EP2895642B1 - Procédé utilisant des électrodes à surface élevée pour la réduction électrochimique de dioxyde de carbone - Google Patents

Procédé utilisant des électrodes à surface élevée pour la réduction électrochimique de dioxyde de carbone Download PDF

Info

Publication number
EP2895642B1
EP2895642B1 EP13837298.2A EP13837298A EP2895642B1 EP 2895642 B1 EP2895642 B1 EP 2895642B1 EP 13837298 A EP13837298 A EP 13837298A EP 2895642 B1 EP2895642 B1 EP 2895642B1
Authority
EP
European Patent Office
Prior art keywords
catholyte
alkali metal
cathode
compartment
formate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13837298.2A
Other languages
German (de)
English (en)
Other versions
EP2895642A2 (fr
EP2895642A4 (fr
Inventor
Jerry J. Kaczur
Theodore J. KRAMER
Kunttal Keyshar
Paul Majsztrik
Zbigniew Twardowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avantium Knowledge Centre BV
Original Assignee
Avantium Knowledge Centre BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/724,885 external-priority patent/US8858777B2/en
Application filed by Avantium Knowledge Centre BV filed Critical Avantium Knowledge Centre BV
Publication of EP2895642A2 publication Critical patent/EP2895642A2/fr
Publication of EP2895642A4 publication Critical patent/EP2895642A4/fr
Application granted granted Critical
Publication of EP2895642B1 publication Critical patent/EP2895642B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the present disclosure generally relates to the field of electrochemical reactions, and more particularly to methods for electrochemical reduction of carbon dioxide using high surface area electrodes.
  • a mechanism for mitigating emissions is to convert carbon dioxide into economically valuable materials such as fuels and industrial chemicals. If the carbon dioxide is converted using energy from renewable sources, both mitigation of carbon dioxide emissions and conversion of renewable energy into a chemical form that can be stored for later use may be possible.
  • WO2007/041872 A1 describes a continuous co-current electrochemical reduction of carbon dioxide.
  • US 5,290,404 describes an electro-synthesis of alcohols and carboxylic acids from corresponding metal salts.
  • US4,589,963 describes a process for the conversion of salts of carboxylic acid to their corresponding free acids.
  • the present invention is directed to a method for electrochemical reduction of carbon dioxide into products, comprising:
  • an electrochemical system that converts carbon dioxide to organic products including formate and formic acid.
  • a cathode comprising a high surface area three dimensional material, an acidic anolyte, and a catholyte comprising bicarbonate facilitates the process.
  • the electrolyzer system 100 may be utilized for the electrochemical reduction of carbon dioxide to organic products or organic product intermediates.
  • the electrolyzer system 100 reduces carbon dioxide to an alkali metal formate, such as potassium formate.
  • the electrolyzer system 100 generally includes an electrolyzer 102, an anolyte recycle loop 104, and a catholyte recycle loop 106.
  • the electrolyzer system 100 may include as process feeds/inputs carbon dioxide, a catholyte comprising bicarbonate (preferably potassium bicarbonate, but other bicarbonate-based compounds are contemplated instead of or in addition to potassium bicarbonate), and an acidic anolyte (preferably sulfuric acid, but may include other acids, instead of, or in addition to sulfuric acid).
  • a catholyte comprising bicarbonate (preferably potassium bicarbonate, but other bicarbonate-based compounds are contemplated instead of or in addition to potassium bicarbonate)
  • an acidic anolyte preferably sulfuric acid, but may include other acids, instead of, or in addition to sulfuric acid.
  • the product of the electrolyzer system 100 is generally an alkali metal formate, such as potassium formate, and may include excess catholyte, carbon dioxide, hydrogen, oxygen, and/or other unreacted process inputs.
  • the electrolyzer 102 generally includes an anode compartment 108 and a cathode compartment 110, and may further include a cation exchange membrane 112 to separate the anode compartment 108 from the cathode compartment 110.
  • the anode compartment 108 includes an anode 114 suitable to oxidize water.
  • the anode 114 is a titanium anode having an anode electrocatalyst coating which faces the cation exchange membrane 112.
  • the anode 114 may include an anode mesh screen 116 that includes a folded expanded titanium screen with an anode electrocatalyst coating.
  • the anode mesh screen 116 may provide spacing and contact pressure between the anode 114 and the cation exchange membrane 112.
  • the anode 114 may also include one or more electrical current connection posts (not shown) on a backside of the anode 114.
  • the cathode compartment 110 generally includes a cathode 118 mounted within the cathode compartment 110.
  • the cathode 118 preferably includes a metal electrode with an active electrocatalyst layer on a front surface of the cathode 118 facing the cation exchange membrane 112, and may include one or more electrical current conduction posts (not shown) on a backside of the cathode 118.
  • the cathode 118 includes a high surface area cathode structure 120.
  • the high surface area cathode structure 120 may be mounted between the cation exchange membrane 112 and the cathode 118 for conducting electrical current into the high surface area cathode structure 120.
  • the interface between the high surface area cathode structure 120 and the cation exchange membrane 112 may include an insulator screen (not shown), such as a thin expanded plastic mesh insulator screen to minimize direct contact between the high surface area cathode structure 120 and the cation exchange membrane 112.
  • an insulator screen such as a thin expanded plastic mesh insulator screen to minimize direct contact between the high surface area cathode structure 120 and the cation exchange membrane 112.
  • the anode compartment 108 generally includes an anode feed stream 122 that includes a dilute acid anolyte solution.
  • the anode feed stream 122 may enter a bottom of the anode compartment 108 to flow by a face of the anode 114 and through the anode mesh screen 116.
  • the reaction in the anode compartment 108 may include deriving oxygen (O 2 , i.e., gaseous oxygen) and hydrogen ions (H + ) or protons from the oxidation of water at an applied current and voltage potential.
  • the hydrogen ions or protons are generally available for the reactions within the cathode compartment 110 via the cation exchange membrane 112.
  • the gaseous oxygen and other liquids leaving the anode compartment 108 of the electrolyzer 102 leave as anode exit stream 124.
  • the anode exit stream 124 may be monitored by a temperature sensor 126a and may flow to an anolyte disengager 128 suitable for separating the oxygen from the anode exit stream 124.
  • the anolyte disengager 128 may process the anode exit stream 124 into an oxygen stream 130, an anolyte recycle stream 132, and an anolyte overflow stream 134.
  • the oxygen stream 130 may be vented from the anolyte disengager 128.
  • the anolyte stream 132 may be combined with water (preferably deionized water) from a water source 136 and with acid (preferably sulfuric acid) from an acid source 138.
  • the water source 136 and the acid source 138 in the anolyte recycle loop 104 may maintain anolyte acid strength and volume for the anode feed stream 122.
  • the temperature of the anode feed stream 122 may be regulated by a heat exchanger 140a coupled with a cooling water source 142a prior to entering the anode compartment 108 of the electrolyzer 102.
  • the cathode compartment 110 generally includes a cathode feed stream 144 that includes carbon dioxide and a catholyte.
  • the catholyte is a bicarbonate compound, such as potassium bicarbonate (KHCO 3 ), which is saturated with carbon dioxide.
  • the cathode feed stream 144 may enter a bottom of the cathode compartment 110 to flow by a face of the cathode 118 and through the high surface area cathode structure 120.
  • the reaction in the cathode compartment 110 may reduce carbon dioxide to formate at an applied current and voltage potential.
  • the reaction products and any unreacted materials (e.g., excess catholyte solution) may exit the cathode compartment 110 as cathode exit stream 146.
  • the cathode exit stream 146 may be monitored by a pH sensor 148a and a temperature sensor 126b and may flow to a catholyte disengager 150 suitable for separating gaseous components (e.g., hydrogen) from the cathode exit stream 146.
  • the catholyte disengager 150 may process the cathode exit stream 146 into a hydrogen stream 152, a product stream 154, and a catholyte recycle stream 156.
  • the hydrogen stream 152 may be vented from the catholyte disengager 150.
  • the product stream 154 preferably includes an alkali metal formate (such as potassium formate where the electrolyte includes potassium bicarbonate) and may include excess catholyte.
  • the catholyte stream 156 may be processed by a catholyte recirculation pump 158 and a heat exchanger 140b coupled with a cooling water source 142b.
  • a temperature sensor 126c may monitor the catholyte stream 156 downstream from the heat exchanger 140b having cooling water source 142b.
  • a fresh catholyte electrolyte feed 160 may be metered into the catholyte stream 156, where the fresh catholyte electrolyte feed 160 may adjust the pH of the cathode feed stream 144 into the cathode compartment 110 of the electrolyzer 102, which may control final product overflow rate and establish the formate product concentration.
  • the pH may be monitored by pH sensor 148b.
  • a carbon dioxide stream 162 may be metered into the cathode feed stream 144 downstream from the catholyte electrolyte feed 160 prior to entering the cathode compartment 110 of the electrolyzer 102.
  • the carbon dioxide saturates the catholyte entering the cathode compartment.
  • the pH of the electrolyzer 102 may be controlled or maintained through use of an alkali metal bicarbonate and/or carbonate in combination with water to control the pH of the catholyte.
  • the cell may more efficiently convert carbon dioxide into C1 and C2 products with a higher conversion rate than if a non-optimum pH value was maintained or if no pH control mechanism was employed.
  • the catholyte is constantly recirculated to maintain an adequate and uniform carbon dioxide concentration at cathode surfaces coated with an electrocatalyst.
  • a fresh catholyte feed stream may be used to control the pH of the catholyte and to control the product concentration in the product overflow stream.
  • the mass flow rate of the catholyte feed to the cathode compartment e.g., mass flow of potassium bicarbonate
  • the concentration of the potassium bicarbonate is important, since it provides volume to the catholyte, which will dilute the product in the catholyte.
  • potassium bicarbonate is preferred, in a concentration range of 5 to 600 gm/L, or more preferably in the 10 to 500 gm/L range. If the feed concentration of bicarbonate to the catholyte is fixed, a separate feed of water may be employed into the catholyte to control final product concentration. In another implementation, potassium carbonate may be used as a feed for pH control. Potassium carbonate has a much higher solubility in water than potassium bicarbonate, and is preferably used in a concentration range of 5 to 1,500 gm/L.
  • the electrochemical acidification system 200 may be utilized to acidify the product stream 154 from the electrolyzer system 100.
  • the electrochemical acidification system 200 acidifies an alkali metal formate, such as potassium formate, to form an organic acid, such as formic acid, and co-produce an alkali metal hydroxide, such as potassium hydroxide.
