CN1311758A - 结晶分子筛 - Google Patents

结晶分子筛 Download PDF

Info

Publication number
CN1311758A
CN1311758A CN99809150A CN99809150A CN1311758A CN 1311758 A CN1311758 A CN 1311758A CN 99809150 A CN99809150 A CN 99809150A CN 99809150 A CN99809150 A CN 99809150A CN 1311758 A CN1311758 A CN 1311758A
Authority
CN
China
Prior art keywords
lev
molecular sieve
crystalline molecular
structure type
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN99809150A
Other languages
English (en)
Other versions
CN1214976C (zh
Inventor
J·P·沃杜因
M·M·莫坦斯
W·J·莫提尔
M·J·G·简森
C·W·M·范欧尔舒特
D·E·W·瓦戈汉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9816505.3A external-priority patent/GB9816505D0/en
Priority claimed from GBGB9816508.7A external-priority patent/GB9816508D0/en
Application filed by Exxon Chemical Patents Inc filed Critical Exxon Chemical Patents Inc
Publication of CN1311758A publication Critical patent/CN1311758A/zh
Application granted granted Critical
Publication of CN1214976C publication Critical patent/CN1214976C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7026MFS-type, e.g. ZSM-57
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0292Phosphates of compounds other than those provided for in B01J20/048
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/50Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7011MAZ-type, e.g. Mazzite, Omega, ZSM-4 or LZ-202
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7023EUO-type, e.g. EU-1, TPZ-3 or ZSM-50
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/04Aluminophosphates [APO compounds]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates [SAPO compounds], e.g. CoSAPO
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/26Mordenite type
    • C01B39/265Mordenite type using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/44Ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/44Ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38
    • C01B39/445Ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38 using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • C10G25/03Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/60Synthesis on support
    • B01J2229/62Synthesis on support in or on other molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/22Higher olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了LEV型结晶分子筛的一种胶体悬浮液,通过从预先已形成的固体LEV产物中洗涤较小的微晶来制备该悬浮液,然后将该悬浮液在其它结晶分子筛合成中用作种子。

