EP2895642B1 - Process using high surface area electrodes for the electrochemical reduction of carbon dioxide - Google Patents
Process using high surface area electrodes for the electrochemical reduction of carbon dioxide Download PDFInfo
- Publication number
- EP2895642B1 EP2895642B1 EP13837298.2A EP13837298A EP2895642B1 EP 2895642 B1 EP2895642 B1 EP 2895642B1 EP 13837298 A EP13837298 A EP 13837298A EP 2895642 B1 EP2895642 B1 EP 2895642B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- catholyte
- alkali metal
- cathode
- compartment
- formate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims description 131
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims description 72
- 239000001569 carbon dioxide Substances 0.000 title claims description 59
- 238000000034 method Methods 0.000 title claims description 49
- 230000009467 reduction Effects 0.000 title claims description 17
- 230000008569 process Effects 0.000 title description 18
- -1 alkali metal bicarbonate Chemical class 0.000 claims description 60
- 238000000576 coating method Methods 0.000 claims description 49
- 239000011248 coating agent Substances 0.000 claims description 46
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 41
- 239000000758 substrate Substances 0.000 claims description 40
- 229910052738 indium Inorganic materials 0.000 claims description 39
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 37
- 239000010949 copper Substances 0.000 claims description 36
- 229910052802 copper Inorganic materials 0.000 claims description 35
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 33
- 229910052783 alkali metal Inorganic materials 0.000 claims description 30
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 26
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 22
- 238000001728 nano-filtration Methods 0.000 claims description 21
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 20
- 238000005342 ion exchange Methods 0.000 claims description 20
- 239000001301 oxygen Substances 0.000 claims description 20
- 229910052760 oxygen Inorganic materials 0.000 claims description 20
- 229910052718 tin Inorganic materials 0.000 claims description 19
- 239000003054 catalyst Substances 0.000 claims description 18
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 16
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 15
- 235000019253 formic acid Nutrition 0.000 claims description 12
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 11
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 9
- 239000011800 void material Substances 0.000 claims description 9
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 8
- 230000002378 acidificating effect Effects 0.000 claims description 8
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical compound BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 7
- 229910000457 iridium oxide Inorganic materials 0.000 claims description 7
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 6
- 229910052794 bromium Inorganic materials 0.000 claims description 6
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 229910052736 halogen Inorganic materials 0.000 claims description 5
- 150000002367 halogens Chemical class 0.000 claims description 5
- OISVCGZHLKNMSJ-UHFFFAOYSA-N 2,6-dimethylpyridine Chemical compound CC1=CC=CC(C)=N1 OISVCGZHLKNMSJ-UHFFFAOYSA-N 0.000 claims description 4
- HNXQXTQTPAJEJL-UHFFFAOYSA-N 2-aminopteridin-4-ol Chemical compound C1=CN=C2NC(N)=NC(=O)C2=N1 HNXQXTQTPAJEJL-UHFFFAOYSA-N 0.000 claims description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 4
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 claims description 4
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 claims description 4
- 125000000623 heterocyclic group Chemical group 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 3
- 229910001925 ruthenium oxide Inorganic materials 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 claims description 3
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 claims description 2
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 claims description 2
- GCNTZFIIOFTKIY-UHFFFAOYSA-N 4-hydroxypyridine Chemical compound OC1=CC=NC=C1 GCNTZFIIOFTKIY-UHFFFAOYSA-N 0.000 claims description 2
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 claims description 2
- 229930024421 Adenine Natural products 0.000 claims description 2
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 claims description 2
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 claims description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 claims description 2
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 claims description 2
- 229960000643 adenine Drugs 0.000 claims description 2
- HPYNZHMRTTWQTB-UHFFFAOYSA-N dimethylpyridine Natural products CC1=CC=CN=C1C HPYNZHMRTTWQTB-UHFFFAOYSA-N 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 claims description 2
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 claims description 2
- XLSZMDLNRCVEIJ-UHFFFAOYSA-N methylimidazole Natural products CC1=CNC=N1 XLSZMDLNRCVEIJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- CPNGPNLZQNNVQM-UHFFFAOYSA-N pteridine Chemical compound N1=CN=CC2=NC=CN=C21 CPNGPNLZQNNVQM-UHFFFAOYSA-N 0.000 claims description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- 229910000288 alkali metal carbonate Inorganic materials 0.000 claims 3
- 150000008041 alkali metal carbonates Chemical class 0.000 claims 3
- KZNMRPQBBZBTSW-UHFFFAOYSA-N [Au]=O Chemical compound [Au]=O KZNMRPQBBZBTSW-UHFFFAOYSA-N 0.000 claims 1
- 229910001922 gold oxide Inorganic materials 0.000 claims 1
- 150000002894 organic compounds Chemical class 0.000 claims 1
- MUMZUERVLWJKNR-UHFFFAOYSA-N oxoplatinum Chemical class [Pt]=O MUMZUERVLWJKNR-UHFFFAOYSA-N 0.000 claims 1
- 229910003446 platinum oxide Inorganic materials 0.000 claims 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 66
- 239000012528 membrane Substances 0.000 description 57
- 239000011736 potassium bicarbonate Substances 0.000 description 50
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 50
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 49
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 39
- 239000000243 solution Substances 0.000 description 37
- 229910052751 metal Inorganic materials 0.000 description 32
- 239000002184 metal Substances 0.000 description 32
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 31
- 239000000047 product Substances 0.000 description 30
- 230000020477 pH reduction Effects 0.000 description 28
- 235000015497 potassium bicarbonate Nutrition 0.000 description 28
- 239000000463 material Substances 0.000 description 24
- 239000002253 acid Substances 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 18
- 239000001257 hydrogen Substances 0.000 description 17
- 229910052739 hydrogen Inorganic materials 0.000 description 17
- 239000010411 electrocatalyst Substances 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- 238000005341 cation exchange Methods 0.000 description 14
- 239000003792 electrolyte Substances 0.000 description 12
- 239000000835 fiber Substances 0.000 description 12
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 12
- 150000002739 metals Chemical class 0.000 description 11
- WFIZEGIEIOHZCP-UHFFFAOYSA-M potassium formate Chemical compound [K+].[O-]C=O WFIZEGIEIOHZCP-UHFFFAOYSA-M 0.000 description 11
- 150000003839 salts Chemical class 0.000 description 11
- 238000000926 separation method Methods 0.000 description 11
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 10
- 238000007792 addition Methods 0.000 description 10
- 239000008367 deionised water Substances 0.000 description 10
- 229910021641 deionized water Inorganic materials 0.000 description 10
- 238000013461 design Methods 0.000 description 10
- 229910052719 titanium Inorganic materials 0.000 description 10
- 239000010936 titanium Substances 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 9
- 239000004020 conductor Substances 0.000 description 9
- 238000000151 deposition Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000011282 treatment Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 150000001450 anions Chemical class 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 7
- 150000001768 cations Chemical class 0.000 description 7
- 230000008021 deposition Effects 0.000 description 7
- 150000007524 organic acids Chemical class 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 7
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 7
- 229910052939 potassium sulfate Inorganic materials 0.000 description 7
- 229910052709 silver Inorganic materials 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 230000001186 cumulative effect Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 229910000027 potassium carbonate Inorganic materials 0.000 description 6
- 235000011181 potassium carbonates Nutrition 0.000 description 6
- 125000006850 spacer group Chemical group 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000010406 cathode material Substances 0.000 description 5
- 239000000498 cooling water Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 4
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910001413 alkali metal ion Inorganic materials 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229920000557 Nafion® Polymers 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 239000000908 ammonium hydroxide Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000012527 feed solution Substances 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 150000002471 indium Chemical class 0.000 description 3
- 239000011630 iodine Substances 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 238000004255 ion exchange chromatography Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 235000011151 potassium sulphates Nutrition 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000003134 recirculating effect Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000007581 slurry coating method Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 210000002268 wool Anatomy 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 241000544051 Damasonium alisma Species 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000011021 bench scale process Methods 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 150000001649 bromium compounds Chemical class 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- FYPZKRVMRWWQBC-UHFFFAOYSA-N carbonic acid;formic acid Chemical compound OC=O.OC(O)=O FYPZKRVMRWWQBC-UHFFFAOYSA-N 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 150000004770 chalcogenides Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 239000002482 conductive additive Substances 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 229940021013 electrolyte solution Drugs 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 239000003014 ion exchange membrane Substances 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229940098779 methanesulfonic acid Drugs 0.000 description 2
- 230000000116 mitigating effect Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 229910019964 (NH4)2MoS4 Inorganic materials 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920003935 Flemion® Polymers 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 241000289692 Myrmecophagidae Species 0.000 description 1
- 229910020505 Na4Sn2S6 Inorganic materials 0.000 description 1
- 229910020506 Na4SnS4 Inorganic materials 0.000 description 1
- 229910003296 Ni-Mo Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910010062 TiCl3 Inorganic materials 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- YJZATOSJMRIRIW-UHFFFAOYSA-N [Ir]=O Chemical class [Ir]=O YJZATOSJMRIRIW-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- RDHPKYGYEGBMSE-UHFFFAOYSA-N bromoethane Chemical compound CCBr RDHPKYGYEGBMSE-UHFFFAOYSA-N 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical class [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000000254 damaging effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- AMNSWIGOPDBSIE-UHFFFAOYSA-H indium(3+);tricarbonate Chemical compound [In+3].[In+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O AMNSWIGOPDBSIE-UHFFFAOYSA-H 0.000 description 1
- 239000003317 industrial substance Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000006262 metallic foam Substances 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 230000003334 potential effect Effects 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- MKWYFZFMAMBPQK-UHFFFAOYSA-J sodium feredetate Chemical compound [Na+].[Fe+3].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O MKWYFZFMAMBPQK-UHFFFAOYSA-J 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000003115 supporting electrolyte Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- UVZICZIVKIMRNE-UHFFFAOYSA-N thiodiacetic acid Chemical compound OC(=O)CSCC(O)=O UVZICZIVKIMRNE-UHFFFAOYSA-N 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
- C25B11/03—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/25—Reduction
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
Definitions
- the present disclosure generally relates to the field of electrochemical reactions, and more particularly to methods for electrochemical reduction of carbon dioxide using high surface area electrodes.
- a mechanism for mitigating emissions is to convert carbon dioxide into economically valuable materials such as fuels and industrial chemicals. If the carbon dioxide is converted using energy from renewable sources, both mitigation of carbon dioxide emissions and conversion of renewable energy into a chemical form that can be stored for later use may be possible.
- WO2007/041872 A1 describes a continuous co-current electrochemical reduction of carbon dioxide.
- US 5,290,404 describes an electro-synthesis of alcohols and carboxylic acids from corresponding metal salts.
- US4,589,963 describes a process for the conversion of salts of carboxylic acid to their corresponding free acids.
- the present invention is directed to a method for electrochemical reduction of carbon dioxide into products, comprising:
- an electrochemical system that converts carbon dioxide to organic products including formate and formic acid.
- a cathode comprising a high surface area three dimensional material, an acidic anolyte, and a catholyte comprising bicarbonate facilitates the process.
- the electrolyzer system 100 may be utilized for the electrochemical reduction of carbon dioxide to organic products or organic product intermediates.
- the electrolyzer system 100 reduces carbon dioxide to an alkali metal formate, such as potassium formate.
- the electrolyzer system 100 generally includes an electrolyzer 102, an anolyte recycle loop 104, and a catholyte recycle loop 106.
- the electrolyzer system 100 may include as process feeds/inputs carbon dioxide, a catholyte comprising bicarbonate (preferably potassium bicarbonate, but other bicarbonate-based compounds are contemplated instead of or in addition to potassium bicarbonate), and an acidic anolyte (preferably sulfuric acid, but may include other acids, instead of, or in addition to sulfuric acid).
- a catholyte comprising bicarbonate (preferably potassium bicarbonate, but other bicarbonate-based compounds are contemplated instead of or in addition to potassium bicarbonate)
- an acidic anolyte preferably sulfuric acid, but may include other acids, instead of, or in addition to sulfuric acid.
- the product of the electrolyzer system 100 is generally an alkali metal formate, such as potassium formate, and may include excess catholyte, carbon dioxide, hydrogen, oxygen, and/or other unreacted process inputs.
- the electrolyzer 102 generally includes an anode compartment 108 and a cathode compartment 110, and may further include a cation exchange membrane 112 to separate the anode compartment 108 from the cathode compartment 110.
- the anode compartment 108 includes an anode 114 suitable to oxidize water.
- the anode 114 is a titanium anode having an anode electrocatalyst coating which faces the cation exchange membrane 112.
- the anode 114 may include an anode mesh screen 116 that includes a folded expanded titanium screen with an anode electrocatalyst coating.
- the anode mesh screen 116 may provide spacing and contact pressure between the anode 114 and the cation exchange membrane 112.
- the anode 114 may also include one or more electrical current connection posts (not shown) on a backside of the anode 114.
- the cathode compartment 110 generally includes a cathode 118 mounted within the cathode compartment 110.
- the cathode 118 preferably includes a metal electrode with an active electrocatalyst layer on a front surface of the cathode 118 facing the cation exchange membrane 112, and may include one or more electrical current conduction posts (not shown) on a backside of the cathode 118.
- the cathode 118 includes a high surface area cathode structure 120.
- the high surface area cathode structure 120 may be mounted between the cation exchange membrane 112 and the cathode 118 for conducting electrical current into the high surface area cathode structure 120.
- the interface between the high surface area cathode structure 120 and the cation exchange membrane 112 may include an insulator screen (not shown), such as a thin expanded plastic mesh insulator screen to minimize direct contact between the high surface area cathode structure 120 and the cation exchange membrane 112.
- an insulator screen such as a thin expanded plastic mesh insulator screen to minimize direct contact between the high surface area cathode structure 120 and the cation exchange membrane 112.
- the anode compartment 108 generally includes an anode feed stream 122 that includes a dilute acid anolyte solution.
- the anode feed stream 122 may enter a bottom of the anode compartment 108 to flow by a face of the anode 114 and through the anode mesh screen 116.
- the reaction in the anode compartment 108 may include deriving oxygen (O 2 , i.e., gaseous oxygen) and hydrogen ions (H + ) or protons from the oxidation of water at an applied current and voltage potential.
- the hydrogen ions or protons are generally available for the reactions within the cathode compartment 110 via the cation exchange membrane 112.
- the gaseous oxygen and other liquids leaving the anode compartment 108 of the electrolyzer 102 leave as anode exit stream 124.
- the anode exit stream 124 may be monitored by a temperature sensor 126a and may flow to an anolyte disengager 128 suitable for separating the oxygen from the anode exit stream 124.
- the anolyte disengager 128 may process the anode exit stream 124 into an oxygen stream 130, an anolyte recycle stream 132, and an anolyte overflow stream 134.
- the oxygen stream 130 may be vented from the anolyte disengager 128.
- the anolyte stream 132 may be combined with water (preferably deionized water) from a water source 136 and with acid (preferably sulfuric acid) from an acid source 138.
- the water source 136 and the acid source 138 in the anolyte recycle loop 104 may maintain anolyte acid strength and volume for the anode feed stream 122.
- the temperature of the anode feed stream 122 may be regulated by a heat exchanger 140a coupled with a cooling water source 142a prior to entering the anode compartment 108 of the electrolyzer 102.
- the cathode compartment 110 generally includes a cathode feed stream 144 that includes carbon dioxide and a catholyte.
- the catholyte is a bicarbonate compound, such as potassium bicarbonate (KHCO 3 ), which is saturated with carbon dioxide.
- the cathode feed stream 144 may enter a bottom of the cathode compartment 110 to flow by a face of the cathode 118 and through the high surface area cathode structure 120.
- the reaction in the cathode compartment 110 may reduce carbon dioxide to formate at an applied current and voltage potential.
- the reaction products and any unreacted materials (e.g., excess catholyte solution) may exit the cathode compartment 110 as cathode exit stream 146.
- the cathode exit stream 146 may be monitored by a pH sensor 148a and a temperature sensor 126b and may flow to a catholyte disengager 150 suitable for separating gaseous components (e.g., hydrogen) from the cathode exit stream 146.
- the catholyte disengager 150 may process the cathode exit stream 146 into a hydrogen stream 152, a product stream 154, and a catholyte recycle stream 156.
- the hydrogen stream 152 may be vented from the catholyte disengager 150.
- the product stream 154 preferably includes an alkali metal formate (such as potassium formate where the electrolyte includes potassium bicarbonate) and may include excess catholyte.
- the catholyte stream 156 may be processed by a catholyte recirculation pump 158 and a heat exchanger 140b coupled with a cooling water source 142b.
- a temperature sensor 126c may monitor the catholyte stream 156 downstream from the heat exchanger 140b having cooling water source 142b.
- a fresh catholyte electrolyte feed 160 may be metered into the catholyte stream 156, where the fresh catholyte electrolyte feed 160 may adjust the pH of the cathode feed stream 144 into the cathode compartment 110 of the electrolyzer 102, which may control final product overflow rate and establish the formate product concentration.
- the pH may be monitored by pH sensor 148b.
- a carbon dioxide stream 162 may be metered into the cathode feed stream 144 downstream from the catholyte electrolyte feed 160 prior to entering the cathode compartment 110 of the electrolyzer 102.
- the carbon dioxide saturates the catholyte entering the cathode compartment.
- the pH of the electrolyzer 102 may be controlled or maintained through use of an alkali metal bicarbonate and/or carbonate in combination with water to control the pH of the catholyte.
- the cell may more efficiently convert carbon dioxide into C1 and C2 products with a higher conversion rate than if a non-optimum pH value was maintained or if no pH control mechanism was employed.
- the catholyte is constantly recirculated to maintain an adequate and uniform carbon dioxide concentration at cathode surfaces coated with an electrocatalyst.
- a fresh catholyte feed stream may be used to control the pH of the catholyte and to control the product concentration in the product overflow stream.
- the mass flow rate of the catholyte feed to the cathode compartment e.g., mass flow of potassium bicarbonate
- the concentration of the potassium bicarbonate is important, since it provides volume to the catholyte, which will dilute the product in the catholyte.
- potassium bicarbonate is preferred, in a concentration range of 5 to 600 gm/L, or more preferably in the 10 to 500 gm/L range. If the feed concentration of bicarbonate to the catholyte is fixed, a separate feed of water may be employed into the catholyte to control final product concentration. In another implementation, potassium carbonate may be used as a feed for pH control. Potassium carbonate has a much higher solubility in water than potassium bicarbonate, and is preferably used in a concentration range of 5 to 1,500 gm/L.
