CN102971900A - 质子传导膜的制造方法 - Google Patents

质子传导膜的制造方法 Download PDF

Info

Publication number
CN102971900A
CN102971900A CN2011800069590A CN201180006959A CN102971900A CN 102971900 A CN102971900 A CN 102971900A CN 2011800069590 A CN2011800069590 A CN 2011800069590A CN 201180006959 A CN201180006959 A CN 201180006959A CN 102971900 A CN102971900 A CN 102971900A
Authority
CN
China
Prior art keywords
proton
acid
sulfonic acid
conductive films
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800069590A
Other languages
English (en)
Other versions
CN102971900B (zh
Inventor
埃马努埃尔·佩莱德
阿尔农·布卢姆
阿迪·阿哈龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ramot at Tel Aviv University Ltd
Original Assignee
Ramot at Tel Aviv University Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ramot at Tel Aviv University Ltd filed Critical Ramot at Tel Aviv University Ltd
Publication of CN102971900A publication Critical patent/CN102971900A/zh
Application granted granted Critical
Publication of CN102971900B publication Critical patent/CN102971900B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fuel Cell (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Catalysts (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Abstract

一种用于生产质子传导膜的方法,所述方法包括:混合(i)5体积%~60体积%的具有良好的酸吸附能力的非导电无机粉末,所述粉末包括基本纳米尺寸的粒子;(ii)5体积%~50体积%的聚合物粘合剂,其与酸、氧化剂和燃料是化学相容的;和(iii)10~90体积%的酸或酸的水溶液,其中所述混合在不同的速率步骤下进行,由此生产一种混合物;将所述混合物在环境温度下连续浇铸在卷绕的纸或非织造基质等上;将所述经浇铸的混合物在大于100℃的温度下干燥约5~30分钟,由此形成干膜;和将多个所述干膜在压力下层合在一起,并随后从所述干膜的孔隙中提取成孔剂,由此形成平均孔径小于30纳米的所述质子传导膜。