Description

结晶分子筛
本发明涉及分子筛及其制备工艺。更具体地说,它涉及其中将合成混合物进行引种以控制工艺条件和产物特性的工艺、在该工艺中用于提供种子的组合物、以及得到该组合物的方法。
人们熟知,向分子筛合成混合物引种往往产生有益效果,例如控制产物的粒径,避免需要有机模板剂(template),加速合成,并提高目标结构类型产物的比例。
胶体种子已证实非常有效,例如描述于国际专利申请WO97/03019、03020和03021、以及EP-A-753483、753484和753485。尽管上述参考文件已描述了某些结构类型胶体分散体的制备工艺,而且类似工艺在制备其它结构类型结晶分子筛的胶体分散体时也有效,但这些工艺已证实在制备某些其它结构类型,尤其是LEV的胶体分散体时不适用。
本说明书所用的术语“结构类型”按照结构类型图集,沸石17,(1996)所述的含义使用。
现已发现,胶态LEV可通过一种完全不同的方法而制成,而且胶态LEV结构类型结晶分子筛,尤其是胶体分散体的形式,在结晶分子筛的生产中具有有价值的引种性能。
第一方面,本发明提供了一种LEV结构类型结晶分子筛的胶体悬浮液。
本发明还提供了一种制备LEV的胶体悬浮液的方法,即,通过处理合适的合成混合物而合成出LEV结构类型结晶分子筛,将该产物从合成混合物中分离,洗涤该产物,然后回收所得洗液。
在不受任何理论限制的情况下,人们认为通过常规LEV合成法制成的LEV包含粒径较大,通常超过1μm的LEV颗粒,它与可通过常规水洗法从较大颗粒分离出的胶体尺寸的颗粒混杂。已经发现,尽管第一洗涤水有时是澄清的,而且可能不含或含非常少的胶体颗粒,但第二或随后的洗涤水并不澄清并具有可测到的固体含量。所得洗涤水是明显可在结晶分子筛生产中用作种子源的LEV微晶的胶体悬浮液或分散体。(如果需要,可在使用前将分散体制得更浓。)
通过本发明方法生产的本发明胶体LEV种子特别适用于在合成工艺中生产LEV、FER、MOR、ERI/OFF、MAZ、OFF、ZSM-57、和CHA结构类型的结晶分子筛。CHA材料的例子为菱沸石和含磷分子筛SAPO-、AlPO-、MeAPO-、MeAPSO-、ElAPSO-和ElAPO-37,尤其是相应的-34材料。在这些结构式中,El表示镁、锌、铁、钴、镍、锰、铬或任何两种或多种这些元素的混合物。MAZ材料的例子包括针沸石、沸石Ω、和ZSM-4。胶体LEV结构类型种子也可用于合成含磷的结晶分子筛,如SAPO-、AlPO-、MeAPO-、MeAPSO-、ElAPSO-和ElAPO-材料、用于合成LEV结构类型如-35材料。(如果一种材料称作例如SAPO材料,那么该术语包括其它元素以在骨架中或其它方式存在的可能性)。LEV结构类型沸石也可使用本发明的胶体种子来制备,例如插晶菱沸石、ZK-20、NU-3和ZSM-45。
本文所用的术语“胶体”在用于悬浮液时是指,一种包含分散在连续液相中的离散细分颗粒的悬浮液,优选是指一种在对预期使用的足够期间内,在环境温度(23℃)下有利地在至少10,更有利地至少20,优选至少100,更优选至少500小时内稳定的悬浮液,即,没有发生可见的分离或形成沉淀物。悬浮液保持稳定(胶溶的)的最大粒径在某种程度上取决于颗粒的形状、这些连续介质的性质和pH值、以及该悬浮液必须保持稳定的期限。一般来说,最大粒径可以是1μm,有利地为500,更有利地400,优选300,更优选200,最优选100纳米。颗粒可以是球状或其它形状。如果颗粒不是球状,那么所指尺寸是它们的最小尺寸。
最小尺寸是指这些颗粒不会溶解或再溶解于介质中时的尺寸,而且对于结晶度,它们必须包含至少少量多个,有利地至少两个,优选四个晶体单元晶胞。最低粒径一般为5,有利地为10,优选为20纳米。平均粒径一般为5-1000,有利地10-300,更有利地10-200,优选20-100纳米。有利地至少50%,更有利地至少80%,更优选至少95%数目的颗粒大于给定的最小值、小于给定的最大值、或在给定的粒径范围内。粒径的测量可通过电子显微镜,例如使用Philips SEM 515装置来进行。
如上所述,本发明的胶体种子可通过将种子作为合成混合物的组分加入而用于制造各种结晶分子筛。它们有利地以悬浮液的形式加入合成混合物中,有利地在含水介质中,优选水、或合成混合物的另一液体组分中。它们不太优选以干的、但未煅烧的形式加入。据信煅烧明显降低小微晶用作种子的活性;应该避免降低材料引种活性的任何其它类似处理。
胶体种子一般在合成混合物中的浓度最高为10000,有利地最高3000,更有利地最高1500,优选最高1000,更优选最高500,最优选最高350ppm,以合成混合物的总重为基。最低引种量一般为1ppb(0.001ppm),有利地至少0.1,更有利地至少1,优选至少10ppm,以合成混合物的总重为基。有利的比例范围为1-2000,优选100-1500,最优选100-250ppm。
除了存在种子,所用的合成混合物通常是本领域已知的或在文献中描述为适用于生产有关的分子筛的那些。对于处理条件也如此,只是种子的存在使得减少反应时间成为可能,或可避免搅拌,如果该搅拌否则是必需的。
一般来说,由合成混合物生成所需结晶分子筛的处理通常称作水热处理,虽然严格地说该术语仅用于其中存在蒸气相水的处理,这种处理有利地在自生压力下,例如在高压釜如不锈钢高压釜(如果需要,衬以聚四氟乙烯)中进行。该处理例如,可在50(有利地90,尤其是120)-250℃的温度下进行,这取决于所制的分子筛。该处理可例如,在20-200小时,优选最高100小时的时间内进行,这同样取决于所形成的分子筛。工艺步骤可包括熟化期,可以在室温下或优选在中等高温下,而在更高温度下的水热处理之前。后者可包括温度逐渐或逐步变化的过程。
对于某些应用场合,处理是在搅拌下或在将容器围绕水平轴旋转(滚动)的同时进行的。对于其它应用场合,优选静态水热处理。如果需要,可在加热阶段过程的起始部分中,例如从室温至升高的(例如,最终处理的)温度,搅拌或滚动该合成混合物,余下为静态处理。搅拌一般得到一种比起静态水热处理具有较小粒径和较窄粒径分布的产物。
如果要求产物为小粒径形式,最好采用较大数目的尺寸较小的LEV种子。种子的平均粒径越小,有效的重量百分数越低。有利地将晶体在足够时间内搅拌到合成混合物中以得到一种均匀的分散体,该时间主要取决于合成混合物的粘度、以及设备的规模和种类,但范围一般为30秒至10分钟。
因此,本发明在第二方面提供了一种制备结晶分子筛的方法,该方法包括,在适合形成所需分子筛的时间和温度下,将包含形成所述分子筛所需的元素和胶体LEV结晶分子筛种子的合成混合物进行处理。如上所述,LEV种子晶体可用于制备非LEV结构类型的分子筛。这种引种可看作“异结构的”,而用相同结构类型的种子进行引种则称作“同结构的”,而无论该种子是否具有与所要制备的结晶分子筛相同的组成(即,包含相同比例的相同元素)。
因此,本发明在第三方面提供了一种制备结晶分子筛的方法,该方法包括,在适合形成第一结构类型分子筛的时间和温度下,将包含形成非LEV的第一结构类型分子筛所需的元素和胶体LEV分子筛种子晶体的合成混合物进行处理。
在该方面的某些实施方案中,所需分子筛的结构类型在拓扑结构上类似于LEV,即,为ABC-6组材料的组元,例如描述于沸石和相关材料的拓扑化学,J.V.Smith,Chem.Rev.1988,88,149-167,在此将其作为参考并入本发明。ABC-6组包括,尤其是钾沸石和菱沸石、以及插晶菱沸石结构。在其它实施方案中,制备出在拓扑结构上相异的结构类型,如MOR、FER、MAZ、EUO和MFS。
第四方面,本发明提供了胶体LEV种子晶体在合成结晶分子筛中的应用,以可避免需要有机模板剂,生产出不同产物形态,或控制产物的形态,控制产物的纯度、粒径或粒径分布,或加速形成产物,或获得两种或多种这些效果。
同样如上所述,胶体LEV种子尤其适用于制备含磷分子筛,更尤其是铝磷酸盐和硅铝磷酸盐。它们也尤其适用于制备另一种结构类型(尤其是CHA)结晶分子筛的胶体悬浮液。
本发明还提供了本发明前述方面的应用和所述方法的产物。如果需要,该产物可在阳离子交换和/或煅烧之后用作催化剂前体、催化剂、以及分离和吸收介质。它们尤其适用于多种烃转化、分离和吸收。它们可单独或与其它分子筛结合,以颗粒形式(承载或未承载的)、或以承载层的形式,例如以膜的形式来使用,例如描述于国际专利申请WO94/25151。烃转化包括,例如裂解、重整、加氢精制、芳构化、低聚化、异构化、脱蜡、和加氢裂化(如,石脑油至轻烯烃、高分子量至低分子量烃,烷基化、烷基转移反应、芳香物质的歧化或异构化)。其它的转化包括醇类与烯烃的反应、以及含氧物转化成烃。
含氧物的转化可将含氧物例如甲醇在液体或优选蒸气相中,以分批或优选连续方式来进行。如果以连续方式来进行,有利地可方便地采用1-1000,优选1-100/小时的重量小时空间速度(WHSV)。一般需要高温来获得经济的转化率,如300-600℃,优选400-500℃,更优选约450℃。催化剂可以在固定床,或动态如流化床或移动床中。
可将含氧物原料与在反应条件下惰性的稀释剂,如氩气、氮气、二氧化碳、氢气或水蒸气进行混合。甲醇在原料中的浓度可变化较大,例如为原料的5-90%摩尔。压力可在较宽范围内变化,例如为大气压至500kPa。
以下实施例用于说明本发明,除非另有所指,其中份数都是重量计的。除非另有所指,起始原料的来源和纯度都是首次给出的。
实施例1
该实施例说明胶体LEV型沸石的制备。
在第一步中,将15.95份铝酸钠(Dynamit Nobel,53%Al2O3、41%Na2O、6%H2O)、19.95份氢氧化钠(Baker,98.6%)和5.58份氢氧化钾(Baker,87.4%)溶解在151.06份水中,然后加热至沸腾,得到一种澄清的溶液。冷却至室温之后,补偿水损失以形成溶液A。将270.60份胶体硅石(Ludox HS40,40%SiO2)与106.12份胆碱盐酸盐(R,Fluka)混合形成一种粘稠的物质,然后在搅拌下加入溶液A随着递增速率搅拌粘度下降、以及190份漂洗水,然后继续混合5分钟。摩尔组成为:
1.95Na2O∶0.24K2O∶0.46Al2O3∶10SiO2∶4.187R∶155H2O。
