CN113979443B - 一种纳米sapo-34分子筛的制备方法 - Google Patents

一种纳米sapo-34分子筛的制备方法 Download PDF

Info

Publication number
CN113979443B
CN113979443B CN202111453772.7A CN202111453772A CN113979443B CN 113979443 B CN113979443 B CN 113979443B CN 202111453772 A CN202111453772 A CN 202111453772A CN 113979443 B CN113979443 B CN 113979443B
Authority
CN
China
Prior art keywords
sapo
molecular sieve
seed crystal
mixture
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111453772.7A
Other languages
English (en)
Other versions
CN113979443A (zh
Inventor
郜贝贝
皇甫晓威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202111453772.7A priority Critical patent/CN113979443B/zh
Publication of CN113979443A publication Critical patent/CN113979443A/zh
Application granted granted Critical
Publication of CN113979443B publication Critical patent/CN113979443B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates [SAPO compounds], e.g. CoSAPO
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/38Particle morphology extending in three dimensions cube-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明涉及一种纳米SAPO‑34分子筛的制备方法,属于分子筛技术领域。本发明使用廉价的模板剂,采用传统水热合成方法,其特征在于,将铝源、磷源、硅源及水混合而成的凝胶搅拌均匀后,加入有机模板剂处理后的异质分子筛混合液作为晶种导向液,诱导制备纳米SAPO‑34分子筛。该方法操作简单,制备的SAPO‑34分子筛在甲醇制烯烃反应中表现出优良的性能。