Description

质子传导膜的制造方法
背景技术
1.技术领域
本发明一般性涉及质子传导膜(PCM)例如含有无机陶瓷氧化物的复合聚合物膜的生产方法。
2.相关现有技术描述
质子传导膜(PCM)被用于许多电化学应用中,包括燃料电池、电解池、超级电容器、传感器和电池。Nafion是在接近室温(至多100℃)运行的燃料电池中最常用的膜。作为固体聚合物电解质的Nafion具有两个主要的缺点,即非常昂贵和在燃料电池运行期间由于水被质子拖曳而导致干燥。近年来,已经加强努力开发了低成本的固体聚合物电解质来取代Nafion,并取得了显著进展。在Emanuel Peled公开的一些论文和专利例如US6447943、US6492047中已经讨论了室温质子传导材料。此外,在例如US6811911、US6447943、US7413824和EP141045381中已知用于电化学应用的纳米多孔质子传导膜(NP-PCM),这些专利文件的全文通过引用并入本文。
发明内容
提供一种低成本、高效地制造高传导性PCM的新方法。在一个实施方案中,该方法以放大工艺实施。也就是说,在针对实际应用的燃料电池开发中最重要的关键挑战是通过使用具有可接受的寿命和性能的低成本组件来提高经济性。
一种用于生产质子传导膜的方法,该方法包括:混合(i)5体积%~60体积%的具有良好的酸吸附能力的非导电无机粉末,所述粉末包括基本纳米尺寸的粒子;(ii)5体积%~50体积%的聚合物粘合剂,其与酸、氧化剂和燃料是化学相容的;和(iii)10~90体积%的酸或酸的水溶液,其中所述混合在不同的速率步骤下进行,由此生产质子传导混合物;将所述质子传导混合物在环境温度下连续浇铸在卷绕的纸、非织造基质或任何其他可涂覆材料上;将该经浇铸的质子传导混合物在大于100℃的温度下干燥约5~60分钟,由此形成干膜;将多个所述干膜在压力下层合在一起,并随后从所述干膜的孔隙中提取成孔剂,由此形成平均孔径小于30nm的质子传导膜。
本发明公开的新型PCM包括具有良好的酸吸附能力的纳米陶瓷粉末、聚合物粘合剂以及吸附在纳米孔隙中的酸。该PCM在再生燃料电池(RFC)应用中特别有用。
该PCM的主要组分是聚合物粘合剂、无机纳米尺寸粉末和酸性溶液或酸。PCM孔的典型直径为约1.5~30nm,优选3nm。所述孔充填有游离酸分子,这对于使用酸性电解质的储能系统(例如,RFC应用)是一个主要优点。
不同于前述的PCM,本发明公开的试剂(即,粉末和溶剂)与改善溶液质量的添加剂混合并且得到浇铸膜的更好的机械和物理性质。随后,利用机械涂布机将该溶液浇铸,这是更有效的方法和更均匀的方法。
根据本发明公开的独特方法,将至少2~6个,优选4个干膜层合在一起。混合步骤的各种速率步骤包括:室温下以约100~500rpm的混合速率混合1~5小时;在约30℃~50℃的温度下以约400~700rpm的混合速率混合10~20小时;室温下以100~400rpm的混合速率混合10~20小时;和在约30℃~50℃的温度下脱气5~30分钟。连续浇铸质子传导混合物的步骤是使用涂布机将溶液施涂在卷绕的纸、非织造基质或类似的辊对辊载体支持物上。
载体支持物是硅化纸,并且载体支持物的滚动速度是根据质子传导混合物的比重进行设定的。
干膜的厚度为约40~60微米,更优选约50~55微米。
优选地,层合所述干膜的步骤在约5~20kg/cm2的压力和约130~150℃的温度下进行约3~10分钟。
质子传导膜的平均孔径小于3nm,更优选平均孔径小于1.5nm。
该方法还包括在混合之前添加至少一种流变控制剂。流变控制剂是选自:SPAN80(提供一般化学描述的山梨醇单油酸酯,C24H44O6)和
Figure BDA00001924570200021
FSN(提供一般化学描述的(C2H4O)x(CF2)yC2H5FO,非离子含氟表面活性剂)中的至少一种。
提取步骤包括:(a)将含有成孔剂的质子传导膜在乙醚/乙醇混合物中浸渍足以从所述质子传导膜的孔隙中移除所述成孔剂的时间段;(b)将来自步骤(a)的质子传导膜在乙醇中浸渍以消除任何残留的成孔剂和其他溶剂;以及(c)将所述质子传导膜在水中浸渍以从所述孔隙中移除乙醇。
乙醚/乙醇混合物具有约1∶9~3∶7的比例。浸渍步骤(a)进行约1~5小时。浸渍步骤(b)进行约1~5小时。
无机粉末是选自SiO2、ZrO2、B2O3、TiO2、Al2O3以及Ti、Al、B和Zr的氢氧化物和氧氢氧化物(oxy-hydroxide)中的至少一种粉末。
聚合物粘合剂是选自以下的至少一种粘合剂:聚偏二氟乙烯、聚偏二氟乙烯-六氟丙烯、聚四氟乙烯、聚甲基丙烯酸甲酯、聚磺酰胺、聚丙烯酰胺、聚氯乙烯、丙烯腈、聚氟乙烯和Kel FTM即三氟氯乙烯均聚物。
所述酸是选自以下的至少一种:多氟烯烃磺酸、全氟烯烃磺酸、多氟芳基磺酸、全氟芳基磺酸、至多50%的氢或氟原子被氯原子取代的酸、CF3(CF2)nSO3H、HO3S(CF2CH2)nSO3H、CF23(CF2CH2)nSO3H、HO3S(CF2)nSO3H,其中n是具有1~9的值的整数、NafionTM离聚体(即全氟磺酸-PTFE共聚物)、HCl、HBr、磷酸和硫酸。
多氟芳基磺酸是选自以下的至少一种:多氟苯磺酸、多氟甲苯磺酸和多氟苯乙烯磺酸。全氟芳基磺酸是选自以下的至少一种:全氟苯磺酸、全氟甲苯磺酸和全氟苯乙烯磺酸。
所述方法还包括选自以下的成孔剂:DBP(即邻苯二甲酸二丁酯)、邻苯二甲酸二乙酯、邻苯二甲酸二甲酯、碳酸亚丙酯、碳酸亚乙酯等或其任意组合。
该方法还包括重新捕获酸或酸的水溶液的步骤。
具体实施方式
选自RFC、燃料电池、电解池、电池、电化学传感器等的电化学装置使用各种类型的离子导电膜。
所公开的膜是共聚物基体(例如,由两种(或更多种)单体物质衍生的聚合物)、陶瓷粉末(例如,无机或非金属材料)的组合。大多数陶瓷是金属与非金属元素之间的化合物,其中的原子间键是完全离子的或主要是离子的,但具有一些共价性质,并且相容的有机溶剂增塑剂保持柔性自支持膜形式的均质组合物。
PCM的改进放大制造工艺包括使用大量的材料、更好地形成悬浮体的添加剂、专业的混合设备和工业涂布机,以下将详细说明。
该方法中的基本化学品是无机粉末例如陶瓷粉末,更特别的是,SiO2、ZrO2、B2O3、TiO2、Al2O3以及Ti、Al、B和Zr的氢氧化物和氧氢氧化物;以及高分子粘合剂如聚偏二氟乙烯(PVDF)等,它们在溶剂和添加剂的混合物中混合。混合物中的二氧化硅的体积百分比为5~50%,优选15~40%,更具体的范围是20~30%。膜通过以下方法利用在上述范围内的几种组合物制造。溶剂对固体之比小于10∶1,优选是4∶1以下。参见,US6811911,其全文通过引用并入本文。
如前所述,固体、溶剂和添加剂在具有特氟隆(Teflon)涂层搅拌器的大容量烧瓶(3~10升,优选5升)在不同的速度和温度下根据以下步骤混合。混合步骤如下所述:
1.单独预混合所有的液体物质和所有固体;
2.将固体分散在溶剂中,同时在交替的速度和温度下搅拌几个小时;
3.所得溶液准备好浇铸,并且可以在密闭容器中贮存几个星期。
前面讨论的技术使用手工涂布器或半自动涂布器(如RK印刷或类似装置的K控制涂布器),其易于变动和不一致。与上述方法不同的是,在本实施方案中利用采用“Doctor Knife”方法的涂布试验机来进行膜的浇铸,如在通过引用全文并入本文的美国专利US4119836中所述的,易于在适当连续的“辊对辊”支持物上进行溶液施涂。所用的载体支持物可以是硅化纸、织物、非织造碳支持物或由其容易地制成膜的任何其他支持物,并且机器中纸的滚动速度根据溶液参数(比重、粘度等)来设定。根据溶液性质调节刀间隙以满足所需的膜厚,并且将溶液连续涂覆在纸上,同时滚动进入退火烘箱。烘箱的前部温度为90~110℃。在烘箱中的总停留时间由滚动速度和膜厚来确定。
质子传导膜
优选的固体电解质膜是质子传导膜,其具有直径尺寸基本小于30nm的孔隙并且包含:(i)5~60体积%的具有良好的酸吸附能力的非导电无机粉末,所述粉末基本上包含纳米粒子;(ii)5~50体积%的聚合物粘合剂,其与酸、氧和所述燃料是化学相容的;和(iii)10~90体积%的酸或酸的水溶液。