向290份该混合物中,加入0.49份常规LEV沸石种子,然后将样品转移到高压釜中,在此将其在120℃炉中加热144小时。洗涤产物,离心处理回收,然后在120℃下干燥过夜。该产物包含2-2.5μm的球状聚集体,由约100纳米颗粒组成,X-射线衍射图(XRD)为ZSM-45,一种LEV型结构沸石,例如描述于EP-A-107370(Mobil)。
将该产物用作下一步的种子,其中将8.38份铝酸钠、10.53份氢氧化钠、2.96份氢氧化钾、和78.95份水按照上述进行处理,得到溶液A。然后按照上述,将该溶液A连同100.00份漂洗水加入142.42份胶体硅石和55.5份胆碱盐酸盐的混合物中并混合,同时加入0.68份第一步种子。将该反应混合物在120℃下在高压釜中加热174小时,通过洗涤、离心处理和干燥而回收的产物具有类似于第一步的XRD。洗涤工艺的第二上层清液并不澄清,且pH值为10.3。结果发现,它是一种固体含量2.3%的分散体。扫描电子显微镜(SEM)和XRD分析表明是具有ZSM-45结构(LEV结构类型)的约100纳米晶体。
实施例2
该实施例说明胶体LEV悬浮液在制备菱沸石分散体中的应用,其中后者又适合在制备SAPO-34时作为引种。胶体LEV种子制备如下:
按照实施例1的第一部分所述制备出一种合成混合物,只不同的是使用来自实施例1第二部分的第二上层清液的溶胶作为种子,引种量为0.15%重量(固体物质)。将引种后的合成混合物在120℃下在不锈钢高压釜中加热96小时,其中加热升温(heat-up)时间为3小时。离心处理并干燥而回收的产物具有对应于ZSM-45的XRD图。第一上层清液并不澄清,在11000rpm下离心处理并进一步洗涤之后,得到一种尺寸约100纳米的晶体的固体含量4.6%的胶体分散体,XRD表明该产物为ZSM-45,一种LEV结构类型沸石。
使用以下组分,按照以下比例,如实施例1所述制备出溶液A:NaOH                     61.66KOH                      28.73Al(OH)3(Alcoa,99.3%)   15.73H2O                     190.30
将300.23份胶体硅石和168.89份水倒入混合器中,然后将溶液A与12.65份漂洗水一起加入。混合5分钟之后,加入16份的4.6%固体含量LEV浆液。该合成混合物的摩尔组成:
3.8Na2O∶1.12K2O∶0.5Al2O3∶10SiO2∶161H2O,其中有927ppm种子。
将合成混合物经2小时在高压釜中加热至100℃,然后在该温度下保持96小时。冷却之后,用软化水5次洗涤该高压釜的内容物,一种乳状悬浮液,然后在9000rpm下离心处理。在为XRD和SEM取样之后,将剩余物再分散,形成一种在几天内稳定且固体含量为6.4%的胶体溶液。该产物的XRD表明,它是一种具有均匀粒径100×400纳米的菱沸石。
实施例3
该实施例说明胶体LEV种子在制备具有小粒径和均匀粒径分布的SAPO-34中的应用。
由以下组分,按照所示比例制备出合成混合物。溶液组分                            比例A    Al2O3(Pural SB Condea 75%)  68.18
H2O                           100.02B   H3PO4(Acros,85%)          115.52
H2O                          80.27C   胶体硅石(Ludox AS40)           22.73
H2O,漂洗                    10.20D   TEAOH(Eastern Chemical,40%) 182.85E   DPA(Fluka)                    80.23F   种子,4.6%重量LEV             31.95
在混合器中制备出浆液A,然后加入溶液B,得到一种粘稠的溶液。将该溶液放置2分钟之后,加入26.84份漂洗水。混合该膏体6分钟之后,加入C,然后在加入溶液D之前混合2分钟。在与70.72份漂洗水一起加入E时,形成了两相。另外混合3分钟之后,得到一种视觉均匀的溶液,然后在另外混合10分钟之后,加入胶体种子F。摩尔组成如下:
Al2O3∶P2O5∶0.3SiO2∶TEAOH∶1.6DPA∶56H2O.
+1860ppm(重量)LEV种子。
将引种后的凝胶在175℃下,在不锈钢高压釜中加热60小时。固体产物通过离心处理,水洗11次至导电率为约18μs/cm,然后在120℃下干燥而回收。XRD和SEM表明是一种晶体为0.2-1.3μm,且少数晶体为2-3μm的纯SAPO-34产物。化学分析表明一种具有以下摩尔组成的产物:
Al2O3∶0.99P2O5∶0.36SiO2
实施例4
该实施例说明胶体LEV结构类型种子在制备丝光沸石中的应用。
将7.20份NaOH、26.90份KOH(87.3%)、11.32份Al(OH)3和75份水煮沸,直到得到一种澄清的溶液,冷却,然后加入水以补偿煮沸时的重量损失,得到溶液A。将229.83份Ludox AS40与256.93份水在烧杯中合并,向其中加入68.70份TEAOH在100.02份水中的溶液。最后加入溶液A,另外还加入总共25.41份的漂洗水。得到一种具有以下摩尔组成的光滑凝胶:
1.22TEAOH∶0.58Na2O∶1.37K2O∶0.47Al2O3∶10SiO2∶235H2O。
将该合成混合物分开,然后向一个样品A中加入被混入某些OFF的、总固体含量为4.6%的胶体LEV浆液,得到201ppm的种子含量。其它样品B保持未引种。
将两种合成混合物都倒入不锈钢高压釜中,然后在2小时内加热至150℃。将样品A在该温度下保持96小时,样品在该温度下保持240小时,其中在48和96小时时取样。96小时之后,晶体沉降到包含样品A的高压釜的底部。回收产物的XRD和SEM分析表明是被少数OFF针污染的、晶体尺寸为0.2-1.0μm的MOR。
样品B的48和96小时产物样品是无定形的,240小时产物包含粒径为5-10μm的MOR晶体,其中污染有无定形材料和OFF针。样品A产物分析:
SiO2∶Al2O3,15.5∶1
样品表明,用胶体LEV引种可加速形成丝光沸石并降低粒径。
实施例5
该实施例进一步说明胶体LEV种子在制备非LEV材料(这时是镁碱沸石)中的应用。
将7.21份NaOH、26.92份KOH、11.31份Al(OH)3和75.02份水煮沸,直到得到一种澄清的溶液,冷却,补偿煮沸时的水损失,得到溶液A。将229.87份Ludox AS40与407.85份水倒入混合器的烧杯中,然后加入溶液A以及14.18份漂洗水,混合10分钟,得到一种具有以下摩尔组成的光滑凝胶合成混合物:
0.58Na2O∶1.37K2O∶0.47Al2O3∶10SiO2∶235H2O。
将该合成混合物分开,然后向一个样品A中加入用于实施例4的胶体LEV浆液,得到207ppm的种子含量。其它部分(样品B)保持未引种。将样品在实施例4中给出的温度和时间下进行水热处理。96小时之后,晶体沉降到样品A高压釜的底部。回收产物的XRD和SEM分析表明是被OFF针污染的约2μm长度的片状晶体的FER。化学分析得到15.6∶1的SiO2∶Al2O3
样品B的48和96小时产物样品是无定形的,240小时之后,样品B产物包含与无定形材料混合的FER晶体。
这些实施例表明,镁碱沸石的无有机模板剂生产过程通过胶体LEV晶体来加速,并得到片状晶体。
实施例6-8
这些实施例说明使用LEV胶体种子来制备FER沸石而无需使用有机模板剂,以及使用两种不同种子浓度的效果。制备出摩尔浓度如下的无模板剂的合成混合物:
2.16K2O∶0.46Al2O3∶10SiO2∶157H2O
然后分成三份,样品A、B和C。
样品A未引种。
样品B和C(实施例6和7)用胶体LEV种子浆液引种至260ppm(实施例6)和500ppm(实施例7)含量。将每个样品放在不锈钢高压釜中,然后在200℃下加热96小时。未引种样品A产生无定形产物,而样品B和C都产生所需的FER沸石。样品C的产物的SiO2∶Al2O3摩尔比为10∶1。按照类似方式,使用1000ppm的引种量,由摩尔组成如下的合成混合物(实施例8):
2.16K2O∶0.35Al2O3∶10SiO2∶162H2O,
得到SiO2∶Al2O3摩尔比为13∶1的FER沸石。
实施例9
该实施例说明使用LEV洗涤水种子来制备FER型产物,这样可加速生产过程并避免需要有机模板剂。
将7.21份NaOH、26.92份KOH、11.31份Al(OH)3煮沸溶解在75.02份水中,然后补偿水损失,形成溶液A。将229.87份胶体硅石(LudoxAS40)与407.85份水进行混合。加入溶液A,随后加入14.18份漂洗水,然后搅拌该凝胶10分钟。加入LEV洗涤水分散体,合成混合物的摩尔组成如下:
0.58Na2O∶1.37K2O∶0.47Al2O3∶10SiO2∶235H2O加上207ppm LEV。
将合成混合物经2小时在高压釜中加热至150℃,然后在该温度下保持总共96小时,然后晶体已沉降到容器底部。产物为FER,约2μm长的片状晶体,稍微污染有OFF针。同样在2小时内加热至150℃的未引种混合物在150℃下240小时之后仍然为无定形。
实施例10
该实施例说明胶体LEV种子在制备不同形态FER沸石中的应用。
制备出摩尔组成如下的合成混合物:
0.45Na2O∶3.1吡啶∶0.166Al2O3∶10SiO2∶145H2O
然后分成两份。一份(样品A)用足够的4.6%LEV浆液引种,得到224ppm的种子量。另一份(样品B)则未引种。将两个样品都放在不锈钢高压釜中并在2小时内加热至150℃,然后在150℃下保持140小时。未引种产物大多是无定形,有痕量ZSM-5。LEV引种产物为纯ZSM-35,一种具有平板状形态的FER结构类型沸石。
实施例11
该实施例说明引种量对FER粒径的影响。
制备出类似于实施例1第一步的且摩尔组成如下的合成混合物:1.95Na2O∶0.23K2O∶0.46Al2O3∶10SiO2∶4.15胆碱盐酸盐∶157H2O。
将该混合物分开,向一个样品(A)中加入足够的在实施例3中制备的胶体LEV种子浆液,得到200ppm的引种量,而另一样品(B)则具有600ppm的引种量。