  • the electrochemical acidification system 200 generally includes an electrochemical acidification unit 202, an anolyte recycle loop 204, and a catholyte recycle loop 206.
  • the electrochemical acidification system 200 may include as process feeds/inputs the product stream 154 from the electrolyzer system 100 (which preferably includes an alkali metal formate), water in each of the anolyte recycle loop 204 and the catholyte recycle loop 206, and an acidic anolyte (preferably sulfuric acid, but may include other acids, instead of, or in addition to sulfuric acid).
  • the product of the electrochemical acidification system 200 is generally an organic acid, such as formic acid, and an alkali metal hydroxide, and may include residual alkali metal formate, bicarbonate catholyte, carbon dioxide, hydrogen, oxygen, and/or other unreacted process inputs.
  • the electrochemical acidification unit 202 is preferably a three-compartment electrochemical acidification unit or cell.
  • the electrochemical acidification unit 202 generally includes an anode compartment 208, a cathode compartment 210, and a central ion exchange compartment 212 bounded by cation exchange membranes 214a and 214b on each side.
  • the anode compartment 208 includes an anode 216 suitable to oxidize water.
  • the anode 216 is a titanium anode having an anode electrocatalyst coating which faces the cation exchange membrane 214a.
  • the cathode compartment 210 includes a cathode 218 suitable to reduce water and to generate an alkali metal hydroxide.
  • hydrogen ions (H + ) or protons are generated in the anode compartment 208 when a potential and current are applied to the electrochemical acidification unit 202.
  • the hydrogen ions (H + ) or protons pass through the cation exchange membrane 214a into the central ion exchange compartment 212.
  • the product stream 154 from the electrolyzer system 100 is preferably introduced to the electrochemical acidification unit 202 via the central ion exchange compartment 212, where the hydrogen ions (H + ) or protons displace the alkali metal ions (e.g., potassium ions) in the product stream 154 to acidify the stream and produce a product stream 260 including an organic acid product, preferably formic acid.
  • alkali metal ions e.g., potassium ions
  • the displaced alkali metal ions may pass through the cation exchange membrane 214b to the cathode compartment 210 to combine with hydroxide ions (OH - ) formed from water reduction at the cathode 218 to form an alkali metal hydroxide, preferably potassium hydroxide.
  • the central ion exchange compartment 212 may include a plastic mesh spacer (not shown) to maintain the dimensional space in the central ion exchange compartment 212 between the cation exchange membranes 214a and 214b.
  • a cation ion exchange material 220 is included in the central ion exchange compartment 212 between the cation exchange membranes 214a and 214b.
  • the cation ion exchange material 220 may include an ion exchange resin in the form of beads, fibers, and the like.
  • the cation ion exchange material 220 may increase electrolyte conductivity in the ion exchange compartment solution, and may reduce the potential effects of carbon dioxide gas on the cell voltage as bubbles are formed and pass through the central ion exchange compartment 212.
  • the anode compartment 208 generally includes an anode feed stream 222 that includes an acid anolyte solution (preferably a sulfuric acid solution).
  • the gaseous oxygen and other liquids leaving the anode compartment 208 of the electrochemical acidification unit 202 leave as anode exit stream 224.
  • the anode exit stream 224 may be monitored by a temperature sensor 226a and may flow to an anolyte disengager 228 suitable for separating the oxygen from the anode exit stream 224.
  • the anolyte disengager 228 may process the anode exit stream 224 into an oxygen stream 230, an anolyte recycle stream 232, and an anolyte overflow stream 234.
  • the oxygen stream 230 may be vented from the anolyte disengager 228.
  • the anolyte stream 232 may be combined with water (preferably deionized water) from a water source 236 and with acid (preferably sulfuric acid) from an acid source 238.
  • the water source 236 and the acid source 238 in the anolyte recycle loop 204 may maintain anolyte acid strength and volume for the anode feed stream 222.
  • the temperature of the anode feed stream 222 may be regulated by a heat exchanger 240a coupled with a cooling water source 242a prior to entering the anode compartment 208 of the electrochemical acidification unit 202.
  • the cathode compartment 210 generally includes a catholyte feed stream 244 that includes water and may include an alkali metal hydroxide that circulates through the catholyte recycle loop 206.
  • the reaction products which may include the alkali metal hydroxide and hydrogen gas, may exit the cathode compartment 210 as cathode exit stream 246.
  • the cathode exit stream 246 may be monitored by a temperature sensor 226b and may flow to a catholyte disengager 248 suitable for separating gaseous components (e.g., hydrogen) from the cathode exit stream 246.
  • the catholyte disengager 248 may process the cathode exit stream 246 into a hydrogen stream 250, a catholyte stream 252, and a catholyte overflow stream 254, which may include KOH.
  • the hydrogen stream 250 may be vented from the catholyte disengager 248.
  • the catholyte stream 252 preferably includes an alkali metal hydroxide (such as potassium hydroxide where the product steam 154 includes potassium formate).
  • the catholyte stream 252 may be processed by a catholyte recirculation pump 256 and a heat exchanger 240b coupled with a cooling water source 242b.
  • a temperature sensor 226c may monitor the catholyte stream 252 downstream from the heat exchanger 240b.
  • the catholyte stream 252 may be combined with water (preferably deionized water) from a water source 258, where the water may be metered to control the concentration of the alkali metal hydroxide in the catholyte feed stream 244 entering the cathode compartment 210.
  • water preferably deionized water
  • the system 300 may incorporate the electrolyzer system 100 (described with reference to FIG. 1 ) and the electrochemical acidification system 200 (described with reference to FIG. 2 ), and preferably includes a potassium hydroxide recycle loop 302 suitable for the production of potassium bicarbonate from potassium hydroxide and carbon dioxide.
  • the system 300 may also incorporate carbon dioxide processing components for the separation (e.g., gas separation units 304a, 304b, 304c, 304d) and recovery of carbon dioxide from process streams.
  • the system 300 generally includes carbon dioxide, an alkali metal hydroxide (preferably potassium hydroxide), an acid (preferably sulfuric acid), and water (preferably deionized water) as process inputs and generally includes an organic acid (preferably formic acid), oxygen gas, and hydrogen gas as process outputs.
  • the organic acid may undergo additional processing to provide a desired form and concentration. Such processing may include evaporation, distillation, or another suitable physical separation/concentration process.
  • the chemistry of the reduction of carbon dioxide in the system 300 may be as follows.
  • Hydrogen atoms are adsorbed at the electrode from the reduction of water as shown in equation (1).
  • Carbon dioxide is reduced at the cathode surface with the adsorbed hydrogen atom to form formate, which is adsorbed on the surface as in equation (2).
  • the competing reaction at the cathode is the reduction of water where hydrogen gas is formed as well as hydroxide ions as in equation (4).
  • the anode reaction is the oxidation of water into oxygen and hydrogen ions as shown in equation (5).
  • the cathode 118 includes a high surface area cathode structure 120.
  • the high surface area cathode structure 120 includes a void volume ranging from 30% to 98%.
  • the specific surface area of the high surface area cathode structure 120 is preferably from 2 cm 2 /cm 3 to 500 cm 2 /cm 3 .
  • the surface area also can be defined as total area in comparison to the current distributor/ conductor back plate, with a preferred range of 2x to 1000x or more.
  • the cathode 118 preferably includes electroless indium on tin (Sn) coated copper woven mesh, copper screen, copper fiber as well as bronze and other are copper-tin alloys, nickel and stainless steels.
  • the metals may be precoated with other metals, such as to adequately form a suitable base for the application of the indium and other preferred cathode coatings.
  • the cathode may also include Indium-Cu intermetallics formed on the surfaces of copper fiber, woven mesh, copper foam or copper screen.
  • the intermetallics are generally harder than the soft indium metal, and may provide desirable mechanical properties in addition to usable catalytic properties.
  • the cathode may also include, but is not limited to coatings and/or metal structures containing Pb, Sn, Hg, Tl, In, Bi, and Cd, their alloys, and combinations thereof. Metals including Ti, Nb, Cr, Mo, Ag, Cd, Hg, Tl, An, and Pb as well as Cr-Ni-Mo steel alloys among many others may be incorporated.
  • the cathode 118 may include a single or multi-layered electrode coating, such that the electrocatalyst coating on the cathode substrate includes one or more layers of metals and alloys.
  • a preferred electrocatalyst coating on the cathode includes a tin coating on a high surface area copper substrate with a top layer/coating of indium. The indium coating coverage preferably ranges from 5% to 100% as indium.
  • the indium composition preferably ranges from 5% to 99% as indium in alloys with other metals, including Sn, Pb, Hg, Tl, Bi, Cu, and Cd and their mixed alloys and combinations thereof. It is also contemplated to include Au, Ag, Zn, and Pd into the coating in percentages ranging from 1% to 95%.
  • metal oxides may be used or prepared as electrocatalysts on the surfaces of the base cathode structure.
  • lead oxide can be prepared as an electrocatalyst on the surfaces of the base cathode structure.
  • the metal oxide coating could be formed by a thermal oxidation method or by electrodeposition followed by chemical or thermal oxidation.
  • the cathode base structure can also be gradated or graduated, such that the density of the cathode can be varied in the vertical or horizontal directions in terms of density, void volume, or specific surface area (e.g., varying fiber sizes).
  • the cathode structure may also consist of two or more different electrocatalyst compositions that are either mixed or located in separate regions of the cathode structure in the catholyte compartment.
  • the performance of the system may decrease with regard to formate yield which may result from catalyst loss or over-coating of the catalyst with impurities, such as other metals that may be plated onto the cathode 118.
  • the surfaces of the cathode 118 may be renewed by the periodic addition of indium salts or a mix of indium/tin salts in situ during operation of the electrolyzer 102.
  • other or additional metal salts may be added in situ including salts of Ag, Au, Mo, Cd, Sn, and other suitable metals, singly or in combination.
  • the electrolyzer 102 may be operated at full rate during operation, or temporarily operated at a lower current density with or without any carbon dioxide addition during the injection of the metal salts.
  • the conditions under which to renew the cathode surface with the addition of these salts may differ depending on desired renewal results.
  • the use of an occasional brief current reversal during electrochemical cell operation may also be employed to potentially renew the cathode surfaces.