用于燃料电池的固体质子传导膜描述在美国专利6447943和6492047中,它们的全文通过引用并入本文。在这些膜中使用的聚合物粘合剂选自聚偏二氟乙烯、聚偏二氟乙烯-六氟丙烯、聚四氟乙烯、聚甲基丙烯酸甲酯、聚磺酰胺、聚丙烯酰胺、聚氯乙烯、丙烯腈、聚氟乙烯和Kel FTM及其任意组合。
用于制备固体质子传导膜的无机纳米粉末选自SiO2、ZrO2、B2O3、TiO2、Al2O3以及Ti、Al、B和Zr的氢氧化物和氧氢氧化物及其任意组合。
本发明的用于燃料电池的质子传导膜还包含酸。例如,与例如在美国专利5599638(其全文通过引用并入本文)中描述的其中不存在游离酸的固体电解质膜相反,本文所讨论的固体电解质膜在用于燃料电池中时,含有被捕获在膜的孔隙内的游离酸。作为替代方案,可含有与无机粉末键合的酸分子。这些孔隙的典型直径基本小于30nm,优选小于20nm,更优选小于3nm。
与电池硬件和两个电极处的催化剂相容的大多数低蒸汽压酸可以用于并且适合于特定应用。以下列表的酸作为实例给出:多氟烯烃磺酸、全氟烯烃磺酸、多氟芳基磺酸、全氟芳基磺酸、至多50%的氢或氟原子被氯原子取代的酸、CF3(CF2)nSO3H、HO3S(CF2CH2)nSO3H、CF23(CF2CH2)nSO3H、HO3S(CF2)nSO3H,其中n是具有1~9的值的整数、NafionTM离聚物、HCl、HBr、磷酸、硫酸及其混合物。
作为替代方案,固体电解质膜是质子传导膜(PCM),并且其包括典型直径尺寸基本上小于50nm,优选小于3nm,更优选小于1.5nm的孔隙。
根据本发明的另一种膜是如美国专利6,811,911(其全文通过引用并入本文)中所描述的由质子传导基体制成的膜。离子导电基体包括:(i)5~60体积%的具有良好的水性电解质吸附能力的无机粉末;(ii)5~50体积%的聚合物粘合剂,其与水性电解质化学相容;和(iii)10~90体积%的水性电解质,其中所述无机粉末基本上包含亚微米粒子,尺寸优选为约5~约150nm。本发明的基体可任选地包含约0.1~约25%的非挥发性液体润滑剂,其与基体中的所有组分化学相容。
根据本发明的一个优选实施方案,所述无机粉体的特征在于,具有至少10m2/g的表面积并且具有良好的水性电解质吸附能力。
优选地,本发明的基体的无机粉末是选自SiO2、ZrO2、B2O3、TiO2、Al2O3等中的一种。
本发明的基体中使用的聚合物粘合剂是与所用的水性电解质化学相容的物质,即不溶于电解质的物质,并且是选自以下的一种:聚偏二氟乙烯(PVDF)、聚偏二氟乙烯-六氟丙烯(PVDHFP)、聚四氟乙烯(PTFE)、聚甲基丙烯酸甲酯(PMMA)、聚磺酰胺、聚丙烯酰胺、聚氯乙烯(PVC)、聚丙烯腈、聚氟乙烯及其任意组合。
根据本发明的酸(也可以是酸的混合物)可以是纯酸或溶解在水中或本领域已知的其他合适的非水溶剂中的酸。根据本发明合适的酸是:CF23(CF2)nSO3H、HO3S(CF2)nSO3H,其中n是具有1~9的值的整数、硫酸、HCl、HBr、磷酸、HNO3等。优选的酸为CF3(CF2)nSO3H或HO3S3S(CF2)nSO3H,其中n等于0、1、2、3或4。这些优选的酸可以其纯形式使用或作为摩尔浓度为10%~99%,优选摩尔浓度为25%~99%的水溶液使用。
本发明的PCM包括具有良好机械性能的塑料膜的一般外观。它通常可以弯曲约180°而基本不发生实质性的断裂,并且它可以制备成约10~约1000微米或以上的厚度。由于它的稳定性和良好的离子导电性,它可以在从零度以下到约150℃的大温度范围内使用。
根据本发明的一个优选实施方案,当基体制备成膜时,包含在基体中的无机粉末是非常微细、粒径优选小于150nm的非导电粉末。根据该实施方案,其中吸附有水性电解质的PCM孔非常小,并且其特征尺寸基本上小于50nm。
膜对所使用的酸或水性电解质的吸附能力或保留能力取决于几个参数,其中包括无机粉末的组成和类型、聚合物粘合剂、和溶解的酸或电解质的类型。应该优化这些参数的组合以调节各个应用的产品。虽然进行这样的优化,但是应考虑无机粉末含量越高则机械性能越差这一事实。增加基体的无机粉末含量会增加其电解质保留特性,但同时会降低其机械强度。另一方面,增加基体中聚合物粘合剂的含量会增加基体的强度,但会降低基体的润湿性,从而导致其传导性下降。
根据本发明的又一个实施方案,基体的润湿性的改善以及随之而来的电解质保留特性的改善是通过在膜中添加多价金属盐例如Al、Zr、B、Ti等的盐来实现的。
基体的润湿性的改善以及随之而来的电解质保留特性的改善是通过在膜制备前利用酸或碱对无机粉末进行预处理来实现的。
实施例1(28-12版本,60%的孔隙体积):
将200克的PVDF和105.6克的表面积为400平方米/克的二氧化硅(硅石)混合。在不同的烧瓶中,混合加工溶剂(241.6克DBP和1320克DMF)和流变控制剂(10克SPAN80和0.6克Zonil)。将粉末在室温下以低混合速率(200rpm)在溶剂中分散3小时。将混合速率提高到500rpm,同时在40℃下加热16小时。再在室温下以300rpm搅拌16小时进行脱气(移除包埋在混合物中的空气),接着在35℃下的受控温度环境下放置6小时,但不搅拌。然后,将溶液转移到涂布机(Dixon Model 160MK2,如http://www.dixontechnologies.com/marketspilot.htmn中所描述)上,其装载有NIR-LNR-0063R-01型硅化纸。刀间隙设置为180微米,滚动速度设置为0.5米/分钟。
所得干膜具有40~60微米,优选50~55微米的厚度,并且包含有液体物质DBP,其用作成孔剂(为高粘度的油性物质),以及一些其他的残余溶剂。在5~20kg/cm2的压力、140~145℃下将2-6个膜层合在一起3~10分钟以提供具有更好的机械性能的膜。在层合之后进行提取过程,以将成孔剂从空隙中“排出”,产生具有小孔隙的多孔膜,其中孔隙尺寸小于30nm,优选小于3nm,更特别是小于1.5nm。所述提取阶段包括以下几个步骤:
-乙醚∶乙醇浴,包含1∶9比例的这些溶剂,所述膜浸没在该浴中2小时以提取孔隙中的DBP;
-乙醇浴,用以移除残留的DBP和其他潜在溶剂,持续2小时;和
-水浴(去离子水)-用以移除孔隙中的乙醇。
实施例2(32-8版本,60%的孔隙体积):
混合和浇铸过程与实施例1中所述的相同,只是材料量按下式进行了修改:284.8克的PVDF、88克的硅石、311.8克DBP、12.5克SPAN80、1377.4克DMF、0.2克Zonil。
实施例3:
对实施例1和2的膜在用3M硫酸煮沸1小时后,利用Solareon 1260进行室温电导率测试。实施例1和2电导率分别为0.144S/cm-1和0.102S/cm-1。电导率增加是因为它具有良好的酸吸附。下表1示出利用过去的手工小规模方法制造的以及现在所用的更新的自动方法所制造的几种膜的电导率。总体而言,放大的工艺过程使膜的电导率性质保持在0.1~0.2S/cm-1的可接受范围内。
表1:各种手工制造和机器制造的NP-PCM的电导率
i-Electrochemical and Solid Letters,1(5)210-211(1998)
ii-Electrochemical and Solid Letters,3(12)(2000)
iii-Journal of Power Source 161(2006)1187-1191
iV-Electrochemical and Solid Letters,7(12)(2004)507
V-Electrochemical and Solid Letters,6(12)A268-A271(2003)
实施例4:
下表2汇总了本发明的质子传导膜的制造方法与常规方法步骤的差异
大部分的改进导致节省时间和劳动,即更高质量的产出膜的更高效方法。该方法的再现性是可靠和简单的:膜是均质的并且具有更高强度,对膜的物理性质只有微小的、可忽略的影响-在可接受的范围和统计误差之内,如表1中所示。
Figure BDA00001924570200091

