahn et al.in Solid State Ionics 57(1992)311,或T.Ohzuku,Y.Makimura,2001 ECS meeting(fall),Abstr.167)
“442”-LiMO2或Li[LixMn1-x]O2M=(Mn1/2Ni1/2)1-yCoy,x≥0,|x|<<1,y=0.2(Paulsen&Ammundsen,11th Internationl Meeting onLithium Batteries(IMLB 11),Cathodes II,Ilion/Pacific Lithium)
“111”-LiMn1/3Ni1/3Co1/3O2(Makimura&Ohzuku,Proceedings ofthe 41st battery synposium on 2D20 and 2D21,Nagoya,Japan 2000 or N.Yabuuchi,T.Ohzuku,J.Of Power Sources 2003,(in print))
“118”-LiCo0.8Mn0.1Ni0.1O2(S.Jouanneau et all.,J.Electronchem.Soc.150,A1299,2003)
“530”-Li[Li1/9Mn5/9Ni1/3]O2,“530mod”-Li[Li1/9Mn5/9Ni1/3]O1.75(J.Dahn,Z.Lu,美国专利申请2003/0108793A1,Z.Lu et all.,J.Electronchem.Soc.149(6)A778(2002))
尽管有了一些提高,但这些材料并不完全具有竞争性。遗留的问题为如下的一个或多个:
—高成本:例如“118”具有类似于LiCoO2的原料成本,然而,与可以通过便宜路线(固态反应)制备的LiCoO2相比,其制备成本(通常包括诸如混合氢氧化物的混合前体)高很多。
—低体积能量密度:诸如“110”或“442”的低钴材料具有低的Li扩散常数。为了获得足够的速率性能,需要由具有较小微晶和一些孔隙度颗粒组成的粉末。电极获得的孔隙度过高。此外,结晶密度明显低于LiCoO2(5.05g/cm3)。110的密度约为4.6g/cm3,“442”约为4.7g/cm3,同样,“530”也具有4.4g/cm3的低密度。阴极活性材料(如“530”)并不稳定。在首次充电中,在>4.5V下,它们转化为氧和锂不足的阴极活性材料。在放电后,获得了不同的材料“530mod”。“530mod
—副反应:如“530”的富锰和富锂的阴极材料缺氧,且热力学不稳定。即使所得材料的电化学性优良,也会产生包括如下的转化:释放出氧气,可能与电解质反应并形成不良气体。
对于实际的电池重要的不仅是,重量可逆容量(mAh/g)而且还有能量密度(=容量×平均电压),其中尤其重要的是电极的体积能量密度(Wh/L)。为了获得电极的高体积能量密度,关键在于(a)高能量密度,(b)大容量和(c)高电压。
LiCoO2能够获得最高3.5-4g/cm3的粉末密度。其对应于约70-80%的结晶密度或20-30%的孔隙度。复合层状材料或磷酸盐的电极通常具有较高的孔隙度。此外,复合层状材料的结晶密度低5-12%。LiFePO4的结晶密度低30%。对于尖晶石材料也是一样。这进一步降低了能量密度。
发明内容
本发明的目的是提供一种电极活性材料,其以低成本使高体积能量密度和高重量能量密度与高循环稳定性和高安全性相结合。
在一个方面,本发明提供锂过渡金属氧化物LiaMbO2的粉末状的电极活性材料
—其中,0.9<a<1.1,0.9<b<1.1,且M主要是选自Mn、Co和Ni的过渡金属
—具有存在粒度分布的颗粒
—其中,组分M随粒度改变。
在另一个方面,本发明提供锂过渡金属氧化物LiaMbO2的粉末状的电极活性材料
—其中,0.9<a<1.1,0.9<b<1.1,且M选自Mn、Co和Ni的过渡金属
—颗粒具有层状晶体结构
—具有d90/d10>2的宽的粒度分布
—其中,组分M随粒度改变。
在又一个方面,本发明提供了制备具有与尺寸相关粉末状的电极活性材料的方法,该方法包括如下步骤:将至少一种含有过渡金属的沉淀物沉积在晶种颗粒上,所述晶种颗粒具有与沉淀物不同的过渡金属组成;添加控制量的锂源;并进行至少一次热处理,其中基本上所有获得的颗粒含有得自晶种的内核,该内核完全被得自沉淀物的层覆盖。
附图简述
图1是用作实施例1中晶种材料的LiCoO2晶种颗粒的FESEM图。
图2是实施例1中沉淀后获得的被Mn1/2Ni1/2混合氢氧化物覆盖的LiCoO2的FESEM。
图3是实施例1中制备的阴极活性材料的FESEM。
图4是显示实施例1中阴极活性材料第一循环曲线和速率性能的图表。
图5是显示实施例1中阴极活性材料循环稳定性的图表。
图6是显示实施例6中阴极活性材料循环稳定性的图表。
发明方式
为了提供将高循环稳定性和高安全性与高体积能量密度和高重量能量密度结合起来的电极活性材料,本发明采用“非均一方法”。该非均一方法使用如下的方法:为了获得优化的性能,对小颗粒和大颗粒的要求是不同的,另外,对于单个颗粒的内侧、外侧和表面的要求也是不同的。特别地,对于与电解质接触的化学稳定性、锂扩散常数、电子传导性以及形态的要求随粒度变化,且从单个颗粒的外侧部分至内侧部分它们还发生变化。
与涂覆相比,“非均一方法”涉及全部或外侧的至少大部分。其允许基本不同并且更彻底的优化。因此,本发明公开了非均一的材料,其中组成发生明显改变。
即,非均一方法涉及粉末颗粒的组成,其中,组成随粒度改变。非均一方法还涉及粉末的单个颗粒,其中,单个颗粒在内侧部分和外侧部分以及表面具有不同的组成。非均一方法可以不仅涉及组成,还涉及诸如形态的参数。
根据本发明的实施方式,提供了锂过渡金属氧化物LiaMbO2的具有粒度分布颗粒的粉末状的电极活性材料,其中0.9<a<1.1,0.9<b<1.1,且M主要是选自Mn、Co和Ni的过渡金属,其中,组成M随粒度改变。
大密度颗粒具有长的锂扩散路径。如果存在插入(intercalation)诱发应力,则大颗粒会极大地导致差的循环稳定性。如果固相中锂的传输减慢,则大颗粒会极大地导致差的速率性能。小颗粒具有较大的比表面积。如果存在电解质反应,则小颗粒会极大地导致低的安全性和差的循环稳定性。
因此,本发明的粉末状的电极活性材料包括锂过渡金属氧化物的颗粒,其中,过渡金属组成随粒度改变,例如,具有更适于快速体扩散的组成的大颗粒和具有能确保高安全性的组成的小颗粒。
根据本发明的粉末状的电极活性材料优选具有宽的粒度分布,其规定为大颗粒与小颗粒的粒度比大于2,d90/d10>2,其中,d90,大颗粒的粒度,定义为具有大粒度的颗粒组成占粉末总质量10%的部分,d10,小颗粒的粒度,定义为具有小粒度的颗粒组成占粉末总质量10%的部分。粉末的粒度分布可以通过现有技术中已知的适当方法测定。适当的方法例如激光衍射或通过使用具有不同目数的套筛(columm ofsieves)进行筛分。
优选地,粉末电极活性材料的单个颗粒基本上是锂过渡金属氧化物,且单个颗粒具有Co,其在过渡金属中的含量随粒度连续提高。更优选地,单个颗粒在过渡金属中还含有Mn,且Mn含量随粒度连续降低。最优选地,Mn含量大致与颗粒半径成反比。
在特定的实施方式中,大颗粒具有能获得高Li扩散常数的接近于LiCoO2组成的大颗粒(例如“118”),因此能获得足够的速率性能。大颗粒仅占阴极的总表面积的小部分。因此,由在表面或在外侧部分与电解质反应放出的热量得到限制;结果,大的颗粒较少导致差的安全性。小颗粒具有含有较少Co的组成以获得提高的安全性。较低的锂扩散常数在小颗粒中可以被接受而没有明显的速率性能的损失,这是由于固态扩散路径的长度短。
在本发明的阴极活性材料粉末中,小颗粒的优选组成含有较少量的Co和较大量的稳定元素,如Mn。较缓慢的Li体扩散可以被接受,但表面的稳定性高。在本发明的阴极活性材料粉末中,大颗粒的优选组成含有较大量的Co和较少量的Mn,这是由于需要快速的锂体扩散,而表面稍低的稳定性可以被接受。
优选地,在锂过渡金属氧化物LiaMbO2的粉末状的电极活性材料中,M=AZA’Z’M’1-Z-Z’,M’=MnxNiyCo1-x-y(其中,0≤y≤1,0≤x≤1,0≤Z+Z’<0.1,Z’<0.02),A是选自Al、Mg、Ti、Cr的金属,且A’进一步是选自F、Cl、S、Zr、Ba、Y、Ca、B、Be、Sn、Sb、Na、Zn的次要(minor)的掺杂剂。
优选地,粉末状的电极活性材料具有层状晶体结构。
在锂过渡金属氧化物LiaMbO2(0.9<a<1.1,0.9<b<1.1)的粉末状的电极活性材料的优选实施例中,M是选自Mn、Co和Ni的过渡金属,颗粒具有d90/d10>2的宽粒度分布的层状晶体结构,且组成M随粒度改变。优选地,组分M随粒度连续改变。
优选地,在具有组成与尺寸相关的LiaMbO2的粉末状的电极活性材料中,过渡金属平均组成是M=MnxNiy(Co1-x-y),其中0.35>x>0.03。
优选地,在具有组成与尺寸相关的LiaMbO2的粉末状的电极活性材料中,过渡金属平均组成是M=MnxNiy(Co1-x-y),其中x>0.03且x+y<0.7。
优选地,在具有组成与尺寸相关的LiaMbO2的粉末状的电极活性材料中,基本上所有颗粒的所有部分具有层状晶体结构,较大颗粒具有组成LiaMbO2,其中M=MnxNiy(Co1-x-y),x+y<0.35,小颗粒具有组成LiaMbO2,其中M=Mnx’Niy’(Co1-x’-y’),其具有至少低10%的Co,(1-x’-y’)<0.9*(1-x-y),以及至少高5%的Mn,x’x>0.05。
使用具有非常均一粒度的活性材料的电极具有一种优选的,最佳的,均一的组成。然而,由于所需的较高粉末密度需要通过更复杂的粒度分布获得,因此其是不适宜的,且通常是不优选的。在该情况下,只有使用“非均一”原则才能获得充分优化,从而获得具有组成与尺寸相关的粉末。
根据本发明的非均一阴极活性材料的非常简单的例子是两种具有不同粒度分布的不同阴极活性材料的混合物。一种阴极成分具有大的颗粒(例如分布集中在≥20μm);其成分能够快速体扩散(例如LiCoO2或“118”)。另一种阴极成分具有小的颗粒(例如分布于5μm周围)且其成分能确保可接受的安全性(例如“111”或“442”)。
根据本发明的非均一阴极活性材料的另一个例子是更复杂的粒度一组成分布,其中大颗粒具有如LiCoO2或“118”的组成,小颗粒具有如“442”的组成,中等粒度颗粒具有如“111”的中间组成等。这样的阴极活性材料可以容易地通过以下进一步公开的方法获得。
由具有明显开放的孔隙度的颗粒组成的阴极活性材料具有一种优选的最佳均一组成。然而,由于所需的高粉末密度通过更致密的整体(monolithic)颗粒获得,因此其是不可行的,并通常是不优选的。在该情况下,使用“非均一”方法能获得完全的优化。该方法考虑到了内侧部分、外侧部分和表面的不同需要。
因此,本发明的另一个实施方式提供了粉末状的电极活性材料,其中,定义为具有大于d50粒度的较大颗粒在内侧部分和外侧部分包括不同的组成,这些较大颗粒包括超过粉末总质量50%的质量部分。
优选地,较大颗粒的内侧部分具有组成,LiaMbO2,其中M=MnxNiy(Co1-x-y),且x<0.2。
优选地,较大颗粒的内侧部分具有组成,LiaMbO2,其中M=MnxNiy(Co1-x-y),且x+y<0.2。
公开了关于阴极活性材料的混合物(例如US6007947和US6379842(Polystor)“混合的锂锰氧化物和锂镍钴氧化物正极”)。还公开了LiCoO2和尖晶石混合物的粉末。这些粉末明显是不均一的-不同阴极成分的颗粒具有不同的组成。然而,这些内容并不涉及本发明的“非均一方法”。所述的现有技术在对于大颗粒和小颗粒的性能需求没有区别,且在对于内侧部分、外侧部分和表面的需求之间没有区别。尤其是每一种阴极成分本身是“均一的”,大颗粒和小颗粒的组成是均一的,且内侧部分、外侧部分和表面的组成是均一的。
在本发明的优选实施例中,较大颗粒的内侧部分具有比外侧部分高化学计量的钴和低化学计量的锰。
在组成为LixMO2的单个颗粒的内部中,优选至少80w%的M是钴或镍。在本发明的另一优选实施方式,颗粒的内侧部分具有接近于LiCoO2的组成。外侧部分是锂锰镍钴氧化物。
根据本发明的非均一阴极活性材料的例子是具有不同粒度的不同阴极活性材料的混合物,其中,大颗粒在外侧部分具有组成“118”,在内侧部分具有高的钴含量;小颗粒在内侧部分具有组成“111”,在外侧部分具有组成“442”;中问颗粒具有中间平均组成,且在内侧部分中富钴。这样的阴极材料可以通过以下进一步公开的方法获得。
根据本发明的非均一阴极活性材料的另一个例子是如下的阴极活性材料,其中颗粒组成随粒度变化,此外,单个颗粒在内部和外侧部分具有不同的形态。颗粒具有整体内侧部分,但接近表面的外侧部分的形态具有能获得增大的表面积的形态。一个例子是具有结构的,即粗糙或部分多孔表面的大体积颗粒(bulky particle)。这样的阴极活性材料通过以下进一步公开的方法获得。
“非均一”原则上可以进一步用于大量的能实现的用途,但并不是所有的均可以容易地以低成本获得。两个例子:(1)电极的孔隙度优选从表面向集电器降低,其使得在同样的平均孔隙度下具有更快的速率。(2)在电池中心要求的安全性比在外部(其中产生的热更快地散发)更严格。“非均一”方法改进的电池具有胶体卷(jelly voll),其中阴极粉末的(平均)组成和形态从外部向内部发生改变。