Description

一种纳米SAPO-34分子筛的制备方法
技术领域
本发明涉及一种具有纳米形貌的SAPO-34分子筛的制备方法。本发明还涉及上述方法合成的SAPO-34分子筛在酸催化反应中的应用。
背景技术
低碳烯烃,尤其是乙烯、丙烯,作为重要的平台化合物,是现代化学工业的基石。传统的烯烃目前主要通过石脑油裂解制备,而我国石油资源相对匮乏。近年来,石油价格持续攀升,传统的石油路线已经不能满足生产需要。因此,发展以非石油路线制取低碳烯烃的化工技术,具有重大意义。甲醇来源广泛,可从丰富的非石油资源(例如天然气、煤炭、生物质等)生产得到。目前,甲醇制烯烃(MTO)工艺已被证明是一种成功的非石油路线制备低碳烯烃的途径。而催化剂作为MTO工艺的核心技术,是掌握和开发甲醇制烯烃成套技术的关键。
SAPO-34分子筛的晶体骨架结构为CHA型,属于三方晶系,R-3m空间群。它的结构是由双六元环结构单元按ABC的堆积方式排列而成,形成一个具有八元环开孔的椭球形笼状结构和三维交叉孔道。由于其特殊的孔道结构和适宜的酸性质,在甲醇制烯烃(MTO)反应中呈现出优异的催化性能(Applied Catalysis,1990,64:31-40)。然而,传统的SAPO-34分子筛催化剂容易失活,单程寿命较短。研究表明,降低SAPO-34晶粒尺寸,可以有效改善扩散限制,延长催化剂寿命(Microporous and Mesoporous Materials,1999,29:191-203)。
现有合成SAPO-34分子筛的技术所得到的产品晶粒通常较大,制备的催化剂容易失活,因此研究开发合成小晶粒SAPO-34分子筛的方法具有重要意义,尤其是采用更加廉价的模板剂来合成小晶粒SAPO-34具有重要的工业应用意义。专利WO00/06493描述了通过搅动作用例如搅拌或翻滚获得粒度较小且粒度分布较窄的含磷分子筛。WO2003/048042报道了通过用正硅酸乙酯作硅源获得小粒度SAPO-34分子筛的方法,所采用的结构导向剂是TEAOH或TEAOH和DPA的混合物。专利CN101462742 研究了一种小晶粒SAPO-34的合成方法,其在胶体混合物形成过程中加入结构导向剂三乙胺和氟化物,胶体混合物先经过一个老化过程后,再进行晶化过程制备小晶粒SAPO-34。CN101823728则通过水热合成凝胶并老化处理,再利用双氧水氧化处理,最后经过超声波分散及真空干燥得到小晶粒SAPO-34分子筛。专利CN10124974公开了一种制备小晶粒SAPO-34 分子筛的方法,以廉价的三乙胺为模板剂,在超声波老化条件下合成小晶粒SAPO-34,可将粒径减小至原来的二分之一。CN103332702将铝源、磷源、硅源、溶剂、模板剂形成的凝胶在晶化前增加凝胶的老化步骤,所制备的SAPO-34产品平均粒径小于2μm。CN102275948通过混合铝源、硅源、有机胺和部分水,使该混合溶液在高温自生压力下预处理一定时间,然后原位高温加入磷源和剩余水的混合溶液,晶化合成小晶粒SAPO-34。 CN103641131A和CN102616810A公开了一种薄片状SAPO-34的制备方法,但该方法采用昂贵的四乙基氢氧化铵做模板剂,限制了其工业应用。
总之,现有技术通常需要在体系中加入氟化物等无机物,采用昂贵的四乙基氢氧化铵做模板剂,或采用超声等方法来减小晶粒尺寸。然而,超声波老化技术工业应用比较困难,加入HF等也不利于工业生产,且所能达到的减小晶粒尺寸的效果也有限。
晶种辅助法是一种简单、经济、高效的纳米分子筛制备方法。专利 CN101555024报道了一种向含有模板剂、铝源、硅源和水的混合液加入 SAPO-34分子筛原粉固态晶种,可以降低模板剂用量,但未提及晶种加入对产品晶粒尺寸的作用。刘红星等在CN101284673专利中提供了向晶化液中加入平均尺度小于1μm的小晶粒作为晶种的方法,但得到的产物粒径通常大于加入晶种的粒径,当加入粒径为200nm的晶种时,得到的产品粒径可至900nm。专利CN102464338采用将磷源、铝源、硅源、模板剂、 HF和水配制成合成SAPO-34分子筛的初始凝胶混合物,在170~220℃下水热晶化得到的溶液作为晶化导向剂,加入到初始凝胶混合物进行水热晶化反应的方法来制备小晶粒SAPO-34。但该方法中体系中存在HF,同时,晶种导向剂的加入量需达到溶液总体积的30~60%。于吉红等以廉价的三乙胺及吗啉为唯一模板,采用晶种辅助法制备出了晶体尺寸为300~800nm 的SAPO-34催化剂(Journal ofMaterials Chemistry A,2016,4:14978-14982; Chemical Communications,2017,53:13328-13331)。