Claims (26)

1.一种用于生产质子传导膜的方法,所述方法包括:
混合(i)5体积%~60体积%的具有良好的酸吸附能力的非导电无机粉末,所述粉末包括基本纳米尺寸的粒子;(ii)5体积%~50体积%的聚合物粘合剂,其与酸、氧化剂和燃料是化学相容的;和(iii)10体积%~90体积%的酸或酸的水溶液,其中所述混合在不同的速率步骤下进行,由此生产一种混合物;
将所述混合物在环境温度下连续浇铸在卷绕的纸或非织造基质上;
将所述经浇铸的混合物在大于100℃的温度下干燥,由此形成干膜;和
将多个所述干膜在压力下层合在一起,并随后从所述干膜的孔隙中提取成孔剂,由此形成平均孔径小于30纳米的所述质子传导膜。
2.根据权利要求1所述的方法,其中将至少4个所述干膜层合到一起。
3.根据权利要求1所述的方法,其中所述混合步骤的所述不同的速率步骤包括:
室温下在约100~500rpm的混合速率下混合1~5小时;
约30~50℃下在约400~700rpm的混合速率下混合10~20小时;
室温下在约100~400rpm的混合速率下混合10~20小时;和
在约30~50℃的温度范围下脱气5~30小时。
4.根据权利要求1所述的方法,其中所述干膜的厚度为约40~60微米。
5.根据权利要求4所述的方法,其中所述干膜的厚度为约50~55微米。
6.根据权利要求1所述的方法,其中所述干膜的所述层合步骤在约5~20kg/cm2的压力和约140~145℃的温度下进行约3~10分钟。
7.根据权利要求1所述的方法,其中所述质子传导膜的平均孔径小于3nm。
8.根据权利要求7所述的方法,其中所述质子传导膜的平均孔径小于1.5nm。
9.根据权利要求1所述的方法,其中所述干燥步骤进行约5~60分钟。
10.根据权利要求1所述的方法,其中所述质子传导膜基本没有裂纹。
11.根据权利要求1所述的方法,还包括在混合前添加至少一种流变控制剂。
12.根据权利要求1所述的方法,其中所述提取步骤包括:
(a)将含有成孔剂的所述质子传导膜在乙醚/乙醇混合物中浸渍足以从所述质子传导膜的孔隙中移除所述成孔剂的时间段;
(b)将来自步骤(a)的所述质子传导膜在乙醇中浸渍以移除任何残留的成孔剂和其他溶剂;以及
(c)将所述质子传导膜在水中浸渍以从所述孔隙中移除乙醇。
13.根据权利要求12所述的方法,其中所述乙醚/乙醇混合物具有约1∶9~3∶7的比例。
14.根据权利要求12所述的方法,其中所述浸渍步骤(a)进行约1~5小时。
15.根据权利要求12所述的方法,其中所述浸渍步骤(b)进行约1~5小时。
16.根据权利要求1所述的方法,其中所述无机粉末为选自SiO2、ZrO2、B2O3、TiO2、Al2O3以及Ti、Al、B和Zr的氢氧化物和氧氢氧化物中的至少一种粉末。
17.根据权利要求1所述的方法,其中所述聚合物粘合剂是选自以下的至少一种粘合剂:聚偏二氟乙烯、聚偏二氟乙烯-六氟丙烯、聚四氟乙烯、聚甲基丙烯酸甲酯、聚磺酰胺、聚丙烯酰胺、聚氯乙烯、丙烯腈、聚氟乙烯和三氟氯乙烯均聚物。
18.根据权利要求1所述的方法,其中所述酸是选自以下的至少一种:多氟烯烃磺酸、全氟烯烃磺酸、多氟芳基磺酸、全氟芳基磺酸、其中至多50%的氢或氟原子被氯原子取代的上述酸、CF3(CF2)nSO3H、HO3S(CF2CH2)nSO3H、CF23(CF2CH2)nSO3H、HO3S(CF2)nSO3H,其中n是具有1~9的值的整数、全氟磺酸共聚物、HCl、HBr、磷酸和硫酸。
19.根据权利要求18所述的方法,其中所述多氟芳基磺酸是选自多氟苯磺酸、多氟甲苯磺酸和多氟苯乙烯磺酸中的至少一种。
20.根据权利要求18所述的方法,其中所述全氟芳基磺酸是选自全氟苯磺酸、全氟甲苯磺酸和全氟苯乙烯磺酸中的至少一种。
21.根据权利要求1所述的方法,还包括至少一种成孔剂,所述成孔剂选自:邻苯二甲酸二丁酯、邻苯二甲酸二乙酯、邻苯二甲酸二甲酯、碳酸亚丙酯和碳酸亚乙酯。
22.根据权利要求11所述的方法,其中所述流变控制剂是选自山梨醇单油酸酯C24H44O6和非离子含氟表面活性剂(C2H4O)x(CF2)yC2H5FO中的至少一种。
23.根据权利要求1所述的方法,还包括再捕获所述酸或酸的水溶液的步骤。
24.根据权利要求1所述的方法,其中所述连续浇铸所述质子传导混合物的步骤使用在卷绕的纸、非织造基体或类似的辊对辊载体支持物上进行溶液涂布的涂布机进行。
25.根据权利要求24所述的方法,其中所述载体支持物是硅化纸,并且所述载体支持物的滚动速度根据所述质子传导混合物的比重来设置。
26.一种通过根据权利要求1所述的方法形成的质子传导膜。
CN201180006959.0A 2010-01-25 2011-01-24 质子传导膜的制造方法 Expired - Fee Related CN102971900B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US29785310P 2010-01-25 2010-01-25
US61/297,853 2010-01-25
PCT/IB2011/000102 WO2011089521A2 (en) 2010-01-25 2011-01-24 Method of manufacturing proton-conducting membranes

