WO2018062952A1 - Complex process for reducing carbon dioxide and producing formic acid and potassium sulfate, and apparatus for said complex process - Google Patents

Complex process for reducing carbon dioxide and producing formic acid and potassium sulfate, and apparatus for said complex process Download PDF

Info

Publication number
WO2018062952A1
WO2018062952A1 PCT/KR2017/010997 KR2017010997W WO2018062952A1 WO 2018062952 A1 WO2018062952 A1 WO 2018062952A1 KR 2017010997 W KR2017010997 W KR 2017010997W WO 2018062952 A1 WO2018062952 A1 WO 2018062952A1
Authority
WO
WIPO (PCT)
Prior art keywords
potassium sulfate
formic acid
carbon dioxide
formate
reactor
Prior art date
Application number
PCT/KR2017/010997
Other languages
French (fr)
Korean (ko)
Inventor
신운섭
김범식
권순일
박미정
최명호
임정애
최지나
Original Assignee
서강대학교산학협력단
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교산학협력단, 한국화학연구원 filed Critical 서강대학교산학협력단
Publication of WO2018062952A1 publication Critical patent/WO2018062952A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D5/00Sulfates or sulfites of sodium, potassium or alkali metals in general
    • C01D5/16Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/02Preparation of carboxylic acids or their salts, halides or anhydrides from salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/02Formic acid
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof

Definitions

  • the present application relates to a combined process of carbon dioxide reduction and formic acid and potassium sulfate production, and to an apparatus for the combined process.
  • Formic acid can be used for leather treatment, rubber coagulant, dyeing aid, hair dye, leather tanning, medicine, epoxy plasticizer, plating, disinfectant, fragrance, electroplating, dyeing and textile industry, organic raw materials, and inorganic / organic compound manufacturing. It is a compound used in the field. It is used 20,000 tons annually in Korea, and is mainly used in the process of producing leather products, and is produced in BASF, Kemira, and China, and consumes about 700,000 tons annually.
  • Conventional formic acid production methods include sodium formate technology, methyl formate hydrolysis technology, and polyhydric alcohol process by-products developed by BASF, Germany.
  • Many of the existing formic acid production processes are hydrolysed by synthesizing methyl formate from methanol and carbon monoxide as well as complex processes, and are synthesized under high temperature and high pressure conditions of 80 °C and 40 atm. There is a problem that the process must be high and continuous.
  • since there is a need for the continuous supply of harmful carbon monoxide a large amount of water is required for hydrolysis has a problem of wastewater treatment after use.
  • potassium sulfate can be used as a potassium fertilizer in crops in which chlorinated fertilizer cannot be used, and can be combined with various fertilizers because it has almost no smell.
  • the potassium sulfate is used as a fertilizer, the fertilizer effect appears quickly, and is known as a basic fertilizer together with ammonium sulfate and phosphoric acid peroxide.
  • the potassium sulfate can be used as a raw material of potassium alum, potassium bromide or pharmaceuticals for use other than the fertilizer, and is used in the world more than 4 million tons per year.
  • the existing sulfate, potassium sulfate was added to the potassium chloride is heated at high temperature to determine a metathesis from hydrochloric acid and a method of creating a potassium sulfate, Kai nitro, or key ISERE seat aqueous solution was added to potassium chloride to (MgSO 4 and H 2 O)
  • the method of making it precipitate, and the method of adding sulfuric acid to aqueous potassium chloride solution, making potassium hydrogen sulfate, crystallizing by adding equivalent potassium chloride, and recrystallizing in aqueous solution, etc. are mentioned.
  • About 50% of the process for producing potassium sulfate is a method of adding sulfuric acid to potassium chloride and heating at high temperature (600 ° C. to 700 ° C.), which is a Mannheim process for producing potassium sulfate. Since the Mannheim process uses a lot of energy, the production cost is high, and only a small process is possible.
  • the present inventors electrochemically reduce carbon dioxide to obtain a high concentration of formic acid (potassium formate, HCOOK), and then, when the formic acid is converted to formic acid, the separation and acidification process is performed effectively, high purity formic acid and potassium sulfate It was found that it can be obtained at the same time.
  • the new process is environmentally friendly and consumes less energy than existing processes for commercially producing formic acid.
  • US patent US 08562811 discloses a process for producing formic acid as an electrochemical process of carbon dioxide.
  • the present application provides a combined process of carbon dioxide reduction and formic acid and potassium sulfate production, and an apparatus for the combined process.
  • the first reactor for producing a formate by electrochemical reduction of carbon dioxide in an electrolyte containing potassium sulfate;
  • a concentrator connected to the first reactor and concentrating an electrolyte solution containing the formate and potassium sulfate prepared in the first reactor to a solid containing formate and potassium sulfate;
  • a second reactor connected to the concentrator, for adding sulfuric acid to the solid containing formate and potassium sulfate obtained in the concentrator to prepare a solution containing formic acid and potassium sulfate solids;
  • a separator connected to the second reactor and including a separator for separating the solution containing the formic acid and the potassium sulfate solid prepared in the second reactor into a formic acid-containing solution and potassium sulfate solid, respectively.
  • an apparatus for a complex process of preparing potassium sulfate is an apparatus for a complex process of preparing potassium sulfate.
  • a formate is obtained by electrochemical reduction of carbon dioxide in an electrolyte solution containing potassium sulfate in a first reactor, and the electrolyte solution including the formate and potassium sulfate obtained from the first reactor is obtained.
  • a complex process of producing formate by reduction of carbon dioxide, which is a greenhouse gas, and converting the formate into formic acid and potassium sulfate promotes reduction of carbon dioxide, which is a greenhouse gas, and proceeds in an aqueous solution. Because of the process, it is environmentally friendly and can reduce energy costs compared to the energy costs of the formic acid production process and the potassium sulfate production process.
  • the conventional formic acid manufacturing process is a high temperature process using CO and H 2 generated on the basis of petrochemical, whereas the complex process of the present application is an environmentally friendly and greenhouse gas gas at room temperature using CO 2 It is a process to reduce.
  • the reaction may be terminated in one step to obtain only formate, and the reaction may be performed up to two steps to obtain formic acid and potassium sulfate.
  • the obtained formic acid and potassium sulfate are very useful because of their high purity.
  • FIG. 1 is a schematic view showing a complex process of carbon dioxide reduction and formic acid and potassium sulfate production in one embodiment of the present application.
  • Figure 2 in one embodiment of the present application, is a process chart showing a combined process of carbon dioxide reduction and formic acid and potassium sulfate production.
  • 3 is, in one embodiment of the present application, a first reactor system for electrochemical CO 2 conversion.
  • FIG. 4 is a photograph showing a metal hydroxide supply chamber in a first reactor in one embodiment of the present application.
  • FIG. 6 shows electrolysis of CO 2 by amalgam coated foamed copper electrodes in a first reactor with 0.5 MK 2 SO 4 , in one embodiment of the present disclosure.
  • FIG. 7 shows long-term electrolysis of CO 2 in a first reactor (0.5 MK 2 SO 4 ) with a pH feedback system, in one embodiment of the present disclosure.
  • FIG. 8 is a graph showing a result of dissolving formic acid in a solvent using formic acid as a solvent and performing acidification with sulfuric acid in one example of the present application.
  • FIG. 9 illustrates the formic acid production process and energy consumption of each of Examples and Comparative Examples in Examples and Comparative Examples.
  • the term “combination of these” included in the expression of the makushi form means one or more mixtures or combinations selected from the group consisting of the constituents described in the expression of the makushi form, wherein the constituents It means to include one or more selected from the group consisting of.
  • the first reactor for producing a formate by electrochemical reduction of carbon dioxide in an electrolyte containing potassium sulfate;
  • a concentrator connected to the first reactor and concentrating an electrolyte solution containing the formate and potassium sulfate prepared in the first reactor to a solid containing formate and potassium sulfate;
  • a second reactor connected to the concentrator, for adding sulfuric acid to the solid containing formate and potassium sulfate obtained in the concentrator to prepare a solution containing formic acid and potassium sulfate solids;
  • a separator connected to the second reactor, the separator comprising separating the solution containing the formic acid and the potassium sulfate solid prepared in the second reactor into a formic acid-containing solution and potassium sulfate solid, respectively.
  • a device for a complex process of preparing potassium is provided.
  • a formate is obtained by electrochemical reduction of carbon dioxide in an electrolyte solution containing potassium sulfate in a first reactor, and the electrolyte solution including the formate and potassium sulfate obtained from the first reactor is obtained. Transferred to a concentrator and concentrated to separate the formate and potassium sulfate solids respectively, and the solid containing formate and potassium sulfate obtained in the concentrator was transferred into a second reactor to add sulfuric acid to include formic acid and potassium sulfate solids.
  • Carbon dioxide reduction and formic acid comprising separating the solution comprising the formic acid and potassium sulfate solids obtained in the second reactor into a separator and separating the formic acid-containing solution and the potassium sulfate solid, respectively;
  • a complex process of preparing potassium sulfate comprising separating the solution comprising the formic acid and potassium sulfate solids obtained in the second reactor into a separator and separating the formic acid-containing solution and the potassium sulfate solid, respectively;
  • the first reactor 100 includes an electrolyte containing potassium sulfate, a cathode, an anode, and a membrane separating the cathode and the anode.
  • the first reactor system is connected to the reduction electrode unit to reduce the electrode portion injection line 160 for supplying carbon dioxide and a solution of the reduction electrode portion to the reduction electrode portion and the reduction to collect the materials supplied to the reduction electrode portion
  • a first chamber 150 connected to an electrode collection line 170, an anode electrode injection line 210 connected to the anode electrode to supply an anode electrode solution to the anode electrode, and an anode electrode
  • a second chamber 200 connected to the anode portion collection line 220 for collecting the prepared solution.
  • an electrolytic solution containing the formate and potassium sulfate is obtained through an electrochemical reduction reaction of carbon dioxide, and the electrolyte solution including the formate and potassium sulfate is obtained by using a concentrator injection line 250.
  • the electrolytic solution containing the formate and potassium sulfate is concentrated in the concentrator 300 to obtain a solid containing potassium formate and potassium sulfate, and the solid containing the formate and potassium sulfate is in the second reactor injection line ( Along the 320 is injected into the second reactor 350.
  • the second reactor (350) system includes a third chamber (400) for injecting sulfuric acid into the second reactor (350) by sulfuric acid injection line (410), the formate injected from the concentrator (300) And a solid containing potassium sulfate may react with the sulfuric acid in the second reactor 350 to obtain a solution containing formic acid and potassium sulfate solids.
  • the solution containing formic acid and potassium sulfate is injected into the separator 450 along the separator injection line 420, and the solution containing the formic acid and potassium sulfate solid in the separator 450 contains a formic acid-containing solution and potassium sulfate.
  • Each separated into solids, and the separated potassium sulfate solids are collected along the second potassium sulfate collection line 460, and the separated formic acid-containing solution is collected along the formic acid collection line 470, respectively.
  • the concentration may be performed by distillation, but is not limited thereto.
  • the purity of each of the formic acid and the potassium sulfate may be at least about 85% high purity independently of each other.
  • the purity of each of the formic acid and the potassium sulfate is independently about 85% to about 99.9%, about 86% to about 99.9%, about 87% to about 99.9%, about 88% to about 99.9%, about 89 %
  • the purity of each of the formic acid and the potassium sulfate is independently about 85% to about 99.9%, about 86% to about 99.9%, about 87% to about 99.9%, about 88% to about 99.9%, about 89 %
  • the purity of each of the formic acid and the potassium sulfate is independently about 85% to about 99.9%, about 86% to about 99.9%, about 87% to about 99.9%, about 88% to about 99.9%, about 89 %
  • the purity of each of the formic acid and the potassium sulfate is independently about 85% to about 99.9%, about 86% to about 99.
  • the first reactor is an electrochemical reduction reactor of carbon dioxide comprising an electrolyte solution containing potassium sulfate, an anode portion and a reducing electrode portion, supplying carbon dioxide to the cathode portion, the anode A metal hydroxide is continuously supplied to the part, and a voltage or a current is applied to the cathode and the anode to reduce the carbon dioxide so that the formate is continuously obtained.
  • the electrolytic solution included in the cathode electrode solution and the anode electrode solution comprises a selected from the group consisting of K 2 SO 4 , KHCO 3 , KCl, KOH, and combinations thereof It may be, but is not limited thereto.
  • KHCO 3 when KHCO 3 is used as the electrolyte, KCl may be used as an auxiliary electrolyte to increase conductivity, but is not limited thereto.
  • KHCO 3 and KCl are used as the electrolyte, carbon dioxide can be converted for a long time with stable current efficiency.
  • Cl - ions are transferred to the anode, and chlorine (Cl 2 ) is formed. May occur. The generation of chlorine may cause problems such as metal corrosion or tube melting.
  • the efficiency when using only KHCO 3 as the electrolyte, the efficiency may be reduced by about 10% because the conductivity is reduced. In one embodiment of the present application, when using K 2 SO 4 as the electrolyte, the efficiency is increased by about 5% to about 10% than when using KHCO 3 and KCl as the electrolyte, since chlorine does not occur, corrosion Problems can be solved. However, when K 2 SO 4 is used to obtain a formate of about 0.5 M or more, the K 2 SO 4 may precipitate. Because of this, K 2 SO 4 is precipitated inside the glass frit to supply the CO 2 gas, CO 2 is not properly supplied or the solution may not circulate due to the crystal. In one embodiment of the present application, by using K 2 SO 4 of 0.5 M or less can solve the problem of precipitation of K 2 SO 4 , but is not limited thereto.
  • the metal hydroxide may include a hydroxide of an alkali metal, but is not limited thereto.
  • the metal hydroxide may include, but is not limited to, one selected from the group consisting of KOH, NaOH, LiOH, and combinations thereof.
  • the concentration of the formate may be about 5% or more, but is not limited thereto.
  • the concentration of the formate is about 5% to about 30%, about 10% to about 30%, about 15% to about 30%, about 20% to about 30%, about 25% to about 30%, about 5% to about 25%, about 5% to about 20%, about 5% to about 15%, or about 5% to about 10%, but is not limited thereto.
  • a high concentration of formate of about 0.5 M or more may be continuously obtained by reduction of carbon dioxide, but is not limited thereto.
  • the voltage when formate is produced at a certain concentration or more during prolonged electrolysis, the voltage may change rapidly, which may be due to the sharp change in the pH of the electrode part solution.
  • the sharp change in pH is due to the breakage of the buffer solution of the cathode solution as the hydrogen ions generated in the anode solution are excessively supplied to the cathode solution through the separator. Therefore, when the metal hydroxide is continuously added to the anode portion solution, neutralizing the generated hydrogen ions to maintain the pH and voltage of the anode portion solution to adjust the amount of excess hydrogen ion For a long time, electrolysis can be made possible.
  • the metal cation of the metal hydroxide is also continuously supplied. As a result, a high concentration of formate of about 0.5 M or more can be obtained continuously for a long time.
  • the current density by applying a voltage to the cathode electrode portion and the anode portion may be about 350 mA / cm 2 or less, but is not limited thereto.
  • the current density is about 2 mA / cm 2 to about 350 mA / cm 2 , about 2 mA / cm 2 to about 300 mA / cm 2 , about 2 mA / cm 2 to about 250 mA / cm 2 , about 2 mA / cm 2 to about 200 mA / cm 2 , about 2 mA / cm 2 to about 150 mA / cm 2 , about 2 mA / cm 2 to about 100 mA / cm 2 , about 2 mA / cm 2 to about 50 mA / cm 2 , about 2 mA / cm 2 to about 10 mA / cm 2 , about 10 mA / cm 2 to about 350 mA / cm 2 , about 50 mA / cm 2 / cm
  • the cathode portion may include tin, mercury, lead, indium, or amalgam electrode, but is not limited thereto.
  • the amalgam electrode is a mixture, composite, or alloy containing Hg on the surface of the base electrode and a metal selected from the group consisting of Ag, In, Sn, Pb, Cu, and combinations thereof It may be to include that formed, but is not limited thereto.
  • the amalgam electrode may be to include a dental amalgam, but is not limited thereto.
  • the dental amalgam can provide a safe amalgam electrode that can ignore the toxicity caused by mercury.
  • the amalgam electrode has about 35 parts by weight to about 55 parts by weight of Hg, about 14 parts by weight to about 34 parts by weight of Ag, about 7 parts by weight to about 17 parts by weight of Sn, and about 4 parts by weight To about 24 parts by weight of Cu, but is not limited thereto.
  • the base electrode may be one having a porous, plate-like, rod-shaped, or foam type, but is not limited thereto.
  • the substrate electrode having porosity may include a granular assembly, a porous electrode by surface treatment, or a mesh metal electrode, but is not limited thereto.
  • the base electrode may include, but is not limited to, a group selected from the group consisting of copper, tin, nickel, carbon, free carbon, silver, gold, and combinations thereof.
  • the amalgam electrode may be formed using an amalgamator or by electroplating, but is not limited thereto.
  • the amount of sulfuric acid added to the formate-containing solution may be about 40 parts by weight to about 75 parts by weight based on 100 parts by weight of the formate-containing solution, but is not limited thereto.
  • the amount of sulfuric acid added to the formate-containing solution is about 40 parts by weight to about 75 parts by weight, about 45 parts by weight to about 75 parts by weight, about 100 parts by weight of the formate-containing solution.
  • FIGS. 1 and 2 showing the combined process of carbon dioxide reduction and formic acid and potassium sulfate production
  • first reactor electrochemical conversion of carbon dioxide using a flow cell (first reactor) for the production of high concentration of formate.
  • Amalgam coated rod electrode, amalgam coated foam electrode, or amalgam coated plate electrode were used as working electrodes, and a titanium mesh DSA electrode coated with IrOx was used as a counter electrode.
  • a constant current was applied and the voltage at both ends was measured.
  • the cathode electrode solution was supplied to the cathode electrode portion, the anode electrode solution was supplied to the anode electrode portion, and the shape of the carbon dioxide conversion system (first reactor system) used is shown in FIG. 3.
  • EG & G, 273A constant potentiometers
  • KS RnD constant current devices
  • CO 2 _ 10A constant current devices
  • a working electrode was used as a foam electrode (3 cm x 3 cm, 0.5 cm thick), and the electrolyte volume was used in a variety of 100 mL to 1,000 mL, but mainly 100 mL to 200 mL.
  • the electrolyte of the anode portion and the electrolyte of the cathode portion were separated and separated by a Nafion ® 117 membrane.
  • Ultra high purity carbon dioxide (purity 99.99%) was continuously supplied to the electrolyte of the cathode by using glass-frit, and ultra high purity argon (purity 99.99%) was supplied to the electrolyte of the anode, or gas was supplied. Electrolysis was performed without injection.
  • the pump for circulating the solution used a diaphragm pump and a peristaltic pump.
  • the product, formate, was quantitatively analyzed by liquid chromatography.
  • the formate Since the high concentration formate (1.6 M) obtained by electrochemical reduction of carbon dioxide using potassium sulfate as an electrolyte in Example 1 is dissolved in the potassium sulfate (0.2 M) solution, the formate is concentrated by concentration. Separated. In the potassium sulfate solution, the solubility of the formate is 3,400 g / L, the solubility of the potassium sulfate is 120 g / L, and when a high concentration of formate is dissolved in the potassium sulfate solution as in Example 1, Since the solubility of the potassium sulfate was further reduced, the formate could be easily separated into a liquid and the potassium sulfate could be separated into a solid by concentration.
  • the solid formate was obtained by evaporating the potassium sulfate solution in which the high concentration of formate was dissolved in order to conduct experiments at the laboratory level. Thereafter, the formate was dissolved in formic acid, and sulfuric acid was added in an equivalent ratio to prepare a mixed solution containing formic acid and potassium sulfate.
  • the reaction formula of the formate and sulfuric acid can be represented as in Scheme 1 below.
  • 8 is a graph showing the results of the acidification reaction with sulfuric acid by dissolving formate in the solvent using formic acid as a solvent. As shown in the graph of FIG. 8, it was confirmed that the reaction proceeded stably.
  • the mixed solution including the formic acid and potassium sulfate obtained through the reaction was distilled to separate the potassium sulfate as a solid and the formic acid as a liquid.
  • the obtained formic acid was 98%, the potassium sulfate was obtained as a purity of 97%, respectively, the result requested by the Korea Institute of Chemical Convergence Testing in order to confirm the purity of the formic acid (purity: 98.2 %) could be obtained.
  • the purity of the potassium sulfate was requested by the Korea Chemical Research Institute Chemical Analysis Center to obtain the results shown in Table 2.
  • the analysis of Table 2 was performed using Metrohm Ion Chromatograph C, and the analytical sample 1 contained 97.92% SO 4 2- in terms of SO 4 2- theoretical content of 55.17% in 100% K 2 SO 4 . , Sample 2 was confirmed to contain 97.86% SO 4 2- .
  • the electrolysis was stably possible with the amalgam electrode, and the electrolysis was performed at a constant voltage of about -1.9 V using an amalgam coated foam electrode, indicating that the efficiency was about 80% over 10 hours.
  • electrolysis proceeded at a current density of 30 mA ⁇ cm ⁇ 2 , and it was confirmed that electrolysis was possible at a higher current density than that of the rod type.
  • the current density As a method for increasing the current density, it was confirmed whether the current density can be increased by increasing the thickness of the amalgam-coated foam electrode having the same apparent area.
  • the amalgam electrode coated on the 5 mm thick foam base electrode has a current density of 100 mAcm -2 or higher, and the amalgam electrode coated on the 10 mm thick foam base electrode 150 mA cm -2.
  • the current efficiency was decreased when 200 mA ⁇ cm ⁇ 2 or more. The current density until such a rapid decrease in efficiency was defined as the 'limiting current density'.
  • Electrochemical reduction of carbon dioxide was carried out using the experimental method and apparatus presented in this example.
  • the effect of maintaining the pH of the anode portion and the formation of high concentration of formate in the cathode portion by continuously adding potassium hydroxide (KOH) to the anode portion was confirmed.
  • FIG. 7 is a graph obtained by prolonged electrolysis by continuously adding KOH to an anode part in the present embodiment.
  • KOH was continuously supplied to the anode for 34 hours and then electrolyzed for more than 34 hours, the pH and potential remained stable, and it was confirmed that more than 1 M of formate was produced with a current efficiency of 80% or more at the cathode.
  • the electrolysis was performed for a longer period, it was confirmed that the current efficiency was maintained at 80% or more even for about 2 M of the formate.
  • the energy consumption of each unit process was estimated to convert the energy saving amount according to the existing potassium sulfate manufacturing process and the development process.
  • the reaction proceeds at a high temperature (Mannheim furnace: 550 ° C.), but in the present embodiment, since the reaction proceeds at room temperature and atmospheric pressure, it was found to be superior to the existing process in terms of economy and stability.
  • formic acid is produced through electrochemical conversion, and formic acid and potassium sulfate are prepared by sulfation of the formate, and formic acid is produced in high purity through evaporation under reduced pressure. Produced and did not cost extra to produce potassium sulfate.