  • the electrolyzer 102 is operated at pressures exceeding atmospheric pressure, which may result in higher current efficiency and permit operation of the electrolyzer 102 at higher current densities than when operating the electrolyzer 102 at or below atmospheric pressure.
  • metal salts that can reduce on the surfaces of the cathode structure can be also used, such as the addition of Ag, Au, Mo, Cd, Sn, and other suitable metals.
  • Such addition of metal salts may provide a catalytic surface that may be otherwise difficult to prepare directly during cathode fabrication or for renewal of the catalytic surfaces.
  • a preferred method for preparing the high surface area cathode structure 120 is using an electroless plating solution which may include an indium salt, at least one complexing agent, a reducing agent, a pH modifier, and a surfactant.
  • the preferred procedure for forming an electroless indium coating on the high surface area cathode may include combining in stirred deionized water the following materials: Trisodium citrate dihydrate (100g/L), EDTA-disodium salt (15g/L), sodium acetate (10g/L), InCl 3 (anhydrous, 10g/L), and Thiodiglycolic acid (0.3g/L, e.g., 3 mL of 100mg/mL solution).
  • a pre-mixed stock deposition solution that has been stirred may also be used.
  • the procedure also includes heating the mixture to about 40°C.
  • the procedure also includes adding 40 mL TiCl 3 (20 wt. % in 2% HCl) per liter [0.05 mM] and adding 7M ammonia in methanol until the pH of the mixture is approximately 7 (-15 mL ammonia solution per liter) at which point ammonium hydroxide (28% ammonia solution) is used to adjust the pH to between approximately 9.0 and 9.2.
  • the procedure then includes heating the mixture to about 60°C. If the pH drops, adjust the pH to approximately 9.0 with ammonium hydroxide solution.
  • the procedure then includes heating the mixture to about 75°C, where deposition may begin at about 65°C.
  • the procedure includes holding the mixture at 75°C for about one hour.
  • a preferred procedure for the metallic coating of copper substrates may include rinsing bare copper substrates in acetone to clean the copper surface (e.g., removing residual oils or grease that may be present on the copper surface) and then rinsing the acetone-treated copper substrates in deionized water.
  • the procedure also includes immersing the bare copper substrates in a 10% sulfuric acid bath for approximately 5 minutes, and then rinsing with deionized water.
  • the procedure also includes depositing approximately 25 ⁇ m of tin on the copper surface. The deposition may be done using a commercial electroless tinning bath (Caswell, Inc.) operated at 60 °C for 15 minutes. Following tin deposition, parts are rinsed thoroughly in deionized water.
  • the procedure also includes depositing approximately 1 ⁇ m of indium on the tinned copper surface.
  • the deposition may be done using an electroless bath operated at 90 °C for 60 minutes. Following indium deposition, parts are rinsed thoroughly in deionized water.
  • the procedure may also include treated the copper/tin/indium electrode in a 5 wt% nitric acid bath for 5 minutes. Such treatment may improve electrode stability as compared to an untreated copper/tin/indium electrode.
  • the electroless tin plated copper substrate may be dipped into molten indium for coating.
  • cathode substrates may be treated with catalytic materials for carbon dioxide reduction.
  • catalytic materials for carbon dioxide reduction Four example treatments are presented by the following.
  • a first treatment may include coating a conductive substrate (e.g., vitreous carbon or metal) in a conductive sol-gel containing sufficient catalyst material to yield a high active surface area.
  • the conductive component of the sol-gel may be catalytically active.
  • the sol-gel is allowed to undergo a high degree of polymerization/cross-linking.
  • the combined substrate/sol-gel structure may then be pyrolized at high temperature to convert organic material to amorphous (and potentially conductive) carbon.
  • the pyrolized structure may also be subjected to chemical treatments that selectively remove the organic material or the silica phase, leading to a high catalyst content coating.
  • the second treatment may include binding relatively small particles (e.g., micron or nanometer scale) to a substrate using a binding agent such as amines, thiols, or other suitable binding agent.
  • the binding agent is preferably conductive to pass current between the substrate and catalyst particles.
  • the catalyst particles preferably include conjugated organic molecules, such as diphenybenzene. If the substrate is also made of catalyst material the binding agent may have symmetrical binding groups, otherwise binding agents with two different binding groups may be utilized.
  • the third treatment may include coating a substrate in a slurry containing catalyst material (which may be in salt form) and a binding agent.
  • the slurry may also contain a conductive additive, such as carbon black, carbon nanotubes, or other suitable conductive additive.
  • the slurry coating may then be dried to form a conformal coating over the substrate.
  • the substrate and dried slurry coating may be heated in order to fuse the various constituent materials into a mechanically robust, conductive, and catalytic material. In a particular implementation, the heating of the substrate and dried slurry coating occurs in a reducing environment.
  • the fourth treatment may include coating a substrate with semiconducting metal chalcogenides by applying a precursor to the substrate, removing solvent, and baking the substrate to convert the precursor material to a monolithic semiconducting metal chalcogenide coating.
  • the coating materials may include, but are not limited to, Na 4 SnS 4 , Na 4 Sn 2 S 6 , K 4 SnTe 4 , Na 3 AsS 3 , (NH 4 ) 4 Sn 2 S 6 , (NH 4 ) 3 AsS 3 , and (NH 4 ) 2 MoS 4 .
  • thermal oxides onto a substrate, forming an intermetallic with a substrate, and applying semiconductor materials on a substrate.
  • the thermal oxidation of various metal salts painted onto various metal and ceramic substrates is preferred for forming high surface area materials suitable for the electrochemical reduction of carbon dioxide.
  • the thermal oxidation may be similar to that used for forming electrocatalysts on titanium for use as anode materials in electrochemical chlorine cells, such as iridium oxide and ruthenium oxide.
  • indium is electroplated onto a copper foil, then the copper foil is heated to 40°C above the melting point of indium, until indium is melted on the foil surface, and forming a golden intermetallic with copper, and then cooled.
  • the formation of the intermetallic can be done in air or under an inert gas atmosphere (e.g., argon or helium) or under a full or partial vacuum.
  • the electroplated material preferably provides approximately 50% Faradaic conversion efficiency, and may be utilized as a coating on planar metal back plates and also on copper fibers.
  • An intermetallic may also be formed with tin-plated copper substrates.
  • a semiconductor material may be applied to a substrate by gaseous deposition, sputtering, or other suitable application methods.
  • the substrate is preferably a metallic substrate.
  • the semiconductor materials may be doped to P-type or N-type as desired.
  • certain measures may be taken to improve the quality (mechanical, electrical, etc.) of the bond between the substrate and catalyst.
  • measures may involve creating functional groups on the substrate surface that can undergo chemical bonding with the catalyst or a binding agent, or the creation of geometrical features in the substrate surface that facilitate bonding with an applied catalyst coating.
  • the substrate for the high surface area cathodes described herein may include RVC materials, such as carbon and graphite, metal foams, woven metals, metal wools made from fibers, sintered powder metal films and plates, metal and ceramic beads, pellets, ceramic and metal column and trickle bed packing materials, metal and inorganic powder forms, metal fibers and wools, or other suitable substrate materials.
  • RVC materials such as carbon and graphite, metal foams, woven metals, metal wools made from fibers, sintered powder metal films and plates, metal and ceramic beads, pellets, ceramic and metal column and trickle bed packing materials, metal and inorganic powder forms, metal fibers and wools, or other suitable substrate materials.
  • the specific surface area of the physical forms preferably include a specific surface area between approximately 2 and 2,000 cm 2 /cm 3 or greater.
  • the electrode or high surface area structure of an electrode may incorporate alloys as fibers or wools, and may be coated with various compounds, and subsequently fired in air or in a reducing atmosphere oven, to form stable oxides on the surfaces which are electrocatalytic in the reduction of carbon dioxide.
  • Other cathode materials may include metallic glasses and amorphous metals.
  • the alkali metal formate e.g., potassium formate
  • the alkali metal formate may be acidified in addition to recovering potassium hydroxide.
  • the use of the bipolar membranes may reduce the voltage required for the acidification of the alkali metal formate and may reduce the number of actual anodes and cathodes needed for the electrochemical stack.
  • the bipolar membranes preferably consist of a cation membrane and an anion membrane that have been bonded together, and function by splitting water at the two membrane interface, forming hydrogen (H + ) ions from the cation membrane and hydroxide ions (OH - ) from the anion membrane.
  • the electrolyzer 502 in FIG. 5 includes an ion exchange compartment 504 in addition to an anode 506 compartment and a cathode compartment 508.
  • This ion exchange compartment 504 functions similarly as the acid acidification compartment 212 in electrochemical acidification unit 202 as shown in FIG. 2 .
  • the alkali metal formate product e.g., potassium formate
  • unreacted KHCO 3 from the cathode compartment is passed through the ion exchange compartment 504 to provide a formic acid product with CO 2 and some residual KHCO 3 .
  • the hydrogen ions (H + ) passing through the adjacent membrane 510a on the anode compartment side displace the alkali metal ions (e.g., K + ) in the stream passing through the central ion exchange compartment 504 so that the alkali metal formate is acidified and the alkali metal ions and remaining hydrogen ions pass through the adjoining membrane 510b on the cathode compartment 508 and into the catholyte.
  • This will allow operation of the catholyte at higher pH conditions if required for obtaining high Faradaic current efficiencies with the cathodes selected for the process.
  • the preferred catholytes include alkali metal bicarbonates, carbonates, sulfates, phosphates, and the like.
  • Other preferred catholytes include borates, ammonium, and hydroxides.
  • Other catholytes may include chlorides, bromides, and other organic and inorganic salts.
  • Non-aqueous electrolytes such as propylene carbonate, methanesulfonic acid, methanol, and other ionic conducting liquids may be used, which may be in an aqueous mixture, or as a non-aqueous mixture in the catholyte. The introduction of micro bubbles of carbon dioxide into the catholyte stream may improve carbon dioxide transfer to the cathode surfaces.
  • a nano-filtration system may be utilized between the electrolyzer system 100, as shown in FIG. 1 , and the electrochemical acidification system 200, as shown in FIG. 2 .
  • the nano-filtration system is preferably utilized to separate alkali metal formate (e.g., potassium formate) from bicarbonate leaving the electrolyzer system 100 (e.g., stream 154) to reduce the amount of bicarbonate entering the electrochemical acidification unit 202.