- the electrochemical acidification system 200 may be utilized to acidify the product stream 154 from the electrolyzer system 100.
- the electrochemical acidification system 200 acidifies an alkali metal formate, such as potassium formate, to form an organic acid, such as formic acid, and co-produce an alkali metal hydroxide, such as potassium hydroxide.
- the electrochemical acidification system 200 generally includes an electrochemical acidification unit 202, an anolyte recycle loop 204, and a catholyte recycle loop 206.
- the electrochemical acidification system 200 may include as process feeds/inputs the product stream 154 from the electrolyzer system 100 (which preferably includes an alkali metal formate), water in each of the anolyte recycle loop 204 and the catholyte recycle loop 206, and an acidic anolyte (preferably sulfuric acid, but may include other acids, instead of, or in addition to sulfuric acid).
- the product of the electrochemical acidification system 200 is generally an organic acid, such as formic acid, and an alkali metal hydroxide, and may include residual alkali metal formate, bicarbonate catholyte, carbon dioxide, hydrogen, oxygen, and/or other unreacted process inputs.
- the electrochemical acidification unit 202 is preferably a three-compartment electrochemical acidification unit or cell.
- the electrochemical acidification unit 202 generally includes an anode compartment 208, a cathode compartment 210, and a central ion exchange compartment 212 bounded by cation exchange membranes 214a and 214b on each side.
- the anode compartment 208 includes an anode 216 suitable to oxidize water.
- the anode 216 is a titanium anode having an anode electrocatalyst coating which faces the cation exchange membrane 214a.
- the cathode compartment 210 includes a cathode 218 suitable to reduce water and to generate an alkali metal hydroxide.
- hydrogen ions (H + ) or protons are generated in the anode compartment 208 when a potential and current are applied to the electrochemical acidification unit 202.
- the hydrogen ions (H + ) or protons pass through the cation exchange membrane 214a into the central ion exchange compartment 212.
- the product stream 154 from the electrolyzer system 100 is preferably introduced to the electrochemical acidification unit 202 via the central ion exchange compartment 212, where the hydrogen ions (H + ) or protons displace the alkali metal ions (e.g., potassium ions) in the product stream 154 to acidify the stream and produce a product stream 260 including an organic acid product, preferably formic acid.
- alkali metal ions e.g., potassium ions
- the displaced alkali metal ions may pass through the cation exchange membrane 214b to the cathode compartment 210 to combine with hydroxide ions (OH - ) formed from water reduction at the cathode 218 to form an alkali metal hydroxide, preferably potassium hydroxide.
- the central ion exchange compartment 212 may include a plastic mesh spacer (not shown) to maintain the dimensional space in the central ion exchange compartment 212 between the cation exchange membranes 214a and 214b.
- a cation ion exchange material 220 is included in the central ion exchange compartment 212 between the cation exchange membranes 214a and 214b.
- the cation ion exchange material 220 may include an ion exchange resin in the form of beads, fibers, and the like.
- the cation ion exchange material 220 may increase electrolyte conductivity in the ion exchange compartment solution, and may reduce the potential effects of carbon dioxide gas on the cell voltage as bubbles are formed and pass through the central ion exchange compartment 212.
- the anode compartment 208 generally includes an anode feed stream 222 that includes an acid anolyte solution (preferably a sulfuric acid solution).
- the gaseous oxygen and other liquids leaving the anode compartment 208 of the electrochemical acidification unit 202 leave as anode exit stream 224.
- the anode exit stream 224 may be monitored by a temperature sensor 226a and may flow to an anolyte disengager 228 suitable for separating the oxygen from the anode exit stream 224.
- the anolyte disengager 228 may process the anode exit stream 224 into an oxygen stream 230, an anolyte recycle stream 232, and an anolyte overflow stream 234.
- the oxygen stream 230 may be vented from the anolyte disengager 228.
- the anolyte stream 232 may be combined with water (preferably deionized water) from a water source 236 and with acid (preferably sulfuric acid) from an acid source 238.
- the water source 236 and the acid source 238 in the anolyte recycle loop 204 may maintain anolyte acid strength and volume for the anode feed stream 222.
- the temperature of the anode feed stream 222 may be regulated by a heat exchanger 240a coupled with a cooling water source 242a prior to entering the anode compartment 208 of the electrochemical acidification unit 202.
- the cathode compartment 210 generally includes a catholyte feed stream 244 that includes water and may include an alkali metal hydroxide that circulates through the catholyte recycle loop 206.
- the reaction products which may include the alkali metal hydroxide and hydrogen gas, may exit the cathode compartment 210 as cathode exit stream 246.
- the cathode exit stream 246 may be monitored by a temperature sensor 226b and may flow to a catholyte disengager 248 suitable for separating gaseous components (e.g., hydrogen) from the cathode exit stream 246.
- the catholyte disengager 248 may process the cathode exit stream 246 into a hydrogen stream 250, a catholyte stream 252, and a catholyte overflow stream 254, which may include KOH.
- the hydrogen stream 250 may be vented from the catholyte disengager 248.
- the catholyte stream 252 preferably includes an alkali metal hydroxide (such as potassium hydroxide where the product steam 154 includes potassium formate).
- the catholyte stream 252 may be processed by a catholyte recirculation pump 256 and a heat exchanger 240b coupled with a cooling water source 242b.
- a temperature sensor 226c may monitor the catholyte stream 252 downstream from the heat exchanger 240b.
- the catholyte stream 252 may be combined with water (preferably deionized water) from a water source 258, where the water may be metered to control the concentration of the alkali metal hydroxide in the catholyte feed stream 244 entering the cathode compartment 210.
- water preferably deionized water
- the system 300 may incorporate the electrolyzer system 100 (described with reference to FIG. 1 ) and the electrochemical acidification system 200 (described with reference to FIG. 2 ), and preferably includes a potassium hydroxide recycle loop 302 suitable for the production of potassium bicarbonate from potassium hydroxide and carbon dioxide.
- the system 300 may also incorporate carbon dioxide processing components for the separation (e.g., gas separation units 304a, 304b, 304c, 304d) and recovery of carbon dioxide from process streams.
- the system 300 generally includes carbon dioxide, an alkali metal hydroxide (preferably potassium hydroxide), an acid (preferably sulfuric acid), and water (preferably deionized water) as process inputs and generally includes an organic acid (preferably formic acid), oxygen gas, and hydrogen gas as process outputs.
- the organic acid may undergo additional processing to provide a desired form and concentration. Such processing may include evaporation, distillation, or another suitable physical separation/concentration process.
- the chemistry of the reduction of carbon dioxide in the system 300 may be as follows.
- Hydrogen atoms are adsorbed at the electrode from the reduction of water as shown in equation (1).
- Carbon dioxide is reduced at the cathode surface with the adsorbed hydrogen atom to form formate, which is adsorbed on the surface as in equation (2).
- the competing reaction at the cathode is the reduction of water where hydrogen gas is formed as well as hydroxide ions as in equation (4).
- the anode reaction is the oxidation of water into oxygen and hydrogen ions as shown in equation (5).
- the cathode 118 includes a high surface area cathode structure 120.
- the high surface area cathode structure 120 includes a void volume ranging from 30% to 98%.
- the specific surface area of the high surface area cathode structure 120 is preferably from 2 cm 2 /cm 3 to 500 cm 2 /cm 3 .
- the surface area also can be defined as total area in comparison to the current distributor/ conductor back plate, with a preferred range of 2x to 1000x or more.
- the cathode 118 preferably includes electroless indium on tin (Sn) coated copper woven mesh, copper screen, copper fiber as well as bronze and other are copper-tin alloys, nickel and stainless steels.
- the metals may be precoated with other metals, such as to adequately form a suitable base for the application of the indium and other preferred cathode coatings.
- the cathode may also include Indium-Cu intermetallics formed on the surfaces of copper fiber, woven mesh, copper foam or copper screen.
- the intermetallics are generally harder than the soft indium metal, and may provide desirable mechanical properties in addition to usable catalytic properties.
- the cathode may also include, but is not limited to coatings and/or metal structures containing Pb, Sn, Hg, Tl, In, Bi, and Cd, their alloys, and combinations thereof. Metals including Ti, Nb, Cr, Mo, Ag, Cd, Hg, Tl, An, and Pb as well as Cr-Ni-Mo steel alloys among many others may be incorporated.
- the cathode 118 may include a single or multi-layered electrode coating, such that the electrocatalyst coating on the cathode substrate includes one or more layers of metals and alloys.
- a preferred electrocatalyst coating on the cathode includes a tin coating on a high surface area copper substrate with a top layer/coating of indium. The indium coating coverage preferably ranges from 5% to 100% as indium.
- the indium composition preferably ranges from 5% to 99% as indium in alloys with other metals, including Sn, Pb, Hg, Tl, Bi, Cu, and Cd and their mixed alloys and combinations thereof. It is also contemplated to include Au, Ag, Zn, and Pd into the coating in percentages ranging from 1% to 95%.
- metal oxides may be used or prepared as electrocatalysts on the surfaces of the base cathode structure.
- lead oxide can be prepared as an electrocatalyst on the surfaces of the base cathode structure.
- the metal oxide coating could be formed by a thermal oxidation method or by electrodeposition followed by chemical or thermal oxidation.
- the cathode base structure can also be gradated or graduated, such that the density of the cathode can be varied in the vertical or horizontal directions in terms of density, void volume, or specific surface area (e.g., varying fiber sizes).
- the cathode structure may also consist of two or more different electrocatalyst compositions that are either mixed or located in separate regions of the cathode structure in the catholyte compartment.
- the performance of the system may decrease with regard to formate yield which may result from catalyst loss or over-coating of the catalyst with impurities, such as other metals that may be plated onto the cathode 118.
- the surfaces of the cathode 118 may be renewed by the periodic addition of indium salts or a mix of indium/tin salts in situ during operation of the electrolyzer 102.
- other or additional metal salts may be added in situ including salts of Ag, Au, Mo, Cd, Sn, and other suitable metals, singly or in combination.
- the electrolyzer 102 may be operated at full rate during operation, or temporarily operated at a lower current density with or without any carbon dioxide addition during the injection of the metal salts.
- the conditions under which to renew the cathode surface with the addition of these salts may differ depending on desired renewal results.
- the use of an occasional brief current reversal during electrochemical cell operation may also be employed to potentially renew the cathode surfaces.
- the electrolyzer 102 is operated at pressures exceeding atmospheric pressure, which may result in higher current efficiency and permit operation of the electrolyzer 102 at higher current densities than when operating the electrolyzer 102 at or below atmospheric pressure.
- metal salts that can reduce on the surfaces of the cathode structure can be also used, such as the addition of Ag, Au, Mo, Cd, Sn, and other suitable metals.
- Such addition of metal salts may provide a catalytic surface that may be otherwise difficult to prepare directly during cathode fabrication or for renewal of the catalytic surfaces.
- a preferred method for preparing the high surface area cathode structure 120 is using an electroless plating solution which may include an indium salt, at least one complexing agent, a reducing agent, a pH modifier, and a surfactant.
- the preferred procedure for forming an electroless indium coating on the high surface area cathode may include combining in stirred deionized water the following materials: Trisodium citrate dihydrate (100g/L), EDTA-disodium salt (15g/L), sodium acetate (10g/L), InCl 3 (anhydrous, 10g/L), and Thiodiglycolic acid (0.3g/L, e.g., 3 mL of 100mg/mL solution).
- a pre-mixed stock deposition solution that has been stirred may also be used.
- the procedure also includes heating the mixture to about 40°C.
- the procedure also includes adding 40 mL TiCl 3 (20 wt. % in 2% HCl) per liter [0.05 mM] and adding 7M ammonia in methanol until the pH of the mixture is approximately 7 (-15 mL ammonia solution per liter) at which point ammonium hydroxide (28% ammonia solution) is used to adjust the pH to between approximately 9.0 and 9.2.
- the procedure then includes heating the mixture to about 60°C. If the pH drops, adjust the pH to approximately 9.0 with ammonium hydroxide solution.
- the procedure then includes heating the mixture to about 75°C, where deposition may begin at about 65°C.
- the procedure includes holding the mixture at 75°C for about one hour.
- a preferred procedure for the metallic coating of copper substrates may include rinsing bare copper substrates in acetone to clean the copper surface (e.g., removing residual oils or grease that may be present on the copper surface) and then rinsing the acetone-treated copper substrates in deionized water.
- the procedure also includes immersing the bare copper substrates in a 10% sulfuric acid bath for approximately 5 minutes, and then rinsing with deionized water.
- the procedure also includes depositing approximately 25 ⁇ m of tin on the copper surface. The deposition may be done using a commercial electroless tinning bath (Caswell, Inc.) operated at 60 °C for 15 minutes. Following tin deposition, parts are rinsed thoroughly in deionized water.
- the procedure also includes depositing approximately 1 ⁇ m of indium on the tinned copper surface.
- the deposition may be done using an electroless bath operated at 90 °C for 60 minutes. Following indium deposition, parts are rinsed thoroughly in deionized water.
- the procedure may also include treated the copper/tin/indium electrode in a 5 wt% nitric acid bath for 5 minutes. Such treatment may improve electrode stability as compared to an untreated copper/tin/indium electrode.
- the electroless tin plated copper substrate may be dipped into molten indium for coating.
- cathode substrates may be treated with catalytic materials for carbon dioxide reduction.
- catalytic materials for carbon dioxide reduction Four example treatments are presented by the following.
- a first treatment may include coating a conductive substrate (e.g., vitreous carbon or metal) in a conductive sol-gel containing sufficient catalyst material to yield a high active surface area.
- the conductive component of the sol-gel may be catalytically active.
- the sol-gel is allowed to undergo a high degree of polymerization/cross-linking.
- the combined substrate/sol-gel structure may then be pyrolized at high temperature to convert organic material to amorphous (and potentially conductive) carbon.
- the pyrolized structure may also be subjected to chemical treatments that selectively remove the organic material or the silica phase, leading to a high catalyst content coating.
- the second treatment may include binding relatively small particles (e.g., micron or nanometer scale) to a substrate using a binding agent such as amines, thiols, or other suitable binding agent.
- the binding agent is preferably conductive to pass current between the substrate and catalyst particles.
- the catalyst particles preferably include conjugated organic molecules, such as diphenybenzene. If the substrate is also made of catalyst material the binding agent may have symmetrical binding groups, otherwise binding agents with two different binding groups may be utilized.
- the third treatment may include coating a substrate in a slurry containing catalyst material (which may be in salt form) and a binding agent.
- the slurry may also contain a conductive additive, such as carbon black, carbon nanotubes, or other suitable conductive additive.
- the slurry coating may then be dried to form a conformal coating over the substrate.
- the substrate and dried slurry coating may be heated in order to fuse the various constituent materials into a mechanically robust, conductive, and catalytic material. In a particular implementation, the heating of the substrate and dried slurry coating occurs in a reducing environment.
- the fourth treatment may include coating a substrate with semiconducting metal chalcogenides by applying a precursor to the substrate, removing solvent, and baking the substrate to convert the precursor material to a monolithic semiconducting metal chalcogenide coating.
- the coating materials may include, but are not limited to, Na 4 SnS 4 , Na 4 Sn 2 S 6 , K 4 SnTe 4 , Na 3 AsS 3 , (NH 4 ) 4 Sn 2 S 6 , (NH 4 ) 3 AsS 3 , and (NH 4 ) 2 MoS 4 .
- thermal oxides onto a substrate, forming an intermetallic with a substrate, and applying semiconductor materials on a substrate.
- the thermal oxidation of various metal salts painted onto various metal and ceramic substrates is preferred for forming high surface area materials suitable for the electrochemical reduction of carbon dioxide.
- the thermal oxidation may be similar to that used for forming electrocatalysts on titanium for use as anode materials in electrochemical chlorine cells, such as iridium oxide and ruthenium oxide.
- indium is electroplated onto a copper foil, then the copper foil is heated to 40°C above the melting point of indium, until indium is melted on the foil surface, and forming a golden intermetallic with copper, and then cooled.
- the formation of the intermetallic can be done in air or under an inert gas atmosphere (e.g., argon or helium) or under a full or partial vacuum.
- the electroplated material preferably provides approximately 50% Faradaic conversion efficiency, and may be utilized as a coating on planar metal back plates and also on copper fibers.
- An intermetallic may also be formed with tin-plated copper substrates.
- a semiconductor material may be applied to a substrate by gaseous deposition, sputtering, or other suitable application methods.
- the substrate is preferably a metallic substrate.
- the semiconductor materials may be doped to P-type or N-type as desired.
- certain measures may be taken to improve the quality (mechanical, electrical, etc.) of the bond between the substrate and catalyst.
- measures may involve creating functional groups on the substrate surface that can undergo chemical bonding with the catalyst or a binding agent, or the creation of geometrical features in the substrate surface that facilitate bonding with an applied catalyst coating.
- the substrate for the high surface area cathodes described herein may include RVC materials, such as carbon and graphite, metal foams, woven metals, metal wools made from fibers, sintered powder metal films and plates, metal and ceramic beads, pellets, ceramic and metal column and trickle bed packing materials, metal and inorganic powder forms, metal fibers and wools, or other suitable substrate materials.
- RVC materials such as carbon and graphite, metal foams, woven metals, metal wools made from fibers, sintered powder metal films and plates, metal and ceramic beads, pellets, ceramic and metal column and trickle bed packing materials, metal and inorganic powder forms, metal fibers and wools, or other suitable substrate materials.
- the specific surface area of the physical forms preferably include a specific surface area between approximately 2 and 2,000 cm 2 /cm 3 or greater.
- the electrode or high surface area structure of an electrode may incorporate alloys as fibers or wools, and may be coated with various compounds, and subsequently fired in air or in a reducing atmosphere oven, to form stable oxides on the surfaces which are electrocatalytic in the reduction of carbon dioxide.
- Other cathode materials may include metallic glasses and amorphous metals.
- the alkali metal formate e.g., potassium formate
- the alkali metal formate may be acidified in addition to recovering potassium hydroxide.
- the use of the bipolar membranes may reduce the voltage required for the acidification of the alkali metal formate and may reduce the number of actual anodes and cathodes needed for the electrochemical stack.
- the bipolar membranes preferably consist of a cation membrane and an anion membrane that have been bonded together, and function by splitting water at the two membrane interface, forming hydrogen (H + ) ions from the cation membrane and hydroxide ions (OH - ) from the anion membrane.