根据本发明的又一个实施方式,提供了制备具有组成与尺寸相关的粉末状的电极活性材料的方法,该方法包括如下步骤:将至少一种含有过渡金属的沉淀物沉积在晶种颗粒上,所述晶种颗粒具有与沉淀物不同的过渡金属组成;添加控制量的锂源;并进行至少一种热处理,其中基本上所有获得的颗粒含有得自晶种的内核,该内核完全被得自沉淀物的层覆盖。
本发明的方法可以以低成本制备具有组成与尺寸相关的粉末状的电极活性材料。该方法包括使用晶种颗粒的沉淀反应。该晶种颗粒优选具有非狭窄的粒度分布。在沉淀反应后,沉淀物覆盖在晶种颗粒上。沉淀反应的特征在于晶种颗粒具有与沉淀物显著不同的过渡金属组成。沉淀反应的特征还在于沉淀物形成覆盖在晶种颗粒上的均一厚度的层。沉淀物还可以进一步含有金属阳离子,如Al、Mg、Ti、Zr、Sn、Ca和Zn等。因此,得自沉淀物的外层可以进一步含有至少一种选自Al、Mg、Ti、Zr、Sn、Ca和Zn的金属元素。
通常,将溶解的混合过渡金属盐的流和含有适合的对阴离子(如NaOH和Na2CO3)的流给入搅拌反应器中,该混合器含有分散的晶种颗粒的浆体。在优选的实施方式中,将LiCoO2和基于LiCoO2的材料(例如LiMO2,其中M是过渡金属M=MnxNiyCo1-x-y,其中x<0.25和y<0.9)用作晶种颗粒。优选地,颗粒是整体的。结构化的(structured)二次颗粒(较小一次颗粒的团聚物)是不太期望的。在成功的沉淀后,具有足够附着性的沉淀物的均一层覆盖了所有的晶种颗粒。优选地,沉淀物含有锰。更优选地,至少40w%沉淀物的过渡金属是锰。沉淀层的量是显著的,使得颗粒的(过渡)金属平均组成明显与晶种颗粒的不同。沉淀层的厚度通常是均一的,这样小颗粒的平均组成与大颗粒的组成不同,从而获得所需的粒度—组成分布。此外,优选沉淀物具有低孔隙度,并完全覆盖晶种。基本上不存在没有晶种颗粒核的颗粒。为了实现该目标,关键是在沉淀期间保持低程度的过饱和。尤其重要的是反应条件的选择,如流速、pH、温度、体积、搅拌、添加剂(如氨)、氧气含量、增稠剂、反应器形状等。
可以使用其它的材料代替LiCoO2作为晶种材料。优选地,如果将晶种材料用作阴极活性材料,则晶种自身具有高的能量密度。可能的例子是改性的LiNiO2(如Al和/或Co掺杂的LiNiO2)。此外,晶种可以是前体(例如过渡金属氧化物),其在热处理过程中转化为具有高能量密度的阴极活性材料。
优选地,沉淀物含有锰,且晶种主要是选自LiCoO2或LiMO2的整体颗粒,其中,M主要是过渡金属(M=AzM’1-z,0≤z<0.05,A是现有技术已知的另外的掺杂剂,如Al、Mg等)。过渡金属M’含有至少75%Co或Ni,M’=MnxNiyCo1-y-x,0<x<0.25。
优选地,所有获得的颗粒含有得自晶种的内核,且完全被沉淀物层覆盖。
在沉淀后洗涤浆料并干燥。或者,可以通过离子交换除去不需要的离子以保持盐溶液中的平衡,接着进行洗涤和干燥。在加入控制量的锂源(如Li2CO3)并混合后,接着进行至少一次热处理。在热处理过程中发生化学反应。沉淀层与锂反应,并优选形成具有层状晶体结构相的锂过渡金属相。在热处理过程中,在层和晶种之间发生扩散反应,其使过渡金属组成梯度得到减缓。由于过度的烧结会导致低的表面积,且在一些情况下会失去“非均一”特征,因此烧结的条件是重要的。未充分烧结的试样可能导致过高的孔隙度和过大的表面积,且在外相(得自沉淀物)和内相(得自晶种)之间的梯度可能过陡。在本发明优选的实施方式中,烧结后,阴极粉末由具有层状晶体结构(通常空间群:r-3m)的锂过渡金属氧化物构成。
优选地,在空气中进行热处理,温度为750-1050℃,更优选温度为850-950℃。
选择合适的晶种、沉淀和烧结条件以优化最终阴极粉末。颗粒的(平均)组成随粒度改变。优选地,组成在内侧部分、外侧部分和表面也发生改变。可以获得优选的形态。尤其是表面和接近于表面的外侧部分可以进行改性而无需改变内侧部分的致密整体结构。一个优选的实施例是具有低表面积的平滑表面。另一个优选的实施例是具有大表面积的略微结构化的表面。如果考虑到安全性,则前者是所期望的,如果考虑到阻抗层,则后者则是优选的。可以获得更多的形态。在确定的条件下,可以获得直接透入颗粒体的深沟槽或整体针形(pin-wholes)。如果需要足够的速率性能,则其是期望的。在烧结中,可以期望在外相和内相之间有利的外延相关的效果。
本发明的方法能够以低成本获得非均一阴极材料,以下,将非均一阴极的成本与低钴复合物LiCoO2阴极和高钴复合物LiCoO2阴极进行比较。LiCoO2具有中高的价格,这是由于钴前体昂贵,但处理较为便宜。低Co复合材料,如“111”、“442”、“530”等通常具有中等-中高价格,这是由于前体较廉价,但通常处理(Co沉淀)较昂贵。高Co复合物阴极,如“118”较昂贵。前体(钴)较昂贵,且处理(通常是沉淀)也昂贵。与“118”相比,本发明的“非均一”阴极材料具有类似或更好的性能,但可以以低成本制备。
在以下非限制性的实施例中对本发明进行进一步的描述。
[实施例]
实施例1)具有粒度与组成相关的颗粒的粉末的制备
晶种颗粒:将没有小粒度分布的市售LiCoO2用作晶种材料,该LiCoO2由整体颗粒(非作为一次颗粒团聚物的二次颗粒)构成。LiCoO2由约50体积%的粒度为10-25my,d50为约17my的大颗粒和约50体积%的粒度3-10my,d50为约5my的较小颗粒构成。图1示出了所使用粉末的FESEM图像。
沉淀:向5L的反应器中加入3kg LiCoO2和1.4LH2O。在剧烈搅拌下,向反应器中加入4M NaOH溶液的流和2M MSO4(M=Mn1/2Ni1/2“110”)的流。温度保持在95℃,控制流速,使得pH保持稳定。在70分钟后,中断沉淀,从溶液中移除Na2SO4清液,再继续沉淀70分钟。每1mol LiCoO2沉淀总量为0.25mol的mol(OH)2。倾析得到的浆液,在0.3M的LiOH溶液中平衡过夜,接着洗涤和过滤。在180℃下,在空气中干燥滤饼。图2示出了所得粉末的FESEM图像。
反应:每50g上述获得的粉末,加入3.5gLi2CO3并搅拌。在980℃进行固态反应24小时。然后,研磨粉末并筛分,得到具有高压缩密度(press density)的粉末。图3示出了所得粉末的FESEM图像。
粉末性质:通过压制球测定粉末密度,在2000kg/cm2下获得3.4-3.5g/cm3的压缩密度。粒度分布是双峰的,中心在约20μm和5μm。大颗粒具有组成LiCo1-x1Mx1O2,小颗粒具有组成LiCo1-x2Mx2O2,其中,M=Mn1/2Ni1/2且x1≌0.05,x2≌0.2。通过适当分离大颗粒与小颗粒(例如通过在液体中分散),接着通过ICP化学分析对组成进行检测。