然而,该方法中采用的纳米晶种以昂贵的四乙基氢氧化铵为模板剂制备,对晶种的要求较高。杨淼等(Chemical Communications,2014,50:1845-1847)采用“top-down”的合成路线,将以二乙胺为模板剂水热合成的微米SAPO-34晶体经球磨粉碎后作为晶种,以三乙胺为模板剂进行再晶化,制备了尺寸为50~350nm 的SAPO-34。专利CN104340986采用将SAPO-34分子筛预处理(首选机械破碎)得到的粒度为10~800nm的结晶度降低的颗粒作为晶化前驱体,并通过二次晶化使晶体结构修复制备纳米分子筛。王亚权等则将三乙胺合成的微米SAPO-34经吗啉常压回流处理破碎,作为晶种制备了200~500nm 的纳米SAPO-34(AppliedCatalysisA:General,2020,589,117314)。然而,在合成SAPO-34分子筛时经常遇到混晶或转晶现象(Chemical Materials,2011,23,1406-1413;CrystEngComm,2016,18,1000-1008),通常的伴生相有SAPO-5、SAPO-18、SAPO-56和DNL-6等,这为使用异质晶种导向合成SAPO-34提供了可能。
发明内容
本发明的目的在于提供一种通过异质晶种辅助,利用廉价的模板剂制备纳米SAPO-34分子筛的方法。
本发明的又一目的在于提供一种酸催化反应,尤其是醇类化合物、卤代化合物转化制烯烃反应和烯烃转化反应催化剂。
本发明采用传统的水热合成方式,先将常规异质晶种通过有机胺处理成晶种导向液后引入合成体系,在高压水热釜中通过自生压力,制备纳米 SAPO-34分子筛。
本发明制备的SAPO-34分子筛晶粒尺寸为20~800nm,作为甲醇制烯烃反应的催化剂,可以极大改善扩散限制,减缓积碳的生成,从而延长催化剂的催化寿命,提高低碳烯烃的选择性。
本发明的特征在于合成步骤如下:
1、将异质晶种、有机模板剂和去离子水加入水热合成釜中,搅拌均匀后将水热合成釜密闭并转移至转动烘箱内,升温至60~120℃并保持 2~45h,得到晶种导向液A;
2、将铝源、磷源、硅源和水混合,均匀搅拌后得到合成SAPO-34分子筛的初始凝胶混合物B;
3、将晶种导向液A加入混合物B中,搅拌均匀后陈化0~24h,所得凝胶前驱体中各组分的摩尔比例如下:(1.5~6.0)R:1.0Al2O3:(0.5~3.0) P2O5:(0.05~2.0)SiO2:(20~200)H2O,其中R为有机模板剂;
4、向所述步骤3得到的凝胶前驱体置于高压反应釜中在自生压力下进行恒温晶化,待晶化完成后,将固体产物经离心分离,用去离子水洗涤至中性,在80~120℃空气中干燥,得到SAPO-34分子筛原粉。
所述步骤1中的异质晶种为焙烧后的SAPO-44、SAPO-47、SAPO-5、 SAPO-18、SAPO-56和DNL-6中的一种或任意几种的混合物;异质晶种的质量为最终凝胶前驱体中氧化物干基质量的0.05~8%;优选地,异质晶种的质量为最终凝胶前驱体中氧化物干基质量的0.1~4%;有机胺为 SAPO-34分子筛的有机模板剂,可为三乙胺、二乙胺、吗啉、二异丙胺、二正丙胺、异丙胺、正丁胺、哌嗪、二乙醇胺或三乙醇胺的任意一种或任意几种的混合物。
所述步骤2中的铝源为铝盐、活性氧化铝、异丙醇铝、氢氧化铝、拟薄水铝石或偏高岭土中的一种或任意几种的混合物;磷源为正磷酸、偏磷酸、磷酸盐或亚磷酸盐中的一种或任意几种的混合物;硅源为硅溶胶、活性二氧化硅、正硅酸酯、白炭黑、硅酸钠或偏高岭土中的一种或任意几种的混合物。
所述步骤3中恒温晶化,是指将反应釜放在烘箱内在自生压力下进行恒温晶化,晶化温度为140~230℃,晶化时间为10~72h。
在另一方面,本发明提供一种通过所述方法制备的纳米SAPO-34分子筛,其特征在于,所述纳米SAPO-34分子筛的粒度为20~800nm,晶体形貌为立方体或者立方体的聚集体,优选地,所述纳米SAPO-34分子筛的粒度为50~500nm。
在另一方面,本发明提供所述纳米SAPO-34分子筛经450-700℃空气中焙烧后用作酸催化反应,尤其是在醇类化合物、卤代化合物转化制烯烃反应和烯烃转化反应中的催化剂的用途。
本发明由于采取以上技术方案,与现有技术相比,其具有以下优点:
(1)采用三乙胺、二乙胺、吗啉等廉价模板剂获得纳米分子筛,无需加入四乙基氢氧化铵及HF等,有利于其工业应用。