Abstract

The present application relates to a complex process for reducing carbon dioxide and producing formic acid and potassium sulfate and to an apparatus for said complex process.

Description

이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정, 및 상기 복합 공정을 위한 장치Combined process of carbon dioxide reduction and formic acid and potassium sulfate production, and apparatus for the combined process
본원은, 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정, 및 상기 복합 공정을 위한 장치에 관한 것이다.The present application relates to a combined process of carbon dioxide reduction and formic acid and potassium sulfate production, and to an apparatus for the combined process.
포름산은 가죽처리, 고무응고제, 염색조제, 모염제, 피혁탄닝, 의약, 에폭시 가소제용, 도금, 살균제, 향료, 전기도금, 염색 및 직물 산업, 유기용품 합성원료, 및 무기/유기화합물 제조 등 다양한 분야에서 사용되고 있는 화합물이다. 국내에서는 매년 2 만톤 정도 사용이 되고 있고, 주로 가죽제품을 생산하는 공정에서 사용되고 있으며, 전세계적으로는 BASF, Kemira, 및 중국 등에서 생산되어 연간 약 70 만톤이 소모되고 있다. Formic acid can be used for leather treatment, rubber coagulant, dyeing aid, hair dye, leather tanning, medicine, epoxy plasticizer, plating, disinfectant, fragrance, electroplating, dyeing and textile industry, organic raw materials, and inorganic / organic compound manufacturing. It is a compound used in the field. It is used 20,000 tons annually in Korea, and is mainly used in the process of producing leather products, and is produced in BASF, Kemira, and China, and consumes about 700,000 tons annually.
기존 포름산 제조 방법은 독일 BASF 사에서 개발한 포름산 나트륨(sodium formate) 기술, 포름산 메틸(methyl formate) 가수분해기술, 및 다가 알코올(polyhydric alcohol) 공정의 부산물로서의 생산 기술이 있으나, 투자비를 비롯한 경제적인 요인에 의해 제한이 있어왔고, 기존 포름산 생산 공정의 대부분은 메탄올 및 일산화탄소로부터 포름산 메틸을 합성하여 가수분해시키는 과정으로서 공정이 복잡 할 뿐만 아니라 80℃, 40 atm의 고온·고압조건에서 합성되어 위험성이 높고, 지속적으로 공정이 유지되어야 하는 문제가 있다. 또한, 유해한 일산화탄소의 지속적인 공급이 필요하고, 가수분해 시 대량의 물이 필요하므로 사용 후 폐수처리의 문제를 가지고 있다.Conventional formic acid production methods include sodium formate technology, methyl formate hydrolysis technology, and polyhydric alcohol process by-products developed by BASF, Germany. Many of the existing formic acid production processes are hydrolysed by synthesizing methyl formate from methanol and carbon monoxide as well as complex processes, and are synthesized under high temperature and high pressure conditions of 80 ℃ and 40 atm. There is a problem that the process must be high and continuous. In addition, since there is a need for the continuous supply of harmful carbon monoxide, a large amount of water is required for hydrolysis has a problem of wastewater treatment after use.
한편, 황산칼륨은 염화비료를 사용할 수 없는 작물에 칼륨비료로서 사용될 수 있고, 냄새가 거의 없어 각종 비료와 배합시킬 수 있다. 상기 황산칼륨을 비료로서 사용할 경우 비료 효과가 빨리 나타나며, 황산암모늄, 과산화인산 등과 함께 기본적인 비료로서 알려져 있다. 또한, 상기 황산칼륨은 상기 비료 외의 용도로서 칼륨백반, 브롬화칼륨의 제조원료나 의약품에 이용될 수 있고, 세계적으로 연간 4백만톤 이상 사용되고 있다.On the other hand, potassium sulfate can be used as a potassium fertilizer in crops in which chlorinated fertilizer cannot be used, and can be combined with various fertilizers because it has almost no smell. When the potassium sulfate is used as a fertilizer, the fertilizer effect appears quickly, and is known as a basic fertilizer together with ammonium sulfate and phosphoric acid peroxide. In addition, the potassium sulfate can be used as a raw material of potassium alum, potassium bromide or pharmaceuticals for use other than the fertilizer, and is used in the world more than 4 million tons per year.
기존의 황산칼륨 생산 공정에는 염화칼륨에 황산을 첨가하여 고온에서 가열하여 염산과 황산칼륨을 생성시키는 방법, 카이나이트 또는 키제르석 (MgSO4ㆍH2O)에 염화칼륨을 가한 수용액으로부터 복분해로 결정을 석출시켜 만드는 방법, 및 염화칼륨 수용액에 황산을 가해 황산수소칼륨을 만들고 당량의 염화칼륨을 가해 결정화시킨 후 수용액에서 재결정하여 정제하는 방법 등이 있다. 상기 황산칼륨을 생성하는 공정 중 약 50% 정도를 차지하고 있는 공정은 염화칼륨에 황산을 첨가하여 고온(600℃ 내지 700℃)에서 가열하는 방법으로서, 황산칼륨을 생산하는 만하임 공정(Mannheim process)이다. 상기 만하임 공정의 경우 많은 에너지를 사용하기 때문에 생산 비용이 많이 들고, 소규모 공정만 가능하다는 문제를 가지고 있다.To the production process, the existing sulfate, potassium sulfate was added to the potassium chloride is heated at high temperature to determine a metathesis from hydrochloric acid and a method of creating a potassium sulfate, Kai nitro, or key ISERE seat aqueous solution was added to potassium chloride to (MgSO 4 and H 2 O) The method of making it precipitate, and the method of adding sulfuric acid to aqueous potassium chloride solution, making potassium hydrogen sulfate, crystallizing by adding equivalent potassium chloride, and recrystallizing in aqueous solution, etc. are mentioned. About 50% of the process for producing potassium sulfate is a method of adding sulfuric acid to potassium chloride and heating at high temperature (600 ° C. to 700 ° C.), which is a Mannheim process for producing potassium sulfate. Since the Mannheim process uses a lot of energy, the production cost is high, and only a small process is possible.
본 발명자들은 이산화탄소를 전기화학적으로 환원시켜 고농도의 포름산염 (potassium formate, HCOOK)을 수득한 후, 상기 포름산염을 포름산으로 전환할 때 분리 및 산성화 과정을 효과적으로 진행하면, 고순도의 포름산과 황산칼륨을 동시에 수득할 수 있음을 발견하였다. 상기 신규한 공정은 상업적으로 포름산을 생성하는 기존 공정보다 친환경적이며 에너지소비가 적다. 이와 관련하여, 미국 등록특허 US 08562811호는 이산화탄소의 전기화학적 공정으로서 포름산을 생성하는 공정을 개시하고 있다.The present inventors electrochemically reduce carbon dioxide to obtain a high concentration of formic acid (potassium formate, HCOOK), and then, when the formic acid is converted to formic acid, the separation and acidification process is performed effectively, high purity formic acid and potassium sulfate It was found that it can be obtained at the same time. The new process is environmentally friendly and consumes less energy than existing processes for commercially producing formic acid. In this regard, US patent US 08562811 discloses a process for producing formic acid as an electrochemical process of carbon dioxide.
본원은, 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정, 및 상기 복합 공정을 위한 장치를 제공한다.The present application provides a combined process of carbon dioxide reduction and formic acid and potassium sulfate production, and an apparatus for the combined process.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present invention is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.
본원의 제 1 측면은, 황산칼륨을 포함하는 전해액 중에서 이산화탄소의 전기화학적 환원에 의하여 포름산염을 제조하는 제 1 반응기; 상기 제 1 반응기와 연결되며, 상기 제 1 반응기에서 제조된 상기 포름산염 및 황산칼륨을 포함하는 전해액을 농축하여 포름산염 및 황산칼륨을 함유하는 고체로 농축하는 농축기; 상기 농축기와 연결되며, 상기 농축기에서 수득된 상기 포름산염 및 황산칼륨을 함유하는 고체에 황산을 첨가하여 포름산과 황산칼륨 고체를 함유하는 용액을 제조하는 제 2 반응기; 및 상기 제 2 반응기와 연결되며, 상기 제 2 반응기에서 제조된 상기 포름산과 황산칼륨 고체를 함유하는 용액을 분리하여 포름산-함유 용액 및 황산칼륨 고체로 각각 분리하는 분리기를 포함하는, 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정용 장치를 제공한다.A first aspect of the present application, the first reactor for producing a formate by electrochemical reduction of carbon dioxide in an electrolyte containing potassium sulfate; A concentrator connected to the first reactor and concentrating an electrolyte solution containing the formate and potassium sulfate prepared in the first reactor to a solid containing formate and potassium sulfate; A second reactor connected to the concentrator, for adding sulfuric acid to the solid containing formate and potassium sulfate obtained in the concentrator to prepare a solution containing formic acid and potassium sulfate solids; And a separator connected to the second reactor and including a separator for separating the solution containing the formic acid and the potassium sulfate solid prepared in the second reactor into a formic acid-containing solution and potassium sulfate solid, respectively. And an apparatus for a complex process of preparing potassium sulfate.
본원의 제 2 측면은, 제 1 반응기에서 황산칼륨을 포함하는 전해액 중에서 이산화탄소의 전기화학적 환원에 의하여 포름산염을 수득하고, 상기 제 1 반응기로부터 수득된 상기 포름산염 및 상기 황산칼륨을 포함하는 전해액을 농축기로 전달하여 농축시켜 포름산염 및 황산칼륨을 함유하는 고체로 농축하고, 상기 농축기에서 분리된 상기 포름산염 및 황산칼륨을 함유하는 고체를 제 2 반응기 내로 전달하여 황산을 첨가하여 포름산 및 황산칼륨 고체를 포함하는 용액을 수득하며, 및 상기 제 2 반응기에서 수득된 상기 포름산 및 황산칼륨 고체를 포함하는 용액을 분리기로 전달하여 포름산-함유 용액 및 황산칼륨 고체로 각각 분리하는 것을 포함하는, 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정을 제공한다.According to a second aspect of the present invention, a formate is obtained by electrochemical reduction of carbon dioxide in an electrolyte solution containing potassium sulfate in a first reactor, and the electrolyte solution including the formate and potassium sulfate obtained from the first reactor is obtained. Transferred to a concentrator, concentrated to a solid containing formate and potassium sulfate, and the solid containing formate and potassium sulfate separated in the concentrator was transferred into a second reactor to add sulfuric acid to add formic acid and potassium sulfate solid Obtaining a solution comprising, and transferring the solution comprising the formic acid and potassium sulfate solids obtained in the second reactor to a separator to separate the formic acid-containing solution and the potassium sulfate solid, respectively; Provided is a complex process for preparing formic acid and potassium sulfate.
본원의 일 구현예에 의하여, 온실가스인 이산화탄소의 환원에 의하여 포름산염을 생성하고, 상기 포름산염을 포름산 및 황산칼륨으로 전환하는 복합 공정은 온실가스인 이산화탄소의 저감을 촉진시키고, 수용액 상에서 진행되는 공정이기 때문에 환경 친화적이며, 기존의 포름산 제조 공정 및 황산칼륨 제조 공정에 투입되는 에너지 비용에 비해 에너지 비용을 절감시킬 수 있다.According to one embodiment of the present invention, a complex process of producing formate by reduction of carbon dioxide, which is a greenhouse gas, and converting the formate into formic acid and potassium sulfate, promotes reduction of carbon dioxide, which is a greenhouse gas, and proceeds in an aqueous solution. Because of the process, it is environmentally friendly and can reduce energy costs compared to the energy costs of the formic acid production process and the potassium sulfate production process.
본원의 일 구현예에 의하여, 기존 포름산 제조 공정은 석유화학 기반으로 생성된 CO 및 H2를 이용한 고온 공정인데 반해 본원의 복합 공정은 CO2를 이용한 상온에서의 전기화학 공정으로서 환경친화적이며 온실가스를 줄일 수 있는 공정이다.According to one embodiment of the present application, the conventional formic acid manufacturing process is a high temperature process using CO and H 2 generated on the basis of petrochemical, whereas the complex process of the present application is an environmentally friendly and greenhouse gas gas at room temperature using CO 2 It is a process to reduce.
상기 복합 공정은 2 단계로 진행되기 때문에 1 단계에서 반응을 종결하여 포름산염만을 수득할 수 있고, 2 단계까지 반응을 진행하여 포름산 및 황산칼륨을 수득할 수도 있다. 본원의 일 구현예에 의하여, 상기 수득된 포름산 및 황산칼륨은 순도가 매우 높기 때문에 활용 가치가 크다.Since the complex process is performed in two steps, the reaction may be terminated in one step to obtain only formate, and the reaction may be performed up to two steps to obtain formic acid and potassium sulfate. According to one embodiment of the present application, the obtained formic acid and potassium sulfate are very useful because of their high purity.
도 1은, 본원의 일 구현예에 있어서, 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정을 나타낸 개략도이다. 1 is a schematic view showing a complex process of carbon dioxide reduction and formic acid and potassium sulfate production in one embodiment of the present application.
도 2는, 본원의 일 구현예에 있어서, 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정을 나타낸 공정도이다.Figure 2, in one embodiment of the present application, is a process chart showing a combined process of carbon dioxide reduction and formic acid and potassium sulfate production.
도 3은, 본원의 일 실시예에 있어서, 전기화학적 CO2 전환을 위한 제 1 반응기 시스템이다.3 is, in one embodiment of the present application, a first reactor system for electrochemical CO 2 conversion.