Publications (2)

Publication Number Publication Date
CN102971900A true CN102971900A (zh) 2013-03-13
CN102971900B CN102971900B (zh) 2016-04-13

Family

ID=44168859

Family Applications (8)

Application Number Title Priority Date Filing Date
CN201180007098.8A Expired - Fee Related CN102725893B (zh) 2010-01-25 2011-01-24 双极板以及包括它的再生式燃料电池堆
CN201410360195.0A Expired - Fee Related CN104167558B (zh) 2010-01-25 2011-01-24 双极板以及包括它的再生式燃料电池堆
CN201180007112.4A Expired - Fee Related CN102725894B (zh) 2010-01-25 2011-01-24 能量储存和产生系统
CN201410360193.1A Expired - Fee Related CN104167560B (zh) 2010-01-25 2011-01-24 双极板以及包括它的再生式燃料电池堆
CN201180006913.9A Expired - Fee Related CN102714320B (zh) 2010-01-25 2011-01-24 电化学系统及其操作方法
CN201410405855.2A Expired - Fee Related CN104319410B (zh) 2010-01-25 2011-01-24 在燃料电池堆内维持不同电解质和气体压力的方法
CN201180006959.0A Expired - Fee Related CN102971900B (zh) 2010-01-25 2011-01-24 质子传导膜的制造方法
CN2011800069158A Pending CN102870259A (zh) 2010-01-25 2011-01-24 用于燃料电池的催化剂和电极

Family Applications Before (6)

Application Number Title Priority Date Filing Date
CN201180007098.8A Expired - Fee Related CN102725893B (zh) 2010-01-25 2011-01-24 双极板以及包括它的再生式燃料电池堆
CN201410360195.0A Expired - Fee Related CN104167558B (zh) 2010-01-25 2011-01-24 双极板以及包括它的再生式燃料电池堆
CN201180007112.4A Expired - Fee Related CN102725894B (zh) 2010-01-25 2011-01-24 能量储存和产生系统
CN201410360193.1A Expired - Fee Related CN104167560B (zh) 2010-01-25 2011-01-24 双极板以及包括它的再生式燃料电池堆
CN201180006913.9A Expired - Fee Related CN102714320B (zh) 2010-01-25 2011-01-24 电化学系统及其操作方法
CN201410405855.2A Expired - Fee Related CN104319410B (zh) 2010-01-25 2011-01-24 在燃料电池堆内维持不同电解质和气体压力的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2011800069158A Pending CN102870259A (zh) 2010-01-25 2011-01-24 用于燃料电池的催化剂和电极

Country Status (12)

Country Link
US (5) US9627693B2 (zh)
EP (5) EP2529441B1 (zh)
JP (7) JP5535339B2 (zh)
KR (7) KR101554246B1 (zh)
CN (8) CN102725893B (zh)
AU (3) AU2011208458B2 (zh)
BR (2) BR112012018441A2 (zh)
CA (5) CA2787477C (zh)
ES (1) ES2585819T3 (zh)
IL (4) IL220967A0 (zh)
MX (2) MX2012008653A (zh)
WO (5) WO2011089520A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111883806A (zh) * 2020-09-28 2020-11-03 河南银金达新材料股份有限公司 质子传导隔膜及其制备方法