电化学性质:使用上述双峰阴极活性材料颗粒制备具有Li阳极纽扣电池。可逆容量(C/10速率,4.4V)>165mAh/g。速率性能(放电至3.0V)令人满意,在2C下的容量比率:C/5速率>93%。图4示出了首次循环电压曲线和速率性能放电曲线。在4.4V下获得了良好的循环稳定性。图5将在C/10速率和1C速率(循环2和5)的首次放电曲线与在更多循环(循环51和52)后在相同速率下的放电曲线进行比较。至少保留了98%的容量。观察到形成非常少量的阻抗。在类似的条件下,具有未改性LiCoO2的对比电池显示出容量的明显损失。充电电极的DSC显示出与未改性(bare)LiCoO2相比明显的改变。
结构分析:实施例1阴极活性材料粉末的EDS绘图,大颗粒与小颗粒光谱的EDS定量分析,具有细致的Rietveld分析的X-射线衍射示出LiCoO2相残留在较大颗粒的内部,外部为LiCo1-2xMnxNixO2,x≌0.13…0.16,较小颗粒为x>0.16的单相。
成本分析:实施例1制备了3.7kg具有(大约)平均组成LiCo0.8Mn0.1Ni0.1O2的阴极活性材料。制备包括使用5L反应器的2步沉淀反应。处理中的粉末密度高(体积小于1.5L的粉末(添加Li2O3前)和小于2L的粉末(添加Li2O3后))。废料为约10L的Na2SO4
对比实施例1
进行对比实施例1以说明具有根据实施例1的组成与尺寸相关的颗粒的阴极活性材料以低成本制备。
制备复合阴极材料的典型沉淀反应包括大的液体反应器体积、大量的废料和干燥烘箱、炉的装料等较低。
为了进行对比,使用同样的装置制备具有同样组成LiCo0.8Mn0.1Ni0.1O2(“118”)的均一阴极材料。
除了下述以外,制备与实施例1中所述类似:
(a)过渡金属流是过渡金属硫酸盐(2M),其没有“110”,但具有“118”组成。
(b)没有使用晶种颗粒
(c)在沉淀后,每1mol混合过渡金属氢氧化物,添加0.53molLi2O3
获得0.8kg最终材料。在处理中的粉末密度低。涉及的粉末总体积(在热处理前)大于实施例1的体积。产生同样总量的废料。简言之,处理成本与实施例1中的一样,但仅获得20%的总质量。
实施例2
将含有大量较大(10-25μm)和较小颗粒(尺寸3-10μm)的LiCoO2粉末用作晶种。较小颗粒为质量的约50%,且它们主要提供了阴极活性材料的表面积。除了下述以外,阴极活性材料的制备与实施例1中所述类似:
(a)只使用2kg晶种
(b)每1mol LiCoO2,沉淀0.4mol过渡金属氢氧化物
(c)过渡金属硫酸盐流,其不含有“110”,但含有“331”
(d)调整Li2O3的量(每1mol沉淀物为0.53mol的Li)
结果,获得阴极活性材料粉末,其中,较大颗粒具有外部相和内部相。内部相具有接近于LiCoO2的组成。外部相基本上是LiCo1-2xMnxNixO2,x≌0.13…0.16,较小颗粒为x>0.16的单相。中等粒度的颗粒是0.15<x<0.3的单相
实施例3
除了烧结温度低至约900℃,远低于980℃以外,按照与实施例1相同的方法制备阴极活性材料粉末。得到在多个方面类似于实施例1的阴极活性材料。然而,实施例3的材料在两个重要方面不同。首先,表面粗糙,获得了提高的表面积。第二,由于不太剧烈的烧结,因此表面含有较少量的钴。电化学测试显示出高的稳定性(形成较小阻抗)和提高的速率性能。
实施例4
除了烧结温度提高至约1020℃,远高于980℃以外,按照与实施例1相同的方法制备阴极活性材料粉末。得到具有低表面积的阴极活性材料。得到具有组成与尺寸相关的阴极颗粒。小和中等粒度的颗粒是一相,其在外部和内侧部分具有相同的组成。大颗粒有两相,内核是LiCoO2,外壳是LiMO2,其中M大约是M=Co1-2xMnxNix,x≈0.2。
实施例5
除了对共沉淀反应进行改性,从而还获得薄“涂覆”层以外,按照与实施例1相同的方法制备阴极活性材料粉末。通常,在沉淀结束时,仅在有限的时间内,向反应器内加入惰性元素的可溶的盐或颜料。典型的元素是Al、Mg、Ti、Zr、Sn等。
实施例6
类似于实施例1中所述,用Mn-Ni-氢氧化物对2kg具有土豆形态的市售LiCoO2(d10≌3μm,d90≌12μm)进行涂覆。沉淀物是MOOH,M=Mn1/2Ni1/2,每1mol LiCoO2沉淀0.25molMOOH。
由涂覆有LiCoO2的50g沉淀物制备试样。加入3.26g Li2CO3并混合,在800℃下,在空气中对该混合物进行热处理。
然后,向试样中加入1.275g Li3AlF6和Li2CO3的混合物(以重量比计为2∶1)。将混合物加热至920℃保持2小时。
组装纽扣电池(Li金属阳极)并进行电化学测试。在大部分循环中,充电和放电速率为C/5(1C=150mA/g)。充电电压为4.5V。图6显示出在50℃下在循环中获得的结果。循环稳定性良好。在50次循环后的慢速率下,只损失了约1%的可逆容量。在较高速下形成的阻抗可忽略不计。
充电效率(循环9-20的平均数)超过99.7%,证明了甚至在这些严格的(4.5V的高电压和50℃的升高的温度)测试条件下,得到了非常低的电解质氧化速率。
均一的阴极材料(涂覆的LiCoO2)在类似的测试中示出了明显的恶化。
实施例7
将5kg具有土豆形态的市售LiCoO2(d10≌3-4μm,d90≌20-22μm)浸没在1.6l水中。在剧烈的搅拌下,向反应器(5L)中连续加入NaOH(4M)流和MSO4(2M)流,M=Mn1/2Ni1/2。调整流速以保持优选的pH范围。温度≌90℃。沉淀反应持续2小时45分钟。每1molLiCoO2沉淀0.07molMOOH。倾析出溶液并代之以0.5M LiOH,将固体在LiOH溶液中平衡过夜。在洗涤和过滤后,在180℃下干燥试样。
将100g前体与1.6g Li2CO3和0.51g Li3AlF6和Li2CO3的2∶1的混合物混合,接着在900℃下进行热处理。
组装纽扣电池(Li金属阳极)并进行电化学测试。在大部分循环中,充电和放电速率为C/5(1C=150mA/g)。充电电压为4.5V。在60℃下进行测试。获得的可逆容量为190mAh/g。循环稳定性良好。可逆容量以每100次循环约6%的速率损失。得到>99.6%的高充电效率(在循环10-20中的平均数),证明甚至在这些严格的(4.5V的高电压和60℃的升高的温度)测试条件下,得到了非常低的电解质氧化速率。
均一的阴极材料(涂覆的LiCoO2)在类似的测试中显示出明显的恶化。