(2)采用可诱导SAPO-34合成的有机胺作为碱溶液处理异质晶种,并将处理后的混合液作为晶种导向液直接加入分子筛合成的无机凝胶中,该过程中有机胺同时作为碱处理剂及分子筛合成的模板剂,无须再额外引入其他碱溶液;同时,导向液液相中的分子筛结构单元及固相的分子筛颗粒均可诱导成核,无须采用四乙基氢氧化铵等特殊方法制备纳米SAPO-34 晶种,且对分子筛晶种的粒度、纯度及来源无特殊要求。
(3)通过改变有机胺处理晶种的条件或晶种加入量等条件,可以有效对SAPO-34分子筛的粒径进行调控,使其晶粒尺寸在0.2~0.9μm之间变化,打破常规晶种辅助合成中产物粒径通常大于加入晶种的粒径这一限制。
(4)制备的SAPO-34分子筛与常规的SAPO-34相比,在甲醇或二甲醚转化为低碳烯烃反应中寿命显著增加,乙烯和丙烯的总选择性可以高达 85%以上。
附图说明
图1为实施例1至实施例5和对比例1、对比例2的X射线衍射图。
图2为实施例1所合成的SAPO-34样品的扫描电子显微镜图。
图3为对比例1所合成的SAPO-34样品的扫描电子显微镜图。
图4为对比例2所合成的SAPO-34样品的扫描电子显微镜图。
图5为实施例2所合成的SAPO-34样品的扫描电子显微镜图。
图6为实施例3所合成的SAPO-34样品的扫描电子显微镜图。
图7为实施例4所合成的SAPO-34样品的扫描电子显微镜图。
图8为实施例5所合成的SAPO-34样品的扫描电子显微镜图。
具体实施方式
实施例1
将8.2g吗啉和10g去离子水混合搅拌15min后,将0.25g焙烧后的 SAPO-5晶种加入到上述混合液中,转移至晶化釜中,在烘箱中80℃处理2h,得到液态晶种导向液A;将9.25g异丙醇铝和18.5g水混合搅拌 15min,滴加5.27g磷酸,在室温下继续搅拌1h形成白色的均匀凝胶。然后,加入2.81g正硅酸乙酯,继续搅拌1h后得到凝胶前驱体B。随后,将冷却后的晶种导向液A加入到凝胶前驱体B中,在室温下继续搅拌2h,然后将得到的凝胶转移至100mL不锈钢晶化釜中,200℃水热晶化2d。晶化结束后,将固体产物离心,洗涤,在100℃空气中烘干后,得原粉。样品做XRD和SEM表征,结果分别见图1和图2。结果表明合成产物为纳米SAPO-34分子筛,其晶粒平均尺寸约为400nm。
将得到的样品于600℃下通入空气焙烧4h,然后压片、破碎至40~ 80目。称取1.0g样品装入固定床反应器,进行MTO反应评价。在550℃下通氮气活化1小时,然后降温至反应温度450℃。关闭氮气,用柱塞泵将40wt%浓度的甲醇水溶液进料,甲醇重量空速2.0h-1。反应产物由在线气相色谱进行分析(天美GC7900,FID检测器,毛细管柱PoraPLOT Q-HT),结果示于表2。
对比例1
配料比例及晶化过程同实施例1,不同的是加入的晶种不经动态碱处理。
将8.2g吗啉和10g去离子水混合搅拌15min后,将0.25g焙烧后的 SAPO-5晶种加入到上述混合液中,不经升温处理,直接得到混合液A;将9.25g异丙醇铝和18.5g水混合搅拌15min,滴加5.27g磷酸,在室温下继续搅拌1h形成白色的均匀凝胶。然后,加入2.81g正硅酸乙酯,继续搅拌1h后得到凝胶前驱体B。随后,将混合液A加入到凝胶前驱体B 中,在室温下继续搅拌2h,然后将得到的凝胶转移至100mL不锈钢晶化釜中,200℃水热晶化2d。晶化结束后,将固体产物离心,洗涤,在100℃空气中烘干后,得原粉。
对比样品1的晶粒为立方体,平均尺寸约为3μm,SEM表征结果示于图2,催化评价结果见表2。
对比例2
配料比例及晶化过程同实施例1,不同的是不加入晶种。
将8.2g吗啉和10g去离子水混合搅拌15min后,得到混合液A;将 9.25g异丙醇铝和18.5g水混合搅拌15min,滴加5.27g磷酸,在室温下继续搅拌1h形成白色的均匀凝胶。然后,加入2.81g正硅酸乙酯,继续搅拌1h后得到凝胶前驱体B。随后,将混合液A加入到凝胶前驱体B中,在室温下继续搅拌2h,然后将得到的凝胶转移至100mL不锈钢晶化釜中, 200℃水热晶化2d。晶化结束后,将固体产物离心,洗涤,在100℃空气中烘干后,得原粉。
对比样品2的晶粒为立方体,平均尺寸约为10μm,SEM表征结果示于图3,催化评价结果见表2。
实施例2-10
与实施例1的操作步骤相同,具体配料比例和老化、晶化条件见表1。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。
表1分子筛合成配料及晶化条件表
表2各实施例及对比例制备的样品的甲醇转化制烯烃反应结果*
*寿命是指甲醇转化率保持在99%以上的时间。
选择性是指甲醇转化率保持在99%以上时的最高选择性。