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2059360B1 (en) * 2006-08-30 2019-04-17 Umicore AG & Co. KG Core/shell-type catalyst particles and methods for their preparation
WO2010088524A2 (en) 2009-01-29 2010-08-05 Princeton University Conversion of carbon dioxide to organic products
US20110114502A1 (en) * 2009-12-21 2011-05-19 Emily Barton Cole Reducing carbon dioxide to products
US8845877B2 (en) 2010-03-19 2014-09-30 Liquid Light, Inc. Heterocycle catalyzed electrochemical process
US8721866B2 (en) 2010-03-19 2014-05-13 Liquid Light, Inc. Electrochemical production of synthesis gas from carbon dioxide
US8500987B2 (en) 2010-03-19 2013-08-06 Liquid Light, Inc. Purification of carbon dioxide from a mixture of gases
US8845878B2 (en) 2010-07-29 2014-09-30 Liquid Light, Inc. Reducing carbon dioxide to products
US8961774B2 (en) 2010-11-30 2015-02-24 Liquid Light, Inc. Electrochemical production of butanol from carbon dioxide and water
US8568581B2 (en) 2010-11-30 2013-10-29 Liquid Light, Inc. Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide
US9090976B2 (en) 2010-12-30 2015-07-28 The Trustees Of Princeton University Advanced aromatic amine heterocyclic catalysts for carbon dioxide reduction
KR101556580B1 (ko) * 2011-02-01 2015-10-01 도요타 지도샤(주) 촉매 미립자, 카본 담지 촉매 미립자, 촉매 합제, 및 전극의 각 제조 방법
US9123962B2 (en) 2011-02-07 2015-09-01 United Technologies Corporation Flow battery having electrodes with a plurality of different pore sizes and or different layers
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
EP2729601B1 (en) 2011-07-06 2018-05-09 Avantium Knowledge Centre B.V. Reduction of carbon dioxide to oxalic acid, and hydrogenation thereof
BR112013033326A2 (pt) 2011-07-06 2017-01-31 Liquid Light Inc captura de dióxido de carbono e conversão para produtos orgânicos
EP2742090A1 (en) * 2011-08-11 2014-06-18 Amalyst Limited Improvements in or relating to catalysts
CN102354764B (zh) * 2011-08-24 2013-11-20 中国东方电气集团有限公司 供能系统及其控制方法
JP5994155B2 (ja) * 2011-09-09 2016-09-21 国立大学法人山梨大学 高活性・安定性触媒粒子、及びそれを用いた電極触媒、並びにその製造方法
US20140008237A1 (en) * 2011-11-06 2014-01-09 The University Of Massachusetts Method of producing hydrocarbons using a fuel cell, and fuel storage system comprising the fuel cell
EP2600451A3 (en) * 2011-11-29 2015-02-11 Samsung Electronics Co., Ltd Electrode catalyst for fuel cell, method of preparing the same, and membrane electrode assembly and fuel cell including electrode catalyst
WO2013090269A2 (en) * 2011-12-13 2013-06-20 Sun Catalytix Corporation Enhanced current efficiencies in reversible hydrogen bromide fuel cells using in-line bromine sequestering devices
EP2795697B1 (en) * 2011-12-20 2020-11-04 United Technologies Corporation Flow battery with mixed flow
GB201200250D0 (en) * 2012-01-09 2012-02-22 Imp Innovations Ltd Regenerative fuel cells
WO2014014503A1 (en) * 2012-07-17 2014-01-23 Sun Catalytix Corporation Increased durability in hydrogen bromide cell stacks by inhibiting corrosion of hydrogen electrodes
US8858777B2 (en) 2012-07-26 2014-10-14 Liquid Light, Inc. Process and high surface area electrodes for the electrochemical reduction of carbon dioxide
US20140206896A1 (en) 2012-07-26 2014-07-24 Liquid Light, Inc. Method and System for Production of Oxalic Acid and Oxalic Acid Reduction Products
US9175407B2 (en) 2012-07-26 2015-11-03 Liquid Light, Inc. Integrated process for producing carboxylic acids from carbon dioxide
US8821709B2 (en) 2012-07-26 2014-09-02 Liquid Light, Inc. System and method for oxidizing organic compounds while reducing carbon dioxide
US10329676B2 (en) 2012-07-26 2019-06-25 Avantium Knowledge Centre B.V. Method and system for electrochemical reduction of carbon dioxide employing a gas diffusion electrode
US8641885B2 (en) 2012-07-26 2014-02-04 Liquid Light, Inc. Multiphase electrochemical reduction of CO2
WO2014026287A1 (en) 2012-08-14 2014-02-20 Powerdisc Development Corporation Ltd. Fuel cell components, stacks and modular fuel cell systems
CA2919875C (en) 2012-08-14 2021-08-17 Powerdisc Development Corporation Ltd. Fuel cell flow channels and flow fields
US9644277B2 (en) 2012-08-14 2017-05-09 Loop Energy Inc. Reactant flow channels for electrolyzer applications
US20140065516A1 (en) * 2012-09-06 2014-03-06 Wisconsin Alumni Research Foundation Mixed-Metal Platinum Catalysts With Improved Carbon Monoxide Tolerance
EP2895642B1 (en) * 2012-09-14 2018-04-25 Avantium Knowledge Centre B.V. Process using high surface area electrodes for the electrochemical reduction of carbon dioxide
US9873951B2 (en) 2012-09-14 2018-01-23 Avantium Knowledge Centre B.V. High pressure electrochemical cell and process for the electrochemical reduction of carbon dioxide
WO2014058984A2 (en) * 2012-10-09 2014-04-17 Brookhaven Science Associates, Llc Gas diffusion electrodes and methods for fabricating and testing same
CN107732270A (zh) * 2012-10-10 2018-02-23 环能源公司 电解器应用的反应物流动沟道
US10177389B2 (en) * 2012-11-09 2019-01-08 United Technologies Corporation Electrochemical device and method for controlling corrosion
RU2516245C1 (ru) * 2012-11-29 2014-05-20 Открытое акционерное общество "УРАЛЬСКИЙ ЭЛЕКТРОХИМИЧЕСКИЙ КОМБИНАТ" Биполярная пластина топливного элемента круглой формы
US8993183B2 (en) 2012-12-31 2015-03-31 Enervault Corporation Operating a redox flow battery with a negative electrolyte imbalance
US9567681B2 (en) * 2013-02-12 2017-02-14 Treadstone Technologies, Inc. Corrosion resistant and electrically conductive surface of metallic components for electrolyzers
JP6250074B2 (ja) * 2013-02-21 2017-12-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 表面合金を有するアノード電極を含むレドックスフロー電池システム
CA2898229A1 (en) * 2013-02-28 2014-09-04 Nuvera Fuel Cells, Inc. Electrochemical cell having a cascade seal configuration and hydrogen reclamation
WO2014159903A2 (en) * 2013-03-13 2014-10-02 Freya Energy, Inc. Separator for electrochemical cell with overcharge protection and method of making same
US8980454B2 (en) 2013-03-15 2015-03-17 Enervault Corporation Systems and methods for rebalancing redox flow battery electrolytes
JP2015056396A (ja) * 2013-09-12 2015-03-23 現代自動車株式会社 燃料電池用電極添加物およびその合成方法
CA2924834C (en) * 2013-09-23 2021-06-29 Lockheed Martin Advanced Energy Storage, Llc Bipolar plate design with non-conductive picture frame
US10411284B2 (en) 2013-10-03 2019-09-10 Massachusetts Institute Of Technology Flow battery with dispersion blocker between electrolyte channel and electrode
US11594749B2 (en) 2013-12-19 2023-02-28 Robert Bosch Gmbh Hydrogen/bromine flow battery in which hydrogen is freely exchanged between two cell compartments
US10326153B2 (en) * 2013-12-23 2019-06-18 Robert Bosch Gmbh System and method for returning material from the Br2 side of an H2/Br2 flow battery back after crossover
JP2015122231A (ja) * 2013-12-24 2015-07-02 住友電気工業株式会社 レドックスフロー電池
JP6201876B2 (ja) 2014-04-23 2017-09-27 住友電気工業株式会社 双極板、レドックスフロー電池、及び双極板の製造方法
US10119932B2 (en) 2014-05-28 2018-11-06 Honeywell International Inc. Electrochemical gas sensor
EP2963723A1 (en) 2014-07-04 2016-01-06 Elestor BV A hydrogen-redox flow battery assembly
US20160006055A1 (en) * 2014-07-07 2016-01-07 Unienergy Technologies, Llc Pump tub assembly for redox flow battery
CN104242794A (zh) * 2014-09-04 2014-12-24 杨敏杰 太阳能直流电供电电站
JP2016091834A (ja) * 2014-11-05 2016-05-23 住友電気工業株式会社 電解液循環型電池
KR101683128B1 (ko) 2014-11-19 2016-12-06 국방과학연구소 연료전지용 복합체 분리판, 이를 갖는 연료전지 스택, 그리고 이의 제조 방법
DE212015000116U1 (de) 2015-04-14 2016-12-19 Sumitomo Electric Industries, Ltd. Rahmenkörper, Zellenrahmen für eine Redox-Flussbatterie und Redox-Flussbatterie
EP3295505A4 (en) * 2015-05-12 2020-11-25 Northeastern University NITROGEN FUNCTIONALIZED PLATINUM IRIDIUM ELECTRO CATALYST
WO2016208482A1 (ja) * 2015-06-23 2016-12-29 住友電気工業株式会社 双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池
KR102153934B1 (ko) * 2015-12-01 2020-09-09 코오롱인더스트리 주식회사 연료전지용 막-전극 접합체 및 이를 포함하는 연료전지
GB201522003D0 (en) 2015-12-14 2016-01-27 Imp Innovations Ltd Regenerative fuel cells
CN106914254B (zh) 2015-12-27 2019-08-23 财团法人工业技术研究院 碱性电化学能量转换反应用催化剂组合物及其用途
EP3427324B1 (en) * 2016-03-10 2020-03-25 3M Innovative Properties Company Electrode solutions and electrochemical cells and batteries therefrom
WO2017161449A1 (en) 2016-03-22 2017-09-28 Loop Energy Inc. Fuel cell flow field design for thermal management
JP6108008B1 (ja) * 2016-05-30 2017-04-05 住友電気工業株式会社 双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池
DE112016006948A5 (de) 2016-06-09 2019-02-21 Schunk Kohlenstofftechnik Gmbh Elektrodenplatte und Verfahren zur Herstellung
US11018387B2 (en) 2016-07-22 2021-05-25 Form Energy, Inc. Moisture and carbon dioxide management system in electrochemical cells
KR101842964B1 (ko) 2016-08-08 2018-03-29 한국과학기술연구원 텅스텐 카바이드 나노플레이크를 이용한 수소 생산용 전극의 제조 방법 및 이에 의해 제조된 수소 생산용 전극
KR101884381B1 (ko) * 2016-09-26 2018-08-01 베너게이트 주식회사 레독스 흐름 전지용 분리판 및 이를 포함하는 레독스 흐름 전지
FR3057709B1 (fr) * 2016-10-19 2018-11-23 IFP Energies Nouvelles Batterie a flux redox comportant un systeme de reduction des courants de derivation
AU2016429827A1 (en) * 2016-11-16 2018-06-28 Sumitomo Electric Industries, Ltd. Cell frame, cell stack, and redox flow battery
JP6738052B2 (ja) * 2016-11-16 2020-08-12 住友電気工業株式会社 セルフレーム、セルスタック、及びレドックスフロー電池
CN106684420B (zh) * 2016-12-20 2019-05-31 华中科技大学 一种带有流场设计的铅液流电池
US10749201B2 (en) * 2017-01-11 2020-08-18 Xergy Inc. Regenerative fuel cell
US11394035B2 (en) 2017-04-06 2022-07-19 Form Energy, Inc. Refuelable battery for the electric grid and method of using thereof
US10661659B2 (en) 2017-06-21 2020-05-26 Cyberswitchingpatents, LLC. Integrated management of electric vehicle charging and non-electric vehicle fueling
WO2019032704A1 (en) * 2017-08-11 2019-02-14 The Board Of Trustees Of The Leland Stanford Junior University METAL-HYDROGEN BATTERIES OF LARGE SCALE ENERGY ACCUMULATION
US11611115B2 (en) 2017-12-29 2023-03-21 Form Energy, Inc. Long life sealed alkaline secondary batteries
WO2020023912A1 (en) 2018-07-27 2020-01-30 Form Energy Inc. Negative electrodes for electrochemical cells
CN110120485B (zh) 2018-02-06 2021-06-18 比亚迪股份有限公司 聚合物隔膜及其制备方法和应用以及锂离子电池及其制备方法
JP7061249B2 (ja) * 2018-02-21 2022-04-28 国立大学法人山梨大学 水素発生触媒、水素発生装置、水素発生方法
US20210050609A1 (en) * 2018-03-19 2021-02-18 The Trustees Of The University Of Pennsylvania Bulk nanoporous materials for on-site and on-board generation of hydrogen and other products
WO2019193594A1 (en) * 2018-04-02 2019-10-10 Ariel Scientific Innovations Ltd. Electrocatalysts, the preparation thereof, and using the same for ammonia synthesis
WO2020006506A2 (en) * 2018-06-29 2020-01-02 Form Energy Inc. Rolling diaphragm seal
US11973254B2 (en) 2018-06-29 2024-04-30 Form Energy, Inc. Aqueous polysulfide-based electrochemical cell
CN110813274B (zh) * 2018-08-10 2020-12-01 中国科学院大连化学物理研究所 一种超细双金属IrRu纳米线型催化剂及其制备和应用
KR102312412B1 (ko) * 2018-08-23 2021-10-13 현대모비스 주식회사 연료 전지용 전극 촉매, 이를 포함하는 연료 전지용 전극, 연료 전지, 및 이의 제조 방법
NL2022354B1 (en) * 2019-01-08 2020-08-13 Hyet Holding B V Flow field plate and compressor comprising such plate
EP3683875A1 (de) * 2019-01-15 2020-07-22 simatec ag Elektrochemische gasentwicklungszelle, insbesondere quecksilberfreie wasserstoffentwicklungszelle
US20220352527A1 (en) 2019-10-04 2022-11-03 Form Energy, Inc. Refuelable battery for the electric grid and method of using thereof
US11894566B2 (en) 2020-05-12 2024-02-06 Robert Bosch Gmbh Catalyst materials for a fuel cell stack
KR102431468B1 (ko) 2020-09-21 2022-08-12 전남대학교산학협력단 탄소 껍질로 캡슐화된 전이금속 탄화물-인화물 하이브리드 나노 구조체를 포함하는 수소 발생 반응용 전기 촉매 및 그 제조방법
US20220407086A1 (en) * 2021-06-16 2022-12-22 Robert Bosch Gmbh Anode catalyst materials for electrochemical cells
US11746427B2 (en) * 2021-07-05 2023-09-05 EvolOH, Inc. Scalable electrolysis cell and stack and method of high-speed manufacturing the same
WO2023002411A1 (en) * 2021-07-21 2023-01-26 Dioxycle Electrolyzer assembly comprising an insulating layer
NL2030263B1 (en) 2021-12-23 2023-06-29 Elestor B V A Hydrogen-X flow battery system coupled to a hydrogen pipeline network.
CN114525530A (zh) * 2022-02-24 2022-05-24 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 一种无负载液流电解水制氢方法及装置
WO2023219648A1 (en) 2022-05-09 2023-11-16 Lockheed Martin Energy, Llc Flow battery with a dynamic fluidic network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447943B1 (en) * 2000-01-18 2002-09-10 Ramot University Authority For Applied Research & Industrial Development Ltd. Fuel cell with proton conducting membrane with a pore size less than 30 nm
CN1411618A (zh) * 2000-01-18 2003-04-16 拉莫特大学应用研究与工业开发有限公司 具有质子传导膜的燃料电池
US6811911B1 (en) * 1998-02-24 2004-11-02 Tel Aviv University Future Technology Development L.P. Ion conductive matrixes and their use
CN1913967A (zh) * 2004-01-26 2007-02-14 Abb路慕斯全球股份有限公司 制备中孔或组合的中孔和微孔无机氧化物的方法
WO2007072743A1 (ja) * 2005-12-21 2007-06-28 Tokai Carbon Co., Ltd. 燃料電池用セパレータ材およびその製造方法

