WO2019021440A1 - 双極板、セルフレーム、セルスタック、及びレドックスフロー電池 - Google Patents

双極板、セルフレーム、セルスタック、及びレドックスフロー電池 Download PDF

Info

Publication number
WO2019021440A1
WO2019021440A1 PCT/JP2017/027327 JP2017027327W WO2019021440A1 WO 2019021440 A1 WO2019021440 A1 WO 2019021440A1 JP 2017027327 W JP2017027327 W JP 2017027327W WO 2019021440 A1 WO2019021440 A1 WO 2019021440A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
bipolar plate
discharge
introduction
liquid reservoir
Prior art date
Application number
PCT/JP2017/027327
Other languages
English (en)
French (fr)
Inventor
桑原 雅裕
毅 寒野
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2018567319A priority Critical patent/JP6536867B1/ja
Priority to PCT/JP2017/027327 priority patent/WO2019021440A1/ja
Priority to TW107121076A priority patent/TW201911634A/zh
Publication of WO2019021440A1 publication Critical patent/WO2019021440A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to bipolar plates, cell frames, cell stacks, and redox flow batteries.
  • Patent documents 1 to 4 mainly include battery cells including a positive electrode supplied with a positive electrode electrolyte, a negative electrode supplied with a negative electrode electrolyte, and a diaphragm interposed between the positive electrode and the negative electrode.
  • a redox flow battery is disclosed which performs charging and discharging by supplying the electrolyte solution of each electrode to the electrode of each electrode as a component.
  • the battery cell is configured by arranging a set of cell frames so as to sandwich a laminate of a positive electrode, a diaphragm, and a negative electrode.
  • the cell frame includes a bipolar plate on which positive and negative electrodes are respectively disposed on the front and back surfaces, and a frame provided on an outer periphery of the bipolar plate.
  • Patent Documents 1 to 4 disclose a bipolar plate provided with a plurality of grooves through which an electrolytic solution flows in order to sufficiently spread the electrolytic solution to the electrodes of the respective electrodes in the battery cell.
  • the bipolar plate according to the present disclosure is A bipolar plate, which is disposed between a positive electrode and a negative electrode of a redox flow battery, and has a flow path through which an electrolytic solution flows on the opposite surface facing at least one of the positive electrode and the negative electrode.
  • the flow path is An electrolyte inlet on the lower side of the bipolar plate, An electrolyte outlet on the upper side of the bipolar plate, An introduction groove connected to the introduction port; And a discharge groove connected to the discharge port;
  • the introduction groove portion and the discharge groove portion are A communication portion having a locally small cross-sectional area and communicating the inlet and the outlet, Or a closed end that separates the introduction groove and the discharge groove from each other,
  • the introduction groove portion is A lower bending portion that bends toward the lower side of the bipolar plate midway in the longitudinal direction from the introduction port toward the tip of the introduction groove portion; And an introducing liquid reservoir for storing an electrolytic solution on the front end side of the introducing groove portion with respect to the lower bent portion.
  • a cell frame according to the present disclosure includes the bipolar plate according to the present disclosure, and a frame provided on an outer periphery of the bipolar plate.
  • a cell stack according to the present disclosure includes the cell frame according to the above-described present disclosure.
  • the redox flow battery according to the present disclosure includes the cell stack according to the above-described present disclosure.
  • FIG. 2 is an explanatory diagram of an operation principle of the redox flow battery according to Embodiment 1.
  • FIG. 1 is a schematic configuration view of a redox flow battery according to Embodiment 1.
  • FIG. 2 is a schematic configuration diagram of a cell stack according to Embodiment 1.
  • FIG. 1 is a schematic plan view showing a bipolar plate according to Embodiment 1;
  • FIG. 7 is a schematic plan view showing a bipolar plate according to Embodiment 2.
  • FIG. 10 is a schematic plan view showing a bipolar plate according to a third embodiment.
  • FIG. 10 is a schematic plan view showing a bipolar plate according to a fourth embodiment.
  • FIG. 14 is a schematic plan view showing a dipole plate according to Embodiment 5.
  • FIG. 16 is a schematic plan view showing a bipolar plate according to a sixth embodiment.
  • the supply of the electrolytic solution of each electrode to the positive electrode and the negative electrode is typically performed from the lower side to the upper side of the electrode of each electrode by a pump operation. Therefore, when the pump is stopped due to a power failure, the liquid level of the electrolytic solution in the battery cell is lowered due to its own weight, and it is not possible to maintain the state in which the electrode of each electrode is impregnated with the electrolytic solution.
  • the electrolyte supplied into the battery cells moves between the grooves along the flow along each groove and across ridges located between adjacent grooves. And the electrolyte can be distributed to the electrodes of each pole.
  • the bipolar plate has a groove, if the pump is stopped due to a power failure, the electrolyte in the groove is discharged to the outside of the battery cell from the inlet of the electrolyte by its own weight.
  • an object of the present disclosure is to provide a bipolar plate capable of storing an electrolytic solution inside a battery cell even during a power failure.
  • another object of the present disclosure is to provide a cell frame including the bipolar plate, a cell stack including the cell frame, and a redox flow battery including the cell stack.
  • the bipolar plate according to the embodiment of the present invention is A bipolar plate, which is disposed between a positive electrode and a negative electrode of a redox flow battery, and has a flow path through which an electrolytic solution flows on the opposite surface facing at least one of the positive electrode and the negative electrode.
  • the flow path is An electrolyte inlet on the lower side of the bipolar plate, An electrolyte outlet on the upper side of the bipolar plate, An introduction groove connected to the introduction port; And a discharge groove connected to the discharge port;
  • the introduction groove portion and the discharge groove portion are A communication portion having a locally small cross-sectional area and communicating the inlet and the outlet, Or a closed end that separates the introduction groove and the discharge groove from each other,
  • the introduction groove portion is A lower bending portion that bends toward the lower side of the bipolar plate midway in the longitudinal direction from the introduction port toward the tip of the introduction groove portion; And an introducing liquid reservoir for storing an electrolytic solution on the front end side of the introducing groove portion with respect to the lower bent portion.
  • the bipolar plate includes an introduction groove and a discharge groove as channels through which the electrolyte flows, and the introduction groove and the discharge groove communicate with each other having a locally small cross-sectional area, or the introduction groove and the discharge groove mutually
  • the introduction groove and the discharge groove can function as substantially independent grooves.
  • the introduction groove portion and the discharge groove portion functioning substantially independently, it is possible to form the flow of the electrolytic solution across the ridge portion located between the introduction groove portion and the discharge groove portion during the operation of the redox flow battery, The cell reaction can be promoted by the electrolytic solution crossing the buttocks.
  • the bipolar plate has an electrolyte inlet at the lower side of the bipolar plate and an outlet of the electrolyte at the upper side of the bipolar plate. Therefore, when the pump is stopped due to a power failure, the electrolyte in the discharge groove is discharged as it is It can be stored in the ditch. And by providing an introductory liquid storage part in an introductory groove part, when a pump stops by a power failure, a part of electrolyte solution in an introductory groove part can be stored in an introductory liquid reservoir part. Since the electrolyte can be stored in the introduction liquid reservoir in the discharge groove and in the introduction groove, the battery can be started by the stored electrolyte even when the pump is stopped due to a power failure.
  • the operation of the redox flow battery can be enabled by starting the pump by starting the battery.
  • the bipolar plate can store the electrolytic solution in both the discharge groove portion and the introduction groove portion, so that the battery can be started even when the pump is stopped during the discharge operation of the redox flow battery.
  • each of the introduction groove and the discharge groove may include a comb-tooth area which is engaged with each other and disposed to face each other.
  • the bipolar plate can form a battery reaction area crossing between the comb teeth in the meshed comb region by the introduction groove portion and the discharge groove portion being engaged with each other and disposed to face each other.
  • the amount of electrolyte crossing the space between the comb teeth is likely to increase as compared with the case where the introduction groove portion and the discharge groove portion are not meshed with each other, and therefore, the cell reaction can be further promoted.
  • the discharge groove portion is An upper bent portion which is bent toward the upper side of the bipolar plate midway in the longitudinal direction from the discharge port toward the tip of the discharge groove;
  • the introduction liquid reservoir and the discharge liquid reservoir may be provided in the communication unit.
  • the introductory liquid reservoir and the discharge liquid reservoir are communication parts having a locally small cross-sectional area, so that the introductory liquid reservoir and the discharge liquid reservoir are parts other than the introductory liquid reservoir of the introduction groove and the discharge groove
  • the high pressure loss is caused by the parts other than the liquid storage part.
  • the introduction liquid reservoir and the discharge liquid reservoir have a higher pressure loss than the other portions, so that the amount of electrolyte flowing to the introduction liquid reservoir and the discharge liquid reservoir during operation of the redox flow battery can be
  • the amount can be sufficiently smaller than the amount of electrolytic solution flowing to the portion other than the introduction liquid storage portion and the portion other than the discharge liquid storage portion of the discharge groove, and the introduction groove and the discharge groove can function as substantially independent grooves.
  • the introduction groove portion is provided with the introduction liquid reservoir portion
  • the discharge groove portion is provided with the discharge liquid reservoir portion, so that when the pump is stopped due to a power failure, part of the electrolyte in the introduction groove portion can be stored in the introduction liquid reservoir portion.
  • the amount of electrolyte stored in the discharge groove can be increased as compared to the case where the discharge liquid reservoir is not provided.
  • the width of the inflow fluid reservoir and the discharge fluid reservoir may be locally narrow.
  • the communication portion having a small cross-sectional area can be provided.
  • the introduced liquid reservoir and the discharged liquid reservoir may be locally shallow.
  • the electrode can easily enter the inside of the introduced liquid reservoir and the discharged liquid reservoir, and the electrode can not easily flow through the introduced liquid reservoir and the discharged liquid reservoir by this electrode, and the cross-sectional area of the communication portion Easy to make smaller. Moreover, even when the thickness of the bipolar plate is thin, it is possible to provide a communicating portion having a small cross-sectional area.
  • the state of charge (sometimes referred to as the charge depth) of the electrolyte stored in the inflow reservoir and the drain reservoir is uniform over the entire bipolar plate as compared to the case where all the units are in communication.
  • the discharge groove portion is An upper bent portion which is bent toward the upper side of the bipolar plate midway in the longitudinal direction from the discharge port toward the tip of the discharge groove; A discharge liquid reservoir for storing an electrolytic solution on the front end side of the discharge groove with respect to the upper bent portion;
  • the introduction groove portion and the discharge groove portion are separated from each other, The introduction liquid reservoir and the discharge liquid reservoir may be engaged with each other and disposed to face each other.
  • the discharge groove portion By providing the discharge groove portion with the discharge liquid storage portion, when the pump is stopped due to a power failure, the amount of electrolytic solution stored in the discharge groove portion can be increased compared to the case where the discharge liquid storage portion is not provided. Since the introduced liquid reservoir and the discharged liquid reservoir are engaged with each other and disposed opposite to each other, it is easy to quickly start the battery by the stored electrolytic solution.
  • the introduction groove portion is An introduction stem groove along the vertical direction of the bipolar plate; A plurality of introduction branch grooves extending in a direction intersecting the vertical direction of the bipolar plate midway in the longitudinal direction of the introduction trunk groove; And an inlet fluid reservoir at the end of the inlet branch groove,
  • the discharge groove portion is A discharge trunk groove along the vertical direction of the bipolar plate; A plurality of discharge branch grooves extending in a direction intersecting the vertical direction of the bipolar plate midway in the longitudinal direction of the discharge trunk groove; It is possible to provide the discharge liquid reservoir at the tip of the discharge branch groove.
  • a plurality of introduced liquid reservoirs are provided along the vertical direction of the introduction groove, and a plurality of discharged liquid reservoirs are provided along the vertical direction of the discharge groove, and the introduced liquid reservoir and the discharged liquid reservoir are engaged with each other and face each other. By being disposed, it is easy to start the battery early by the stored electrolytic solution.
  • a cell frame according to an embodiment of the present invention includes the bipolar plate according to any one of the above (1) to (9), and a frame provided on the outer periphery of the bipolar plate.
  • the electrolytic solution can be stored inside the battery cell even at the time of a power failure, and even if the pump is stopped by the power failure, the stored electrolysis The solution can start the battery.
  • a cell stack according to an embodiment of the present invention includes the cell frame described in (10) above.
  • the electrolyte can be stored inside the battery cell even at the time of a power failure, and even if the pump is stopped by the power failure, the stored electrolysis is performed.
  • the solution can start the battery.
  • a redox flow battery according to an embodiment of the present invention includes the cell stack described in (11) above.
  • the electrolytic solution can be stored inside the battery cell even at the time of power failure, and is stored even when the pump is stopped by the power failure.
  • the electrolytic solution can start the battery.
  • Embodiment 1 One of the features of the present embodiment is that the bipolar plate is provided with a configuration capable of storing the electrolytic solution inside the battery cell even at the time of a power failure.
  • the basic configurations of the redox flow battery, the cell stack, and the cell frame according to Embodiment 1 will be described with reference to FIGS. 1 to 4, and then, with reference to FIG.
  • the configuration of the bipolar plate provided in the cell frame (cell stack, redox flow battery) will be described in detail.
  • the redox flow battery (hereinafter referred to as RF battery) 1 typically includes a power generation unit, a load such as an electric power system or a consumer via an AC / DC converter, a substation, etc. Connected to charge the power generation unit as a power supply source and discharge the load as a power consumption target.
  • the power generation unit include a solar power generator, a wind power generator, and other general power plants.
  • the RF battery 1 includes a battery cell 100 separated into a positive electrode cell 102 and a negative electrode cell 103 by a diaphragm 101.
  • the positive electrode cell 102 contains a positive electrode 104 supplied with a positive electrode electrolyte
  • the negative cell 103 contains a negative electrode 105 supplied with a negative electrode electrolyte.
  • the positive electrode 104 and the negative electrode 105 are reaction sites where active material ions contained in the supplied electrolytic solution perform a battery reaction.
  • the diaphragm 101 is a thin film member which separates the positive electrode 104 and the negative electrode 105 and transmits predetermined ions.
  • a positive electrode circulation mechanism 100P for circulating and supplying the positive electrode electrolyte to the positive electrode cell 102 includes a positive electrode electrolyte tank 106 for storing the positive electrode electrolyte, conduits 108 and 110 for connecting the positive electrode electrolyte tank 106 and the positive cell 102, And a pump 112 provided in the conduit 108 on the upstream side (supply side).
  • a negative electrode circulation mechanism 100N for circulating and supplying the negative electrode electrolyte to the negative electrode cell 103 includes a negative electrode electrolyte tank 107 for storing the negative electrode electrolyte, conduits 109 and 111 for connecting the negative electrode electrolyte tank 107 and the negative cell 103, And a pump 113 provided in the conduit 109 on the upstream side (supply side).
  • the positive electrode electrolyte is supplied from the positive electrode electrolyte tank 106 to the positive electrode 104 via the conduit 108 on the upstream side, and returned from the positive electrode 104 to the positive electrolyte tank 106 via the conduit 110 on the downstream side (discharge side).
  • the negative electrode electrolyte is supplied from the negative electrode electrolyte tank 107 to the negative electrode 105 via the conduit 109 on the upstream side, and is supplied to the negative electrode electrolyte tank 107 from the negative electrode 105 via the conduit 111 on the downstream side (discharge side). Will be returned.
  • the circulation of the positive electrode electrolyte and the circulation of the negative electrode electrolyte circulate and supply the positive electrode electrolyte to the positive electrode 104, and circulate and supply the negative electrode electrolyte to the negative electrode 105, and the active material ions in the electrolyte of each electrode Charge and discharge are performed along with the valence change reaction.
  • vanadium ions shown in the positive electrode electrolyte tank 106 and the negative electrode electrolyte tank 107 show examples of ion species contained as an active material in the positive electrode electrolyte and in the negative electrode electrolyte.
  • solid arrows indicate charging, and broken arrows indicate discharging.
  • the RF battery 1 is typically used in a form called a cell stack 2 in which a plurality of battery cells 100 are stacked.
  • the cell stack 2 is, as shown in FIG. 3, a stacked body in which a cell frame 3, a positive electrode 104, a diaphragm 101, a negative electrode 105 and another cell frame 3 are repeatedly stacked, and a pair of end plates sandwiching the stacked body.
  • 210 and 220, and a connecting member 230 such as a long bolt connecting between the end plates 210 and 220 and a fastening member such as a nut.
  • the cell stack 2 uses a predetermined number of battery cells 100 as a sub stack 200, and is used in a form in which a plurality of sub stacks 200 are stacked.
  • the cell frame 3 includes a bipolar plate 4 disposed between the positive electrode 104 and the negative electrode 105 and a frame 5 provided on the outer periphery of the bipolar plate 4.
  • the bipolar plate 4 is made of a conductive member which allows current flow but does not flow electrolyte, and is disposed on one side to be in contact with the positive electrode 104 and on the other side to be in contact with the negative electrode 105. Be done.
  • the frame 5 forms a region to be the battery cell 100 inside.
  • the thickness of the frame 5 is larger than the thickness of the bipolar plate 4, and by surrounding the outer periphery of the bipolar plate 4 with the frame 5, the surface (rear surface) of the bipolar plate 4 and the surface (rear surface) of the frame 5 Thus, a step is formed inside to form a space in which the positive electrode 104 (negative electrode 105) is disposed.
  • the supply of the electrolytic solution of each electrode to the positive electrode 104 and the negative electrode 105 is performed by supplying liquid supply manifolds 51 and 52 formed on opposing pieces of the frame 5 in the cell frame 3 (the lower side in the drawing of FIG. 3). It is performed by the liquid supply guide grooves 51s and 52s.
  • the discharge of the electrolyte solution of each electrode from the positive electrode 104 and the negative electrode 105 is performed by the drainage manifolds 53 and 54 formed on the other facing pieces (the upper side of the drawing of FIG. 3) of the frame 5 and drainage guide grooves. It is performed by 53s and 54s.
  • the positive electrode electrolytic solution is supplied from the liquid supply manifold 51 to the positive electrode 104 through the liquid supply guide groove 51s formed on one surface side (surface side of the sheet) of the frame 5. Then, as shown by the arrows in the upper drawing of FIG. 3, the liquid flows from the lower side to the upper side of the positive electrode 104 to the upper side, and the drainage manifold 53 is formed via the drainage guide groove 53s formed on one surface side (surface side of the sheet) of the frame 5. Discharged into The supply and discharge of the negative electrode electrolyte is the same as the positive electrode electrolyte except that it is performed on the other surface side (the back side of the sheet) of the frame 5.
  • annular seal members 6 (FIGS. 2 and 3) such as O-rings and flat packings are disposed between the frames 5.
  • a seal groove 57 (see FIG. 4) for arranging the annular seal member 6 is formed on the frame 5 along the circumferential direction.
  • the basic configurations of the RF battery 1, the cell stack 2, and the cell frame 3 described above can appropriately use known configurations.
  • the bipolar plate 4A is a member corresponding to the bipolar plate 4 described above.
  • the upper drawing of FIG. 4 shows the flow of the electrolyte on the bipolar plate 4A during operation of the RF battery 1, and the lower drawing of FIG. 4 shows the bipolar plate 4A when the RF battery 1 is stopped (blackout)
  • the bipolar plate 4A is a rectangular flat plate as shown in FIG.
  • the positive electrode 104 and the negative electrode 105 of the adjacent battery cells 100 are respectively disposed on the front and back surfaces of the bipolar plate 4A (see FIGS. 2 and 3).
  • the bipolar plate 4A is disposed at a predetermined position of the RF battery 1 such that the opposing surface facing the positive electrode 104 and the opposing surface facing the negative electrode 105 are along the vertical direction.
  • the lower side in the vertical direction when the bipolar plate 4A is disposed at the predetermined position of the RF battery 1 is the lower side (lower side in the drawing of FIG. 4) of the bipolar plate 4A
  • the upper side in the vertical direction is the upper side of the bipolar plate 4A (FIG. 4)
  • the upper side of the paper The upper side of the paper).
  • the bipolar plate 4 ⁇ / b> A is provided with a flow path 40 through which an electrolytic solution flows, on each of the facing surface facing the positive electrode 104 and the facing surface facing the negative electrode 105.
  • the flow path 40 is provided in the battery cell 100 in order to adjust the flow of the electrolytic solution circulated to each of the positive electrode 104 and the negative electrode 105 by the pumps 112 and 113 (FIG. 1).
  • the flow path 40 includes an inlet 40i for the electrolytic solution, an outlet 40o for the electrolytic solution, and a groove 41 for guiding the electrolytic solution introduced from the inlet 40i to the outlet 40o through a predetermined path.
  • the inlet 40i is open at the lower edge of the bipolar plate 4A, and is connected to the liquid supply manifold 51 (52) (FIG. 3) via the liquid flow straightening unit 55 formed in the frame 5. .
  • the bipolar plate 4A is provided with a plurality of introduction grooves 42 (introduction ports 40i) in parallel.
  • the liquid feed straightening unit 55 diffuses the electrolytic solution from the liquid feed manifold 51 (52) in the parallel direction of the introduction groove portion 42 and supplies it to the introduction port 40i of each introduction groove portion 42.
  • the discharge port 40o is opened at the upper edge of the bipolar plate 4A, and is connected to the drainage manifold 53 (54) (FIG. 3) via a drainage straightening unit 56 formed in the frame 5.
  • the bipolar plate 4A is provided with a plurality of discharge grooves 43 (discharge ports 40o) in parallel.
  • the liquid discharge straightening unit 56 collects the electrolytic solution discharged from the discharge port 40 o of each of the discharge grooves 43 and guides it to the liquid discharge manifold 53 (54).
  • the groove portion 41 includes an introduction groove portion 42 connected to the introduction port 40i and a discharge groove portion 43 connected to the discharge port 40o.
  • a plurality of introduction grooves 42 and discharge grooves 43 are provided.
  • the introduction groove portion 42 and the discharge groove portion 43 are alternately arranged in parallel at predetermined intervals in a direction perpendicular to the vertical direction as well as along the vertical direction. That is, the introduction groove 42 and the discharge groove 43 are engaged with each other and disposed to face each other.
  • a collar 45 is formed between the introduction groove 42 and the discharge groove 43 adjacent to each other.
  • the bipolar plate 4A includes a plurality of units 44a in which the introduction groove portion 42 and the discharge groove portion 43 have a small cross-sectional area and are communicated by the high pressure loss communication portion, and adjacent units 44a exist independently of each other. It is one of the features. The form of communication between the introduction groove 42 and the discharge groove 43 will be described later.
  • the positive electrode electrolyte is circulated through the groove 41 provided on one surface of the bipolar plate 4A on which the positive electrode 104 is disposed opposite, and the groove 41 provided on the other surface of the bipolar plate 4A on which the negative electrode 105 is disposed opposite.
  • a negative electrode electrolyte is circulated.
  • the flow of the electrolytic solution in each battery cell 100 can be adjusted by the shape, size, and the like of the groove 41.
  • the size of the groove portion 41 is exaggerated and illustrated for easy understanding.
  • the ridge portion 45 is hatched in order to make it easy to understand.
  • the introduction groove part 42 and the discharge groove part 43 have shown only one part, and have abbreviate
  • the introduction groove portion 42 has a lower bent portion 420 which is bent toward the lower side of the bipolar plate 4A and an introduction groove portion 42 which is lower than the lower bend portion 420 in the longitudinal direction from the introduction port 40i to the tip of the introduction groove portion 42.
  • the discharge groove 43 has an upper bent portion 430 bent toward the upper side of the bipolar plate 4A and a discharge groove 43 than the upper bent portion 430 in the longitudinal direction from the discharge port 40o toward the tip of the discharge groove 43.
  • the introduction groove portion 42 and the discharge groove portion 43 communicate with each other by the communication portion formed by the introduction liquid reservoir portion 422 and the discharge liquid reservoir portion 432.
  • the boundary between the introduction groove 42 and the discharge groove 43 is the central portion in the vertical direction of the communication portion. That is, the inlet 40 i side is the introduction groove part 42 than the central part, and the discharge port 40 o side is the discharge groove part 43 than the central part.
  • the introduction groove portion 42 includes a longitudinal groove portion (introduction main groove portion 421) extending upward from the introduction port 40i, a lateral groove portion extending in the lateral direction of the bipolar plate 4A from the tip of the introduction main groove portion 421, and a lower bending portion 420 from the lateral groove portion. And a vertically extending groove (introductory liquid reservoir 422) extending downward.
  • the communication portion of the introduction groove portion 42 is configured by the lateral groove portion and the introduction liquid reservoir portion 422.
  • the discharge groove 43 has a vertical groove (discharge main groove 431) extending downward from the discharge port 40o, a horizontal groove extending in the lateral direction of the bipolar plate 4A from the tip of the discharge main groove 431, and an upper bend from the horizontal groove And a vertical groove (discharge liquid reservoir 432) extending upward at the portion 430.
  • the communication portion of the discharge groove portion 43 is configured by the horizontal groove portion and the liquid discharge reservoir portion 432.
  • the introduced liquid storage section 422 and the discharged liquid storage section 432 have a role of a communication section that brings the inlet 40i and the outlet 40o into communication with each other.
  • the introduced liquid reservoir 422 and the discharged liquid reservoir 432 are disposed so as to communicate the pair of the introduction groove 42 and the discharge groove 43 adjacent to each other.
  • a unit 44a of a pair of the introduction groove portion 42 and the discharge groove portion 43 in which the introduction port 40i and the discharge port 40o communicate with each other is formed by the number of the introduction groove portions 42 (discharge groove portions 43).
  • the adjacent units 44a exist independently without communicating with each other.
  • the introduction liquid reservoir 422 and the discharge liquid reservoir 432 have a cross-sectional area smaller than the cross-sectional area of the introduction groove 42 other than the introduction liquid reservoir 422 and the cross-sectional area of the discharge groove 43 other than the drainage liquid reservoir 432.
  • the cross-sectional area of the introduction groove portion 42 other than the introduction liquid reservoir portion 422 is the cross-sectional area of the introduction groove portion 42 (introduction main groove portion 421) from the introduction port 40i to the lower bent portion 420.
  • the introduction main groove 421 has a uniform width and depth along the longitudinal direction.
  • the cross-sectional area of the discharge groove 43 other than the liquid storage portion 432 is the cross-sectional area of the discharge groove 43 (discharge main groove 431) from the discharge port 40o to the upper bent portion 430.
  • the main discharge groove 431 has a uniform width and depth along the longitudinal direction.
  • the introduction liquid reservoir 422 and the discharge liquid reservoir 432 have a cross-sectional area smaller than the cross-sectional area of each of the introduction main groove 421 and the discharge main groove 431, so that high pressure is applied to the introduction main groove 421 and the discharge main groove 431. It will be a loss.
  • the cross sectional area of the introduced liquid reservoir 422 and the discharged liquid reservoir 432 is, for example, 1% or more and 50% or less, and further 5% or more and 30% or less of the cross sectional area of the introduced main groove 421 and the discharged main groove 431.
  • the introductory liquid reservoir 422 and the discharge liquid reservoir 432 have the introductory main groove 421 and the discharge liquid so that the inflow liquid reservoir 422 and the discharge liquid reservoir 432 have high pressure loss with respect to the introduction main groove 421 and the discharge main groove 431.
  • the width may be smaller than the width of the main groove portion 431.
  • the width of the introductory main groove 421 and the discharge main groove 431 is, for example, 0.1 mm or more and 10 mm or less, and further 0.5 mm or more and 2.5 mm or less so that the cross-sectional area becomes sufficiently large.
  • the widths of the introduced liquid reservoir 422 and the discharged liquid reservoir 432 are, for example, 1% or more and 50% or less, and further 5% or more and 30% or less of the widths of the introduction main groove 421 and the discharge main groove 431.
  • the width of the introduction main groove 421 and the width of the discharge main groove 431 are the same, but may be different.
  • the widths of the introduced liquid reservoir 422 and the discharged liquid reservoir 432 are higher than that of the main grooves 421, 431 according to the width of the main grooves 421, 431 connected to the respective liquid reservoirs 422, 432. It may be selected as appropriate.
  • the distance between adjacent groove portions 41 (between the introduction main groove portion 421 and the discharge main groove portion 431), that is, the width of the ridge 45 is 100% or more and 700% or less of the width of the introduction main groove portion 421 and the discharge main groove portion 431. And 200% or more and 500% or less.
  • the introduced liquid reservoir 422 and the discharged liquid reservoir 432 are formed within the width of the ridge 45.
  • the introductory liquid reservoir 422 and the discharge liquid reservoir 432 have the introductory main groove 421 and the discharge liquid so that the inflow liquid reservoir 422 and the discharge liquid reservoir 432 have high pressure loss with respect to the introduction main groove 421 and the discharge main groove 431. It has a depth shallower than the depth of the main groove 431.
  • the depths of the introduction main groove 421 and the discharge main groove 431 may be 5% or more and 45% or less of the thickness of the bipolar plate 4A.
  • the depth of the groove 41 may be 20% of the thickness of the bipolar plate 4A because the mechanical strength may be reduced if the depth of the groove 41 is too deep. More than 40% is more preferable.
  • the depths of the introduced liquid reservoir 422 and the discharged liquid reservoir 432 are, for example, 1% or more and 50% or less, and further 5% or more and 30% or less of the depths of the introduction main groove 421 and the discharge main groove 431.
  • the depth of the introduction main groove 421 and the depth of the discharge main groove 431 are the same, but may be different. In that case, the depths of the introduced liquid reservoir 422 and the discharged liquid reservoir 432 are higher than those of the main grooves 421, 431 according to the depths of the main grooves 421, 431 connected to the respective liquid reservoirs 422, 432. It may be selected as appropriate.
  • the electrolyte introduced from the liquid supply manifold 51 (52) to the liquid supply straightening unit 55 is distributed to each inlet 40i. And flows through the introduction main groove 421 of the introduction groove 42 from each introduction port 40i and spreads over the entire surface of the bipolar plate 4A.
  • the electrolyte flowing into the introduction main groove 421 penetrates the electrode disposed on the surface of the bipolar plate 4A, and flows to the discharge main groove 431 of the discharge groove 43 adjacent to the introduction groove 42 across the surface of the bipolar plate 4A.
  • the electrolytic solution flowing to the main drain groove portion 431 is discharged and collected from the discharge port 40o to the drainage rectification portion 56, and is discharged from the drainage manifold 53 (54) to the outside of the battery cell 100. That is, the flow of the electrolyte on the bipolar plate 4A is the flow along the introduction main groove 421 and the discharge main groove 431 (the direction of the solid line arrow shown in the upper view of FIG. 4), the introduction main groove 421 and the discharge main groove A flow (in the direction of the broken arrow shown in the upper view of FIG. 4) is formed so as to extend in the lateral direction (left and right direction in FIG. 4) via the ridge portion 45 between 431 and 431.
  • the introduction groove portion 42 and the discharge groove portion 43 which are adjacent to each other communicate with each other at a communication portion (the introduction liquid reservoir 422 and the discharge liquid reservoir 432).
  • the introduced liquid reservoir 422 and the discharged liquid reservoir 432 have a smaller cross-sectional area than the introduced main groove 421 and the discharged main groove 431 and have high pressure loss, the introduced liquid reservoir 422 and The electrolyte is more likely to flow through the introductory main groove 421 and the discharge main groove 431 which have a lower pressure loss than the discharge liquid reservoir 432.
  • the amount of electrolytic solution flowing to the introduced liquid reservoir 422 and the discharged liquid reservoir 432 can be sufficiently smaller than the amount of electrolytic solution flowing to the introduction main groove 421 and the discharge main groove 431. Even if communication is made from the inlet 40i to the outlet 40o, if the amount of electrolytic solution flowing to the introduced liquid reservoir 422 and the discharged liquid reservoir 432 is small, the electrolysis is discharged unreacted from the battery cell 100 (FIG. 1). The amount of liquid can be reduced, and by forming the flow of the electrolytic solution across the ridge portion 45, the battery reaction can be sufficiently performed, and the battery efficiency is hardly disturbed.
  • the electrolyte can be stored in the introduction liquid reservoir 422 in the discharge groove 43 and in the introduction groove 42, even if the pumps 112 and 113 are stopped due to a power failure or the like, the stored electrolytic solution of the RF battery 1 You can start it.
  • the amount of electrolytic solution stored in one bipolar plate 4A is relatively small, a considerable amount of electrolytic solution can be stored in the entire cell stack 2 in which a large number of cell frames 3 are stacked. It is sufficient to obtain enough power to start up.
  • the pumps 112 and 113 can be started by starting the RF battery 1, thereafter, the pumps 112 and 113 are continuously operated using the power of the RF battery 1 and the power is supplied to the system from the RF battery 1. can do. Further, in the bipolar plate 4A, even when the RF battery 1 is intentionally stopped, the stored electrolytic solution can start the RF battery 1 at an early stage.
  • the introduction is performed.
  • the state of charge of the electrolyte can be made uniform over the entire bipolar plate 4A, as compared to the case where there is only one port 40i and only one outlet 40o and all the units 44a are in communication.
  • Embodiment 2 The bipolar plate 4B according to the second embodiment will be described with reference to FIG.
  • the upper view of FIG. 5 shows the flow of the electrolyte on the bipolar plate 4B during operation of the RF battery 1
  • the lower view of FIG. 5 shows the electrolysis on the bipolar plate 4B during stoppage (power failure) of the RF battery 1. Indicates the liquid storage condition.
  • the bipolar plate 4B according to the second embodiment is characterized in that the introduction groove 42 and the discharge groove 43 are separated from each other, and the introduced liquid reservoir 422 and the discharged liquid reservoir 432 are engaged with each other and disposed to face each other.
  • the introduction groove 42 includes a longitudinal groove (introduction main groove 421) extending upward from the introduction port 40i, a lateral groove extending in the lateral direction of the bipolar plate 4B from the tip of the introduction main groove 421, and a lower bending portion 420 from the lateral groove. And a vertically extending groove (introductory liquid reservoir 422) extending downward.
  • the introduction groove 42 has a uniform width and depth along its longitudinal direction. That is, in the introduction groove portion 42, the introduction main groove portion 421 and the introduction liquid reservoir portion 422 have substantially the same pressure loss. The width and the depth of the introductory liquid reservoir 422 can be appropriately selected so that the pressure loss can flow through the electrolyte during operation of the RF battery 1.
  • the introduced liquid reservoir 422 can function as a flow path of the electrolyte during operation of the RF battery 1. Moreover, the cross-sectional area of the introductory liquid storage part 422 can be enlarged compared with Embodiment 1, and the amount of electrolyte solution which can be stored can be increased. The cross sectional area of the inflow reservoir 422 may be smaller than the cross sectional area of the introductory main groove 421.
  • the discharge groove 43 includes a vertical groove (discharge main groove 431) extending downward from the discharge port 40o, a horizontal groove extending in the lateral direction of the bipolar plate 4A from the tip of the discharge main groove 431, and an upper bent portion 430 from the horizontal groove. And a longitudinally extending groove (discharge liquid reservoir 432) extending upward.
  • the discharge groove 43 has a uniform width and depth along its longitudinal direction. That is, in the discharge groove portion 43, the discharge main groove portion 431 and the discharge liquid reservoir portion 432 have substantially the same pressure loss. The width and depth of the discharge liquid reservoir 432 can be appropriately selected so that the pressure loss can flow through the electrolyte during operation of the RF battery 1.
  • the discharge liquid reservoir 432 can function as a flow path of the electrolyte during operation of the RF battery 1. Moreover, the cross-sectional area of the discharge liquid storage part 432 can be enlarged compared with Embodiment 1, and the amount of electrolyte solution which can be stored can be increased. The cross-sectional area of the drain liquid reservoir 432 may be smaller than the cross-sectional area of the main drain groove 431.
  • the introduction groove portion 42 and the discharge groove portion 43 have closed end portions separated from each other.
  • the introduction groove portion 42 has a closed end portion at the tip end (lower end portion) when the introduction port 40i is at the start end
  • the discharge groove portion 43 has a tip end portion (upper end when the discharge port 40o is at the start end Section) with a closed end.
  • the drainage liquid reservoir 432 is folded back at the upper bending portion 430 and extended upward so as to be interposed between the introduction main groove 421 and the introduction liquid reservoir 422 with respect to the adjacent introduction groove 42. It is arranged.
  • the units 44b adjacent to each other exist independently without communicating with each other.
  • the flow of the electrolyte on the bipolar plate 4B is a flow along the introduction groove 42 and the discharge groove 43 (solid arrow shown in the upper drawing of FIG. And the flow (in the direction of the broken arrow shown in the upper view of FIG. 5) such that it crosses in the lateral direction (left and right direction in FIG. 5) via the ridge 45 between the introduction groove 42 and the discharge groove 43
  • the flow along the introduction groove 42 forms a flow from the introduction main groove 421 to the introduction liquid reservoir 422, and the flow along the discharge groove 43 flows from the discharge liquid reservoir 432 to the discharge main groove 431.
  • the electrolyte can be stored in the introduction groove in the discharge groove 43 and in the introduction groove 42, so that even if the pumps 112 and 113 stop due to a power failure or the like as in the first embodiment, the solution is stored.
  • the electrolyte solution can start the RF battery 1.
  • the introduced liquid reservoir 422 and the discharged liquid reservoir 432 are not in communication with each other and are engaged with each other so as to face each other, so that the battery reaction can be efficiently performed by the stored electrolytic solution. Easy to do early.
  • Embodiment 3 The bipolar plate 4C according to the third embodiment will be described with reference to FIG.
  • the upper drawing of FIG. 6 shows the flow of the electrolyte on the bipolar plate 4C during operation of the RF battery 1
  • the lower drawing of FIG. 6 shows the electrolysis on the bipolar plate 4C when the RF battery 1 is stopped (blackout) Indicates the liquid storage condition.
  • the bipolar plate 4C includes two introductory liquid reservoirs 422 in one introduction groove 42 and two drain liquid reservoirs 432 in one discharge groove 43, and the introductory liquid reservoir 422 and the drainage
  • the liquid reservoirs 432 and the liquid reservoirs 432 are not in communication and are engaged with each other and disposed to face each other.
  • the introduction groove portion 42 includes a longitudinal groove portion (introduction main groove portion 421) extending upward from the introduction port 40i, two lateral groove portions extending respectively in the left-right direction of the bipolar plate 4C from the tip of the introduction main groove portion 421, and a lower portion from each lateral groove portion. And a longitudinal groove (introductory liquid reservoir 422) extending downward at the side bend 420.
  • the width of the inflow liquid reservoir 422 is narrower than the widths of the introductory main groove 421 and the lateral groove.
  • the discharge groove portion 43 includes a vertical groove portion (discharge main groove portion 431) extending downward from the discharge port 40o, two horizontal groove portions extending in the lateral direction of the bipolar plate 4C from the tip of the discharge main groove portion 431, and an upper side from each horizontal groove portion. And a vertical groove (discharge liquid reservoir 432) extending at the bent portion 430 and extending upward.
  • the width of the drain liquid reservoir 432 is narrower than the widths of the main drain groove 431 and the lateral groove.
  • the introduction groove portion 42 and the discharge groove portion 43 have closed end portions separated from each other.
  • the introduction groove portion 42 is provided with a closed end at each of the tip end portions (lower end portion) when the introduction port 40i is at the start end
  • the discharge groove portion 43 is a tip end portion when the discharge port 40o is at the start end.
  • Each of the (upper end) is provided with a closed end.
  • the introductory liquid reservoir 422 is folded back at the lower bending portion 420 so as to be interposed between the discharge main groove 431 and the drainage liquid reservoir 432 with respect to the adjacent discharge groove 43, and is disposed extending downward. ing.
  • the drainage liquid reservoir 432 is folded back at the upper bending portion 430 and extended upward so as to be interposed between the introduction main groove 421 and the introduction liquid reservoir 422 with respect to the adjacent introduction groove 42. It is arranged.
  • the electrolyte can be stored in the introduction groove in the discharge groove 43 and in the introduction groove 42, so that even if the pumps 112 and 113 stop due to a power failure or the like as in the first embodiment, the solution is stored.
  • the electrolyte solution can start the RF battery 1.
  • the bipolar plate 4C is provided with two introductory liquid reservoirs 422 and two drainage liquid reservoirs 432 in the introduction groove 42 and the discharge groove 43, respectively, and the respective introduction liquid reservoirs 422 and the drainage liquid reservoir 432 do not communicate with each other. Since they are engaged with each other and arranged to face each other, the battery reaction can be efficiently performed by the stored electrolytic solution, and the RF battery 1 can be easily activated early.
  • Embodiment 4 The bipolar plate 4D according to the fourth embodiment will be described with reference to FIG.
  • the upper view of FIG. 7 shows the flow of the electrolyte on the bipolar plate 4D during operation of the RF battery 1
  • the lower view of FIG. 7 shows the electrolysis on the bipolar plate 4D during stop of the RF battery 1 (power failure). Indicates the liquid storage condition.
  • the bipolar plate 4D includes a plurality of introduced liquid reservoirs 422 along the longitudinal direction of the introduction groove 42, and includes a plurality of liquid reservoirs 432 along the longitudinal direction of the discharge groove 43.
  • One feature is that the fluid reservoir 422 and the fluid reservoir 432 are not in communication and are engaged with each other and disposed opposite to each other.
  • the introduction groove portion 42 is extended in a direction intersecting the vertical direction of the bipolar plate 4D halfway through the introduction trunk groove portion (introduction main groove portion) 421 extending upward from the introduction port 40i and the introduction trunk groove portion 421. And an introduction branch groove portion 423.
  • the width of the introduction branch groove 423 is smaller than the width of the introduction trunk groove 421.
  • the introduction branch groove portion 423 is a lower bent portion 420 that bends downward in the bipolar plate 4D halfway in the longitudinal direction toward the tip, and an introduced liquid reservoir portion that stores the electrolyte on the tip side of the lower bend portion 420. And 422.
  • the discharge groove portion 43 is extended in a direction intersecting the vertical direction of the bipolar plate 4D in the middle of the discharge trunk groove portion (discharge main groove portion) 431 extending downward from the discharge port 40o and the discharge trunk groove portion 431 in the longitudinal direction. And a discharge branch groove portion 433.
  • the width of the discharge branch groove portion 433 is smaller than the width of the discharge trunk groove portion 431.
  • the discharge branch groove portion 433 has an upper bent portion 430 which is bent toward the upper side of the bipolar plate 4D halfway in the longitudinal direction toward the tip, and a discharge liquid reservoir portion 432 which stores the electrolytic solution on the tip side of the upper bent portion 430. Equipped with
  • the introduction groove portion 42 and the discharge groove portion 43 have closed end portions which are separated from each other. Specifically, the introduction groove 42 has a closed end at the tip of each introduction branch groove 423, and the discharge groove 43 has a closed end at the tip of each discharge branch 433.
  • the introduced liquid reservoir 422 and the discharged liquid reservoir 432 are engaged with each other without being in communication with each other.
  • the introductory liquid reservoir 422 is folded back at the lower bending portion 420 and extended downward so as to be interposed between the discharge trunk groove 431 and the drainage liquid reservoir 432 with respect to the adjacent discharge groove 43. ing.
  • the drainage liquid reservoir 432 is folded back at the upper bending portion 430 and extended upward so as to be interposed between the introduction trunk groove 421 and the introduction liquid reservoir 422 with respect to the adjacent introduction groove 42. It is arranged.
  • the introduction branch groove portion 423 is extended on both sides of the introduction trunk groove portion 421, and the discharge branch groove portion 433 is extended on both sides of the discharge trunk groove portion 431. Therefore, the introduced liquid reservoir 422 and the discharged liquid reservoir 432 are engaged with each other on both sides of the trunk grooves 421 and 431 so as to be opposed to each other.
  • the flow of the electrolyte on the bipolar plate 4D is a flow along the introduction groove 42 and the discharge groove 43 (solid arrow shown in the upper drawing of FIG. And the flow (in the direction of the broken arrow shown in the upper view of FIG. 7) such that it crosses in the lateral direction (left and right direction in FIG. 7) via the ridge 45 between the introduction groove 42 and the discharge groove 43
  • the flow along the introduction groove 42 forms a flow from the introduction trunk groove 421 to the introduction liquid reservoir 422, and the flow along the discharge groove 43 flows from the discharge liquid reservoir 432 to the discharge trunk groove 431.
  • the bipolar plate 4D when the pumps 112 and 113 (FIGS. 1 and 2) stop due to a power failure or the like, as shown in the lower diagram of FIG. 7 is partially stored in the introductory solution reservoir 422 (the downward hatching in the lower part of FIG. 7), and the others are stored in the 4 are discharged to the outside of the battery cell 100 from the inlet 40i through the liquid flow straightening unit 55 and the liquid supply manifold 51 (52) of FIG.
  • the electrolyte can be stored in the introduction groove in the discharge groove 43 and in the introduction groove 42, so that even if the pumps 112 and 113 stop due to a power failure or the like as in the first embodiment, the solution is stored.
  • the electrolyte solution can start the RF battery 1.
  • the bipolar plate 4D includes a plurality of introduced liquid reservoirs 422 and a discharged liquid reservoir 432 along the longitudinal direction of the introduction groove 42 and the discharged groove 43, and each introduced liquid reservoir 422 and the discharged liquid reservoir 432 are not Since they are engaged with each other in communication and opposed to each other, battery reactions can be efficiently performed by the stored electrolytic solution, and the RF battery 1 can be easily activated at an early stage.
  • Embodiment 5 The bipolar plate 4E according to the fifth embodiment will be described with reference to FIG.
  • the upper drawing of FIG. 8 shows the flow of the electrolyte on the bipolar plate 4E during operation of the RF battery 1
  • the lower drawing of FIG. 8 shows the electrolysis on the bipolar plate 4E when the RF battery 1 is stopped (blackout) Indicates the liquid storage condition.
  • the bipolar plate 4E according to the fifth embodiment is characterized in that each of the introduction groove portion 42 and the discharge groove portion 43 is formed in a spiral shape which is separated from each other.
  • the introduction groove portion 42 includes a horizontal groove portion and a vertical groove portion that form a spiral from the introduction port 40i toward the center of the bipolar plate 4E.
  • the lateral groove portion of the introduction groove portion 42 is connected to the introduction port 40i.
  • the introduction groove 42 constitutes two layers of spirals, and two horizontal grooves and two longitudinal grooves which constitute the outer side of the spiral and one horizontal groove which constitutes the inner side of the spiral. Provided with two flutes.
  • the introduction groove portion 42 is provided with a lower bending portion 420 which is bent toward the lower side of the bipolar plate 4E in the middle of its longitudinal direction in forming a spiral.
  • An introduction liquid reservoir 422 for storing an electrolytic solution is provided on the tip side of the introduction groove 42 with respect to the lower bent portion 420.
  • the discharge groove portion 43 includes a horizontal groove portion and a vertical groove portion that form a spiral from the discharge port 40o toward the center of the bipolar plate 4E.
  • the lateral groove portion of the discharge groove portion 43 is connected to the discharge port 40o.
  • the discharge groove portion 43 constitutes a spiral of two layers, and two horizontal groove portions and two longitudinal groove portions constituting the outer side of the spiral and one horizontal groove portion constituting the inner side of the spiral. Provided with two flutes.
  • the discharge groove part 43 is provided with the upper side bending part 430 bent toward the upper side of the bipolar
  • a discharge liquid reservoir 432 for storing the electrolytic solution is provided on the tip side of the discharge groove 43 with respect to the upper bent portion 430.
  • the inlet 40i and the outlet 40o are located approximately diagonally. Accordingly, by arranging the introduction groove 42 and the discharge groove 43 concentrically, it is possible to form a spiral so as to be engaged with each other and arranged to face each other. When viewed from the center of the spiral to the outer peripheral side, the introduction groove portion 42 and the discharge groove portion 43 are alternately juxtaposed, and a closed end portion is provided at the center side end of the spiral of each groove portion 42, 43.
  • the electrolyte can be stored in the introduction groove in the discharge groove 43 and in the introduction groove 42, so that even if the pumps 112 and 113 stop due to a power failure or the like as in the first embodiment, the solution is stored.
  • the electrolyte solution can start the RF battery 1.
  • the bipolar plate 4E easily increases the area where the introduction groove portion 42 and the discharge groove portion 43 are engaged with each other to be opposed to each other, and the introduction liquid reservoir 422 can be arranged at the central portion of the bipolar plate 4E.
  • the battery reaction can be efficiently performed, and the RF battery 1 can be easily activated at an early stage.
  • Embodiment 6 The bipolar plate 4F according to the sixth embodiment will be described with reference to FIG. Similar to the bipolar plate 4E according to Embodiment 5, the bipolar plate 4F according to Embodiment 6 is characterized in that each of the introduction groove portion 42 and the discharge groove portion 43 is configured in a spiral shape divided from each other. .
  • the bipolar plate 4F according to the sixth embodiment is different from the bipolar plate 4E according to the fifth embodiment in that the inlet 40i and the outlet 40o are respectively connected to the vertical groove, and the other points are the same.
  • the flow of the electrolyte on the bipolar plate 4F is along the introduction groove 42 and the discharge groove 43 during operation of the RF battery 1 similarly to the bipolar plate 4E according to the fifth embodiment.
  • Flow in the direction of the dashed arrow shown in the left view of FIG. 9).
  • the electrolytic solution in the discharge groove 43 is stored as it is in the discharge groove 43 including the discharge liquid storage 432 (slant hatching in the lower left of the right in FIG. 9).
  • Part of the electrolyte inside is stored in the introductory solution reservoir 422 (diagonal hatching downward to the right in the right figure of FIG. 9), and the other part is from the inlet 40i to the liquid flow straightening part 55 of FIG.
  • the battery is discharged to the outside of the battery cell 100 through 51 (52).
  • the present invention is not limited to these exemplifications, is shown by the claims, and is intended to include all modifications within the scope and meaning equivalent to the claims.
  • the specification the size, shape, number, etc. of the introduction groove and the discharge groove
  • the liquid supply straightening unit and the drain straightening unit may be grooves formed in the bipolar plate.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

電解液が流通する流路を備える双極板であって、前記流路は、前記双極板の下側に電解液の導入口と、前記双極板の上側に電解液の排出口と、前記導入口に繋がる導入溝部と、前記排出口に繋がる排出溝部とを備え、前記導入溝部及び前記排出溝部は、局所的に小さな断面積を有し、前記導入口と前記排出口とを連通させる連通部、又は、前記導入溝部及び前記排出溝部を互いに分断する閉端部を備え、前記導入溝部は、前記導入口から前記導入溝部の先端に向かう長手方向の途中で、前記双極板の下側に向かって屈曲する下側屈曲部と、前記下側屈曲部よりも前記導入溝部の先端側に電解液を貯留する導入液溜め部とを備える双極板。

Description

双極板、セルフレーム、セルスタック、及びレドックスフロー電池
 本発明は、双極板、セルフレーム、セルスタック、及びレドックスフロー電池に関する。
 特許文献1~4には、正極電解液が供給される正極電極と、負極電解液が供給される負極電極と、正極電極と負極電極との間に介在される隔膜とを備える電池セルを主な構成要素とし、各極の電極に各極の電解液を供給して充放電を行うレドックスフロー電池が開示されている。上記電池セルは、正極電極、隔膜、負極電極の積層物を挟むように一組のセルフレームが配置されて構成される。セルフレームは、表裏面に正極電極及び負極電極がそれぞれ配置される双極板と、双極板の外周に設けられる枠体とを備える。
 特許文献1~4には、電池セル内の各極の電極に十分に電解液を行き渡らせるために、電解液が流通する複数の溝部を備える双極板が開示されている。
特開2015-122230号公報 特開2015-122231号公報 特開2015-138771号公報 特開2015-210849号公報
 本開示に係る双極板は、
 レドックスフロー電池の正極電極と負極電極との間に配置され、前記正極電極及び前記負極電極の少なくとも一方の電極に対向する対向面に、電解液が流通する流路を備える双極板であって、
 前記対向面が鉛直方向に沿うように、前記双極板をレドックスフロー電池の所定位置に配置したときの鉛直方向下側を前記双極板の下側、鉛直方向上側を前記双極板の上側とするとき、
 前記流路は、
  前記双極板の下側に電解液の導入口と、
  前記双極板の上側に電解液の排出口と、
  前記導入口に繋がる導入溝部と、
  前記排出口に繋がる排出溝部とを備え、
 前記導入溝部及び前記排出溝部は、
  局所的に小さな断面積を有し、前記導入口と前記排出口とを連通させる連通部、
  又は、前記導入溝部及び前記排出溝部を互いに分断する閉端部を備え、
 前記導入溝部は、
  前記導入口から前記導入溝部の先端に向かう長手方向の途中で、前記双極板の下側に向かって屈曲する下側屈曲部と、
  前記下側屈曲部よりも前記導入溝部の先端側に電解液を貯留する導入液溜め部とを備える。
 本開示に係るセルフレームは、上記本開示に係る双極板と、前記双極板の外周に設けられる枠体とを備える。
 本開示に係るセルスタックは、上記本開示に係るセルフレームを備える。
 本開示に係るレドックスフロー電池は、上記本開示に係るセルスタックを備える。
実施形態1に係るレドックスフロー電池の動作原理の説明図である。 実施形態1に係るレドックスフロー電池の概略構成図である。 実施形態1に係るセルスタックの概略構成図である。 実施形態1に係る双極板を示す概略平面図である。 実施形態2に係る双極板を示す概略平面図である。 実施形態3に係る双極板を示す概略平面図である。 実施形態4に係る双極板を示す概略平面図である。 実施形態5に係る双極板を示す概略平面図である。 実施形態6に係る双極板を示す概略平面図である。
 [本開示が解決しようとする課題]
 電力供給源に停電が起こった場合、外部系統からの電力供給なしに電池の起動を行うことが望まれている。
 正極電極及び負極電極への各極の電解液の供給は、代表的には、ポンプ動作により各極の電極の下側から上側に向かって行われている。そのため、停電によってポンプが停止すると、自重により電池セル内の電解液の液面が下がり、各極の電極に電解液が含浸された状態を保持できない。
 溝部を有する双極板では、レドックスフロー電池の運転時、電池セル内に供給された電解液は、各溝部に沿った流れと、隣り合う溝部間に位置する畝部を渡って溝部間を移動するような流れとを形成し、各極の電極に電解液を行き渡らせることができる。しかし、溝部を有する双極板であっても、停電によってポンプが停止すると、溝部内の電解液は、自重により電解液の導入口から電池セルの外部に排出されてしまう。
 そこで、本開示は、停電時にも電池セルの内部に電解液を貯留可能な双極板を提供することを目的の一つとする。また、本開示は、上記双極板を備えるセルフレーム及びこのセルフレームを備えるセルスタック、並びにこのセルスタックを備えるレドックスフロー電池を提供することを別の目的の一つとする。
 [本開示の効果]
 本開示によれば、停電時にも電池セルの内部に電解液を貯留可能である双極板、セルフレーム、セルスタック、及びレドックスフロー電池を提供できる。
 [本発明の実施形態の説明]
 最初に、本発明の実施形態の内容を列記して説明する。
 (1)本発明の実施形態に係る双極板は、
 レドックスフロー電池の正極電極と負極電極との間に配置され、前記正極電極及び前記負極電極の少なくとも一方の電極に対向する対向面に、電解液が流通する流路を備える双極板であって、
 前記対向面が鉛直方向に沿うように、前記双極板をレドックスフロー電池の所定位置に配置したときの鉛直方向下側を前記双極板の下側、鉛直方向上側を前記双極板の上側とするとき、
 前記流路は、
  前記双極板の下側に電解液の導入口と、
  前記双極板の上側に電解液の排出口と、
  前記導入口に繋がる導入溝部と、
  前記排出口に繋がる排出溝部とを備え、
 前記導入溝部及び前記排出溝部は、
  局所的に小さな断面積を有し、前記導入口と前記排出口とを連通させる連通部、
  又は、前記導入溝部及び前記排出溝部を互いに分断する閉端部を備え、
 前記導入溝部は、
  前記導入口から前記導入溝部の先端に向かう長手方向の途中で、前記双極板の下側に向かって屈曲する下側屈曲部と、
  前記下側屈曲部よりも前記導入溝部の先端側に電解液を貯留する導入液溜め部とを備える。
 上記双極板は、電解液が流通する流路として導入溝部と排出溝部とを備え、導入溝部と排出溝部とが、局所的に小さな断面積を有する連通部、又は導入溝部と排出溝部とを互いに分断する閉端部を備えることで、導入溝部と排出溝部とを実質的に独立した溝部として機能できる。導入溝部と排出溝部とが実質的に独立して機能することで、レドックスフロー電池の運転時、導入溝部と排出溝部との間に位置する畝部を渡るような電解液の流れを形成でき、この畝部を渡る電解液によって電池反応を促進できる。
 上記双極板は、双極板の下側に電解液の導入口を備え、双極板の上側に電解液の排出口を備えるため、停電によってポンプが停止した場合、排出溝部内の電解液をそのまま排出溝部内に貯留できる。そして、導入溝部に導入液溜め部を備えることで、停電によってポンプが停止した場合、導入溝部内の電解液の一部を導入液溜め部に貯留できる。排出溝部内、及び導入溝部内の導入液溜め部に電解液を貯留できることで、停電によってポンプが停止した場合であっても、貯留された電解液によって電池の起動を行える。この電池の起動によってポンプを起動することで、レドックスフロー電池の運転を可能とできる。上記双極板は、排出溝部及び導入溝部の双方に電解液を貯留できるため、レドックスフロー電池の放電運転の際にポンプが停止した場合であっても、電池の起動を行える。
 (2)上記双極板の一形態として、前記導入溝部と前記排出溝部の各々は、互いに噛み合って対向配置される櫛歯領域を備えることが挙げられる。
 上記双極板は、導入溝部と排出溝部とが互いに噛み合って対向配置されることで、噛み合った櫛歯領域で櫛歯間を渡る電池反応域を形成できる。この櫛歯間を渡る電解液量は、導入溝部と排出溝部とが噛み合っていない場合に比較して増加し易いため、電池反応をより促進できる。
 (3)連通部を備える上記双極板の一形態として、
 前記排出溝部は、
  前記排出口から前記排出溝部の先端に向かう長手方向の途中で、前記双極板の上側に向かって屈曲する上側屈曲部と、
  前記上側屈曲部よりも前記排出溝部の先端側に電解液を貯留する排出液溜め部とを備え、
 前記導入液溜め部及び前記排出液溜め部が、前記連通部に備えらえることが挙げられる。
 導入液溜め部及び排出液溜め部が、局所的に小さな断面積を有する連通部であることで、導入液溜め部及び排出液溜め部は、導入溝部の導入液溜め部以外の部分及び排出溝部の排出液溜め部以外の部分より高圧損となる。導入液溜め部及び排出液溜め部が、それ以外の部分よりも高圧損であることで、レドックスフロー電池の運転時、導入液溜め部及び排出液溜め部に流れる電解液量を、導入溝部の導入液溜め部以外の部分及び排出溝部の排出液溜め部以外の部分に流れる電解液量よりも十分に少なくでき、導入溝部と排出溝部とを実質的に独立した溝部として機能できる。一方、導入溝部に導入液溜め部を備え、排出溝部に排出液溜め部を備えることで、停電によってポンプが停止した場合、導入溝部内の電解液の一部を導入液溜め部に貯留できると共に、排出液溜め部を備えない場合に比較して排出溝部内に貯留される電解液量を増加できる。
 (4)導入液溜め部及び排出液溜め部が連通部に備えられる上記双極板の一形態として、前記導入液溜め部及び前記排出液溜め部は、局所的に幅が狭いことが挙げられる。
 上記構成によれば、導入溝部と排出溝部との間の間隔が狭い場合であっても、小さな断面積を有する連通部を備えることができる。
 (5)導入液溜め部及び排出液溜め部が連通部に備えられる上記双極板の一形態として、前記導入液溜め部及び前記排出液溜め部は、局所的に深さが浅いことが挙げられる。
 上記構成によれば、導入液溜め部及び排出液溜め部の内部にまで電極が入り込み易く、この電極によって導入液溜め部及び排出液溜め部に電解液が流通し難く、連通部の断面積を小さくし易い。また、双極板の厚みが薄い場合であっても、小さな断面積を有する連通部を備えることができる。
 (6)導入液溜め部及び排出液溜め部が連通部に備えられる上記双極板の一形態として、前記導入口と前記排出口とが前記連通部で連通したユニットを複数備え、隣り合う前記ユニットは、互いに独立して存在することが挙げられる。
 断面積が小さく高圧損の連通部で導入口と排出口とが連通したユニットを複数備え、隣り合うユニットが互いに独立して存在することで、導入口と排出口とが各々一つしかなく、全ユニットが連通している場合に比較して、導入液溜め部及び排出液溜め部に貯留される電解液の充電状態(充電深度と呼ぶことがある)を、双極板の全体に亘って均一的にできる。
 (7)上記双極板の一形態として、
 前記排出溝部は、
  前記排出口から前記排出溝部の先端に向かう長手方向の途中で、前記双極板の上側に向かって屈曲する上側屈曲部と、
  前記上側屈曲部よりも前記排出溝部の先端側に電解液を貯留する排出液溜め部とを備え、
 前記導入溝部と前記排出溝部とは、互いに分断されており、
 前記導入液溜め部と前記排出液溜め部とは、互いに噛み合って対向配置されることが挙げられる。
 排出溝部に排出液溜め部を備えることで、停電によってポンプが停止した場合、排出液溜め部を備えない場合に比較して排出溝部内に貯留される電解液量を増加できる。導入液溜め部と排出液溜め部とが互いに噛み合って対向配置されることで、貯留された電解液によって電池の起動を早期に行い易い。
 (8)導入溝部と排出溝部とが互いに分断され、かつ導入液溜め部と排出液溜め部とが互いに噛み合って対向配置される上記双極板の一形態として、
 前記導入溝部は、
  前記双極板の上下方向に沿った導入幹溝部と、
  前記導入幹溝部の長手方向の途中で前記双極板の上下方向と交差する方向に延設される複数の導入枝溝部と、
  前記導入枝溝部の先端に前記導入液溜め部とを備え、
 前記排出溝部は、
  前記双極板の上下方向に沿った排出幹溝部と、
  前記排出幹溝部の長手方向の途中で前記双極板の上下方向と交差する方向に延設される複数の排出枝溝部と、
  前記排出枝溝部の先端に前記排出液溜め部とを備えることが挙げられる。
 導入溝部の上下方向に沿って複数の導入液溜め部を備えると共に、排出溝部の上下方向に沿って複数の排出液溜め部を備え、導入液溜め部と排出液溜め部とが互いに噛み合って対向配置されることで、貯留された電解液によって電池の起動を早期に行い易い。
 (9)上記双極板の一形態として、前記導入溝部と前記排出溝部とは、互いに分断された渦巻状に構成されていることが挙げられる。
 上記構成によれば、導入溝部と排出溝部とが互いに噛み合って対向配置される領域を増加し易く、レドックスフロー電池の運転時、導入溝部と排出溝部との間に位置する畝部を渡る電解液量を増加し易いため、この畝部を渡る電解液によって電池反応をより促進できる。
 (10)本発明の実施形態に係るセルフレームは、上記(1)から(9)のいずれか1つに記載の双極板と、前記双極板の外周に設けられる枠体とを備える。
 上記セルフレームは、本発明の実施形態に係る双極板を備えるため、停電時にも電池セルの内部に電解液を貯留可能であり、停電によってポンプが停止した場合であっても、貯留された電解液によって電池の起動を行える。
 (11)本発明の実施形態に係るセルスタックは、上記(10)に記載のセルフレームを備える。
 上記セルスタックは、本発明の実施形態に係るセルフレームを備えるため、停電時にも電池セルの内部に電解液を貯留可能であり、停電によってポンプが停止した場合であっても、貯留された電解液によって電池の起動を行える。
 (12)本発明の実施形態に係るレドックスフロー電池は、上記(11)に記載のセルスタックを備える。
 上記レドックスフロー電池は、本発明の実施形態に係るセルスタックを備えるため、停電時にも電池セルの内部に電解液を貯留可能であり、停電によってポンプが停止した場合であっても、貯留された電解液によって電池の起動を行える。
 [本発明の実施形態の詳細]
 本発明の実施形態に係る双極板、セルフレーム、セルスタック、及びレドックスフロー電池の詳細を、以下に図面を参照しつつ説明する。図中の同一符号は同一名称物を示す。
 ≪実施形態1≫
 本実施形態の特徴の一つは、停電時にも電池セルの内部に電解液を貯留可能な構成を双極板に備える点にある。以下では、まず、図1~図4を参照して、実施形態1に係るレドックスフロー電池、セルスタック、及びセルフレームの基本構成を説明し、その後、図4を参照して、実施形態1のセルフレーム(セルスタック、レドックスフロー電池)に備わる双極板の構成を詳細に説明する。
 〔RF電池〕
 レドックスフロー電池(以下、RF電池)1は、代表的には、図1に示すように、交流/直流変換器や変電設備等を介して、発電部と、電力系統や需要家等の負荷とに接続され、発電部を電力供給源として充電を行い、負荷を電力消費対象として放電を行う。発電部は、例えば、太陽光発電機、風力発電機、その他一般の発電所等が挙げられる。
 RF電池1は、隔膜101で正極セル102と負極セル103とに分離された電池セル100を備える。正極セル102には、正極電解液が供給される正極電極104が内蔵され、負極セル103には、負極電解液が供給される負極電極105が内蔵されている。正極電極104及び負極電極105は、供給された電解液に含まれる活物質イオンが電池反応を行う反応場である。隔膜101は、正極電極104と負極電極105とを分離すると共に、所定のイオンを透過する薄膜部材である。
 正極セル102に正極電解液を循環供給する正極循環機構100Pは、正極電解液を貯留する正極電解液タンク106と、正極電解液タンク106と正極セル102との間を繋ぐ導管108,110と、上流側(供給側)の導管108に設けられたポンプ112とを備える。負極セル103に負極電解液を循環供給する負極循環機構100Nは、負極電解液を貯留する負極電解液タンク107と、負極電解液タンク107と負極セル103との間を繋ぐ導管109,111と、上流側(供給側)の導管109に設けられたポンプ113とを備える。
 正極電解液は、正極電解液タンク106から上流側の導管108を介して正極電極104に供給され、正極電極104から下流側(排出側)の導管110を介して正極電解液タンク106に戻される。また、負極電解液は、負極電解液タンク107から上流側の導管109を介して負極電極105に供給され、負極電極105から下流側(排出側)の導管111を介して負極電解液タンク107に戻される。正極電解液の循環及び負極電解液の循環によって、正極電極104に正極電解液を循環供給すると共に、負極電極105に負極電解液を循環供給しながら、各極の電解液中の活物質イオンの価数変化反応に伴って充放電を行う。図1及び図2において、正極電解液タンク106内及び負極電解液タンク107内に示すバナジウムイオンは、正極電解液中及び負極電解液中に活物質として含むイオン種の一例を示す。図1において、実線矢印は充電、破線矢印は放電を意味する。
 〔セルスタック〕
 RF電池1は、代表的には、複数の電池セル100が積層されたセルスタック2と呼ばれる形態で利用される。セルスタック2は、図3に示すように、あるセルフレーム3、正極電極104、隔膜101、負極電極105、別のセルフレーム3が繰り返し積層された積層体と、積層体を挟む一対のエンドプレート210,220と、エンドプレート210,220間を繋ぐ長ボルト等の連結部材230及びナット等の締結部材とを備える。締結部材によってエンドプレート210,220間が締め付けられると、積層体は、その積層方向の締付力によって積層状態が保持される。セルスタック2は、所定数の電池セル100をサブスタック200とし、複数のサブスタック200を積層した形態で利用される。
 〔セルフレーム〕
 セルフレーム3は、図3に示すように、正極電極104と負極電極105との間に配置される双極板4と、双極板4の外周に設けられる枠体5とを備える。双極板4は、電流を流すが電解液を流さない導電部材で構成され、その一面側には正極電極104が接触するように配置され、他面側には負極電極105が接触するように配置される。枠体5は、内側に電池セル100となる領域を形成する。例えば、枠体5の厚みは、双極板4の厚みよりも大きく、双極板4の外周を枠体5で囲むことで、双極板4の表面(裏面)と枠体5の表面(裏面)とで、内部に正極電極104(負極電極105)が配置される空間を形成する段差が形成される。
 正極電極104及び負極電極105への各極の電解液の供給は、セルフレーム3における枠体5の対向する一片(図3上図の紙面下側)に形成される給液マニホールド51,52、給液ガイド溝51s,52sにより行われる。正極電極104及び負極電極105からの各極の電解液の排出は、枠体5の対向する他片(図3上図の紙面上側)に形成される排液マニホールド53,54、排液ガイド溝53s,54sにより行われる。正極電解液は、給液マニホールド51から枠体5の一面側(紙面表側)に形成された給液ガイド溝51sを介して正極電極104に供給される。そして、図3上図の矢印に示すように正極電極104の下側から上側へ流通し、枠体5の一面側(紙面表側)に形成された排液ガイド溝53sを介して排液マニホールド53に排出される。負極電解液の供給及び排出は、枠体5の他面側(紙面裏側)で行われる点を除き、正極電解液と同じである。各枠体5間には、電池セル100からの電解液の漏洩を抑制するために、Oリングや平パッキン等の環状のシール部材6(図2及び図3)が配置されている。枠体5には、環状のシール部材6を配置するためのシール溝57(図4を参照)が周方向にわたって形成されている。
 上述したRF電池1、セルスタック2、及びセルフレーム3の基本構成は、公知の構成を適宜利用できる。
 〔双極板〕
 図4を参照して、実施形態1に係る双極板4Aについて説明する。この双極板4Aは、上述した双極板4に相当する部材である。なお、図4の上図では、RF電池1の運転時における双極板4A上での電解液の流れを示し、図4の下図では、RF電池1の停止(停電)時における双極板4A上での電解液の貯留状態を示す。図4の上図では、双極板4Aの外周に設けられる枠体5も図示している。
 双極板4Aは、図4に示すように、矩形状の平板である。双極板4Aの表裏面にはそれぞれ、隣り合う電池セル100の正極電極104と負極電極105とが配置される(図2及び図3を参照)。双極板4Aは、正極電極104に対向する対向面及び負極電極105に対向する対向面が鉛直方向に沿うように、RF電池1の所定位置に配置される。以下、双極板4AをRF電池1の所定位置に配置したときの鉛直方向下側を双極板4Aの下側(図4の紙面下側)、鉛直方向上側を双極板4Aの上側(図4の紙面上側)とする。
 双極板4Aは、正極電極104に対向する対向面及び負極電極105に対向する対向面それぞれに、電解液が流通する流路40を備える。流路40は、電池セル100内において、ポンプ112,113(図1)によって正極電極104及び負極電極105のそれぞれに流通される電解液の流れを調整するために設けられる。流路40は、電解液の導入口40iと、電解液の排出口40oと、導入口40iから導入された電解液を排出口40oまで所定の経路で案内する溝部41とを備える。
 導入口40iは、双極板4Aの下側の縁部に開口しており、枠体5に形成される給液整流部55を介して給液マニホールド51(52)(図3)に繋がっている。双極板4Aは、詳細は後述するが、複数の導入溝部42(導入口40i)が並列して設けられている。給液整流部55は、給液マニホールド51(52)からの電解液を導入溝部42の並列方向に拡散させて各導入溝部42の導入口40iに供給するものである。
 排出口40oは、双極板4Aの上側の縁部に開口しており、枠体5に形成される排液整流部56を介して排液マニホールド53(54)(図3)に繋がっている。双極板4Aは、詳細は後述するが、複数の排出溝部43(排出口40o)が並列して設けられている。排液整流部56は、各排出溝部43の排出口40oから排出される電解液を集約して排液マニホールド53(54)に導くものである。
 溝部41は、導入口40iに繋がる導入溝部42と、排出口40oに繋がる排出溝部43とを備える。導入溝部42及び排出溝部43は、それぞれ複数本設けられている。導入溝部42と排出溝部43とは、鉛直方向に沿うと共に、その鉛直方向と直交する方向に所定の間隔を有して交互に並列配置されている。つまり、導入溝部42と排出溝部43とは、互いに噛み合って対向配置されている。隣り合う導入溝部42と排出溝部43との間に、畝部45が形成される。実施形態1に係る双極板4Aは、導入溝部42と排出溝部43とが断面積が小さく高圧損の連通部で連通したユニット44aを複数備え、隣り合うユニット44aが互いに独立して存在する点を特徴の一つとする。導入溝部42と排出溝部43との連通形態については後述する。
 正極電極104が対向配置される双極板4Aの一面に設けられた溝部41には正極電解液が流通され、負極電極105が対向配置される双極板4Aの他面に設けられた溝部41には負極電解液が流通される。各電池セル100内での電解液の流れは、溝部41の形状や寸法等によって調整することができる。なお、図4では、分かり易くするために、溝部41の大きさを誇張して図示している。また、図4では、分かり易くするために、畝部45にハッチングを付している。なお、図4では、導入溝部42及び排出溝部43は、一部だけを示し、残部を省略している。
 導入溝部42は、導入口40iから導入溝部42の先端に向かう長手方向の途中で、双極板4Aの下側に向かって屈曲する下側屈曲部420と、下側屈曲部420よりも導入溝部42の先端側に電解液を貯留する導入液溜め部422とを備える。同様に、排出溝部43は、排出口40oから排出溝部43の先端に向かう長手方向の途中で、双極板4Aの上側に向かって屈曲する上側屈曲部430と、上側屈曲部430よりも排出溝部43の先端側に電解液を貯留する排出液溜め部432とを備える。導入溝部42と排出溝部43とは、導入液溜め部422及び排出液溜め部432で形成される連通部によって連通している。本例では、導入溝部42と排出溝部43との境界は、連通部における上下方向の中央部とする。つまり、その中央部よりも導入口40i側が導入溝部42であり、中央部よりも排出口40o側が排出溝部43である。
 導入溝部42は、導入口40iから上方に延びる縦溝部(導入主溝部421)と、導入主溝部421の先端部から双極板4Aの左右方向に延びる横溝部と、横溝部から下側屈曲部420で折り返して下方に延びる縦溝部(導入液溜め部422)とを備える。本例では、導入溝部42の連通部は、横溝部と導入液溜め部422とで構成される。同様に、排出溝部43は、排出口40oから下方に延びる縦溝部(排出主溝部431)と、排出主溝部431の先端部から双極板4Aの左右方向に延びる横溝部と、横溝部から上側屈曲部430で折り返して上方に延びる縦溝部(排出液溜め部432)とを備える。本例では、排出溝部43の連通部は、横溝部と排出液溜め部432とで構成される。
 導入液溜め部422と排出液溜め部432とは、導入口40iと排出口40oとを連通させる連通部の役割を有する。導入液溜め部422と排出液溜め部432とは、隣り合う一組の導入溝部42と排出溝部43とを連通するように配置されている。この導入口40iと排出口40oとが連通した一組の導入溝部42と排出溝部43とのユニット44aは、導入溝部42(排出溝部43)の本数分形成される。そして、隣り合うユニット44a同士は、互いに連通することなく独立して存在する。
 導入液溜め部422及び排出液溜め部432は、導入溝部42の導入液溜め部422以外の横断面積及び排出溝部43の排出液溜め部432以外の横断面積よりも小さい横断面積を備える。導入溝部42の導入液溜め部422以外の横断面積とは、導入口40iから下側屈曲部420までの導入溝部42(導入主溝部421)の横断面積である。本例では、この導入主溝部421は、長手方向に沿って均一な幅及び深さを有する。同様に、排出溝部43の排出液溜め部432以外の横断面積とは、排出口40oから上側屈曲部430までの排出溝部43(排出主溝部431)の横断面積である。本例では、この排出主溝部431は、長手方向に沿って均一な幅及び深さを有する。導入液溜め部422と排出液溜め部432とは、導入主溝部421及び排出主溝部431の各横断面積よりも小さい横断面積を備えることで、導入主溝部421及び排出主溝部431に対して高圧損となる。導入液溜め部422及び排出液溜め部432の横断面積は、例えば、導入主溝部421及び排出主溝部431の横断面積の1%以上50%以下、更に5%以上30%以下であることが挙げられる。
 導入液溜め部422及び排出液溜め部432が導入主溝部421及び排出主溝部431に対して高圧損となるには、例えば、導入液溜め部422及び排出液溜め部432は、導入主溝部421及び排出主溝部431の幅よりも狭い幅を有することが挙げられる。導入主溝部421及び排出主溝部431の幅は、横断面積が十分に大きくなるように、例えば、0.1mm以上10mm以下、更に0.5mm以上2.5mm以下であることが挙げられる。導入液溜め部422及び排出液溜め部432の幅は、例えば、導入主溝部421及び排出主溝部431の幅の1%以上50%以下、更に5%以上30%以下であることが挙げられる。本例では、導入主溝部421の幅と排出主溝部431の幅とを同じとしているが、それぞれ異なっていてもよい。その場合、導入液溜め部422及び排出液溜め部432の幅は、各液溜め部422,432に繋がる主溝部421,431の幅に応じて、その主溝部421,431よりも高圧損となるように適宜選択すればよい。また、隣り合う溝部41間(導入主溝部421と排出主溝部431との間)の間隔、つまり畝部45の幅は、導入主溝部421及び排出主溝部431の幅の100%以上700%以下、更に200%以上500%以下であることが挙げられる。導入液溜め部422及び排出液溜め部432は、この畝部45の幅内に形成される。
 導入液溜め部422及び排出液溜め部432が導入主溝部421及び排出主溝部431に対して高圧損となるには、例えば、導入液溜め部422及び排出液溜め部432は、導入主溝部421及び排出主溝部431の深さよりも浅い深さを有することが挙げられる。導入主溝部421及び排出主溝部431の深さは、双極板4Aの厚さの5%以上45%以下であることが挙げられる。双極板4Aの表裏面に溝部41を備える場合、溝部41の深さが深過ぎると機械的強度の低下を招く虞があるため、溝部41の深さは、双極板4Aの厚さの20%以上40%以下が更に好ましい。導入液溜め部422及び排出液溜め部432の深さは、例えば、導入主溝部421及び排出主溝部431の深さの1%以上50%以下、更に5%以上30%以下であることが挙げられる。本例では、導入主溝部421の深さと排出主溝部431の深さとを同じとしているが、それぞれ異なっていてもよい。その場合、導入液溜め部422及び排出液溜め部432の深さは、各液溜め部422,432に繋がる主溝部421,431の深さに応じて、その主溝部421,431よりも高圧損となるように適宜選択すればよい。
 〔RF電池の運転時〕
 上記双極板4Aでは、RF電池1の運転時、図4の上図に示すように、給液マニホールド51(52)から給液整流部55に導入された電解液は、各導入口40iに分配され、各導入口40iから導入溝部42の導入主溝部421を流通し、双極板4Aの全面に行き渡る。導入主溝部421に流れる電解液は、双極板4Aの表面に配置される電極に浸透し、双極板4Aの表面を跨いで、導入溝部42に隣り合う排出溝部43の排出主溝部431に流れる。排出主溝部431に流れる電解液は、排出口40oから排液整流部56に排出されて集約され、排液マニホールド53(54)から電池セル100の外部に排出される。つまり、双極板4A上での電解液の流れは、導入主溝部421及び排出主溝部431に沿った流れ(図4の上図で示す実線矢印の方向)と、導入主溝部421と排出主溝部431との間の畝部45を介して横方向(図4の左右方向)に渡るような流れ(図4の上図で示す破線矢印の方向)とを形成する。
 上記双極板4Aは、隣り合う一組の導入溝部42と排出溝部43とが、連通部(導入液溜め部422及び排出液溜め部432)で連通されている。しかし、導入液溜め部422と排出液溜め部432とは、導入主溝部421及び排出主溝部431よりも断面積が小さく高圧損であるため、RF電池1の運転時には、導入液溜め部422及び排出液溜め部432よりも低圧損である導入主溝部421及び排出主溝部431に電解液が流れ易い。よって、導入液溜め部422及び排出液溜め部432に流れる電解液量を、導入主溝部421及び排出主溝部431に流れる電解液量よりも十分に少なくできる。導入口40iから排出口40oまで連通しても、導入液溜め部422及び排出液溜め部432に流れる電解液量が少なければ、未反応のまま電池セル100(図1)外に排出される電解液量を少なくでき、畝部45を渡るような電解液の流れを形成することで、電池反応を十分に行うことができ、電池効率が阻害されることも殆どない。
 〔RF電池の停止時〕
 一方、上記双極板4Aでは、停電等によりポンプ112,113(図1及び図2)が停止した場合、図4の下図に示すように、排出溝部43内の電解液は、そのまま排出溝部43内に貯留され(図4の下図の左下がりの斜めハッチング)、導入溝部42内の電解液は、一部が導入液溜め部422に貯留され(図4の下図の右下がりの斜めハッチング)、他部が導入口40iから給液整流部55、給液マニホールド51(52)を介して電池セル100の外部に排出される。排出溝部43内、及び導入溝部42内の導入液溜め部422に電解液を貯留できることで、停電等によってポンプ112,113が停止した場合であっても、貯留された電解液によってRF電池1の起動を行える。なお、1枚の双極板4Aに貯留される電解液量は比較的少ないが、多数のセルフレーム3を積層したセルスタック2全体では相当量の電解液が貯留でき、通常のポンプ112,113を起動する程度の電力を得るには十分である。
 RF電池1の起動によってポンプ112,113を起動することができれば、それ以降は、RF電池1の電力を用いてポンプ112,113を継続して動作させると共に、RF電池1から系統に電力を供給することができる。また、上記双極板4Aでは、意図的にRF電池1を停止した場合であっても、貯留された電解液によってRF電池1の起動を早期に行える。
 上記双極板4Aでは、導入液溜め部422と排出液溜め部432とが高圧損で連通した一組の導入溝部42と排出溝部43とのユニット44aが複数独立して存在しているため、導入口40iと排出口40oとが各々一つしかなく、全ユニット44aが連通している場合に比較して、電解液の充電状態を、双極板4Aの全体に亘って均一的にできる。
 ≪実施形態2≫
 図5を参照して、実施形態2に係る双極板4Bについて説明する。図5の上図では、RF電池1の運転時における双極板4B上での電解液の流れを示し、図5の下図では、RF電池1の停止(停電)時における双極板4B上での電解液の貯留状態を示す。
 〔双極板〕
 実施形態2に係る双極板4Bは、導入溝部42と排出溝部43とが互いに分断されており、導入液溜め部422と排出液溜め部432とが互いに噛み合って対向配置される点を特徴の一つとする。
 導入溝部42は、導入口40iから上方に延びる縦溝部(導入主溝部421)と、導入主溝部421の先端部から双極板4Bの左右方向に延びる横溝部と、横溝部から下側屈曲部420で折り返して下方に延びる縦溝部(導入液溜め部422)とを備える。本例では、導入溝部42は、その長手方向に沿って均一な幅及び深さを有する。つまり、導入溝部42は、導入主溝部421と導入液溜め部422とが実質的に同じ圧損となる。導入液溜め部422の幅及び深さは、RF電池1の運転時に、電解液が流通可能な圧損となるように適宜選択できる。そうすることで、導入液溜め部422は、RF電池1の運転時に、電解液の流路として機能できる。また、導入液溜め部422の横断面積を実施形態1と比較して大きくでき、貯留可能な電解液量を増加できる。導入液溜め部422の横断面積は、導入主溝部421の横断面積よりも小さくてもよい。
 排出溝部43は、排出口40oから下方に延びる縦溝部(排出主溝部431)と、排出主溝部431の先端部から双極板4Aの左右方向に延びる横溝部と、横溝部から上側屈曲部430で折り返して上方に延びる縦溝部(排出液溜め部432)とを備える。本例では、排出溝部43は、その長手方向に沿って均一な幅及び深さを有する。つまり、排出溝部43は、排出主溝部431と排出液溜め部432とが実質的に同じ圧損となる。排出液溜め部432の幅及び深さは、RF電池1の運転時に、電解液が流通可能な圧損となるように適宜選択できる。そうすることで、排出液溜め部432は、RF電池1の運転時に、電解液の流路として機能できる。また、排出液溜め部432の横断面積を実施形態1と比較して大きくでき、貯留可能な電解液量を増加できる。排出液溜め部432の横断面積は、排出主溝部431の横断面積よりも小さくてもよい。
 導入溝部42と排出溝部43とは、互いに分断される閉端部を備える。具体的には、導入溝部42は、導入口40iを始端としたときの先端部(下端部)に閉端部を備え、排出溝部43は、排出口40oを始端としたときの先端部(上端部)に閉端部を備える。導入溝部42及び排出溝部43の各々に閉端部を備えることで、導入液溜め部422と排出液溜め部432とは、連通せずに、互いに噛み合って対向配置されている。導入液溜め部422は、隣り合う排出溝部43に対して、排出主溝部431と排出液溜め部432との間に介在されるように、下側屈曲部420で折り返して下方に延びて配置されている。同様に、排出液溜め部432は、隣り合う導入溝部42に対して、導入主溝部421と導入液溜め部422との間に介在されるように、上側屈曲部430で折り返して上方に延びて配置されている。この導入液溜め部422と排出液溜め部432とが噛み合って対向配置される一組の導入溝部42と排出溝部43とのユニット44bは、導入溝部42(排出溝部43)の本数分形成される。そして、隣り合うユニット44b同士は、互いに連通することなく独立して存在する。
 〔RF電池の運転時〕
 RF電池1の運転時、図5の上図に示すように、双極板4B上での電解液の流れは、導入溝部42及び排出溝部43に沿った流れ(図5の上図で示す実線矢印の方向)と、導入溝部42と排出溝部43との間の畝部45を介して横方向(図5の左右方向)に渡るような流れ(図5の上図で示す破線矢印の方向)とを形成する。導入溝部42に沿った流れは、導入主溝部421から導入液溜め部422に沿った流れを形成し、排出溝部43に沿った流れは、排出液溜め部432から排出主溝部431に沿った流れを形成する。
 〔RF電池の停止時〕
 一方、上記双極板4Bでは、停電等によりポンプ112,113(図1及び図2)が停止した場合、図5の下図に示すように、排出溝部43内の電解液は、そのまま排出溝部43内に貯留され(図5の下図の左下がりの斜めハッチング)、導入溝部42内の電解液は、一部が導入液溜め部422に貯留され(図5の下図の右下がりの斜めハッチング)、他部が導入口40iから図4の給液整流部55、給液マニホールド51(52)を介して電池セル100の外部に排出される。排出溝部43内、及び導入溝部42内の導入液溜め部422に電解液を貯留できることで、実施形態1と同様に、停電等によってポンプ112,113が停止した場合であっても、貯留された電解液によってRF電池1の起動を行える。上記双極板4Bは、導入液溜め部422と排出液溜め部432とが非連通で互いに噛み合って対向配置されるため、貯留された電解液によって効率的に電池反応が行え、RF電池1の起動を早期に行い易い。
 ≪実施形態3≫
 図6を参照して、実施形態3に係る双極板4Cについて説明する。図6の上図では、RF電池1の運転時における双極板4C上での電解液の流れを示し、図6の下図では、RF電池1の停止(停電)時における双極板4C上での電解液の貯留状態を示す。
 〔双極板〕
 実施形態3に係る双極板4Cは、一つの導入溝部42に二つの導入液溜め部422を備えると共に、一つの排出溝部43に二つの排出液溜め部432を備え、導入液溜め部422と排出液溜め部432とがそれぞれ非連通で互いに噛み合って対向配置される点を特徴の一つとする。
 導入溝部42は、導入口40iから上方に延びる縦溝部(導入主溝部421)と、導入主溝部421の先端部から双極板4Cの左右方向にそれぞれ延びる二つの横溝部と、各横溝部から下側屈曲部420で折り返して下方に延びる縦溝部(導入液溜め部422)とを備える。本例では、導入液溜め部422の幅は、導入主溝部421及び横溝部の幅よりも狭くなっている。
 排出溝部43は、排出口40oから下方に延びる縦溝部(排出主溝部431)と、排出主溝部431の先端部から双極板4Cの左右方向にそれぞれ延びる二つの横溝部と、各横溝部から上側屈曲部430で折り返して上方に延びる縦溝部(排出液溜め部432)とを備える。本例では、排出液溜め部432の幅は、排出主溝部431及び横溝部の幅よりも狭くなっている。
 導入溝部42と排出溝部43とは、互いに分断される閉端部を備える。具体的には、導入溝部42は、導入口40iを始端としたときの先端部(下端部)のそれぞれに閉端部を備え、排出溝部43は、排出口40oを始端としたときの先端部(上端部)のそれぞれに閉端部を備える。導入溝部42及び排出溝部43の各々に閉端部を備えることで、導入液溜め部422と排出液溜め部432とは、連通せずに、互いに噛み合って対向配置されている。導入液溜め部422は、隣り合う排出溝部43に対して、排出主溝部431と排出液溜め部432との間に介在されるように、下側屈曲部420で折り返して下方に延びて配置されている。同様に、排出液溜め部432は、隣り合う導入溝部42に対して、導入主溝部421と導入液溜め部422との間に介在されるように、上側屈曲部430で折り返して上方に延びて配置されている。
 〔RF電池の運転時〕
 RF電池1の運転時、図6の上図に示すように、双極板4C上での電解液の流れは、導入溝部42及び排出溝部43に沿った流れ(図6の上図で示す実線矢印の方向)と、導入溝部42と排出溝部43との間の畝部45を介して横方向(図6の左右方向)に渡るような流れ(図6の上図で示す破線矢印の方向)とを形成する。導入溝部42に沿った流れは、導入主溝部421から導入液溜め部422に沿った流れを形成し、排出溝部43に沿った流れは、排出液溜め部432から排出主溝部431に沿った流れを形成する。
 〔RF電池の停止時〕
 一方、上記双極板4Cでは、停電等によりポンプ112,113(図1及び図2)が停止した場合、図6の下図に示すように、排出溝部43内の電解液は、そのまま排出溝部43内に貯留され(図6の下図の左下がりの斜めハッチング)、導入溝部42内の電解液は、一部が導入液溜め部422に貯留され(図6の下図の右下がりの斜めハッチング)、他部が導入口40iから図4の給液整流部55、給液マニホールド51(52)を介して電池セル100の外部に排出される。排出溝部43内、及び導入溝部42内の導入液溜め部422に電解液を貯留できることで、実施形態1と同様に、停電等によってポンプ112,113が停止した場合であっても、貯留された電解液によってRF電池1の起動を行える。上記双極板4Cは、導入溝部42及び排出溝部43にそれぞれ二つずつ導入液溜め部422及び排出液溜め部432を備え、各導入液溜め部422と排出液溜め部432とが非連通で互いに噛み合って対向配置されるため、貯留された電解液によって効率的に電池反応が行え、RF電池1の起動を早期に行い易い。
 ≪実施形態4≫
 図7を参照して、実施形態4に係る双極板4Dについて説明する。図7の上図では、RF電池1の運転時における双極板4D上での電解液の流れを示し、図7の下図では、RF電池1の停止(停電)時における双極板4D上での電解液の貯留状態を示す。
 〔双極板〕
 実施形態4に係る双極板4Dは、導入溝部42の長手方向に沿って複数の導入液溜め部422を備えると共に、排出溝部43の長手方向に沿って複数の排出液溜め部432を備え、導入液溜め部422と排出液溜め部432とがそれぞれ非連通で互いに噛み合って対向配置される点を特徴の一つとする。
 導入溝部42は、導入口40iから上方に延びる導入幹溝部(導入主溝部)421と、導入幹溝部421の長手方向の途中で双極板4Dの上下方向と交差する方向に延設される複数の導入枝溝部423とを備える。本例では、導入枝溝部423の幅は、導入幹溝部421の幅よりも狭くなっている。導入枝溝部423は、先端に向かう長手方向の途中で双極板4Dの下方に向かって屈曲する下側屈曲部420と、下側屈曲部420よりも先端側に電解液を貯留する導入液溜め部422とを備える。
 排出溝部43は、排出口40oから下方に延びる排出幹溝部(排出主溝部)431と、排出幹溝部431の長手方向の途中で双極板4Dの上下方向と交差する方向に延設される複数の排出枝溝部433とを備える。本例では、排出枝溝部433の幅は、排出幹溝部431の幅よりも狭くなっている。排出枝溝部433は、先端に向かう長手方向の途中で双極板4Dの上方に向かって屈曲する上側屈曲部430と、上側屈曲部430よりも先端側に電解液を貯留する排出液溜め部432とを備える。
 導入溝部42と排出溝部43とは、互いに分断する閉端部を備える。具体的には、導入溝部42は、各導入枝溝部423の先端部に閉端部を備え、排出溝部43は、各排出枝溝部433の先端部に閉端部を備える。導入溝部42及び排出溝部43の各々に閉端部を備えることで、導入液溜め部422と排出液溜め部432とは、連通せずに、互いに噛み合って対向配置されている。導入液溜め部422は、隣り合う排出溝部43に対して、排出幹溝部431と排出液溜め部432との間に介在されるように、下側屈曲部420で折り返して下方に延びて配置されている。同様に、排出液溜め部432は、隣り合う導入溝部42に対して、導入幹溝部421と導入液溜め部422との間に介在されるように、上側屈曲部430で折り返して上方に延びて配置されている。導入枝溝部423は、導入幹溝部421の両側方に延設されており、排出枝溝部433は、排出幹溝部431の両側方に延設されている。そのため、導入液溜め部422と排出液溜め部432とは、各幹溝部421,431を挟んだ両側方で互いに噛み合って対向配置されている。
 〔RF電池の運転時〕
 RF電池1の運転時、図7の上図に示すように、双極板4D上での電解液の流れは、導入溝部42及び排出溝部43に沿った流れ(図7の上図で示す実線矢印の方向)と、導入溝部42と排出溝部43との間の畝部45を介して横方向(図7の左右方向)に渡るような流れ(図7の上図で示す破線矢印の方向)とを形成する。導入溝部42に沿った流れは、導入幹溝部421から導入液溜め部422に沿った流れを形成し、排出溝部43に沿った流れは、排出液溜め部432から排出幹溝部431に沿った流れを形成する。
 〔RF電池の停止時〕
 一方、上記双極板4Dでは、停電等によりポンプ112,113(図1及び図2)が停止した場合、図7の下図に示すように、排出溝部43内の電解液は、そのまま排出溝部43内に貯留され(図7の下図の左下がりの斜めハッチング)、導入溝部42内の電解液は、一部が導入液溜め部422に貯留され(図7の下図の右下がりの斜めハッチング)、他部が導入口40iから図4の給液整流部55、給液マニホールド51(52)を介して電池セル100の外部に排出される。排出溝部43内、及び導入溝部42内の導入液溜め部422に電解液を貯留できることで、実施形態1と同様に、停電等によってポンプ112,113が停止した場合であっても、貯留された電解液によってRF電池1の起動を行える。上記双極板4Dは、導入溝部42及び排出溝部43の長手方向に沿って複数の導入液溜め部422及び排出液溜め部432を備え、各導入液溜め部422と排出液溜め部432とが非連通で互いに噛み合って対向配置されるため、貯留された電解液によって効率的に電池反応が行え、RF電池1の起動を早期に行い易い。
 ≪実施形態5≫
 図8を参照して、実施形態5に係る双極板4Eについて説明する。図8の上図では、RF電池1の運転時における双極板4E上での電解液の流れを示し、図8の下図では、RF電池1の停止(停電)時における双極板4E上での電解液の貯留状態を示す。
 〔双極板〕
 実施形態5に係る双極板4Eは、導入溝部42と排出溝部43の各々が互いに分断された渦巻状に構成されている点を特徴の一つとする。
 導入溝部42は、導入口40iから双極板4Eの中央に向かって渦巻を構成する横溝部と縦溝部とを備える。本例では、導入溝部42は、横溝部が導入口40iに繋がっている。また、本例では、導入溝部42は、二層の渦巻を構成しており、渦巻の外側を構成する二つの横溝部及び二つの縦溝部と、渦巻の内側を構成する二つの横溝部と一つの縦溝部とを備える。導入溝部42は、渦巻を構成するにあたり、その長手方向の途中で双極板4Eの下側に向かって屈曲する下側屈曲部420を備える。この下側屈曲部420よりも導入溝部42の先端側に、電解液を貯留する導入液溜め部422を備える。
 排出溝部43は、排出口40oから双極板4Eの中央に向かって渦巻を構成する横溝部と縦溝部とを備える。本例では、排出溝部43は、横溝部が排出口40oに繋がっている。また、本例では、排出溝部43は、二層の渦巻を構成しており、渦巻の外側を構成する二つの横溝部及び二つの縦溝部と、渦巻の内側を構成する二つの横溝部と一つの縦溝部とを備える。排出溝部43は、渦巻を構成するにあたり、その長手方向の途中で双極板4Eの上側に向かって屈曲する上側屈曲部430を備える。この上側屈曲部430よりも排出溝部43の先端側に、電解液を貯留する排出液溜め部432を備える。
 導入口40iと排出口40oとは、ほぼ対角線上に位置する。よって、導入溝部42と排出溝部43とは、同心状に配置することで、互いに噛み合って対向配置されるように渦巻を構成できる。この渦巻の中心から外周側に見たとき、導入溝部42と排出溝部43とは、交互に並列され、各溝部42,43の渦巻の中心側の端部に閉端部を備える。
 〔RF電池の運転時〕
 RF電池1の運転時、図8の上図に示すように、双極板4E上での電解液の流れは、導入溝部42及び排出溝部43に沿った渦巻状の流れ(図8の上図で示す実線矢印の方向)と、導入溝部42と排出溝部43との間の畝部45を介して縦方向(図8の上下方向)に渡るような流れ(図8の上図で示す破線矢印の方向)とを形成する。
 〔RF電池の停止時〕
 一方、上記双極板4Eでは、停電等によりポンプ112,113(図1及び図2)が停止した場合、図8の下図に示すように、排出溝部43内の電解液は、そのまま排出溝部43内に貯留され(図8の下図の左下がりの斜めハッチング)、導入溝部42内の電解液は、一部が導入液溜め部422に貯留され(図8の下図の右下がりの斜めハッチング)、他部が導入口40iから図4の給液整流部55、給液マニホールド51(52)を介して電池セル100の外部に排出される。排出溝部43内、及び導入溝部42内の導入液溜め部422に電解液を貯留できることで、実施形態1と同様に、停電等によってポンプ112,113が停止した場合であっても、貯留された電解液によってRF電池1の起動を行える。上記双極板4Eは、導入溝部42と排出溝部43とが互いに噛み合って対向配置される領域を増加し易く、双極板4Eの中央部分に導入液溜め部422を配置できるため、貯留された電解液によって効率的に電池反応が行え、RF電池1の起動を早期に行い易い。
 ≪実施形態6≫
 図9を参照して、実施形態6に係る双極板4Fについて説明する。実施形態6に係る双極板4Fは、実施形態5に係る双極板4Eと同様に、導入溝部42と排出溝部43の各々が互いに分断された渦巻状に構成されている点を特徴の一つとする。実施形態6に係る双極板4Fは、実施形態5に係る双極板4Eに対して、導入口40i及び排出口40oがそれぞれ縦溝部に繋がっている点が異なり、それ以外の点は同様である。
 実施形態6に係る双極板4Fも、実施形態5に係る双極板4Eと同様に、RF電池1の運転時には、双極板4F上での電解液の流れは、導入溝部42及び排出溝部43に沿った渦巻状の流れ(図9の左図で示す実線矢印の方向)と、導入溝部42と排出溝部43との間の畝部45を介して横方向(図9の左右方向)に渡るような流れ(図9の左図で示す破線矢印の方向)とを形成する。そして、RF電池1の停止時には、排出溝部43内の電解液は、そのまま排出液溜め部432を含む排出溝部43内に貯留され(図9の右図の左下がりの斜めハッチング)、導入溝部42内の電解液は、一部が導入液溜め部422に貯留され(図9の右図の右下がりの斜めハッチング)、他部が導入口40iから図4の給液整流部55、給液マニホールド51(52)を介して電池セル100の外部に排出される。
 本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。例えば、双極板の溝部の仕様(導入溝部及び排出溝部の大きさ、形状、個数等)を変更することができる。また、給液整流部及び排液整流部は、双極板に形成される溝部としてもよい。
 1 レドックスフロー電池(RF電池)
 2 セルスタック
 3 セルフレーム
 4,4A,4B,4C,4D,4E,4F 双極板
 40 流路
 40i 導入口
 40o 排出口
 41 溝部
  42 導入溝部
  420 下側屈曲部
  421 導入主溝部(導入幹溝部)
  422 導入液溜め部
  423 導入枝溝部
  43 排出溝部
  430 上側屈曲部
  431 排出主溝部(排出幹溝部)
  432 排出液溜め部
  433 排出枝溝部
 44a,44b ユニット
 45 畝部
 5 枠体
  51,52 給液マニホールド
  53,54 排液マニホールド
  51s,52s 給液ガイド溝
  53s,54s 排液ガイド溝
  55 給液整流部
  56 排液整流部
  57 シール溝
 6 シール部材
 100 電池セル
 101 隔膜
 102 正極セル
 103 負極セル
 104 正極電極
 105 負極電極
 100P 正極循環機構
 100N 負極循環機構
 106 正極電解液タンク
 107 負極電解液タンク
 108,109,110,111 導管
 112,113 ポンプ
 200 サブスタック
 210,220 エンドプレート
 230 連結部材

Claims (12)

  1.  レドックスフロー電池の正極電極と負極電極との間に配置され、前記正極電極及び前記負極電極の少なくとも一方の電極に対向する対向面に、電解液が流通する流路を備える双極板であって、
     前記対向面が鉛直方向に沿うように、前記双極板をレドックスフロー電池の所定位置に配置したときの鉛直方向下側を前記双極板の下側、鉛直方向上側を前記双極板の上側とするとき、
     前記流路は、
      前記双極板の下側に電解液の導入口と、
      前記双極板の上側に電解液の排出口と、
      前記導入口に繋がる導入溝部と、
      前記排出口に繋がる排出溝部とを備え、
     前記導入溝部及び前記排出溝部は、
      局所的に小さな断面積を有し、前記導入口と前記排出口とを連通させる連通部、
      又は、前記導入溝部及び前記排出溝部を互いに分断する閉端部を備え、
     前記導入溝部は、
      前記導入口から前記導入溝部の先端に向かう長手方向の途中で、前記双極板の下側に向かって屈曲する下側屈曲部と、
      前記下側屈曲部よりも前記導入溝部の先端側に電解液を貯留する導入液溜め部とを備える双極板。
  2.  前記導入溝部と前記排出溝部の各々は、互いに噛み合って対向配置される櫛歯領域を備える請求項1に記載の双極板。
  3.  前記排出溝部は、
      前記排出口から前記排出溝部の先端に向かう長手方向の途中で、前記双極板の上側に向かって屈曲する上側屈曲部と、
      前記上側屈曲部よりも前記排出溝部の先端側に電解液を貯留する排出液溜め部とを備え、
     前記導入液溜め部及び前記排出液溜め部が、前記連通部に備えられる請求項2に記載の双極板。
  4.  前記導入液溜め部及び前記排出液溜め部は、局所的に幅が狭い請求項3に記載の双極板。
  5.  前記導入液溜め部及び前記排出液溜め部は、局所的に深さが浅い請求項3又は請求項4に記載の双極板。
  6.  前記導入口と前記排出口とが前記連通部で連通したユニットを複数備え、
     隣り合う前記ユニットは、互いに独立して存在する請求項3から請求項5のいずれか1項に記載の双極板。
  7.  前記排出溝部は、
      前記排出口から前記排出溝部の先端に向かう長手方向の途中で、前記双極板の上側に向かって屈曲する上側屈曲部と、
      前記上側屈曲部よりも前記排出溝部の先端側に電解液を貯留する排出液溜め部とを備え、
     前記導入溝部と前記排出溝部とは、互いに分断されており、
     前記導入液溜め部と前記排出液溜め部とは、互いに噛み合って対向配置される請求項2に記載の双極板。
  8.  前記導入溝部は、
      前記双極板の上下方向に沿った導入幹溝部と、
      前記導入幹溝部の長手方向の途中で前記双極板の上下方向と交差する方向に延設される複数の導入枝溝部と、
      前記導入枝溝部の先端に前記導入液溜め部とを備え、
     前記排出溝部は、
      前記双極板の上下方向に沿った排出幹溝部と、
      前記排出幹溝部の長手方向の途中で前記双極板の上下方向と交差する方向に延設される複数の排出枝溝部と、
      前記排出枝溝部の先端に前記排出液溜め部とを備える請求項7に記載の双極板。
  9.  前記導入溝部と前記排出溝部とは、互いに分断された渦巻状に構成されている請求項2に記載の双極板。
  10.  請求項1から請求項9のいずれか1項に記載の双極板と、前記双極板の外周に設けられる枠体とを備えるセルフレーム。
  11.  請求項10に記載のセルフレームを備えるセルスタック。
  12.  請求項11に記載のセルスタックを備えるレドックスフロー電池。
PCT/JP2017/027327 2017-07-27 2017-07-27 双極板、セルフレーム、セルスタック、及びレドックスフロー電池 WO2019021440A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018567319A JP6536867B1 (ja) 2017-07-27 2017-07-27 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
PCT/JP2017/027327 WO2019021440A1 (ja) 2017-07-27 2017-07-27 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
TW107121076A TW201911634A (zh) 2017-07-27 2018-06-20 雙極板、單元框、單元堆及氧化還原液流電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/027327 WO2019021440A1 (ja) 2017-07-27 2017-07-27 双極板、セルフレーム、セルスタック、及びレドックスフロー電池

Publications (1)

Publication Number Publication Date
WO2019021440A1 true WO2019021440A1 (ja) 2019-01-31

Family

ID=65041349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027327 WO2019021440A1 (ja) 2017-07-27 2017-07-27 双極板、セルフレーム、セルスタック、及びレドックスフロー電池

Country Status (3)

Country Link
JP (1) JP6536867B1 (ja)
TW (1) TW201911634A (ja)
WO (1) WO2019021440A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3926720A4 (en) * 2019-02-14 2022-06-15 Sumitomo Electric Industries, Ltd. BIPOLAR PLATE, CELL FRAME, CELL STACK AND REDOX FLOW BATTERY
CN117157788A (zh) * 2021-09-27 2023-12-01 东英 Es株式会社 氧化还原液流电池系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250269A (ja) * 1989-03-23 1990-10-08 Kansai Electric Power Co Inc:The 電解液循環型二次電池
JP2000260461A (ja) * 1999-03-05 2000-09-22 Sumitomo Electric Ind Ltd 流体流通型電池用セル
JP2002175822A (ja) * 2000-12-07 2002-06-21 Sumitomo Electric Ind Ltd レドックスフロー電池およびその運転方法
US20120244395A1 (en) * 2009-12-18 2012-09-27 Perry Michael L Flow battery with interdigitated flow field
JP2015122230A (ja) * 2013-12-24 2015-07-02 住友電気工業株式会社 レドックスフロー電池
JP2016091834A (ja) * 2014-11-05 2016-05-23 住友電気工業株式会社 電解液循環型電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250269A (ja) * 1989-03-23 1990-10-08 Kansai Electric Power Co Inc:The 電解液循環型二次電池
JP2000260461A (ja) * 1999-03-05 2000-09-22 Sumitomo Electric Ind Ltd 流体流通型電池用セル
JP2002175822A (ja) * 2000-12-07 2002-06-21 Sumitomo Electric Ind Ltd レドックスフロー電池およびその運転方法
US20120244395A1 (en) * 2009-12-18 2012-09-27 Perry Michael L Flow battery with interdigitated flow field
JP2015122230A (ja) * 2013-12-24 2015-07-02 住友電気工業株式会社 レドックスフロー電池
JP2016091834A (ja) * 2014-11-05 2016-05-23 住友電気工業株式会社 電解液循環型電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3926720A4 (en) * 2019-02-14 2022-06-15 Sumitomo Electric Industries, Ltd. BIPOLAR PLATE, CELL FRAME, CELL STACK AND REDOX FLOW BATTERY
US11749813B2 (en) 2019-02-14 2023-09-05 Sumitomo Electric Industries, Ltd. Bipolar plate, cell frame, cell stack, and redox flow battery
CN117157788A (zh) * 2021-09-27 2023-12-01 东英 Es株式会社 氧化还原液流电池系统
CN117157788B (zh) * 2021-09-27 2024-04-16 东英Es株式会社 氧化还原液流电池系统

Also Published As

Publication number Publication date
JPWO2019021440A1 (ja) 2019-07-25
JP6536867B1 (ja) 2019-07-03
TW201911634A (zh) 2019-03-16

Similar Documents

Publication Publication Date Title
KR102272748B1 (ko) 쌍극판, 셀 프레임, 셀 스택, 및 레독스 플로우 전지
CN107710487B (zh) 双极板、电池框架、电池堆和氧化还原液流电池
JP6099005B2 (ja) 電池セル、およびレドックスフロー電池
US20190088972A1 (en) Electrode and electrolyte-circulating battery
JP2007305339A (ja) 電解液循環型電池用セル
JP6536867B1 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
JP6956949B2 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
JP6525120B1 (ja) セルフレーム、セルスタック、およびレドックスフロー電池
JP7435479B2 (ja) 電池セル、セルスタック、及びレドックスフロー電池
WO2020158623A1 (ja) 電池セル、セルスタック、及びレドックスフロー電池
WO2020158625A1 (ja) 電池セル、セルスタック、及びレドックスフロー電池
JP7101771B2 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
JPWO2020166418A1 (ja) 双極板、セルフレーム、セルスタック、およびレドックスフロー電池
CN221262433U (zh) 一种液流电池用管路系统
JP6908031B2 (ja) レドックスフロー電池セル、レドックスフロー電池セルスタック、及びレドックスフロー電池
JP2020173892A (ja) 双極板、電池セル、セルスタック、およびレドックスフロー電池
JP2020170694A (ja) 双極板、電池セル、セルスタック、及びレドックスフロー電池
KR20200116557A (ko) 셀 프레임, 전지 셀, 셀 스택, 및 레독스 플로우 전지

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018567319

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919598

Country of ref document: EP

Kind code of ref document: A1