Claims (5)

1.一种纳米SAPO-34分子筛的制备方法,其特征在于,采用有机模板剂水溶液处理异质晶种得到的晶种导向液辅助合成纳米SAPO-34分子筛;
合成步骤如下:
a)将异质晶种、有机模板剂和去离子水加入水热合成釜中,搅拌均匀后将水热合成釜密闭并转移至转动烘箱内,升温至60~120℃并保持2~45h,得到晶种导向液A;
所述步骤a)中的异质晶种为焙烧后的SAPO-44、SAPO-47、SAPO-5、SAPO-18、SAPO-56和DNL-6中的一种或任意几种的混合物;
所述步骤a)中的有机模板剂为可导向SAPO-34分子筛生成的有机胺,选自三乙胺、二乙胺、吗啉、二异丙胺、二正丙胺、异丙胺、正丁胺、哌嗪、二乙醇胺或三乙醇胺中的任意一种或任意几种的混合物;
b)将铝源、磷源、硅源和水混合,均匀搅拌后得到合成SAPO-34分子筛的初始凝胶混合物B;
c)将晶种导向液A加入混合物B中,搅拌均匀后陈化0~24h,所得凝胶前驱体中各组分的摩尔比例如下:(1.5~6.0)R∶1.0Al2O3∶(0.5~3.0)P2O5∶(0.05~2.0)SiO2∶(20~200)H2O,其中R为有机模板剂;
d)向所述步骤c)得到的凝胶前驱体置于高压反应釜中在自生压力下进行恒温晶化,待晶化完成后,将固体产物经离心分离,用去离子水洗涤至中性,在80~120℃空气中干燥,得到SAPO-34分子筛原粉。
2.根据权利要求1所述的纳米SAPO-34分子筛的制备方法,其特征在于:所述步骤a)中异质晶种的质量为最终凝胶前驱体中氧化物干基质量的0.05~8%。
3.根据权利要求2所述的纳米SAPO-34分子筛的制备方法,其特征在于:所述步骤a)中异质晶种的质量为最终凝胶前驱体中氧化物干基质量的0.1~4%。
4.根据权利要求1所述的纳米SAPO-34分子筛的制备方法,其特征在于:所述步骤b)中的铝源为铝盐、活性氧化铝、异丙醇铝、氢氧化铝、拟薄水铝石或偏高岭土中的一种或任意几种的混合物;磷源为正磷酸、偏磷酸、磷酸盐或亚磷酸盐中的一种或任意几种的混合物;硅源为硅溶胶、活性二氧化硅、正硅酸酯、白炭黑、硅酸钠或偏高岭土中的一种或任意几种的混合物。
5.根据权利要求1所述的纳米SAPO-34分子筛的制备方法,其特征在于:所述步骤d)中恒温晶化,是指将反应釜放在烘箱内在自生压力下进行恒温晶化,晶化温度为140~230℃,晶化时间为10~72h。
CN202111453772.7A 2021-12-01 2021-12-01 一种纳米sapo-34分子筛的制备方法 Active CN113979443B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111453772.7A CN113979443B (zh) 2021-12-01 2021-12-01 一种纳米sapo-34分子筛的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111453772.7A CN113979443B (zh) 2021-12-01 2021-12-01 一种纳米sapo-34分子筛的制备方法