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL264777A (zh) * 1960-05-17
US4119836A (en) 1975-11-26 1978-10-10 Kakogawa Plastics Kabushiki Kaisha Heat-controlled doctor knife
US4128701A (en) * 1977-12-23 1978-12-05 United Technologies Corp. Hydrogen/chlorine regenerative fuel cell
IT1212303B (it) * 1978-07-10 1989-11-22 Elche Ltd Accumulatore redox.
US4218519A (en) * 1978-09-01 1980-08-19 Texas Instruments Incorporated Configuration for a gas redox fuel cell employing an ion exchange membrane
US4312927A (en) 1980-06-27 1982-01-26 Minnesota Mining And Manufacturing Company Energy conversion and storage process
DE3241801A1 (de) 1982-11-11 1984-05-17 Siemens AG, 1000 Berlin und 8000 München Wasserstoff/brom-zelle
JPS59111272A (ja) 1982-12-15 1984-06-27 Toshiba Corp 燃料電池制御装置
JPS59191270A (ja) * 1983-04-14 1984-10-30 Fuji Electric Corp Res & Dev Ltd マトリツクス形燃料電池の電解液補給構造
JPS59196579A (ja) 1983-04-21 1984-11-07 Fuji Electric Corp Res & Dev Ltd マトリツクス形燃料電池
DE3334330A1 (de) 1983-09-22 1985-04-04 Siemens AG, 1000 Berlin und 8000 München Verfahren zur herstellung einer elektroden-membran-einheit fuer wasserstoff/brom-zellen
JPS60124367A (ja) 1983-12-08 1985-07-03 Agency Of Ind Science & Technol 燃料電池の電解液循環系
JPS6145569A (ja) 1984-08-09 1986-03-05 Nissan Motor Co Ltd 自動車用電源装置
DE3522714A1 (de) 1985-06-25 1987-01-08 Fraunhofer Ges Forschung Verfahren zur chemischen reaktivierung einer redoxzelle
JPS625570A (ja) 1985-07-01 1987-01-12 Hitachi Ltd 燃料電池の電解質補充装置
JPS6261277A (ja) * 1985-09-11 1987-03-17 Agency Of Ind Science & Technol 高効率電力貯蔵方法
JPS62119868A (ja) * 1985-11-20 1987-06-01 Mitsubishi Electric Corp 燃料電池
US5219671A (en) 1985-12-04 1993-06-15 Solar Reactor Technologies, Inc. Hydrogen generation and utility load leveling system and the method therefor
JPH0732023B2 (ja) * 1986-08-02 1995-04-10 東邦レーヨン株式会社 レドックスフロー型電池用バイポーラ板
JPS63313472A (ja) * 1987-06-16 1988-12-21 Fuji Electric Co Ltd 自由電解液形燃料電池
DE3735157A1 (de) 1987-10-16 1989-05-03 Boehringer Mannheim Gmbh Traegerband fuer teststreifen und vorrichtungen zum befestigen der teststreifen auf dem traegerband
JPH01292751A (ja) * 1988-05-18 1989-11-27 Fuji Electric Co Ltd マトリックス型燃料電池の電解液補給装置
US4818637A (en) * 1988-05-20 1989-04-04 United Technologies Corporation Hydrogen/halogen fuel cell with improved water management system
JPH01307172A (ja) * 1988-06-02 1989-12-12 Fuji Electric Co Ltd マトリックス型燃料電池の電解液補給装置
JPH084010B2 (ja) * 1989-03-23 1996-01-17 関西電力株式会社 電解液循環型二次電池
JPH0446535A (ja) 1990-06-14 1992-02-17 Takaoka Electric Mfg Co Ltd 無停電電源装置
JPH04124755A (ja) 1990-09-17 1992-04-24 Oki Electric Ind Co Ltd 端末制御システム
JP2557947Y2 (ja) * 1991-04-26 1997-12-17 住友電気工業株式会社 電解液循環型電池
US6183623B1 (en) * 1993-07-13 2001-02-06 Lynntech, Inc. Electrochemical conversion of anhydrous hydrogen halide to halogen gas using an ionically conducting membrane
US5635039A (en) * 1993-07-13 1997-06-03 Lynntech, Inc. Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same
US5599638A (en) 1993-10-12 1997-02-04 California Institute Of Technology Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane
JPH099681A (ja) 1995-06-23 1997-01-10 Matsushita Electric Ind Co Ltd インバータ装置
US6093306A (en) * 1997-04-07 2000-07-25 Solar Reactor Technologies Inc. Comprehensive system for utility load leveling, hydrogen production, stack gas cleanup, greenhouse gas abatement, and methanol synthesis
JPH1116591A (ja) 1997-06-26 1999-01-22 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池、固体高分子型燃料電池システム及び電気機器
GB9821156D0 (en) 1998-09-29 1998-11-25 Nat Power Plc Manufacturable electrochemical cell
EP1327272A2 (en) * 2000-09-27 2003-07-16 Proton Energy Systems, Inc. Electrode catalyst composition, electrode and membrane electrode assembly for electrochemical cells
JP2002246061A (ja) * 2001-02-15 2002-08-30 Sumitomo Electric Ind Ltd レドックスフロー2次電池用セルフレーム構造およびその製造方法
AU2002319890A1 (en) 2001-07-18 2003-03-03 Tel-Aviv University Future Technology Development L.P. Fuel cell with proton conducting membrane and with improved water and fuel management
JP3659582B2 (ja) 2001-11-20 2005-06-15 本田技研工業株式会社 燃料循環式燃料電池システム
US8101243B2 (en) * 2002-04-03 2012-01-24 Colorado School Of Mines Method of making sulfur-resistant composite metal membranes
CN1202583C (zh) * 2002-05-09 2005-05-18 华南理工大学 高温直接甲醇燃料电池用复合型质子交换膜及其制备方法
US20040126632A1 (en) * 2002-12-27 2004-07-01 Pearson Martin T. Regenerative fuel cell electric power plant and operating method
JP2004247080A (ja) 2003-02-12 2004-09-02 Masaru Ichikawa 燃料電池
WO2004109086A2 (en) * 2003-06-05 2004-12-16 Solar Reactor Technologies, Inc. Method for processing stack gas emissions
DE10342889A1 (de) 2003-09-15 2004-08-12 Werner Henze Vorrichtung und Verfahren zur Umwandlung von Wärme- und/oder Strahlungsenergie in elektrische Energie
JP5082187B2 (ja) 2003-10-06 2012-11-28 日産自動車株式会社 固体高分子型燃料電池用電極触媒粒子の製造方法
JP4197514B2 (ja) * 2004-02-25 2008-12-17 三星エスディアイ株式会社 燃料電池システム及びスタック
US7687183B2 (en) 2004-08-25 2010-03-30 Gm Global Technology Operations, Inc. Electrochemical fuel cell elements having improved compression over channels
US7488551B2 (en) * 2004-12-28 2009-02-10 Ballard Power Systems Inc. Integrated current collector and electrical component plate for a fuel cell stack
JP5013740B2 (ja) * 2005-04-28 2012-08-29 キヤノン株式会社 固体高分子型燃料電池の疎水性触媒層及びその製造方法、固体高分子型燃料電池及びその製造方法
WO2007007829A1 (ja) * 2005-07-13 2007-01-18 Konica Minolta Medical & Graphic, Inc. ハロゲン化物系輝尽性蛍光体前駆体、ハロゲン化物系輝尽性蛍光体、放射線画像変換パネルおよびこれらの製造方法
CN101432907A (zh) * 2006-02-24 2009-05-13 加利福尼亚大学董事会 作为用于燃料电池的电催化剂的铂和铂基合金纳米管
JP2007242524A (ja) 2006-03-10 2007-09-20 Toyota Motor Corp 有機無機ハイブリッド電解質膜、その製造方法、及び燃料電池
CN104243116B (zh) 2006-06-01 2018-03-06 华为技术有限公司 移动站与基站之间的连接处理方法、移动站和基站
US20080050639A1 (en) * 2006-08-23 2008-02-28 Michael Medina Bipolar flow field plate assembly and method of making the same
EP2059360B1 (en) 2006-08-30 2019-04-17 Umicore AG & Co. KG Core/shell-type catalyst particles and methods for their preparation
KR100754379B1 (ko) * 2006-09-04 2007-08-31 삼성에스디아이 주식회사 이성분성 또는 다성분성 전극촉매, 그 제조방법 및 상기전극촉매를 채용한 연료전지
US8293390B2 (en) * 2007-03-28 2012-10-23 Redflow Pty Ltd Cell stack for a flowing electrolyte battery
KR100869798B1 (ko) * 2007-04-25 2008-11-21 삼성에스디아이 주식회사 연료 전지용 스택
JP2008293735A (ja) 2007-05-23 2008-12-04 Toyota Motor Corp 燃料電池および燃料電池システム
US20090028767A1 (en) 2007-07-16 2009-01-29 Parker Melahn L Waste Treatment and Energy Production Utilizing Halogenation Processes
US7820335B2 (en) * 2007-08-21 2010-10-26 Gm Global Technology Operations, Inc. Plate for a fuel cell assembly
JP5306621B2 (ja) * 2007-09-12 2013-10-02 高砂熱学工業株式会社 電力供給システム
KR100957368B1 (ko) * 2008-04-11 2010-05-12 현대자동차주식회사 연료전지용 mea 소재 자동 타발 및 접합 설비
ES2598167T3 (es) * 2008-06-23 2017-01-25 Nuvera Fuel Cells, LLC Diseño de célula de combustible basado en una placa bipolar con bastidor
JP2010010033A (ja) * 2008-06-30 2010-01-14 Toshiba Corp プロトン伝導性膜、それを用いた膜電極複合体および燃料電池
US20100060985A1 (en) * 2008-09-09 2010-03-11 Fujifilm Corporation Method for producing polarizing plate, and automobile's windshield
US20110275009A1 (en) * 2008-10-30 2011-11-10 Sony Corporation Platinum-containing catalyst and method of producing the same, electrode and electrochemical device
JP5566040B2 (ja) * 2009-03-30 2014-08-06 日本ゴア株式会社 積層体およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6811911B1 (en) * 1998-02-24 2004-11-02 Tel Aviv University Future Technology Development L.P. Ion conductive matrixes and their use
US6447943B1 (en) * 2000-01-18 2002-09-10 Ramot University Authority For Applied Research & Industrial Development Ltd. Fuel cell with proton conducting membrane with a pore size less than 30 nm
CN1411618A (zh) * 2000-01-18 2003-04-16 拉莫特大学应用研究与工业开发有限公司 具有质子传导膜的燃料电池
CN1913967A (zh) * 2004-01-26 2007-02-14 Abb路慕斯全球股份有限公司 制备中孔或组合的中孔和微孔无机氧化物的方法
WO2007072743A1 (ja) * 2005-12-21 2007-06-28 Tokai Carbon Co., Ltd. 燃料電池用セパレータ材およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111883806A (zh) * 2020-09-28 2020-11-03 河南银金达新材料股份有限公司 质子传导隔膜及其制备方法