将每个样品在150℃下加热48小时。通过XRD和SEM分析,产物确认为ZSM-38,一种FER型沸石,描述于美国专利4046859。在这两种情况下,晶体是共生板,其中晶体尺寸取决于引种量;600ppm得到0.7μm的平均粒径,而200ppm得到1.0μm的平均粒径。
实施例12
该实施例说明胶体LEV种子在生产具有ERI/OFF型结构的Linde沸石T以及控制产物形态中的应用。
将用于实施例6-8的合成混合物用200ppm在此使用的LEV浆液进行引种,然后在120℃而不是用于这些实施例的200℃进行水热处理。产物为共生ERI/OFF沸石的圆盘状微晶,称作Linde沸石T,描述于美国专利4126813。
实施例13
该实施例说明,在生产MAZ结构类型沸石时,通过用LEV引种来控制粒径。将32.38份NaOH(98.6%)和22.71份Al(OH)3(98.5%)蒸煮溶解在63.37份水中,将溶液冷却,然后补充水损失以形成溶液A。将17.60份四甲基氯化铵(TMACl,98%)在室温下在高剪切混合器中溶解在24.04份水中,然后在2分钟内搅拌加入218.78份胶体硅石(Ludox HS-40,40%),然后加入5.38份按实施例3中制备的4.6%胶体LEV水溶液并混合3分钟。随后将溶液A与27.19份漂洗水一起加入,搅拌5分钟,得到一种摩尔组成如下的膏状凝胶:
2.74Na2O∶0.98Al2O3∶1.1TMACl∶10SiO2∶101H2O加上600ppm LEV种子。
将380份凝胶在98℃油浴中在配有冷凝器的塑料瓶中加热135小时。将所得产物用700份水洗涤5次至pH值10.9,将产物在120℃下干燥(产量为89.5份)并在510℃下在空气中煅烧24小时以去除TMA,重量损失9.2%。产物产率:21.4%,XRD分析表明一种结晶优异的TMA-MAZ,且SEM表明由纳米微晶组成的均匀500纳米球状聚集体。
进行相同水热处理的未引种但相同的合成混合物得到一种稍微被TMA-钠沸石污染的TMA-MAZ产物,由具有宽粒径分布的球状颗粒(约0.3-2.5μm)组成。
实施例14和对比例15
这些实施例说明胶体LEV种子在控制钾沸石粒径中的应用。
使用TMACl作为模板剂以及Ludox AS40作为硅石源,制备出合成混合物。摩尔组成如下:
2.3K2O∶TMACl∶Al2O3∶10SiO2∶160H2O。
使用胶体LEV的4.6%固体含量分散体(参见实施例3),将一个样品(实施例14)引种至202ppm含量。将该混合物在高压釜中在150℃下加热8小时。产物为纯的OFF,其中晶体具有约1μm的窄粒径分布。第二样品(对比例15)保持未引种,然后在150℃下加热48小时。产物为纯的OFF,其中粒径为1-5μm。
实施例16和对比例17
这些实施例说明胶体LEV种子在控制ZSM-57生产时的纯度和粒径中的应用。
使用溴化N,N,N,N’,N’,N’-六乙基戊二铵(R)作为模板剂、Ludox HS40作为硅石源,以及Al2(SO4)3·18H2O作为矾土源制备出合成混合物。摩尔组成如下:
R∶2Na2O∶0.17Al2O3∶10SiO2∶399.4H2O。
将用175ppm胶体LEV引种的第一样品(实施例16)在160℃下加热144小时。产物为完全结晶的ZSM-57,粒径约1μm。
第二样品(对比例17)保持未引种,然后在160℃下加热。直到第14天也没有开始结晶。24天之后,产物为ZSM-57、石英和其它结晶相的混合物,ZSM-57材料是与其它微晶混合的约3μm直径的片晶。
实施例18和实施例19
这些实施例说明胶体LEV种子在制备FER型沸石ZSM-38中的应用。
使用铝酸钠(Nobel,53%Al2O3,41%Na2O)作为矾土源、Ludox HS 40作为硅石源,以及胆碱盐酸盐(R,Aldrich)作为模板剂制备出合成混合物。该混合物的摩尔组成如下:
1.95Na2O∶0.24K2O∶0.46Al2O3∶10SiO2∶4.17R∶157H2O。
一个样品未引种,第二样品(实施例18)则用胶体LEV的4.6%固体含量分散体引种至200ppm含量。两个样品都在高压釜中在150℃下加热。71小时之后,未引种样品仍然是无定形的。48小时之后,引种样品已生产出ZSM-38,一种FER结构类型沸石(参见美国专利4046859),晶体尺寸(共生板)为约1.0μm。
第三样品(实施例19)类似进行引种,但含量为0.06%。在类似加热之后,产物类似于实施例18,但晶体尺寸较小,为约0.7μm。
实施例20
该实施例说明胶体LEV和胶体*BEA在合成ZSM-50(结构类型EUO)中的效果。比起用80纳米粒径胶体*BEA引种的合成混合物,胶体LEV的应用可降低在静态条件下所需的结晶时间。使用以下成分,按照所给比例制备出溶液A:
Al2(SO4)3.18H2O    18.98
NaOH(98.7%)             27.59
H2O                   150.06
将225.06份胶体硅石(Ludox HS40)与765.01份水倒在一起并混合。使用21.38份漂洗水,加入溶液A。混合之后,使用20.82份漂洗水并加入溶液B,后者由在100.49份水中的61.57份溴化己烷双胺(R)组成。向匀化的798.64份混合物中加入实施例3的LEV的4.6%重量胶体浆液3.032份。将摩尔组成如下的最终均匀混合物:2Na2O/R/0.17Al2O3/10SiO2/401 H2O+174ppm(重量)LEV
转移到1升不锈钢高压釜中并经6小时加热至150℃。继续加热168小时。将样品洗涤并干燥,然后XRD和SEM表明是ZSM-50,长度为1μm的椭圆板。
按照上述相同方式制备出组成如下的混合物:
2Na2O/R/0.17Al2O3/10SiO2/401H2O+142ppm(重量)*BEA
并进行结晶。在150℃下加热168小时之后取样。XRD表明结晶度不好。加热216小时之后,回收产物的结晶度增加。312小时之后,该产物是完全结晶的ZSM-50。
实施例21
该实施例说明LEV种子在同结构引种中的应用,用于加速形成LEV(ZSM-45)。
按照实施例1的第一部分制备出合成混合物,只不同的是不用常规尺寸的LEV种子引种,使用来自实施例1第二部分的第二上层清液的胶态溶胶,引种量为0.15%重量固体含量。将引种的合成混合物在不锈钢高压釜中在120℃下加热96小时,其中加热升温时间为3小时。离心处理并干燥而回收的产物具有对应于ZSM-45的XRD图。第一上层清液并不澄清,而且在11000rpm下离心处理并进一步洗涤之后,得到一种固体含量为4.6%的分散体。该产物由尺寸约100纳米的晶体组成,XRD表明ZSM-45。
可以看出,使用洗涤水种子而不是规则尺寸的种子,可将合成时间由144小时降低至96小时。该实施例还说明了洗涤水种子的形成。
实施例22
该实施例说明使用实施例21的洗涤水种子来加速形成LEV(ZSM-45)。
按照实施例21和实施例1的第一部分的步骤,制备出合成混合物,但以0.02%重量固体物质的量用实施例21的洗涤水种子进行引种。将该合成混合物在120℃加热,将间隔取得的抽查样品洗涤,离心处理并干燥进行回收,然后进行XRD分析。结晶在24小时时开始,且在48小时后完成。产物的XRD图对应于ZSM-45。
实施例23
该实施例说明使用实施例21的洗涤水种子来加速形成LEV(NU-3)。
形成0.75份铝酸钠(53%Al2O3,42%Na2O,6%H2O)、0.61份NaOH、和161.06份二乙基二甲基氢氧化铵(R,在水中20.4%)的溶液,然后加入33.35份硅石(90%)以及2份漂洗水,然后混合10分钟,得到一种摩尔组成如下的低粘度凝胶:0.27Na2O∶0.17AlsO3∶10SiO2∶5.5R∶154H2O。
向120.58份该混合物中加入足够的实施例21洗涤悬浮液,得到0.15%重量的引种量,而剩余的混合物则保持未引种。
两个样品都在130℃在高压釜中处理96小时。尽管未引种产物非常轻微模糊,但它仍然是透明的且不能回收任何产物。引种产物包含蓝白色母液和在高压釜底部上的固体相。洗涤和干燥之后,固体物质通过XRD分析来观察,它具有如EP-A-40016所述的NU-3(一种LEV结构类型的沸石)图案。这些颗粒是非聚集的且粒径为约100纳米。
实施例24
该实施例说明LEV种子在加速NU-3形成中的应用。
将6.35份矾土(Catapal VISTA,70%)在19.99份水中制浆。将7.2份奎宁环(R,97%)、和8.11份NH4F溶解在50.02份水中,然后搅拌滴加7.2份H2SO4(97%)。将29.01份硅石放在混合器中,然后加入矾土浆液以及15.02份漂洗水。在非常慢的混合速度下,该浆液将硅石胶凝,然后加入奎宁环溶液以及35.81份漂洗水。将粘性凝胶混合5分钟,得到如下的摩尔组成:1.6H2SO4∶5NH4F∶Al2O3∶10SiO2∶5.3R∶161H2O。向102份该凝胶中加入足够的来自实施例21的洗涤水种子悬浮液,得到基于凝胶总重的0.06%重量的种子加入量。剩余保持未引种。两个样品都在170℃下加热192小时。将产物洗涤并通过离心处理而回收并在120℃下干燥过夜。未引种产物是无定形的,而引种产物具有NU-3的XRD图,而且SEM表明是0.5-1.5μm的各种形态的共生晶体。
实施例25
该实施例说明实施例21的洗涤水种子在加速沸石形成并控制ZSM-45(LEV)的粒径和增加纯度中的应用。
将9.08份铝酸钠(如实施例2)、11.56份NaOH、和3.10份KOH煮沸溶解在85.75份水中并补偿水损失,得到溶液A。将68.69份硅石与85.70份水和60份胆碱盐酸盐合并,然后在低速下混合。加入溶液A以及80.82份附加水。增加搅拌速度,然后继续搅拌5分钟。
将实施例21的洗涤悬浮液加入部分混合物中,得到0.02%重量的引种量,将其它部分保持未引种。将两个样品在120℃下加热96小时,然后取样,回收产物,在120℃干燥过夜。在引种样品中,XRD图是ZSM-45,由球状1μm聚集体(由100纳米颗粒构成)组成。在未引种混合物中,结晶仅刚刚开始,将该混合物在120℃另外进行96小时加热。回收产物是纯的ZSM-45,由6μm聚集体组成。

Claims (24)

1.LEV结构类型结晶分子筛的胶体悬浮液。
2.根据权利要求1所要求的悬浮液,其中所述LEV颗粒的平均尺寸范围为5-1000纳米。
3.根据权利要求2所要求的悬浮液,其中所述范围为10-300纳米。
4.根据权利要求3所要求的悬浮液,其中所述范围为20-100纳米。
5.根据权利要求1所要求的悬浮液,其中所述LEV颗粒的平均尺寸最高为100纳米。
6.一种制备根据任何一项前述权利要求的悬浮液的方法,包括,通过处理包含形成LEV结晶分子筛所需的元素的合成混合物来合成LEV结构类型结晶分子筛,将所得LEV结晶分子筛产物从合成混合物中分离,洗涤该产物,然后回收所得洗液。
7.根据权利要求6所要求的方法,其中所述回收洗液是得自第二或随后洗涤过程的液体。
8.权利要求6或权利要求7的方法的产物。
9.胶态LEV晶体,由权利要求1-5中任何一项所要求的悬浮液回收得到,或通过权利要求6或权利要求7所要求的方法制备并从洗液中分离而得到。
10.一种制备结晶分子筛的方法,该方法包括,在适合形成所需分子筛的时间和温度下,处理包含形成分子筛所需的元素和胶态LEV结晶分子筛种子的合成混合物。
11.根据权利要求10所要求的方法,其中所需分子筛是LEV结构类型的。
12.根据权利要求11所要求的方法,其中所需分子筛为插晶菱沸石、ZK-20、NU-3或ZSM-45。
13.一种制备结晶分子筛的方法,包括,在用于形成第一结构类型分子筛的充分的时间和适当温度下,对包含形成非LEV的第一结构类型分子筛所需的元素和胶体LEV结晶分子筛种子晶体的合成混合物进行处理。
14.根据权利要求11所要求的方法,其中将胶态LEV结构类型种子用于制备MFS、CHA、OFF、MOR、FER、MAZ、EUO或ERI/OFF结构类型的结晶分子筛。
15.根据权利要求14所要求的方法,其中所制结晶分子筛为菱沸石,一种CHA结构类型含磷的分子筛、丝光沸石、镁碱沸石、Linde沸石T、针沸石、钾沸石、ZSM-57、ZSM-38、或ZSM-50。
16.胶体LEV种子晶体的应用,用于在通过将适用于制备该分子筛的合成混合物进行热处理合成非LEV结构类型结晶分子筛中,以便控制产物形态。
17.根据权利要求16所要求的应用,其中胶体LEV种子用于形成圆盘状形态的Linde沸石T。
18.胶体LEV种子晶体在合成结晶分子筛时用于控制所得结晶分子筛特性的应用。
19.根据权利要求18所要求的应用,其中所述特性为纯度、粒径、或粒径分布。
20.胶体LEV种子晶体的应用,用于在合成结晶分子筛时在基本上不存在有机结构引导剂的情况下促进制备分子筛、或加速形成产物。
21.结晶分子筛,通过根据权利要求10-20中任何一项所要求的方法或应用而制成。
22.权利要求21的结晶分子筛,具有适用作催化剂或分离或吸收介质的化学形式。
23.使用权利要求22所要求的筛进行的烃转化、分离、或吸收。
24.使用权利要求22所要求的筛进行的含氧物转化。
CNB998091502A 1998-07-29 1999-07-28 结晶分子筛 Expired - Fee Related CN1214976C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB9816508.7 1998-07-29
GBGB9816505.3A GB9816505D0 (en) 1998-07-29 1998-07-29 Process for manufacture of molecular sieves
GBGB9816508.7A GB9816508D0 (en) 1998-07-29 1998-07-29 Molecular sieves and processes for their manufacture
GB9816505.3 1998-07-29

Publications (2)

Publication Number Publication Date
CN1311758A true CN1311758A (zh) 2001-09-05
CN1214976C CN1214976C (zh) 2005-08-17

Family

ID=26314135

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB998091502A Expired - Fee Related CN1214976C (zh) 1998-07-29 1999-07-28 结晶分子筛
CN99809151A Pending CN1311757A (zh) 1998-07-29 1999-07-28 制备分子筛的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN99809151A Pending CN1311757A (zh) 1998-07-29 1999-07-28 制备分子筛的方法

Country Status (16)

Country Link
US (2) US6974889B1 (zh)
EP (2) EP1105347B1 (zh)
JP (2) JP4693239B2 (zh)
KR (2) KR100624246B1 (zh)
CN (2) CN1214976C (zh)
AT (1) ATE236080T1 (zh)
AU (2) AU5177399A (zh)
BR (1) BR9912472A (zh)
CA (2) CA2337505A1 (zh)
DE (1) DE69906545T2 (zh)
DK (1) DK1105348T3 (zh)
ES (1) ES2194490T3 (zh)
ID (1) ID28170A (zh)
NO (1) NO20010463L (zh)
RU (1) RU2001104888A (zh)
WO (2) WO2000006493A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103068732A (zh) * 2010-06-18 2013-04-24 巴斯夫欧洲公司 制备lev型结构的沸石材料的无有机模板合成法
CN103118981A (zh) * 2010-06-18 2013-05-22 巴斯夫欧洲公司 Lev型结构的沸石材料的无碱合成
CN103917492A (zh) * 2011-09-09 2014-07-09 巴斯夫欧洲公司 使用再循环母液的无有机模板合成制备沸石材料的方法
CN105339343A (zh) * 2013-03-08 2016-02-17 英国石油化学品有限公司 羰基化催化剂和方法
CN109485067A (zh) * 2017-09-13 2019-03-19 中国科学院大连化学物理研究所 一种Beta-FER共晶分子筛的合成方法
CN114713278A (zh) * 2022-03-30 2022-07-08 中触媒新材料股份有限公司 一种全结晶zsm-35分子筛的制备方法及其在烯烃异构反应中的应用

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9816508D0 (en) * 1998-07-29 1998-09-23 Exxon Chemical Patents Inc Molecular sieves and processes for their manufacture
DK0999182T3 (da) * 1998-11-02 2003-07-14 Inst Francais Du Petrole Fremgangsmåde til fremstilling af en zeolit af strukturtypen EUO ved hjælp af kim af zeolitiske materialer og anvendelse heraf som katalysator til isomerisering af aromatiske forbindelser med otte carbonatomer
ZA997664B (en) * 1998-12-23 2001-06-14 Inst Francais Du Petrole Euo zeolite comprising crystals and aggregates of crystals with specific granulometrys and its use as a catalyst in the isomerisation of C8 aromatic compounds.
FR2808519B1 (fr) * 2000-05-05 2002-08-02 Inst Francais Du Petrole Zeolithe de type structural euo de faible rapport si/al et son utilisation en tant que catalyseur d'isomerisation des coupes c8 aromatiques
WO2003029144A1 (en) 2001-09-28 2003-04-10 Exxonmobil Chemical Patents Inc. Crystalline molecular sieves
US6773688B2 (en) 2001-11-29 2004-08-10 Exxonmobil Chemical Patents Inc. Process for manufacture of molecular sieves
US6696032B2 (en) 2001-11-29 2004-02-24 Exxonmobil Chemical Patents Inc. Process for manufacturing a silicoaluminophosphate molecular sieve
JP4552071B2 (ja) * 2002-08-15 2010-09-29 三菱化学株式会社 鉄アルミノフォスフェートの製造方法
US7009086B2 (en) 2002-10-29 2006-03-07 Exxonmobil Chemical Patents Inc. Use of molecular sieves for the conversion of oxygenates to olefins
US7375050B2 (en) 2003-04-28 2008-05-20 Exxonmobil Chemical Patents Inc. Synthesis and use of aluminophosphates and silicoaluminophosphates
WO2005063622A2 (en) 2003-12-23 2005-07-14 Exxonmobil Chemical Patents Inc. Chabazite-type molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins
JP4842143B2 (ja) * 2003-12-23 2011-12-21 エクソンモービル・ケミカル・パテンツ・インク カバサイト含有モレキュラーシーブ、その合成及びオイシジェネートからオレフィンへの変換におけるその使用
CN100569646C (zh) * 2004-10-28 2009-12-16 中国石油化工股份有限公司 一种ael结构分子筛的合成方法
EP1824782A1 (en) * 2004-11-19 2007-08-29 Agency for Science, Technology and Research Crystalline oxide material and its synthesis
US7547812B2 (en) * 2005-06-30 2009-06-16 Uop Llc Enhancement of molecular sieve performance
US7678955B2 (en) 2005-10-13 2010-03-16 Exxonmobil Chemical Patents Inc Porous composite materials having micro and meso/macroporosity
EP1996328B1 (en) 2006-02-14 2016-07-13 ExxonMobil Chemical Patents Inc. Method of preparing a molecular sieve composition
CN103193248A (zh) 2006-02-14 2013-07-10 埃克森美孚化学专利公司 用于制备mfs 结构型分子筛的方法及其应用
US8859836B2 (en) 2006-02-14 2014-10-14 Exxonmobil Chemical Patents Inc. Hydrocarbon conversion process using molecular sieve of MFS framework type
CN101384368A (zh) 2006-02-14 2009-03-11 埃克森美孚化学专利公司 分子筛组合物
JP4934684B2 (ja) 2006-02-14 2012-05-16 エクソンモービル・ケミカル・パテンツ・インク 高生産性のモレキュラーシーブの製造方法
CN101384367B (zh) 2006-02-14 2012-05-30 埃克森美孚化学专利公司 一种制造mcm-22族分子筛的方法
WO2007094938A1 (en) 2006-02-14 2007-08-23 Exxonmobil Chemical Patents Inc. An mcm-22 family molecular sieve composition
US8383079B2 (en) 2006-04-17 2013-02-26 Exxonmobil Chemical Patents Inc. Molecular sieves having micro and mesoporosity, their synthesis and their use in the organic conversion reactions
CN101443298A (zh) 2006-05-15 2009-05-27 科罗拉多州立大学董事会 用于co2/ch4分离的高通量和高选择性的sapo-34膜
WO2007145724A1 (en) 2006-06-09 2007-12-21 Exxonmobil Chemical Patents Inc. Treatment of cha-type molecular sieves and their use in the conversion of oxygenates to olefins
CN101121145B (zh) * 2006-08-08 2010-10-20 中国科学院大连化学物理研究所 一种含氧化合物转化制烯烃微球催化剂及其制备方法
CN101121533B (zh) * 2006-08-08 2010-05-19 中国科学院大连化学物理研究所 具有微孔、中孔结构的sapo-34分子筛及合成方法
WO2008106519A1 (en) * 2007-02-27 2008-09-04 Basf Catalysts Llc Copper cha zeolite catalysts
CA2679599C (en) * 2007-02-27 2016-01-05 Basf Catalysts Llc Bifunctional catalysts for selective ammonia oxidation
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
US8302782B2 (en) 2007-03-09 2012-11-06 The Regents of the University of Colorado, a body corporated Synthesis of zeolites and zeolite membranes using multiple structure directing agents
EP3626329B1 (en) 2007-04-26 2021-10-27 Johnson Matthey Public Limited Company Exhaust system comprising copper/zsm-34 zeolite scr catalyst and method of converting nitrogen oxides
US10052610B1 (en) * 2007-12-13 2018-08-21 University Of Puerto Rico Removal of carbon dioxide from gas mixtures using ion-exchanged silicoaluminophosphates
US20090196812A1 (en) * 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
US8715618B2 (en) * 2008-05-21 2014-05-06 Basf Se Process for the direct synthesis of Cu containing zeolites having CHA structure
US8182780B2 (en) * 2008-07-25 2012-05-22 Exxonmobil Chemical Patents Inc. Synthesis of chabazite-containing molecular sieves and their use in the conversion of oxygenates to olefins
US20100087610A1 (en) * 2008-10-06 2010-04-08 Vaughn Stephen N Method Of Preparing And Using A Molecular Sieve
US8524185B2 (en) 2008-11-03 2013-09-03 Basf Corporation Integrated SCR and AMOx catalyst systems
US10583424B2 (en) 2008-11-06 2020-03-10 Basf Corporation Chabazite zeolite catalysts having low silica to alumina ratios
EP2192807B1 (en) * 2008-12-01 2012-10-03 Vodafone Holding GmbH Access control for M2M ("machine-to-machine") devices in a mobile communication network
SG178331A1 (en) 2009-08-28 2012-03-29 Exxonmobil Chem Patents Inc Method of making and use of molecular sieve of mfs framework type with controllable average size
KR20120086711A (ko) * 2009-10-14 2012-08-03 바스프 코포레이션 NOx의 선택적 환원을 위한 구리 함유 레빈 분자체
US8293199B2 (en) 2009-12-18 2012-10-23 Basf Corporation Process for preparation of copper containing molecular sieves with the CHA structure, catalysts, systems and methods
US8293198B2 (en) * 2009-12-18 2012-10-23 Basf Corporation Process of direct copper exchange into Na+-form of chabazite molecular sieve, and catalysts, systems and methods
US8470293B2 (en) 2009-12-18 2013-06-25 Exxonmobil Chemical Patents Inc. Method of preparing a molecular sieve and its use in the conversion of oxygenates to olefins
AU2011245307B2 (en) 2010-04-29 2014-10-09 The Regents Of The University Of Colorado, A Body Corporate High flux SAPO-34 membranes for CO2/CH4 separation and template removal method
US8293182B2 (en) 2010-05-05 2012-10-23 Basf Corporation Integrated SCR and AMOx catalyst systems
JP5628413B2 (ja) 2010-05-05 2014-11-19 ビーエーエスエフ コーポレーション 触媒化煤煙フィルターおよび排出処理システムおよび方法
WO2011157839A1 (en) 2010-06-18 2011-12-22 Basf Se Organotemplate-free synthetic process for the production of a zeolitic material of the lev-type structure
US9334171B2 (en) * 2010-06-18 2016-05-10 Basf Se Alkali-free synthesis of zeolitic materials of the LEV-type structure
WO2011158218A1 (en) * 2010-06-18 2011-12-22 Basf Se Zeolitic materials of lev-type structure and methods for their production
JP5351216B2 (ja) 2010-07-01 2013-11-27 日本化学工業株式会社 ゼオライトの製造方法
JP5609345B2 (ja) * 2010-07-12 2014-10-22 トヨタ自動車株式会社 プロピレンの製造方法
US8722000B2 (en) 2011-03-29 2014-05-13 Basf Corporation Multi-component filters for emissions control
US9174849B2 (en) 2011-08-25 2015-11-03 Basf Corporation Molecular sieve precursors and synthesis of molecular sieves
WO2013035077A1 (en) 2011-09-09 2013-03-14 Basf Se Process for the organotemplate-free synthetic production of a zeolitic material using recycled mother liquor
WO2013038372A2 (en) 2011-09-16 2013-03-21 Basf Se Process for the production of a core/shell zeolitic material having a cha framework structure
PL2776369T3 (pl) 2011-11-11 2022-06-20 Basf Se Sposób syntezy wolny od matrycy organicznej dla wytworzenia materiału zeolitowego o strukturze typu CHA
US9527751B2 (en) * 2011-11-11 2016-12-27 Basf Se Organotemplate-free synthetic process for the production of a zeolitic material of the CHA-type structure
JP5810967B2 (ja) * 2012-02-23 2015-11-11 東ソー株式会社 微結晶チャバザイト型ゼオライト及びその製造方法並びにその用途
EP2676728A1 (en) 2012-06-18 2013-12-25 ExxonMobil Chemical Patents Inc. Synthesis of crystalline molecular sieves having the EUO framework type
CN102838131B (zh) * 2012-09-17 2015-02-18 神华集团有限责任公司 Sapo-34分子筛及其制备方法
JP6469578B2 (ja) 2012-10-19 2019-02-13 ビーエーエスエフ コーポレーション 混合金属8員環小孔分子ふるい触媒組成物、触媒製品、システム及び方法
JP6664961B2 (ja) 2012-10-19 2020-03-13 ビーエーエスエフ コーポレーション 高温scr触媒としての8員環小孔分子ふるい
EP2908944A4 (en) 2012-10-19 2016-07-06 Basf Corp 8-RING MOLECULAR SINGLE WITH SMALL PORES AND A PROMOTER TO INCREASE TIE TEMPERATURE PERFORMANCE
EP2928824B1 (en) * 2012-12-10 2017-08-09 ExxonMobil Research and Engineering Company Seeded synthesis of aluminosilicate cha molecular sieve
MX2015011264A (es) 2013-03-14 2016-04-28 Basf Corp Sistema de catalizadores para reduccion catalitica selectiva.
KR102211490B1 (ko) 2013-03-14 2021-02-04 바스프 코포레이션 선택적 촉매 환원 촉매 시스템
WO2015061544A1 (en) * 2013-10-24 2015-04-30 W. R. Grace & Co.-Conn. Method for synthesizing silicoaluminophosphate-34 molecular sieves
KR102429402B1 (ko) 2014-10-21 2022-08-05 바스프 코포레이션 Twc 촉매 및 scr-hct 촉매를 갖는 배출물 처리 시스템
EP3271290A4 (en) 2015-03-20 2018-12-12 BASF Corporation Zeolitic materials and methods of manufacture
JP6885927B2 (ja) 2015-09-04 2021-06-16 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se 一体型scr及びアンモニア酸化触媒システム
CN105692643B (zh) * 2016-01-21 2018-02-27 嘉兴学院 利用zsm‑57沸石晶种的模板效应合成其它结构沸石晶体的方法
KR20180114238A (ko) 2016-03-08 2018-10-17 바스프 코포레이션 감소된 n2o 배출을 나타내는 이온-교환된 분자체 촉매
CA3041422A1 (en) 2016-10-24 2018-05-03 Basf Corporation Integrated scr catalyst and lnt for nox abatement
JP6856895B2 (ja) * 2016-11-22 2021-04-14 国立大学法人広島大学 Lev型ゼオライト
US11471863B2 (en) 2017-02-08 2022-10-18 Basf Corporation Catalytic articles
KR102471292B1 (ko) 2017-04-04 2022-11-29 바스프 코포레이션 통합된 배출물 제어 시스템
KR102484742B1 (ko) 2017-04-04 2023-01-05 바스프 코포레이션 차량 내장식 수소 생성 및 배기 스트림에서의 용도
CN110678630B (zh) 2017-04-04 2023-10-31 巴斯夫公司 在车上生成氨和氢
WO2018185661A1 (en) 2017-04-04 2018-10-11 Basf Corporation Hydrogen reductant for catalytic pollution abatement
WO2018185655A1 (en) 2017-04-04 2018-10-11 Basf Corporation Ammonia generation system for nox emission control
JP7295027B2 (ja) 2017-04-04 2023-06-20 ビーエーエスエフ コーポレーション 水素支援型の統合された排ガス調整システム
US11524281B2 (en) 2017-10-31 2022-12-13 China Petroleum & Chemical Corporation Phosphorus-containing molecular sieve, its preparation and application thereof
CN108083292B (zh) * 2018-01-31 2020-12-29 吉林大学 一种磷掺杂cha分子筛、制备方法及其应用
CN111742121B (zh) 2018-02-19 2022-08-16 巴斯夫公司 具有上游scr催化剂的排气处理系统
JP2021533992A (ja) 2018-08-22 2021-12-09 ビーエーエスエフ コーポレーション 先進的なnox還元触媒
US10899627B2 (en) 2019-06-19 2021-01-26 Exxonmobil Chemical Patents Inc. Process for making molecular sieves
KR20230039716A (ko) 2020-07-16 2023-03-21 엑손모빌 케미칼 패턴츠 인코포레이티드 Mww 골격 유형의 분자체를 합성하는 방법
CN112194151B (zh) * 2020-09-03 2021-08-27 河南神马催化科技股份有限公司 一种sapo-34分子筛的制备方法
CN114644347B (zh) * 2020-12-17 2023-07-04 中国石油化工股份有限公司 一种sapo-20分子筛及其制备方法
JP2024509153A (ja) 2021-03-03 2024-02-29 エクソンモービル ケミカル パテンツ インコーポレイテッド Mww骨格型の分子ふるいを合成する方法
CN113979443B (zh) * 2021-12-01 2023-11-24 郑州大学 一种纳米sapo-34分子筛的制备方法
WO2024133298A1 (en) 2022-12-21 2024-06-27 Basf Corporation Ammonia oxidation catalyst with zoned scr inlet and pgm outlet for gasoline applications
CN116273147B (zh) * 2023-03-27 2024-06-28 中安联合煤化有限责任公司 一种磷掺杂改性zsm-35分子筛催化剂及其制备方法和应用