Claims (22)

1.一种锂过渡金属氧化物LiaMbO2的粉末状的电极活性材料,
—其中,0.9<a<1.1,0.9<b<1.1,且M主要是选自Mn、Co和Ni的过渡金属
—具有存在粒度分布的颗粒
—其中,组分M随粒度而改变。
2.根据权利要求1的粉末材料,其具有宽的粒度分布,其规定为大颗粒与小颗粒的粒度比大于2,d90/d10>2,其中,d90,大颗粒的粒度,定义为具有大粒度的颗粒组成占粉末总质量10%的部分;d10,小颗粒的粒度,定义为具有小粒度的颗粒组成占粉末总质量10%的部分。
3.根据权利要求1的粉末材料,其中M=AZA’Z’M’1-Z-Z’,M’=MnxNiyCo1-x-y 0≤y≤1,0≤x≤1,0≤Z+Z’<0.1,Z’<0.02,A是选自Al、Mg、Ti、Cr的金属,且A’是另外选自F、Cl、S、Zr、Ba、Y、Ca、B、Be、Sn、Sb、Na、Zn的次要掺杂剂。
4.根据权利要求1的粉末电极活性材料,其中颗粒具有层状晶体结构。
5.一种锂过渡金属氧化物LiaMbO2的粉末状的电极活性材料,
—其中,0.9<a<1.1,0.9<b<1.1,且M是选自Mn、Co和Ni的过渡金属
—颗粒具有层状晶体结构
—具有d90/d10>2的宽的粒度分布
—其中,组分M随粒度而改变。
6.根据权利要求5的组成与粒度相关的LiaMbO2的粉末状的电极活性材料,其中过渡金属平均组成是M=MnxNiy(Co1-x-y),其中0.35>x>0.03。
7.根据权利要求5的组成与粒度相关的LiaMbO2的粉末状的电极活性材料,其中过渡金属平均组成是M=MnxNiy(Co1-x-y),其中x>0.03且x+y<0.7。
8.根据权利要求1-4或5-7中任一项的组成与粒度相关的LiaMbO2的粉末状的电极活性材料,其中基本上所有颗粒的所有部分具有层状晶体结构,较大颗粒具有组成LiaMbO2,其中M=MnxNiy(Co1-x-y),x+y<0.35,较小颗粒具有不同组成的LiaMbO2,其中M=Mnx’Niy’(Co1-x’-y’),其具有至少低10%的Co,(1-x’-y’)<0.9*(1-x-y),以及至少高5%Mn,x’-x>0.05。
9.根据权利要求8的粉末状的电极活性材料,其中具有大于d50的粒度的较大颗粒在内侧部分和外侧部分具有不同的组成,这些较大颗粒包括超过粉末总质量50%的质量部分。
10.根据权利要求9的粉末状的电极活性材料,其中较大颗粒的内侧部分具有组成LiaMbO2,其中M=MnxNiy(Co1-x-y),且x<0.2。
11.根据权利要求9的粉末状的电极活性材料,其中较大颗粒的内侧部分具有组成LiaMbO2,其中M=MnxNiy(Co1-x-y),且x+y<0.2。
12.根据权利要求9的粉末状的电极活性材料,其中大颗粒的内侧部分具有比外侧部分高化学计量的钴和低化学计量的锰。
13.根据权利要求5的粉末状的电极活性材料,其中组成M随粒度连续变化。
14.根据权利要求1或5的粉末状的电极活性材料,其中单个颗粒的Co化学计量随粒度连续增加。
15.根据权利要求1或5的粉末状的电极活性材料,其中单个颗粒的Mn化学计量随粒度连续减少。
16.根据权利要求15的粉末状的电极活性材料,其中锰化学计量与颗粒半径成反比。
17.根据权利要求1或5的粉末材料,其用作可再充电锂电池的阴极活性材料。
18.一种制备根据权利要求1或5的粉末状的电极活性材料的方法,该方法包括如下步骤:
将至少一种含有过渡金属的沉淀物沉积在晶种颗粒上,所述晶种颗粒具有与沉淀物不同的过渡金属组成;
添加控制量的锂源;以及
进行至少一种热处理。
其中基本上所有获得的颗粒含有得自晶种的内核,该内核完全被得自沉淀物的层覆盖。
19.根据权利要求18的方法,其中沉淀物含有锰,且晶种主要是选自LiCoO2和LiMO2的整体颗粒,其中,M是过渡金属M=MnxNiyCo1-x-y,其中,x<0.25且y<0.9。
20.根据权利要求19的方法,其中至少40w%的沉淀物的过渡金属是锰。
21.根据权利要求19的方法,其中得自沉淀物的外层还含有至少一种选自Al、Mg、Ti、Zr、Sn、Ca和Zn的金属元素。
22.根据权利要求18的方法,其中热处理在空气中进行,温度为750-1050℃。
CN2004800392657A 2003-12-31 2004-12-30 具有组成与尺寸相关的电极活性材料粉末及其制备方法 Active CN1902776B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US53322503P 2003-12-31 2003-12-31
US60/533,225 2003-12-31
PCT/KR2004/003530 WO2005064715A1 (en) 2003-12-31 2004-12-30 Electrode active material powder with size dependent composition and method to prepare the same