도 4는, 본원의 일 실시예에 있어서, 제 1 반응기에서 금속 수산화물 공급 챔버를 나타낸 사진이다.4 is a photograph showing a metal hydroxide supply chamber in a first reactor in one embodiment of the present application.
도 5는, 본원의 일 실시예에 있어서, 제 1 반응기의 CO2 전환에서 K2SO4 시스템의 물질 밸런스이다.5 is K 2 SO 4 in the CO 2 conversion of the first reactor, in one embodiment of the present application The material balance of the system.
도 6은, 본원의 일 실시예에 있어서, 0.5 M K2SO4를 갖는 제 1 반응기에서 아말감 코팅된 폼형 구리 전극에 의한 CO2의 전기분해를 나타낸 것이다.FIG. 6 shows electrolysis of CO 2 by amalgam coated foamed copper electrodes in a first reactor with 0.5 MK 2 SO 4 , in one embodiment of the present disclosure.
도 7은, 본원의 일 실시예에 있어서, pH 피드백 시스템을 갖는 제 1 반응기(0.5 M K2SO4)에서 CO2의 장-기간 전기분해를 나타낸 것이다.FIG. 7 shows long-term electrolysis of CO 2 in a first reactor (0.5 MK 2 SO 4 ) with a pH feedback system, in one embodiment of the present disclosure.
도 8은, 본원의 일 실시예에 있어서, 포름산을 용매로 하여 포름산염을 상기 용매에 녹여 황산과 산성화 반응을 진행한 결과를 나타낸 그래프이다.8 is a graph showing a result of dissolving formic acid in a solvent using formic acid as a solvent and performing acidification with sulfuric acid in one example of the present application.
도 9는, 본원의 일 실시예 및 비교예에 있어서, 실시예 및 비교예 각각의 포름산 제조 공정과 에너지 소모량을 나타낸 것이다.FIG. 9 illustrates the formic acid production process and energy consumption of each of Examples and Comparative Examples in Examples and Comparative Examples.
도 10은, 본원의 일 실시예 및 비교예 각각의 황산칼륨 제조 공정과 상기 공정 조건을 나타낸 것이다.10 shows a process for preparing potassium sulfate and the process conditions of each of Examples and Comparative Examples of the present application.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present disclosure. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted for simplicity of explanation, and like reference numerals designate like parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.Throughout this specification, when a portion is "connected" to another portion, this includes not only "directly connected" but also "electrically connected" with another element in between. do.
본원 명세서 전체에서, 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when a member is located “on” another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~ 를 위한 단계"를 의미하지 않는다.Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless specifically stated otherwise. As used throughout this specification, the terms "about", "substantially" and the like are used at, or in the sense of, numerical values when a manufacturing and material tolerance inherent in the stated meanings is indicated, Accurate or absolute figures are used to assist in the prevention of unfair use by unscrupulous infringers. As used throughout this specification, the term "step to" or "step of" does not mean "step for."
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 “이들의 조합”의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term “combination of these” included in the expression of the makushi form means one or more mixtures or combinations selected from the group consisting of the constituents described in the expression of the makushi form, wherein the constituents It means to include one or more selected from the group consisting of.
본원의 제 1 측면은, 황산칼륨을 포함하는 전해액 중에서 이산화탄소의 전기화학적 환원에 의하여 포름산염을 제조하는 제 1 반응기; 상기 제 1 반응기와 연결되며, 상기 제 1 반응기에서 제조된 상기 포름산염 및 황산칼륨을 포함하는 전해액을 농축하여 포름산염 및 황산칼륨을 함유하는 고체로 농축하는 농축기; 상기 농축기와 연결되며, 상기 농축기에서 수득된 상기 포름산염 및 황산칼륨을 함유하는 고체에 황산을 첨가하여 포름산과 황산칼륨 고체를 함유하는 용액을 제조하는 제 2 반응기; 및 상기 제 2 반응기와 연결되며, 상기 제 2 반응기에서 제조된 상기 포름산과 황산칼륨 고체를 함유하는 용액을 포름산-함유 용액 및 황산칼륨 고체로 각각 분리하는 분리기를 포함하는, 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정용 장치를 제공한다.A first aspect of the present application, the first reactor for producing a formate by electrochemical reduction of carbon dioxide in an electrolyte containing potassium sulfate; A concentrator connected to the first reactor and concentrating an electrolyte solution containing the formate and potassium sulfate prepared in the first reactor to a solid containing formate and potassium sulfate; A second reactor connected to the concentrator, for adding sulfuric acid to the solid containing formate and potassium sulfate obtained in the concentrator to prepare a solution containing formic acid and potassium sulfate solids; And a separator connected to the second reactor, the separator comprising separating the solution containing the formic acid and the potassium sulfate solid prepared in the second reactor into a formic acid-containing solution and potassium sulfate solid, respectively. Provided is a device for a complex process of preparing potassium.
본원의 제 2 측면은, 제 1 반응기에서 황산칼륨을 포함하는 전해액 중에서 이산화탄소의 전기화학적 환원에 의하여 포름산염을 수득하고, 상기 제 1 반응기로부터 수득된 상기 포름산염 및 상기 황산칼륨을 포함하는 전해액을 농축기로 전달하여 농축시켜 포름산염 및 황산칼륨 고체로 각각 분리하고, 상기 농축기에서 수득된 상기 포름산염 및 황산칼륨을 함유하는 고체를 제 2 반응기 내로 전달하여 황산을 첨가하여 포름산 및 황산칼륨 고체를 포함하는 용액을 수득하며, 및 상기 제 2 반응기에서 수득된 상기 포름산 및 황산칼륨 고체를 포함하는 용액을 분리기로 전달하여 포름산-함유 용액 및 황산칼륨 고체로 각각 분리하는 것을 포함하는, 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정을 제공한다.According to a second aspect of the present invention, a formate is obtained by electrochemical reduction of carbon dioxide in an electrolyte solution containing potassium sulfate in a first reactor, and the electrolyte solution including the formate and potassium sulfate obtained from the first reactor is obtained. Transferred to a concentrator and concentrated to separate the formate and potassium sulfate solids respectively, and the solid containing formate and potassium sulfate obtained in the concentrator was transferred into a second reactor to add sulfuric acid to include formic acid and potassium sulfate solids. Carbon dioxide reduction and formic acid, comprising separating the solution comprising the formic acid and potassium sulfate solids obtained in the second reactor into a separator and separating the formic acid-containing solution and the potassium sulfate solid, respectively; Provided is a complex process of preparing potassium sulfate.
본원의 일 구현예에 있어서, 도 1 및 도 2를 참조하여 상기 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정용 장치 및 상기 복합 공정을 설명하면, 우선 상기 제 1 반응기(100)에서 이산화탄소의 전기화학적 환원 반응을 통하여 고농도의 포름산염을 수득할 수 있다. 상기 제 1 반응기(100) 시스템에 대하여 자세히 설명하면, 상기 제 1 반응기는 황산칼륨을 포함하는 전해액, 환원전극부, 산화전극부, 및 상기 환원전극부와 상기 산화전극부를 분리하는 멤브레인을 포함하며, 상기 제 1 반응기 시스템은 상기 환원전극부에 연결되어 상기 환원전극부에 이산화탄소 및 환원전극부 용액을 공급하는 환원전극부 주입라인(160) 및 상기 환원전극부에 공급된 상기 물질들을 수거하는 환원전극부 수거라인(170)과 연결된 제 1 챔버(150), 상기 산화전극부에 연결되어 상기 산화전극부에 산화전극부 용액을 공급하는 산화전극부 주입라인(210) 및 상기 산화전극부에 공급된 용액을 수거하는 산화전극부 수거라인(220)과 연결된 제 2 챔버(200)를 포함한다. 상기 제 1 반응기(100)에서 이산화탄소의 전기화학적 환원 반응을 통하여 상기 포름산염 및 황산칼륨을 포함하는 전해액이 수득되며, 상기 수득된 포름산염 및 황산칼륨을 포함하는 전해액은 농축기 주입라인(250)을 따라 농축기(300)에 주입된다. 상기 농축 기(300)에서 상기 포름산염 및 황산칼륨을 포함하는 전해액을 농축시켜 포름산염 및 황산칼륨을 함유하는 고체로 수득되며, 상기 포름산염및 황산칼륨을 함유하는 고체는 제 2 반응기 주입라인(320)을 따라 제 2 반응기(350)에 주입된다. 상기 제 2 반응기(350) 시스템은 상기 제 2 반응기(350)에 황산 주입라인(410)에 의해 황산을 주입하는 제 3 챔버(400)를 포함하며, 상기 농축기(300)로부터 주입된 상기 포름산염 및 황산칼륨을 함유하는 고체가 상기 제 2 반응기(350) 내에서 상기 황산과 반응하여 포름산과 황산칼륨 고체를 함유하는 용액을 수득할 수 있다. 상기 포름산과 황산칼륨을 함유하는 용액은 분리기 주입라인(420)을 따라 분리기(450)에 주입되며, 상기 분리기(450)에서 상기 포름산과 황산칼륨 고체를 함유하는 용액을 포름산-함유 용액 및 황산칼륨 고체로 각각 분리하고, 상기 분리된 황산칼륨 고체는 제 2 황산칼륨 수거라인(460)을 따라 수거되며, 상기 분리된 포름산-함유 용액은 포름산 수거라인(470)을 따라 각각 수거된다.In one embodiment of the present application, with reference to Figures 1 and 2 will be described for the combined process and the combined process of the carbon dioxide reduction and formic acid and potassium sulfate production, first the electricity of the carbon dioxide in the first reactor (100) High concentration of formate can be obtained through chemical reduction reaction. The first reactor 100 will be described in detail. The first reactor includes an electrolyte containing potassium sulfate, a cathode, an anode, and a membrane separating the cathode and the anode. The first reactor system is connected to the reduction electrode unit to reduce the electrode portion injection line 160 for supplying carbon dioxide and a solution of the reduction electrode portion to the reduction electrode portion and the reduction to collect the materials supplied to the reduction electrode portion A first chamber 150 connected to an electrode collection line 170, an anode electrode injection line 210 connected to the anode electrode to supply an anode electrode solution to the anode electrode, and an anode electrode And a second chamber 200 connected to the anode portion collection line 220 for collecting the prepared solution. In the first reactor 100, an electrolytic solution containing the formate and potassium sulfate is obtained through an electrochemical reduction reaction of carbon dioxide, and the electrolyte solution including the formate and potassium sulfate is obtained by using a concentrator injection line 250. According to the concentrator 300. The electrolytic solution containing the formate and potassium sulfate is concentrated in the concentrator 300 to obtain a solid containing potassium formate and potassium sulfate, and the solid containing the formate and potassium sulfate is in the second reactor injection line ( Along the 320 is injected into the second reactor 350. The second reactor (350) system includes a third chamber (400) for injecting sulfuric acid into the second reactor (350) by sulfuric acid injection line (410), the formate injected from the concentrator (300) And a solid containing potassium sulfate may react with the sulfuric acid in the second reactor 350 to obtain a solution containing formic acid and potassium sulfate solids. The solution containing formic acid and potassium sulfate is injected into the separator 450 along the separator injection line 420, and the solution containing the formic acid and potassium sulfate solid in the separator 450 contains a formic acid-containing solution and potassium sulfate. Each separated into solids, and the separated potassium sulfate solids are collected along the second potassium sulfate collection line 460, and the separated formic acid-containing solution is collected along the formic acid collection line 470, respectively.
본원의 일 구현예에 있어서, 상기 농축은 증류에 의해 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present application, the concentration may be performed by distillation, but is not limited thereto.
본원의 일 구현예에 있어서, 상기 포름산 및 상기 황산칼륨 각각의 순도는 서로 독립적으로 약 85% 이상의 고순도일 수 있다. 예를 들어, 상기 포름산 및 상기 황산칼륨 각각의 순도는 독립적으로 약 85% 내지 약 99.9%, 약 86% 내지 약 99.9%, 약 87% 내지 약 99.9%, 약 88% 내지 약 99.9%, 약 89% 내지 약 99.9%, 약 90% 내지 약 99.9%, 약 91% 내지 약 99.9%, 약 92% 내지 약 99.9%, 약 93% 내지 약 99.9%, 약 94% 내지 약 99.9%, 약 95% 내지 약 99.9%, 약 96% 내지 약 99.9%, 약 97% 내지 약 99.9%, 약 98% 내지 약 99.9%, 약 99% 내지 약 99.9%, 약 99.1% 내지 약 99.9%, 약 99.2% 내지 약 99.9%, 약 99.3% 내지 약 99.9%, 약 99.4% 내지 약 99.9%, 약 99.5% 내지 약 99.9%, 약 99.6% 내지 약 99.9%, 약 99.7% 내지 약 99.9%, 약 99.8% 내지 약 99.9%, 약 85% 내지 약 99.8%, 약 85% 내지 약 99.7%, 약 85% 내지 약 99.6%, 약 85% 내지 약 99.5%, 약 85% 내지 약 99.4%, 약 85% 내지 약 99.3%, 약 85% 내지 약 99.2%, 약 85% 내지 약 99.1%, 약 85% 내지 약 99%, 약 85% 내지 약 98%, 약 85% 내지 약 97%, 약 85% 내지 약 96%, 약 85% 내지 약 95%, 약 85% 내지 약 94%, 약 85% 내지 약 93%, 약 85% 내지 약 92%, 약 85% 내지 약 91%, 약 85% 내지 약 90%, 약 85% 내지 약89%, 약 85% 내지 약88%, 약 85% 내지 약 87%, 또는 약 85% 내지 약 86%일 수 있다.In one embodiment of the present application, the purity of each of the formic acid and the potassium sulfate may be at least about 85% high purity independently of each other. For example, the purity of each of the formic acid and the potassium sulfate is independently about 85% to about 99.9%, about 86% to about 99.9%, about 87% to about 99.9%, about 88% to about 99.9%, about 89 % To about 99.9%, about 90% to about 99.9%, about 91% to about 99.9%, about 92% to about 99.9%, about 93% to about 99.9%, about 94% to about 99.9%, about 95% to About 99.9%, about 96% to about 99.9%, about 97% to about 99.9%, about 98% to about 99.9%, about 99% to about 99.9%, about 99.1% to about 99.9%, about 99.2% to about 99.9 %, About 99.3% to about 99.9%, about 99.4% to about 99.9%, about 99.5% to about 99.9%, about 99.6% to about 99.9%, about 99.7% to about 99.9%, about 99.8% to about 99.9%, About 85% to about 99.8%, about 85% to about 99.7%, about 85% to about 99.6%, about 85% to about 99.5%, about 85% to about 99.4%, about 85% to about 99.3%, about 85 % To about 99.2%, about 85% to about 99.1%, about 85% to about 99%, about 85% to about 98%, about 85% to about 97%, about 85% to About 96%, about 85% to about 95%, about 85% to about 94%, about 85% to about 93%, about 85% to about 92%, about 85% to about 91%, about 85% to about 90 %, About 85% to about 89%, about 85% to about 88%, about 85% to about 87%, or about 85% to about 86%.
본원의 일 구현예에 있어서, 상기 제 1 반응기는 황산칼륨을 포함하는 전해액, 산화전극부와 환원전극부를 포함하는 이산화탄소의 전기화학적 환원 반응기로서, 상기 환원전극부에 이산화탄소를 공급하고, 상기 산화전극부에 금속 수산화물을 지속적으로 공급하고, 및 상기 환원전극부와 상기 산화전극부에 전압 또는 전류를 인가하여 상기 이산화탄소를 환원시켜 포름산염이 지속적으로 수득되도록 한다.In one embodiment of the present application, the first reactor is an electrochemical reduction reactor of carbon dioxide comprising an electrolyte solution containing potassium sulfate, an anode portion and a reducing electrode portion, supplying carbon dioxide to the cathode portion, the anode A metal hydroxide is continuously supplied to the part, and a voltage or a current is applied to the cathode and the anode to reduce the carbon dioxide so that the formate is continuously obtained.
본원의 일 구현예에 있어서, 상기 환원전극부 용액 및 상기 산화전극부 용액에 포함되는 전해질은 K2SO4, KHCO3, KCl, KOH, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 본원의 일 구현예에 있어서, 상기 전해질로서 KHCO3를 사용할 경우, 전도도를 높이기 위하여 보조 전해질로서 KCl을 함께 사용할 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 전해질로서 KHCO3 및 KCl을 사용할 경우, 안정적인 전류 효율을 가지며 장시간 이산화탄소를 전환할 수 있으나, 장시간 동안 전기분해의 수행시, Cl- 이온이 산화전극부로 넘어가 염소(Cl2)가 발생할 수 있다. 상기 염소의 발생에 의해 금속 부식 또는 튜브가 녹는 문제 등이 발생할 수 있다. In one embodiment of the present application, the electrolytic solution included in the cathode electrode solution and the anode electrode solution comprises a selected from the group consisting of K 2 SO 4 , KHCO 3 , KCl, KOH, and combinations thereof It may be, but is not limited thereto. In one embodiment of the present application, when KHCO 3 is used as the electrolyte, KCl may be used as an auxiliary electrolyte to increase conductivity, but is not limited thereto. For example, when KHCO 3 and KCl are used as the electrolyte, carbon dioxide can be converted for a long time with stable current efficiency. However, when electrolysis is performed for a long time, Cl - ions are transferred to the anode, and chlorine (Cl 2 ) is formed. May occur. The generation of chlorine may cause problems such as metal corrosion or tube melting.
본원의 일 구현예에 있어서, 상기 전해질로서 KHCO3 만을 사용하는 경우, 전도도가 감소하기 때문에 효율이 약 10% 감소할 수 있다. 본원의 일 구현예에 있어서, 상기 전해질로서 K2SO4를 사용할 경우, 전해질로서 KHCO3 및 KCl을 사용할 때보다 약 5% 내지 약 10%의 효율이 증가하며, 염소가 발생하지 않기 때문에, 부식 등의 문제를 해결할 수 있다. 그러나, 상기 환원전극부 용액에 포함된 전해질로서 K2SO4를 사용하여 약 0.5 M 이상의 포름산염을 수득할 경우, 상기 K2SO4가 석출될 수 있다. 이로 인해, CO2 가스를 공급해주는 유리 프릿 내부에 K2SO4가 석출되어 CO2가 제대로 공급되지 않거나 또는 결정으로 인해 용액이 순환되지 않을 수 있다. 본원의 일 구현예에 있어서, 0.5 M 이하의 K2SO4를 사용함으로써 상기 K2SO4의 석출문제를 해소할 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present application, when using only KHCO 3 as the electrolyte, the efficiency may be reduced by about 10% because the conductivity is reduced. In one embodiment of the present application, when using K 2 SO 4 as the electrolyte, the efficiency is increased by about 5% to about 10% than when using KHCO 3 and KCl as the electrolyte, since chlorine does not occur, corrosion Problems can be solved. However, when K 2 SO 4 is used to obtain a formate of about 0.5 M or more, the K 2 SO 4 may precipitate. Because of this, K 2 SO 4 is precipitated inside the glass frit to supply the CO 2 gas, CO 2 is not properly supplied or the solution may not circulate due to the crystal. In one embodiment of the present application, by using K 2 SO 4 of 0.5 M or less can solve the problem of precipitation of K 2 SO 4 , but is not limited thereto.
본원의 일 구현예에 있어서, 상기 금속 수산화물은 알칼리금속의 수산화물을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present application, the metal hydroxide may include a hydroxide of an alkali metal, but is not limited thereto.
본원의 일 구현예에 있어서, 상기 금속 수산화물은 KOH, NaOH, LiOH, 및 이들의 조합들로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present disclosure, the metal hydroxide may include, but is not limited to, one selected from the group consisting of KOH, NaOH, LiOH, and combinations thereof.
본원의 일 구현예에 있어서, 상기 포름산염의 농도는 약 5% 이상일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 포름산염의 농도는 약 5% 내지 약 30%, 약 10% 내지 약 30%, 약 15% 내지 약 30%, 약 20% 내지 약 30%, 약 25% 내지 약 30%, 약 5% 내지 약 25%, 약 5% 내지 약 20%, 약 5% 내지 약 15%, 또는 약 5% 내지 약 10%일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present application, the concentration of the formate may be about 5% or more, but is not limited thereto. For example, the concentration of the formate is about 5% to about 30%, about 10% to about 30%, about 15% to about 30%, about 20% to about 30%, about 25% to about 30%, about 5% to about 25%, about 5% to about 20%, about 5% to about 15%, or about 5% to about 10%, but is not limited thereto.
본원의 일 구현예에 있어서, 상기 산화전극부에 상기 금속 수산화물을 지속적으로 공급함으로써 이산화탄소의 환원에 의하여 약 0.5 M 이상의 고농도의 포름산염이 지속적으로 수득되는 것일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present application, by continuously supplying the metal hydroxide to the anode portion, a high concentration of formate of about 0.5 M or more may be continuously obtained by reduction of carbon dioxide, but is not limited thereto.
본원의 일 구현예에 있어서, 장시간 전기분해시 포름산염이 일정 농도 이상 생성되었을 경우, 전압이 급격히 변할 수 있으며, 이는 상기 산화전극부 용액의 pH가 급격히 변하는 것에 기인할 수 있다. 상기 pH가 급격히 변하는 것은 상기 산화전극부 용액에서 생성된 수소이온이 분리막을 통해 환원전극부 용액으로 과잉 공급됨에 따라 환원전극부 용액의 완충 시스템이 깨지는 것에 기인한다. 따라서, 상기 산화전극부 용액에 상기 금속 수산화물을 지속적으로 넣어줄 경우, 생성된 수소이온을 중화시켜 상기 산화전극부 용액의 pH 및 전압을 일정하게 유지시켜 과잉 공급되는 수소이온의 양을 조절할 수 있어, 장시간 전기분해가 가능해질 수 있다. 또한, 상기 금속 수산화물을 지속적으로 공급함에 따라, 상기 금속 수산화물의 금속 양이온 또한 지속적으로 공급된다. 이에 따라 약 0.5 M 이상의 고농도 포름산염을 장시간 동안 지속적으로 수득할 수 있다.In one embodiment of the present application, when formate is produced at a certain concentration or more during prolonged electrolysis, the voltage may change rapidly, which may be due to the sharp change in the pH of the electrode part solution. The sharp change in pH is due to the breakage of the buffer solution of the cathode solution as the hydrogen ions generated in the anode solution are excessively supplied to the cathode solution through the separator. Therefore, when the metal hydroxide is continuously added to the anode portion solution, neutralizing the generated hydrogen ions to maintain the pH and voltage of the anode portion solution to adjust the amount of excess hydrogen ion For a long time, electrolysis can be made possible. In addition, as the metal hydroxide is continuously supplied, the metal cation of the metal hydroxide is also continuously supplied. As a result, a high concentration of formate of about 0.5 M or more can be obtained continuously for a long time.
본원의 일 구현예에 있어서, 상기 환원전극부와 상기 산화전극부에 전압 인가에 의한 전류 밀도는 약 350 mA/cm2 이하일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 전류 밀도는 약 2 mA/cm2 내지 약 350 mA/cm2, 약 2 mA/cm2 내지 약 300 mA/cm2, 약 2 mA/cm2 내지 약 250 mA/cm2, 약 2 mA/cm2 내지 약 200 mA/cm2, 약 2 mA/cm2 내지 약 150 mA/cm2, 약 2 mA/cm2 내지 약 100 mA/cm2, 약 2 mA/cm2 내지 약 50 mA/cm2, 약 2 mA/cm2 내지 약 10 mA/cm2, 약 10 mA/cm2 내지 약 350 mA/cm2, 약 50 mA/cm2 내지 약 350 mA/cm2, 약 100 mA/cm2 내지 약 350 mA/cm2, 약 150 mA/cm2 내지 약 350 mA/cm2, 약 200 mA/cm2 내지 약 350 mA/cm2, 약 250 mA/cm2 내지 약 350 mA/cm2, 또는 약 300 mA/cm2 내지 약 350 mA/cm2일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present application, the current density by applying a voltage to the cathode electrode portion and the anode portion may be about 350 mA / cm 2 or less, but is not limited thereto. For example, the current density is about 2 mA / cm 2 to about 350 mA / cm 2 , about 2 mA / cm 2 to about 300 mA / cm 2 , about 2 mA / cm 2 to about 250 mA / cm 2 , about 2 mA / cm 2 to about 200 mA / cm 2 , about 2 mA / cm 2 to about 150 mA / cm 2 , about 2 mA / cm 2 to about 100 mA / cm 2 , about 2 mA / cm 2 to about 50 mA / cm 2 , about 2 mA / cm 2 to about 10 mA / cm 2 , about 10 mA / cm 2 to about 350 mA / cm 2 , about 50 mA / cm 2 to about 350 mA / cm 2 , about 100 mA / cm 2 to about 350 mA / cm 2 , about 150 mA / cm 2 to about 350 mA / cm 2 , about 200 mA / cm 2 to about 350 mA / cm 2 , about 250 mA / cm 2 to about 350 mA / cm 2 , or about 300 mA / cm 2 to about 350 mA / cm 2 , but is not limited thereto.
본원의 일 구현예에 있어서, 상기 환원전극부는 주석, 수은, 납, 인듐, 또는 아말감 전극을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present application, the cathode portion may include tin, mercury, lead, indium, or amalgam electrode, but is not limited thereto.
본원의 일 구현예에 있어서, 상기 아말감 전극은 기재 전극의 표면에 Hg과, Ag, In, Sn, Pb, Cu, 및 이들의 조합들로 이루어진 군으로부터 선택된 금속을 포함하는 혼합물, 복합체, 또는 합금이 형성된 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present application, the amalgam electrode is a mixture, composite, or alloy containing Hg on the surface of the base electrode and a metal selected from the group consisting of Ag, In, Sn, Pb, Cu, and combinations thereof It may be to include that formed, but is not limited thereto.
본원의 일 구현예에 있어서, 상기 아말감 전극은 치과용 아말감을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 치과용 아말감은 수은에 의한 독성을 무시할 수 있는 안전한 아말감 전극을 제공할 수 있다.In one embodiment of the present application, the amalgam electrode may be to include a dental amalgam, but is not limited thereto. The dental amalgam can provide a safe amalgam electrode that can ignore the toxicity caused by mercury.
본원의 일 구현예에 있어서, 상기 아말감 전극은 약 35 중량부 내지 약 55 중량부의 Hg, 약 14 중량부 내지 약 34 중량부의 Ag, 약 7 중량부 내지 약 17 중량부의 Sn, 및 약 4 중량부 내지 약 24 중량부의 Cu를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present disclosure, the amalgam electrode has about 35 parts by weight to about 55 parts by weight of Hg, about 14 parts by weight to about 34 parts by weight of Ag, about 7 parts by weight to about 17 parts by weight of Sn, and about 4 parts by weight To about 24 parts by weight of Cu, but is not limited thereto.
본원의 일 구현예에 있어서, 상기 기재 전극은 다공성, 판형, 로드형, 또는 폼(foam)형을 가지는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 다공성을 가지는 기재 전극은 그래뉼라(granular) 집합체, 표면처리에 의한 다공성화 전극, 또는 메쉬(mesh)형 금속 전극을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present application, the base electrode may be one having a porous, plate-like, rod-shaped, or foam type, but is not limited thereto. For example, the substrate electrode having porosity may include a granular assembly, a porous electrode by surface treatment, or a mesh metal electrode, but is not limited thereto.
본원의 일 구현예에 있어서, 상기 기재 전극은 구리, 주석, 니켈, 탄소, 유리탄소, 은, 금, 및 이들의 조합들로 이루어진 군으로부터 선택된 것을 포함할 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present disclosure, the base electrode may include, but is not limited to, a group selected from the group consisting of copper, tin, nickel, carbon, free carbon, silver, gold, and combinations thereof.
본원의 일 구현예에 있어서, 상기 아말감 전극은 아말감메이터를 이용하거나 또는 전착(electroplating)에 의해 형성되는 것일 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present application, the amalgam electrode may be formed using an amalgamator or by electroplating, but is not limited thereto.
본원의 일 구현예에 있어서, 상기 포름산염-함유 용액에 첨가되는 상기 황산의 함량은 상기 포름산염-함유 용액 100 중량부에 대하여 약 40 중량부 내지 약 75 중량부일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 포름산염-함유 용액에 첨가되는 상기 황산의 함량은 상기 포름산염-함유 용액 100 중량부에 대하여 약 40 중량부 내지 약 75 중량부, 약 45 중량부 내지 약 75 중량부, 약 50 중량부 내지 약 75 중량부, 약 55 중량부 내지 약 75 중량부, 약 60 중량부 내지 약 75 중량부, 약 65 중량부 내지 약 75 중량부, 약 70 중량부 내지 약 75 중량부, 약 40 중량부 내지 약 70 중량부, 약 40 중량부 내지 약 65 중량부, 약 40 중량부 내지 약 60 중량부, 약 40 중량부 내지 약 55 중량부, 약 40 중량부 내지 약 50 중량부, 또는 약 40 중량부 내지 약 45 중량부일 수 있으나, 이제 제한되는 것은 아니다.In one embodiment of the present disclosure, the amount of sulfuric acid added to the formate-containing solution may be about 40 parts by weight to about 75 parts by weight based on 100 parts by weight of the formate-containing solution, but is not limited thereto. . For example, the amount of sulfuric acid added to the formate-containing solution is about 40 parts by weight to about 75 parts by weight, about 45 parts by weight to about 75 parts by weight, about 100 parts by weight of the formate-containing solution. 50 parts by weight to about 75 parts by weight, about 55 parts by weight to about 75 parts by weight, about 60 parts to about 75 parts by weight, about 65 parts by weight to about 75 parts by weight, about 70 parts by weight to about 75 parts by weight, about 40 parts by weight to about 70 parts by weight, about 40 parts by weight to about 65 parts by weight, about 40 parts by weight to about 60 parts by weight, about 40 parts by weight to about 55 parts by weight, about 40 parts by weight to about 50 parts by weight, or About 40 parts by weight to about 45 parts by weight, but is not limited thereto.
이하, 본원에 대하여 실시예를 이용하여 좀더 구체적으로 설명하지만, 하기 실시예는 본원의 이해를 돕기 위하여 예시하는 것일 뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the following Examples are only provided to help understanding of the present application, and the contents of the present application are not limited to the following Examples.
[[ 실시예Example ]]
<이산화탄소의 전기화학적 환원 방법 및 장치를 이용한 고농도의 <High concentration of carbon dioxide using electrochemical reduction method and apparatus 포름산염Formate 제조> Manufacture
이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정을 나타낸 도 1 및 도 2를 참조하면, 우선 고농도의 포름산염 생산을 위해 플로우 셀(flow cell)(제 1 반응기)을 활용하여 이산화탄소를 전기화학적으로 전환하는 실험을 수행하였다. 작업전극으로서 각각 아말감이 코팅된 로드형 전극, 아말감이 코팅된 폼(foam)형 전극, 또는 아말감이 코팅된 판형 전극을 사용하였고, 상대전극으로는 IrOx가 코팅된 티타늄 메쉬 DSA 전극을 사용하였으며, 정전류를 걸어주고 양단 전압을 측정하였다. 환원전극부에 환원전극부 용액을 공급하였고 산화전극부에 산화전극부 용액을 공급하였으며 사용된 이산화탄소의 전환 시스템(제 1 반응기 시스템)의 형태는 도 3과 같다.Referring to FIGS. 1 and 2 showing the combined process of carbon dioxide reduction and formic acid and potassium sulfate production, first, electrochemical conversion of carbon dioxide using a flow cell (first reactor) for the production of high concentration of formate. The experiment was performed. Amalgam coated rod electrode, amalgam coated foam electrode, or amalgam coated plate electrode were used as working electrodes, and a titanium mesh DSA electrode coated with IrOx was used as a counter electrode. A constant current was applied and the voltage at both ends was measured. The cathode electrode solution was supplied to the cathode electrode portion, the anode electrode solution was supplied to the anode electrode portion, and the shape of the carbon dioxide conversion system (first reactor system) used is shown in FIG. 3.
일반적으로 장시간 전기분해시 산화전극부와 환원전극부의 pH가 지속적으로 변화하여 효율이 낮아지는 문제가 있었다. 상기한 문제점을 해결하기 위하여, 본 실시예에서는 산화전극부에 5 M 수산화칼륨(KOH) 용액을 지속적으로 첨가(도 4)하여 산화전극부 전해질의 pH를 일정하게 유지시켜주면, 환원전극부 또한 일정하게 pH가 유지되는 것을 확인할 수 있었다. 이때 황산칼륨을 전해질로 사용한 경우 이산화탄소의 전환 시스템 내 전해질의 이온균형 형태를 도 5에 나타냈다. 상기 황산칼륨 전해질을 사용하여 실험한 결과 80% 내지 90%의 효율을 나타내었다(도 6). 너무 낮은 농도의 K2SO4를 사용할 경우, 이온의 농도가 낮아 전도도가 상대적으로 낮아져 셀 전압이 증가하고 효율이 낮아지는 현상이 나타났을 뿐만 아니라, 용액의 K+ 이온 농도가 낮기 때문에 이온이 모두 소모될 경우 pH 와 전압이 급격하게 변하는 현상도 확인할 수 있었다.In general, there is a problem that the efficiency is lowered because the pH of the anode and the cathode portion is continuously changed during electrolysis for a long time. In order to solve the above problems, in this embodiment, 5 M potassium hydroxide (KOH) solution is continuously added to the anode portion (FIG. 4) to maintain a constant pH of the anode portion electrolyte. It was confirmed that the pH is constantly maintained. When potassium sulfate was used as the electrolyte, the ion balance form of the electrolyte in the carbon dioxide conversion system is shown in FIG. 5. Experiments using the potassium sulfate electrolyte showed an efficiency of 80% to 90% (Fig. 6). If you use a too low concentration of K 2 SO 4, because the concentration of ions decreases the conductivity increases, the cell voltage becomes lower relatively, as well as wake appeared phenomenon that efficiency is low, and a solution of K + ion concentration is low, ions are both It was also confirmed that the pH and voltage suddenly changed when consumed.
전기분해를 위해 일정 전위기(EG&G, 273A)와 정전류기(KS RnD, CO2_10A)를 사용하였다. 이 경우 작업전극은 폼형 전극(3 cm x 3 cm, 0.5 cm 두께)을 사용하였고, 전해질 부피는 100 mL 내지 1,000 mL의 다양한 범위를 사용하였으나, 주로 100 mL 내지 200 mL 범위를 사용하였다. 산화전극부의 전해질과 환원전극부의 전해질은 Nafion®117 멤브레인으로 분리하여 사용하였다. 환원전극부의 전해질에는 유리 프릿(glass-frit)을 이용하여 초고순도 이산화탄소(순도 99.99%)를 지속적으로 공급하였으며, 산화전극부의 전해질에는 초고순도 아르곤(순도 99.99%)을 지속적으로 공급하거나, 기체를 주입하지 않고 전기분해를 수행하였다. 용액을 순환시키기 위한 펌프는 다이아프램 펌프와 연동식 펌프(peristaltic pump)를 사용하였다. 생성물인 포름산염은 액체크로마토그래피로 정량 분석하였다.For electrolysis, constant potentiometers (EG & G, 273A) and constant current devices (KS RnD, CO 2 _ 10A) were used. In this case, a working electrode was used as a foam electrode (3 cm x 3 cm, 0.5 cm thick), and the electrolyte volume was used in a variety of 100 mL to 1,000 mL, but mainly 100 mL to 200 mL. The electrolyte of the anode portion and the electrolyte of the cathode portion were separated and separated by a Nafion ® 117 membrane. Ultra high purity carbon dioxide (purity 99.99%) was continuously supplied to the electrolyte of the cathode by using glass-frit, and ultra high purity argon (purity 99.99%) was supplied to the electrolyte of the anode, or gas was supplied. Electrolysis was performed without injection. The pump for circulating the solution used a diaphragm pump and a peristaltic pump. The product, formate, was quantitatively analyzed by liquid chromatography.
<고순도의 포름산 및 황산칼륨의 제조><Preparation of high purity formic acid and potassium sulfate>
상기 실시예 1에서 황산칼륨을 전해질로 사용하여 이산화탄소의 전기화학적 환원 반응에 의하여 수득한 고농도 포름산염(1.6 M)은 상기 황산칼륨(0.2 M) 용액에 용해되어 있기 때문에 농축에 의하여 상기 포름산염을 분리하였다. 상기 황산칼륨 용액에서 상기 포름산염의 용해도는 3,400 g/L이고, 상기 황산칼륨의 용해도는 120 g/L이며, 상기 실시예 1에서와 같이 고농도의 포름산염이 상기 황산칼륨 용액에 용해되어 있을 경우, 상기 황산칼륨의 용해도는 더욱 감소하므로, 농축에 의하여 상기 포름산염은 액체로 상기 황산칼륨은 고체로 각각 쉽게 분리할 수 있었다. 실제 공정에서는 다중효용증발기를 사용하도록 설계되었으나, 본 실시예에서는 실험실 수준에서 실험을 진행하기 위하여 상기 고농도 포름산염이 용해된 상기 황산칼륨 용액을 감압증발시켜 고체 포름산염을 수득할 수 있었다. 그 후, 상기 포름산염을 포름산에 녹인 후 황산을 당량비로 첨가하여 포름산 및 황산칼륨을 포함하는 혼합 용액을 제조하였다. 상기 포름산염과 황산의 반응식은 하기 반응식 1과 같이 나타낼 수 있다.Since the high concentration formate (1.6 M) obtained by electrochemical reduction of carbon dioxide using potassium sulfate as an electrolyte in Example 1 is dissolved in the potassium sulfate (0.2 M) solution, the formate is concentrated by concentration. Separated. In the potassium sulfate solution, the solubility of the formate is 3,400 g / L, the solubility of the potassium sulfate is 120 g / L, and when a high concentration of formate is dissolved in the potassium sulfate solution as in Example 1, Since the solubility of the potassium sulfate was further reduced, the formate could be easily separated into a liquid and the potassium sulfate could be separated into a solid by concentration. In the actual process, it was designed to use a multi-efficiency evaporator, but in this example, the solid formate was obtained by evaporating the potassium sulfate solution in which the high concentration of formate was dissolved in order to conduct experiments at the laboratory level. Thereafter, the formate was dissolved in formic acid, and sulfuric acid was added in an equivalent ratio to prepare a mixed solution containing formic acid and potassium sulfate. The reaction formula of the formate and sulfuric acid can be represented as in Scheme 1 below.
<반응식 1><Scheme 1>
2HCOOK + H2SO4 2HCOOH + K2SO4 2HCOOK + H 2 SO 4 2HCOOH + K 2 SO 4
상기 산처리 실험을 위하여 Metrohm 사의 888 시리즈 적정(titration)을 사용하였으며, 상기 황산은 삼전화학의 순도 95% 용액을 사용하였다. 도 8은 포름산을 용매로 하여 상기 용매에 포름산염을 녹여 상기 황산과 산성화 반응을 진행한 결과를 나타낸 그래프이다. 상기 도 8의 그래프에서 나타난 바와 같이 상기 반응이 안정적으로 진행되었음을 확인할 수 있었다. 상기 반응을 통하여 수득한 상기 포름산 및 황산칼륨을 포함하는 혼합 용액을 증류시켜 상기 황산칼륨은 고체로, 상기 포름산은 액체로 각각 분리할 수 있었다. 상기 수득한 포름산은 98%, 상기 황산칼륨은 97%의 순도로서 각각 수득할 수 있었고, 상기 포름산의 순도를 확인하기 위하여 한국화학융합시험연구원에 의뢰한 결과 하기 표 1과 같은 결과(순도: 98.2%)를 얻을 수 있었다. 또한, 상기 황산칼륨의 순도를 한국화학연구원 화학분석센터에 의뢰하여 하기 표 2와 같은 결과를 얻을 수 있었다. 하기 표 2의 분석은 Metrohm Ion Chromatograph C를 이용하여 수행하였으며, 100% K2SO4 중 SO4 2- 이론적 함량 55.17%를 기준으로 환산하면 하기 분석시료 1은 97.92% SO4 2-를 포함하고, 하기 분석시료 2는 97.86% SO4 2-를 포함함을 확인할 수 있었다.For the acid treatment experiment, Metrohm's 888 series titration was used, and sulfuric acid was used as a 95% purity solution of trielectric chemistry. 8 is a graph showing the results of the acidification reaction with sulfuric acid by dissolving formate in the solvent using formic acid as a solvent. As shown in the graph of FIG. 8, it was confirmed that the reaction proceeded stably. The mixed solution including the formic acid and potassium sulfate obtained through the reaction was distilled to separate the potassium sulfate as a solid and the formic acid as a liquid. The obtained formic acid was 98%, the potassium sulfate was obtained as a purity of 97%, respectively, the result requested by the Korea Institute of Chemical Convergence Testing in order to confirm the purity of the formic acid (purity: 98.2 %) Could be obtained. In addition, the purity of the potassium sulfate was requested by the Korea Chemical Research Institute Chemical Analysis Center to obtain the results shown in Table 2. The analysis of Table 2 was performed using Metrohm Ion Chromatograph C, and the analytical sample 1 contained 97.92% SO 4 2- in terms of SO 4 2- theoretical content of 55.17% in 100% K 2 SO 4 . , Sample 2 was confirmed to contain 97.86% SO 4 2- .
시험항목Test Items 단위unit 시료구분Sample classification 결과치Result 시험방법Test Methods
HCOOHHCOOH %% -- 98.298.2 KS M 8260 : 2015KS M 8260: 2015
분석항목/시료명Analysis item / sample name HCOO- 함량(%, w/w)HCOO - Content (%, w / w) SO4 2- 함량(%, w/w)SO 4 2- content (%, w / w)
K2SO4 Sample 1-1K 2 SO 4 Sample 1-1 -- 52.4152.41
K2SO4 Sample 1-2K 2 SO 4 Sample 1-2 -- 52.1752.17
K2SO4 Sample 1-3K 2 SO 4 Sample 1-3 -- 57.4957.49
K2SO4 Sample 1 평균K 2 SO 4 Sample 1 Average -- 54.0254.02
K2SO4 Sample 2-1K 2 SO 4 Sample 2-1 3.973.97 58.358.3
K2SO4 Sample 2-2K 2 SO 4 Sample 2-2 2.852.85 54.2454.24
K2SO4 Sample 2-3K 2 SO 4 Sample 2-3 3.143.14 49.4249.42
K2SO4 Sample 2 평균K 2 SO 4 Sample 2 Average 3.323.32 53.9953.99
<전극을 이용한 전류 밀도의 증가>Increasing Current Density Using Electrodes
수은 45%, 주석 24%, 은 17%, 및 구리 14%를 포함하는 로드형 아말감 전극을 사용하여 10 mA·cm-2의 전류 밀도로 전기분해한 결과, 약 -1.9 V (vs. Ag/AgCl)로 전압을 유지하며 10 시간 이상 70% 이상의 효율을 나타내는 것을 확인하였다. 이로써 아말감 전극으로도 안정적으로 전기분해가 가능함을 확인하였고, 아말감이 코팅된 폼형 전극을 활용하여 약 -1.9 V의 정전압으로 전기분해한 결과 10 시간 이상 약 80%의 효율을 나타내는 것을 확인하였고, 상기 아말감이 코팅된 폼형 전극의 경우, 30 mA·cm-2의 전류 밀도로 전기분해가 진행되어 로드형일 때 보다 더 높은 전류 밀도로 전기분해가 가능한 것을 확인할 수 있었다.Electrolysis at a current density of 10 mAcm -2 using a rod-shaped amalgam electrode comprising 45% mercury, 24% tin, 17% silver, and 14% copper resulted in about -1.9 V (vs. Ag / AgCl) was maintained at a voltage of 70% or more for 10 hours or more. As a result, it was confirmed that the electrolysis is stably possible with the amalgam electrode, and the electrolysis was performed at a constant voltage of about -1.9 V using an amalgam coated foam electrode, indicating that the efficiency was about 80% over 10 hours. In the case of amalgam-coated foam electrodes, electrolysis proceeded at a current density of 30 mA · cm −2 , and it was confirmed that electrolysis was possible at a higher current density than that of the rod type.
전류 밀도를 증가시키기 위한 방법으로 동일한 겉보기 면적을 가지는 아말감이 코팅된 폼형 전극의 두께를 증가시킴으로써 전류 밀도를 증가시킬 수 있는지 확인해보았다. 실험결과 5 mm 두께의 폼형 기재 전극에 코팅된 아말감 전극의 경우는 전류 밀도가 100 mA·cm-2 이상일 때, 10 mm 두께의 폼형 기재 전극에 코팅된 아말감 전극의 경우는 150 mA·cm-2 이상일 때, 및 20 mm 두께의 폼형 기재 전극에 코팅된 아말감 전극의 경우는 200 mA·cm-2 이상일 때 전류효율이 감소하는 것을 확인할 수 있었다. 이렇게 효율이 급격히 감소하기 전까지의 전류 밀도를 ‘한계 전류 밀도’라고 정하였다. 상기 실험결과, 전극 두께를 증가시켜 전류 밀도를 증가시키는 것이 가능하다는 것을 확인할 수 있었으나, 두께 대비 전류 밀도가 선형적으로 증가하지 않고 증가량이 점차 감소하는 경향이 관찰되었다. 이로써 단순히 두께를 증가시키는 것만으로는 전류 밀도를 증가시키는데 한계가 존재한다는 것을 확인할 수 있었다.As a method for increasing the current density, it was confirmed whether the current density can be increased by increasing the thickness of the amalgam-coated foam electrode having the same apparent area. As a result, the amalgam electrode coated on the 5 mm thick foam base electrode has a current density of 100 mAcm -2 or higher, and the amalgam electrode coated on the 10 mm thick foam base electrode 150 mA cm -2. As described above, and in the case of the amalgam electrode coated on the 20 mm-thick foam-type base electrode, the current efficiency was decreased when 200 mA · cm −2 or more. The current density until such a rapid decrease in efficiency was defined as the 'limiting current density'. As a result of the experiment, it was confirmed that it is possible to increase the current density by increasing the electrode thickness, but it was observed that the increase amount gradually decreased without linearly increasing the current density. This confirms that there is a limit to increasing the current density by simply increasing the thickness.
전류 밀도를 증가시키기 위한 다른 방법으로서 동일한 두께와 겉보기 면적을 가지는 아말감이 코팅된 폼형 전극의 기공도를 높여 실제 표면적을 증가시킴으로써 전류 밀도가 증가하는지를 확인하였다. 실험 결과 기존에 사용하던 20 ppi(pores per inch) 전극의 경우 전류 밀도가 100 mA·cm-2 이상 증가할 때, 효율이 감소하는 현상이 나타난 반면, 30 ppi 전극의 경우는 350 mA·cm-2 이상으로 증가할 때, 효율이 감소하는 것을 확인할 수 있었다. 이로 인해, 다공도 증가에 따라 표면이 조밀해져 동일한 겉보기 면적에서 실제 표면적을 증가시키면 전극의 한계전류 밀도를 증가시킬 수 있다는 것을 확인할 수 있었다.As another method to increase the current density, it was confirmed that the current density was increased by increasing the porosity of the amalgam-coated foam electrode having the same thickness and apparent area to increase the actual surface area. Experimental results For the electrode 20 ppi (pores per inch) previously used to increase the current density more than 100 mA · cm -2, while a phenomenon of decreasing the efficiency appeared, and 30 ppi for electrode is 350 mA · cm - When increased to 2 or more, it was confirmed that the efficiency decreased. For this reason, it was confirmed that as the porosity increases, the surface becomes dense and the limit current density of the electrode can be increased by increasing the actual surface area in the same apparent area.
<고농도의 <High concentration 포름산염Formate 수득> Get>
본 실시예에서 제시된 실험 방법 및 장치를 활용하여 이산화탄소의 전기화학적 환원 반응을 진행하였다. 더불어, 산화전극부에 수산화칼륨(KOH)을 지속적으로 첨가하는 것에 의한 산화전극부의 pH 유지 효과 및 환원전극부에서의 고농도 포름산염 생성 등에 대해서 확인하였다.Electrochemical reduction of carbon dioxide was carried out using the experimental method and apparatus presented in this example. In addition, the effect of maintaining the pH of the anode portion and the formation of high concentration of formate in the cathode portion by continuously adding potassium hydroxide (KOH) to the anode portion was confirmed.
실험 결과, 동일한 조건에서 산화전극부에 KOH를 지속적으로 첨가하지 않은 경우 5 시간 이후 전압과 pH가 급격히 변하며 환원전극부에서 포름산염으로의 전환효율이 낮아져 8 시간 후 40% 대로 감소된 반면, 산화전극부에 KOH를 지속적으로 넣어준 경우에는 10 시간 이상 전기분해를 진행해도 전압과 pH가 일정하게 유지되었고, 환원전극부에서의 포름산염으로의 전환효율도 떨어지지 않고 안정되게 유지되었다.As a result, when KOH was not continuously added to the anode under the same conditions, the voltage and pH changed drastically after 5 hours and the conversion efficiency from the cathode to the formate decreased to 40% after 8 hours. In the case where KOH was continuously added to the electrode, the voltage and pH were kept constant even after the electrolysis over 10 hours, and the conversion efficiency to the formate in the reduction electrode was also maintained without falling.
도 7은 본 실시예에 있어서, 산화전극부에 KOH를 지속적으로 첨가하여 장기간 전기분해하여 수득한 그래프이다. 산화전극부에 KOH를 지속적으로 공급하며 34시간 이상 전기분해한 경우, pH 및 포텐셜이 안정하게 유지되며 환원전극부에서 80% 이상의 전류효율로 1 M 이상의 포름산염이 생성됨을 확인할 수 있었다. 더 장기간 전기분해를 진행할 경우, 상기 포름산염이 2 M 정도까지도 전류효율이 80% 이상으로 유지됨을 확인할 수 있었다.FIG. 7 is a graph obtained by prolonged electrolysis by continuously adding KOH to an anode part in the present embodiment. When KOH was continuously supplied to the anode for 34 hours and then electrolyzed for more than 34 hours, the pH and potential remained stable, and it was confirmed that more than 1 M of formate was produced with a current efficiency of 80% or more at the cathode. When the electrolysis was performed for a longer period, it was confirmed that the current efficiency was maintained at 80% or more even for about 2 M of the formate.
<기존 포름산 제조 공정과 본원의 신규 복합 공정의 소모 에너지 비교><Comparison of energy consumption between the existing formic acid production process and the new complex process of the present application>
기존의 포름산 제조 공정과 본원의 신규 복합 공정의 소모 에너지 비교(도 9)를 위해 기존 포름산 제조 공정과 본 실시예에 따른 에너지절감량을 환산하기 위해 각 단위공정에 따른 에너지사용량을 추정하였다. 기존 공정의 경우 공정에 사용되는 에너지량을 스위스 EcoInvent LCI DB를 이용하여 산출하였고(http://www.ecoinvent.org), 포름산 메틸을 제조하기 위한 일산화탄소는 크루드 오일(crude oil)에서 발생된 중유(heavy oil)로부터 생산되는 것을 기준으로 계산하여 산출하였으며(Ecoinvent), MF 가수분해 시 발생되는 메탄올은 전량 리사이클(recycle)을 통해 100% 재사용되는 것으로 가정하여 산출하였다. 본 실시예에서는 각 단계별 부가가치가 있는 부산물 생성은 무시하고 전기화학공정, 농축, 산성화, 및 정제공정에 사용되는 모든 에너지를 검토하였고, 산출근거는 실험실의 시험 결과와 아스펜 플러스 시뮬레이션(Aspen Plus Simulation)을 통해 산출하였다. 상기 산출 결과 기존공정은 13.1 MWh/ton FA, 본 실시예는 11.9 Mwh/ton로서 약 1.2 MWh/ton(약 10%)의 에너지절감 효과를 확인할 수 있었다.In order to compare the energy consumption between the conventional formic acid production process and the new complex process of the present application (FIG. 9), energy consumption according to each unit process was estimated to convert the energy reduction amount according to the existing formic acid production process and the present embodiment. In the case of the existing process, the amount of energy used in the process was calculated using the Swiss EcoInvent LCI DB (http://www.ecoinvent.org), and the carbon monoxide to prepare methyl formate was generated from crude oil. It was calculated based on the production from heavy oil (Ecoinvent), and the methanol generated during MF hydrolysis was calculated assuming 100% reuse through total recycling. In this example, all energy used in the electrochemical process, concentration, acidification, and refining process was ignored, ignoring the generation of value-added by-products at each stage, and the basis for the calculation was based on laboratory test results and Aspen Plus Simulation. Calculated by As a result of the calculation, the existing process was 13.1 MWh / ton FA, and the present example was 11.9 Mwh / ton, and the energy saving effect of about 1.2 MWh / ton (about 10%) was confirmed.
<기존 황산칼륨 제조 공정과 본원의 신규 복합 공정의 공정 조건 비교><Comparison of the process conditions of the existing potassium sulfate manufacturing process and the new complex process of the present application>
기존의 황산칼륨 제조 공정과 본원의 신규 복합 공정의 소모 에너지 비교(도 10)를 위해 기존 황산칼륨 제조 공정과 개발공정에 따른 에너지절감량을 환산하기 위해 각 단위공정에 따른 에너지사용량을 추정하였다. 기존 공정의 경우 고온(Mannheim furnace: 550℃)에서 반응을 진행하지만, 본 실시예의 경우 상온·상압에서 반응을 진행하기 때문에 경제성 및 안정성 측면에서 기존 공정에 비해 월등히 우월하다 볼 수 있었다. 또한, 본 실시예에서는 전기화학적 전환을 통해 포름산염이 생성되고 상기 포름산염의 황산화 처리를 통해 포름산 및 황산칼륨을 제조하며, 감압증발을 통해 포름산을 고순도로 생산함과 동시에 황산칼륨 역시 고체 부산물로서 생산되어 황산칼륨을 생산하기 위한 별도의 비용을 요하지 않았다.In order to compare the energy consumption of the existing potassium sulfate manufacturing process and the new complex process of the present application (FIG. 10), the energy consumption of each unit process was estimated to convert the energy saving amount according to the existing potassium sulfate manufacturing process and the development process. In the case of the existing process, the reaction proceeds at a high temperature (Mannheim furnace: 550 ° C.), but in the present embodiment, since the reaction proceeds at room temperature and atmospheric pressure, it was found to be superior to the existing process in terms of economy and stability. In addition, in the present embodiment, formic acid is produced through electrochemical conversion, and formic acid and potassium sulfate are prepared by sulfation of the formate, and formic acid is produced in high purity through evaporation under reduced pressure. Produced and did not cost extra to produce potassium sulfate.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present application is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the following claims rather than the above description, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present application.
[부호의 설명][Description of the code]
100: 제 1 반응기100: first reactor
150: 제 1 챔버150: first chamber
160: 환원전극부 주입라인160: cathode injection line
170: 환원전극부 수거라인170: collecting electrode line
200: 제 2 챔버200: second chamber
210: 산화전극부 주입라인210: anode line injection line
220: 산화전극부 수거라인220: anode line collection line
250: 농축기 주입라인250: thickener injection line
300: 농축기300: thickener
310: 제 1 황산칼륨 수거라인310: first potassium sulfate collection line
320: 제 2 반응기 주입라인320: second reactor injection line
350: 제 2 반응기350: second reactor
400: 제 3 챔버400: third chamber
410: 황산 주입라인410 sulfuric acid injection line
420: 분리기 주입라인420: separator injection line
450: 분리기450: separator
460: 제 2 황산칼륨 수거라인460: second potassium sulfate collection line
470: 포름산 수거라인470: formic acid collection line

Claims (14)

  1. 황산칼륨을 포함하는 전해액 중에서 이산화탄소의 전기화학적 환원에 의하여 포름산염을 제조하는 제 1 반응기;A first reactor for preparing formate by electrochemical reduction of carbon dioxide in an electrolyte solution containing potassium sulfate;
    상기 제 1 반응기와 연결되며, 상기 제 1 반응기에서 제조된 상기 포름산염 및 황산칼륨을 포함하는 전해액을 포름산염 및 황산칼륨을 함유하는 고체로 농축하는 농축기;A concentrator connected to the first reactor and concentrating an electrolyte solution containing the formate and potassium sulfate prepared in the first reactor to a solid containing formate and potassium sulfate;
    상기 농축기와 연결되며, 상기 농축기에서 수득된 상기 포름산염 및 황산칼륨을 함유하는 고체에 황산을 첨가하여 포름산과 황산칼륨 고체를 함유하는 용액을 제조하는 제 2 반응기; 및A second reactor connected to the concentrator, for adding sulfuric acid to the solid containing formate and potassium sulfate obtained in the concentrator to prepare a solution containing formic acid and potassium sulfate solids; And
    상기 제 2 반응기와 연결되며, 상기 제 2 반응기에서 제조된 상기 포름산과 황산칼륨 고체를 함유하는 용액을 포름산-함유 용액 및 황산칼륨 고체로 각각 분리하는 분리기A separator connected to the second reactor and separating the solution containing the formic acid and the potassium sulfate solid prepared in the second reactor into a formic acid-containing solution and potassium sulfate solid, respectively
    를 포함하는, 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정용 장치.Comprising a device for a complex process of carbon dioxide reduction and formic acid and potassium sulfate production.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 포름산 및 상기 황산칼륨 각각의 순도는 85% 이상의 고순도인, 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정용 장치.Wherein the purity of each of the formic acid and the potassium sulfate is at least 85% high purity, a combined process for producing carbon dioxide reduction and formic acid and potassium sulfate.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 포름산염의 농도는 5% 이상인, 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정용 장치.The concentration of the formate is at least 5%, the composite process apparatus of carbon dioxide reduction and formic acid and potassium sulfate production.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 반응기는 황산칼륨 용액을 포함하는 전해액, 산화전극부와 환원전극부를 포함하는 이산화탄소의 전기화학적 환원 반응기로서,The first reactor is an electrochemical reduction reactor of carbon dioxide including an electrolyte solution containing a potassium sulfate solution, an anode portion and a cathode portion,
    상기 환원전극부에 이산화탄소를 공급하고, 상기 산화전극부에 금속 수산화물을 지속적으로 공급하고, 상기 환원전극부와 상기 산화전극부에 전압 또는 전류를 인가하여 상기 이산화탄소를 환원시켜 포름산염이 지속적으로 수득되는 것인,Supplying carbon dioxide to the cathode, continuously supplying a metal hydroxide to the anode, and applying a voltage or current to the cathode and the anode to reduce the carbon dioxide to continuously obtain formate Become,
    이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정용 장치.Combined process equipment for carbon dioxide reduction and formic acid and potassium sulfate production.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 금속 수산화물은 KOH, NaOH, LiOH, 및 이들의 조합들로 이루어진 군에서 선택되는 수산화물을 포함하는 것인, 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정용 장치.Wherein the metal hydroxide comprises a hydroxide selected from the group consisting of KOH, NaOH, LiOH, and combinations thereof, the apparatus for a complex process of carbon dioxide reduction and formic acid and potassium sulfate production.
  6. 제 4 항에 있어서,The method of claim 4, wherein
    상기 환원전극부는 기재 전극의 표면에 Hg과, Ag, In, Sn, Pb, Cu, 및 이들의 조합들로 이루어진 군으로부터 선택된 금속을 포함하는 혼합물, 복합체, 또는 합금이 형성된 것을 포함하는 아말감 전극을 포함하는 것인, 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정용 장치.The cathode portion comprises an amalgam electrode comprising a mixture, a composite, or an alloy including Hg and a metal selected from the group consisting of Ag, In, Sn, Pb, Cu, and combinations thereof formed on the surface of the base electrode. Comprising, the apparatus for a composite process of carbon dioxide reduction and formic acid and potassium sulfate production.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 기재 전극은 다공성 기재, 판형 기재, 로드형 기재, 또는 폼(foam)형 기재를 포함하는 것인, 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정용 장치.Wherein the substrate electrode comprises a porous substrate, plate-like substrate, rod-shaped substrate, or foam (foam) substrate, the apparatus for a composite process of carbon dioxide reduction and formic acid and potassium sulfate production.
  8. 제 1 반응기에서 황산칼륨을 포함하는 전해액 중에서 이산화탄소의 전기화학적 환원에 의하여 포름산염을 수득하고, Formate is obtained by electrochemical reduction of carbon dioxide in an electrolyte solution containing potassium sulfate in a first reactor,
    상기 제 1 반응기로부터 수득된 상기 포름산염 및 상기 황산칼륨을 포함하는 전해액을 농축기로 전달하여 농축시켜 포름산염 및 황산칼륨을 함유하는 고체로 농축하고, An electrolytic solution containing the formate and potassium sulfate obtained from the first reactor is transferred to a concentrator and concentrated to a solid containing formate and potassium sulfate,
    상기 농축기에서 수득된 상기 포름산염 및 황산칼륨을 함유하는 고체를 제 2 반응기 내로 전달하여 황산을 첨가하여 포름산 및 황산칼륨 고체를 포함하는 용액을 수득하며, 및Transferring the solid containing formate and potassium sulfate obtained in the concentrator into a second reactor to add sulfuric acid to obtain a solution comprising formic acid and potassium sulfate solids, and
    상기 제 2 반응기에서 수득된 상기 포름산 및 황산칼륨 고체를 포함하는 용액을 분리기로 전달하여 포름산-함유 용액 및 황산칼륨 고체로 각각 분리하는 것Separating the solution comprising the formic acid and potassium sulfate solids obtained in the second reactor into a separator and separating the formic acid-containing solution and the potassium sulfate solid, respectively.
    을 포함하는, 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정.Comprising a composite process of carbon dioxide reduction and formic acid and potassium sulfate production.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 포름산 및 상기 황산칼륨 각각의 순도는 서로 독립적으로 85% 이상의 고순도인, 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정.Wherein the purity of each of the formic acid and the potassium sulfate is independently of each other high purity of 85% or more, the combined process of carbon dioxide reduction and formic acid and potassium sulfate production.
  10. 제 8 항에 있어서,The method of claim 8,
    상기 포름산염의 농도는 5% 이상인, 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정.The concentration of the formate is 5% or more, a complex process of carbon dioxide reduction and formic acid and potassium sulfate production.
  11. 제 8 항에 있어서,The method of claim 8,
    상기 제 1 반응기는 황산칼륨 용액을 포함하는 전해액, 산화전극부와 환원전극부를 포함하는 이산화탄소의 전기화학적 환원 반응기로서,The first reactor is an electrochemical reduction reactor of carbon dioxide including an electrolyte solution containing a potassium sulfate solution, an anode portion and a cathode portion,
    상기 환원전극부에 이산화탄소를 공급하고, 상기 산화전극부에 금속 수산화물을 지속적으로 공급하고, 상기 환원전극부와 상기 산화전극부에 전압 또는 전류를 인가하여 상기 이산화탄소를 환원시켜 포름산염이 지속적으로 수득되는 것인,Supplying carbon dioxide to the cathode, continuously supplying a metal hydroxide to the anode, and applying a voltage or current to the cathode and the anode to reduce the carbon dioxide to continuously obtain formate Become,
    이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정.Combined process of carbon dioxide reduction and formic acid and potassium sulfate production.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 금속 수산화물은 KOH, NaOH, LiOH, 및 이들의 조합들로 이루어진 군에서 선택되는 수산화물을 포함하는 것인, 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정.Wherein the metal hydroxide comprises a hydroxide selected from the group consisting of KOH, NaOH, LiOH, and combinations thereof, a composite process of carbon dioxide reduction and formic acid and potassium sulfate production.
  13. 제 11 항에 있어서,The method of claim 11,
    상기 환원전극부는 기재 전극의 표면에 Hg과, Ag, In, Sn, Pb, Cu, 및 이들의 조합들로 이루어진 군으로부터 선택된 금속을 포함하는 혼합물, 복합체, 또는 합금이 형성된 것을 포함하는 아말감 전극을 포함하는 것인, 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정.The cathode portion comprises an amalgam electrode comprising a mixture, a composite, or an alloy including Hg and a metal selected from the group consisting of Ag, In, Sn, Pb, Cu, and combinations thereof formed on the surface of the base electrode. That is, a composite process of carbon dioxide reduction and formic acid and potassium sulfate production.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 기재 전극은 다공성 기재, 판형 기재, 로드형 기재, 또는 폼(foam)형 기재를 포함하는 것인, 이산화탄소 환원과 포름산 및 황산칼륨 제조의 복합 공정.Wherein the base electrode comprises a porous substrate, plate-like substrate, rod-shaped substrate, or foam (foam) substrate, carbon dioxide reduction and formic acid and potassium sulfate composite process.
PCT/KR2017/010997 2016-09-30 2017-09-29 Complex process for reducing carbon dioxide and producing formic acid and potassium sulfate, and apparatus for said complex process WO2018062952A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160126172 2016-09-30
KR10-2016-0126172 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018062952A1 true WO2018062952A1 (en) 2018-04-05

Family

ID=61762901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010997 WO2018062952A1 (en) 2016-09-30 2017-09-29 Complex process for reducing carbon dioxide and producing formic acid and potassium sulfate, and apparatus for said complex process

Country Status (2)

Country Link
KR (1) KR102054248B1 (en)
WO (1) WO2018062952A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210045554A (en) 2019-10-16 2021-04-27 삼성디스플레이 주식회사 Display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120228147A1 (en) * 2011-03-09 2012-09-13 Liquid Light, Inc. System and process for making formic acid
KR20130112037A (en) * 2010-09-24 2013-10-11 데트 노르스키 베리타스 에이에스 Method and apparatus for the electrochemical reduction of carbon dioxide
KR20150055033A (en) * 2012-09-14 2015-05-20 리퀴드 라이트 인코포레이티드 Process and high surface area electrodes for the electrochemical reduction of carbon dioxide
US20160068974A1 (en) * 2005-10-13 2016-03-10 Mantra Energy Alternatives Ltd. Continuous co-current electrochemical reduction of carbon dioxide
KR20160097177A (en) * 2016-08-03 2016-08-17 서강대학교산학협력단 Electrochemical reduction method of carbon dioxide and apparatus therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101372532B1 (en) * 2013-02-28 2014-03-17 서강대학교산학협력단 Electrochemical reduction method of carbon dioxide using solution containing potassium sulfate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160068974A1 (en) * 2005-10-13 2016-03-10 Mantra Energy Alternatives Ltd. Continuous co-current electrochemical reduction of carbon dioxide
KR20130112037A (en) * 2010-09-24 2013-10-11 데트 노르스키 베리타스 에이에스 Method and apparatus for the electrochemical reduction of carbon dioxide
US20120228147A1 (en) * 2011-03-09 2012-09-13 Liquid Light, Inc. System and process for making formic acid
KR20150055033A (en) * 2012-09-14 2015-05-20 리퀴드 라이트 인코포레이티드 Process and high surface area electrodes for the electrochemical reduction of carbon dioxide
KR20160097177A (en) * 2016-08-03 2016-08-17 서강대학교산학협력단 Electrochemical reduction method of carbon dioxide and apparatus therefor

Also Published As

Publication number Publication date
KR20180036616A (en) 2018-04-09
KR102054248B1 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
CN1131896C (en) Method for electrochemically processing HCI gas into highly pure chlorine
CN105887128B (en) A kind of method of penta chloropyridine electro-catalysis selective hydration dechlorination
CA2077574A1 (en) Electrochemical process
CN101457368B (en) Technical method for synthesizing 4-fluoroaniline by electrochemistry method
CN112760672B (en) Method for electrochemically preparing trifluoromethyl sulfonyl fluoride from methyl sulfonyl chloride
WO2018062952A1 (en) Complex process for reducing carbon dioxide and producing formic acid and potassium sulfate, and apparatus for said complex process
JPS5579884A (en) Preparation of glyoxylic acid
WO2017171114A1 (en) Electrolysis system and electrolysis method using same
CN104947155B (en) Process for recovering copper from waste circuit board to prepare high purity and high strength copper foil based on electrochemical method
CN105696017B (en) A kind of new technique method of iron reduction nitrobenzene
DE59913824D1 (en) Process and cell for the electrochemical production of alkali metal from alkali metal amalgam
CN105063654A (en) Method for preparing methanesulfonic acid and sodium hydroxide by utilizing sodium methanesulfonate
CN105862072B (en) A kind of new technique method of zinc reduction nitrobenzene
DE59101326D1 (en) Process for the production of finely divided, electrically conductive tin IV oxide.
Lisitsyn et al. Electrochemical amination of anisole in 4–6 M solutions of H 2 SO 4 and acetonitrile
JP2015529745A (en) Method for producing alkali metal
CN1341779A (en) Method for preparing hypophosphorous acid by using electrolytic method
JPS60243293A (en) Manufacture of m-hydroxybenzyl alcohol
AU2175602A (en) Process for improving the purity of quaternary ammonium hydroxides by electrolysis
WO2020104956A1 (en) Electrochemical organic reaction setup and methods
CA1289509C (en) Energy-saving type zinc electrolysis method
CN105887127B (en) A kind of method that electrochemistry selectivity dechlorination prepares chloromethyl pyridine derivative
Johnson et al. Electrochemical membrane separation of chlorine from gaseous hydrogen chloride waste
CN102899678A (en) Preparation process for silver potassium cyanide based on diaphragm electrolysis
CN108796547B (en) Electrochemical regeneration method of chloranil by taking halogen ions as electrocatalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856838

Country of ref document: EP

Kind code of ref document: A1