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1062064A (en) 1964-05-13 1967-03-15 British Petroleum Co Synthetic zeolite production
US4166099A (en) 1974-04-20 1979-08-28 W. R. Grace & Co. Preparation of zeolites
DE2437914A1 (de) 1974-08-07 1976-02-19 Bayer Ag Verfahren zur herstellung von synthetischem zeolith mit faujasitstruktur
GB1567948A (en) 1976-07-22 1980-05-21 Ici Ltd Zeolite synthesis
DE2719425C2 (de) 1977-04-30 1984-04-12 Hoechst Ag, 6230 Frankfurt Verfahren zur Abtrennung von Zeolithkristallen
US4173622A (en) 1978-01-03 1979-11-06 Fmc Corporation Zeolite A crystals of uniformly small particle size and the manufacture thereof
US4177653A (en) 1978-10-20 1979-12-11 Chevron Research Company Slush filtration method
US4340573A (en) 1979-01-03 1982-07-20 W. R. Grace & Co. Preparation of zeolites
US4247524A (en) 1979-10-01 1981-01-27 Atlantic Richfield Company Preparation of zeolite A by hydrothermal treatment of clinoptilolite
US4440871A (en) * 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
CA1204718A (en) * 1982-09-27 1986-05-20 Edward J. Rosinski Zeolite
NZ206295A (en) * 1982-11-22 1986-09-10 Mobil Oil Corp Preparation of zeolites
US4495303A (en) * 1983-11-29 1985-01-22 Mobil Oil Corporation Process for making zeolite ZSM-45 with a dimethyldiethylammonium directing agent
US4650655A (en) 1984-07-26 1987-03-17 Mobil Oil Corporation Crystallization of ZSM-5 from reaction mixtures containing zeolite beta
BR8506248A (pt) 1985-12-13 1987-06-30 Petroleo Brasileiro Sa Processo de preparacao de zeolito tipo zsm-5
US4814316A (en) * 1987-06-04 1989-03-21 Uop Novel catalyst composition, and processes for making and using same
SU1503221A1 (ru) 1987-11-30 1991-10-23 Институт общей и неорганической химии АН БССР Способ получени цеолита со структурой феррьерита
FR2656292B1 (fr) 1989-12-21 1992-05-07 Inst Francais Du Petrole Zeolithe de type levyne et son procede de preparation.
GB9122498D0 (en) 1991-10-23 1991-12-04 Exxon Chemical Patents Inc Process for preparing uniform mfitype zeolite crystals
JP3172246B2 (ja) 1992-04-17 2001-06-04 出光興産株式会社 排ガス中の炭化水素類浄化用吸着材の製造方法
US5863516A (en) * 1992-09-02 1999-01-26 Exxon Chemical Patent Inc. Micro particles
ATE339249T1 (de) 1993-04-23 2006-10-15 Exxonmobil Res & Eng Co Molekularsiebschichten und verfahren zu ihrer herstellung
US5370851A (en) * 1993-05-27 1994-12-06 Uop Crystalline silicoalumino phosphates: SAPO-36 and SAPO-56
US5501848A (en) 1994-02-08 1996-03-26 Chevron U.S.A. Inc. Method for preparing crystalline aluminophosphate materials using azapolycyclic templating agents
ATE200658T1 (de) 1995-07-10 2001-05-15 Exxon Chemical Patents Inc Zeolithe und verfahren zu deren herstellung
EP0753483A1 (en) 1995-07-10 1997-01-15 Exxon Chemical Patents Inc. Zeolites and processes for their manufacture
EP0753485A1 (en) * 1995-07-10 1997-01-15 Exxon Chemical Patents Inc. Zeolites and processes for their manufacture
EP0753484A1 (en) * 1995-07-10 1997-01-15 Exxon Chemical Patents Inc. Zeolites and processes for their manufacture
KR970705517A (ko) 1995-07-10 1997-10-09 만셀 케이쓰 로드니 제올라이트 및 그의 제조 방법(zeolites and processes for their manufacture)
WO1997003021A1 (en) 1995-07-10 1997-01-30 Exxon Chemical Patents Inc. Zeolites and processes for their manufacture
NO304108B1 (no) * 1996-10-09 1998-10-26 Polymers Holding As En mikroporos silikoaluminofosfat-sammensetning, katalytisk materiale som omfatter denne sammensetningen og fremgangsmate for fremstilling derav, og bruken av disse for a fremstille olefiner fra metanol
MX218796B (es) * 1996-10-17 2004-01-23 Exxon Chemical Patents Inc Conversion de hidrocarburos usando un catalizador de zeolita de cristales grandes.
ZA979264B (en) * 1996-10-17 1998-12-29 Exxon Chemical Patents Inc Synthesis of large crystal zeolites
EP1044069B1 (en) * 1997-12-03 2002-04-17 ExxonMobil Chemical Patents Inc. Preparation of zeolite bound by mfi structure type zeolite and use thereof
US5912393A (en) * 1997-12-09 1999-06-15 Uop Llc Metallo aluminophosphate molecular sieve with novel crystal morphology and methanol to olefin process using the sieve
GB9816508D0 (en) * 1998-07-29 1998-09-23 Exxon Chemical Patents Inc Molecular sieves and processes for their manufacture

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103068732A (zh) * 2010-06-18 2013-04-24 巴斯夫欧洲公司 制备lev型结构的沸石材料的无有机模板合成法
CN103118981A (zh) * 2010-06-18 2013-05-22 巴斯夫欧洲公司 Lev型结构的沸石材料的无碱合成
CN103068732B (zh) * 2010-06-18 2015-03-18 巴斯夫欧洲公司 制备lev型结构的沸石材料的无有机模板合成法
CN103118981B (zh) * 2010-06-18 2015-08-19 巴斯夫欧洲公司 Lev型结构的沸石材料的无碱合成
CN103917492A (zh) * 2011-09-09 2014-07-09 巴斯夫欧洲公司 使用再循环母液的无有机模板合成制备沸石材料的方法
CN103917492B (zh) * 2011-09-09 2016-08-17 巴斯夫欧洲公司 使用再循环母液的无有机模板合成制备沸石材料的方法
CN105339343A (zh) * 2013-03-08 2016-02-17 英国石油化学品有限公司 羰基化催化剂和方法
CN105339343B (zh) * 2013-03-08 2017-08-29 英国石油化学品有限公司 羰基化催化剂和方法
CN109485067A (zh) * 2017-09-13 2019-03-19 中国科学院大连化学物理研究所 一种Beta-FER共晶分子筛的合成方法
CN109485067B (zh) * 2017-09-13 2021-12-17 中国科学院大连化学物理研究所 一种Beta-FER共晶分子筛的合成方法
CN114713278A (zh) * 2022-03-30 2022-07-08 中触媒新材料股份有限公司 一种全结晶zsm-35分子筛的制备方法及其在烯烃异构反应中的应用
CN114713278B (zh) * 2022-03-30 2023-10-27 中触媒新材料股份有限公司 一种全结晶zsm-35分子筛的制备方法及其在烯烃异构反应中的应用

Also Published As

Publication number Publication date
DE69906545D1 (de) 2003-05-08
KR20010079583A (ko) 2001-08-22
CA2337505A1 (en) 2000-02-10
DE69906545T2 (de) 2004-03-04
WO2000006493A1 (en) 2000-02-10
DK1105348T3 (da) 2003-07-28
ES2194490T3 (es) 2003-11-16
CN1311757A (zh) 2001-09-05
BR9912472A (pt) 2001-04-17
EP1105347A1 (en) 2001-06-13
CA2337628A1 (en) 2000-02-10
KR100624246B1 (ko) 2006-09-13
US6974889B1 (en) 2005-12-13
JP4693239B2 (ja) 2011-06-01
AU5177399A (en) 2000-02-21
JP2002521303A (ja) 2002-07-16
WO2000006494A1 (en) 2000-02-10
KR20010079581A (ko) 2001-08-22
NO20010463D0 (no) 2001-01-26
EP1105348A1 (en) 2001-06-13
CN1214976C (zh) 2005-08-17
EP1105348B1 (en) 2003-04-02
ID28170A (id) 2001-05-10
RU2001104888A (ru) 2003-01-27
EP1105347B1 (en) 2012-11-28
AU750576B2 (en) 2002-07-25
ATE236080T1 (de) 2003-04-15
AU5178299A (en) 2000-02-21
US7264789B1 (en) 2007-09-04
NO20010463L (no) 2001-03-28
JP2002521304A (ja) 2002-07-16

Similar Documents

Publication Publication Date Title
CN1214976C (zh) 结晶分子筛
CN1180978C (zh) 微孔结晶硅铝磷酸盐组合物,含它的催化材料及其应用
CN106904636B (zh) 一种具有微孔-介孔的多级孔道结构的ssz-13分子筛及其合成方法和应用
CN1048001C (zh) Zsm-5沸石
JP4455679B2 (ja) 大結晶ゼオライトの製造方法
CN1930083A (zh) 具有异质结构的非zsm-48引晶的zsm-48晶体的合成
CN1484615A (zh) 结晶状硅铝酸盐沸石组合物:uzm-4以及使用该组合物的方法
CN1041508C (zh) Zsm-22沸石的制备方法
EP1105346B1 (en) Molecular sieves and processes for their manufacture
CN1596222A (zh) 分子筛的生产方法
CN208032577U (zh) 分子筛搅拌合成装置
CN107792864A (zh) 一种粒径可控p‑zsm‑5分子筛的制备方法
US9387465B2 (en) Process for producing molecular sieve materials
CN1479695A (zh) 结晶状分子筛
CN110451519A (zh) 一种含有mtw结构的共晶材料及其制备方法
CN109665540B (zh) 一种zsm-5/zsm-48共晶分子筛及其制备方法与应用
CN1161030A (zh) 沸石及其制备方法
KR102291888B1 (ko) 제어된 입자 크기를 가진 제올라이트 결정들의 다중 반응기 합성을 위한 방법
CN116002706A (zh) 一种分子筛膜及其制备方法和应用
CN1161029A (zh) 沸石及其制备方法
ZA200100579B (en) Crystalline molecular sieves.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20050817

Termination date: 20160728

CF01 Termination of patent right due to non-payment of annual fee