Publications (2)

Publication Number Publication Date
CN1902776A true CN1902776A (zh) 2007-01-24
CN1902776B CN1902776B (zh) 2011-01-26

Family

ID=34738854

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800392657A Active CN1902776B (zh) 2003-12-31 2004-12-30 具有组成与尺寸相关的电极活性材料粉末及其制备方法

Country Status (9)

Country Link
US (2) US7771877B2 (zh)
EP (2) EP3432392B1 (zh)
JP (2) JP4890264B2 (zh)
KR (1) KR100772829B1 (zh)
CN (1) CN1902776B (zh)
CA (1) CA2552375C (zh)
PL (1) PL1716609T3 (zh)
TW (1) TWI254479B (zh)
WO (1) WO2005064715A1 (zh)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102362378A (zh) * 2009-02-20 2012-02-22 尤米科尔公司 在锂可充电电池中兼有高安全性和高功率的非均质正极材料
CN102386388A (zh) * 2010-08-17 2012-03-21 尤米科尔公司 在Li的可再充电电池中结合了高安全性和高功率之正极材料
CN102738457A (zh) * 2011-04-07 2012-10-17 锂科科技股份有限公司 锂离子电池正极金属氧化物材料及锂离子电池
CN102891309A (zh) * 2012-09-22 2013-01-23 湘潭大学 一种浓度渐变的球形富锂正极材料及其制备方法
CN103025662A (zh) * 2010-07-26 2013-04-03 苏德化学专利两合有限公司 减少锂金属氧化合物中磁性的和/或氧化的污染物的方法
CN101896431B (zh) * 2007-08-10 2013-06-26 尤米科尔公司 掺杂的含硫的锂过渡金属氧化物
CN103460457A (zh) * 2011-04-18 2013-12-18 株式会社Lg化学 正极活性材料和包含所述正极活性材料的锂二次电池
CN103765658A (zh) * 2011-05-30 2014-04-30 尤米科尔公司 具有依赖尺寸的组成的正极材料
WO2015039490A1 (zh) * 2013-09-22 2015-03-26 中兴通讯股份有限公司 富锂正极材料及其制备方法
CN105009333A (zh) * 2012-12-26 2015-10-28 汉阳大学校产学协力团 用于锂二次电池的正极活性材料
CN105229830A (zh) * 2013-02-28 2016-01-06 汉阳大学校产学协力团 锂二次电池用正极活性物质
CN106006744A (zh) * 2011-06-01 2016-10-12 住友金属矿山株式会社 正极活性物质及非水系电解质二次电池
CN106450271A (zh) * 2015-08-04 2017-02-22 三星电子株式会社 正极、包括所述正极的二次电池、和制备所述正极的方法
CN108028371A (zh) * 2015-07-22 2018-05-11 尤米科尔公司 用于可充电的固态锂离子蓄电池的阴极材料
CN110419131A (zh) * 2010-06-29 2019-11-05 尤米科尔公司 用于二次电池的高密度和高电压稳定的阴极材料
CN111615768A (zh) * 2018-01-15 2020-09-01 尤米科尔公司 用于蓄电池负电极中的复合粉末以及包括此类复合粉末的蓄电池
CN111682197A (zh) * 2020-06-02 2020-09-18 格林美股份有限公司 一种单晶型阴阳离子共掺杂镍镁二元无钴前驱体、正极材料及制备方法
CN111785958A (zh) * 2010-06-29 2020-10-16 尤米科尔公司 用于二次电池的高密度和高电压稳定的阴极材料
CN112158891A (zh) * 2016-09-20 2021-01-01 苹果公司 具有改善的颗粒形态的阴极活性材料
CN112840486A (zh) * 2018-10-26 2021-05-25 株式会社Lg化学 二次电池用正极活性材料、其制备方法以及包含其的锂二次电池
CN114436345A (zh) * 2022-02-14 2022-05-06 中南大学 一种锂离子电池三元正极材料及其制备方法
WO2022111186A1 (zh) * 2020-11-24 2022-06-02 上海华谊新材料有限公司 磷酸锰铁锂复合物,其制造方法及锂离子电池正极

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7364793B2 (en) * 2004-09-24 2008-04-29 Lg Chem, Ltd. Powdered lithium transition metal oxide having doped interface layer and outer layer and method for preparation of the same
US8445129B2 (en) * 2005-05-27 2013-05-21 Sony Corporation Cathode active material, method of manufacturing it, cathode, and battery
JP5206914B2 (ja) * 2005-05-27 2013-06-12 ソニー株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP5220273B2 (ja) * 2005-11-15 2013-06-26 日立マクセル株式会社 電極及びそれを用いた非水二次電池
CN101405899B (zh) * 2006-03-20 2012-04-04 株式会社Lg化学 具有高效能的锂电池阴极材料
KR100875605B1 (ko) 2006-03-20 2008-12-24 주식회사 엘지화학 화학양론적 리튬 코발트 산화물 및 그 제조방법
KR100822012B1 (ko) * 2006-03-30 2008-04-14 한양대학교 산학협력단 리튬 전지용 양극 활물질, 그 제조 방법 및 그를 포함하는리튬 이차 전지
JP5112318B2 (ja) * 2006-12-28 2013-01-09 Agcセイミケミカル株式会社 リチウム含有複合酸化物及びその製造方法
US9608266B2 (en) 2007-01-29 2017-03-28 Umicore Cathode material for lithium-ion rechargeable batteries
US9177689B2 (en) * 2007-01-29 2015-11-03 Umicore High density and high voltage stable cathode materials for secondary batteries
US9614220B2 (en) 2007-01-29 2017-04-04 Umicore Doped and island-covered lithium cobaltite oxides
CA2676390C (en) * 2007-01-29 2013-07-16 Umicore Island-covered lithium cobaltite oxides
ATE540902T1 (de) * 2007-01-29 2012-01-15 Umicore Nv Von inseln bedeckte lithium-kobalt-oxide
JP4258676B2 (ja) * 2007-03-05 2009-04-30 戸田工業株式会社 非水電解質二次電池用Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP5415413B2 (ja) 2007-06-22 2014-02-12 ボストン−パワー,インコーポレイテッド Liイオン電池用cid保持器
EP2209740B1 (en) * 2007-09-28 2015-05-20 3M Innovative Properties Company Sintered cathode compositions
JP4715830B2 (ja) * 2007-10-19 2011-07-06 ソニー株式会社 正極活物質、正極および非水電解質二次電池
CA2735245A1 (en) * 2008-08-04 2010-02-11 Umicore Highly crystalline lithium transition metal oxides
EP2382174A4 (en) 2009-01-29 2013-10-30 Trustees Of The University Of Princeton CONVERSION OF CARBON DIOXIDE IN ORGANIC PRODUCTS
JP5526636B2 (ja) * 2009-07-24 2014-06-18 ソニー株式会社 非水電解質二次電池の正極活物質、非水電解質二次電池の正極および非水電解質二次電池
US20110104563A1 (en) * 2009-11-04 2011-05-05 General Electric Company Electrochemical cell
US20120328942A1 (en) * 2010-03-05 2012-12-27 A123 Systems, Inc. Design and fabrication of electrodes with gradients
US8500987B2 (en) 2010-03-19 2013-08-06 Liquid Light, Inc. Purification of carbon dioxide from a mixture of gases
US8721866B2 (en) 2010-03-19 2014-05-13 Liquid Light, Inc. Electrochemical production of synthesis gas from carbon dioxide
US8845877B2 (en) 2010-03-19 2014-09-30 Liquid Light, Inc. Heterocycle catalyzed electrochemical process
US8871113B2 (en) * 2010-03-31 2014-10-28 Samsung Sdi Co., Ltd. Positive active material, and positive electrode and lithium battery including positive active material
JP5646088B1 (ja) * 2010-06-29 2014-12-24 ユミコア ソシエテ アノニムUmicore S.A. 二次電池のための高密度および高電圧安定性のカソード材料
US8524066B2 (en) 2010-07-29 2013-09-03 Liquid Light, Inc. Electrochemical production of urea from NOx and carbon dioxide
US8845878B2 (en) 2010-07-29 2014-09-30 Liquid Light, Inc. Reducing carbon dioxide to products
US8568581B2 (en) 2010-11-30 2013-10-29 Liquid Light, Inc. Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide
US8961774B2 (en) 2010-11-30 2015-02-24 Liquid Light, Inc. Electrochemical production of butanol from carbon dioxide and water
US9090976B2 (en) 2010-12-30 2015-07-28 The Trustees Of Princeton University Advanced aromatic amine heterocyclic catalysts for carbon dioxide reduction
US8562811B2 (en) 2011-03-09 2013-10-22 Liquid Light, Inc. Process for making formic acid
BR112013033326A2 (pt) 2011-07-06 2017-01-31 Liquid Light Inc captura de dióxido de carbono e conversão para produtos orgânicos
AU2012278949A1 (en) 2011-07-06 2014-01-16 Liquid Light, Inc. Reduction of carbon dioxide to carboxylic acids, glycols, and carboxylates
EP2766943B1 (en) * 2011-09-13 2017-01-04 Solvay Specialty Polymers Italy S.p.A. Electrode-forming composition
WO2014090575A1 (en) * 2012-12-14 2014-06-19 Umicore Low porosity electrodes for rechargeable batteries
JP2014123529A (ja) 2012-12-21 2014-07-03 Jfe Mineral Co Ltd リチウム二次電池用正極材料
US8968669B2 (en) 2013-05-06 2015-03-03 Llang-Yuh Chen Multi-stage system for producing a material of a battery cell
US10547051B2 (en) 2014-09-22 2020-01-28 North Carolina Agricultural and Technical University Multi-phase structured cathode active material for lithium ion battery
CN115395008A (zh) 2016-03-14 2022-11-25 苹果公司 用于锂离子电池的阴极活性材料
US10597307B2 (en) 2016-09-21 2020-03-24 Apple Inc. Surface stabilized cathode material for lithium ion batteries and synthesizing method of the same
DE102016220675A1 (de) * 2016-10-21 2018-04-26 Robert Bosch Gmbh Herstellung eines strukturierten Aktivmaterials für eine elektrochemische Zelle und/oder Batterie
US11777075B2 (en) 2017-12-04 2023-10-03 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
WO2019112279A2 (ko) 2017-12-04 2019-06-13 삼성에스디아이 주식회사 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
US11522189B2 (en) 2017-12-04 2022-12-06 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, preparing method thereof, and rechargeable lithium battery comprising positive electrode
KR102185126B1 (ko) * 2017-12-04 2020-12-01 삼성에스디아이 주식회사 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
KR102424398B1 (ko) 2020-09-24 2022-07-21 삼성에스디아이 주식회사 리튬 이차 전지용 양극, 그 제조 방법, 및 이를 포함한 리튬 이차 전지
US11670754B2 (en) 2017-12-04 2023-06-06 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
JP6988502B2 (ja) * 2018-01-17 2022-01-05 トヨタ自動車株式会社 全固体電池用正極合剤、全固体電池用正極、全固体電池及びこれらの製造方法
CN108630923A (zh) * 2018-04-28 2018-10-09 南开大学 梯度钠离子掺杂的镍钴铝酸锂正极材料、制备方法和锂电池
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
JP2020035625A (ja) * 2018-08-29 2020-03-05 株式会社田中化学研究所 二次電池用正極活物質粒子及び二次電池用正極活物質粒子の製造方法
US11673112B2 (en) 2020-06-28 2023-06-13 eJoule, Inc. System and process with assisted gas flow inside a reaction chamber
US11376559B2 (en) 2019-06-28 2022-07-05 eJoule, Inc. Processing system and method for producing a particulate material
US11121354B2 (en) 2019-06-28 2021-09-14 eJoule, Inc. System with power jet modules and method thereof
US20210057739A1 (en) * 2019-08-21 2021-02-25 Apple Inc. Mono-grain cathode materials
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries
KR20230066918A (ko) * 2021-11-08 2023-05-16 삼성에스디아이 주식회사 리튬이차전지용 복합양극활물질, 그 제조방법, 및 이를 포함한 양극을 함유한 리튬이차전지

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3111791B2 (ja) * 1994-02-21 2000-11-27 松下電器産業株式会社 非水電解液二次電池
JP3543437B2 (ja) 1995-07-24 2004-07-14 ソニー株式会社 正極活物質及びこの正極活物質を用いた非水電解質二次電池
US5718989A (en) * 1995-12-29 1998-02-17 Japan Storage Battery Co., Ltd. Positive electrode active material for lithium secondary battery
US5783333A (en) 1996-11-27 1998-07-21 Polystor Corporation Lithium nickel cobalt oxides for positive electrodes
US6071489A (en) * 1996-12-05 2000-06-06 Samsung Display Device Co., Ltd. Methods of preparing cathode active materials for lithium secondary battery
US6103213A (en) * 1997-03-25 2000-08-15 Toda Kogyo Corporation Process for producing lithium-cobalt oxide
US6071486A (en) 1997-04-09 2000-06-06 Cabot Corporation Process for producing metal oxide and organo-metal oxide compositions
JPH1186845A (ja) * 1997-09-05 1999-03-30 Asahi Chem Ind Co Ltd 非水系二次電池
DE19849343A1 (de) * 1997-10-30 1999-06-02 Samsung Display Devices Co Ltd Lithiumcompositoxid, dessen Herstellung und sekundäre Lithiumionzelle mit Lithiumcompositoxid als aktives Material der positiven Elektrode
JP2000012029A (ja) 1998-06-24 2000-01-14 Shin Kobe Electric Mach Co Ltd 非水電解質二次電池
JP2000195517A (ja) 1998-12-28 2000-07-14 Japan Storage Battery Co Ltd リチウム二次電池
JP5019548B2 (ja) 1999-08-16 2012-09-05 日本化学工業株式会社 リチウムマンガン複合酸化物、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
KR100315227B1 (ko) * 1999-11-17 2001-11-26 김순택 리튬 이차 전지용 양극 활물질 및 그의 제조 방법
US6660432B2 (en) 2000-09-14 2003-12-09 Ilion Technology Corporation Lithiated oxide materials and methods of manufacture
KR20020025480A (ko) 2000-09-29 2002-04-04 김순택 애노드 활물질 조성물 및 이를 이용하여 제조되는 리튬2차 전지
JP2002175808A (ja) * 2000-12-08 2002-06-21 Toyota Central Res & Dev Lab Inc リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびその製造方法
JP2003007298A (ja) * 2001-06-26 2003-01-10 Yuasa Corp 正極活物質及びその製造方法並びにそれを用いた二次電池
JP4951824B2 (ja) * 2001-07-27 2012-06-13 三菱化学株式会社 電極活物質含有組成物、並びにそれを用いた電極及びリチウム二次電池
AU2002355544A1 (en) 2001-08-07 2003-02-24 3M Innovative Properties Company Cathode compositions for lithium ion batteries
JP2003077459A (ja) * 2001-08-30 2003-03-14 Mitsubishi Cable Ind Ltd リチウム二次電池用の正極活物質および正極、並びにリチウム二次電池
JP4032744B2 (ja) * 2002-01-08 2008-01-16 ソニー株式会社 正極活物質及びこれを用いた非水電解質二次電池
WO2004027903A1 (ja) 2002-09-18 2004-04-01 Kabushiki Kaisha Toshiba 非水電解質二次電池
JP4639775B2 (ja) * 2004-11-26 2011-02-23 パナソニック株式会社 非水電解質二次電池