Also Published As

Publication number Publication date
CN104319410A (zh) 2015-01-28
IL220963A (en) 2017-03-30
US20120308911A1 (en) 2012-12-06
KR20150038056A (ko) 2015-04-08
BR112012018438A2 (pt) 2016-04-19
WO2011089516A3 (en) 2011-12-01
JP5568144B2 (ja) 2014-08-06
KR20120130177A (ko) 2012-11-29
IL220964A (en) 2017-10-31
WO2011089518A8 (en) 2012-09-07
CA2787467C (en) 2014-10-21
WO2011089518A2 (en) 2011-07-28
CN102971900B (zh) 2016-04-13
WO2011089516A2 (en) 2011-07-28
EP2529441A2 (en) 2012-12-05
JP2013518365A (ja) 2013-05-20
WO2011089520A2 (en) 2011-07-28
BR112012018441A2 (pt) 2019-09-24
ES2585819T3 (es) 2016-10-10
KR101578811B1 (ko) 2015-12-18
CN104167558A (zh) 2014-11-26
US9627693B2 (en) 2017-04-18
CA2787468A1 (en) 2011-07-28
US8968961B2 (en) 2015-03-03
AU2011208460B2 (en) 2014-03-06
CN104167558B (zh) 2016-11-02
CA2787467A1 (en) 2011-07-28
AU2014203796B2 (en) 2015-11-19
JP2014209489A (ja) 2014-11-06
WO2011089521A2 (en) 2011-07-28
WO2011089521A3 (en) 2011-10-27
KR101763698B1 (ko) 2017-08-01
AU2014203796A1 (en) 2014-07-31
JP2013518363A (ja) 2013-05-20
KR20120124437A (ko) 2012-11-13
JP2013518362A (ja) 2013-05-20
WO2011089522A3 (en) 2012-01-19
US20120295172A1 (en) 2012-11-22
CA2787645A1 (en) 2011-07-28
CA2787477A1 (en) 2011-07-28
CN102725893B (zh) 2016-01-13
CN102725894B (zh) 2015-08-19
JP2013518364A (ja) 2013-05-20
JP2013518366A (ja) 2013-05-20
KR20120130184A (ko) 2012-11-29
KR101554246B1 (ko) 2015-09-21
AU2011208460A1 (en) 2012-08-09
KR20130009750A (ko) 2013-01-23
CN104167560B (zh) 2017-04-12
EP2529441B1 (en) 2016-05-04
IL220967A0 (en) 2012-09-24
EP2529438A2 (en) 2012-12-05
KR20150016345A (ko) 2015-02-11
WO2011089522A2 (en) 2011-07-28
EP2529439A2 (en) 2012-12-05
IL220965A (en) 2016-08-31
JP2015053278A (ja) 2015-03-19
CN104319410B (zh) 2017-01-11
CN102725893A (zh) 2012-10-10
US9012104B2 (en) 2015-04-21
WO2011089520A3 (en) 2011-10-06
IL220964A0 (en) 2012-09-24
JP6061680B2 (ja) 2017-01-18
CA2787640C (en) 2015-01-06
EP2529437A2 (en) 2012-12-05
CA2787645C (en) 2015-06-02
CN102714320B (zh) 2015-07-15
MX2012008653A (es) 2013-01-29
CN102870259A (zh) 2013-01-09
KR101493268B1 (ko) 2015-02-16
AU2011208458B2 (en) 2014-04-17
CA2787477C (en) 2017-05-23
US9882223B2 (en) 2018-01-30
US20120299384A1 (en) 2012-11-29
CA2787640A1 (en) 2011-07-28
JP5535339B2 (ja) 2014-07-02
JP6019063B2 (ja) 2016-11-02
JP5616978B2 (ja) 2014-10-29
WO2011089522A8 (en) 2012-09-13
US20120308907A1 (en) 2012-12-06
US9331342B2 (en) 2016-05-03
US20120312696A1 (en) 2012-12-13
CN102714320A (zh) 2012-10-03
CN104167560A (zh) 2014-11-26
CN102725894A (zh) 2012-10-10
WO2011089518A3 (en) 2011-12-01
JP5902792B2 (ja) 2016-04-13
KR20120125636A (ko) 2012-11-16
AU2011208458A1 (en) 2012-08-09
MX2012008654A (es) 2013-01-29
KR101512034B1 (ko) 2015-04-14
EP2529436A2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
CN102971900B (zh) 质子传导膜的制造方法
Wu et al. Boosting vanadium flow battery performance by Nitrogen-doped carbon nanospheres electrocatalyst
Parwaiz et al. Cobalt-doped ceria/reduced graphene oxide nanocomposite as an efficient oxygen reduction reaction catalyst and supercapacitor material
Chen et al. Novel Ag@ nitrogen-doped porous carbon composite with high electrochemical performance as anode materials for lithium-ion batteries
JP4937449B2 (ja) イオン伝導性マトリックスおよびそれの使用
CN102569839B (zh) 一种液流储能电池用无机物填充有孔复合膜及其应用
Gopalakrishnan et al. Recent advances in oxygen electrocatalysts based on tunable structural polymers
CN105576267B (zh) 一种有机无机杂化质子交换膜及其制备方法和应用
JP6049033B2 (ja) 燃料電池カソード用非白金触媒及びその製造方法
CN105502386A (zh) 一种微孔碳纳米片的制备方法
CN103833032A (zh) 基于石墨烯的复合负极材料
CN103253740A (zh) 三维分级结构石墨烯/多孔碳复合电容型脱盐电极的制备方法
CN106158405A (zh) 一种氢氧化镍/石墨烯纳米复合材料及其制备方法、超级电容器电极及超级电容器
CN107089707A (zh) 电容型脱盐电极用核壳结构三维石墨烯复合材料及其制备方法
Li et al. Liquid–solid interfacial assemblies of soft materials for functional freestanding layered membrane–based devices toward electrochemical energy systems
Liang et al. Teflon: A decisive additive in directly fabricating hierarchical porous carbon with network structure from natural leaf
KR101353915B1 (ko) 축전식 탈염용 복합전극 제조방법 및 제조장치
CN110197911B (zh) 一种全钒液流电池用多孔隔膜及其制备方法和用途
KR101580094B1 (ko) 해조류를 이용한 이종 원소 함유 다공성 탄소체 및 이의 제조방법
CN103296296A (zh) 一种氢氯燃料电池用多孔膜及其制备和应用
CN101924246A (zh) 基于碳化聚膦腈微纳米材料的复合固体电解质的制备方法
CN104347884A (zh) 一种适用于燃料电池的电极的制备方法
CN107959044A (zh) 一种柔性自支撑锂硫电池正极材料的制造方法
WO2020092473A1 (en) Composite films and methods of making and use thereof
CN109659154A (zh) 一种碳基超级电容器电极材料的制备方法及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160413

Termination date: 20190124

CF01 Termination of patent right due to non-payment of annual fee