JP2016091834A - 電解液循環型電池 - Google Patents

電解液循環型電池 Download PDF

Info

Publication number
JP2016091834A
JP2016091834A JP2014225655A JP2014225655A JP2016091834A JP 2016091834 A JP2016091834 A JP 2016091834A JP 2014225655 A JP2014225655 A JP 2014225655A JP 2014225655 A JP2014225655 A JP 2014225655A JP 2016091834 A JP2016091834 A JP 2016091834A
Authority
JP
Japan
Prior art keywords
liquid supply
electrolyte
drainage
electrode
rectification unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014225655A
Other languages
English (en)
Inventor
毅 寒野
Takeshi Kanno
毅 寒野
桑原 雅裕
Masahiro Kuwabara
雅裕 桑原
康充 筒井
Yasumitsu Tsutsui
康充 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014225655A priority Critical patent/JP2016091834A/ja
Priority to PCT/JP2015/079621 priority patent/WO2016072254A1/ja
Priority to TW104136315A priority patent/TW201622223A/zh
Publication of JP2016091834A publication Critical patent/JP2016091834A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】セルフレームの枠体の変形を抑制できる電解液循環型電池を提供する。【解決手段】電池セルを構成する電極と接する双極板と、双極板の周縁を囲む枠体とを有するセルフレームを備える電解液循環型電池であって、枠体は、電池セルの内部に電解液を供給する給液マニホールドを有する給液側片と、給液側片に対向し、電池セルの外部に電解液を排出する排液マニホールドを有する排液側片とを備え、双極板は、電極側の面に、給液マニホールドから供給される電解液が流通して排液マニホールドに排出する流通領域を備え、流通領域は、縦方向に沿って設けられ、給液マニホールドから給液される電解液を縦方向に拡散させて電極へ導く給液整流部と、給液整流部の横方向両側に縦方向に沿って設けられ、電解液を集約して排液マニホールドへ流通させる排液整流部とを有する電解液循環型電池。【選択図】図1

Description

本発明は、レドックスフロー電池などの電解液循環型電池に関する。特に、セルフレームの枠体の変形を抑制できる電解液循環型電池に関する。
太陽光発電や風力発電といった自然エネルギー由来の電力を蓄電する大容量の蓄電池の一つにレドックスフロー電池(RF電池)などの電解液循環型電池がある。RF電池は、代表的には、交流/直流変換器を介して発電部(例えば、太陽光発電装置や風力発電装置、その他一般の発電所など)と負荷(需要家など)との間に接続され、発電部で発電した電力を充電して蓄え、蓄えた電力を放電して負荷に供給する。
例えば図6のRF電池の動作原理図に示すように、RF電池1は、水素イオンを透過させる隔膜101で正極セル102と負極セル103とに分離された電池セル100を備える。正極セル102には正極電極104が内蔵され、かつ正極電解液を貯留する正極電解液タンク106が供給導管108、排出導管110を介して接続されている。同様に、負極セル103には負極電極105が内蔵され、かつ負極電解液を貯留する負極電解液タンク107が供給導管109、排出導管111を介して接続されている。各極電解液は、各供給導管108,109の途中に設けられたポンプ112,113により各供給導管108、109から各極セル102、103に供給され、各極セル102、103から各排出導管110、111を流通して各極タンク106、107に排出されることで各極セル102、103に循環される。RF電池1は、こうして電解液を循環して、正極電解液に含まれるイオンと負極電解液に含まれるイオンの酸化還元電位の差を利用して充放電を行う。図6では、各極電解液に含まれるイオンとしてバナジウムイオンを示しており、実線矢印は充電、破線矢印は放電を意味する。
電池セル100は、通常、図7下図に示すセルスタック200と呼ばれる構造体の内部に形成される。セルスタック200は、図7上図に示すように、セルフレーム120、正極電極104、隔膜101、及び負極電極105を、この順番で積層することで形成される積層体を備える。セルフレーム120は、矩形状の双極板121とその周縁を囲む矩形枠状の枠体122とを備える。この構成の場合、隣接するセルフレーム120の双極板121の間に一つの電池セル100が形成され、双極板121を挟んで表裏に、隣り合う電池セル100の正極電極104(正極セル102)と負極電極105(負極セル103)とが配置される。
電池セル100内の各極電解液の流通は、枠体122の長片(給液側片、図7紙面下側)に形成される給液マニホールド131、132と、枠体122の長片(排液側片、図7紙面上側)に形成される排液マニホールド133、134とを介して行われる。正極電解液は、給液マニホールド131から枠体122の一面側(紙面表側)の給液側片に形成されるガイド溝135を介して正極電極104に供給される。そして、図7上図の矢印に示すように正極電解液104の下側から上側へ流通し、枠体122の排液側片に形成されるガイド溝137を介して排液マニホールド133に排出される。同様に、負極電解液は、給液マニホールド132から枠体122の他面側(紙面裏側)の給液側片に形成されるガイド溝136を介して負極電極105に供給される。そして、負極電解液105の下側から上側へ通り、枠体122の排液側片に形成されるガイド溝138を介して排液マニホールド134に排出される。各枠体122間には、Oリングや平パッキンなどの環状のシール部材140が配置され、電池セル100からの電解液の漏洩を抑制している。
例えば、特許文献1では、枠体の長片(給液側片、排液側片)の内縁にガイド溝に連通する整流部が設けられている。給液側片の整流部は、枠体の内縁沿いに電解液を拡散させることで、各極電解液が各極電極の幅方向の全域に渡るようにしている。
特開2002−367659号公報
近年、RF電池などの電解液循環型電池の更なる大容量化・小型化が望まれている。RF電池が大型化することなく大容量化するには、例えば、セルフレームを薄肉化して電池セル数を増加することなどが考えられる。しかし、電解液を圧送する圧力が大きくなる上に、電解液の流通抵抗(電池の内部抵抗)が大きくなる。その結果、セルフレームの枠体に大きな圧力がかかり、セルフレームを薄肉化していることで枠体が変形する虞がある。一方、RF電池の小型化には、例えば、上述と同様、セルフレームの薄肉化が考えられるが、セルフレームを薄くすれば、セルフレームの枠体に大きな圧力が作用した際に枠体が変形する虞がある。従って、セルフレームの枠体の変形を抑制することが望まれている。
本発明は、上記事情に鑑みてなされたもので、その目的の一つは、セルフレームの枠体の変形を抑制できる電解液循環型電池を提供することにある。
本発明の一態様に係る電解液循環型電池は、電池セルを構成する電極と接する双極板と、双極板の周縁を囲む枠体とを有するセルフレームを備える。枠体は、電池セルの内部に電解液を供給する給液マニホールドを有する給液側片と、給液側片に対向し、電池セルの外部に電解液を排出する排液マニホールドを有する排液側片とを備える。双極板は、電極側の面に、給液マニホールドから供給される電解液が流通して排液マニホールドに排出する流通領域を備える。給液側片と排液側片とが対向する方向を縦方向、縦方向に直交する方向を横方向とする。このとき、流通領域は、縦方向に沿って設けられ、給液マニホールドから給液される電解液を縦方向に拡散させて電極へ導く給液整流部と、給液整流部の横方向両側に縦方向に沿って設けられ、電解液を集約して排液マニホールドへ流通させる排液整流部とを有する。
上記電解液循環型電池は、セルフレームの枠体の変形を抑制できる。
実施形態1に係るレドックスフロー電池のセルフレームを示す概略平面図である。 実施形態2に係るレドックスフロー電池のセルフレームを示す概略平面図である。 実施形態3に係るレドックスフロー電池のセルフレームを示す概略平面図である。 実施形態3に係るレドックスフロー電池の双極板に設けられた対向櫛歯状の流路を示す概略平面図である。 変形例1に係るレドックスフロー電池のセルフレームを示す概略平面図である。 レドックスフロー電池の動作原理図である。 レドックスフロー電池に備わるセルスタックの概略構成図である。
《本発明の実施形態の説明》
本発明者らは、セルフレームの枠体の変形を抑制するべく、枠体が変形する原因を検討した。その結果、枠体に整流部を形成することが原因であると考えられた。従来のように枠体の内縁に整流部が形成されていると、枠体の内側から外側へ向かって作用する圧力は、給液側が排液側よりも大きくなり易く、枠体の給液側と枠体の排液側とに作用する圧力が不均一になり易い。電解液が電極を流通することで排液側に作用する圧力が低下するからである。この枠体の給液側と枠体の排液側とに作用する圧力の差は、電極による電解液の流通抵抗が大きくなるほど大きくなる。このように、枠体の給液側と枠体の排液側とに作用する圧力が不均一になることで、枠体の給液側が排液側に比較して外側に湾曲し易くなる。特に、整流部の形成箇所が短片よりも剛性の低い長片であることから、枠体の変形がより生じやすい。
この検討結果から、枠体にかかる圧力の不均一さを解消するべく整流部の形成箇所などを鋭意検討したところ、給液及び排液の整流部を双極板の特定の箇所に設けると共に、互いの位置関係が特定の配置条件を満たすことで、枠体の給液側と排液側とに作用する圧力の不均一さを解消し易いとの知見を得た。本発明は、これらの知見に基づくものである。最初に本発明の実施態様の内容を列記して説明する。
(1)本発明の一態様に係る電解液循環型電池は、電池セルを構成する電極と接する双極板と、双極板の周縁を囲む枠体とを有するセルフレームを備える。枠体は、電池セルの内部に電解液を供給する給液マニホールドを有する給液側片と、給液側片に対向し、電池セルの外部に電解液を排出する排液マニホールドを有する排液側片とを備える。双極板は、電極側の面に、給液マニホールドから供給される電解液が流通して排液マニホールドに排出する流通領域を備える。給液側片と排液側片とが対向する方向を縦方向、縦方向に直交する方向を横方向とする。このとき、流通領域は、縦方向に沿って設けられ、給液マニホールドから給液される電解液を縦方向に拡散させて電極へ導く給液整流部と、給液整流部の横方向両側に縦方向に沿って設けられ、電解液を集約して排液マニホールドへ流通させる排液整流部とを有する。
上記の構成によれば、セルフレームの枠体の変形を抑制し易い。給液・排液の各整流部を枠体自体ではなく双極板にその縦方向に沿って設けることで、給液・排液の各整流部を枠体の内縁に設けた従来のセルフレームを備える場合に比較して、枠体の給液側片と排液側片とに作用する圧力が不均一になり難いからである。また、給液整流部の横方向両側に排液整流部を設けることで、電解液の圧力が高圧になり易い給液整流部をセルフレームの枠体から離れた内側に配置し易く、枠体に対して電解液の圧力を作用し難くできる。加えて、排液整流部を給液整流部の両側に分散配置することができ、両整流部間の電解液の圧力差を低減しやすく、個々の排液整流部近傍の電解液の圧力を均一化しやすくできる。それにより、セルフレームの枠体を構成する一部の片に電解液の圧力が偏って作用し難くできる。
このように枠体の変形を抑制し易いことで、枠体及び双極板の機械的信頼性が向上する。また、電解液の流量を増加でき、電池の出力を高められる。さらに、セルフレームを薄肉化できるため、電解液循環型電池のサイズを従来の電解液循環型電池と同じとする場合、セルフレームの薄肉化により電池セル数を増加できて電池の大容量化が期待できる。そして、電解液循環型電池の電池容量を従来の電解液循環型電池と同じとする場合、セルフレームの薄肉化により電解液循環型電池の小型化が期待できる。
(2)上記電解液循環型電池の一形態として、流通領域は、双極板の横方向両端に設けられる排液整流部と、排液整流部の間に設けられる給液整流部とを有することが挙げられる。
上記の構成によれば、枠体の変形をより一層抑制し易い。給液側片と排液側片とに作用する圧力の不均一さを解消し易いことに加えて、排液整流部を双極板の横方向両端に配置することで、枠体の横方向両側に作用する圧力を小さくかつ均一にし易い。そのため、枠体の上記縦方向及び横方向のそれぞれで枠体に作用する圧力が不均一になり難い。
(3)上記電解液循環型電池の一形態として、流通領域は、給液整流部と排液整流部との間に形成される平坦状面を有することが挙げられる。
上記の構成によれば、給液・排液の各整流部を枠体の内縁に設けた従来のセルフレームを備える電池に比べて大幅に枠体の変形を抑制できる。また、双極板における両整流部の間の領域を平坦状面とすることで、この領域に溝などを形成する必要がない。このような構成の場合、両整流部間に生じる電解液の圧力差が上記溝を有する場合に比べて大きくなり易いが、その場合でも、給液整流部の両側に排液整流部が配置されているため、個々の排液整流部に生じる圧力は均一にし易い。それにより、セルフレームの変形を効果的に抑制できる。
(4)上記電解液循環型電池の一形態として、給液整流部と排液整流部との間を電解液が流通する複数の溝部を有する流路を備えることが挙げられる。この場合、流路は、電解液を電極に導入する導入路と、電解液を電極から排出する排出路とを備える。そして、導入路と排出路とは、横方向に沿って形成される横溝部を有すると共に、互いに連通せず独立していることが好ましい。
上記の構成によれば、上記複数の溝部により電極の広範囲に亘って電解液を均一的に流通させ易い。また、上記の構成によれば、電解液の圧力損失を低減できる。溝部を有する流路を備える双極板を用いれば、流路に沿った電解液の流通を流路のない場合に比べて促進し、電極に流通される電解液の流れを調整できるからである。
さらに、上記の構成によれば、エネルギー効率に優れる。導入路と排出路とが横方向に沿って形成される横溝部を有することで、電解液が給液整流部から排液整流部に向かって流通し易い。その上、導入路と排出路とが互いに連通せず独立していることで、電解液が導入路と排出路との間を電極を介して流通し易く、未反応のまま排出される電解液が減少して電流量が増加するからである。
(5)上記電解液循環型電池の一形態として、上記流路を備える場合、導入路及び排出路が櫛歯形状の領域を備え、導入路と排出路とは、それぞれの櫛歯が互いに噛み合って対向するように配置されていることが挙げられる。
上記の構成によれば、櫛歯形状の導入路と排出路とが互いに噛み合って対向するように配置されることで、導入路と排出路の各櫛歯同士の間の電極を介して電解液を流通させられる。それに伴い、電極で電池反応に供される電解液の量を更に増加させられる。これにより、未反応のまま排出される電解液が減少するため電流量を更に増加させられる。特に、櫛歯の数や形成領域などによっては、電極の広範囲に電解液を均一に行き渡らせ易いので、電極の広範囲に渡って均一な電池反応が行われると期待される。従って、反応電流量が増加し易く、ひいては内部抵抗を低減できると期待される。以上より、このRF電池は、RF電池全体としてのエネルギー効率に優れる。
《本発明の実施形態の詳細》
本発明の実施形態の詳細を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。ここでは、電解液循環型電池としてレドックスフロー電池(RF電池)を例に説明する。
〔実施形態1〕
実施形態1に係るRF電池は、図6、7を用いて説明した従来のRF電池と同様、セルフレームと電池セル100との積層体を備えるセルスタック200と、電池セル100の正極セル102に循環させる正極電解液を貯留するタンク106と、負極セル103に循環させる負極電解液を貯留するタンク107とを備える。各極電解液の循環は、各供給導管108,109、各排出導管110、111を介して、それらの途中に設けたポンプ112,113により行う。実施形態1に係るRF電池の主たる特徴とするところは、電池セル100内での各極電解液の流通を調整(制御)するセルフレームの構成にある。具体的には、給液及び排液の整流部を双極板の特定の箇所に設けると共に、両整流部の互いの位置関係が特定の配置条件を満たす点にある。即ち、実施形態1に係るRF電池は、セルフレームの構成が従来のRF電池のセルフレーム120(図7)と異なるため、以下の説明は、図1(適宜図6、7)を参照してその相違点を中心に行う。従来と同様の構成については、図6、7と同一符号を付してその説明を省略する。図1の黒塗り矢印は、電解液の流れを示す。
[セルフレーム]
セルフレーム2は、双極板4Aと双極板4Aの周縁を囲む枠体3とを備える。セルフレーム2には、上記積層体の隣り合う電池セル100(図7)の間に配置される中間セルフレームと、上記積層体の両端に配置される端部セルフレームとがある。中間セルフレームは、双極板4Aの表裏に一方の電池セル100の正極電極104及び他方の電池セル100の負極電極105が接し、端部セルフレームは、双極板4Aの一方の面に電池セル100の正負のいずれかの電極と接する。セルフレーム2の表裏(正極側・負極側)面の構成は、中間セルフレーム及び端部セルフレームのいずれにおいても同様である。ここでは、一方の面(正極電極側)を例に説明する。
(枠体)
枠体3は、内側に電池セル100(図6,7)となる領域を形成する。枠体3は、電池セル100の内部に電解液を供給する給液マニホールド34を有する給液側片31と、給液側片31に対向し、電池セル100の外部に電解液を排出する排液マニホールド35を有する排液側片32とを備える。この給液側片31と排液側片32の端部同士は、互いに対向すると共に給液側片31及び排液側片32に対して直交する一対の連結片33により連結されている。枠体3の形状は、矩形枠状である。給液側片31及び排液側片32は、矩形枠の長片を構成し、連結片33は、矩形枠の短片を構成する。セルフレーム2を平面視した際、給液側片31と排液側片32とが互いに対向する方向を縦方向、縦方向に直交する方向を横方向とすると、給液側片31が上記縦方向下側、排液側片32が上記縦方向上側に位置している。即ち、電解液の流れ(黒塗り矢印)は、枠体3の上記縦方向下側から上記縦方向上側に向かう方向である。
給液側片31には、給液マニホールド34と双極板4Aとの間を渡して給液マニホールド34から双極板4Aへ電解液を導く給液ガイド溝36が形成されている。同様に、排液側片32には、排液マニホールド35と双極板4Aとの間を渡して双極板4Aから排液マニホールド35へ電解液を導く排液ガイド溝37が形成されている。排液ガイド溝37は、後述する二つの排液整流部42のそれぞれに連通するように二股状に形成されている。これら両ガイド溝36,37は、上記積層体を構築する際、プラスチック製の保護板(図示略)により覆われる。それにより、電解液が両ガイド溝36,37から漏れることなく各マニホールド34、35と双極板4Aとの間で電解液を流通させられる。
枠体3の材質は、耐酸性、電気絶縁性、機械的特性を満たす材料が挙げられる。例えば、ポリテトラフルオロエチレンなどの種々のフッ素系樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、塩化ビニル樹脂が挙げられる。ここでは、枠体3を硬質塩化ビニル樹脂で形成している。
(双極板)
双極板4Aは、原則、隣接する電池セル100(図7)を仕切る矩形状の板である。双極板4Aの電極側面(表裏面)には、流通領域40(図1二点鎖線で示す)を備える。
〈流通領域〉
流通領域40は、双極板4Aの表面において、給液マニホールド34から供給される電解液が流通して排液マニホールド35に排出する領域である。流通領域40は、上記縦方向に沿って設けられる給液整流部41と、上記縦方向に沿って設けられる排液整流部42と、これら両整流部41,42の間に形成される電極配置領域43(図1の流通領域40の内側の点線)とを備える。給液整流部41は、給液マニホールド34から供給される電解液を双極板4Aの上記縦方向に拡散させて電極配置領域43へ導く。排液整流部42は、電極配置領域43を流通した電解液を集約して排液マニホールド35に流通させる。電極配置領域43は、電極が配置される。
流通領域40は、これらの各整流部41,42と電極配置領域43の組み合わせにより、双方向流通領域と一方向流通領域とが形成されることがある。双方向流通領域とは、一つの給液整流部41と給液整流部41を挟むように配置される二つの排液整流部42とその両整流部41,42の間に一つずつ合計二つの電極配置領域43を備える。そして、給液整流部41から上記横方向に沿って左右の排液整流部42に電解液を流通させる領域である。一方向流通領域とは、一つの給液整流部41と一つの排液整流部42と両整流部41,42の間の一つの電極配置領域43とを備える(詳細は図5)。そして、給液整流部41から排液整流部42の一方向にしか電解液が流通しない領域である。
流通領域40の形態としては、少なくとも一つの双方向流通領域を備える。即ち、(1)流通領域40が一つの双方向流通領域で形成される場合、(2)流通領域40が複数の双方向流通領域で形成される場合、(3)流通領域が双方向流通領域と一方向流通領域とで形成される場合、などがある。いずれの形態であっても、流通領域40は、給液整流部41とその給液整流部41から電解液が流通される排液整流部42との間の長さが、給液側片31と排液側片32の内縁同士の間隔(縦方向に沿った長さ)よりも短い領域を有することが好ましい。そうすれば、給液整流部41と排液整流部42とに生じる圧力差を小さくし易く、給液・排液の各整流部を枠体の内縁に設けた従来のセルフレームを備える場合に比較して、枠体3の変形を抑制できる。ここでは、図1に示すように、上記(1)の流通領域40が一つの双方向流通領域40dで形成される場合、即ち、流通領域40が、一つの給液整流部41と、その両側の二つの排液整流部42と、両整流部41,42の各間に一つずつ合計二つの電極配置領域43とで形成している場合を例に説明する。この場合、双方向流通領域40dの形成箇所及び大きさは双極板4Aの略全域に亘っている。なお、上記(2)については実施形態2で説明し、上記(3)については変形例1で説明する。
給液整流部41は、給液マニホールド34から供給される電解液を双極板4Aの上記縦方向に拡散させて両側の排液整流部42との間に形成される電極配置領域43(電極(図示略))へ導く。給液整流部41の形成箇所は、両側の排液整流部42同士の間の略中央であり、双極板4Aの上記横方向の略中央に位置する。
給液整流部41は、溝41aで形成することが挙げられる。溝41a(給液整流部41)の一端は給液側片31の給液ガイド溝36に連通し、溝41a(給液整流部41)の他端はいずれにも連通することなく排液側片32近傍に位置して封止されている。一つの双方向流通領域40dにおける溝41aの数は、一本でもよいし、二本でもよい。双方向流通領域40dにおける溝41aの数を一本とする場合、この一本の溝41aがその両側に配置される電極配置領域43(図1の流通領域40の内側の点線)に電解液を導く。ここでは、給液整流部41を一本の溝41aで構成している。給液整流部41を二本の溝で構成する形態は、後述する実施形態3で説明する。給液整流部41の溝41aは、上記積層体を構築する際、その両側の電極における給液整流部41側の縁同士を掛け渡すように配置されるプラスチック製の保護板(図示略)で覆われる。それにより、電解液を電極へ導ける。
排液整流部42は、電極を流通した電解液を集約して排液マニホールド35に流通させる。排液整流部42の形成箇所は、双極板4Aにおける上記横方向両端としている。給液整流部41と両排液整流部42とのそれぞれの間の長さは、給液側片31と排液側片32の内縁同士の間隔よりも短い。各排液整流部42は、一本の溝42aで形成している。溝42a(排液整流部42)の一端は、排液側片32の排液ガイド溝37に連通し、溝42a(排液整流部42)の他端はいずれにも連通することなく給液側片31の近傍に位置して封止されている。排液整流部42の溝42aは、上記積層体を構築する際、隣接する電極における排液整流部42側の縁と共に、プラスチック性の保護板(図示略)で覆われる。それにより、電解液を電極から集約できる。
電極配置領域43は、電極が配置される。電極配置領域43は、給液整流部41と左右の排液整流部42のそれぞれとの間に一つずつの合計二つ形成されている。二つの電極配置領域43の面積は、両整流部41、42の各間隔が互いに等しいため、互いに等しい。給液整流部41と各排液整流部42との間隔が等しいことで、枠体3の上記横方向両側に作用する圧力を均等にできる。
電極配置領域43の表面は、両整流部41,42間に溝のない平坦状面44で構成している。なお、詳しくは図3,4を参照する実施形態3で説明するが、この電極配置領域43は、両整流部41,42間を電解液が流通する複数の溝部46を有する流路45を備えていてもよい。
双極板4Aの材質には、電流は通すが電解液は通さない材料を用いることができる。加えて、耐酸性および適度な剛性を有する材料であることが好ましい。このような材料としては、例えば、炭素を含有する導電性材料が挙げられる。具体的には、黒鉛およびポリオレフィン系有機化合物または塩素化有機化合物から形成される導電性プラスチックが挙げられる。また、黒鉛の一部をカーボンブラックおよびダイヤモンドライクカーボンの少なくとも一方に置換した導電性プラスチックでもよい。ポリオレフィン系有機化合物としては、ポリエチレン、ポリプロピレン、ポリブテンなどが挙げられる。塩素化有機化合物としては、塩化ビニル、塩素化ポリエチレン、塩素化パラフィンなどが挙げられる。双極板4Aがこのような材料から形成されることで、双極板4Aの電気抵抗を小さくすることができる上に、耐酸性に優れる。
双極板4Aの製造は、上記の材料を射出成形、プレス成形、および真空成形等の公知の方法により板状に成形することで行える。この成形と同時に整流部41,42(流通領域40)を形成してもよいし、整流部41,42(流通領域40)を形成していない双極板4Aを製造し、その後、この双極板4Aの表面を切削して整流部41,42を形成してもよい。双極板4Aの成形と同時に整流部41,42を形成すると、双極板4Aの製造効率に優れる。
[電極]
電極は、電解液が流通することで電池反応を行う。電極は、図1では省略しているが、上述した双極板4Aの各電極配置領域43に配置される。即ち、ここでは、双極板4Aの一面に配置される電極の数は二枚である。電極の大きさは、各電極配置領域43の大きさと同程度とし、基本的に各整流部41,42に被らない程度とすることが挙げられる。但し、電極の極一部であれば、各整流部41、42に被ることを許容する。電極の構成材料は、例えば、炭素繊維からなる不織布(カーボンフェルト)が挙げられる。電極における電解液の流通方向は、双方向流通領域40dにおける給液整流部41と排液整流部42との対向方向に沿った方向である。本実施形態では、給液整流部41から排液整流部42に向かう左右方向に電解液が流通される。
[電解液の流れ]
このセルフレーム2における電解液の流れは、次の通りである。電池セル100(図6、7参照)の外部から流通する正極(負極)電解液は、図1の太矢印で示すように、枠体3の給液マニホールド34から給液ガイド溝36を介して双極板4Aへ供給される。続いて、正極(負極)電解液は、双極板4Aの給液整流部41により双極板4Aの上記縦方向に拡散してその両側の電極に導かれる。給液整流部41により導かれた正極(負極)電解液は、電極を双極板4Aの中央から上記横方向両端側に向かって流通し、排液整流部42により集約される。集約された電解液は、枠体3の排液ガイド溝37を介して排液マニホールド35から電池セル100の外部に排出される。電池セル100内への電解液の供給及び電池セル100外への電解液の排出は、従来と同様、正極(負極)電解液タンク106(107)と電池セル100との間に接続される供給導管108(109)及び排出導管110(111)を介して、その途中に設けたポンプ112(113)により行う。
〔作用効果〕
実施形態1のRF電池によれば、以下の効果を奏することができる。
(1)枠体3の変形を抑制できる。これは、以下の理由が挙げられる。上記縦方向に沿う給液整流部41を双極板4Aの略中央に設け、給液整流部41を挟むように上記縦方向に沿う排液整流部42を双極板4Aの両端に設けることで、給液整流部41を挟んでその両側に電解液を流通させることができ、両整流部41、42側に作用する電解液の圧力を均一にし易い。そのため、給液・排液の各整流部を枠体の内縁に設けた従来のセルフレームを備える場合に比較して、枠体3の給液側片31と排液側片32とに作用する圧力が不均一になり難い。従って、枠体3の給液側片31と排液側片32とに作用する圧力の差を小さくできる。また、排液整流部42を双極板4Aの上記横方向両端に設けると共に、給液整流部41と各排液整流部42との間隔を、給液側片31と排液側片32の内縁同士の間隔よりも短く、かつ等しくしたことで、給液整流部41と排液整流部42とに生じる圧力差を小さくすると共に、枠体3の両連結片33に作用する圧力を小さくかつ均一にできる。さらに、長片である排液側片32よりも剛性の高い短片である連結片33に電解液の排液時の圧力を作用させられる。
(2)双極板4Aの変形を抑制できる。枠体3の変形を抑制し易いため、枠体3に双極板4Aが一体化されたセルフレーム2とする場合には、双極板4Aへの機械的ストレスを低減できるからである。
(3)RF電池の大容量化・小型化が期待できる。枠体3の変形を抑制し易いことでセルフレーム2を薄肉化できるため、RF電池のサイズを従来のRF電池と同じとする場合、セルフレーム2の薄肉化により電池セル100の数を増加できるからである。また、RF電池の電池容量を従来のRF電池と同じとする場合、セルフレーム2を薄肉化できるからである。
〔実施形態2〕
実施形態2として、図2に示すように、流通領域40が複数の双方向流通領域40dを有する双極板4Bとすることができる。以下、実施形態1との相違点を中心に説明し、実施形態1と同様の構成については、図1と同一符号を付してその説明を省略する。図2の黒塗り矢印は、電解液の流れを示す。
双方向流通領域40dの数は、特に限定されない。流通領域40が複数の双方向流通領域40dを有する場合、双方向流通領域40dの数をn個とすると、給液整流部41の数はn個である。排液整流部42の数は、隣り合う双方向流通領域40dが図2に示すように双極板4Bの一面において一部重複する場合、(n+1)個であり、図示は省略しているが後述するように互いに重複しない場合、2n個である。電極配置領域43の数は、2n個である。
(双方向流通領域が重複する形態)
双方向流通領域40dの数は、二つである。二つの双方向流通領域40dは、双極板4Bの中央で一部が重複し、双方向流通領域40dの一方が双極板4Bの左半分に形成され、双方向流通領域40dの他方が右半分に形成されている。この場合、双極板4Bには、三つの排液整流部42と、三つの排液整流部42の各間に一つずつ配置される合計二つの給液整流部41と、排液整流部42と給液整流部41との各間に一つずつ配置される合計四つの電極配置領域43とが形成される。この双極板4Bの一面には、四枚の電極が配置される。図2では、説明の便宜上、双方向流通領域40dを示す二点鎖線を上記縦方向にずらして示している。
具体的には、双極板4Bの中央には、両双方向流通領域40dの共通の排液整流部42が形成されている。この中央の排液整流部42は、左側の双方向流通領域40dの一方の排液整流部42であり、右側の双方向流通領域40dの一方の排液整流部42でもある。中央の排液整流部42は、その両側の給液整流部41により電極に導かれた両方の電解液を集約する。双極板4Bの左端には左側の双方向流通領域40dの他方の排液整流部42が形成され、双極板4Bの右端には右側の双方向流通領域40dの他方の排液整流部42が形成されている。各双方向流通領域40dにおける両排液整流部42の間の略中央には、給液整流部41が形成されている。各双方向流通領域40dにおける給液整流部41と両排液整流部42との間には、電極配置領域43が形成される。
給液マニホールド34から各溝41aへの電解液の供給は、給液側片31に形成され、各溝41aの一端に連通する二股状部を有する給液ガイド溝36により行われる。三つの排液整流部42から排液マニホールド35への電解液の排出は、排液側片32に形成され、三つの排液整流部42のそれぞれの一端に連通する三股状部を有する排液ガイド溝37により行われる。
(双方向流通領域が重複しない形態)
二つの双方向流通領域は、互いに重複することなく、それぞれ双極板の左半分と右半分とに形成される。この場合、図2に示す双極板の中央の一つの排液整流部を二つの溝が並列される排液整流部として、双極板には合計四つの排液整流部が形成される点が上述の双方向流通領域が重複する形態と相違する。二つの給液整流部と四つの電極配置領域とが形成される点は、上述の双方向流通領域が重複する形態と同様である。
双極板の中央の隣り合う二つの排液整流部のうち、左側の排液整流部は、左側の双方向流通領域における一方の排液整流部であり、右側の排液整流部は、右側の双方向流通領域における一方の排液整流部である。双極板の左端及び右端には、左右の各双方向流通領域における他方の排液整流部が形成されている。左右の双方向流通領域のそれぞれにおいて、排液整流部同士の間には、給液整流部が形成されている。左右の各双方向流通領域における排液整流部と給液整流部との間には、電極配置領域が形成される。給液マニホールドから各溝への電解液の供給は、二股状部を有する給液ガイド溝により行われる。四つの排液整流部から排液マニホールドへの電解液の排出は、四つの排液整流部のそれぞれの一端に連通する四股状部を有する排液ガイド溝37により行われる。
〔作用効果〕
実施形態2のRF電池によれば、枠体3の変形を抑制できる上に、電解液の圧力損失を低減し易い。流通領域40が複数の双方向流通領域40dを備えることで、単数の双方向流通領域40dを備える場合に比較して、各電極における電解液の進行方向に沿った長さ(図では横方向に沿った長さ)を短くできるからである。
〔実施形態3〕
実施形態3は、実施形態1と同様、流通領域40を一つの双方向流通領域40dで形成する。この形態では、図3、4に示すように、給液整流部41を二本の溝41aで形成することに加えて、双極板4Cの電極配置領域43が複数の溝部46を有する流路45を備える形態とする点が実施形態1と相違する。二本の溝41aの間には、電極配置領域は存在していない。即ち、双方向流通領域40dは、給液整流部41の両側の二つの排液整流部42と、両整流部41、42の各間に1つずつ合計2つの電極配置領域43とを備える点は実施形態1と同様である。以下、実施形態1との相違点を中心に説明し、実施形態2と同様の構成については、図1と同一符号を付してその説明を省略する。図3の黒塗り矢印は、電解液の流れを示す。
[給液整流部]
給液整流部41は、上述のように二つの溝41aで形成されている。各溝41aは、排液整流部42の間で互いに隣接して並列され、互いの溝41a側には電解液を導くことなく隣接する電極配置領域43(電極)に電解液を導く。各溝41aの一端は、給液側片31に形成される二股状部を有する給液ガイド溝36に連通している。
[電極配置領域]
電極配置領域43は、複数の溝部46を有する流路45を備える。流路45は、双極板4C上での電解液の流れを調整する。電解液の流れは、流路45の形状や寸法などによって調整できる。流路45は、図4に示すように、電解液を電極に導入する導入路45iと、電解液を電極から排出する排出路45oとを備える。導入路45iは、給液整流部41に繋がっており、排出路45oは、排液整流部42に繋がっている。導入路45iと排出路45oとは連通していてもよいが独立していることが好ましい。
流路45は、導入路45iと排出路45oとがそれぞれ櫛歯形状の領域を備え、それぞれの櫛歯が互いに噛み合って対向するように配置される嵌合型の対向櫛歯形状である。導入路45i(排出路45o)は、給液整流部41(排液整流部42)に沿った一本の縦溝部46yとこの縦溝部46yから上記横方向に伸びる複数本の横溝部46xとを備える。縦溝部46yは給液整流部41(排液整流部42)に連通しており、導入路45iの縦溝部46yは給液整流部41から導かれる電解液が導入され、排出路45oの縦溝部46yは電極を流通した電解液を排液整流部42に排出する。横溝部46xは、導入路45iと排出路45oとで交互に噛み合うように並列している。導入路45i及び排出路45oの各櫛歯の噛み合う部分の長さは、長いほど畝部を渡るように流れる電解液の量が増加することが期待でき、電極配置領域43の上記横方向の長さの約80%以上、さらに約90%以上であることが挙げられる。
溝部46(縦溝部46y、横溝部46x)の横断面形状は、幅が開口部から底部に向かって一様な四角形状であってもよいし、蟻溝のように開口部から底部に向かって広がる略台形状、開口部から底部に向かって一定の幅の幅狭部と、この幅狭部に続いて底部まで一定の幅の幅広部とを備える凸状であってもよい。
電解液の流れは、横溝部46xに沿った流れ(図4横向き矢印)と、導入路45i及び排出路45oの各横溝部46x同士の間に位置する部分(畝部)を介して上記縦方向に渡るような流れ(図4斜め向き矢印)とを形成する。つまり、導入路45iから導入された電解液は、電極を経て排出路45oへ流通する際に、上記畝部で電解液が電極において電池反応を行う。導入された電解液が上記畝部を渡ることで排出されるため、未反応のまま排出される電解液が減少する。よって、RF電池の電流量が増加し、ひいてはRF電池の内部抵抗を低減することができる。
流路45は、嵌合型の他、非嵌合型の櫛歯形状とすることもできる。非嵌合型の対向櫛歯形状は、導入路45iと排出路45oとが互いに噛み合わない形状である。例えば、双極板の給液整流部41(排液整流部42)に沿った一本の縦溝部と、この縦溝部から上記横方向に伸びる複数の横溝部とを備え、導入路45i及び排出路45oの各横溝部が左右に対称配置されている。非嵌合型の櫛歯形状であっても、左右に隣り合う流路の間に位置する畝部で電解液が電極において電池反応を行うことで、未反応のまま排出される電解液が減少し、RF電池の電流量が増加すると期待される。
各流路45は、その少なくとも一部を断続的に形成してもよい。例えば、図4に示す横溝部45xを断続的に(非連続的に)形成する。そうすることで、電解液が上記縦方向の畝部だけでなく、上記横方向に分断された隣り合う横溝部間の畝部を渡るように電極を介して流通し易くなるため、反応電流量が増加することが期待される。
〔作用効果〕
実施形態3のRF電池によれば、枠体3の変形を抑制できることに加えて、横溝部46xの長手に沿った電解液の流量の分布のばらつきを小さくし易い。複数の溝部46を有する流路45を備える電極配置領域43は、双極板4Cの上記左右に分割して形成されているため、例えば双極板4Cの左右の一方から他方に連続する横溝部を設けた場合に比較して、各電極配置領域43の横溝部46xの長さを短くできるからである。そのため、電極の広範囲に電解液を均一に行き渡らせ易く、電極の広範囲の領域から電極内に電解液が導入され、均一な電池反応が行われると期待される。従って、反応電流量が増加し易く、ひいては内部抵抗を低減でき、RF電池全体としてのエネルギー効率に優れる。
〔変形例1〕
変形例1として、図5に示すように、流通領域40は双方向流通領域40dと双方向流通領域40dの左右の一方に形成される一方向流通領域40sとを備えていてもよい。ここでは、流通領域40(双極板4D)の左側の約2/3を双方向流通領域40dで形成し、右側の約1/3を一方向流通領域40sで形成していて、双方向流通領域40dと一方向流通領域40sとが一部重複している。双極板4Dの表面には、左端から順に第一の排液整流部42、第一の電極配置領域43、第一の給液整流部41、第二の電極配置領域43、第二の排液整流部42、第三の電極配置領域43、及び第二の給液整流部41が形成されている。第一の排液整流部42から第一の給液整流部41を挟んで第二の排液整流部42までの領域が双方向性40dであり、第二の排液整流部42から第二の給液整流部41までの領域が一方向流通領域40sである。このように、双方向流通領域40dと一方向流通領域40sとは、互いに共通の排液整流部42(図5右側)を備える。図5では、説明の便宜上、双方向流通領域40dを示す二点鎖線と、一方向流通領域40sを示す二点鎖線と上記縦方向にずらして示している。
これら給液整流部41と排液整流部42との間の距離は、いずれも均等である。第一の排液整流部42(図5左端)は、第一の給液整流部41から導かれる電解液のみを集約して排液マニホールド35へ流通させる。これに対して、第二の排液整流部42(図5右側)は、第一及び第二の給液整流部41から導かれる電解液を集約して排液マニホールド35へ流通させる。
変形例1のRF電池によれば、枠体の内縁に整流部を設けた従来のセルフレームを備える場合に比較すると、枠体3に作用する圧力の不均一さをある程度解消できるため、枠体3の変形を抑制できる。
本発明の一態様に係る電解液循環型電池は、太陽光発電、風力発電などの新エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などを目的とした用途に好適に利用することができる。また、本発明の一態様に係る電解液循環型電池は、一般的な発電所に併設されて、瞬低・停電対策や負荷平準化を目的とした大容量の蓄電池としても好適に利用することができる。
1 レドックスフロー(RF)電池
2 セルフレーム
3 枠体
31 給液側片 32 排液側片 33 連結片
34 給液マニホールド 35 排液マニホールド
36 給液ガイド溝 37 排液ガイド溝
4A、4B、4C、4D 双極板
40 流通領域 40d 双方向流通領域 40s 一方向流通領域
41 給液整流部 41a 溝 42 排液整流部 42a 溝
43 電極配置領域 44 平坦状面
45 流路
45i 導入路 45o 排出路
46 溝部 46x 横溝部 46y 縦溝部
100 電池セル
101 隔膜 102 正極セル 103 負極セル
104 正極電極 105 負極電極
106 正極電解液タンク 107 負極電解液タンク
108、109 供給導管 110、111 排出導管
112、113 ポンプ
120 セルフレーム
121 双極板 122 枠体
131、132 給液マニホールド 133、134 排液マニホールド
135、136、137、138 ガイド溝
140 シール部材
200 セルスタック

Claims (5)

  1. 電池セルを構成する電極と接する双極板と、前記双極板の周縁を囲む枠体とを有するセルフレームを備える電解液循環型電池であって、
    前記枠体は、前記電池セルの内部に電解液を供給する給液マニホールドを有する給液側片と、前記給液側片に対向し、前記電池セルの外部に電解液を排出する排液マニホールドを有する排液側片とを備え、
    前記双極板は、前記電極側の面に、前記給液マニホールドから供給される電解液が流通して前記排液マニホールドに排出する流通領域を備え、
    前記給液側片と前記排液側片とが対向する方向を縦方向、前記縦方向に直交する方向を横方向とするとき、
    前記流通領域は、
    前記縦方向に沿って設けられ、前記給液マニホールドから給液される電解液を前記縦方向に拡散させて前記電極へ導く給液整流部と、
    前記給液整流部の前記横方向両側に前記縦方向に沿って設けられ、電解液を集約して前記排液マニホールドへ流通させる排液整流部とを有する電解液循環型電池。
  2. 前記流通領域は、
    前記双極板の前記横方向両端に設けられる前記排液整流部と、
    前記排液整流部の間に設けられる前記給液整流部とを有する請求項1に記載の電解液循環型電池。
  3. 前記流通領域は、前記給液整流部と前記排液整流部との間に形成される平坦状面を有する請求項1又は請求項2に記載の電解液循環型電池。
  4. 前記流通領域は、前記給液整流部と前記排液整流部との間を電解液が流通する複数の溝部を有する流路を備え、
    前記流路は、
    電解液を前記電極に導入する導入路と、
    電解液を前記電極から排出する排出路とを備え、
    前記導入路と前記排出路とは、前記横方向に沿って形成される横溝部を有すると共に、互いに連通せず独立している請求項1又は請求項2に記載の電解液循環型電池。
  5. 前記導入路及び前記排出路が櫛歯形状の領域を備え、
    前記導入路と前記排出路とは、それぞれの櫛歯が互いに噛み合って対向するように配置されている請求項4に記載の電解液循環型電池。
JP2014225655A 2014-11-05 2014-11-05 電解液循環型電池 Pending JP2016091834A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014225655A JP2016091834A (ja) 2014-11-05 2014-11-05 電解液循環型電池
PCT/JP2015/079621 WO2016072254A1 (ja) 2014-11-05 2015-10-21 電解液循環型電池
TW104136315A TW201622223A (zh) 2014-11-05 2015-11-04 電解液循環型電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014225655A JP2016091834A (ja) 2014-11-05 2014-11-05 電解液循環型電池

Publications (1)

Publication Number Publication Date
JP2016091834A true JP2016091834A (ja) 2016-05-23

Family

ID=55908981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014225655A Pending JP2016091834A (ja) 2014-11-05 2014-11-05 電解液循環型電池

Country Status (3)

Country Link
JP (1) JP2016091834A (ja)
TW (1) TW201622223A (ja)
WO (1) WO2016072254A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012694A (ja) * 2018-09-20 2019-01-24 昭和電工株式会社 集電板
WO2019021440A1 (ja) * 2017-07-27 2019-01-31 住友電気工業株式会社 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
WO2020012617A1 (ja) * 2018-07-12 2020-01-16 住友電気工業株式会社 電池セル、セルスタック、及びレドックスフロー電池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT3378116T (pt) 2015-11-18 2021-09-22 Invinity Energy Systems Canada Corp Montagem de elétrodo e bateria de fluxo com melhor distribuição de eletrólito
US10615432B2 (en) 2016-11-16 2020-04-07 Sumitomo Electric Industries, Ltd. Cell frame, cell stack, and redox flow battery
US20180248217A1 (en) * 2016-11-16 2018-08-30 Sumitomo Electric Industries, Ltd. Cell frame, cell stack, and redox flow battery
CN110268566A (zh) * 2017-07-27 2019-09-20 住友电气工业株式会社 单元框架、单元组和氧化还原液流电池
WO2019234869A1 (ja) * 2018-06-06 2019-12-12 住友電気工業株式会社 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
US11769886B2 (en) * 2019-01-30 2023-09-26 Sumitomo Electric Industries, Ltd. Battery cell, cell stack, and redox flow battery
WO2020166418A1 (ja) * 2019-02-14 2020-08-20 住友電気工業株式会社 双極板、セルフレーム、セルスタック、およびレドックスフロー電池
US20220307487A1 (en) * 2021-03-25 2022-09-29 Honda Motor Co., Ltd. Support member for an electrochemical cell and electrochemical hydrogen compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010106463A (ko) * 1999-07-01 2001-11-29 추후제출 막 분리된 2극 멀티셀 전기화학 반응기
AU2011208458B2 (en) * 2010-01-25 2014-04-17 Ramot At Tel-Aviv University Ltd Bipolar plates and regenerative fuel cell stacks including same
KR101291753B1 (ko) * 2012-08-28 2013-07-31 한국에너지기술연구원 션트전류 저감을 위한 레독스 흐름전지용 매니폴드 및 이를 포함하는 레독스 흐름전지
ES2733715T3 (es) * 2012-11-30 2019-12-02 Hydraredox Tech Holdings Ltd Montaje placa de soporte-electrodo-membrana para una celda electroquímica de almacenamiento de energía de flujo redox

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021440A1 (ja) * 2017-07-27 2019-01-31 住友電気工業株式会社 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
JP6536867B1 (ja) * 2017-07-27 2019-07-03 住友電気工業株式会社 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
WO2020012617A1 (ja) * 2018-07-12 2020-01-16 住友電気工業株式会社 電池セル、セルスタック、及びレドックスフロー電池
JP2019012694A (ja) * 2018-09-20 2019-01-24 昭和電工株式会社 集電板

Also Published As

Publication number Publication date
WO2016072254A1 (ja) 2016-05-12
TW201622223A (zh) 2016-06-16

Similar Documents

Publication Publication Date Title
WO2016072254A1 (ja) 電解液循環型電池
US10593964B2 (en) Bipolar plate, cell frame, cell stack and redox-flow battery
JP6099005B2 (ja) 電池セル、およびレドックスフロー電池
KR20190015170A (ko) 쌍극판, 셀 프레임, 셀 스택, 및 레독스 플로우 전지
WO2016072191A1 (ja) 電池セル、およびレドックスフロー電池
US10615432B2 (en) Cell frame, cell stack, and redox flow battery
WO2016072255A1 (ja) 電解液循環型電池
JP2017208272A (ja) レドックスフロー電池
KR101856432B1 (ko) 쌍극판, 셀 프레임, 셀 스택, 및 레독스 플로우 전지
US20220093942A1 (en) Battery cell, cell stack, and redox flow battery
US20190348692A1 (en) Cell frame, cell stack, and redox flow battery
WO2018134955A1 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
WO2020158623A1 (ja) 電池セル、セルスタック、及びレドックスフロー電池
US10199664B2 (en) Frame body, cell frame, cell stack, and redox flow battery
US11811105B2 (en) Battery cell, cell stack, and redox flow battery
WO2018092216A1 (ja) セルフレーム、セルスタック、及びレドックスフロー電池
JP2020129502A (ja) 電池セル、セルスタック、及びレドックスフロー電池
JP2017147141A (ja) 燃料電池スタック