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101896431B (zh) * 2007-08-10 2013-06-26 尤米科尔公司 掺杂的含硫的锂过渡金属氧化物
CN102362378A (zh) * 2009-02-20 2012-02-22 尤米科尔公司 在锂可充电电池中兼有高安全性和高功率的非均质正极材料
CN102362378B (zh) * 2009-02-20 2013-12-25 尤米科尔公司 在锂可充电电池中兼有高安全性和高功率的非均质正极材料
CN110419131B (zh) * 2010-06-29 2020-08-11 尤米科尔公司 用于二次电池的高密度和高电压稳定的阴极材料
CN111785958A (zh) * 2010-06-29 2020-10-16 尤米科尔公司 用于二次电池的高密度和高电压稳定的阴极材料
CN110419131A (zh) * 2010-06-29 2019-11-05 尤米科尔公司 用于二次电池的高密度和高电压稳定的阴极材料
CN103025662A (zh) * 2010-07-26 2013-04-03 苏德化学专利两合有限公司 减少锂金属氧化合物中磁性的和/或氧化的污染物的方法
CN103025662B (zh) * 2010-07-26 2015-11-25 苏德化学专利两合有限公司 减少锂金属氧化合物中磁性的和/或氧化的污染物的方法
CN102386388A (zh) * 2010-08-17 2012-03-21 尤米科尔公司 在Li的可再充电电池中结合了高安全性和高功率之正极材料
CN102386388B (zh) * 2010-08-17 2015-02-18 尤米科尔公司 在Li的可再充电电池中结合了高安全性和高功率之正极材料
CN102738457B (zh) * 2011-04-07 2014-10-08 锂科科技股份有限公司 锂离子电池正极金属氧化物材料及锂离子电池
CN102738457A (zh) * 2011-04-07 2012-10-17 锂科科技股份有限公司 锂离子电池正极金属氧化物材料及锂离子电池
CN103460457A (zh) * 2011-04-18 2013-12-18 株式会社Lg化学 正极活性材料和包含所述正极活性材料的锂二次电池
CN103765658A (zh) * 2011-05-30 2014-04-30 尤米科尔公司 具有依赖尺寸的组成的正极材料
CN106006744A (zh) * 2011-06-01 2016-10-12 住友金属矿山株式会社 正极活性物质及非水系电解质二次电池
CN106006744B (zh) * 2011-06-01 2018-06-05 住友金属矿山株式会社 正极活性物质及非水系电解质二次电池
CN102891309B (zh) * 2012-09-22 2014-10-22 湘潭大学 一种浓度渐变的球形富锂正极材料的制备方法
CN102891309A (zh) * 2012-09-22 2013-01-23 湘潭大学 一种浓度渐变的球形富锂正极材料及其制备方法
CN105009333A (zh) * 2012-12-26 2015-10-28 汉阳大学校产学协力团 用于锂二次电池的正极活性材料
CN105009333B (zh) * 2012-12-26 2018-04-17 汉阳大学校产学协力团 用于锂二次电池的正极活性材料
CN105229830A (zh) * 2013-02-28 2016-01-06 汉阳大学校产学协力团 锂二次电池用正极活性物质
WO2015039490A1 (zh) * 2013-09-22 2015-03-26 中兴通讯股份有限公司 富锂正极材料及其制备方法
CN108028371B (zh) * 2015-07-22 2020-08-25 尤米科尔公司 用于可充电的固态锂离子蓄电池的阴极材料
CN108028371A (zh) * 2015-07-22 2018-05-11 尤米科尔公司 用于可充电的固态锂离子蓄电池的阴极材料
CN106450271A (zh) * 2015-08-04 2017-02-22 三星电子株式会社 正极、包括所述正极的二次电池、和制备所述正极的方法
CN106450271B (zh) * 2015-08-04 2021-07-16 三星电子株式会社 正极、包括所述正极的二次电池、和制备所述正极的方法
CN112158891A (zh) * 2016-09-20 2021-01-01 苹果公司 具有改善的颗粒形态的阴极活性材料
CN111615768A (zh) * 2018-01-15 2020-09-01 尤米科尔公司 用于蓄电池负电极中的复合粉末以及包括此类复合粉末的蓄电池
CN111615768B (zh) * 2018-01-15 2023-04-18 尤米科尔公司 用于蓄电池负电极中的复合粉末以及包括此类复合粉末的蓄电池
CN112840486A (zh) * 2018-10-26 2021-05-25 株式会社Lg化学 二次电池用正极活性材料、其制备方法以及包含其的锂二次电池
CN111682197A (zh) * 2020-06-02 2020-09-18 格林美股份有限公司 一种单晶型阴阳离子共掺杂镍镁二元无钴前驱体、正极材料及制备方法
WO2022111186A1 (zh) * 2020-11-24 2022-06-02 上海华谊新材料有限公司 磷酸锰铁锂复合物,其制造方法及锂离子电池正极
CN114436345A (zh) * 2022-02-14 2022-05-06 中南大学 一种锂离子电池三元正极材料及其制备方法
CN114436345B (zh) * 2022-02-14 2022-11-11 中南大学 一种锂离子电池三元正极材料及其制备方法

Also Published As

Publication number Publication date
CN1902776B (zh) 2011-01-26
PL1716609T3 (pl) 2019-02-28
TW200534525A (en) 2005-10-16
EP1716609A4 (en) 2009-07-22
WO2005064715A1 (en) 2005-07-14
US7771877B2 (en) 2010-08-10
EP1716609B1 (en) 2018-07-25
JP4890264B2 (ja) 2012-03-07
JP2007517368A (ja) 2007-06-28
US8012626B2 (en) 2011-09-06
JP2011091050A (ja) 2011-05-06
US20100264363A1 (en) 2010-10-21
KR100772829B1 (ko) 2007-11-01
EP3432392B1 (en) 2023-03-29
EP3432392A1 (en) 2019-01-23
JP5384468B2 (ja) 2014-01-08
EP1716609A1 (en) 2006-11-02
KR20060105039A (ko) 2006-10-09
CA2552375C (en) 2015-01-27
TWI254479B (en) 2006-05-01
CA2552375A1 (en) 2005-07-14
US20070122705A1 (en) 2007-05-31

Similar Documents

Publication Publication Date Title
CN1902776A (zh) 具有组成与尺寸相关的电极活性材料粉末及其制备方法
KR101696524B1 (ko) 니켈 복합 수산화물과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지
CN109891642B (zh) 非水系电解质二次电池用正极活性物质和其制造方法、和非水系电解质二次电池
KR101637412B1 (ko) 리튬 금속 복합 산화물 분체
CN1185733C (zh) 非水电解质二次电池及其正极活性材料
JP5701378B2 (ja) リチウム二次電池及びその正極活物質
KR101272411B1 (ko) 니켈 망간 복합 수산화물 입자와 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활성 물질과 그의 제조 방법, 및 비수계 전해질 이차 전지
CN1418174A (zh) 含有锂的复合氧化物和使用它的非水二次电池、及其制法
US20120256337A1 (en) Cathode active material precursor particle, method for producing thereof and method for producing cathode active material for lithium secondary battery
CN1886343A (zh) 用于锂离子电池阴极材料的锂镍钴锰混合金属氧化物的固态合成
US20120258365A1 (en) Cathode active material precursor particle, cathode active material particle for lithium secondary battery and lithium secondary battery
CN1685542A (zh) 锂二次电池用正极活性物质及其制备方法
KR20160055138A (ko) 리튬 이온 전지용 양극 재료
JP6436335B2 (ja) 遷移金属複合水酸化物粒子とその製造方法、およびそれを用いた非水系電解質二次電池用正極活物質の製造方法
WO2019087503A1 (ja) 非水系電解質二次電池用正極活物質、非水系電解質二次電池及び非水系電解質二次電池用正極活物質の製造方法
KR20190033068A (ko) 비수계 전해질 이차 전지용 정극 활물질과 그 제조 방법, 및 비수계 전해질 이차 전지
CN1633722A (zh) 非水电解质二次电池
CN1536694A (zh) 非水电解质二次电池的正极材料和非水电解质二次电池
JPH10162830A (ja) リチウム二次電池用正極活物質およびそれを用いた二次電池
WO2023013494A1 (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
EP3719887A1 (en) Non-aqueous electrolyte secondary battery positive electrode active material precursor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211209

Address after: Seoul, South Kerean

Patentee after: LG Energy Solution,Ltd.

Address before: Seoul, South Kerean

Patentee before: LG CHEM, Ltd.