JP2020170694A - 双極板、電池セル、セルスタック、及びレドックスフロー電池 - Google Patents

双極板、電池セル、セルスタック、及びレドックスフロー電池 Download PDF

Info

Publication number
JP2020170694A
JP2020170694A JP2019073174A JP2019073174A JP2020170694A JP 2020170694 A JP2020170694 A JP 2020170694A JP 2019073174 A JP2019073174 A JP 2019073174A JP 2019073174 A JP2019073174 A JP 2019073174A JP 2020170694 A JP2020170694 A JP 2020170694A
Authority
JP
Japan
Prior art keywords
flow path
electrolytic solution
island
battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019073174A
Other languages
English (en)
Inventor
桑原 雅裕
Masahiro Kuwabara
雅裕 桑原
勇人 藤田
Isato Fujita
勇人 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2019073174A priority Critical patent/JP2020170694A/ja
Publication of JP2020170694A publication Critical patent/JP2020170694A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】電解液の流通性に優れ、かつ電池反応を効率よく行えるレドックスフロー電池を構築可能な双極板を提供する。【解決手段】レドックスフロー電池に用いられる電池セル内において電極に対向して配置される双極板であって、電解液の供給側から前記電解液の排出側に向かって並ぶ複数の区画と、隣り合う前記区画間に配置され、前記電解液が流通する第一の流路とを備え、前記各区画は、前記電極と接触する複数の島状部と、隣り合う前記島状部間に配置され、前記電解液が流通する第二の流路とを備え、前記第二の流路は、前記区画における前記供給側の縁部に開口する流入口と、前記区画における前記排出側の縁部に開口する流出口とを備え、前記第一の流路と前記第二の流路とは連続しており、隣り合う前記区画のうち、前記供給側の区画に備わる前記流出口は、前記排出側の区画に備わる前記島状部に対向して配置される、双極板。【選択図】図3