  • the nano-filtration system preferably uses a nano-filtration filter/membrane under pressure for selective separation of the bicarbonate from the alkali metal formate.
  • the nano-filtration filter/membrane separates monovalent anions (e.g., formate) from divalent anions (e.g., carbonate) using a high pressure pump and suitable selected membranes for the separation.
  • monovalent anions e.g., formate
  • divalent anions e.g., carbonate
  • the bicarbonate in the formate/bicarbonate product e.g., stream 154
  • the nano-filtration system may include a mixer, such as a mixing tank, to mix the formate/bicarbonate product stream with a potassium hydroxide (KOH) stream.
  • KOH potassium hydroxide
  • the mixer may promote the conversion of potassium bicarbonate to potassium carbonate to facilitate the separation of the formate from the carbonate.
  • a high pressure pump then sends the potassium formate/carbonate stream into a nano-filtration unit which includes the nano-filtration filter/membrane.
  • the nano-filtration unit produces a low-carbonate-containing potassium formate permeate stream which is then sent to the electrochemical acidification system 200 as shown in FIG. 2 as stream 154, to enter the electrochemical acidification unit 202.
  • the potassium carbonate containing reject stream leaving the nano-filtration unit is preferably sent to the KHCO 3 block of FIG. 3 , where the potassium carbonate is mixed with KOH and CO 2 for conversion to potassium bicarbonate.
  • the potassium bicarbonate is preferably utilized as a feed to the cathode compartment of the electrolyzer 102 of the electrolyzer system 100.
  • the nano-filtration separation system may consist of multiple units connected in a series flow configuration to increase the total separation efficiency of the carbonate from formate separation.
  • the system may also utilize recycle streams to recycle an output stream from one unit to the input of another unit to maintain flow and pressures as well as to increase the recovery of the formate.
  • the pH of the catholyte preferably ranges from 3 to 12.
  • the desired pH of the catholyte may be a function of the catholyte operating conditions and the catalysts used in the cathode compartment, such that there is limited or no corrosion at the electrochemical cell.
  • Preferable catholyte cross sectional area flow rates may include a range of 2 to 3,000 gpm/ft 2 or more ( 0.0076 to 11.36 m 3 /m 2 ), with a flow velocity range of 0.002 to 20 ft/sec (0.0006 to 6.1 m/sec).
  • a homogenous heterocyclic catalyst is preferably utilized in the catholyte.
  • the homogenous heterocyclic catalyst may include, for example, one or more of 4-hydroxy pyridine, adenine, a heterocyclic amine containing sulfur, a heterocyclic amine containing oxygen, an azole, a benzimidazole, a bipyridine, furan, an imidazole, an imidazole related species with at least one five-member ring, an indole, a lutidine, methylimidazole, an oxazole, phenanthroline, pterin, pteridine, a pyridine, a pyridine related species with at least one six-member ring, pyrrole, quinoline, or a thiazole, and mixtures thereof.
  • Preferred anolytes for the system include alkali metal hydroxides, such as KOH, NaOH, LiOH; ammonium hydroxide; inorganic acids such as sulfuric, phosphoric, and the like; organic acids such as methanesulfonic acid; non-aqueous and aqueous solutions; alkali halide salts, such as the chlorides, bromides, and iodine types such as NaCl, NaBr, LiBr, and Nal; and acid halides such as HCl, HBr and HI.
  • alkali metal hydroxides such as KOH, NaOH, LiOH
  • ammonium hydroxide such as sulfuric, phosphoric, and the like
  • organic acids such as methanesulfonic acid
  • non-aqueous and aqueous solutions alkali halide salts, such as the chlorides, bromides, and iodine types such as NaCl, NaBr, LiBr, and Nal
  • the acid halides and alkali halide salts will produce for example chlorine, bromine, or iodine as a halide gas or as dissolved aqueous products from the anolyte compartment.
  • Methanol or other hydrocarbon non-aqueous liquids can also be used, and would form some oxidized organic products from the anolyte.
  • Selection of the anolyte would be determined by the process chemistry product and requirements for lowering the overall operating cell voltage. For example, the formation of bromine at the anode requires a significantly lower anode voltage potential than chlorine formation, and iodine is even lower than that of bromine. This allows for a significant power cost savings in the operation of both of the electrochemical units when bromine is generated in the anolyte.
  • a halogen such as bromine
  • anolyte may then be used in an external reaction to produce other compounds, such as reactions with alkanes to form bromoethane, which may then be converted to an alcohol, such as ethanol, or an alkene, such as ethylene, and the halogen acid byproduct from the reaction can be recycled back to the electrochemical cell anolyte.
  • a halogen such as bromine
  • Electrochemical cells may operate at pressures up to about 20 to 30 psig in multi-cell stack designs, although with modifications, they could operate at up to 100 psig.
  • the electrolyzer anolyte may also be operated in the same pressure range to minimize the pressure differential on the membrane separating the two electrode compartments.
  • Special electrochemical designs are required to operate electrochemical units at higher operating pressures up to about 60 to 100 atmospheres or greater, which is in the liquid CO 2 and supercritical CO 2 operating range.
  • a portion of the catholyte recycle stream may be separately pressurized using a flow restriction with backpressure or using a pump, with CO 2 injection, such that the pressurized stream is then injected into the catholyte compartment of the electrolyzer.
  • Such a configuration may increase the amount of dissolved CO 2 in the aqueous solution to improve the conversion yield.
  • Catholyte and anolyte operating temperatures preferably range from -10 to 95 °C, more preferably 5 to 60°C.
  • the minimum operating temperature will be limited to the electrolytes used and their freezing points. In general, the lower the temperature, the higher the solubility of CO 2 in the aqueous solution phase of the electrolyte, and would help in obtaining higher conversion and current efficiencies.
  • a consideration for lower operating temperatures is that the operating electrolyzer cell voltages may be higher, so an optimization may be required to produce the chemicals at the lowest operating cost.
  • the electrochemical cell design may include a zero gap, flow-through design with a recirculating catholyte electrolyte with various high surface area cathode materials.
  • Other designs include: flooded co-current packed and trickle bed designs with the various high surface area cathode materials, bipolar stack cell designs, and high pressure cell designs.
  • Anodes for use in the electrochemical system may depend on various system conditions.
  • the anode may include a coating, with preferred electrocatalytic coatings including precious metal oxides, such as ruthenium and iridium oxides, as well as platinum, rhodium, and gold and their combinations as metals and oxides deposited on valve metal substrates, such as titanium, tantalum, zirconium, and niobium.
  • precious metal oxides such as ruthenium and iridium oxides, as well as platinum, rhodium, and gold and their combinations as metals and oxides deposited on valve metal substrates, such as titanium, tantalum, zirconium, and niobium.
  • the anode made include carbon, cobalt oxides, stainless steels, nickel, and their alloys and combinations which may be stable as anodes suitable under alkaline conditions.
  • the electrochemical system may employ a membrane positioned between the anode compartment and the cathode compartment.
  • Cation ion exchange type membranes are preferred, especially those that have a high rejection efficiency to anions, for example perfluorinated sulfonic acid based ion exchange membranes such as DuPont Nafion® brand unreinforced types N117 and N120 series, more preferred PTFE fiber reinforced N324 and N424 types, and similar related membranes manufactured by Japanese companies under the supplier trade names such as Flemion®.
  • multi-layer perfluorinated ion exchange membranes used in the chlor alkali industry have a bilayer construction of a sulfonic acid based membrane layer bonded to a carboxylic acid based membrane layer, which efficiently operates with an anolyte and catholyte above a pH of about 2 or higher. These membranes have a much higher anion rejection efficiency. These are sold by DuPont under their Nafion® trademark as the N900 series, such as the N90209, N966, N982, and the 2000 series, such as the N2010, N2020, and N2030 and all of their types and subtypes.
  • Hydrocarbon based membranes which are made from various cation ion exchange materials can also be used if the anion rejection is not as critical, such as those sold by Sybron under their trade name Ionac®, AGC Engineering (Asahi Glass) under their Selemion® trade name, and Tokuyama Soda, among others available on the market.
  • the electrolyzer design used in laboratory examples may incorporate various thickness high surface area cathode structures using added spacer frames and also provide the physical contact pressure for the electrical contact to the cathode current conductor backplate.
  • An electrochemical bench scale cell with an electrode projected area of about 108 cm 2 was used for much of the bench scale test examples.
  • the electrochemical cell was constructed consisting of two electrode compartments machined from 1.0 inch (2.54 cm) thick natural polypropylene.
  • the outside dimensions of the anode and cathode compartments were 8 inches (20.32 cm) by 5 inches (12.70 cm) with an internal machined recess of 0.375 inches (0.9525 cm) deep and 3.0 inches (7.62 cm) wide by 6 inches (15.24 cm) tall with a flat gasket sealing area face being 1.0 inches (2.52 cm) wide.
  • Two holes were drilled equispaced in the recess area to accept two electrode conductor posts that pass though the compartment thickness, and having two 0.25 inch (0.635 cm) drilled and tapped holes to accept a plastic fitting that passes through 0.25 inch (0.635 cm) conductor posts and seals around it to not allow liquids from the electrode compartment to escape to the outside.
  • the electrode frames were drilled with an upper and lower flow distribution hole with 0.25 inch pipe threaded holes with plastic fittings installed to the outside of the cell frames at the top and bottom of the cells to provide flow into and out of the cell frame, and twelve 0.125 inch (0.3175 cm) holes were drilled through a 45 degree bevel at the edge of the recess area to the upper and lower flow distribution holes to provide an equal flow distribution across the surface of the flat electrodes and through the thickness of the high surface area electrodes of the compartments.
  • an anode with a thickness of 0.060 inch (0.1524 cm) and 2.875 inch (7.3025 cm) width and 5.875 inch (14.9225 cm) length with two 0.25 inch (0.635 cm) titanium diameter conductor posts welded on the backside were fitted through the two holes drilled in the electrode compartment recess area.
  • the positioning depth of the anode in the recess depth was adjusted by adding plastic spacers behind the anode, and the edges of the anode to the cell frame recess were sealed using a medical grade epoxy.
  • the electrocatalyst coating on the anode was a Water Star WS-32, an iridium oxide based coating on a 0.060 inch (0.1524 cm) thick titanium substrate, suitable for oxygen evolution in acids.