- the electrolyzer 502 in FIG. 5 includes an ion exchange compartment 504 in addition to an anode 506 compartment and a cathode compartment 508.
- This ion exchange compartment 504 functions similarly as the acid acidification compartment 212 in electrochemical acidification unit 202 as shown in FIG. 2 .
- the alkali metal formate product e.g., potassium formate
- unreacted KHCO 3 from the cathode compartment is passed through the ion exchange compartment 504 to provide a formic acid product with CO 2 and some residual KHCO 3 .
- the hydrogen ions (H + ) passing through the adjacent membrane 510a on the anode compartment side displace the alkali metal ions (e.g., K + ) in the stream passing through the central ion exchange compartment 504 so that the alkali metal formate is acidified and the alkali metal ions and remaining hydrogen ions pass through the adjoining membrane 510b on the cathode compartment 508 and into the catholyte.
- This will allow operation of the catholyte at higher pH conditions if required for obtaining high Faradaic current efficiencies with the cathodes selected for the process.
- the preferred catholytes include alkali metal bicarbonates, carbonates, sulfates, phosphates, and the like.
- Other preferred catholytes include borates, ammonium, and hydroxides.
- Other catholytes may include chlorides, bromides, and other organic and inorganic salts.
- Non-aqueous electrolytes such as propylene carbonate, methanesulfonic acid, methanol, and other ionic conducting liquids may be used, which may be in an aqueous mixture, or as a non-aqueous mixture in the catholyte. The introduction of micro bubbles of carbon dioxide into the catholyte stream may improve carbon dioxide transfer to the cathode surfaces.
- a nano-filtration system may be utilized between the electrolyzer system 100, as shown in FIG. 1 , and the electrochemical acidification system 200, as shown in FIG. 2 .
- the nano-filtration system is preferably utilized to separate alkali metal formate (e.g., potassium formate) from bicarbonate leaving the electrolyzer system 100 (e.g., stream 154) to reduce the amount of bicarbonate entering the electrochemical acidification unit 202.
- the nano-filtration system preferably uses a nano-filtration filter/membrane under pressure for selective separation of the bicarbonate from the alkali metal formate.
- the nano-filtration filter/membrane separates monovalent anions (e.g., formate) from divalent anions (e.g., carbonate) using a high pressure pump and suitable selected membranes for the separation.
- monovalent anions e.g., formate
- divalent anions e.g., carbonate
- the bicarbonate in the formate/bicarbonate product e.g., stream 154
- the nano-filtration system may include a mixer, such as a mixing tank, to mix the formate/bicarbonate product stream with a potassium hydroxide (KOH) stream.
- KOH potassium hydroxide
- the mixer may promote the conversion of potassium bicarbonate to potassium carbonate to facilitate the separation of the formate from the carbonate.
- a high pressure pump then sends the potassium formate/carbonate stream into a nano-filtration unit which includes the nano-filtration filter/membrane.
- the nano-filtration unit produces a low-carbonate-containing potassium formate permeate stream which is then sent to the electrochemical acidification system 200 as shown in FIG. 2 as stream 154, to enter the electrochemical acidification unit 202.
- the potassium carbonate containing reject stream leaving the nano-filtration unit is preferably sent to the KHCO 3 block of FIG. 3 , where the potassium carbonate is mixed with KOH and CO 2 for conversion to potassium bicarbonate.
- the potassium bicarbonate is preferably utilized as a feed to the cathode compartment of the electrolyzer 102 of the electrolyzer system 100.
- the nano-filtration separation system may consist of multiple units connected in a series flow configuration to increase the total separation efficiency of the carbonate from formate separation.
- the system may also utilize recycle streams to recycle an output stream from one unit to the input of another unit to maintain flow and pressures as well as to increase the recovery of the formate.
- the pH of the catholyte preferably ranges from 3 to 12.
- the desired pH of the catholyte may be a function of the catholyte operating conditions and the catalysts used in the cathode compartment, such that there is limited or no corrosion at the electrochemical cell.
- Preferable catholyte cross sectional area flow rates may include a range of 2 to 3,000 gpm/ft 2 or more ( 0.0076 to 11.36 m 3 /m 2 ), with a flow velocity range of 0.002 to 20 ft/sec (0.0006 to 6.1 m/sec).
- a homogenous heterocyclic catalyst is preferably utilized in the catholyte.
- the homogenous heterocyclic catalyst may include, for example, one or more of 4-hydroxy pyridine, adenine, a heterocyclic amine containing sulfur, a heterocyclic amine containing oxygen, an azole, a benzimidazole, a bipyridine, furan, an imidazole, an imidazole related species with at least one five-member ring, an indole, a lutidine, methylimidazole, an oxazole, phenanthroline, pterin, pteridine, a pyridine, a pyridine related species with at least one six-member ring, pyrrole, quinoline, or a thiazole, and mixtures thereof.
- Preferred anolytes for the system include alkali metal hydroxides, such as KOH, NaOH, LiOH; ammonium hydroxide; inorganic acids such as sulfuric, phosphoric, and the like; organic acids such as methanesulfonic acid; non-aqueous and aqueous solutions; alkali halide salts, such as the chlorides, bromides, and iodine types such as NaCl, NaBr, LiBr, and Nal; and acid halides such as HCl, HBr and HI.
- alkali metal hydroxides such as KOH, NaOH, LiOH
- ammonium hydroxide such as sulfuric, phosphoric, and the like
- organic acids such as methanesulfonic acid
- non-aqueous and aqueous solutions alkali halide salts, such as the chlorides, bromides, and iodine types such as NaCl, NaBr, LiBr, and Nal
- the acid halides and alkali halide salts will produce for example chlorine, bromine, or iodine as a halide gas or as dissolved aqueous products from the anolyte compartment.
- Methanol or other hydrocarbon non-aqueous liquids can also be used, and would form some oxidized organic products from the anolyte.
- Selection of the anolyte would be determined by the process chemistry product and requirements for lowering the overall operating cell voltage. For example, the formation of bromine at the anode requires a significantly lower anode voltage potential than chlorine formation, and iodine is even lower than that of bromine. This allows for a significant power cost savings in the operation of both of the electrochemical units when bromine is generated in the anolyte.
- a halogen such as bromine
- anolyte may then be used in an external reaction to produce other compounds, such as reactions with alkanes to form bromoethane, which may then be converted to an alcohol, such as ethanol, or an alkene, such as ethylene, and the halogen acid byproduct from the reaction can be recycled back to the electrochemical cell anolyte.
- a halogen such as bromine
- Electrochemical cells may operate at pressures up to about 20 to 30 psig in multi-cell stack designs, although with modifications, they could operate at up to 100 psig.
- the electrolyzer anolyte may also be operated in the same pressure range to minimize the pressure differential on the membrane separating the two electrode compartments.
- Special electrochemical designs are required to operate electrochemical units at higher operating pressures up to about 60 to 100 atmospheres or greater, which is in the liquid CO 2 and supercritical CO 2 operating range.
- a portion of the catholyte recycle stream may be separately pressurized using a flow restriction with backpressure or using a pump, with CO 2 injection, such that the pressurized stream is then injected into the catholyte compartment of the electrolyzer.
- Such a configuration may increase the amount of dissolved CO 2 in the aqueous solution to improve the conversion yield.
- Catholyte and anolyte operating temperatures preferably range from -10 to 95 °C, more preferably 5 to 60°C.
- the minimum operating temperature will be limited to the electrolytes used and their freezing points. In general, the lower the temperature, the higher the solubility of CO 2 in the aqueous solution phase of the electrolyte, and would help in obtaining higher conversion and current efficiencies.
- a consideration for lower operating temperatures is that the operating electrolyzer cell voltages may be higher, so an optimization may be required to produce the chemicals at the lowest operating cost.
- the electrochemical cell design may include a zero gap, flow-through design with a recirculating catholyte electrolyte with various high surface area cathode materials.
- Other designs include: flooded co-current packed and trickle bed designs with the various high surface area cathode materials, bipolar stack cell designs, and high pressure cell designs.
- Anodes for use in the electrochemical system may depend on various system conditions.
- the anode may include a coating, with preferred electrocatalytic coatings including precious metal oxides, such as ruthenium and iridium oxides, as well as platinum, rhodium, and gold and their combinations as metals and oxides deposited on valve metal substrates, such as titanium, tantalum, zirconium, and niobium.
- precious metal oxides such as ruthenium and iridium oxides, as well as platinum, rhodium, and gold and their combinations as metals and oxides deposited on valve metal substrates, such as titanium, tantalum, zirconium, and niobium.
- the anode made include carbon, cobalt oxides, stainless steels, nickel, and their alloys and combinations which may be stable as anodes suitable under alkaline conditions.
- the electrochemical system may employ a membrane positioned between the anode compartment and the cathode compartment.
- Cation ion exchange type membranes are preferred, especially those that have a high rejection efficiency to anions, for example perfluorinated sulfonic acid based ion exchange membranes such as DuPont Nafion® brand unreinforced types N117 and N120 series, more preferred PTFE fiber reinforced N324 and N424 types, and similar related membranes manufactured by Japanese companies under the supplier trade names such as Flemion®.
- multi-layer perfluorinated ion exchange membranes used in the chlor alkali industry have a bilayer construction of a sulfonic acid based membrane layer bonded to a carboxylic acid based membrane layer, which efficiently operates with an anolyte and catholyte above a pH of about 2 or higher. These membranes have a much higher anion rejection efficiency. These are sold by DuPont under their Nafion® trademark as the N900 series, such as the N90209, N966, N982, and the 2000 series, such as the N2010, N2020, and N2030 and all of their types and subtypes.
- Hydrocarbon based membranes which are made from various cation ion exchange materials can also be used if the anion rejection is not as critical, such as those sold by Sybron under their trade name Ionac®, AGC Engineering (Asahi Glass) under their Selemion® trade name, and Tokuyama Soda, among others available on the market.
- the electrolyzer design used in laboratory examples may incorporate various thickness high surface area cathode structures using added spacer frames and also provide the physical contact pressure for the electrical contact to the cathode current conductor backplate.
- An electrochemical bench scale cell with an electrode projected area of about 108 cm 2 was used for much of the bench scale test examples.
- the electrochemical cell was constructed consisting of two electrode compartments machined from 1.0 inch (2.54 cm) thick natural polypropylene.
- the outside dimensions of the anode and cathode compartments were 8 inches (20.32 cm) by 5 inches (12.70 cm) with an internal machined recess of 0.375 inches (0.9525 cm) deep and 3.0 inches (7.62 cm) wide by 6 inches (15.24 cm) tall with a flat gasket sealing area face being 1.0 inches (2.52 cm) wide.
- Two holes were drilled equispaced in the recess area to accept two electrode conductor posts that pass though the compartment thickness, and having two 0.25 inch (0.635 cm) drilled and tapped holes to accept a plastic fitting that passes through 0.25 inch (0.635 cm) conductor posts and seals around it to not allow liquids from the electrode compartment to escape to the outside.
- the electrode frames were drilled with an upper and lower flow distribution hole with 0.25 inch pipe threaded holes with plastic fittings installed to the outside of the cell frames at the top and bottom of the cells to provide flow into and out of the cell frame, and twelve 0.125 inch (0.3175 cm) holes were drilled through a 45 degree bevel at the edge of the recess area to the upper and lower flow distribution holes to provide an equal flow distribution across the surface of the flat electrodes and through the thickness of the high surface area electrodes of the compartments.
- an anode with a thickness of 0.060 inch (0.1524 cm) and 2.875 inch (7.3025 cm) width and 5.875 inch (14.9225 cm) length with two 0.25 inch (0.635 cm) titanium diameter conductor posts welded on the backside were fitted through the two holes drilled in the electrode compartment recess area.
- the positioning depth of the anode in the recess depth was adjusted by adding plastic spacers behind the anode, and the edges of the anode to the cell frame recess were sealed using a medical grade epoxy.
- the electrocatalyst coating on the anode was a Water Star WS-32, an iridium oxide based coating on a 0.060 inch (0.1524 cm) thick titanium substrate, suitable for oxygen evolution in acids.
- the anode compartment also employed an anode folded screen (folded three times) that was placed between the anode and the membrane, which was a 0.010 inch (0.0254 cm) thick titanium expanded metal material from DeNora North America (EC626), with an iridium oxide based oxygen evolution coating, and used to provide a zero gap anode configuration (anode in contact with membrane), and to provide pressure against the membrane from the anode side which also had contact pressure from the cathode side.
- 316L stainless steel cathodes with a thickness of 0.080 inch (0.2032 cm) and 2.875 inch (7.3025 cm) width and 5.875 inch (14.9225 cm) length with two 0.25 inch (0.635 cm) diameter 316L SS conductor posts welded on the backside were fitted through the two holes drilled in the electrode compartment recess area.
- the positioning depth of the cathode in the recess depth was adjusted by adding plastic spacers behind the cathode, and the edges of the cathode to the cell frame recess were sealed using a fast cure medical grade epoxy.
- a copper bar was connected between the two anode posts and the cathode posts to distribute the current to the electrode back plate.
- the cell was assembled and compressed using 0.25 inch (0.635 cm) bolts and nuts with a compression force of about 60 in-lbs force.
- Neoprene elastomer gaskets (0.0625 inch (0.159 cm) thick) were used as the sealing gaskets between the cell frames, frame spacers, and the membranes.
- the above cell was assembled with a 0.010 inch (0.0254 cm) thickness indium foil mounted on the 316L SS back conductor plate using a conductive silver epoxy.
- a multi-layered high surface area cathode comprising an electrolessly applied indium layer of about 1 micron thickness that was deposited on a previously applied layer of electroless tin with a thickness of about 25 micron thickness onto a woven copper fiber substrate.
- the base copper fiber structure was a copper woven mesh obtained from an on-line internet supplier, PestMall.com (Anteater Pest Control Inc.).
- the copper fiber dimensions in the woven mesh had a thickness of 0.0025 inches (0.00635 cm) and width of 0.010 inches (0.0254 cm).
- the prepared high surface area cathode material was folded into a pad that was 1.25 inches (3.175 cm) thick and 6 inches (15.24 cm) high and 3 inches (7.62 cm) wide, which filled the cathode compartment dimensions and exceeded the adjusted compartment thickness (adding spacer) which was 0.875 inches (2.225 cm) by about 0.25 inches (0.635 cm).
- the prepared cathode had a calculated surface area of about 3,171 cm 2 , for an area about 31 times the flat cathode plate area, with a 91% void volume, and specific surface area of 12.3 cm 2 /cm 3 .
- the cathode pad was compressible, and provided the spring force to make contact with the cathode plate and the membrane.
- Neoprene gaskets (0.0625 inch (0.159 cm) thick) were used as the sealing gaskets between the cell frames and the membranes.
- the electrocatalyst coating on the anode in the anolyte compartment was a Water Star WS-32, an iridium oxide based coating, suitable for oxygen evolution in acids.
- the anode compartment also employed a three-folded screen that was placed between the anode and the membrane, which was a 0.010 inch (0.0254 cm) thick titanium expanded metal material from DeNora North America (EC626), with an iridium oxide based oxygen evolution coating, and used to provide a zero gap anode configuration (anode in contact with membrane), and to provide pressure against the membrane from the anode side which also had contact pressure from the cathode side.
- EC626 DeNora North America
- the cell assembly was tightened down with stainless steel bolts, and mounted into the cell station, which has the same configuration as shown in FIG. 1 with a catholyte disengager, a centrifugal catholyte circulation pump, inlet cell pH and outlet cell pH sensors, a temperature sensor on the outlet solution stream.
- a 5 micron stainless steel frit filter was used to sparge carbon dioxide into the solution into the catholyte disengager volume to provide dissolved carbon dioxide into the recirculation stream back to the catholyte cell inlet.
- the anolyte used was a dilute 5% by volume sulfuric acid solution, made from reagent grade 98% sulfuric acid and deionized water.
- Example 1 The same cell as in Example 1 was used with the same cathode, which was only rinsed with water while in the electrochemical cell after the run was completed and then used for this run.
- This example contemplates separation of product potassium formate from potassium carbonate/bicarbonate supporting electrolyte by membrane nano-filtration (NF) ( FIG. 10 ).
- the test would involve two commercial NF membranes.
- the feed solution would comprise 1.2M KHCO 3 + 0.6M K-formate and its pH would be adjusted to 7, 9, and 11 for three separate runs (for each membrane).
- a single permeation test could be performed with DK membrane, using a formate-enriched Feed solution comprising 1.2M KHCO 3 + 1.2M K-formate.
- the test could be done at pH 11 and all other conditions would be as in the above Example 1.
- the same cell as in Examples 1, 2, and 3 was used, except for using 701 gm of tin shot (0.3 - 0.6 mm diameter) media with an electroless plated indium coating as the cathode.
- the cathode compartment thickness was 0.875 inches.
- the cell was operated in a batch condition with no overflow for the first 7.3 hrs, and then a 1.40 molar potassium bicarbonate feed was introduced into the catholyte at a rate of about 1.4 mL/min, with the overflow collected and measured, and a sample of the loop was collected for formate concentration analysis.
- the formate Faradaic efficiency was between 42% and 52% during the batch run period where the formate concentration went up to 10,490 ppm. During the feed and overflow period, the periodic calculated efficiencies varied between 32% and 49%. The average conversion efficiency was about 44%. The formate concentration varied between 10,490 and 48,000 ppm during the feed and overflow period. The cell voltage began at around 4.05 volts, ending up at 3.80 volts.
- Electrolyses were performed using a 3-compartment glass cell of roughly 80 mL total volume.
- the cell was constructed to be gas tight with Teflon bushings.
- the compartments were separated by 2 glass frits.
- a 3-electrode assembly was employed.
- One compartment housed the working electrode and the reference electrode (Accumet silver/silver chloride) which contained the aqueous electrolyte and catalyst as stated.
- the center compartment also contained the electrolyte and catalyst solution as stated.
- the third compartment was filled with 0.5 molar K 2 SO 4 aqueous electrolyte solution sparged with CO 2 with a pH of about 4.5 and housed the counter electrode (TELPRO (Stafford, TX) - Mixed Metal Oxide Electrode).
- the working electrode compartment was purged with carbon dioxide during the experiment.
- the solutions were measured by ion chromatography for formic acid, analyzing the solution before (a blank) and after electrolysis.