Description

本開示は、双極板、電池セル、セルスタック、及びレドックスフロー電池に関する。
特許文献1には、電極に電解液を供給して電池反応を行うレドックスフロー電池が開示されている。レドックスフロー電池は、正極電解液が供給される正極電極と、負極電解液が供給される負極電極と、両電極間に介在される隔膜とを備える電池セルを構成単位とする。通常、複数の電池セルが双極板を介して積層されてセルスタックが構成される。双極板の表裏面には、それぞれ正極電極及び負極電極が配置される。
特開2015−122230号公報
電解液の流通性に優れ、かつ電池反応を効率よく行えるレドックスフロー電池が望まれている。
そこで、本開示は、電解液の流通性に優れ、かつ電池反応を効率よく行えるレドックスフロー電池を構築可能な双極板を提供することを目的の一つとする。また、本開示は、電解液の流通性に優れ、かつ電池反応を効率よく行えるレドックスフロー電池を構築可能な電池セルを提供することを目的の一つとする。更に、本開示は、電解液の流通性に優れ、かつ電池反応を効率よく行えるレドックスフロー電池を構築可能なセルスタックを提供することを目的の一つとする。更に、本開示は、電解液の流通性に優れ、かつ電池反応を効率よく行えるレドックスフロー電池を提供することを目的の一つとする。
本開示の双極板は、
レドックスフロー電池に用いられる電池セル内において電極に対向して配置される双極板であって、
電解液の供給側から前記電解液の排出側に向かって並ぶ複数の区画と、
隣り合う前記区画間に配置され、前記電解液が流通する第一の流路とを備え、
前記各区画は、
前記電極と接触する複数の島状部と、
隣り合う前記島状部間に配置され、前記電解液が流通する第二の流路とを備え、
前記第二の流路は、
前記区画における前記供給側の縁部に開口する流入口と、
前記区画における前記排出側の縁部に開口する流出口とを備え、
前記第一の流路と前記第二の流路とは連続しており、
隣り合う前記区画のうち、前記供給側の区画に備わる前記流出口は、前記排出側の区画に備わる前記島状部に対向して配置される。
本開示の電池セルは、
電極と、前記電極に対向して配置される双極板とを備える電池セルであって、
前記電極及び前記双極板の少なくとも一方は、
電解液の供給側から前記電解液の排出側に向かって並ぶ複数の区画と、
隣り合う前記区画間に配置され、前記電解液が流通する第一の流路とを備え、
前記各区画は、
前記電解液の流通を阻害する複数の島状部と、
隣り合う前記島状部間に配置され、前記電解液が流通する第二の流路とを備え、
前記第二の流路は、
前記区画における前記供給側の縁部に開口する流入口と、
前記区画における前記排出側の縁部に開口する流出口とを備え、
前記第一の流路と前記第二の流路とは連続しており、
隣り合う前記区画のうち、前記供給側の区画に備わる前記流出口は、前記排出側の区画に備わる前記島状部に対向して配置される。
本開示のセルスタックは、本開示の電池セルを備える。
本開示のレドックスフロー電池は、本開示の電池セル、又は本開示のセルスタックを備える。
本開示の双極板、電池セル、及びセルスタックは、電解液の流通性に優れ、かつ電池反応を効率よく行えるレドックスフロー電池を構築できる。本開示のレドックスフロー電池は、電解液の流通性に優れ、かつ電池反応を効率よく行える。
図1は、実施形態1のレドックスフロー電池の基本構造を模式的に示す説明図である。 図2は、実施形態1の電池セル及びセルスタックの概略構成図である。 図3は、実施形態1の双極板を示す概略平面図である。 図4は、変形例1−1の双極板を示す概略平面図である。 図5は、変形例1−2の双極板を示す概略平面図である。
[本開示の実施形態の説明]
最初に本開示の実施形態の内容を列記して説明する。
(1)本開示に係る双極板は、
レドックスフロー電池に用いられる電池セル内において電極に対向して配置される双極板であって、
電解液の供給側から前記電解液の排出側に向かって並ぶ複数の区画と、
隣り合う前記区画間に配置され、前記電解液が流通する第一の流路とを備え、
前記各区画は、
前記電極と接触する複数の島状部と、
隣り合う前記島状部間に配置され、前記電解液が流通する第二の流路とを備え、
前記第二の流路は、
前記区画における前記供給側の縁部に開口する流入口と、
前記区画における前記排出側の縁部に開口する流出口とを備え、
前記第一の流路と前記第二の流路とは連続しており、
隣り合う前記区画のうち、前記供給側の区画に備わる前記流出口は、前記排出側の区画に備わる前記島状部に対向して配置される。
本開示の双極板は、電解液が流通する第一の流路と第二の流路とを備える。第一の流路と第二の流路とは、双極板における電解液の供給側から排出側に向かって連続している。そのため、本開示の双極板は、電解液の流通性に優れる。電解液の流通性に優れると、電極に供給される電解液量を十分に確保できることから電池反応性を向上でき、かつ圧力損失の増大を抑制できる。
本開示の双極板には、第一の流路によって複数の区画が形成される。区画上での電解液の流れは、第二の流路に沿った流れと、島状部を伝って電極へ拡散するような流れとを形成する。島状部を伝って電極へ拡散するように流れる電解液は、電極内を流通し、電極と良好に電池反応を行う。一方、第二の流路を流通する電解液の大部分は、区画を挟んで設けられる供給側の第一の流路から排出側の第一の流路に向かって素通りする。具体的には、一つの区画において、第二の流路を流通する電解液の大部分は、電極に接触し難い領域を流通し、電極内に拡散し難いため、電池反応を行わずに未反応のまま排出側の第一の流路に流れる。本開示の双極板は、隣り合う区画のうち、供給側の区画に備わる第二の流路の流出口が、排出側の区画に備わる島状部に対向して配置されている。そのため、供給側の区画において第二の流路を流通した電解液は、排出側の区画において島状部に突き当たる。島状部に突き当たった電解液は、島状部を伝って電極へ拡散し易い。つまり、供給側の区画に備わる第二の流路を流通した電解液が実質的に電極と電池反応を行わなかったとしても、その電解液が排出側の区画に備わる島状部を伝って電極へ拡散することで電極と電池反応を行い易い。以上より、本開示の双極板は、電極と電池反応を行わずに未反応のまま電池セル内を通過する電解液量を大幅に低減できることで、電池反応を効率よく行える。
(2)本開示に係る電池セルは、
電極と、前記電極に対向して配置される双極板とを備える電池セルであって、
前記電極及び前記双極板の少なくとも一方は、
電解液の供給側から前記電解液の排出側に向かって並ぶ複数の区画と、
隣り合う前記区画間に配置され、前記電解液が流通する第一の流路とを備え、
前記各区画は、
前記電解液の流通を阻害する複数の島状部と、
隣り合う前記島状部間に配置され、前記電解液が流通する第二の流路とを備え、
前記第二の流路は、
前記区画における前記供給側の縁部に開口する流入口と、
前記区画における前記排出側の縁部に開口する流出口とを備え、
前記第一の流路と前記第二の流路とは連続しており、
隣り合う前記区画のうち、前記供給側の区画に備わる前記流出口は、前記排出側の区画に備わる前記島状部に対向して配置される。
本開示の電池セルは、電解液が流通する第一の流路と第二の流路とを備える。第一の流路と第二の流路とは、電池セルにおける電解液の供給側から排出側に向かって連続している。そのため、本開示の電池セルは、電解液の流通性に優れる。電解液の流通性に優れると、電極に供給される電解液量を十分に確保できることから電池反応性を向上でき、かつ圧力損失の増大を抑制できる。
本開示の電池セルには、第一の流路によって複数の区画が形成される。複数の区画は、双極板と電極の少なくとも一方に形成される。双極板に区画を備える場合、島状部には電解液が流通しない。よって、区画上での電解液の流れは、第二の流路に沿った流れと、島状部を伝って電極へ拡散するような流れとを形成する。島状部を伝って電極へ拡散するように流れる電解液は、電極内を流通し、電極と良好に電池反応を行う。一方、第二の流路を流通する電解液の大部分は、区画を挟んで設けられる供給側の第一の流路から排出側の第一の流路に向かって素通りする。具体的には、一つの区画において、第二の流路を流通する電解液の大部分は、電極に接触し難い領域を流通し、電極内に拡散し難いため、電池反応を行わずに未反応のまま排出側の第一の流路に流れる。
電極に区画を備える場合、電解液は、第一の流路又は第二の流路に比較して、島状部に電解液が流通し難い。よって、区画上での電解液の流れは、第二の流路に沿った流れと、島状部に染み込むような流れとを形成する。島状部に染み込むように流れる電解液は、電極と良好に電池反応を行う。一方、第二の流路を流通する電解液の大部分は、電極に接触し難い領域を流通し、電極内に拡散し難いため、電池反応を行わずに未反応のまま排出側の第一の流路に流れる。
双極板と電極のいずれに区画を備えたとしても、本開示の電池セルは、隣り合う区画のうち、供給側の区画に備わる第二の流路の流出口が、排出側の区画に備わる島状部に対向して配置されている。そのため、供給側の区画において第二の流路を流通した電解液は、排出側の区画において島状部に突き当たる。島状部に突き当たった電解液は、双極板に区画を備える場合には、島状部を伝って電極へ拡散し易く、電極に区画を備える場合には、島状部に染み込むように流れ易い。つまり、供給側の区画に備わる第二の流路を流通した電解液が実質的に電極と電池反応を行わなかったとしても、その電解液が排出側の区画に備わる島状部を伝って電極へ拡散する又は染み込むことで電極と電池反応を行い易い。以上より、本開示の電池セルは、電極と電池反応を行わずに未反応のまま電池セル内を通過する電解液量を大幅に低減できることで、電池反応を効率よく行える。
(3)本開示の電池セルの一例として、
前記各区画における前記島状部と前記第二の流路との並び方向を幅方向とし、
前記各区画における前記第二の流路の合計幅が、前記区画の幅に対して0.01以上0.5未満である形態が挙げられる。
上記形態によれば、電解液の流通性及び電池反応性の双方をバランスよく向上し易い。区画の幅に対する第二の流路の合計幅が0.01以上であることで、電解液の流通性を向上し易い。一方、区画の幅に対する第二の流路の合計幅が0.5未満であることで、隣り合う区画のうち、供給側の区画に備わる第二の流路の流出口を、排出側の区画に備わる島状部に対向するように配置し易く、電池反応性を向上し易い。
(4)本開示の電池セルの一例として、
前記区画の数が2以上100以下である形態が挙げられる。
上記形態によれば、電解液の流通性及び電池反応性の双方を効率的に向上し易い。区画の数が2以上であることで、電解液と電極とが電池反応を行う確率を高め易く、電池反応をより効率よく行える。区画の数が多いほど上記確率を高め易いが、100超だとその効果に顕著な差は見られない傾向にあると考えられる。よって、区画の数が100以下であることで、電池反応を十分に効率よく行え、かつ区画を形成する時間を低減できる。
(5)本開示の電池セルの一例として、
前記区画及び前記第一の流路が前記双極板に設けられている形態が挙げられる。
上記形態によれば、区画及び第一の流路を電池セルに設け易い。双極板には流路を形成し易いからである。また、双極板に流路を形成することで、電極の種類によらず、経時的に流路の形状を保持し易いからである。
(6)本開示の電池セルの一例として、
前記第一の流路及び前記第二の流路は溝を含む形態が挙げられる。
上記形態によれば、第一の流路及び第二の流路を電池セルに設け易い。溝は、双極板及び電極のいずれに対しても容易に形成できるからである。
(7)本開示に係るセルスタックは、
上記(2)から(6)のいずれか一つの電池セルを備える。
本開示のセルスタックは、上述の本開示の電池セルを備えるため、電解液の流通性に優れ、かつ電池反応を効率よく行えるレドックスフロー電池を構築できる。
(8)本開示に係るレドックスフロー電池は、
上記(2)から(6)のいずれか一つの電池セル、又は上記(7)のセルスタックを備える。
本開示のレドックスフロー電池は、上述の本開示の電池セル、又は上述の本開示のセルスタックを備えるため、電解液の流通性に優れ、かつ電池反応を効率よく行える。
[本開示の実施形態の詳細]
本開示の実施形態の詳細を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。図中の同一符号は、同一名称物を示す。
≪実施形態1≫
実施形態の電池セルの特徴の一つは、電池セル内を流通する電解液の流通性を向上させると共に、電池反応性を向上させる構成を、電極及び双極板の少なくとも一方に備える点にある。実施形態1では、上記構成を双極板に備える。以下では、まず、図1及び図2を参照して、実施形態の電池セル、セルスタック、レドックスフロー電池(RF電池)の基本構成を説明する。その後、図3を参照して、実施形態1の双極板の構成を詳細に説明する。
〔電池セル〕
電池セル1は、図1及び図2に示すように、正極セル1Aと負極セル1Bとを備える。正極セル1Aは、正極電極13と、隔膜11と、双極板2とを備える。負極セル1Bは、負極電極14と、隔膜11と、双極板2とを備える。双極板2は、後述するセルフレーム4として利用される。
RF電池10が単セル電池である場合、一つの正極セル1Aと一つの負極セル1Bとを備える。RF電池10が多セル電池である場合、正極セル1Aと負極セル1Bとの組を複数組備える。正極セル1Aと負極セル1Bとの組を複数備える多セル電池は、代表的にはセルスタック5を備える。電池セル1は、代表的には後述のセルフレーム4を用いて構築される。
〈電極〉
正極電極13及び負極電極14は、正極電解液や負極電解液に含まれる活物質(イオン)が電池反応を行う反応場である。正極電極13及び負極電極14は、導電性を有する多孔体で形成されている。多孔体で形成された正極電極13及び負極電極14は、空孔を有するため、正極電極13内及び負極電極14内に電解液を流通させることができる。以下の説明において、正極電極13及び負極電極14の少なくとも一方を電極12として説明することがある。電極12は、例えば炭素系材料の繊維集合体、多孔質の金属部材等が挙げられる。炭素系材料の繊維集合体は、例えば、カーボンフェルト、カーボンペーパー、カーボンクロス等が挙げられる。公知の電極材を利用してもよい。
電極12の透過率は、例えば1×10−13以上1×10−10以下であることが挙げられる。透過率は、電解液の流通のし易さを示す指標である。透過率が高いほど電極12に電解液が流れ易いことを示す。透過率が1×10−13以上であることで、電極12における電解液の流通抵抗が小さくなり、電極12に流れる電解液の圧力損失をより低減できる。また、透過率が1×10−13以上であれば、電極12に電解液が拡散し易く、電極12の広範囲に電解液を行き渡らせ易い。透過率が高過ぎると、電池反応せずに未反応のまま電極12内を通過する電解液の割合が多くなり、電極12において電池反応が生じ難くなる。よって、透過率が1×10−10以下であることで、未反応のまま電極12内を通過する電解液を低減でき、電極12において電池反応が生じ易い。電極の透過率は、更に2×10−13以上0.8×10−10以下であることが挙げられる。
透過率は、電極12の透過抵抗の逆数であり、ΔP=(h/K)μ(Q/wd)で示される式(ダルシー・ワイズバッハの式と呼ばれる)により求められる。Kは透過率(m)である。ΔPは圧力損失(Pa)、Qは電極12に供給される流体の流量(m/s)、μは流体の粘度(Pa・s)、hは電極12の長さ(m)、wは電極12の幅(m)、dは電極12の厚み(m)をそれぞれ示す。電極12の厚みは、電池セル1に電極12を組み込んだときにおける圧縮状態での電極12の厚みとする。透過率は、流体の種類によらず電極12固有の値であり、粘度が既知の流体(水等)を用いて測定することができる定数である。電極12の透過率は、特許文献1に記載された測定方法を用いて求めることができる。
〈隔膜〉
隔膜11は、正極電極13と負極電極14との間を分離すると共に、所定のイオンを透過する部材である。隔膜11は、例えば、イオン交換膜、多孔質膜等を利用できる。
〔RF電池〕
RF電池10は、電解液循環型の蓄電池の一つである。RF電池10は、電池セル1(セルスタック5でもよい)と、電池セル1に電解液を供給する循環機構とを備える。代表的には、RF電池10は、図1に示すように、介在機器6を介して、発電部7と負荷8とに接続される。介在機器6は、例えば交流/直流変換器、変電設備等が挙げられる。発電部7は、例えば太陽光発電機、風力発電機、その他一般の発電所等が挙げられる。負荷8は、例えば電力系統や需要家等が挙げられる。RF電池10は、発電部7を電力供給源として充電を行い、負荷8を電力提供対象として放電を行う。RF電池10は、負荷平準化、瞬低補償や非常用電源、太陽光発電や風力発電といった自然エネルギー発電の出力平滑化等に利用される。
〈循環機構〉
循環機構は、正極タンク16と、負極タンク17と、往路配管161,171と、復路配管162,172と、ポンプ18,19とを備える(図1)。正極タンク16は、正極電極13に循環供給する正極電解液を貯留する。往路配管161及び復路配管162は、正極タンク16と正極セル1Aとの間を接続する。負極タンク17は、負極電極14に循環供給する負極電解液を貯留する。往路配管171及び復路配管172は、負極タンク17と負極セル1Bとの間を接続する。ポンプ18,19はそれぞれ、往路配管161,171に接続されて、正極セル1A,負極セル1Bに電解液を循環供給する。図1の黒矢印は、電解液の流れを例示する。
〈電解液〉
電解液には、活物質となるイオンを含む溶液が利用できる。代表的には、上記イオンと、酸とを含む水溶液が挙げられる。図1では、正負の活物質としてバナジウムイオンを含む全バナジウム系RF電池を例示する。正極活物質としてマンガンイオンを含み、負極活物質としてチタンイオンを含むMn−Ti系RF電池等、公知の組成の電解液を利用できる。
〈セルフレーム〉
セルフレーム4は、双極板2と、枠体40とを備える。枠体40は、双極板2を支持すると共に、双極板2に配置される電極12への電解液の供給、電極12からの電解液の排出に利用される電気絶縁性の部材である。単セル電池又は多セル電池の端部に利用されるセルフレーム4では、双極板2の片面に正極電極13又は負極電極14が配置される。多セル電池の中間部に利用されるセルフレーム4では、一つの双極板2の両面を挟むように、片面に正極電極13が配置され、反対面に負極電極14が配置される。
枠体40は、図2に示すように、双極板2の周縁側の領域を覆うように設けられる。枠体40は、窓部41と、電解液の供給路及び排出路とを備える。窓部41は、枠体40の中央部に設けられて、双極板2における電極12が配置される領域を露出させる。図2は、枠体40として、外形が長方形であり、かつ長方形の窓部41を有する形状の場合を例示する。枠体40の外形、窓部41の形状は適宜変更できる。
代表的には、枠体40は、片面に正極側の供給路及び排出路、反対面に負極側の供給路及び排出路を備える。上記供給路は、給液マニホールド43(正極),44(負極)と、給液マニホールド43,44から窓部41に至るスリット等とを備える。上記排出路は、排液マニホールド45(正極),46(負極)と、窓部41から排液マニホールド45,46に至るスリット等とを備える。枠体40の窓部41の内周縁において、上記供給路のスリットの開口箇所及びその近傍箇所は、電解液の供給縁2iとして利用される。上記窓部41の内周縁において、上記排出路のスリットの開口箇所及びその近傍箇所は、電解液の排出縁2oとして利用される。その他、本例の枠体40は、シール材48を備えており、隣り合うセルフレーム4間を液密に保持する(図1)。
枠体40の構成材料は、電解液に対する耐性及び電気絶縁性を有する材料、例えば塩化ビニル樹脂等の樹脂が挙げられる。枠体40は、例えば分割片の組物が挙げられる。双極板2を挟むように上記分割片を組み合わせて適宜接合することでセルフレーム4を構築できる。上記分割片で双極板2を挟む場合、分割片と双極板2との間、及び分割片間は、適宜シール材により液密に保持する。又は、枠体40の窓部41に双極板2を嵌め込むことでセルフレーム4を構築できる。窓部41に双極板2を嵌め込む場合、枠体40と双極板2との間は、適宜シール材により液密に保持する。又は、枠体40は、射出成形等による一体成形物が挙げられる。双極板2の周囲に枠体40を射出成形等で成形することでセルフレーム4を製造できる。
〔セルスタック〕
セルスタック5は、図1及び図2に示すように、代表的には複数の電池セル1の積層体と、一対のエンドプレート51と、締結部材52とを備える。上記積層体は、正極セル1A、負極セル1Bが順に積層されて構築される。具体的には、上記積層体は、複数のセルフレーム4を備え、セルフレーム4(双極板2)、正極電極13、隔膜11、負極電極14が順に積層される(図2の分解図参照)。締結部材52は、長ボルト等の連結材及びナット等が挙げられる。締結部材52によってエンドプレート51間が締め付けられることで、上記積層体は、その積層方向の締付力によって積層状態を保持する。
セルスタック5は、図2に例示するように、複数のサブセルスタック50を備えてもよい。サブセルスタック50は、所定数の電池セル1の積層体と、この積層体を挟む一対の給排板53とを備える。給排板53に上述の往路配管161,171及び復路配管162,172が接続される。
〔双極板〕
双極板2は、電流を流す導電性の部材であり、双極板2の片面から反対面に電解液が通過しない部材である。双極板2の片面側に正極電極13(図1及び図2)が対向して配置され、双極板2の反対面側に負極電極14(図1及び図2)が対向して配置される。双極板2は、図3に示すように、電解液が供給される供給縁2iと、電解液が排出される排出縁2oとを備える。図3では、双極板2のうち、上述の枠体40(図1及び図2)に覆われる周縁側の領域を省略し、枠体40の窓部41から露出される領域(以下、露出領域と呼ぶ)を示す。電極12(図1及び図2)は、この露出領域に配置される。図3では、紙面上下方向に沿った下側から上側に向かう方向が電解液の流通方向である例を示す。この例では、双極板2における上記露出領域の周縁のうち、紙面左右方向に直線状に延びる下端縁が供給縁2iであり、上端縁が排出縁2oである。供給縁2i及び排出縁2oの配置位置、電解液の流通方向等は適宜選択できる。
双極板2は、図3に示すように、供給縁2iから排出縁2oに向かって並ぶ複数の区画20と、隣り合う区画20間に配置される第一の流路21とを備える。図3における二点鎖線で囲む領域が各区画20である。各区画20は、第一の流路21によって供給縁2i側と排出縁2o側とに分割される領域のことである。また、各区画20は、第一の流路21及びその延長路によって供給縁2i側と排出縁2o側とに分割される領域のことである(後述する変形例1−2にて詳述する)。各区画20は、電極12(図1及び図2)と接触する複数の島状部23と、隣り合う島状部23間に配置される第二の流路22とを備える。第一の流路21及び第二の流路22は、電解液の流通路であり、互いに連通している。第一の流路21及び第二の流路22は、島状部23に対して相対的に電解液が流通し易い。
〈第一の流路〉
第一の流路21は、隣り合う区画20間に配置される。第一の流路21は、電解液の流通を促進する。第一の流路21は、例えば、溝によって形成される。第一の流路21は、上記溝に多孔体が収納されていてもよい。
第一の流路21は、供給縁2iから排出縁2oに向かう方向に対して交差する方向に延びて配置される。この例では、第一の流路21は、供給縁2iから排出縁2oに向かう方向に対して直交する方向に直線状に延びて配置されている。つまり、この例では、第一の流路21は、供給縁2i及び排出縁2oに沿った方向に直線状に延びて配置されている。第一の流路21の両端部は、双極板2の側縁に開口していてもよいし、壁部が設けられていてもよい。
この例では、第一の流路21の断面形状は、矩形状である。ここでの第一の流路21の断面形状は、第一の流路21における電解液の流通方向に直交する横断面の形状である。第一の流路21の断面形状は、矩形状以外に、三角形状、台形状、半円形状、半楕円形状等が挙げられる。
第一の流路21の断面積は、0.25mm以上100mm以下であることが挙げられる。ここでの第一の流路21の断面積は、第一の流路21における電解液の流通方向に直交する横断面の断面積である。第一の流路21の断面積が0.25mm以上であることで、第一の流路21を流通する電解液の流通性を向上し易い。一方、第一の流路21の断面積が100mm以下であることで、区画20を十分に確保できることから島状部23を十分に確保でき、電池反応性を向上し易い。第一の流路21の断面積は、更に0.5mm以上90mm以下、1mm以上80mm以下、特に1mm以上40mm以下、1mm以上30mm以下であることが挙げられる。
第一の流路21における供給縁2iから排出縁2oに向かう方向の長さ(幅)は、適宜選択できる。この長さは、隣り合う区画20間の間隔である。この例では、全ての第一の流路21における上記長さが同じであり、第一の流路21を挟んで区画20が等間隔に配置されている。
〈島状部〉
島状部23は、電極12(図1及び図2)と接触する領域を備える。島状部23は、電解液の流通を阻害する。双極板2に備わる島状部23には電解液は流通しない。各区画20における島状部23は、双極板2の供給縁2i及び排出縁2oに沿った幅方向に並んでいる。各区画20は、この幅方向に並ぶ複数の島状部23を包括する領域である。
島状部23の平面形状は、矩形状や台形状等の直線部によって形成される形状が挙げられる。この例では、島状部23の平面形状は矩形状である。他に、島状部23の平面形状は、楕円形状や円形状等の曲線部によって形成される形状であってもよい。また、島状部23の平面形状は、レーストラック形状等の直線部及び曲線部によって形成される形状であってもよい。
〈第二の流路〉
第二の流路22は、隣り合う島状部23間に配置される。第二の流路22は、電解液の流通を促進する。第二の流路22は、例えば、溝によって形成される。第二の流路22は、上記溝に多孔体が収納されていてもよい。
各区画20における第二の流路22は、第一の流路21と交差する方向に延びて配置される。この例では、各区画20における第二の流路22は、供給縁2iから排出縁2oに向かう方向に沿って配置されている。供給縁2iから排出縁2oに向かう方向とは、図3における紙面上下方向のことである。つまり、この例の第二の流路22は、供給縁2i及び排出縁2oに沿う方向と直交する方向に直線状に延びて配置されている。また、この例の第二の流路22は、互いに平行に配置されている。第二の流路22は、供給縁2iから排出縁2oに向かう方向に対して傾斜するように配置されていてもよい。また、第二の流路22は、互いに非平行に配置されていてもよい。第二の流路22は、曲線状に設けられていてもよい。
第二の流路22は、電解液の流入口22aと流出口22bとを備える。流入口22aは、各区画20における電解液の供給側の縁部に開口する。流出口22bは、各区画20における電解液の排出側の縁部に開口する。つまり、第二の流路22は、供給縁2i側から排出縁2o側に向かって区画20を貫通する。
第二の流路22は、第一の流路21と連続している。つまり、双極板2に設けられる流路(第一の流路21及び第二の流路22)は、供給縁2iから排出縁2oに向かって連続している。そのため、双極板2は、電解液の流通性に優れる。
隣り合う区画20のうち、供給縁2i側の区画20に備わる流出口22bは、排出縁2o側の区画20に備わる島状部23に対向して配置される。よって、供給縁2i側の区画20において第二の流路22を流通した電解液は、排出縁2o側の区画20において島状部23に突き当たる。電解液が島状部23に突き当たることで、電池反応せずに未反応のまま電池セル1内を通過する電解液量を大幅に低減できる。そのため、双極板2は、電池反応性に優れる。この電解液の流れ、及び電池反応については後述する。
この例では、第二の流路22の断面形状は、矩形状である。ここでの第二の流路22の断面形状は、第二の流路22における電解液の流通方向に直交する横断面の形状である。第二の流路22の断面形状は、矩形状以外に、三角形状、台形状、半円形状、半楕円形状等が挙げられる。
第二の流路22の断面積は、0.25mm以上100mm以下であることが挙げられる。ここでの第二の流路22の断面積は、第二の流路22における電解液の流通方向に直交する横断面の断面積である。第二の流路22の断面積が0.25mm以上であることで、第二の流路22を流通する電解液の流通性を向上し易い。一方、第二の流路22の断面積が100mm以下であることで、島状部23を十分に確保でき、電池反応性を向上し易い。第二の流路22の断面積は、更に0.5mm以上90mm以下、1mm以上80mm以下、特に1mm以上40mm以下、1mm以上30mm以下であることが挙げられる。
第二の流路22の断面積は、第一の流路21の断面積と同じであってもよいし、異なっていてもよい。第一の流路21の断面積と第二の流路22の断面積が異なる場合、第二の流路22の断面積は、第一の流路21の断面積よりも小さいことが好ましい。そうすることで、供給縁2i側の区画20の第二の流路22を流通した電解液が、排出縁2o側の区画20の島状部23に突き当たり易い。第一の流路21の断面積は、全ての第一の流路21の断面積が一様な場合、その断面積のことであり、第一の流路21の断面積が異なる場合、最小の断面積のことである。
各区画20における第二の流路22の幅Wの合計は、区画20の幅Wに対して0.01以上0.5未満であることが挙げられる。区画20の幅Wは、電極12が配置される露出領域の側縁間の長さである。第二の流路22の幅Wは、各区画20における島状部23と第二の流路22との並び方向に沿った長さであり、流出口22bにおける最大の長さである。区画20の幅Wに対する第二の流路22の幅Wの合計の割合(Wの合計/W)が0.01以上であることで、第二の流路22を流通する電解液の流通性を向上し易い。上記割合が0.5未満であることで、島状部23の幅を十分に確保でき、隣り合う区画20のうち、供給縁2i側の区画20に備わる第二の流路22の流出口22bを、排出縁2o側の区画20に備わる島状部23に対向するように配置し易く、電池反応性を向上し易い。上記割合は、更に0.02以上0.4以下、特に0.025以上0.33以下が挙げられる。
この例では、各区画20において、全ての第二の流路22の幅Wが同じである。また、この例では、全ての区画20において、第二の流路22の幅Wが同じである。各区画20における第二の流路22の幅Wは、異なっていてもよい。また、区画20ごとで第二の流路22の幅W、及び上記割合が異なっていてもよい。区画20ごとで第二の流路22の上記割合が異なる場合、各区画20における第二の流路22の幅Wの合計が、供給縁2i側から排出縁2o側に向かうに従って小さくなることが挙げられる。この場合、供給縁2i側から排出縁2o側に向かうに従って、電解液が島状部23に突き当たる確率を高め易い。電解液が島状部23に突き当たる確率が高まることで、各区画20における第二の流路22の幅Wの合計が区画20ごとで同じ場合に比較して、少ない区画20の数で電池反応を効率よく行い易い。いずれであっても、隣り合う区画20のうち、供給縁2i側の区画20に備わる第二の流路22の幅Wは、排出縁2o側の区画20に備わる島状部23の幅Wよりも小さいことが挙げられる。そうすることで、供給縁2i側の区画20において第二の流路22を流通した電解液は、排出縁2o側の区画20において島状部23に突き当たり易い。
この例では、第二の流路22の幅Wは、流入口22aから流出口22bまで一様である。第二の流路22の幅Wは、流入口22aと流出口22bとの間で変化してもよい。
各区画20における第二の流路22の数は、2以上800以下であることが挙げられる。各区画20における第二の流路22の数が2以上であることで、電解液の流通性を向上し易い。一方、各区画20のおける第二の流路22の数が800以下であることで、島状部23を十分に確保でき、電池反応性を向上し易い。各区画20における第二の流路22の数は、更に3以上700以下、5以上600以下、特に10以上500以下が挙げられる。
〈区画の数〉
上述した島状部23及び第二の流路22によって構成される各区画20の数は、2以上100以下であることが挙げられる。区画20の数が2以上であることで、電解液が島状部23に突き当たる確率を高め易く、電池反応性を向上し易い。区画の数が多いほど上記確率を高め易いが、100超だとその効果に顕著な差は見られない傾向にあると考えられる。よって、区画の数が100以下であることで、電池反応を十分に効率よく行え、かつ区画を形成する時間を低減できる。区画の数は、更に3以上80以下、4以上60以下、特に7以上55以下が挙げられる。
隣り合う区画20の島状部23同士は、第一の流路21によって完全に分離され、互いに独立していることが挙げられる。つまり、島状部23は、双極板2の供給縁2i及び排出縁2oに沿った幅方向に複数並ぶと共に、双極板2の供給縁2iから排出縁2oに向かう方向に複数並んでいる。
〈双極板の構成材料〉
双極板2の構成材料は、例えば有機複合材、いわゆる導電性プラスチック等が挙げられる。有機複合材は、例えば、炭素系材料や金属等の導電性材料と熱可塑性樹脂等の有機材とを含むものが挙げられる。双極板2は、例えば公知の方法によって板状に成形するとよい。導電性プラスチックの成形方法は、例えば射出成型、プレス成型、真空成型等が挙げられる。第一の流路21及び第二の流路22は、双極板2を板状に成形する際に同時に成形することが挙げられる。または、平坦な平板材に切削加工等を行って第一の流路21及び第二の流路22を形成することもできる。
〈電解液の流れ及び電池反応〉
双極板2上の電解液の流れは、第一の流路21及び第二の流路22に沿った流れと、島状部23を伝って電極12(図1及び図2)へ拡散するような流れとを形成する。図3では、第二の流路22に沿った流れを実線の矢印で示し、島状部23を伝って電極12へ拡散するような流れを破線矢印で示す。第一の流路21と第二の流路22とは連続している。そのため、供給縁2iから供給された電解液は、排出縁2oに向かって実質的に滞りなく流通する。第一の流路21や第二の流路22を流通する電解液の大部分は、電極12に接触し難い領域を流通する。そのため、第一の流路21や第二の流路22を流通する電解液は、電極12内に拡散し難く、電極12と電池反応を行い難い。一方、双極板2のうち主に島状部23が電極12と接触する。そのため、島状部23を伝って電極12へ拡散するように流れる電解液は、電極12内を流通し、電極12と良好に電池反応を行う。
隣り合う区画20のうち、供給縁2i側の区画20に備わる第二の流路22の流出口22bが、排出縁2o側の区画20に備わる島状部23に対向して配置されている。そのため、供給縁2i側の区画20において第二の流路22を流通した電解液は、排出縁2o側の区画20において島状部23に突き当たる。島状部23に突き当たった電解液は、島状部23を伝って電極12へ拡散し易い。つまり、供給縁2i側の区画20に備わる第二の流路22を流通した電解液が実質的に電極12と電池反応を行わなかったとしても、その電解液が排出縁2o側の区画20に備わる島状部23を伝って電極12へ拡散することで電極12と電池反応を行い易い。
〔効果〕
実施形態1の双極板2は、供給縁2iから排出縁2oに向かって連続した第一の流路21及び第二の流路22を備える。そのため、実施形態1の双極板2は、電解液の流通性に優れる。
実施形態1の双極板2は、供給縁2i側から排出縁2o側に向かって並ぶ隣り合う区画20のうち、供給縁2i側の区画20に備わる第二の流路22の流出口22bが、排出縁2o側の区画20に備わる島状部23に対向して配置されている。そのため、供給縁2iから排出縁2oに向かう途中において、電解液が島状部23に突き当たる確率が高い。その結果、電極12と電池反応を行わずに未反応のまま電池セル1内を通過する電解液量を大幅に低減でき、電池反応性に優れる。このとき、各区画20の幅Wに対する第二の流路22の幅Wの合計の割合(Wの合計/W)が0.01以上0.5未満を満たすと、電解液の流通性及び電池反応性の双方をバランスよく向上し易い。また、区画20の数が2以上100以下を満たすと、電解液が島状部23に突き当たる確率を高め易く、電池反応性をより効率よく行える。
≪変形例1−1≫
各区画20における第二の流路22の数は、図4に示すように、1つであってもよい。図4では、紙面左右方向に直線状に延びる下端縁が供給縁2iであり、上端縁が排出縁2oである(図5も同様である)。各区画20における第二の流路22の数が1つであっても、隣り合う区画20のうち、供給縁2i側の区画20に備わる第二の流路22の流出口22bは、排出縁2o側の区画20に備わる島状部23に対向して配置されている。そのため、供給縁2i側の区画20において第二の流路22を流通した電解液は、排出縁2o側の区画20において島状部23に突き当たる。島状部23に突き当たった電解液は、島状部23を伝って電極12内へ拡散し易い。
各区画20に1つの第二の流路22を備える場合、隣り合う区画20の第二の流路22同士は、ある程度の距離をあけて設けられることが好ましい。隣り合う区画20の第二の流路22同士が近接して設けられると、供給縁2i側の区画20において第二の流路22を流通した電解液が、そのまま排出縁2o側の区画20の第二の流路22を流れる確率が高くなるからである。
≪変形例1−2≫
隣り合う区画20の島状部23同士は、図5に示すように、連続して設けられていてもよい。この場合、各区画20は、第一の流路21及びその延長路によって供給縁2i側と排出縁2o側とに分割されることになる。図5に示す双極板2は、第一の流路21及びその延長路によって分割された3つの区画20(図5における二点鎖線で囲む領域)を備える。隣り合う区画20の島状部23同士が連続している場合であっても、隣り合う区画20のうち、供給縁2i側の区画20に備わる第二の流路22の流出口22bは、排出縁2o側の区画20に備わる島状部23に対向して配置されている。そのため、供給縁2i側の区画20において第二の流路22を流通した電解液は、排出縁2o側の区画20において島状部23に突き当たる。島状部23に突き当たった電解液は、島状部23を伝って電極12内へ拡散し易い。
隣り合う区画20の島状部23同士が連続して設けられる場合、第一の流路21を介することなく区画20を跨ぐ領域は、双極板2の供給縁2i及び排出縁2oに沿った幅方向の端部に設けられることが好ましい。例えば、図5に示す構成では、第一の流路21及びその延長路によって分割された3つの区画20を備える。一方で、第一の流路21及び第二の流路22によって紙面左右に分割される2つの島状部23を備える。具体的には、左側の島状部23は凹状、右側の島状部23は凸状に構成され、各島状部23は互いに噛み合う領域を備える。この場合、左右の島状部23のうち、互いに噛み合わずに区画20を跨ぐ領域が、双極板2の供給縁2i及び排出縁2oに沿った幅方向の端部に設けられることが好ましい。第一の流路21及び第二の流路22によって紙面左右に分割される2つの島状部23を備える場合、各区画20における第二の流路22は1つとなる。よって、隣り合う区画20の第二の流路22同士は、ある程度の距離をあけて設けられることが好ましい。
≪実施形態2≫
電池セル内を流通する電解液の流通性を向上させると共に、電池反応性を向上させる構成を電極に備えることもできる。この場合、電極は、電解液の供給側から排出側に向かって並ぶ複数の区画と、隣り合う区画間に配置される第一の流路とを備える。各区画は、電解液の流通を阻害する複数の島状部と、隣り合う島状部間に配置される第二の流路とを備える。第一の流路及び第二の流路は、電解液の流通路であり、互いに連通している。電解液の流通を阻害するとは、第一の流路及び第二の流路に比較して、電解液が流通し難いことである。区画及び第一の流路の形状や大きさは、実施形態1と同様である。
第一の流路及び第二の流路は、溝によって形成されることが挙げられる。また、第一の流路及び第二の流路は、電極を構成する多孔体自体の空孔率が局所的に大きい疎な部分によって形成されることが挙げられる。溝や多孔体における空孔率が大きい疎な部分は、溝のない箇所や空孔率が小さい密な部分に比較して、電解液が流通し易い。
第一の流路及び第二の流路は、電極を板状に成形する際に同時に成形することが挙げられる。第一の流路及び第二の流路が溝によって形成される場合、平坦な平板材に切削加工等を行って第一の流路及び第二の流路を形成することもできる。
電極上の電解液の流れは、第一の流路及び第二の流路に沿った流れと、島状部に染み込むような流れとを形成する。第一の流路と第二の流路とは連続している。そのため、電池セルに供給された電解液は、排出側に向かって実質的に滞りなく流通する。第一の流路や第二の流路を流通する電解液の大部分は、電極に接触し難い領域を流通し、電極内に拡散し難いため、電池反応を行い難い。一方、島状部は、電解液が流通し難いため、電解液が染み込み易く、良好に電池反応を行う。
区画及び第一の流路を電極に備える場合であっても、隣り合う区画のうち、供給側の区画に備わる第二の流路の流出口は、排出側の区画に備わる島状部に対向して配置されている。そのため、供給側の区画において第二の流路を流通した電解液は、排出側の区画において島状部に突き当たる。島状部に突き当たった電解液は、島状部に染み込み、電極内に拡散し易い。つまり、供給側の区画に備わる第二の流路を流通した電解液が実質的に電極と電池反応を行わなかったとしても、その電解液が排出側の区画に備わる島状部に染み込むことで電極と電池反応を行い易い。
[解析例1]
解析例1では、流路を備える電池セルをコンピュータ上に再現し、電池セル内を流通する電解液の流通抵抗及び電解液と電極との反応抵抗をコンピュータシミュレーションによって求めた。解析例1では、正極電極、隔膜、負極電極を重ねた電池セルを、双極板を備えるセルフレームで挟んだ単セル構造のRF電池を模擬した。
〔試験体〕
試験体として、以下の3つの双極板を準備した。3つの双極板は、流路の有無や流路の形状が異なり、大きさ等は同じである。双極板以外の条件(電極、電解液)は、全て同じである。
・試験体1
試験体1として、平板状の双極板を準備した。試験体1では、電池セルに供給される電解液は実質的に全て電極内に拡散して電池反応を行うことができる。つまり、試験体1では、電極と電池反応を行うことができる電解液の割合は100%である。
・試験体2
試験体2として、電解液の供給縁から排出縁にわたって連続して延び、供給縁及び排出縁に沿う方向に並ぶ複数の縦溝を備える双極板を準備した。各縦溝は直線状である。試験体2では、縦溝に交差する溝は備えない。双極板のうち電極が配置される領域の大きさは、100mm×100mmである。複数の縦溝は、2本である。隣り合う縦溝間に島状部が形成される。複数の縦溝は、供給縁及び排出縁に沿う方向の長さ(幅)が1mmである。複数の縦溝間に形成される島状部は、供給縁及び排出縁に沿う方向の長さ(幅)が0.5mmである。試験体2では、電池セルに供給される電解液のうち、島状部を伝って電極へ拡散することで電極と電池反応を行うことができる電解液の割合が40%であった。また、試験体2では、縦溝を流通することで電池反応を実質的に行わずに未反応のまま電池セルから排出される電解液の割合が60%であった。
・試験体3
試験体3として、島状部と第二の流路とを備える区画と、区画間に配置される第一の流路とを備える双極板を準備した。双極板のうち電極が配置される領域の大きさは、100mm×100mmである。第一の流路及び第二の流路は、溝によって形成され、互いに連通している。区画及び第一の流路は、電解液の供給縁から排出縁に向かって交互に並んでいる。隣り合う区画の島状部同士は、第一の流路によって完全に分離され、互いに独立している。区画の数は10であり、各区画は第一の流路を挟んで等間隔に並んでいる。区画の並び方向に沿った第一の流路の長さ(幅)は1mmである。各区画に備わる島状部及び第二の流路の形状及び大きさは全て同じである。また、区画同士における島状部及び第二の流路の形状及び大きさも全て同じである。隣り合う区画を見たとき、供給縁側の区画に備わる第二の流路の流出口は、排出縁側の区画に備わる島状部に対向して配置される(図3を参照)。各区画の幅(図3のW)は100mmである。各区画における第二の流路の幅(図3のW)は1mmである。各区画20における第二の流路22の数は11である。よって、各区画における第二の流路の合計幅は、区画の幅に対して1/10を満たす。試験体3では、各区画を流通する電解液のうち、島状部を伝って電極へ拡散することで電極と電池反応を行う電解液の割合が20%であった。また、試験体3では、各区画において、第二の流路を流通することで電池反応を実質的に行わずに未反応のまま排出側の第一の流路に流れる電解液の割合が80%であった。
〔シミュレーション〕
各試験体の双極板を用いた電池セルに電解液を循環させた。電池セルへの電解液の供給量を10ml/分とし、各試験体の圧力損失と、各試験体における電解液と電極との反応抵抗をそれぞれシミュレーションにより求めた。反応抵抗とは、電池反応の速度限界による抵抗成分のことである。圧力損失は、試験体1の圧力損失を1.0とする相対値で示す。また、反応抵抗は、試験体1の反応抵抗を1.0とする相対値で示す。
その結果を表1に示す。
Figure 2020170694
試験体2及び試験体3は、試験体1に比較して、反応抵抗が増加するが、圧力損失が低減することがわかる。試験体2及び試験体3は、電解液が流通する複数の溝を備えることで、電池セルに供給された電解液が排出側に流通され易く、試験体1に比較して圧力損失が低減すると考えられる。一方、試験体2及び試験体3は、溝を流通する電解液が電極に拡散し難いため、試験体1に比較して反応抵抗が増加すると考えられる。
試験体2と試験体3とを比較すると、試験体3は、試験体2に比較して、圧力損失が同等でありながら、反応抵抗が試験体1と同等程度に優れることがわかる。試験体3は、双極板に互いに連通する第一の流路及び第二の流路を備える。そのため、電池セルに供給された電解液が排出側に流通され易く、試験体2と同様に試験体1に比較して圧力損失が低減すると考えられる。試験体3は、隣り合う区画を見たとき、供給縁側の区画に備わる第二の流路の流出口が排出縁側の区画に備わる島状部に対向して配置される。そのため、電解液と電極とが電池反応を行う確率を高め易く、試験体2に比較して反応抵抗の増加を抑制できると考えられる。試験体3において、電解液と電極とが電池反応を行う確率を高め易い理由は、以下と考えられる。供給縁側の区画に備わる第二の流路の流出口が排出縁側の区画に備わる島状部に対向して配置されることで、供給縁側の区画において第二の流路を流通した電解液が排出縁側の区画において島状部に突き当たる。島状部に突き当たった電解液は、島状部を伝って電極へ拡散するように流れ易い。つまり、供給縁側の区画に備わる第二の流路を流通した電解液が実質的に電極と電池反応を行わなかったとしても、その電解液が排出縁側の区画に備わる島状部を伝って電極へ拡散することで電極と電池反応を行い易い。
10 レドックスフロー電池(RF電池)
1 電池セル、1A 正極セル、1B 負極セル
11 隔膜、12 電極、13 正極電極、14 負極電極
16 正極タンク、17 負極タンク
161,171 往路配管、162,172 復路配管、18,19 ポンプ
2 双極板
2i 供給縁、2o 排出縁
20 区画
21 第一の流路
22 第二の流路、22a 流入口、22b 流出口
23 島状部
4 セルフレーム
40 枠体、41 窓部、43,44 給液マニホールド
45,46 排液マニホールド、48 シール材
5 セルスタック
50 サブセルスタック、51 エンドプレート、52 締結部材
53 給排板
6 介在機器、7 発電部、8 負荷

Claims (8)

  1. レドックスフロー電池に用いられる電池セル内において電極に対向して配置される双極板であって、
    電解液の供給側から前記電解液の排出側に向かって並ぶ複数の区画と、
    隣り合う前記区画間に配置され、前記電解液が流通する第一の流路とを備え、
    前記各区画は、
    前記電極と接触する複数の島状部と、
    隣り合う前記島状部間に配置され、前記電解液が流通する第二の流路とを備え、
    前記第二の流路は、
    前記区画における前記供給側の縁部に開口する流入口と、
    前記区画における前記排出側の縁部に開口する流出口とを備え、
    前記第一の流路と前記第二の流路とは連続しており、
    隣り合う前記区画のうち、前記供給側の区画に備わる前記流出口は、前記排出側の区画に備わる前記島状部に対向して配置される、
    双極板。
  2. 電極と、前記電極に対向して配置される双極板とを備える電池セルであって、
    前記電極及び前記双極板の少なくとも一方は、
    電解液の供給側から前記電解液の排出側に向かって並ぶ複数の区画と、
    隣り合う前記区画間に配置され、前記電解液が流通する第一の流路とを備え、
    前記各区画は、
    前記電解液の流通を阻害する複数の島状部と、
    隣り合う前記島状部間に配置され、前記電解液が流通する第二の流路とを備え、
    前記第二の流路は、
    前記区画における前記供給側の縁部に開口する流入口と、
    前記区画における前記排出側の縁部に開口する流出口とを備え、
    前記第一の流路と前記第二の流路とは連続しており、
    隣り合う前記区画のうち、前記供給側の区画に備わる前記流出口は、前記排出側の区画に備わる前記島状部に対向して配置される、
    電池セル。
  3. 前記各区画における前記島状部と前記第二の流路との並び方向を幅方向とし、
    前記各区画における前記第二の流路の合計幅が、前記区画の幅に対して0.01以上0.5未満である請求項2に記載の電池セル。
  4. 前記区画の数が2以上100以下である請求項2又は請求項3に記載の電池セル。
  5. 前記区画及び前記第一の流路が前記双極板に設けられている請求項2から請求項4のいずれか1項に記載の電池セル。
  6. 前記第一の流路及び前記第二の流路は溝を含む請求項2から請求項5のいずれか1項に記載の電池セル。
  7. 請求項2から請求項6のいずれか1項に記載の電池セルを備える、
    セルスタック。
  8. 請求項2から請求項6のいずれか1項に記載の電池セル、又は請求項7に記載のセルスタックを備える、
    レドックスフロー電池。
JP2019073174A 2019-04-05 2019-04-05 双極板、電池セル、セルスタック、及びレドックスフロー電池 Pending JP2020170694A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019073174A JP2020170694A (ja) 2019-04-05 2019-04-05 双極板、電池セル、セルスタック、及びレドックスフロー電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019073174A JP2020170694A (ja) 2019-04-05 2019-04-05 双極板、電池セル、セルスタック、及びレドックスフロー電池

Publications (1)

Publication Number Publication Date
JP2020170694A true JP2020170694A (ja) 2020-10-15

Family

ID=72746021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019073174A Pending JP2020170694A (ja) 2019-04-05 2019-04-05 双極板、電池セル、セルスタック、及びレドックスフロー電池

Country Status (1)

Country Link
JP (1) JP2020170694A (ja)

Similar Documents

Publication Publication Date Title
CN107710487B (zh) 双极板、电池框架、电池堆和氧化还原液流电池
KR20190015170A (ko) 쌍극판, 셀 프레임, 셀 스택, 및 레독스 플로우 전지
TW201622223A (zh) 電解液循環型電池
WO2018134956A1 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
JP7435479B2 (ja) 電池セル、セルスタック、及びレドックスフロー電池
JP2020170694A (ja) 双極板、電池セル、セルスタック、及びレドックスフロー電池
JP2013201086A (ja) 燃料電池
US20190348692A1 (en) Cell frame, cell stack, and redox flow battery
JP5653867B2 (ja) 燃料電池
WO2020158623A1 (ja) 電池セル、セルスタック、及びレドックスフロー電池
JP7068613B2 (ja) レドックスフロー電池セル及びレドックスフロー電池
JP2013206876A (ja) 燃料電池
JP6566154B1 (ja) 電池セル、セルスタック、及びレドックスフロー電池
JP2020173891A (ja) 双極板、電池セル、セルスタック、およびレドックスフロー電池
JPWO2020166418A1 (ja) 双極板、セルフレーム、セルスタック、およびレドックスフロー電池
JP5876385B2 (ja) 燃料電池
JP2013206762A (ja) 燃料電池
JP7347448B2 (ja) 電池セル、セルスタック、及びレドックスフロー電池
JP7461614B2 (ja) 双極板、セルフレーム、電池セル、セルスタック、及びレドックスフロー電池
WO2020136721A1 (ja) 電池セル、セルスタック、及びレドックスフロー電池
JP2020173892A (ja) 双極板、電池セル、セルスタック、およびレドックスフロー電池
JP6059552B2 (ja) 燃料電池スタック
JP6117751B2 (ja) 燃料電池スタック
WO2019150570A1 (ja) セルフレーム、電池セル、セルスタック、及びレドックスフロー電池
JPWO2019234867A1 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池