  • the anode compartment also employed an anode folded screen (folded three times) that was placed between the anode and the membrane, which was a 0.010 inch (0.0254 cm) thick titanium expanded metal material from DeNora North America (EC626), with an iridium oxide based oxygen evolution coating, and used to provide a zero gap anode configuration (anode in contact with membrane), and to provide pressure against the membrane from the anode side which also had contact pressure from the cathode side.
  • 316L stainless steel cathodes with a thickness of 0.080 inch (0.2032 cm) and 2.875 inch (7.3025 cm) width and 5.875 inch (14.9225 cm) length with two 0.25 inch (0.635 cm) diameter 316L SS conductor posts welded on the backside were fitted through the two holes drilled in the electrode compartment recess area.
  • the positioning depth of the cathode in the recess depth was adjusted by adding plastic spacers behind the cathode, and the edges of the cathode to the cell frame recess were sealed using a fast cure medical grade epoxy.
  • a copper bar was connected between the two anode posts and the cathode posts to distribute the current to the electrode back plate.
  • the cell was assembled and compressed using 0.25 inch (0.635 cm) bolts and nuts with a compression force of about 60 in-lbs force.
  • Neoprene elastomer gaskets (0.0625 inch (0.159 cm) thick) were used as the sealing gaskets between the cell frames, frame spacers, and the membranes.
  • the above cell was assembled with a 0.010 inch (0.0254 cm) thickness indium foil mounted on the 316L SS back conductor plate using a conductive silver epoxy.
  • a multi-layered high surface area cathode comprising an electrolessly applied indium layer of about 1 micron thickness that was deposited on a previously applied layer of electroless tin with a thickness of about 25 micron thickness onto a woven copper fiber substrate.
  • the base copper fiber structure was a copper woven mesh obtained from an on-line internet supplier, PestMall.com (Anteater Pest Control Inc.).
  • the copper fiber dimensions in the woven mesh had a thickness of 0.0025 inches (0.00635 cm) and width of 0.010 inches (0.0254 cm).
  • the prepared high surface area cathode material was folded into a pad that was 1.25 inches (3.175 cm) thick and 6 inches (15.24 cm) high and 3 inches (7.62 cm) wide, which filled the cathode compartment dimensions and exceeded the adjusted compartment thickness (adding spacer) which was 0.875 inches (2.225 cm) by about 0.25 inches (0.635 cm).
  • the prepared cathode had a calculated surface area of about 3,171 cm 2 , for an area about 31 times the flat cathode plate area, with a 91% void volume, and specific surface area of 12.3 cm 2 /cm 3 .
  • the cathode pad was compressible, and provided the spring force to make contact with the cathode plate and the membrane.
  • Neoprene gaskets (0.0625 inch (0.159 cm) thick) were used as the sealing gaskets between the cell frames and the membranes.
  • the electrocatalyst coating on the anode in the anolyte compartment was a Water Star WS-32, an iridium oxide based coating, suitable for oxygen evolution in acids.
  • the anode compartment also employed a three-folded screen that was placed between the anode and the membrane, which was a 0.010 inch (0.0254 cm) thick titanium expanded metal material from DeNora North America (EC626), with an iridium oxide based oxygen evolution coating, and used to provide a zero gap anode configuration (anode in contact with membrane), and to provide pressure against the membrane from the anode side which also had contact pressure from the cathode side.
  • EC626 DeNora North America
  • the cell assembly was tightened down with stainless steel bolts, and mounted into the cell station, which has the same configuration as shown in FIG. 1 with a catholyte disengager, a centrifugal catholyte circulation pump, inlet cell pH and outlet cell pH sensors, a temperature sensor on the outlet solution stream.
  • a 5 micron stainless steel frit filter was used to sparge carbon dioxide into the solution into the catholyte disengager volume to provide dissolved carbon dioxide into the recirculation stream back to the catholyte cell inlet.
  • the anolyte used was a dilute 5% by volume sulfuric acid solution, made from reagent grade 98% sulfuric acid and deionized water.
  • Example 1 The same cell as in Example 1 was used with the same cathode, which was only rinsed with water while in the electrochemical cell after the run was completed and then used for this run.
  • This example contemplates separation of product potassium formate from potassium carbonate/bicarbonate supporting electrolyte by membrane nano-filtration (NF) ( FIG. 10 ).
  • the test would involve two commercial NF membranes.
  • the feed solution would comprise 1.2M KHCO 3 + 0.6M K-formate and its pH would be adjusted to 7, 9, and 11 for three separate runs (for each membrane).
  • a single permeation test could be performed with DK membrane, using a formate-enriched Feed solution comprising 1.2M KHCO 3 + 1.2M K-formate.
  • the test could be done at pH 11 and all other conditions would be as in the above Example 1.
  • the same cell as in Examples 1, 2, and 3 was used, except for using 701 gm of tin shot (0.3 - 0.6 mm diameter) media with an electroless plated indium coating as the cathode.
  • the cathode compartment thickness was 0.875 inches.
  • the cell was operated in a batch condition with no overflow for the first 7.3 hrs, and then a 1.40 molar potassium bicarbonate feed was introduced into the catholyte at a rate of about 1.4 mL/min, with the overflow collected and measured, and a sample of the loop was collected for formate concentration analysis.
  • the formate Faradaic efficiency was between 42% and 52% during the batch run period where the formate concentration went up to 10,490 ppm. During the feed and overflow period, the periodic calculated efficiencies varied between 32% and 49%. The average conversion efficiency was about 44%. The formate concentration varied between 10,490 and 48,000 ppm during the feed and overflow period. The cell voltage began at around 4.05 volts, ending up at 3.80 volts.
  • Electrolyses were performed using a 3-compartment glass cell of roughly 80 mL total volume.
  • the cell was constructed to be gas tight with Teflon bushings.
  • the compartments were separated by 2 glass frits.
  • a 3-electrode assembly was employed.
  • One compartment housed the working electrode and the reference electrode (Accumet silver/silver chloride) which contained the aqueous electrolyte and catalyst as stated.
  • the center compartment also contained the electrolyte and catalyst solution as stated.
  • the third compartment was filled with 0.5 molar K 2 SO 4 aqueous electrolyte solution sparged with CO 2 with a pH of about 4.5 and housed the counter electrode (TELPRO (Stafford, TX) - Mixed Metal Oxide Electrode).
  • the working electrode compartment was purged with carbon dioxide during the experiment.
  • the solutions were measured by ion chromatography for formic acid, analyzing the solution before (a blank) and after electrolysis.
  • the tests were conducted under potentiometric conditions using a 6 channel Arbin Instruments MSTAT, operating at -1.46 or -1.90 volts vs. an SCE reference electrode for about 1.5 hrs.
  • the same cell as in Examples 1, 2, and 3 was used, except for using 890.5 gm of tin shot (3 mm diameter) media and with a tin foil coating as the cathode.
  • the cathode compartment thickness was 1.25 inches and the system was operated in a batch mode with no feed input. Carbon dioxide was sparged to saturate the solution in the catholyte disengager.
  • the cell was operated in a batch condition with no overflow and a sample of the catholyte loop was collected for formate concentration analysis periodically.
  • the formate Faradaic efficiency started at about 65% and declined after 10 hours to 36% and to about 18.3% after 19 hours.
  • the final formate concentration ended up at 20,500 ppm at the end of the 19 hour run. See Figures 11 and 12 .
  • Example 1 The same cell as in Examples 1, 2, and 3 was used, except for using 805 gm of indium coated tin shot (3 mm diameter) media and with a 0.010 inch (0.0254 cm) thickness indium foil mounted on the 316L SS back conductor plate using a conductive silver epoxy as the cathode.
  • the cathode compartment thickness was 1.25 inches and the system was operated in a batch mode with no feed input. Carbon dioxide was sparged to saturate the solution in the catholyte disengager.
  • the tin shot was electrolessly plated with indium in the same method as used in Examples 1 - 4 on the tincoated copper mesh.
  • the indium coating was estimated to be about 0.5 - 1.0 microns in thickness.
  • the cell was operated in a batch condition with no overflow and a sample of the catholyte loop was collected for formate concentration analysis periodically.
  • the formate Faradaic efficiency started at about 100% and varied between 60% to 85%, ending at about 60% after 24 hours.
  • the final formate concentration ended up at about 60,000 ppm at the end of the 24 hour run. Dilution error of the samples at the high formate concentrations may have provided the variability seen in the yield numbers. See Figures 13 and 14 .
  • the same cell as in Examples 1, 2, and 3 was used with a newly prepared indium on tin electrocatalyst coating on a copper mesh cathode.
  • the prepared cathode had calculated surface areas of about 3,171 cm 2 , for an area about 31 times the flat cathode plate area, with a 91% void volume, and specific surface area of 12.3 cm 2 /cm 3 .
  • the cells were operated in a recirculating batch mode for the first 8 hours of operation to get the catholyte formate ion concentration up to about 20,000 ppm, and then a fresh feed of 1.4 M potassium bicarbonate was metered into the catholyte at a feed rate of about 1.2 mL/min.
  • the overflow volume was collected and volume measured, and the overflow and catholyte loop sample were sampled and analyzed for formate by ion chromatography.
  • the same cell as in Examples 1, 2, and 3 was used with a newly prepared indium on tin electrocatalyst coating on a copper mesh cathode.
  • the prepared cathode had calculated surface areas of about 3,171 cm 2 , for an area about 31 times the flat cathode plate area, with a 91% void volume, and specific surface area of 12.3 cm 2 /cm 3 .
  • the cells were operated in a recirculating batch mode for the first 8 hours of operation to get the catholyte formate ion concentration up to about 20,000 ppm, and then a fresh feed of 1.4 M potassium bicarbonate was metered into the catholyte at a feed rate of about 1.2 mL/min.
  • the overflow volume was collected and volume measured, and the overflow and catholyte loop sample were sampled and analyzed for formate by ion chromatography.
  • FIG. 19 illustrates calculated formate current efficiency versus time measuring the formate yield from the collected samples. The formate Faradaic current efficiency declined down into the 20% range after 16 days.
  • FIG. 20 illustrates results of the formate concentration versus time.
  • 0.5 gm of indium (III) carbonate was added to the catholyte while the cell was still operating at the 6 ampere operating rate.
  • the formate concentration in the catholyte operating loop was 11,330 ppm before the indium addition, which increased to 13,400 ppm after 8 hours, and increased to 14,100 ppm after 16 hours when the unit was shut down after 21 days of operation.
  • FIG. 21 illustrates the catholyte pH change over the continuous operation period, which operated in the 7.6 to 7.7 pH range except for an outlier data point near day 16 when the feed pump had stopped pumping.
  • the feed rate was not changed during the run, but could have been increased or decreased to maintain a constant pH operation in an optimum range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Claims (11)

  1. Procédé pour la réduction électrochimique de dioxyde de carbone en produits, comprenant :
    (A) l'introduction d'un anolyte acide dans un premier compartiment d'une première cellule électrochimique, le premier compartiment comprenant une anode ;
    (B) l'introduction d'un catholyte comprenant un bicarbonate de métal alcalin dans un second compartiment de la première cellule électrochimique, le catholyte étant saturé en dioxyde de carbone, le second compartiment comprenant une cathode de surface grande, la cathode de surface grande ayant une surface spécifique supérieure à 2 cm2/cm3 et comprenant un revêtement d'indium et ayant un volume de vide compris entre 30 % et 98 %, au moins une partie du catholyte à base de bicarbonate étant recyclée ;
    (C) l'application entre l'anode et la cathode d'un potentiel électrique suffisant pour réduire le dioxyde de carbone en un formiate de métal alcalin ;
    (D) l'introduction du formiate de métal alcalin dans un compartiment d'échange d'ions d'une seconde cellule électrochimique ;
    (E) l'application entre une anode de la seconde cellule électrochimique et une cathode de la seconde cellule électrochimique d'un potentiel électrique suffisant pour produire au moins de l'acide formique et un hydroxyde de métal alcalin ; et
    (F) l'introduction de l'hydroxyde de métal alcalin avec du dioxyde de carbone pour produire au moins une partie du bicarbonate de métal alcalin introduit dans le second compartiment de la première cellule électrochimique.
  2. Procédé selon la revendication 1, comprenant en outre :
    la séparation du formiate de métal alcalin d'avec le bicarbonate de métal alcalin du catholyte de la première cellule électrochimique avec un système de nanofiltration.
  3. Procédé selon la revendication 1, dans lequel la séparation du formiate de métal alcalin d'avec le bicarbonate de métal alcalin du catholyte de la première cellule électrochimique avec un système de nanofiltration comprend :
    l'introduction du bicarbonate de métal alcalin du catholyte dans un hydroxyde de métal alcalin pour convertir au moins une partie du bicarbonate de métal alcalin en un carbonate de métal alcalin ; et
    la séparation du carbonate de métal alcalin d'avec le formiate de métal alcalin avec une unité de nanofiltration.
  4. Procédé selon la revendication 1, comprenant en outre :
    l'introduction du carbonate de métal alcalin avec l'hydroxyde de métal alcalin et avec du dioxyde de carbone pour produire au moins une partie du bicarbonate de métal alcalin introduit dans le second compartiment de la première cellule électrochimique.
  5. Procédé selon la revendication 1, dans lequel l'anolyte acide comprend de l'acide sulfurique.
  6. Procédé selon la revendication 1, comprenant en outre :
    la production d'un halogène choisi dans le groupe constitué par F2, Cl2, Br2 et I2 dans au moins l'un du premier compartiment de la première cellule électrochimique et du premier compartiment de la seconde cellule électrochimique, le procédé comprenant éventuellement en outre la réaction de l'halogène avec un composé organique pour produire un produit halogéné et dans lequel éventuellement l'halogène est le brome.
  7. Procédé selon l'une quelconque des revendications précédentes, dans lequel un catalyseur hétérocyclique homogène est utilisé dans le catholyte de la première cellule électrochimique.
  8. Procédé selon l'une quelconque des revendications précédentes, dans lequel le catalyseur hétérocyclique homogène en comprend un ou plusieurs parmi la 4-hydroxypyridine, l'adénine, une amine hétérocyclique contenant du soufre, une amine hétérocyclique contenant de l'oxygène, un azole, un benzimidazole, une bipyridine, le furane, un imidazole, un indole, une lutidine, le méthylimidazole, un oxazole, la phénanthroline, la ptérine, la ptéridine, une pyridine, le pyrrole, la quinoléine ou un thiazole et les mélanges de ceux-ci.
  9. Procédé selon l'une quelconque des revendications précédentes, dans lequel la cathode de la première cellule électrochimique comprend un revêtement d'étain sur un substrat en cuivre de surface grande avec une couche supérieure/un revêtement d'indium.
  10. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre le fonctionnement de la première cellule électrochimique à une pression supérieure à la pression atmosphérique.
  11. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'anode de la première cellule électrochimique comprend un revêtement électrocatalytique comprenant de l'oxyde de ruthénium, de l'oxyde d'iridium, du platine, des oxydes de platines, de l'or ou de l'oxyde d'or.
EP13837298.2A 2012-09-14 2013-08-05 Procédé utilisant des électrodes à surface élevée pour la réduction électrochimique de dioxyde de carbone Active EP2895642B1 (fr)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201261701237P 2012-09-14 2012-09-14
US201261703175P 2012-09-19 2012-09-19
US201261703229P 2012-09-19 2012-09-19
US201261703234P 2012-09-19 2012-09-19
US201261703231P 2012-09-19 2012-09-19
US201261703158P 2012-09-19 2012-09-19
US201261703232P 2012-09-19 2012-09-19
US201261703238P 2012-09-19 2012-09-19
US201261703187P 2012-09-19 2012-09-19
US201261720670P 2012-10-31 2012-10-31
US13/724,885 US8858777B2 (en) 2012-07-26 2012-12-21 Process and high surface area electrodes for the electrochemical reduction of carbon dioxide
PCT/US2013/053554 WO2014042781A2 (fr) 2012-09-14 2013-08-05 Processus et électrodes à surface élevée pour réduction électrochimique de dioxyde de carbone

Publications (3)

Publication Number Publication Date
EP2895642A2 EP2895642A2 (fr) 2015-07-22
EP2895642A4 EP2895642A4 (fr) 2015-10-21
EP2895642B1 true EP2895642B1 (fr) 2018-04-25

Family

ID=50278594

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13837298.2A Active EP2895642B1 (fr) 2012-09-14 2013-08-05 Procédé utilisant des électrodes à surface élevée pour la réduction électrochimique de dioxyde de carbone

Country Status (8)

Country Link
EP (1) EP2895642B1 (fr)
JP (1) JP2015533944A (fr)
KR (1) KR20150055033A (fr)
CN (1) CN104619886B (fr)
AU (1) AU2013316029B2 (fr)
BR (1) BR112015005640A2 (fr)
CA (1) CA2883127C (fr)
WO (2) WO2014042782A1 (fr)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150056635A (ko) * 2012-09-19 2015-05-26 리퀴드 라이트 인코포레이티드 할라이드 염을 이용하는 화학물질의 전기화학적 공동-제조
JP6599367B2 (ja) * 2014-05-29 2019-10-30 アヴァンティウム・ノレッジ・センター・ベスローテン・フェンノートシャップ ガス拡散電極を用いて二酸化炭素を電気化学的に還元するための方法及びシステム
US20160253461A1 (en) * 2014-10-01 2016-09-01 Xsolis, Llc System for management and documentation of health care decisions
JP6690322B2 (ja) * 2015-06-04 2020-04-28 株式会社豊田中央研究所 二酸化炭素還元用電極触媒、電極、装置および触媒固定方法
EP3320576B1 (fr) * 2015-07-08 2021-11-17 Agora Energy Technologies Ltd. Batterie rédox à couple rédox à base de dioxyde de carbone
US20170241026A1 (en) * 2016-02-23 2017-08-24 Kabushiki Kaisha Toshiba Electrochemical reaction device
JP6691293B2 (ja) * 2016-02-26 2020-04-28 富士通株式会社 二酸化炭素還元用電極、容器、及び二酸化炭素還元装置
JP6640686B2 (ja) * 2016-03-18 2020-02-05 株式会社東芝 電気化学反応装置
WO2017169682A1 (fr) * 2016-03-28 2017-10-05 古河電気工業株式会社 Catalyseur sous la forme d'agrégat contenant du métal, électrode pour la réduction de dioxyde de carbone l'utilisant, et dispositif de réduction du dioxyde de carbone
KR101794840B1 (ko) * 2016-03-29 2017-11-07 (주)테크윈 포름산 제조 장치 및 포름산 제조 방법
CN115198294A (zh) 2016-05-03 2022-10-18 欧普斯12公司 用于二氧化碳、一氧化碳和其他化学化合物的电化学反应的具有先进架构的反应器
WO2018062952A1 (fr) * 2016-09-30 2018-04-05 서강대학교산학협력단 Procédé complexe pour réduire le dioxyde de carbone et produire de l'acide formique et du sulfate de potassium, et appareil pour ledit procédé complexe
KR101793711B1 (ko) 2016-11-04 2017-11-07 한국에너지기술연구원 이산화탄소로부터 탄산염 및/또는 개미산염을 제조하는 장치 및 방법
US10675681B2 (en) * 2017-02-02 2020-06-09 Honda Motor Co., Ltd. Core shell
US11053598B2 (en) 2017-02-16 2021-07-06 Honda Motor Co., Ltd. Method for producing core shell nanoparticles
JP2018150596A (ja) * 2017-03-14 2018-09-27 千代田化工建設株式会社 有機物生成システム及び有機物の製造方法
JP7062939B2 (ja) * 2017-12-18 2022-05-09 株式会社デンソー 二酸化炭素還元電極およびこれを用いた二酸化炭素還元装置
CN107893243B (zh) * 2017-12-20 2024-05-07 中科京投环境科技江苏有限公司 一种旋流矿浆电解脱除重金属的装置及脱除方法
CA3085243A1 (fr) 2018-01-18 2019-07-25 Avantium Knowledge Centre B.V. Systeme catalytique pour reactions electrochimiques catalysees et leur preparation, leurs applications et leurs utilisations
EP3743371A4 (fr) 2018-01-22 2021-10-13 Opus 12 Incorporated Système et procédé de commande de réacteur à dioxyde de carbone
KR102066269B1 (ko) * 2018-01-26 2020-01-14 중앙대학교 산학협력단 이산화탄소 환원용 전극의 제조방법, 이를 이용하여 제조된 이산화탄소 환원용 전극 및 이를 포함하는 이산화탄소 환원 장치
EP3536823A1 (fr) * 2018-03-05 2019-09-11 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Procédé de réduction électrochimique de dioxyde de carbone
CN108480656B (zh) * 2018-03-13 2019-08-09 中国科学院长春应用化学研究所 一种厚度可控的铋纳米片及其合金的制备方法和应用
KR102140710B1 (ko) * 2018-06-22 2020-08-03 한국과학기술원 이산화탄소 전환용 고압 반응조 및 이의 운영 방법
US11578415B2 (en) 2018-11-28 2023-02-14 Twelve Benefit Corporation Electrolyzer and method of use
US10590548B1 (en) * 2018-12-18 2020-03-17 Prometheus Fuels, Inc Methods and systems for fuel production
WO2020132064A1 (fr) 2018-12-18 2020-06-25 Opus 12 Inc. Électrolyseur et son procédé d'utilisation
CN110117794B (zh) * 2019-05-21 2021-05-18 盐城工学院 一种电还原co2制甲酸盐的三室型电解池装置及其电解方法
KR102025920B1 (ko) * 2019-07-22 2019-09-26 울산과학기술원 이산화탄소 활용 시스템
RU2713360C2 (ru) * 2019-09-25 2020-02-04 Общество с ограниченной ответственностью "Экостар-Наутех" Способ получения моногидрата гидроксида лития из рассолов
CN110867601A (zh) * 2019-11-19 2020-03-06 东华大学 一种连续式多隔室类燃料电池膜电极结构二氧化碳电化学还原反应器
WO2021108446A1 (fr) 2019-11-25 2021-06-03 Opus 12 Incorporated Assemblage membrane-électrodes pour la réduction de cox
WO2021122323A1 (fr) 2019-12-20 2021-06-24 Avantium Knowledge Centre B.V. Formation d'acide formique à l'aide d'une électrode catalytique contenant de l'indium
EP4084889A1 (fr) * 2019-12-30 2022-11-09 FFI Ionix IP, Inc. Système de contrôle environnemental utilisant une membrane conductrice d'anions
CN111575728A (zh) * 2020-03-13 2020-08-25 中国船舶重工集团公司第七一八研究所 一种碱性水电解槽用极板
JP7297710B2 (ja) * 2020-03-23 2023-06-26 株式会社東芝 二酸化炭素反応装置
JP7247150B2 (ja) * 2020-09-02 2023-03-28 株式会社東芝 二酸化炭素電解装置および二酸化炭素電解方法
JP7282725B2 (ja) * 2020-09-17 2023-05-29 株式会社東芝 化学反応システム、化学反応方法、および有価物製造システム
CN113430547B (zh) * 2021-05-06 2023-07-25 盐城工学院 一种电解二氧化碳制甲酸钾的装置及电解方法
WO2023095193A1 (fr) * 2021-11-24 2023-06-01 日本電信電話株式会社 Membrane électrolytique de support d'électrode poreuse et procédé de production d'une membrane électrolytique de support d'électrode poreuse
TWI819466B (zh) * 2022-01-18 2023-10-21 南亞塑膠工業股份有限公司 二氧化碳的電解系統及方法
GB2604047B (en) * 2022-03-24 2023-04-05 Kratos Energy Ltd Electrolyser
CN114574902B (zh) * 2022-04-06 2024-02-09 中国科学技术大学 一种表面具有配体修饰的银纳米晶催化剂及其制备方法和应用
US11939284B2 (en) 2022-08-12 2024-03-26 Twelve Benefit Corporation Acetic acid production

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4589963A (en) * 1984-12-07 1986-05-20 The Dow Chemical Company Process for the conversion of salts of carboxylic acid to their corresponding free acids
US5294319A (en) * 1989-12-26 1994-03-15 Olin Corporation High surface area electrode structures for electrochemical processes
US5290404A (en) * 1990-10-31 1994-03-01 Reilly Industries, Inc. Electro-synthesis of alcohols and carboxylic acids from corresponding metal salts
US5198086A (en) * 1990-12-21 1993-03-30 Allied-Signal Electrodialysis of salts of weak acids and/or weak bases
AR010696A1 (es) * 1996-12-12 2000-06-28 Sasol Tech Pty Ltd Un metodo para la eliminacion del dioxido de carbono de un gas de proceso
US5928806A (en) * 1997-05-07 1999-07-27 Olah; George A. Recycling of carbon dioxide into methyl alcohol and related oxygenates for hydrocarbons
AU2006301857A1 (en) * 2005-10-13 2007-04-19 Mantra Energy Alternatives Ltd. Continuous co-current electrochemical reduction of carbon dioxide
US20100051859A1 (en) * 2006-04-27 2010-03-04 President And Fellows Of Harvard College Carbon Dioxide Capture and Related Processes
CN101981744A (zh) * 2007-04-03 2011-02-23 新空能量公司 用于产生可再生氢并截留二氧化碳的电化学系统、装置和方法
CA2685609A1 (fr) * 2007-05-04 2008-11-13 Principle Energy Solutions, Inc. Production d'hydrocarbures a partir de sources de carbone et d'hydrogene
EP2078697A1 (fr) * 2008-01-08 2009-07-15 SOLVAY (Société Anonyme) Procédé pour la production de carbonate de sodium et/ou de bicarbonate de sodium à partir d'un minéral métallifère comprenant du bicarbonate de sodium
WO2009108327A1 (fr) * 2008-02-26 2009-09-03 Grimes, Maureen A. Production d’hydrocarbures à partir de dioxyde de carbone et d’eau
CN101328590B (zh) * 2008-06-17 2011-03-23 昆明理工大学 一种将二氧化碳转化为有机化合物的方法
JP5580837B2 (ja) * 2009-01-29 2014-08-27 プリンストン ユニバーシティー 二酸化炭素の有機生成物への変換
WO2010093716A1 (fr) * 2009-02-10 2010-08-19 Calera Corporation Production à basse tension d'agents alcalins au moyen d'hydrogène et d'électrodes électrocatalytiques
US20110114502A1 (en) * 2009-12-21 2011-05-19 Emily Barton Cole Reducing carbon dioxide to products
US8968961B2 (en) * 2010-01-25 2015-03-03 Ramot At Tel-Aviv University Ltd. Method of manufacturing proton-conducting membranes
US8721866B2 (en) * 2010-03-19 2014-05-13 Liquid Light, Inc. Electrochemical production of synthesis gas from carbon dioxide
CN102471902A (zh) * 2010-04-26 2012-05-23 松下电器产业株式会社 还原二氧化碳的方法
WO2012046362A1 (fr) * 2010-10-06 2012-04-12 パナソニック株式会社 Procédé de réduction du dioxyde de carbone
US20120298522A1 (en) * 2011-01-11 2012-11-29 Riyaz Shipchandler Systems and methods for soda ash production
US8562811B2 (en) * 2011-03-09 2013-10-22 Liquid Light, Inc. Process for making formic acid
US8858777B2 (en) * 2012-07-26 2014-10-14 Liquid Light, Inc. Process and high surface area electrodes for the electrochemical reduction of carbon dioxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AU2013316029B2 (en) 2018-03-29
BR112015005640A2 (pt) 2017-08-08
CA2883127A1 (fr) 2014-03-20
KR20150055033A (ko) 2015-05-20
CN104619886A (zh) 2015-05-13
CN104619886B (zh) 2019-02-12
JP2015533944A (ja) 2015-11-26
WO2014042781A3 (fr) 2014-05-08
CA2883127C (fr) 2021-04-27
AU2013316029A1 (en) 2015-03-19
WO2014042782A1 (fr) 2014-03-20
EP2895642A2 (fr) 2015-07-22
WO2014042781A2 (fr) 2014-03-20
EP2895642A4 (fr) 2015-10-21

Similar Documents

Publication Publication Date Title
EP2895642B1 (fr) Procédé utilisant des électrodes à surface élevée pour la réduction électrochimique de dioxyde de carbone
US10287696B2 (en) Process and high surface area electrodes for the electrochemical reduction of carbon dioxide
US9303324B2 (en) Electrochemical co-production of chemicals with sulfur-based reactant feeds to anode
EP3607111B1 (fr) Structure à deux membranes pour la réduction électrochimique de co2
EP3149228B1 (fr) Procédé pour la réduction électrochimique de dioxyde de carbone au moyen d'une électrode à diffusion gazeuse
EP2898118B1 (fr) Procédé pour la production électrochimique conjointe d'halogène et de monoxyde de carbone pour des produits carbonylés
US9873951B2 (en) High pressure electrochemical cell and process for the electrochemical reduction of carbon dioxide
US9175409B2 (en) Multiphase electrochemical reduction of CO2
EP2898117B1 (fr) Procédé intégré pour la production d'acide oxalique à partir de dioxyde de carbone
CN105821436B (zh) 一种基于三电极体系的双电解槽两步法氯碱电解方法及装置
US20130292257A1 (en) Integrated Process for Producing Carboxylic Acids from Carbon Dioxide
WO2017118712A1 (fr) Procédé et système destiné à la réduction électrochimique du dioxyde de carbone au moyen d'une anode à diffusion gazeuse
EP3427320A1 (fr) Système et procédé de co-production d'acide oxalique et d'acide acétique
AU2018232301A1 (en) Electrodes comprising metal introduced into a solid-state electrolyte
WO2015139129A1 (fr) Électrodes en contact avec des gaz à utiliser dans des réacteurs électrochimiques continus et leur procédé de fabrication
EP3157897B1 (fr) Procédé intégré de co-production d'acides carboxyliques et de produits d'halogène à partir de dioxyde de carbone
WO2023004505A1 (fr) Utilisation d'une couche de recyclage poreuse pour l'électroréduction du co2 en produits multicarbones avec un rendement de conversion élevé
Wei Electrochemical nitrogen reduction for ammonia synthesis using gas diffusion electrodes
Proietto et al. Electrochemical conversion of pressurized CO
CN114540838A (zh) 一种在微间隙电解池中制备一氧化碳和次氯酸盐的隔膜电解方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150410

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

A4 Supplementary search report drawn up and despatched

Effective date: 20150923

RIC1 Information provided on ipc code assigned before grant

Ipc: C25B 3/00 20060101AFI20150917BHEP

17Q First examination report despatched

Effective date: 20160603

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARES CAPITAL CORPORATION

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AVANTIUM KNOWLEDGE CENTRE B.V.

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602013036645

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25B0003000000

Ipc: C25B0003040000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C25B 11/04 20060101ALI20170301BHEP

Ipc: C25B 15/08 20060101ALI20170301BHEP

Ipc: C25B 1/04 20060101ALI20170301BHEP

Ipc: C25B 11/03 20060101ALI20170301BHEP

Ipc: C25B 3/04 20060101AFI20170301BHEP

Ipc: C25B 9/08 20060101ALI20170301BHEP

INTG Intention to grant announced

Effective date: 20170322

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171006

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180126

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 993021

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013036645

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180726

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 993021

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013036645

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180805

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180425

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180825

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602013036645

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25B0003040000

Ipc: C25B0003250000

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230826

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230822

Year of fee payment: 11

Ref country code: GB

Payment date: 20230828

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230829

Year of fee payment: 11