- the tests were conducted under potentiometric conditions using a 6 channel Arbin Instruments MSTAT, operating at -1.46 or -1.90 volts vs. an SCE reference electrode for about 1.5 hrs.
- the same cell as in Examples 1, 2, and 3 was used, except for using 890.5 gm of tin shot (3 mm diameter) media and with a tin foil coating as the cathode.
- the cathode compartment thickness was 1.25 inches and the system was operated in a batch mode with no feed input. Carbon dioxide was sparged to saturate the solution in the catholyte disengager.
- the cell was operated in a batch condition with no overflow and a sample of the catholyte loop was collected for formate concentration analysis periodically.
- the formate Faradaic efficiency started at about 65% and declined after 10 hours to 36% and to about 18.3% after 19 hours.
- the final formate concentration ended up at 20,500 ppm at the end of the 19 hour run. See Figures 11 and 12 .
- Example 1 The same cell as in Examples 1, 2, and 3 was used, except for using 805 gm of indium coated tin shot (3 mm diameter) media and with a 0.010 inch (0.0254 cm) thickness indium foil mounted on the 316L SS back conductor plate using a conductive silver epoxy as the cathode.
- the cathode compartment thickness was 1.25 inches and the system was operated in a batch mode with no feed input. Carbon dioxide was sparged to saturate the solution in the catholyte disengager.
- the tin shot was electrolessly plated with indium in the same method as used in Examples 1 - 4 on the tincoated copper mesh.
- the indium coating was estimated to be about 0.5 - 1.0 microns in thickness.
- the cell was operated in a batch condition with no overflow and a sample of the catholyte loop was collected for formate concentration analysis periodically.
- the formate Faradaic efficiency started at about 100% and varied between 60% to 85%, ending at about 60% after 24 hours.
- the final formate concentration ended up at about 60,000 ppm at the end of the 24 hour run. Dilution error of the samples at the high formate concentrations may have provided the variability seen in the yield numbers. See Figures 13 and 14 .
- the same cell as in Examples 1, 2, and 3 was used with a newly prepared indium on tin electrocatalyst coating on a copper mesh cathode.
- the prepared cathode had calculated surface areas of about 3,171 cm 2 , for an area about 31 times the flat cathode plate area, with a 91% void volume, and specific surface area of 12.3 cm 2 /cm 3 .
- the cells were operated in a recirculating batch mode for the first 8 hours of operation to get the catholyte formate ion concentration up to about 20,000 ppm, and then a fresh feed of 1.4 M potassium bicarbonate was metered into the catholyte at a feed rate of about 1.2 mL/min.
- the overflow volume was collected and volume measured, and the overflow and catholyte loop sample were sampled and analyzed for formate by ion chromatography.
- the same cell as in Examples 1, 2, and 3 was used with a newly prepared indium on tin electrocatalyst coating on a copper mesh cathode.
- the prepared cathode had calculated surface areas of about 3,171 cm 2 , for an area about 31 times the flat cathode plate area, with a 91% void volume, and specific surface area of 12.3 cm 2 /cm 3 .
- the cells were operated in a recirculating batch mode for the first 8 hours of operation to get the catholyte formate ion concentration up to about 20,000 ppm, and then a fresh feed of 1.4 M potassium bicarbonate was metered into the catholyte at a feed rate of about 1.2 mL/min.
- the overflow volume was collected and volume measured, and the overflow and catholyte loop sample were sampled and analyzed for formate by ion chromatography.
- FIG. 19 illustrates calculated formate current efficiency versus time measuring the formate yield from the collected samples. The formate Faradaic current efficiency declined down into the 20% range after 16 days.
- FIG. 20 illustrates results of the formate concentration versus time.
- 0.5 gm of indium (III) carbonate was added to the catholyte while the cell was still operating at the 6 ampere operating rate.
- the formate concentration in the catholyte operating loop was 11,330 ppm before the indium addition, which increased to 13,400 ppm after 8 hours, and increased to 14,100 ppm after 16 hours when the unit was shut down after 21 days of operation.
- FIG. 21 illustrates the catholyte pH change over the continuous operation period, which operated in the 7.6 to 7.7 pH range except for an outlier data point near day 16 when the feed pump had stopped pumping.
- the feed rate was not changed during the run, but could have been increased or decreased to maintain a constant pH operation in an optimum range.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Catalysts (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Description
- The present disclosure generally relates to the field of electrochemical reactions, and more particularly to methods for electrochemical reduction of carbon dioxide using high surface area electrodes.
- The combustion of fossil fuels in activities such as electricity generation, transportation, and manufacturing produces billions of tons of carbon dioxide annually. Research since the 1970s indicates increasing concentrations of carbon dioxide in the atmosphere may be responsible for altering the Earth's climate, changing the pH of the ocean and other potentially damaging effects. Countries around the world, including the United States, are seeking ways to mitigate emissions of carbon dioxide.
- A mechanism for mitigating emissions is to convert carbon dioxide into economically valuable materials such as fuels and industrial chemicals. If the carbon dioxide is converted using energy from renewable sources, both mitigation of carbon dioxide emissions and conversion of renewable energy into a chemical form that can be stored for later use may be possible.
-
WO2007/041872 A1 describes a continuous co-current electrochemical reduction of carbon dioxide.US 5,290,404 describes an electro-synthesis of alcohols and carboxylic acids from corresponding metal salts.US4,589,963 describes a process for the conversion of salts of carboxylic acid to their corresponding free acids. - The present invention is directed to a method for electrochemical reduction of carbon dioxide into products, comprising:
- (A) introducing an acidic anolyte to a first compartment of a first electrochemical cell, the first compartment including an anode;
- (B) introducing a catholyte including an alkali metal bicarbonate to a second compartment of the first electrochemical cell, the catholyte saturated with carbon dioxide, the second compartment including a high surface area cathode, the high surface area cathode having a specific surface area of greater than 2 cm2/cm3 and including an indium coating and having a void volume of between 30% to 98%, at least a portion of the bicarbonate-based catholyte being recycled;
- (C) applying an electrical potential between the anode and the cathode sufficient to reduce the carbon dioxide to an alkali metal formate;
- (D) introducing the alkali metal formate to an ion exchange compartment of a second electrochemical cell ;
- (E) applying an electrical potential between an anode of the second electrochemical cell and a cathode of the second electrochemical cell sufficient to produce at least formic acid and an alkali metal hydroxide; and
- (F) introducing the alkali metal hydroxide with carbon dioxide to generate at least a portion of the alkali metal bicarbonate introduced to the second compartment of the first electrochemical cell.
- It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not necessarily restrictive of the disclosure as claimed. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate an embodiment of the disclosure and together with the general description, serve to explain the principles of the disclosure.
- The numerous advantages of the present disclosure may be better understood by those skilled in the art by reference to the accompanying figures in which:
-
FIG. 1 is a flow diagram of a preferred electrolyzer system for the reduction of carbon dioxide in accordance with an embodiment of the present disclosure; -
FIG. 2 is a flow diagram of a preferred electrochemical acidification system; -
FIG. 3 is a flow diagram of another preferred system for the electrochemical reduction of carbon dioxide; -
FIG. 4 is a flow diagram of another preferred electrochemical acidification system incorporating bipolar membranes; -
FIG. 5 is flow diagram of another preferred electrochemical electrolyzer system incorporating an ion exchange compartment for the reduction of carbon dioxide; and -
FIG. 6 is a flow diagram of a nano-filtration system in accordance with an embodiment of the present disclosure; -
FIG. 7 is a chart illustrating cumulative yield of formate over time in accordance with an embodiment described with reference to Example 1 of the present disclosure; -
FIG. 8 is a chart illustrating cumulative yield of formate over time in accordance with an embodiment described with reference to Example 2 of the present disclosure; -
FIG. 9 is a chart illustrating cumulative yield of formate over time in accordance with an embodiment described with reference to Example 3 of the present disclosure; -
FIG. 10 is a chart illustrating cumulative yield of formate over time in accordance with an embodiment described with reference to Example 4 of the present disclosure; -
FIG. 11 is a chart illustrating cumulative formate yield versus time in accordance with an embodiment described with reference to Example 9 of the present disclosure; -
FIG. 12 is a chart illustrating formate concentration versus time in accordance with an embodiment described with reference to Example 9 of the present disclosure; -
FIG. 13 is a chart illustrating cumulative formate yield versus time in accordance with an embodiment described with reference to Example 10 of the present disclosure; -
FIG. 14 is a chart illustrating formate concentration versus time in accordance with an embodiment described with reference to Example 10 of the present disclosure; -
FIG. 15 is a chart illustrating operating cell voltage versus time in accordance with an embodiment described with reference to Example 11 of the present disclosure; -
FIG. 16 is a chart illustrating catholyte formate concentration versus time in accordance with an embodiment described with reference to Example 11 of the present disclosure; -
FIG. 17 is a chart illustrating formate current efficiency versus time in accordance with an embodiment described with reference to Example 11 of the present disclosure; -
FIG. 18 is a chart illustrating catholyte pH versus time in accordance with an embodiment described with reference to Example 11 of the present disclosure; -
FIG. 19 is a chart illustrating formate current efficiency versus time in accordance with an embodiment described with reference to Example 12 of the present disclosure; -
FIG. 20 is a chart illustrating catholyte formate concentration versus time in accordance with an embodiment described with reference to Example 12 of the present disclosure; and -
FIG. 21 is a chart illustrating catholyte pH versus time in accordance with an embodiment described with reference to Example 12 of the present disclosure. - Reference will now be made in detail to the presently preferred embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings.
- In accordance with some embodiments of the present disclosure, an electrochemical system is provided that converts carbon dioxide to organic products including formate and formic acid. Use of a cathode comprising a high surface area three dimensional material, an acidic anolyte, and a catholyte comprising bicarbonate facilitates the process.
- Before any embodiments of the invention are explained in detail, it is to be understood that the embodiments described below do not limit the scope of the claims that follow. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of terms such as "including," "comprising," or "having" and variations thereof herein are generally meant to encompass the item listed thereafter and equivalents thereof as well as additional items. Further, unless otherwise noted, technical terms may be used according to conventional usage.
- Referring to
FIG. 1 , a flow diagram of anelectrolyzer system 100 is shown in accordance with an embodiment of the present invention. Theelectrolyzer system 100 may be utilized for the electrochemical reduction of carbon dioxide to organic products or organic product intermediates. Theelectrolyzer system 100 reduces carbon dioxide to an alkali metal formate, such as potassium formate. Theelectrolyzer system 100 generally includes anelectrolyzer 102, ananolyte recycle loop 104, and acatholyte recycle loop 106. Theelectrolyzer system 100 may include as process feeds/inputs carbon dioxide, a catholyte comprising bicarbonate (preferably potassium bicarbonate, but other bicarbonate-based compounds are contemplated instead of or in addition to potassium bicarbonate), and an acidic anolyte (preferably sulfuric acid, but may include other acids, instead of, or in addition to sulfuric acid). The product of theelectrolyzer system 100 is generally an alkali metal formate, such as potassium formate, and may include excess catholyte, carbon dioxide, hydrogen, oxygen, and/or other unreacted process inputs. - The
electrolyzer 102 generally includes ananode compartment 108 and acathode compartment 110, and may further include acation exchange membrane 112 to separate theanode compartment 108 from thecathode compartment 110. Theanode compartment 108 includes ananode 114 suitable to oxidize water. In a preferred implementation, theanode 114 is a titanium anode having an anode electrocatalyst coating which faces thecation exchange membrane 112. For instance, theanode 114 may include ananode mesh screen 116 that includes a folded expanded titanium screen with an anode electrocatalyst coating. Theanode mesh screen 116 may provide spacing and contact pressure between theanode 114 and thecation exchange membrane 112. Theanode 114 may also include one or more electrical current connection posts (not shown) on a backside of theanode 114. - The
cathode compartment 110 generally includes acathode 118 mounted within thecathode compartment 110. Thecathode 118 preferably includes a metal electrode with an active electrocatalyst layer on a front surface of thecathode 118 facing thecation exchange membrane 112, and may include one or more electrical current conduction posts (not shown) on a backside of thecathode 118. Thecathode 118 includes a high surfacearea cathode structure 120. The high surfacearea cathode structure 120 may be mounted between thecation exchange membrane 112 and thecathode 118 for conducting electrical current into the high surfacearea cathode structure 120. The interface between the high surfacearea cathode structure 120 and thecation exchange membrane 112 may include an insulator screen (not shown), such as a thin expanded plastic mesh insulator screen to minimize direct contact between the high surfacearea cathode structure 120 and thecation exchange membrane 112. - The
anode compartment 108 generally includes ananode feed stream 122 that includes a dilute acid anolyte solution. Theanode feed stream 122 may enter a bottom of theanode compartment 108 to flow by a face of theanode 114 and through theanode mesh screen 116. The reaction in theanode compartment 108 may include deriving oxygen (O2, i.e., gaseous oxygen) and hydrogen ions (H+) or protons from the oxidation of water at an applied current and voltage potential. The hydrogen ions or protons are generally available for the reactions within thecathode compartment 110 via thecation exchange membrane 112. The gaseous oxygen and other liquids leaving theanode compartment 108 of theelectrolyzer 102 leave asanode exit stream 124. Theanode exit stream 124 may be monitored by atemperature sensor 126a and may flow to ananolyte disengager 128 suitable for separating the oxygen from theanode exit stream 124. Theanolyte disengager 128 may process theanode exit stream 124 into anoxygen stream 130, ananolyte recycle stream 132, and ananolyte overflow stream 134. Theoxygen stream 130 may be vented from theanolyte disengager 128. Theanolyte stream 132 may be combined with water (preferably deionized water) from awater source 136 and with acid (preferably sulfuric acid) from anacid source 138. Thewater source 136 and theacid source 138 in theanolyte recycle loop 104 may maintain anolyte acid strength and volume for theanode feed stream 122. The temperature of theanode feed stream 122 may be regulated by aheat exchanger 140a coupled with a coolingwater source 142a prior to entering theanode compartment 108 of theelectrolyzer 102. - The
cathode compartment 110 generally includes acathode feed stream 144 that includes carbon dioxide and a catholyte. In a preferred implementation, the catholyte is a bicarbonate compound, such as potassium bicarbonate (KHCO3), which is saturated with carbon dioxide. Thecathode feed stream 144 may enter a bottom of thecathode compartment 110 to flow by a face of thecathode 118 and through the high surfacearea cathode structure 120. The reaction in thecathode compartment 110 may reduce carbon dioxide to formate at an applied current and voltage potential. The reaction products and any unreacted materials (e.g., excess catholyte solution) may exit thecathode compartment 110 ascathode exit stream 146. Thecathode exit stream 146 may be monitored by apH sensor 148a and atemperature sensor 126b and may flow to acatholyte disengager 150 suitable for separating gaseous components (e.g., hydrogen) from thecathode exit stream 146. The catholyte disengager 150 may process thecathode exit stream 146 into ahydrogen stream 152, aproduct stream 154, and acatholyte recycle stream 156. Thehydrogen stream 152 may be vented from thecatholyte disengager 150. Theproduct stream 154 preferably includes an alkali metal formate (such as potassium formate where the electrolyte includes potassium bicarbonate) and may include excess catholyte. Thecatholyte stream 156 may be processed by acatholyte recirculation pump 158 and aheat exchanger 140b coupled with a coolingwater source 142b. Atemperature sensor 126c may monitor thecatholyte stream 156 downstream from theheat exchanger 140b havingcooling water source 142b. A fresh catholyte electrolyte feed 160 may be metered into thecatholyte stream 156, where the fresh catholyte electrolyte feed 160 may adjust the pH of thecathode feed stream 144 into thecathode compartment 110 of theelectrolyzer 102, which may control final product overflow rate and establish the formate product concentration. The pH may be monitored bypH sensor 148b. Acarbon dioxide stream 162 may be metered into thecathode feed stream 144 downstream from the catholyte electrolyte feed 160 prior to entering thecathode compartment 110 of theelectrolyzer 102. The carbon dioxide saturates the catholyte entering the cathode compartment. - When using an acidic anolyte, where protons are passed through the membrane into the cathode compartment, the pH of the
electrolyzer 102 may be controlled or maintained through use of an alkali metal bicarbonate and/or carbonate in combination with water to control the pH of the catholyte. By controlling the pH of the catholyte at an optimum value, the cell may more efficiently convert carbon dioxide into C1 and C2 products with a higher conversion rate than if a non-optimum pH value was maintained or if no pH control mechanism was employed. In a preferred process, the catholyte is constantly recirculated to maintain an adequate and uniform carbon dioxide concentration at cathode surfaces coated with an electrocatalyst. A fresh catholyte feed stream may be used to control the pH of the catholyte and to control the product concentration in the product overflow stream. The mass flow rate of the catholyte feed to the cathode compartment (e.g., mass flow of potassium bicarbonate) is preferably balanced with the introduction of protons into the catholyte and with the formation of hydroxide from the inefficient byproduct reaction of water splitting at the cathode. The concentration of the potassium bicarbonate is important, since it provides volume to the catholyte, which will dilute the product in the catholyte. - For pH control of the catholyte, potassium bicarbonate is preferred, in a concentration range of 5 to 600 gm/L, or more preferably in the 10 to 500 gm/L range. If the feed concentration of bicarbonate to the catholyte is fixed, a separate feed of water may be employed into the catholyte to control final product concentration. In another implementation, potassium carbonate may be used as a feed for pH control. Potassium carbonate has a much higher solubility in water than potassium bicarbonate, and is preferably used in a concentration range of 5 to 1,500 gm/L.
- Referring now to
FIG. 2 , a block diagram of anelectrochemical acidification system 200 is shown in accordance with an embodiment of the present invention. Theelectrochemical acidification system 200 may be utilized to acidify theproduct stream 154 from theelectrolyzer system 100. Theelectrochemical acidification system 200 acidifies an alkali metal formate, such as potassium formate, to form an organic acid, such as formic acid, and co-produce an alkali metal hydroxide, such as potassium hydroxide. Theelectrochemical acidification system 200 generally includes anelectrochemical acidification unit 202, ananolyte recycle loop 204, and acatholyte recycle loop 206. Theelectrochemical acidification system 200 may include as process feeds/inputs theproduct stream 154 from the electrolyzer system 100 (which preferably includes an alkali metal formate), water in each of theanolyte recycle loop 204 and thecatholyte recycle loop 206, and an acidic anolyte (preferably sulfuric acid, but may include other acids, instead of, or in addition to sulfuric acid). The product of theelectrochemical acidification system 200 is generally an organic acid, such as formic acid, and an alkali metal hydroxide, and may include residual alkali metal formate, bicarbonate catholyte, carbon dioxide, hydrogen, oxygen, and/or other unreacted process inputs. - The
electrochemical acidification unit 202 is preferably a three-compartment electrochemical acidification unit or cell. Theelectrochemical acidification unit 202 generally includes ananode compartment 208, acathode compartment 210, and a centralion exchange compartment 212 bounded bycation exchange membranes anode compartment 208 includes ananode 216 suitable to oxidize water. In a preferred implementation, theanode 216 is a titanium anode having an anode electrocatalyst coating which faces thecation exchange membrane 214a. Thecathode compartment 210 includes acathode 218 suitable to reduce water and to generate an alkali metal hydroxide. In a preferred implementation, hydrogen ions (H+) or protons are generated in theanode compartment 208 when a potential and current are applied to theelectrochemical acidification unit 202. The hydrogen ions (H+) or protons pass through thecation exchange membrane 214a into the centralion exchange compartment 212. Theproduct stream 154 from theelectrolyzer system 100 is preferably introduced to theelectrochemical acidification unit 202 via the centralion exchange compartment 212, where the hydrogen ions (H+) or protons displace the alkali metal ions (e.g., potassium ions) in theproduct stream 154 to acidify the stream and produce a product stream 260 including an organic acid product, preferably formic acid. The displaced alkali metal ions may pass through thecation exchange membrane 214b to thecathode compartment 210 to combine with hydroxide ions (OH-) formed from water reduction at thecathode 218 to form an alkali metal hydroxide, preferably potassium hydroxide. - The central
ion exchange compartment 212 may include a plastic mesh spacer (not shown) to maintain the dimensional space in the centralion exchange compartment 212 between thecation exchange membranes ion exchange material 220 is included in the centralion exchange compartment 212 between thecation exchange membranes ion exchange material 220 may include an ion exchange resin in the form of beads, fibers, and the like. It is contemplated that the cationion exchange material 220 may increase electrolyte conductivity in the ion exchange compartment solution, and may reduce the potential effects of carbon dioxide gas on the cell voltage as bubbles are formed and pass through the centralion exchange compartment 212. - The
anode compartment 208 generally includes ananode feed stream 222 that includes an acid anolyte solution (preferably a sulfuric acid solution). The gaseous oxygen and other liquids leaving theanode compartment 208 of theelectrochemical acidification unit 202 leave asanode exit stream 224. Theanode exit stream 224 may be monitored by atemperature sensor 226a and may flow to ananolyte disengager 228 suitable for separating the oxygen from theanode exit stream 224. Theanolyte disengager 228 may process theanode exit stream 224 into anoxygen stream 230, ananolyte recycle stream 232, and ananolyte overflow stream 234. Theoxygen stream 230 may be vented from theanolyte disengager 228. Theanolyte stream 232 may be combined with water (preferably deionized water) from awater source 236 and with acid (preferably sulfuric acid) from anacid source 238. Thewater source 236 and theacid source 238 in theanolyte recycle loop 204 may maintain anolyte acid strength and volume for theanode feed stream 222. The temperature of theanode feed stream 222 may be regulated by aheat exchanger 240a coupled with a coolingwater source 242a prior to entering theanode compartment 208 of theelectrochemical acidification unit 202. - The
cathode compartment 210 generally includes acatholyte feed stream 244 that includes water and may include an alkali metal hydroxide that circulates through thecatholyte recycle loop 206. The reaction products, which may include the alkali metal hydroxide and hydrogen gas, may exit thecathode compartment 210 ascathode exit stream 246. Thecathode exit stream 246 may be monitored by atemperature sensor 226b and may flow to acatholyte disengager 248 suitable for separating gaseous components (e.g., hydrogen) from thecathode exit stream 246. The catholyte disengager 248 may process thecathode exit stream 246 into ahydrogen stream 250, acatholyte stream 252, and acatholyte overflow stream 254, which may include KOH. Thehydrogen stream 250 may be vented from thecatholyte disengager 248. Thecatholyte stream 252 preferably includes an alkali metal hydroxide (such as potassium hydroxide where theproduct steam 154 includes potassium formate). Thecatholyte stream 252 may be processed by acatholyte recirculation pump 256 and aheat exchanger 240b coupled with a coolingwater source 242b. Atemperature sensor 226c may monitor thecatholyte stream 252 downstream from theheat exchanger 240b. Thecatholyte stream 252 may be combined with water (preferably deionized water) from awater source 258, where the water may be metered to control the concentration of the alkali metal hydroxide in thecatholyte feed stream 244 entering thecathode compartment 210. - Referring now to
FIG. 3 , a flow diagram of apreferred system 300 for the electrochemical reduction of carbon dioxide to an organic acid product is shown. Thesystem 300 may incorporate the electrolyzer system 100 (described with reference toFIG. 1 ) and the electrochemical acidification system 200 (described with reference toFIG. 2 ), and preferably includes a potassiumhydroxide recycle loop 302 suitable for the production of potassium bicarbonate from potassium hydroxide and carbon dioxide. Thesystem 300 may also incorporate carbon dioxide processing components for the separation (e.g.,gas separation units - The
system 300 generally includes carbon dioxide, an alkali metal hydroxide (preferably potassium hydroxide), an acid (preferably sulfuric acid), and water (preferably deionized water) as process inputs and generally includes an organic acid (preferably formic acid), oxygen gas, and hydrogen gas as process outputs. The organic acid may undergo additional processing to provide a desired form and concentration. Such processing may include evaporation, distillation, or another suitable physical separation/concentration process. - The chemistry of the reduction of carbon dioxide in the
system 300 may be as follows. - Hydrogen atoms are adsorbed at the electrode from the reduction of water as shown in equation (1).
H+ + e- → Had (1)
- Carbon dioxide is reduced at the cathode surface with the adsorbed hydrogen atom to form formate, which is adsorbed on the surface as in equation (2).
CO2 + Had → HCOOad (2)
- The adsorbed formate on the surface then reacts with another adsorbed hydrogen atom to form formic acid that is then released into the solution as in equation (3)
HCOOad + Had → HCOOH (3)
- The competing reaction at the cathode is the reduction of water where hydrogen gas is formed as well as hydroxide ions as in equation (4).
2H2O + 2e- → H2 + 2OH- (4)
- The anode reaction is the oxidation of water into oxygen and hydrogen ions as shown in equation (5).
2H2O → 4H+ + 4e- + O2 (5)
- As described with reference to
FIG. 1 , thecathode 118 includes a high surfacearea cathode structure 120. The high surfacearea cathode structure 120 includes a void volume ranging from 30% to 98%. The specific surface area of the high surfacearea cathode structure 120 is preferably from 2 cm2/cm3 to 500 cm2/cm3. The surface area also can be defined as total area in comparison to the current distributor/ conductor back plate, with a preferred range of 2x to 1000x or more. - The
cathode 118 preferably includes electroless indium on tin (Sn) coated copper woven mesh, copper screen, copper fiber as well as bronze and other are copper-tin alloys, nickel and stainless steels. The metals may be precoated with other metals, such as to adequately form a suitable base for the application of the indium and other preferred cathode coatings. The cathode may also include Indium-Cu intermetallics formed on the surfaces of copper fiber, woven mesh, copper foam or copper screen. The intermetallics are generally harder than the soft indium metal, and may provide desirable mechanical properties in addition to usable catalytic properties. The cathode may also include, but is not limited to coatings and/or metal structures containing Pb, Sn, Hg, Tl, In, Bi, and Cd, their alloys, and combinations thereof. Metals including Ti, Nb, Cr, Mo, Ag, Cd, Hg, Tl, An, and Pb as well as Cr-Ni-Mo steel alloys among many others may be incorporated. Thecathode 118 may include a single or multi-layered electrode coating, such that the electrocatalyst coating on the cathode substrate includes one or more layers of metals and alloys. A preferred electrocatalyst coating on the cathode includes a tin coating on a high surface area copper substrate with a top layer/coating of indium. The indium coating coverage preferably ranges from 5% to 100% as indium. - In the use of indium alloys on the exposed catalytic surfaces of the electrode, the indium composition preferably ranges from 5% to 99% as indium in alloys with other metals, including Sn, Pb, Hg, Tl, Bi, Cu, and Cd and their mixed alloys and combinations thereof. It is also contemplated to include Au, Ag, Zn, and Pd into the coating in percentages ranging from 1% to 95%.
- Additionally, metal oxides may be used or prepared as electrocatalysts on the surfaces of the base cathode structure. For example, lead oxide can be prepared as an electrocatalyst on the surfaces of the base cathode structure. The metal oxide coating could be formed by a thermal oxidation method or by electrodeposition followed by chemical or thermal oxidation.
- Additionally, the cathode base structure can also be gradated or graduated, such that the density of the cathode can be varied in the vertical or horizontal directions in terms of density, void volume, or specific surface area (e.g., varying fiber sizes). The cathode structure may also consist of two or more different electrocatalyst compositions that are either mixed or located in separate regions of the cathode structure in the catholyte compartment.
- During normal operation of the
electrolyzer 102, the performance of the system may decrease with regard to formate yield which may result from catalyst loss or over-coating of the catalyst with impurities, such as other metals that may be plated onto thecathode 118. The surfaces of thecathode 118 may be renewed by the periodic addition of indium salts or a mix of indium/tin salts in situ during operation of theelectrolyzer 102. Depending on the composition of thecathode 118, it is contemplated that other or additional metal salts may be added in situ including salts of Ag, Au, Mo, Cd, Sn, and other suitable metals, singly or in combination. Theelectrolyzer 102 may be operated at full rate during operation, or temporarily operated at a lower current density with or without any carbon dioxide addition during the injection of the metal salts. The conditions under which to renew the cathode surface with the addition of these salts may differ depending on desired renewal results. The use of an occasional brief current reversal during electrochemical cell operation may also be employed to potentially renew the cathode surfaces. - In particular embodiments, the
electrolyzer 102 is operated at pressures exceeding atmospheric pressure, which may result in higher current efficiency and permit operation of theelectrolyzer 102 at higher current densities than when operating theelectrolyzer 102 at or below atmospheric pressure. - In preparing cathode materials for the production of organic chemicals, the addition of metal salts that can reduce on the surfaces of the cathode structure can be also used, such as the addition of Ag, Au, Mo, Cd, Sn, and other suitable metals. Such addition of metal salts may provide a catalytic surface that may be otherwise difficult to prepare directly during cathode fabrication or for renewal of the catalytic surfaces.
- A preferred method for preparing the high surface
area cathode structure 120 is using an electroless plating solution which may include an indium salt, at least one complexing agent, a reducing agent, a pH modifier, and a surfactant. The preferred procedure for forming an electroless indium coating on the high surface area cathode may include combining in stirred deionized water the following materials: Trisodium citrate dihydrate (100g/L), EDTA-disodium salt (15g/L), sodium acetate (10g/L), InCl3 (anhydrous, 10g/L), and Thiodiglycolic acid (0.3g/L, e.g., 3 mL of 100mg/mL solution). A pre-mixed stock deposition solution that has been stirred (preferably for multiple hours, e.g., overnight) may also be used. The procedure also includes heating the mixture to about 40°C. The procedure also includes adding 40 mL TiCl3 (20 wt. % in 2% HCl) per liter [0.05 mM] and adding 7M ammonia in methanol until the pH of the mixture is approximately 7 (-15 mL ammonia solution per liter) at which point ammonium hydroxide (28% ammonia solution) is used to adjust the pH to between approximately 9.0 and 9.2. The procedure then includes heating the mixture to about 60°C. If the pH drops, adjust the pH to approximately 9.0 with ammonium hydroxide solution. The procedure then includes heating the mixture to about 75°C, where deposition may begin at about 65°C. The procedure includes holding the mixture at 75°C for about one hour. - A preferred procedure for the metallic coating of copper substrates may include rinsing bare copper substrates in acetone to clean the copper surface (e.g., removing residual oils or grease that may be present on the copper surface) and then rinsing the acetone-treated copper substrates in deionized water. The procedure also includes immersing the bare copper substrates in a 10% sulfuric acid bath for approximately 5 minutes, and then rinsing with deionized water. The procedure also includes depositing approximately 25 µm of tin on the copper surface. The deposition may be done using a commercial electroless tinning bath (Caswell, Inc.) operated at 60 °C for 15 minutes. Following tin deposition, parts are rinsed thoroughly in deionized water. The procedure also includes depositing approximately 1 µm of indium on the tinned copper surface. The deposition may be done using an electroless bath operated at 90 °C for 60 minutes. Following indium deposition, parts are rinsed thoroughly in deionized water. The procedure may also include treated the copper/tin/indium electrode in a 5 wt% nitric acid bath for 5 minutes. Such treatment may improve electrode stability as compared to an untreated copper/tin/indium electrode. In another implementation, the electroless tin plated copper substrate may be dipped into molten indium for coating.
- In particular implementations, cathode substrates may be treated with catalytic materials for carbon dioxide reduction. Four example treatments are presented by the following.
- A first treatment may include coating a conductive substrate (e.g., vitreous carbon or metal) in a conductive sol-gel containing sufficient catalyst material to yield a high active surface area. The conductive component of the sol-gel may be catalytically active. After coating the substrate with the catalytic sol-gel, the sol-gel is allowed to undergo a high degree of polymerization/cross-linking. The combined substrate/sol-gel structure may then be pyrolized at high temperature to convert organic material to amorphous (and potentially conductive) carbon. The pyrolized structure may also be subjected to chemical treatments that selectively remove the organic material or the silica phase, leading to a high catalyst content coating.
- The second treatment may include binding relatively small particles (e.g., micron or nanometer scale) to a substrate using a binding agent such as amines, thiols, or other suitable binding agent. The binding agent is preferably conductive to pass current between the substrate and catalyst particles. The catalyst particles preferably include conjugated organic molecules, such as diphenybenzene. If the substrate is also made of catalyst material the binding agent may have symmetrical binding groups, otherwise binding agents with two different binding groups may be utilized.
- The third treatment may include coating a substrate in a slurry containing catalyst material (which may be in salt form) and a binding agent. The slurry may also contain a conductive additive, such as carbon black, carbon nanotubes, or other suitable conductive additive. The slurry coating may then be dried to form a conformal coating over the substrate. The substrate and dried slurry coating may be heated in order to fuse the various constituent materials into a mechanically robust, conductive, and catalytic material. In a particular implementation, the heating of the substrate and dried slurry coating occurs in a reducing environment.
- The fourth treatment may include coating a substrate with semiconducting metal chalcogenides by applying a precursor to the substrate, removing solvent, and baking the substrate to convert the precursor material to a monolithic semiconducting metal chalcogenide coating. The coating materials may include, but are not limited to, Na4SnS4, Na4Sn2S6, K4SnTe4, Na3AsS3, (NH4)4Sn2S6, (NH4)3AsS3, and (NH4)2MoS4.
- Other coating and electrocatalyst preparation techniques include applying thermal oxides onto a substrate, forming an intermetallic with a substrate, and applying semiconductor materials on a substrate. In an embodiment, the thermal oxidation of various metal salts painted onto various metal and ceramic substrates is preferred for forming high surface area materials suitable for the electrochemical reduction of carbon dioxide. The thermal oxidation may be similar to that used for forming electrocatalysts on titanium for use as anode materials in electrochemical chlorine cells, such as iridium oxide and ruthenium oxide. In another embodiment, indium is electroplated onto a copper foil, then the copper foil is heated to 40°C above the melting point of indium, until indium is melted on the foil surface, and forming a golden intermetallic with copper, and then cooled. The formation of the intermetallic can be done in air or under an inert gas atmosphere (e.g., argon or helium) or under a full or partial vacuum. The electroplated material preferably provides approximately 50% Faradaic conversion efficiency, and may be utilized as a coating on planar metal back plates and also on copper fibers. An intermetallic may also be formed with tin-plated copper substrates. In a further embodiment, a semiconductor material may be applied to a substrate by gaseous deposition, sputtering, or other suitable application methods. The substrate is preferably a metallic substrate. The semiconductor materials may be doped to P-type or N-type as desired.
- In the four treatments and other coating techniques described above, certain measures may be taken to improve the quality (mechanical, electrical, etc.) of the bond between the substrate and catalyst. Such measures may involve creating functional groups on the substrate surface that can undergo chemical bonding with the catalyst or a binding agent, or the creation of geometrical features in the substrate surface that facilitate bonding with an applied catalyst coating.
- The substrate for the high surface area cathodes described herein may include RVC materials, such as carbon and graphite, metal foams, woven metals, metal wools made from fibers, sintered powder metal films and plates, metal and ceramic beads, pellets, ceramic and metal column and trickle bed packing materials, metal and inorganic powder forms, metal fibers and wools, or other suitable substrate materials. The specific surface area of the physical forms preferably include a specific surface area between approximately 2 and 2,000 cm2/cm3 or greater.
- The electrode or high surface area structure of an electrode may incorporate alloys as fibers or wools, and may be coated with various compounds, and subsequently fired in air or in a reducing atmosphere oven, to form stable oxides on the surfaces which are electrocatalytic in the reduction of carbon dioxide. Other cathode materials may include metallic glasses and amorphous metals.
- Referring now to
FIG. 4 , a particular implementation of theacid acidification system 200 ofFIG. 2 is shown utilizing bipolar membranes in anelectrochemical acidification unit 402. By utilizing bipolar membranes inelectrochemical acidification unit 402, the alkali metal formate (e.g., potassium formate) may be acidified in addition to recovering potassium hydroxide. The use of the bipolar membranes may reduce the voltage required for the acidification of the alkali metal formate and may reduce the number of actual anodes and cathodes needed for the electrochemical stack. The bipolar membranes preferably consist of a cation membrane and an anion membrane that have been bonded together, and function by splitting water at the two membrane interface, forming hydrogen (H+) ions from the cation membrane and hydroxide ions (OH-) from the anion membrane. - Referring now to
FIG. 5 , an alternative embodiment of theelectrochemical system 100 ofFIG. 1 is shown. Theelectrolyzer 502 inFIG. 5 includes anion exchange compartment 504 in addition to ananode 506 compartment and acathode compartment 508. Thision exchange compartment 504 functions similarly as theacid acidification compartment 212 inelectrochemical acidification unit 202 as shown inFIG. 2 . The alkali metal formate product (e.g., potassium formate) and unreacted KHCO3 from the cathode compartment is passed through theion exchange compartment 504 to provide a formic acid product with CO2 and some residual KHCO3. The hydrogen ions (H+) passing through theadjacent membrane 510a on the anode compartment side displace the alkali metal ions (e.g., K+) in the stream passing through the centralion exchange compartment 504 so that the alkali metal formate is acidified and the alkali metal ions and remaining hydrogen ions pass through the adjoiningmembrane 510b on thecathode compartment 508 and into the catholyte. This will allow operation of the catholyte at higher pH conditions if required for obtaining high Faradaic current efficiencies with the cathodes selected for the process. - In an indium-based cathode system, the preferred catholytes include alkali metal bicarbonates, carbonates, sulfates, phosphates, and the like. Other preferred catholytes include borates, ammonium, and hydroxides. Other catholytes may include chlorides, bromides, and other organic and inorganic salts. Non-aqueous electrolytes, such as propylene carbonate, methanesulfonic acid, methanol, and other ionic conducting liquids may be used, which may be in an aqueous mixture, or as a non-aqueous mixture in the catholyte. The introduction of micro bubbles of carbon dioxide into the catholyte stream may improve carbon dioxide transfer to the cathode surfaces.
- Referring now to
FIG. 6 , a nano-filtration system may be utilized between theelectrolyzer system 100, as shown inFIG. 1 , and theelectrochemical acidification system 200, as shown inFIG. 2 . The nano-filtration system is preferably utilized to separate alkali metal formate (e.g., potassium formate) from bicarbonate leaving the electrolyzer system 100 (e.g., stream 154) to reduce the amount of bicarbonate entering theelectrochemical acidification unit 202. The nano-filtration system preferably uses a nano-filtration filter/membrane under pressure for selective separation of the bicarbonate from the alkali metal formate. The nano-filtration filter/membrane separates monovalent anions (e.g., formate) from divalent anions (e.g., carbonate) using a high pressure pump and suitable selected membranes for the separation. When utilizing the nano-filtration system as a separation tool between theelectrolyzer system 100 and theelectrochemical acidification system 200, the bicarbonate in the formate/bicarbonate product (e.g., stream 154) is preferably converted to carbonate in order to efficiently separate the formate from the carbonate with the nano-filtration filter/membrane. The nano-filtration system may include a mixer, such as a mixing tank, to mix the formate/bicarbonate product stream with a potassium hydroxide (KOH) stream. The mixer may promote the conversion of potassium bicarbonate to potassium carbonate to facilitate the separation of the formate from the carbonate. A high pressure pump then sends the potassium formate/carbonate stream into a nano-filtration unit which includes the nano-filtration filter/membrane. The nano-filtration unit produces a low-carbonate-containing potassium formate permeate stream which is then sent to theelectrochemical acidification system 200 as shown inFIG. 2 asstream 154, to enter theelectrochemical acidification unit 202. The potassium carbonate containing reject stream leaving the nano-filtration unit is preferably sent to the KHCO3 block ofFIG. 3 , where the potassium carbonate is mixed with KOH and CO2 for conversion to potassium bicarbonate. The potassium bicarbonate is preferably utilized as a feed to the cathode compartment of theelectrolyzer 102 of theelectrolyzer system 100. The nano-filtration separation system may consist of multiple units connected in a series flow configuration to increase the total separation efficiency of the carbonate from formate separation. The system may also utilize recycle streams to recycle an output stream from one unit to the input of another unit to maintain flow and pressures as well as to increase the recovery of the formate. - Depending on the chemistry of the electrochemical systems described herein, the pH of the catholyte preferably ranges from 3 to 12. The desired pH of the catholyte may be a function of the catholyte operating conditions and the catalysts used in the cathode compartment, such that there is limited or no corrosion at the electrochemical cell.
- Preferable catholyte cross sectional area flow rates may include a range of 2 to 3,000 gpm/ft2 or more ( 0.0076 to 11.36 m3/m2), with a flow velocity range of 0.002 to 20 ft/sec (0.0006 to 6.1 m/sec).
- A homogenous heterocyclic catalyst is preferably utilized in the catholyte. The homogenous heterocyclic catalyst may include, for example, one or more of 4-hydroxy pyridine, adenine, a heterocyclic amine containing sulfur, a heterocyclic amine containing oxygen, an azole, a benzimidazole, a bipyridine, furan, an imidazole, an imidazole related species with at least one five-member ring, an indole, a lutidine, methylimidazole, an oxazole, phenanthroline, pterin, pteridine, a pyridine, a pyridine related species with at least one six-member ring, pyrrole, quinoline, or a thiazole, and mixtures thereof.
- Preferred anolytes for the system include alkali metal hydroxides, such as KOH, NaOH, LiOH; ammonium hydroxide; inorganic acids such as sulfuric, phosphoric, and the like; organic acids such as methanesulfonic acid; non-aqueous and aqueous solutions; alkali halide salts, such as the chlorides, bromides, and iodine types such as NaCl, NaBr, LiBr, and Nal; and acid halides such as HCl, HBr and HI. The acid halides and alkali halide salts will produce for example chlorine, bromine, or iodine as a halide gas or as dissolved aqueous products from the anolyte compartment. Methanol or other hydrocarbon non-aqueous liquids can also be used, and would form some oxidized organic products from the anolyte. Selection of the anolyte would be determined by the process chemistry product and requirements for lowering the overall operating cell voltage. For example, the formation of bromine at the anode requires a significantly lower anode voltage potential than chlorine formation, and iodine is even lower than that of bromine. This allows for a significant power cost savings in the operation of both of the electrochemical units when bromine is generated in the anolyte. The formation of a halogen, such as bromine, in the anolyte may then be used in an external reaction to produce other compounds, such as reactions with alkanes to form bromoethane, which may then be converted to an alcohol, such as ethanol, or an alkene, such as ethylene, and the halogen acid byproduct from the reaction can be recycled back to the electrochemical cell anolyte.
- Operation of the electrolyzer catholyte at a higher operating pressure may allow more carbon dioxide to dissolve in the aqueous electrolyte than at lower pressures (e.g., ambient pressures). Electrochemical cells may operate at pressures up to about 20 to 30 psig in multi-cell stack designs, although with modifications, they could operate at up to 100 psig. The electrolyzer anolyte may also be operated in the same pressure range to minimize the pressure differential on the membrane separating the two electrode compartments. Special electrochemical designs are required to operate electrochemical units at higher operating pressures up to about 60 to 100 atmospheres or greater, which is in the liquid CO2 and supercritical CO2 operating range.
- In a particular implementation, a portion of the catholyte recycle stream may be separately pressurized using a flow restriction with backpressure or using a pump, with CO2 injection, such that the pressurized stream is then injected into the catholyte compartment of the electrolyzer. Such a configuration may increase the amount of dissolved CO2 in the aqueous solution to improve the conversion yield.
- Catholyte and anolyte operating temperatures preferably range from -10 to 95 °C, more preferably 5 to 60°C. The minimum operating temperature will be limited to the electrolytes used and their freezing points. In general, the lower the temperature, the higher the solubility of CO2 in the aqueous solution phase of the electrolyte, and would help in obtaining higher conversion and current efficiencies. A consideration for lower operating temperatures is that the operating electrolyzer cell voltages may be higher, so an optimization may be required to produce the chemicals at the lowest operating cost.
- The electrochemical cell design may include a zero gap, flow-through design with a recirculating catholyte electrolyte with various high surface area cathode materials. Other designs include: flooded co-current packed and trickle bed designs with the various high surface area cathode materials, bipolar stack cell designs, and high pressure cell designs.
- Anodes for use in the electrochemical system may depend on various system conditions. For acidic anolytes and to oxidize water to generate oxygen and hydrogen ions, the anode may include a coating, with preferred electrocatalytic coatings including precious metal oxides, such as ruthenium and iridium oxides, as well as platinum, rhodium, and gold and their combinations as metals and oxides deposited on valve metal substrates, such as titanium, tantalum, zirconium, and niobium. For other anolytes, such as alkaline or hydroxide electrolytes, the anode made include carbon, cobalt oxides, stainless steels, nickel, and their alloys and combinations which may be stable as anodes suitable under alkaline conditions.
- As described herein, the electrochemical system may employ a membrane positioned between the anode compartment and the cathode compartment. Cation ion exchange type membranes are preferred, especially those that have a high rejection efficiency to anions, for example perfluorinated sulfonic acid based ion exchange membranes such as DuPont Nafion® brand unreinforced types N117 and N120 series, more preferred PTFE fiber reinforced N324 and N424 types, and similar related membranes manufactured by Japanese companies under the supplier trade names such as Flemion®. Other multi-layer perfluorinated ion exchange membranes used in the chlor alkali industry have a bilayer construction of a sulfonic acid based membrane layer bonded to a carboxylic acid based membrane layer, which efficiently operates with an anolyte and catholyte above a pH of about 2 or higher. These membranes have a much higher anion rejection efficiency. These are sold by DuPont under their Nafion® trademark as the N900 series, such as the N90209, N966, N982, and the 2000 series, such as the N2010, N2020, and N2030 and all of their types and subtypes. Hydrocarbon based membranes, which are made from various cation ion exchange materials can also be used if the anion rejection is not as critical, such as those sold by Sybron under their trade name Ionac®, AGC Engineering (Asahi Glass) under their Selemion® trade name, and Tokuyama Soda, among others available on the market.
- The electrolyzer design used in laboratory examples may incorporate various thickness high surface area cathode structures using added spacer frames and also provide the physical contact pressure for the electrical contact to the cathode current conductor backplate.
- An electrochemical bench scale cell with an electrode projected area of about 108 cm2 was used for much of the bench scale test examples. The electrochemical cell was constructed consisting of two electrode compartments machined from 1.0 inch (2.54 cm) thick natural polypropylene. The outside dimensions of the anode and cathode compartments were 8 inches (20.32 cm) by 5 inches (12.70 cm) with an internal machined recess of 0.375 inches (0.9525 cm) deep and 3.0 inches (7.62 cm) wide by 6 inches (15.24 cm) tall with a flat gasket sealing area face being 1.0 inches (2.52 cm) wide. Two holes were drilled equispaced in the recess area to accept two electrode conductor posts that pass though the compartment thickness, and having two 0.25 inch (0.635 cm) drilled and tapped holes to accept a plastic fitting that passes through 0.25 inch (0.635 cm) conductor posts and seals around it to not allow liquids from the electrode compartment to escape to the outside. The electrode frames were drilled with an upper and lower flow distribution hole with 0.25 inch pipe threaded holes with plastic fittings installed to the outside of the cell frames at the top and bottom of the cells to provide flow into and out of the cell frame, and twelve 0.125 inch (0.3175 cm) holes were drilled through a 45 degree bevel at the edge of the recess area to the upper and lower flow distribution holes to provide an equal flow distribution across the surface of the flat electrodes and through the thickness of the high surface area electrodes of the compartments.
- For the anode compartment cell frames, an anode with a thickness of 0.060 inch (0.1524 cm) and 2.875 inch (7.3025 cm) width and 5.875 inch (14.9225 cm) length with two 0.25 inch (0.635 cm) titanium diameter conductor posts welded on the backside were fitted through the two holes drilled in the electrode compartment recess area. The positioning depth of the anode in the recess depth was adjusted by adding plastic spacers behind the anode, and the edges of the anode to the cell frame recess were sealed using a medical grade epoxy. The electrocatalyst coating on the anode was a Water Star WS-32, an iridium oxide based coating on a 0.060 inch (0.1524 cm) thick titanium substrate, suitable for oxygen evolution in acids. In addition, the anode compartment also employed an anode folded screen (folded three times) that was placed between the anode and the membrane, which was a 0.010 inch (0.0254 cm) thick titanium expanded metal material from DeNora North America (EC626), with an iridium oxide based oxygen evolution coating, and used to provide a zero gap anode configuration (anode in contact with membrane), and to provide pressure against the membrane from the anode side which also had contact pressure from the cathode side.
- For the cathode compartment cell frames, 316L stainless steel cathodes with a thickness of 0.080 inch (0.2032 cm) and 2.875 inch (7.3025 cm) width and 5.875 inch (14.9225 cm) length with two 0.25 inch (0.635 cm) diameter 316L SS conductor posts welded on the backside were fitted through the two holes drilled in the electrode compartment recess area. The positioning depth of the cathode in the recess depth was adjusted by adding plastic spacers behind the cathode, and the edges of the cathode to the cell frame recess were sealed using a fast cure medical grade epoxy.
- A copper bar was connected between the two anode posts and the cathode posts to distribute the current to the electrode back plate. The cell was assembled and compressed using 0.25 inch (0.635 cm) bolts and nuts with a compression force of about 60 in-lbs force. Neoprene elastomer gaskets (0.0625 inch (0.159 cm) thick) were used as the sealing gaskets between the cell frames, frame spacers, and the membranes.
- The above cell was assembled with a 0.010 inch (0.0254 cm) thickness indium foil mounted on the 316L SS back conductor plate using a conductive silver epoxy. A multi-layered high surface area cathode, comprising an electrolessly applied indium layer of about 1 micron thickness that was deposited on a previously applied layer of electroless tin with a thickness of about 25 micron thickness onto a woven copper fiber substrate. The base copper fiber structure was a copper woven mesh obtained from an on-line internet supplier, PestMall.com (Anteater Pest Control Inc.). The copper fiber dimensions in the woven mesh had a thickness of 0.0025 inches (0.00635 cm) and width of 0.010 inches (0.0254 cm). The prepared high surface area cathode material was folded into a pad that was 1.25 inches (3.175 cm) thick and 6 inches (15.24 cm) high and 3 inches (7.62 cm) wide, which filled the cathode compartment dimensions and exceeded the adjusted compartment thickness (adding spacer) which was 0.875 inches (2.225 cm) by about 0.25 inches (0.635 cm). The prepared cathode had a calculated surface area of about 3,171 cm2, for an area about 31 times the flat cathode plate area, with a 91% void volume, and specific surface area of 12.3 cm2/cm3. The cathode pad was compressible, and provided the spring force to make contact with the cathode plate and the membrane. Two layers of a very thin (0.002 inches thick) plastic screen with large 0.125 inch (0.3175 cm) holes were installed between the cathode mesh and the Nafion® 324 membrane. Neoprene gaskets (0.0625 inch (0.159 cm) thick) were used as the sealing gaskets between the cell frames and the membranes. The electrocatalyst coating on the anode in the anolyte compartment was a Water Star WS-32, an iridium oxide based coating, suitable for oxygen evolution in acids. In addition, the anode compartment also employed a three-folded screen that was placed between the anode and the membrane, which was a 0.010 inch (0.0254 cm) thick titanium expanded metal material from DeNora North America (EC626), with an iridium oxide based oxygen evolution coating, and used to provide a zero gap anode configuration (anode in contact with membrane), and to provide pressure against the membrane from the anode side which also had contact pressure from the cathode side.
- The cell assembly was tightened down with stainless steel bolts, and mounted into the cell station, which has the same configuration as shown in
FIG. 1 with a catholyte disengager, a centrifugal catholyte circulation pump, inlet cell pH and outlet cell pH sensors, a temperature sensor on the outlet solution stream. A 5 micron stainless steel frit filter was used to sparge carbon dioxide into the solution into the catholyte disengager volume to provide dissolved carbon dioxide into the recirculation stream back to the catholyte cell inlet. - The anolyte used was a dilute 5% by volume sulfuric acid solution, made from reagent grade 98% sulfuric acid and deionized water.
- In this test run, the system was operated with a catholyte composition containing 0.4 molar potassium sulfate aqueous with 2 gm/L of potassium bicarbonate added, which was sparged with carbon dioxide to an ending pH of 6.60.
-
- Anolyte Solution: 0.92 M H2SO4
- Catholyte Solution: 0.4 M K2SO4, 0.14mM KHCO3
- Catholyte flow rate: 2.5 LPM
- Catholyte flow velocity: 0.08 ft/sec
- Applied cell current: 6 amps (6,000 mA)
- Catholyte pH range: 5.5 - 6.6, controlled by periodic additions of potassium bicarbonate to the catholyte solution recirculation loop. Catholyte pH declines with time, and is controlled by the addition of potassium bicarbonate.
-
- Cell voltage range: 3.39 - 3.55 volts (slightly lower voltage when the catholyte pH drops)
- Run time: 6 hours
- Formate Faradaic yield: Steady between 32 - 35%, calculated taking samples periodically. See
FIG. 7 . - Final formate concentration: 9,845 ppm
- The same cell as in Example 1 was used with the same cathode, which was only rinsed with water while in the electrochemical cell after the run was completed and then used for this run.
- In this test run, the system was operated with a catholyte composition containing 0.375 molar potassium sulfate aqueous with 40 gm/L of potassium bicarbonate added, which was sparged with carbon dioxide to an ending pH of 7.05.
-
- Anolyte Solution: 0.92 M H2SO4
- Catholyte Solution: 0.4 M K2SO4, 0.4 M KHCO3
- Catholyte flow rate: 2.5 LPM
- Catholyte flow velocity: 0.08 ft/sec
- Applied cell current: 6 amps (6,000 mA)
- Catholyte pH range: Dropping from 7.5 to 6.75 linearly with time during the run.
-
- Cell voltage range: 3.40 - 3.45 volts
- Run time: 5.5 hours
- Formate Faradaic yield: Steady at 52% and slowly declining with time to 44% as the catholyte pH dropped. See
FIG. 8 . - Final formate concentration: 13,078 ppm
- The same cell as in Examples 1 and 2 was used with the same cathode, which was only rinsed with water while in the electrochemical cell after the run was completed and then used for this run.
- In this test run, the system was operated with a catholyte composition containing 0.200 molar potassium sulfate aqueous with 40 gm/L of potassium bicarbonate added, which was sparged with carbon dioxide to an ending pH of 7.10.
-
- Anolyte Solution: 0.92 M H2SO4
- Catholyte Solution: 0.2 M K2SO4, 0.4 M KHCO3
- Catholyte flow rate: 2.5 LPM
- Catholyte flow velocity: 0.08 ft/sec
- Applied cell current: 9 amps (9,000 mA)
- Catholyte pH range: Dropping from 7.5 to 6.65 linearly with time during the run, and then additional solid KHCO3 was added to the catholyte loop in 10 gm increments at the 210, 252, and 290 minute time marks which brought the pH back up to about a pH of 7 for the last part of the run.
-
- Cell voltage range: 3.98 - 3.80 volts
- Run time: 6.2 hours
- Formate Faradaic yield: 75% declining to 60% at a pH of 6.65, and then increasing to 75% upon the addition of solid potassium bicarbonate to the catholyte to the catholyte loop in 10 gm increments at the 210, 252, and 290 minute time marks and slowly declining down with time 68% as the catholyte pH dropped to 6.90. See
FIG. 9 . - Final formate concentration: 31,809 ppm.
- The same cell as in Examples 1, 2, and 3 was used with the same cathode, which was only rinsed with water while in the electrochemical cell after the run was completed and then used for this run.
- In this test run, the system was operated with a catholyte composition containing 1.40 molar potassium bicarbonate (120 gm/L KHCO3), which was sparged with carbon dioxide to an ending pH of 7.8.
-
- Anolyte Solution: 0.92 M H2SO4
- Catholyte Solution: 1.4 M KHCO3
- Catholyte flow rate: 2.6 LPM
- Catholyte flow velocity: 0.09 ft/sec
- Applied cell current: 11 amps (11,000 mA)
- Catholyte pH range: Dropping from around 7.8 linearly with time during the run to a final pH of 7.48
-
- Cell voltage range: 3.98 - 3.82 volts
- Run time: 6 hours
- Formate Faradaic yield: 63% and settling down to about 54 - 55%. See
FIG. 10 . - Final formate concentration: 29,987 ppm.
- This example contemplates separation of product potassium formate from potassium carbonate/bicarbonate supporting electrolyte by membrane nano-filtration (NF) (
FIG. 10 ). The test would involve two commercial NF membranes. The feed solution would comprise 1.2M KHCO3 + 0.6M K-formate and its pH would be adjusted to 7, 9, and 11 for three separate runs (for each membrane). - All NF tests would be performed in GE-Osmonic Sepa permeator (active membrane area of 0.0137 m2) at applied pressure of 40 bar (580 psig) and 50°C. During each
run 3 liters of feed solution would be passed through and the permeate would be collected into a measuring cylinder (to determine volume) and the elapsed time recorded. The permeate would later be analyzed for total carbonate (HCO3 - + CO3 2-) and formate. From such data, the permeability (in L/m2 h bar) and solute rejections (in %) would be calculated as follows: -
GE-Desal DK membrane Feed pH %Rejection Permeabiility L/m2 h bar Total carbonate Formate 7 11.4 2.2 1.72 9 30.3 -9.7 1.07 11 81.8 -46.3 0.36 Dow-Filmtec NF270 membrane Feed pH %Rejection Permeabiility L/m2 h bar Total carbonate Formate 7 11.0 2.6 1.91 9 29.5 -5.4 1.20 11 80.1 -43.8 0.44 - A single permeation test could be performed with DK membrane, using a formate-enriched Feed solution comprising 1.2M KHCO3 + 1.2M K-formate. The test could be done at
pH 11 and all other conditions would be as in the above Example 1. - Such a test would likely give 79.9% and -33.8% rejection for total carbonate and formate, respectively. The permeability would be 0.32 L/m2 h bar.
- The same cell as in Examples 1, 2, and 3 was used, except for using 701 gm of tin shot (0.3 - 0.6 mm diameter) media with an electroless plated indium coating as the cathode. The cathode compartment thickness was 0.875 inches.
- In this test run, the system was operated with a catholyte composition containing 1.40 molar potassium bicarbonate (120 gm/L KHCO3), which was sparged with carbon dioxide to an ending pH of 8.0
- The cell was operated in a batch condition with no overflow for the first 7.3 hrs, and then a 1.40 molar potassium bicarbonate feed was introduced into the catholyte at a rate of about 1.4 mL/min, with the overflow collected and measured, and a sample of the loop was collected for formate concentration analysis.
-
- Anolyte Solution: 0.92 M H2SO4
- Catholyte Solution: 1.4 M KHCO3
- Catholyte flow rate: 3.2 LPM
- Applied cell current: 6 amps (6,000 mA)
- Catholyte pH range: Dropping slowly from around a pH of 8 linearly with time during the run to a final pH of 7.50
-
- Cell voltage range: 3.98 - 3.82 volts
- Run time: Batch mode: 7.3 hours
- Feed and product overflow: 7.3 hours to end of run at 47 hours.
- The formate Faradaic efficiency was between 42% and 52% during the batch run period where the formate concentration went up to 10,490 ppm. During the feed and overflow period, the periodic calculated efficiencies varied between 32% and 49%. The average conversion efficiency was about 44%. The formate concentration varied between 10,490 and 48,000 ppm during the feed and overflow period. The cell voltage began at around 4.05 volts, ending up at 3.80 volts.
- Electrolyses were performed using a 3-compartment glass cell of roughly 80 mL total volume. The cell was constructed to be gas tight with Teflon bushings. The compartments were separated by 2 glass frits. A 3-electrode assembly was employed. One compartment housed the working electrode and the reference electrode (Accumet silver/silver chloride) which contained the aqueous electrolyte and catalyst as stated. The center compartment also contained the electrolyte and catalyst solution as stated. The third compartment was filled with 0.5 molar K2SO4 aqueous electrolyte solution sparged with CO2 with a pH of about 4.5 and housed the counter electrode (TELPRO (Stafford, TX) - Mixed Metal Oxide Electrode). The working electrode compartment was purged with carbon dioxide during the experiment. The solutions were measured by ion chromatography for formic acid, analyzing the solution before (a blank) and after electrolysis. The tests were conducted under potentiometric conditions using a 6 channel Arbin Instruments MSTAT, operating at -1.46 or -1.90 volts vs. an SCE reference electrode for about 1.5 hrs.
Cathode Evaluated Experiment Designation Formate Produced (ppm) Format e Yield % Applied Potential (volts) Current (ma) Time (hrs) Electroplated indium on tin foil DK80 1,818 75.8 -1.9 50 1.5 Electroplated indium on tin foil DK82 1,956 64.0 -1.9 58.5 1.5 Untreated tin foil * DK80 1,260 54.3 -1.9 44.5 1.5 Electroplated indium on copper foil DK83 1,887 31.7 -1.9 123 1.5 Tin foil (untreated) * DK80 604 18.0 -1.9 54.8 1.5 Copper screen with electroless indium coating DK79 1,813 30.6 -1.46 97.9 1.5 Copper screen with electroless indium annealed at 200°C DK78 1,387 43.9 -1.46 63.6 1.5 * In the above table, entries - The same cell as in Examples 1, 2, and 3 was used, except for using 890.5 gm of tin shot (3 mm diameter) media and with a tin foil coating as the cathode. The cathode compartment thickness was 1.25 inches and the system was operated in a batch mode with no feed input. Carbon dioxide was sparged to saturate the solution in the catholyte disengager.
-
- Weight: 890.5 gm tin shot
- Tin shot: 3 mm average size
- Total compartment volume: 369 cm3
- Calculated tin bead surface area: 4,498 cm2
- Calculated packed bed cathode specific surface area: 12.2 cm2/cm3
- Calculated packed bed void volume: 34.6%
- In this test run, the system was operated with a catholyte composition containing 1.40 molar potassium bicarbonate (120 gm/L KHCO3), which was sparged with CO2 to an ending pH of about 8.0
- The cell was operated in a batch condition with no overflow and a sample of the catholyte loop was collected for formate concentration analysis periodically.
-
- Batch Catholyte Recirculation Run
- Anolyte Solution: 0.92 M H2SO4
- Catholyte Solution: 1.4 M KHCO3
- Catholyte flow rate: 3.0 LPM (upflow)
- Catholyte flow velocity: 0.068 ft/sec
- Applied cell current: 6 amps (6,000 mA)
- Catholyte pH range: Increasing slowly from around a pH of 7.62 linearly with time during the run to a final pH of 7.73
-
- Cell voltage range: Started at 3.84 volts, and slowly declined to 3.42 volts
- Run time: Batch mode, 19 hours
- The formate Faradaic efficiency started at about 65% and declined after 10 hours to 36% and to about 18.3% after 19 hours. The final formate concentration ended up at 20,500 ppm at the end of the 19 hour run. See
Figures 11 and12 . - The same cell as in Examples 1, 2, and 3 was used, except for using 805 gm of indium coated tin shot (3 mm diameter) media and with a 0.010 inch (0.0254 cm) thickness indium foil mounted on the 316L SS back conductor plate using a conductive silver epoxy as the cathode. The cathode compartment thickness was 1.25 inches and the system was operated in a batch mode with no feed input. Carbon dioxide was sparged to saturate the solution in the catholyte disengager. The tin shot was electrolessly plated with indium in the same method as used in Examples 1 - 4 on the tincoated copper mesh. The indium coating was estimated to be about 0.5 - 1.0 microns in thickness.
-
- Weight: 890.5 gm, indium coating on tin shot
- Indium coated tin shot: 3 mm average size
- Total compartment volume: 369 cm3
- Calculated tin bead surface area: 4498 cm2
- Packed bed cathode specific surface area: 12.2 cm2/cm3
- Packed bed void volume: 34.6%
- In this test run, the system was operated with a catholyte composition containing 1.40 molar potassium bicarbonate (120 gm/L KHCO3), which was sparged with CO2 to an ending pH of about 8.0
- The cell was operated in a batch condition with no overflow and a sample of the catholyte loop was collected for formate concentration analysis periodically.
-
- Batch Catholyte Recirculation Run
- Anolyte Solution: 0.92 M H2SO4
- Catholyte Solution: 1.4 M KHCO3
- Catholyte flow rate: 3.0 LPM (upflow)
- Catholyte flow velocity: 0.068 ft/sec
- Applied cell current: 6 amps (6,000 mA)
- Catholyte pH range: Decreased slowly from around a pH of 7.86 linearly with time during the run to a final pH of 5.51
-
- Cell voltage range: Started at 3.68 volts, and slowly declined to 3.18 volts
- Run time: Batch mode, 24 hours
- The formate Faradaic efficiency started at about 100% and varied between 60% to 85%, ending at about 60% after 24 hours. The final formate concentration ended up at about 60,000 ppm at the end of the 24 hour run. Dilution error of the samples at the high formate concentrations may have provided the variability seen in the yield numbers. See
Figures 13 and14 . - The same cell as in Examples 1, 2, and 3 was used with a newly prepared indium on tin electrocatalyst coating on a copper mesh cathode. The prepared cathode had calculated surface areas of about 3,171 cm2, for an area about 31 times the flat cathode plate area, with a 91% void volume, and specific surface area of 12.3 cm2/cm3.
- In this test run, the system was operated with a catholyte composition containing 1.40 M potassium bicarbonate (120 gm/L KHCO3), which was sparged with CO2 to an ending pH of 7.8 before being used.
- The cells were operated in a recirculating batch mode for the first 8 hours of operation to get the catholyte formate ion concentration up to about 20,000 ppm, and then a fresh feed of 1.4 M potassium bicarbonate was metered into the catholyte at a feed rate of about 1.2 mL/min. The overflow volume was collected and volume measured, and the overflow and catholyte loop sample were sampled and analyzed for formate by ion chromatography.
-
- Cathode: Electroless indium on tin on a copper mesh substrate
Continuous Feed with Catholyte Recirculation Run - 11.5 days - Anolyte Solution: 0.92 M H2SO4
- Catholyte Solution: 1.4 M KHCO3
- Catholyte flow rate: 3.2 LPM
- Catholyte flow velocity: 0.09 ft/sec
- Applied cell current: 6 amps (6,000 mA)
-
- Cell voltage versus time:
FIG. 15 illustrates results of cell voltage versus time, displaying a stable operating voltage of about 3.45 volts over the 11.5 days after the initial start-up. - Continuous Run time: 11.5 days
- Formate Concentration Versus Time:
FIG. 16 shows results of the formate concentration versus time. - Formate Faradaic yield:
FIG. 17 illustrates the calculated formate current efficiency versus time measuring the formate yield from the collected samples. - Final formate concentration: About 28,000 ppm.
- Catholyte pH:
FIG. 18 illustrates the catholyte pH change over the 11.5 days, which slowly declined from a pH of 7.8 to a pH value of 7.5. The feed rate was not changed during the run, but could have been slowly increased or decreased to maintain a constant catholyte pH in any optimum operating pH range. - The same cell as in Examples 1, 2, and 3 was used with a newly prepared indium on tin electrocatalyst coating on a copper mesh cathode. The prepared cathode had calculated surface areas of about 3,171 cm2, for an area about 31 times the flat cathode plate area, with a 91% void volume, and specific surface area of 12.3 cm2/cm3.
- In this test run, the system was operated with a catholyte composition containing 1.40 M potassium bicarbonate (120 gm/L KHCO3), which was sparged with CO2 to an ending pH of 7.8 before being used.
- The cells were operated in a recirculating batch mode for the first 8 hours of operation to get the catholyte formate ion concentration up to about 20,000 ppm, and then a fresh feed of 1.4 M potassium bicarbonate was metered into the catholyte at a feed rate of about 1.2 mL/min. The overflow volume was collected and volume measured, and the overflow and catholyte loop sample were sampled and analyzed for formate by ion chromatography.
-
- Cathode: Electroless indium on tin on a copper mesh substrate
Continuous Feed with Catholyte Recirculation Run - 21 days - Anolyte Solution: 0.92 M H2SO4
- Catholyte Solution: 1.4 M KHCO3
- Catholyte flow rate: 3.2 LPM
- Catholyte flow velocity: 0.09 ft/sec
- Applied cell current: 6 amps (6,000 mA)
-
- Cell voltage versus time: The cell showed a higher operating voltage of about 4.40 volts, higher than all of our other cells, because of an inadequate electrical contact pressure of the cathode against the indium foil conductor back plate. The cell maintained operation for an extended run.
- Continuous Run time: 21 days
- Formate Faradaic yield:
FIG. 19 illustrates calculated formate current efficiency versus time measuring the formate yield from the collected samples. The formate Faradaic current efficiency declined down into the 20% range after 16 days. - Formate Concentration Versus Time:
FIG. 20 illustrates results of the formate concentration versus time. On day 21, 0.5 gm of indium (III) carbonate was added to the catholyte while the cell was still operating at the 6 ampere operating rate. The formate concentration in the catholyte operating loop was 11,330 ppm before the indium addition, which increased to 13,400 ppm after 8 hours, and increased to 14,100 ppm after 16 hours when the unit was shut down after 21 days of operation. - Catholyte pH:
FIG. 21 illustrates the catholyte pH change over the continuous operation period, which operated in the 7.6 to 7.7 pH range except for an outlier data point nearday 16 when the feed pump had stopped pumping. The feed rate was not changed during the run, but could have been increased or decreased to maintain a constant pH operation in an optimum range.
Claims (11)
- A method for electrochemical reduction of carbon dioxide into products, comprising:(A) introducing an acidic anolyte to a first compartment of a first electrochemical cell, the first compartment including an anode;(B) introducing a catholyte including an alkali metal bicarbonate to a second compartment of the first electrochemical cell, the catholyte saturated with carbon dioxide, the second compartment including a high surface area cathode, the high surface area cathode having a specific surface area of greater than 2 cm2/cm3 and including an indium coating and having a void volume of between 30% to 98%, at least a portion of the bicarbonate-based catholyte being recycled;(C) applying an electrical potential between the anode and the cathode sufficient to reduce the carbon dioxide to an alkali metal formate;(D) introducing the alkali metal formate to an ion exchange compartment of a second electrochemical cell;(E) applying an electrical potential between an anode of the second electrochemical cell and a cathode of the second electrochemical cell sufficient to produce at least formic acid and an alkali metal hydroxide; and(F) introducing the alkali metal hydroxide with carbon dioxide to generate at least a portion of the alkali metal bicarbonate introduced to the second compartment of the first electrochemical cell.
- The method of claim 1, further comprising:separating the alkali metal formate from the alkali metal bicarbonate of the catholyte of the first electrochemical cell with a nano-filtration system.
- The method of claim 1, wherein separating the alkali metal formate from the alkali metal bicarbonate of the catholyte of the first electrochemical cell with a nano-filtration system comprises:introducing the alkali metal bicarbonate of the catholyte to an alkali metal hydroxide to convert at least a portion of the alkali metal bicarbonate to an alkali metal carbonate; andseparating the alkali metal carbonate from the alkali metal formate with a nano-filtration unit.
- The method of claim 1, further comprising:introducing the alkali metal carbonate with the alkali metal hydroxide and with carbon dioxide to generate at least a portion of the alkali metal bicarbonate introduced to the second compartment of the first electrochemical cell.
- The method of claim 1, wherein the acidic anolyte includes sulfuric acid.
- The method of claim 1, further comprising:generating a halogen selected from the group consisting of F2, Cl2, Br2, and l2 in at least one of the first compartment of the first electrochemical cell and the first compartment of the second electrochemical cell, wherein the method optionally further comprises reacting the halogen with an organic compound to produce a halogenated product, and wherein optionally the halogen is bromine.
- The method of any one of the preceding claims, wherein a homogenous heterocyclic catalyst is utilized in the catholyte of the first electrochemical cell.
- The method of any one of the preceding claims, wherein the homogenous heterocyclic catalyst includes one or more of 4-hydroxy pyridine, adenine, a heterocyclic amine containing sulfur, a heterocyclic amine containing oxygen, an azole, a benzimidazole, a bipyridine, furan, an imidazole, an indole, a lutidine, methylimidazole, an oxazole, phenanthroline, pterin, pteridine, a pyridine, pyrrole, quinoline, or a thiazole, and mixtures thereof.
- The method of any one of the preceding claims, wherein the cathode of the first electrochemical cell includes a tin coating on a high surface area copper substrate with a top layer/coating of indium.
- The method of any one of the preceding claims, further comprising operating the first electrochemical cell at a pressure exceeding atmospheric pressure.
- The method of any one of the preceding claims, wherein the anode of the first electrochemical cell includes an electrocatalytic coating including ruthenium oxide, iridium oxide, platinum, platinum oxides, gold or gold oxide.
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261701237P | 2012-09-14 | 2012-09-14 | |
US201261703238P | 2012-09-19 | 2012-09-19 | |
US201261703234P | 2012-09-19 | 2012-09-19 | |
US201261703187P | 2012-09-19 | 2012-09-19 | |
US201261703158P | 2012-09-19 | 2012-09-19 | |
US201261703175P | 2012-09-19 | 2012-09-19 | |
US201261703232P | 2012-09-19 | 2012-09-19 | |
US201261703229P | 2012-09-19 | 2012-09-19 | |
US201261703231P | 2012-09-19 | 2012-09-19 | |
US201261720670P | 2012-10-31 | 2012-10-31 | |
US13/724,885 US8858777B2 (en) | 2012-07-26 | 2012-12-21 | Process and high surface area electrodes for the electrochemical reduction of carbon dioxide |
PCT/US2013/053554 WO2014042781A2 (en) | 2012-09-14 | 2013-08-05 | Process and high surface area electrodes for the electrochemical reduction of carbon dioxide |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2895642A2 EP2895642A2 (en) | 2015-07-22 |
EP2895642A4 EP2895642A4 (en) | 2015-10-21 |
EP2895642B1 true EP2895642B1 (en) | 2018-04-25 |
Family
ID=50278594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13837298.2A Active EP2895642B1 (en) | 2012-09-14 | 2013-08-05 | Process using high surface area electrodes for the electrochemical reduction of carbon dioxide |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP2895642B1 (en) |
JP (1) | JP2015533944A (en) |
KR (1) | KR20150055033A (en) |
CN (1) | CN104619886B (en) |
AU (1) | AU2013316029B2 (en) |
BR (1) | BR112015005640A2 (en) |
CA (1) | CA2883127C (en) |
WO (2) | WO2014042782A1 (en) |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2900847B1 (en) * | 2012-09-19 | 2021-03-24 | Avantium Knowledge Centre B.V. | Eletrochemical reduction of co2 with co-oxidation of an alcohol |
JP6599367B2 (en) * | 2014-05-29 | 2019-10-30 | アヴァンティウム・ノレッジ・センター・ベスローテン・フェンノートシャップ | Method and system for electrochemical reduction of carbon dioxide using a gas diffusion electrode |
US20160253461A1 (en) * | 2014-10-01 | 2016-09-01 | Xsolis, Llc | System for management and documentation of health care decisions |
JP6690322B2 (en) * | 2015-06-04 | 2020-04-28 | 株式会社豊田中央研究所 | Electrode catalyst for carbon dioxide reduction, electrode, device and catalyst fixing method |
JP6869234B2 (en) * | 2015-07-08 | 2021-05-12 | アゴラ エナジー テクノロジーズ リミテッド | Redox flow battery with carbon dioxide based redox pair |
US20170241026A1 (en) * | 2016-02-23 | 2017-08-24 | Kabushiki Kaisha Toshiba | Electrochemical reaction device |
JP6691293B2 (en) * | 2016-02-26 | 2020-04-28 | 富士通株式会社 | Carbon dioxide reduction electrode, container, and carbon dioxide reduction device |
JP6640686B2 (en) * | 2016-03-18 | 2020-02-05 | 株式会社東芝 | Electrochemical reactor |
JP6667615B2 (en) * | 2016-03-28 | 2020-03-18 | 古河電気工業株式会社 | Metal-containing cluster catalyst, carbon dioxide reduction electrode and carbon dioxide reduction apparatus using the same |
KR101794840B1 (en) * | 2016-03-29 | 2017-11-07 | (주)테크윈 | Apparatus and method for fabricating formic acid |
CA3238869A1 (en) | 2016-05-03 | 2017-11-09 | Twelve Benefit Corporation | Reactor with advanced architecture for the electrochemical reaction of co2, co, and other chemical compounds |
WO2018062952A1 (en) * | 2016-09-30 | 2018-04-05 | 서강대학교산학협력단 | Complex process for reducing carbon dioxide and producing formic acid and potassium sulfate, and apparatus for said complex process |
KR101793711B1 (en) | 2016-11-04 | 2017-11-07 | 한국에너지기술연구원 | Device and Method for preparing carbonate and/or formate from carbon dioxide |
US10675681B2 (en) * | 2017-02-02 | 2020-06-09 | Honda Motor Co., Ltd. | Core shell |
US11053598B2 (en) | 2017-02-16 | 2021-07-06 | Honda Motor Co., Ltd. | Method for producing core shell nanoparticles |
JP2018150596A (en) * | 2017-03-14 | 2018-09-27 | 千代田化工建設株式会社 | Organic substance production system and manufacturing method thereof |
JP7062939B2 (en) * | 2017-12-18 | 2022-05-09 | 株式会社デンソー | Carbon dioxide reduction electrode and carbon dioxide reduction device using this |
CN107893243B (en) * | 2017-12-20 | 2024-05-07 | 中科京投环境科技江苏有限公司 | Device and method for removing heavy metals through cyclone ore pulp electrolysis |
WO2019141827A1 (en) | 2018-01-18 | 2019-07-25 | Avantium Knowledge Centre B.V. | Catalyst system for catalyzed electrochemical reactions and preparation thereof, applications and uses thereof |
BR112020014938A2 (en) | 2018-01-22 | 2021-02-23 | Opus-12 Incorporated | system and method for the control of carbon dioxide reactor |
KR102066269B1 (en) * | 2018-01-26 | 2020-01-14 | 중앙대학교 산학협력단 | Method for fabricating electode for co2 reduction and electode for co2 reduction manufactured by the same |
EP3536823A1 (en) * | 2018-03-05 | 2019-09-11 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Method for electrochemically reducing carbon dioxide |
CN108480656B (en) * | 2018-03-13 | 2019-08-09 | 中国科学院长春应用化学研究所 | A kind of preparation method and application for the bismuth nanometer sheet and its alloy that thickness is controllable |
KR102140710B1 (en) * | 2018-06-22 | 2020-08-03 | 한국과학기술원 | High pressure reactor for carbon dioxide conversion and method for operating thereof |
CA3120748A1 (en) | 2018-11-28 | 2020-06-04 | Opus 12 Incorporated | Electrolyzer and method of use |
US10590548B1 (en) * | 2018-12-18 | 2020-03-17 | Prometheus Fuels, Inc | Methods and systems for fuel production |
CA3123592A1 (en) | 2018-12-18 | 2020-06-25 | Opus 12 Incorporated | Electrolyzer and method of use |
JP2022516277A (en) | 2019-01-07 | 2022-02-25 | オプス-12 インコーポレイテッド | Methanogenesis system and method |
CN110117794B (en) * | 2019-05-21 | 2021-05-18 | 盐城工学院 | Electro-reduction of CO2Three-chamber type electrolytic cell device for preparing formate and electrolytic method thereof |
EP4397394A1 (en) * | 2019-06-14 | 2024-07-10 | The Regents Of The University Of California | Alkaline cation enrichment and water electrolysis to provide comineralization and global-scale carbon management |
KR102025920B1 (en) * | 2019-07-22 | 2019-09-26 | 울산과학기술원 | Carbon dioxide utilization system |
RU2713360C2 (en) * | 2019-09-25 | 2020-02-04 | Общество с ограниченной ответственностью "Экостар-Наутех" | Method of producing lithium hydroxide monohydrate from brines |
CN110867601A (en) * | 2019-11-19 | 2020-03-06 | 东华大学 | Carbon dioxide electrochemical reduction reactor with continuous multi-compartment type fuel cell membrane electrode structure |
CA3159447A1 (en) | 2019-11-25 | 2021-06-03 | Ziyang HOU | Membrane electrode assembly for cox reduction |
EP4077766A1 (en) | 2019-12-20 | 2022-10-26 | Avantium Knowledge Centre B.V. | Formation of formic acid with the help of indium-containing catalytic electrode |
US11826698B2 (en) * | 2019-12-30 | 2023-11-28 | Ffi Ionix Ip, Inc. | Environmental control system utilizing an anion conducting membrane |
CN111575728A (en) * | 2020-03-13 | 2020-08-25 | 中国船舶重工集团公司第七一八研究所 | Polar plate for alkaline water electrolyzer |
JP7297710B2 (en) * | 2020-03-23 | 2023-06-26 | 株式会社東芝 | carbon dioxide reactor |
JP7247150B2 (en) * | 2020-09-02 | 2023-03-28 | 株式会社東芝 | Carbon dioxide electrolysis device and carbon dioxide electrolysis method |
JP7282725B2 (en) * | 2020-09-17 | 2023-05-29 | 株式会社東芝 | Chemical reaction system, chemical reaction method, and valuables production system |
CA3196179A1 (en) | 2020-10-20 | 2022-04-28 | Lihui Wang | Semi-interpenetrating and crosslinked polymers and membranes thereof |
CN113430547B (en) * | 2021-05-06 | 2023-07-25 | 盐城工学院 | Device and method for preparing potassium formate by electrolyzing carbon dioxide |
WO2023095193A1 (en) * | 2021-11-24 | 2023-06-01 | 日本電信電話株式会社 | Porous electrode–supporting electrolyte membrane and method for producing porous electrode–supporting electrolyte membrane |
TWI819466B (en) * | 2022-01-18 | 2023-10-21 | 南亞塑膠工業股份有限公司 | System and method for carbon dioxide electrolysis |
GB2604047B (en) * | 2022-03-24 | 2023-04-05 | Kratos Energy Ltd | Electrolyser |
CN114574902B (en) * | 2022-04-06 | 2024-02-09 | 中国科学技术大学 | Silver nanocrystalline catalyst with ligand modification on surface and preparation method and application thereof |
US11939284B2 (en) | 2022-08-12 | 2024-03-26 | Twelve Benefit Corporation | Acetic acid production |
CN115874200A (en) * | 2022-11-03 | 2023-03-31 | 昆明理工大学 | Preparation method and application of porous copper mesh loaded gallium oxide-based liquid metal modified electrode |
US12031221B1 (en) * | 2023-01-11 | 2024-07-09 | Dioxycle | Separators for liquid products in oxocarbon electrolyzers |
WO2024150171A1 (en) * | 2023-01-11 | 2024-07-18 | Dioxycle | Separators for liquid products in oxocarbon electrolyzers |
CN118223040B (en) * | 2024-05-24 | 2024-08-20 | 四川思达能环保科技有限公司 | Water treatment method and electrochemical reaction system |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4589963A (en) | 1984-12-07 | 1986-05-20 | The Dow Chemical Company | Process for the conversion of salts of carboxylic acid to their corresponding free acids |
US5294319A (en) * | 1989-12-26 | 1994-03-15 | Olin Corporation | High surface area electrode structures for electrochemical processes |
US5290404A (en) | 1990-10-31 | 1994-03-01 | Reilly Industries, Inc. | Electro-synthesis of alcohols and carboxylic acids from corresponding metal salts |
US5198086A (en) * | 1990-12-21 | 1993-03-30 | Allied-Signal | Electrodialysis of salts of weak acids and/or weak bases |
AR010696A1 (en) * | 1996-12-12 | 2000-06-28 | Sasol Tech Pty Ltd | A METHOD FOR THE ELIMINATION OF CARBON DIOXIDE FROM A PROCESS GAS |
US5928806A (en) * | 1997-05-07 | 1999-07-27 | Olah; George A. | Recycling of carbon dioxide into methyl alcohol and related oxygenates for hydrocarbons |
CN101657568B (en) * | 2005-10-13 | 2013-05-08 | 曼得拉能源替代有限公司 | Continuous co-current electrochemical reduction of carbon dioxide |
WO2008018928A2 (en) * | 2006-04-27 | 2008-02-14 | President And Fellows Of Harvard College | Carbon dioxide capture and related processes |
CN101981744A (en) * | 2007-04-03 | 2011-02-23 | 新空能量公司 | Electrochemical system, apparatus, and method to generate renewable hydrogen and sequester carbon dioxide |
US8277631B2 (en) * | 2007-05-04 | 2012-10-02 | Principle Energy Solutions, Inc. | Methods and devices for the production of hydrocarbons from carbon and hydrogen sources |
EP2078697A1 (en) * | 2008-01-08 | 2009-07-15 | SOLVAY (Société Anonyme) | Process for producing sodium carbonate and/or sodium bicarbonate from an ore mineral comprising sodium bicarbonate |
WO2009108327A1 (en) * | 2008-02-26 | 2009-09-03 | Grimes, Maureen A. | Production of hydrocarbons from carbon dioxide and water |
CN101328590B (en) * | 2008-06-17 | 2011-03-23 | 昆明理工大学 | Method for converting carbon dioxide into organic compound |
EP2382174A4 (en) * | 2009-01-29 | 2013-10-30 | Trustees Of The University Of Princeton | Conversion of carbon dioxide to organic products |
EP2245215A4 (en) * | 2009-02-10 | 2011-04-27 | Calera Corp | Low-voltage alkaline production using hydrogen and electrocatlytic electrodes |
US20110114502A1 (en) * | 2009-12-21 | 2011-05-19 | Emily Barton Cole | Reducing carbon dioxide to products |
KR20130009750A (en) * | 2010-01-25 | 2013-01-23 | 라모트 앳 텔-아비브 유니버시티 리미티드 | Electrochemical systems and methods of operating same |
US8721866B2 (en) * | 2010-03-19 | 2014-05-13 | Liquid Light, Inc. | Electrochemical production of synthesis gas from carbon dioxide |
WO2011135783A1 (en) * | 2010-04-26 | 2011-11-03 | パナソニック株式会社 | Method of reducing carbon dioxide |
WO2012046362A1 (en) * | 2010-10-06 | 2012-04-12 | パナソニック株式会社 | Method for reducing carbon dioxide |
WO2012096987A1 (en) * | 2011-01-11 | 2012-07-19 | Calera Corporation | Systems and methods for soda ash production |
US8562811B2 (en) * | 2011-03-09 | 2013-10-22 | Liquid Light, Inc. | Process for making formic acid |
US20130105304A1 (en) * | 2012-07-26 | 2013-05-02 | Liquid Light, Inc. | System and High Surface Area Electrodes for the Electrochemical Reduction of Carbon Dioxide |
-
2013
- 2013-08-05 BR BR112015005640A patent/BR112015005640A2/en not_active IP Right Cessation
- 2013-08-05 JP JP2015531925A patent/JP2015533944A/en active Pending
- 2013-08-05 WO PCT/US2013/053558 patent/WO2014042782A1/en active Application Filing
- 2013-08-05 CN CN201380048093.9A patent/CN104619886B/en active Active
- 2013-08-05 WO PCT/US2013/053554 patent/WO2014042781A2/en active Application Filing
- 2013-08-05 CA CA2883127A patent/CA2883127C/en active Active
- 2013-08-05 AU AU2013316029A patent/AU2013316029B2/en active Active
- 2013-08-05 EP EP13837298.2A patent/EP2895642B1/en active Active
- 2013-08-05 KR KR1020157009475A patent/KR20150055033A/en not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CA2883127A1 (en) | 2014-03-20 |
CN104619886B (en) | 2019-02-12 |
CA2883127C (en) | 2021-04-27 |
BR112015005640A2 (en) | 2017-08-08 |
EP2895642A2 (en) | 2015-07-22 |
EP2895642A4 (en) | 2015-10-21 |
AU2013316029A1 (en) | 2015-03-19 |
CN104619886A (en) | 2015-05-13 |
WO2014042781A2 (en) | 2014-03-20 |
WO2014042782A1 (en) | 2014-03-20 |
KR20150055033A (en) | 2015-05-20 |
WO2014042781A3 (en) | 2014-05-08 |
JP2015533944A (en) | 2015-11-26 |
AU2013316029B2 (en) | 2018-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2895642B1 (en) | Process using high surface area electrodes for the electrochemical reduction of carbon dioxide | |
US10287696B2 (en) | Process and high surface area electrodes for the electrochemical reduction of carbon dioxide | |
US9303324B2 (en) | Electrochemical co-production of chemicals with sulfur-based reactant feeds to anode | |
EP3607111B1 (en) | Two-membrane construction for electrochemically reducing co2 | |
EP3149228B1 (en) | Method for electrochemical reduction of carbon dioxide employing a gas diffusion electrode | |
US9873951B2 (en) | High pressure electrochemical cell and process for the electrochemical reduction of carbon dioxide | |
EP2898118B1 (en) | A method and system for the electrochemical co-production of halogen and carbon monoxide for carbonylated products | |
US9175409B2 (en) | Multiphase electrochemical reduction of CO2 | |
EP2898117B1 (en) | Integrated process for producing oxalic acid from carbon dioxide | |
CN105821436B (en) | A kind of double electrolytic cell two-step method chloric alkali electrolysis method and devices based on three-electrode system | |
US20130292257A1 (en) | Integrated Process for Producing Carboxylic Acids from Carbon Dioxide | |
WO2017118712A1 (en) | Method and system for electrochemical reduction of carbon dioxide employing a gas diffusion anode | |
EP3157897B1 (en) | Integrated process for co-production of carboxylic acids and halogen products from carbon dioxide | |
CA3008173A1 (en) | System and method for the co-production of oxalic acid and acetic acid | |
AU2018232301A1 (en) | Electrodes comprising metal introduced into a solid-state electrolyte | |
WO2023004505A1 (en) | Use of a porous recycling layer for co2 electroreduction to multicarbon products with high conversion efficiency | |
Wei | Electrochemical nitrogen reduction for ammonia synthesis using gas diffusion electrodes | |
Proietto et al. | Electrochemical conversion of pressurized CO | |
CN114540838A (en) | Diaphragm electrolysis method for preparing carbon monoxide and hypochlorite in micro-gap electrolytic cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150410 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20150923 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C25B 3/00 20060101AFI20150917BHEP |
|
17Q | First examination report despatched |
Effective date: 20160603 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ARES CAPITAL CORPORATION |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AVANTIUM KNOWLEDGE CENTRE B.V. |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602013036645 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C25B0003000000 Ipc: C25B0003040000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C25B 11/04 20060101ALI20170301BHEP Ipc: C25B 15/08 20060101ALI20170301BHEP Ipc: C25B 1/04 20060101ALI20170301BHEP Ipc: C25B 11/03 20060101ALI20170301BHEP Ipc: C25B 3/04 20060101AFI20170301BHEP Ipc: C25B 9/08 20060101ALI20170301BHEP |
|
INTG | Intention to grant announced |
Effective date: 20170322 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20171006 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
INTC | Intention to grant announced (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20180126 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 993021 Country of ref document: AT Kind code of ref document: T Effective date: 20180515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013036645 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180726 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 993021 Country of ref document: AT Kind code of ref document: T Effective date: 20180425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180827 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013036645 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20190128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180805 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180831 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180425 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180425 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180825 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602013036645 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C25B0003040000 Ipc: C25B0003250000 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230407 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230822 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240826 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240828 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240827 Year of fee payment: 12 |