Publications (2)

Publication Number Publication Date
CN113979443A CN113979443A (zh) 2022-01-28
CN113979443B true CN113979443B (zh) 2023-11-24

Family

ID=79732902

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111453772.7A Active CN113979443B (zh) 2021-12-01 2021-12-01 一种纳米sapo-34分子筛的制备方法

Country Status (1)

Country Link
CN (1) CN113979443B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311757A (zh) * 1998-07-29 2001-09-05 埃克森化学专利公司 制备分子筛的方法
CN104837770A (zh) * 2012-12-10 2015-08-12 埃克森美孚研究工程公司 铝硅酸盐分子筛的晶种合成
CN110127721A (zh) * 2019-05-22 2019-08-16 陕西煤化工技术工程中心有限公司 立方体状纳米sapo-34分子筛、制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311757A (zh) * 1998-07-29 2001-09-05 埃克森化学专利公司 制备分子筛的方法
CN104837770A (zh) * 2012-12-10 2015-08-12 埃克森美孚研究工程公司 铝硅酸盐分子筛的晶种合成
CN110127721A (zh) * 2019-05-22 2019-08-16 陕西煤化工技术工程中心有限公司 立方体状纳米sapo-34分子筛、制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Synthesis of nano-sized SAPO-34 with morpholine-treated micrometer-seeds and their catalytic performance in methanol-to-olefin reactions;Chao Sun et al.;《Applied Catalysis A, General》;20191025;第589卷;第1-11页 *

Also Published As

Publication number Publication date
CN113979443A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
CA2438146C (en) Silicoaluminophosphate molecular sieve
EP2660203B1 (en) Method for synthesizing sapo molecular sieve by solvothermal method
WO2016061727A1 (zh) 一种片状纳米sapo-34分子筛的合成方法
CN107434252B (zh) 低硅纳米sapo-34分子筛的制备方法
WO2020248695A1 (zh) 用于丙烯和过氧化氢气相环氧化反应的碱金属离子改性钛硅分子筛ts-1及其制备方法
AU2002247078A1 (en) Silicoaluminophosphate molecular sieve
CN101884936B (zh) 制备sapo-34分子筛成型催化剂的方法、通过该方法获得的产品及其应用
EP1899059A1 (en) Process for manufacture of silicoaluminophosphate molecular sieves
CN102836741A (zh) Sapo-34分子筛催化剂及其在甲醇制低碳烯烃中的应用
Yu et al. Synthesis and applications of SAPO‐34 molecular sieves
CN106477595B (zh) 一种片状形貌sapo-34分子筛的制备方法及应用
CN105293513A (zh) 一种新型acc-1锗硅分子筛及其制备方法和应用
CN112225226B (zh) 一种多级孔sapo-34分子筛的制备方法
CN113979443B (zh) 一种纳米sapo-34分子筛的制备方法
CN113955767B (zh) 一种异质晶种辅助合成纳米sapo-34分子筛的方法
CN106430237A (zh) 一种长须状特殊形貌zsm‑5分子筛及其制备与应用
CN106542547B (zh) 一种高活性低硅含量的sapo-34分子筛的制备方法
CN114749202B (zh) 一种核壳型sapo-34@zsm-5分子筛催化剂及其制备方法
CN111018645A (zh) 含氧化合物制备低碳烯烃的方法
CN113426480B (zh) 一种有机无机杂化zof-ts-1分子筛的制备方法及其催化应用
CN112624150B (zh) Sapo-34分子筛的合成方法、合成的分子筛及其用途
CN108187736B (zh) 具有核壳结构的三水铝石@sapo分子筛复合物及制备方法和在催化甲醇制烯烃中的应用
CN107954449B (zh) 多级孔sapo分子筛的制备及其用途
CN117566758A (zh) 一种sapo-34分子筛的制备方法
CN111115656A (zh) 低硅共晶纳米分子筛、制备方法及其用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant