CN101636821B - 平坦化的金属化高密度功率mosfet - Google Patents

平坦化的金属化高密度功率mosfet Download PDF

Info

Publication number
CN101636821B
CN101636821B CN2008800017293A CN200880001729A CN101636821B CN 101636821 B CN101636821 B CN 101636821B CN 2008800017293 A CN2008800017293 A CN 2008800017293A CN 200880001729 A CN200880001729 A CN 200880001729A CN 101636821 B CN101636821 B CN 101636821B
Authority
CN
China
Prior art keywords
power mosfet
oxidates
active region
source electrode
contact site
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008800017293A
Other languages
English (en)
Other versions
CN101636821A (zh
Inventor
黎建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vishay Siliconix Inc
Original Assignee
Vishay Siliconix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vishay Siliconix Inc filed Critical Vishay Siliconix Inc
Publication of CN101636821A publication Critical patent/CN101636821A/zh
Application granted granted Critical
Publication of CN101636821B publication Critical patent/CN101636821B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提出了一种用于制造功率MOSFET的方法。该方法包括制造功率MOSFET的多个层以形成有源区域上表面,以及在该有源区域上进行化学机械抛光处理以形成基本上平坦的表面。然后,在基本上平坦的表面上进行金属化沉积处理,随后完成功率MOSFET的制造。

Description

平坦化的金属化高密度功率MOSFET
技术领域
本申请涉及高密度功率MOSFET半导体器件。
背景技术
功率MOSFET(金属氧化物半导体场效应晶体管)是模拟电路和数字电路应用中所采用的最常用的场效应晶体管之一。
通常,利用与平面结构相反的垂直结构制造沟槽式的功率MOSFET。该垂直结构能够使晶体管承受高阻断电压和高电流。同样地,利用该垂直结构,元件面积大体上与该元件可承受的电流成比例,并且元件厚度与击穿电压成比例。
功率MOSFET元件的几何形状通常通过光刻法来光刻地予以限定。光刻处理用于限定元件区域,并且一层在另一层之上地构建元件。复杂的器件通常具有构建成的多个不同的层,各层具有多个元件,各层具有不同的配线,并且各层堆叠在其前一层的上面。当在硅片的下表面上构建器件元件时,所得到的这些复杂器件的表面布局通常类似于常见的地球上的“山脉”而具有“凸起”和“低谷”。
但是实际上存在一个问题,即现有技术的功率MOSFET元件具有带有大量的表面起伏的有源区域。现有技术的功率MOSFET器件的有源区域因为构建于下面的硅之上的分层的元件而具有许多凸起和低谷。为了能够使元件之间互相连接,这样的表面起伏被厚的金属层所覆盖,该金属层被优化为填充低谷并覆盖凸起。该金属层通常厚度为几微米以上(例如在常见的高密度功率MOSFET器件中)。
该厚金属层会导致许多问题。一个问题在于,尽管该金属层被设计为填充低谷,但在低谷太窄而不能获得有效填充的地方仍会存在空隙。这样的空隙会成为将缺陷引入到最终的功率MOSFET器件中的主要区域。另一个问题在于,该厚金属层的沉积在制造过程中是非常昂贵的。因此,需要提供一种功率MOSFET的制造方法,以避免在平坦化表面处理方面的厚金属层问题。
发明内容
本申请的实施例提出了一种用于高密度功率MOSFET的方法和系统,其避免了现有技术中的厚金属层问题。本申请的实施例消除了最终器件中因其有源区域表面中高的纵横比的间隙而产生的空隙。
在一个实施例中,本申请提供了一种用于制造高密度功率MOSFET的方法。该方法包括:制造功率MOSFET和集成的肖特基器件的多个层以形成有源区域的上表面,其中,氧化沉积物形成在栅极的上方,所述氧化沉积物在所述栅极上方的表面上延伸,与所述氧化沉积物相邻且低于所述氧化沉积物的源极接触部形成在源极的上方,以及在该有源区域的上表面上进行CMP(化学机械抛光)处理以形成基本上平坦的表面,其中,所述源极接触部与所述氧化沉积物共面。然后,在基本上平坦的表面上进行金属化沉积处理,随后完成了功率MOSFET和肖特基器件的制造。在一个实施例中,通过金属化沉积处理所沉积的金属层的厚度小于4微米。因而,在高密度功率MOSFET器件的制造中,CMP处理避免了例如高纵横比的表面特征所引起的问题。
在一个实施例中,CMP处理主要用于对同时具有小几何形状(例如源极接触部)和大几何形状(例如栅极接触部)的功率MOSFET上的表面起伏进行平坦化。
附图说明
构成本申请文件一部分的附图示出了本发明的实施例,这些附图和说明书一起用于阐述本发明的原理。附图中:
图1示出了具有较厚金属层的传统功率MOSFET的示意性横剖面图。
图2示出了具有较厚金属层201的高密度功率MOSFET的示意性横剖面图。
图3是表示高密度功率MOSFET的纵横比的图。
图4是表示对本发明一个实施例的高密度功率MOSFET的有源区域的上表面进行平坦化处理之前的图。
图5是表示对本发明一个实施例的高密度功率MOSFET的有源区域的上表面进行平坦化处理之后的图。
图6是表示对本发明一个实施例的高密度功率MOSFET的已平坦化的有源区域的上表面进行薄的金属化沉积处理之后的图。
图7是表示本发明一个实施例的具有集成的肖特基器件的高密度功率MOSFET的图。
具体实施方式
现在详细描述本发明的优选实施例,附图示出了这些优选实施例的示例。尽管下面结合优选实施例说明本发明,但应当理解,本发明并不局限于这些实施例。相反,在所附权利要求所限定的本发明的精神和范围内,本发明将包括各种变化、修改及其等同物。而且,在以下本发明实施例的详细说明中,为了提供对本发明的全面理解,阐述了许多具体细节。但是,本领域的普通技术人员应当理解,可以在不具备这些具体细节的情况下实现本发明。而且,因为众所周知的方法、步骤、元件和电路不是本发明实施例的重要方面,所以不对其作详细描述。
本发明的各实施例的目的是提供具有基本上平坦化的有源区域上表面的带薄金属层的高密度功率MOSFET。本发明的各实施例还用于提供制造该高密度功率MOSFET的方法。在一个实施例中,该方法包括制造功率MOSFET的多个层以形成有源区域的上表面,以及在该有源区域上进行CMP(化学机械抛光)处理以形成基本上平坦的表面。然后,在基本上平坦的表面上进行金属化沉积处理,随后完成功率MOSFET的制造。在一个实施例中,通过金属化沉积处理所沉积的金属层厚度小于4微米。以下进一步说明本发明的各实施例及其优点。
图1示出了具有较厚铝金属层101的传统功率MOSFET的示意性横剖面图。如图1所示,功率MOSFET100的横剖面图示出了多个源极接触部(例如接触部102)。各个栅极区域(例如103-104)被如示例性的氧化物层110所示的氧化物层(例如SiO2)包围。n+区域(区域109)为源极。图中示出了漏极区N-108和N+107。图1的实施例示出了相对较厚的金属层101,在此情况下,厚度105约为5μm。通过沉积厚的金属层101以有效地覆盖和填充下面的有源区域表面的表面起伏。金属层101旨在填充所述的氧化沉积物之间的区域并且与源极接触部(例如接触部102)有效的粘连。金属层101因其厚度带来了不平坦的表面。5μm厚的金属层101的金属化沉积层给功率MOSFET100的制造过程增加了巨大的费用。例如,在气相金属沉积机中,多个晶片需要花费大量的时间例如用来形成要求厚度的金属层。在沉积机中所花费的增加的时间降低了机器的总产量以及制造过程的总产量,从而增加了MOSFET器件的单位成本。
图2示出了具有较厚金属层201的高密度功率MOSFET的示意性横剖面图。类似于图1,图2示出了高密度功率MOSFET200的示意性横剖面图,示出了多个源极接触部(例如接触部202)。如同图1,图2的实施例示出了较厚金属层201,在此情况下,厚度约为5μm。通过沉积厚金属层201以有效地覆盖和填充下面的有源区域表面的表面起伏,但是金属层201面对的一个另外的问题就是必须填充所示的氧化沉积物之间的高纵横比的低谷。由于功率MOSFET200是高密度功率MOSFET,所以与较低密度的功率MOSFET(例如图1的MOSFET100)相比,跨过模具区域的源漏极氧化沉积物之间的间隙宽度较小。
金属层201的更具挑战性的任务在于,必须填充所述的氧化沉积物之间的高纵横比区域,同时与源极接触部(例如接触部202)进行有效的粘连。高纵横比区域给金属化沉积处理带来了更大的困难。
图3是表示高密度功率MOSFET200的纵横比的图。纵横比是指间隙的宽度(例如宽度301)和间隙的深度(例如深度302)之间的比值。通常,与相对较浅的宽间隙相反,相对较深的窄间隙的纵横比更高。对于高密度功率MOSFET200来说,确保有效填充高纵横比的间隙并因此确保与源极接触部(例如接触部202)有效接触是更难以解决的,因而通常需要更厚的金属化沉积层201。即使金属层201具有更大的厚度,但高纵横比的间隙仍可能导致空隙和类似的未填充缺陷。这样的空隙将会在最终的高密度功率MOSFET200中产生排气作用(outgassing)和类似的缺陷。因此,金属层201比图1所示的金属层101更昂贵。
图4是表示对本发明一个实施例的高密度功率MOSFET400的有源区域的上表面进行平坦化处理之前的图。如图4所示,功率MOSFET400的横剖面图示出了多个源极接触部(例如接触部402)。在图4的MOSFET400实施例中,源极接触部是钨接触部。
图5是表示对本发明一个实施例的高密度功率MOSFET400的有源区域的上表面进行平坦化处理之后的图。如图5所示,功率MOSFET400的横剖面图示出了平坦化之后的有源区域上表面501。如图5所示,氧化沉积物和钨接触部被抛光,一直到二者共面为止。不论间隙的纵横比如何,都必须被随后的金属化沉积层填充,从而平坦的上有源区域表面有效地去除了任何间隙。这使随后的金属化沉积更有效。
在一个实施例中,在有源区域上表面501上所进行的平坦化处理是钨最优化CMP处理。该钨最优化CMP处理配置为确保具有氧化物子区域和钨子区域的有源区域的有效抛光。
图6是表示对本发明一个实施例的高密度功率MOSFET400的平坦化的有源区域上表面进行薄的金属化沉积处理之后的图。如图6所示,功率MOSFET400的横剖面图示出了被薄的铝金属层602覆盖的有源区域上表面。还示出了金属层602具有接触部603和604。平坦的上有源区域表面没有任何表面起伏,所以可被薄的金属化沉积层有效且高效地填充。薄的金属化沉积层的厚度601小于5μm。例如,在一个实施例中,厚度601为4μm。类似地,在一个实施例中,厚度601为3μm以下。
用于本实施例的高密度功率MOSFET400的薄的金属化沉积处理比传统的较厚的金属化沉积处理便宜并且花费较少的制造时间。由于CMP处理去除了有源区域上表面的表面起伏,所以薄的金属化沉积处理也比传统的较厚的金属化沉积处理更有效,这样就排除了制造缺陷的主要来源。因而,在高密度功率MOSFET器件的制造中,CMP处理防止了例如高纵横比的表面特征所引起的问题的发生。
图7示出了本发明一个实施例的具有集成的肖特基(Schottky)器件700的高密度功率MOSFET。如图7所示,器件700包括高密度功率MOSFET区域701和肖特基器件702。在该示例中,示出了与高密度功率MOSFET的栅极区域相比相对较长的区域705。
另外,应当指出,尽管图1至图7示出了示例性的N沟道器件,但本发明的各实施例也可利用P沟道器件容易地实施。该实施方式也在本发明的范围内。
以上对本发明具体实施例的说明是为了解释和说明而给出的。这些说明不是穷尽的或者不是将本发明限制于所公开的具体形式,显然可以根据上述教导做出各种改变和变化。选择和说明这些实施例的目的是最佳地解释本发明的原理及其实际应用,从而使本领域技术人员最大限度地利用本发明,并且具有各种变化方案的各种实施例也适合于预期的具体应用。应当指出,本发明的保护范围通过所附的权利要求及其等同物限定。

Claims (13)

1.一种用于制造功率MOSFET的方法,该方法包括:
制造功率MOSFET和集成的肖特基器件的多个层,以形成有源区域的上表面,其中,氧化沉积物形成在栅极的上方,所述氧化沉积物在所述栅极上方的表面上延伸,与所述氧化沉积物相邻且低于所述氧化沉积物的源极接触部形成在源极的上方;
在所述有源区域的上表面上进行化学机械抛光处理,以形成基本上平坦的表面,其中,所述源极接触部与所述氧化沉积物共面;
在所述基本上平坦的表面上进行金属化沉积处理;以及
完成所述功率MOSFET和肖特基器件的制造。
2.如权利要求1所述的方法,其中,所述有源区域包括二氧化硅子区域和钨子区域。
3.如权利要求2所述的方法,其中,所述化学机械抛光处理包括钨最优化处理。
4.如权利要求1所述的方法,其中,所述金属化沉积处理被配置为沉积小于4微米深的金属层。
5.如权利要求4所述的方法,其中,所述金属层被配置为接纳多个接合线,所述的多个接合线用于完成所述功率MOSFET的制造。
6.如权利要求1所述的方法,其中,所述功率MOSFET是高密度功率MOSFET。
7.一种用于制造高密度功率MOSFET的方法,该方法包括:
制造功率MOSFET和集成的肖特基器件的多个层,以形成有源区域的上表面,其中,氧化沉积物形成在栅极的上方,所述氧化沉积物在所述栅极上方的表面上延伸,与所述氧化沉积物相邻且低于所述氧化沉积物的源极接触部形成在源极的上方;
在所述有源区域上进行化学机械抛光处理,以形成基本上平坦的表面,其中,所述源极接触部与所述氧化沉积物共面;
在所述基本上平坦的表面上进行金属化沉积处理,其中所述金属化沉积处理被配置为沉积小于4微米深的金属层;以及
完成所述功率MOSFET和集成的肖特基器件的制造。
8.如权利要求7所述的方法,其中,所述有源区域包括二氧化硅子区域和钨子区域。
9.如权利要求8所述的方法,其中,所述化学机械抛光处理包括钨最优化处理。
10.如权利要求7所述的方法,其中,所述金属化沉积处理被配置为沉积小于2微米深的金属层。
11.如权利要求10所述的方法,其中,所述金属层被配置为接纳多个接合线,所述多个接合线用于完成所述功率MOSFET的制造。
12.如权利要求7所述的方法,其中,所述有源区域的上表面是高纵横比的表面。
13.如权利要求7所述的方法,其中,所述功率MOSFET是N沟道器件或P沟道器件。
CN2008800017293A 2007-01-08 2008-01-07 平坦化的金属化高密度功率mosfet Active CN101636821B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/651,258 2007-01-08
US11/651,258 US9437729B2 (en) 2007-01-08 2007-01-08 High-density power MOSFET with planarized metalization
PCT/US2008/050417 WO2008086295A1 (en) 2007-01-08 2008-01-07 Planarized metalization high-density power mosfet

Publications (2)

Publication Number Publication Date
CN101636821A CN101636821A (zh) 2010-01-27
CN101636821B true CN101636821B (zh) 2013-10-30

Family

ID=39593512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008800017293A Active CN101636821B (zh) 2007-01-08 2008-01-07 平坦化的金属化高密度功率mosfet

Country Status (7)

Country Link
US (1) US9437729B2 (zh)
JP (1) JP5481200B2 (zh)
KR (1) KR101294754B1 (zh)
CN (1) CN101636821B (zh)
DE (1) DE112008000110B4 (zh)
TW (1) TWI471943B (zh)
WO (1) WO2008086295A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9437729B2 (en) 2007-01-08 2016-09-06 Vishay-Siliconix High-density power MOSFET with planarized metalization
US9947770B2 (en) * 2007-04-03 2018-04-17 Vishay-Siliconix Self-aligned trench MOSFET and method of manufacture
US9484451B2 (en) * 2007-10-05 2016-11-01 Vishay-Siliconix MOSFET active area and edge termination area charge balance
US9425306B2 (en) 2009-08-27 2016-08-23 Vishay-Siliconix Super junction trench power MOSFET devices
US9443974B2 (en) 2009-08-27 2016-09-13 Vishay-Siliconix Super junction trench power MOSFET device fabrication
US9431530B2 (en) * 2009-10-20 2016-08-30 Vishay-Siliconix Super-high density trench MOSFET
US9614043B2 (en) 2012-02-09 2017-04-04 Vishay-Siliconix MOSFET termination trench
US9842911B2 (en) 2012-05-30 2017-12-12 Vishay-Siliconix Adaptive charge balanced edge termination
US9722041B2 (en) * 2012-09-19 2017-08-01 Vishay-Siliconix Breakdown voltage blocking device
US9887259B2 (en) 2014-06-23 2018-02-06 Vishay-Siliconix Modulated super junction power MOSFET devices
KR102098996B1 (ko) 2014-08-19 2020-04-08 비쉐이-실리코닉스 초접합 금속 산화물 반도체 전계 효과 트랜지스터
CN107078161A (zh) 2014-08-19 2017-08-18 维西埃-硅化物公司 电子电路

Family Cites Families (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906540A (en) 1973-04-02 1975-09-16 Nat Semiconductor Corp Metal-silicide Schottky diode employing an aluminum connector
JPH0612828B2 (ja) 1983-06-30 1994-02-16 株式会社東芝 半導体装置
US4641174A (en) 1983-08-08 1987-02-03 General Electric Company Pinch rectifier
US4672407A (en) 1984-05-30 1987-06-09 Kabushiki Kaisha Toshiba Conductivity modulated MOSFET
JPS6292361A (ja) 1985-10-17 1987-04-27 Toshiba Corp 相補型半導体装置
JPH0693512B2 (ja) 1986-06-17 1994-11-16 日産自動車株式会社 縦形mosfet
JPH0685441B2 (ja) 1986-06-18 1994-10-26 日産自動車株式会社 半導体装置
US4799095A (en) 1987-07-06 1989-01-17 General Electric Company Metal oxide semiconductor gated turn off thyristor
US5021840A (en) 1987-08-18 1991-06-04 Texas Instruments Incorporated Schottky or PN diode with composite sidewall
US4827321A (en) 1987-10-29 1989-05-02 General Electric Company Metal oxide semiconductor gated turn off thyristor including a schottky contact
US20020074585A1 (en) 1988-05-17 2002-06-20 Advanced Power Technology, Inc., Delaware Corporation Self-aligned power MOSFET with enhanced base region
US5283201A (en) 1988-05-17 1994-02-01 Advanced Power Technology, Inc. High density power device fabrication process
US4969027A (en) 1988-07-18 1990-11-06 General Electric Company Power bipolar transistor device with integral antisaturation diode
US4967243A (en) 1988-07-19 1990-10-30 General Electric Company Power transistor structure with high speed integral antiparallel Schottky diode
EP0354449A3 (en) 1988-08-08 1991-01-02 Seiko Epson Corporation Semiconductor single crystal substrate
US5055896A (en) 1988-12-15 1991-10-08 Siliconix Incorporated Self-aligned LDD lateral DMOS transistor with high-voltage interconnect capability
US5072266A (en) 1988-12-27 1991-12-10 Siliconix Incorporated Trench DMOS power transistor with field-shaping body profile and three-dimensional geometry
US4939557A (en) 1989-02-15 1990-07-03 Varian Associates, Inc. (110) GaAs microwave FET
US5111253A (en) 1989-05-09 1992-05-05 General Electric Company Multicellular FET having a Schottky diode merged therewith
JPH03173180A (ja) 1989-12-01 1991-07-26 Hitachi Ltd 半導体素子
EP0438700A1 (de) 1990-01-25 1991-07-31 Asea Brown Boveri Ag Abschaltbares, MOS-gesteuertes Leistungshalbleiter-Bauelement sowie Verfahren zu dessen Herstellung
JP2692350B2 (ja) 1990-04-02 1997-12-17 富士電機株式会社 Mos型半導体素子
FR2668465B1 (fr) 1990-10-30 1993-04-16 Inst Francais Du Petrole Procede d'elimination de mercure ou d'arsenic dans un fluide en presence d'une masse de captation de mercure et/ou d'arsenic.
US5168331A (en) 1991-01-31 1992-12-01 Siliconix Incorporated Power metal-oxide-semiconductor field effect transistor
JPH04291767A (ja) 1991-03-20 1992-10-15 Fuji Electric Co Ltd 伝導度変調型mosfet
JP3131239B2 (ja) 1991-04-25 2001-01-31 キヤノン株式会社 半導体回路装置用配線および半導体回路装置
JP3156300B2 (ja) 1991-10-07 2001-04-16 株式会社デンソー 縦型半導体装置
US5366914A (en) 1992-01-29 1994-11-22 Nec Corporation Vertical power MOSFET structure having reduced cell area
JPH05315620A (ja) 1992-05-08 1993-11-26 Rohm Co Ltd 半導体装置およびその製造法
US5233215A (en) 1992-06-08 1993-08-03 North Carolina State University At Raleigh Silicon carbide power MOSFET with floating field ring and floating field plate
JP2837033B2 (ja) 1992-07-21 1998-12-14 三菱電機株式会社 半導体装置及びその製造方法
GB9215653D0 (en) 1992-07-23 1992-09-09 Philips Electronics Uk Ltd A method of manufacturing a semiconductor device comprising an insulated gate field effect device
GB9216599D0 (en) 1992-08-05 1992-09-16 Philips Electronics Uk Ltd A semiconductor device comprising a vertical insulated gate field effect device and a method of manufacturing such a device
GB9306895D0 (en) 1993-04-01 1993-05-26 Philips Electronics Uk Ltd A method of manufacturing a semiconductor device comprising an insulated gate field effect device
US5430315A (en) 1993-07-22 1995-07-04 Rumennik; Vladimir Bi-directional power trench MOS field effect transistor having low on-state resistance and low leakage current
JP3383377B2 (ja) 1993-10-28 2003-03-04 株式会社東芝 トレンチ構造の縦型のノーマリーオン型のパワーmosfetおよびその製造方法
JP3334290B2 (ja) 1993-11-12 2002-10-15 株式会社デンソー 半導体装置
JPH07176745A (ja) 1993-12-17 1995-07-14 Semiconductor Energy Lab Co Ltd 半導体素子
US5567634A (en) 1995-05-01 1996-10-22 National Semiconductor Corporation Method of fabricating self-aligned contact trench DMOS transistors
US5998837A (en) 1995-06-02 1999-12-07 Siliconix Incorporated Trench-gated power MOSFET with protective diode having adjustable breakdown voltage
US6140678A (en) 1995-06-02 2000-10-31 Siliconix Incorporated Trench-gated power MOSFET with protective diode
US6049108A (en) 1995-06-02 2000-04-11 Siliconix Incorporated Trench-gated MOSFET with bidirectional voltage clamping
DE69617098T2 (de) 1995-06-02 2002-04-18 Siliconix Inc Grabengate-Leistungs-MOSFET mit Schutzdioden in periodischer Anordnung
US6204533B1 (en) 1995-06-02 2001-03-20 Siliconix Incorporated Vertical trench-gated power MOSFET having stripe geometry and high cell density
EP0746042B1 (en) 1995-06-02 2004-03-31 SILICONIX Incorporated Bidirectional blocking trench power MOSFET
US5689128A (en) 1995-08-21 1997-11-18 Siliconix Incorporated High density trenched DMOS transistor
JPH09129877A (ja) 1995-10-30 1997-05-16 Toyota Central Res & Dev Lab Inc 半導体装置の製造方法、絶縁ゲート型半導体装置の製造方法および絶縁ゲート型半導体装置
US5814858A (en) 1996-03-15 1998-09-29 Siliconix Incorporated Vertical power MOSFET having reduced sensitivity to variations in thickness of epitaxial layer
JPH09260645A (ja) 1996-03-19 1997-10-03 Sanyo Electric Co Ltd 半導体装置
US5770878A (en) 1996-04-10 1998-06-23 Harris Corporation Trench MOS gate device
JP2917922B2 (ja) 1996-07-15 1999-07-12 日本電気株式会社 半導体装置及びその製造方法
US5808340A (en) 1996-09-18 1998-09-15 Advanced Micro Devices, Inc. Short channel self aligned VMOS field effect transistor
US7269034B2 (en) * 1997-01-24 2007-09-11 Synqor, Inc. High efficiency power converter
JP3173405B2 (ja) 1997-01-31 2001-06-04 日本電気株式会社 半導体装置の製造方法
US5952695A (en) 1997-03-05 1999-09-14 International Business Machines Corporation Silicon-on-insulator and CMOS-on-SOI double film structures
JP3545590B2 (ja) 1997-03-14 2004-07-21 株式会社東芝 半導体装置
US6180966B1 (en) 1997-03-25 2001-01-30 Hitachi, Ltd. Trench gate type semiconductor device with current sensing cell
US6172398B1 (en) 1997-08-11 2001-01-09 Magepower Semiconductor Corp. Trenched DMOS device provided with body-dopant redistribution-compensation region for preventing punch through and adjusting threshold voltage
JP3502531B2 (ja) 1997-08-28 2004-03-02 株式会社ルネサステクノロジ 半導体装置の製造方法
US6268242B1 (en) 1997-12-31 2001-07-31 Richard K. Williams Method of forming vertical mosfet device having voltage clamped gate and self-aligned contact
JP3705919B2 (ja) 1998-03-05 2005-10-12 三菱電機株式会社 半導体装置及びその製造方法
JP3413569B2 (ja) 1998-09-16 2003-06-03 株式会社日立製作所 絶縁ゲート型半導体装置およびその製造方法
US6939776B2 (en) 1998-09-29 2005-09-06 Sanyo Electric Co., Ltd. Semiconductor device and a method of fabricating the same
US6621121B2 (en) 1998-10-26 2003-09-16 Silicon Semiconductor Corporation Vertical MOSFETs having trench-based gate electrodes within deeper trench-based source electrodes
US7578923B2 (en) 1998-12-01 2009-08-25 Novellus Systems, Inc. Electropolishing system and process
JP3743189B2 (ja) 1999-01-27 2006-02-08 富士通株式会社 不揮発性半導体記憶装置及びその製造方法
US6351009B1 (en) 1999-03-01 2002-02-26 Fairchild Semiconductor Corporation MOS-gated device having a buried gate and process for forming same
US6277695B1 (en) 1999-04-16 2001-08-21 Siliconix Incorporated Method of forming vertical planar DMOSFET with self-aligned contact
US6413822B2 (en) 1999-04-22 2002-07-02 Advanced Analogic Technologies, Inc. Super-self-aligned fabrication process of trench-gate DMOS with overlying device layer
US6238981B1 (en) 1999-05-10 2001-05-29 Intersil Corporation Process for forming MOS-gated devices having self-aligned trenches
GB9917099D0 (en) 1999-07-22 1999-09-22 Koninkl Philips Electronics Nv Cellular trench-gate field-effect transistors
US6483171B1 (en) 1999-08-13 2002-11-19 Micron Technology, Inc. Vertical sub-micron CMOS transistors on (110), (111), (311), (511), and higher order surfaces of bulk, SOI and thin film structures and method of forming same
US6211018B1 (en) 1999-08-14 2001-04-03 Electronics And Telecommunications Research Institute Method for fabricating high density trench gate type power device
US6245615B1 (en) 1999-08-31 2001-06-12 Micron Technology, Inc. Method and apparatus on (110) surfaces of silicon structures with conduction in the <110> direction
US6348712B1 (en) 1999-10-27 2002-02-19 Siliconix Incorporated High density trench-gated power MOSFET
GB9928285D0 (en) 1999-11-30 2000-01-26 Koninkl Philips Electronics Nv Manufacture of trench-gate semiconductor devices
US6285060B1 (en) 1999-12-30 2001-09-04 Siliconix Incorporated Barrier accumulation-mode MOSFET
US6580123B2 (en) 2000-04-04 2003-06-17 International Rectifier Corporation Low voltage power MOSFET device and process for its manufacture
US6472678B1 (en) 2000-06-16 2002-10-29 General Semiconductor, Inc. Trench MOSFET with double-diffused body profile
US6784486B2 (en) 2000-06-23 2004-08-31 Silicon Semiconductor Corporation Vertical power devices having retrograded-doped transition regions therein
JP2002016080A (ja) 2000-06-28 2002-01-18 Toshiba Corp トレンチゲート型mosfetの製造方法
JP4528460B2 (ja) 2000-06-30 2010-08-18 株式会社東芝 半導体素子
US6700158B1 (en) 2000-08-18 2004-03-02 Fairchild Semiconductor Corporation Trench corner protection for trench MOSFET
JP2002110978A (ja) 2000-10-02 2002-04-12 Toshiba Corp 電力用半導体素子
US6509233B2 (en) 2000-10-13 2003-01-21 Siliconix Incorporated Method of making trench-gated MOSFET having cesium gate oxide layer
JP4514006B2 (ja) 2000-10-25 2010-07-28 ソニー株式会社 半導体装置
US6608350B2 (en) 2000-12-07 2003-08-19 International Rectifier Corporation High voltage vertical conduction superjunction semiconductor device
JP2002222950A (ja) 2001-01-25 2002-08-09 Denso Corp 炭化珪素半導体装置の製造方法
US6710403B2 (en) 2002-07-30 2004-03-23 Fairchild Semiconductor Corporation Dual trench power MOSFET
JP3531613B2 (ja) 2001-02-06 2004-05-31 株式会社デンソー トレンチゲート型半導体装置及びその製造方法
JP4932088B2 (ja) 2001-02-19 2012-05-16 ルネサスエレクトロニクス株式会社 絶縁ゲート型半導体装置の製造方法
JP2002280553A (ja) 2001-03-19 2002-09-27 Toshiba Corp 半導体装置及びその製造方法
JP4608133B2 (ja) 2001-06-08 2011-01-05 ルネサスエレクトロニクス株式会社 縦型mosfetを備えた半導体装置およびその製造方法
EP1267415A3 (en) 2001-06-11 2009-04-15 Kabushiki Kaisha Toshiba Power semiconductor device having resurf layer
JP4854868B2 (ja) 2001-06-14 2012-01-18 ローム株式会社 半導体装置
JP2003030396A (ja) 2001-07-13 2003-01-31 Nec Corp 委託作業管理システム、方法およびプログラム
GB0118000D0 (en) 2001-07-24 2001-09-19 Koninkl Philips Electronics Nv Manufacture of semiconductor devices with schottky barriers
US6882000B2 (en) 2001-08-10 2005-04-19 Siliconix Incorporated Trench MIS device with reduced gate-to-drain capacitance
US6489204B1 (en) 2001-08-20 2002-12-03 Episil Technologies, Inc. Save MOS device
US7045859B2 (en) 2001-09-05 2006-05-16 International Rectifier Corporation Trench fet with self aligned source and contact
WO2003028108A1 (fr) 2001-09-19 2003-04-03 Kabushiki Kaisha Toshiba Semi-conducteur et procede de fabrication
JP2003115587A (ja) 2001-10-03 2003-04-18 Tadahiro Omi <110>方位のシリコン表面上に形成された半導体装置およびその製造方法
JP3973395B2 (ja) 2001-10-16 2007-09-12 株式会社豊田中央研究所 半導体装置とその製造方法
KR100406180B1 (ko) 2001-12-22 2003-11-17 주식회사 하이닉스반도체 플래쉬 메모리 셀의 제조 방법
US6838722B2 (en) 2002-03-22 2005-01-04 Siliconix Incorporated Structures of and methods of fabricating trench-gated MIS devices
JP4004843B2 (ja) 2002-04-24 2007-11-07 Necエレクトロニクス株式会社 縦型mosfetの製造方法
JP3652322B2 (ja) 2002-04-30 2005-05-25 Necエレクトロニクス株式会社 縦型mosfetとその製造方法
US7012005B2 (en) 2002-06-25 2006-03-14 Siliconix Incorporated Self-aligned differential oxidation in trenches by ion implantation
JP3640945B2 (ja) 2002-09-02 2005-04-20 株式会社東芝 トレンチゲート型半導体装置及びその製造方法
US8080459B2 (en) 2002-09-24 2011-12-20 Vishay-Siliconix Self aligned contact in a semiconductor device and method of fabricating the same
US8629019B2 (en) 2002-09-24 2014-01-14 Vishay-Siliconix Method of forming self aligned contacts for a power MOSFET
JP3931138B2 (ja) 2002-12-25 2007-06-13 三菱電機株式会社 電力用半導体装置及び電力用半導体装置の製造方法
US6861701B2 (en) 2003-03-05 2005-03-01 Advanced Analogic Technologies, Inc. Trench power MOSFET with planarized gate bus
US7652326B2 (en) 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
JP2004356114A (ja) 2003-05-26 2004-12-16 Tadahiro Omi Pチャネルパワーmis電界効果トランジスタおよびスイッチング回路
US6987305B2 (en) 2003-08-04 2006-01-17 International Rectifier Corporation Integrated FET and schottky device
US7022578B2 (en) 2003-10-09 2006-04-04 Chartered Semiconductor Manufacturing Ltd. Heterojunction bipolar transistor using reverse emitter window
JP4470454B2 (ja) 2003-11-04 2010-06-02 株式会社豊田中央研究所 半導体装置とその製造方法
WO2005065385A2 (en) 2003-12-30 2005-07-21 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US7405452B2 (en) 2004-02-02 2008-07-29 Hamza Yilmaz Semiconductor device containing dielectrically isolated PN junction for enhanced breakdown characteristics
JP4904673B2 (ja) 2004-02-09 2012-03-28 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2005268679A (ja) 2004-03-22 2005-09-29 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
GB0419558D0 (en) 2004-09-03 2004-10-06 Koninkl Philips Electronics Nv Vertical semiconductor devices and methods of manufacturing such devices
JP4913336B2 (ja) 2004-09-28 2012-04-11 ルネサスエレクトロニクス株式会社 半導体装置
JP4841829B2 (ja) 2004-11-17 2011-12-21 ルネサスエレクトロニクス株式会社 半導体装置及びその製造方法
US20060108635A1 (en) 2004-11-23 2006-05-25 Alpha Omega Semiconductor Limited Trenched MOSFETS with part of the device formed on a (110) crystal plane
DE102004057237B4 (de) 2004-11-26 2007-02-08 Infineon Technologies Ag Verfahren zum Herstellen von Kontaktlöchern in einem Halbleiterkörper sowie Transistor mit vertikalem Aufbau
US20060113588A1 (en) 2004-11-29 2006-06-01 Sillicon-Based Technology Corp. Self-aligned trench-type DMOS transistor structure and its manufacturing methods
US7439583B2 (en) 2004-12-27 2008-10-21 Third Dimension (3D) Semiconductor, Inc. Tungsten plug drain extension
CN101185169B (zh) 2005-04-06 2010-08-18 飞兆半导体公司 沟栅场效应晶体管及其形成方法
JP5350783B2 (ja) 2005-05-24 2013-11-27 ヴィシェイ−シリコニックス トレンチ型金属酸化物半導体電界効果トランジスタの製造方法
JP2006339558A (ja) 2005-06-06 2006-12-14 Seiko Epson Corp 半導体装置の製造方法
US7592650B2 (en) 2005-06-06 2009-09-22 M-Mos Semiconductor Sdn. Bhd. High density hybrid MOSFET device
TWI400757B (zh) 2005-06-29 2013-07-01 Fairchild Semiconductor 形成遮蔽閘極場效應電晶體之方法
JP2007012977A (ja) 2005-07-01 2007-01-18 Toshiba Corp 半導体装置
JP2007027193A (ja) 2005-07-12 2007-02-01 Renesas Technology Corp 半導体装置およびその製造方法、ならびに非絶縁型dc/dcコンバータ
JP4928754B2 (ja) 2005-07-20 2012-05-09 株式会社東芝 電力用半導体装置
JP2007035841A (ja) 2005-07-26 2007-02-08 Toshiba Corp 半導体装置
JP2007189192A (ja) 2005-12-15 2007-07-26 Toshiba Corp 半導体装置
US7449354B2 (en) 2006-01-05 2008-11-11 Fairchild Semiconductor Corporation Trench-gated FET for power device with active gate trenches and gate runner trench utilizing one-mask etch
JP4182986B2 (ja) 2006-04-19 2008-11-19 トヨタ自動車株式会社 半導体装置とその製造方法
JP5222466B2 (ja) 2006-08-09 2013-06-26 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US9437729B2 (en) 2007-01-08 2016-09-06 Vishay-Siliconix High-density power MOSFET with planarized metalization
US8420483B2 (en) 2007-01-09 2013-04-16 Maxpower Semiconductor, Inc. Method of manufacture for a semiconductor device
US7670908B2 (en) 2007-01-22 2010-03-02 Alpha & Omega Semiconductor, Ltd. Configuration of high-voltage semiconductor power device to achieve three dimensional charge coupling
US9947770B2 (en) 2007-04-03 2018-04-17 Vishay-Siliconix Self-aligned trench MOSFET and method of manufacture
JP2009004411A (ja) 2007-06-19 2009-01-08 Rohm Co Ltd 半導体装置
US8816419B2 (en) 2007-06-19 2014-08-26 Rohm Co., Ltd. Semiconductor device
JP2009043966A (ja) 2007-08-09 2009-02-26 Toshiba Corp 半導体装置及びその製造方法
JP2009135360A (ja) 2007-12-03 2009-06-18 Renesas Technology Corp 半導体装置およびその製造方法
JP4748149B2 (ja) 2007-12-24 2011-08-17 株式会社デンソー 半導体装置
US7825431B2 (en) 2007-12-31 2010-11-02 Alpha & Omega Semicondictor, Ltd. Reduced mask configuration for power MOSFETs with electrostatic discharge (ESD) circuit protection
US8642459B2 (en) 2008-08-28 2014-02-04 Infineon Technologies Ag Method for forming a semiconductor device with an isolation region on a gate electrode
US8039877B2 (en) 2008-09-09 2011-10-18 Fairchild Semiconductor Corporation (110)-oriented p-channel trench MOSFET having high-K gate dielectric
US7910486B2 (en) 2009-06-12 2011-03-22 Alpha & Omega Semiconductor, Inc. Method for forming nanotube semiconductor devices
US9425306B2 (en) 2009-08-27 2016-08-23 Vishay-Siliconix Super junction trench power MOSFET devices
US9443974B2 (en) 2009-08-27 2016-09-13 Vishay-Siliconix Super junction trench power MOSFET device fabrication
US9431530B2 (en) 2009-10-20 2016-08-30 Vishay-Siliconix Super-high density trench MOSFET
US8362550B2 (en) 2011-01-20 2013-01-29 Fairchild Semiconductor Corporation Trench power MOSFET with reduced on-resistance
US8466513B2 (en) 2011-06-13 2013-06-18 Semiconductor Components Industries, Llc Semiconductor device with enhanced mobility and method
US8633539B2 (en) 2011-06-27 2014-01-21 Infineon Technologies Austria Ag Trench transistor and manufacturing method of the trench transistor

Also Published As

Publication number Publication date
CN101636821A (zh) 2010-01-27
TWI471943B (zh) 2015-02-01
KR101294754B1 (ko) 2013-08-09
US9437729B2 (en) 2016-09-06
DE112008000110B4 (de) 2017-11-16
JP5481200B2 (ja) 2014-04-23
WO2008086295A1 (en) 2008-07-17
DE112008000110T5 (de) 2009-11-19
TW200837841A (en) 2008-09-16
US20080164515A1 (en) 2008-07-10
KR20090131284A (ko) 2009-12-28
JP2010516049A (ja) 2010-05-13

Similar Documents

Publication Publication Date Title
CN101636821B (zh) 平坦化的金属化高密度功率mosfet
CN102017103B (zh) 利用化学机械抛光的功率器件
US8035159B2 (en) Device structure and manufacturing method using HDP deposited source-body implant block
KR101869323B1 (ko) 초고밀도 전력 트렌치 mosfet
US9024381B2 (en) Semiconductor device and fabricating method thereof
CN110581138B (zh) 半导体元件及其制作方法
JP2013503492A (ja) スーパージャンクショントレンチパワーmosfetデバイスの製造
US10896968B2 (en) Device structure and manufacturing method using HDP deposited source-body implant block
KR102257468B1 (ko) 임베디드 메모리를 위한 트렌치 게이트 고전압 트랜지스터
US12048163B2 (en) Trench gate high voltage transistor for embedded memory
CN101924110B (zh) 一种体区接触的soi晶体管结构及其制备方法
US10032901B2 (en) Semiconductor device with trench-like feed-throughs
CN115566038A (zh) 超结器件及其制造方法
CN102347371B (zh) 非易失性半导体存储器晶体管及非易失性半导体存储器的制造方法
CN113327860B (zh) 屏蔽栅沟槽型mos器件的制造方法
TWI447817B (zh) 單元溝槽金屬氧化物半導體場效電晶體(mosfet)及其製造方法、以及使用單元溝槽金屬氧化物半導體場效電晶體之功率轉換系統
US7714382B2 (en) Trench gate semiconductor with NPN junctions beneath shallow trench isolation structures
CN107464758A (zh) 一种半导体器件的形成方法
CN106057681A (zh) 沟槽功率器件及制作方法
KR20100132197A (ko) 반도체 소자 및 그 제조방법
TWI732115B (zh) 半導體製造方法
CN108010968B (zh) 鳍式场效应晶体管及其制作方法
CN117650160A (zh) 半导体器件及其制造方法
CN115692201A (zh) 超级结器件结构及其形成方法
CN115810545A (zh) 超级结器件结构及其形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant