TWI447817B - 單元溝槽金屬氧化物半導體場效電晶體(mosfet)及其製造方法、以及使用單元溝槽金屬氧化物半導體場效電晶體之功率轉換系統 - Google Patents

單元溝槽金屬氧化物半導體場效電晶體(mosfet)及其製造方法、以及使用單元溝槽金屬氧化物半導體場效電晶體之功率轉換系統 Download PDF

Info

Publication number
TWI447817B
TWI447817B TW099138428A TW99138428A TWI447817B TW I447817 B TWI447817 B TW I447817B TW 099138428 A TW099138428 A TW 099138428A TW 99138428 A TW99138428 A TW 99138428A TW I447817 B TWI447817 B TW I447817B
Authority
TW
Taiwan
Prior art keywords
layer
gate
titanium
trench
region
Prior art date
Application number
TW099138428A
Other languages
English (en)
Other versions
TW201137983A (en
Inventor
Hamilton Lu
Lipcsei Laszlo
Original Assignee
O2Micro Int Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by O2Micro Int Ltd filed Critical O2Micro Int Ltd
Publication of TW201137983A publication Critical patent/TW201137983A/zh
Application granted granted Critical
Publication of TWI447817B publication Critical patent/TWI447817B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66719With a step of forming an insulating sidewall spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

單元溝槽金屬氧化物半導體場效電晶體(MOSFET)及其製造方法、以及使用單元溝槽金屬氧化物半導體場效電晶體之功率轉換系統
本發明係關於一種功率電晶體,特別是一種溝槽金屬氧化物半導體場效電晶體。
在過去的幾十年間,半導體元件在應用領域中逐漸成為熱門,例如,金屬氧化物半導體場效電晶體(MOSFET)。MOSFET通常包括多晶矽層,例如,可將多晶矽層當做MOSFET的閘極。
MOSFET有兩種結構,例如,豎向擴散MOSFET(Vertical Diffused MOSFET)和溝槽MOSFET。豎向擴散MOSFET因平面技術的開發開始於20世紀70年代中期。到80年代後期,採用了動態隨機存取記憶體(DRAM)溝槽技術的溝槽MOSFET開始滲透MOSFET市場,這種溝槽MOSFET改善了MOSFET的汲極和源極之間的特定導通阻抗(RDSON)。然而,與豎向擴散MOSFET相比,溝槽MOSFET中的閘極電荷限制了高速(或dv/dt)應用。為了有利於多晶閘極阻抗和電容,RDSON和閘極電荷之間需折衷平衡。
本發明的目的為提供一種單元溝槽金屬氧化物半導體場效電晶體(MOSFET)的製造方法,包括:在一第一外延層上沉積一第一光刻膠以勾勒一溝槽區;在一第一閘極導通層上沉積一第二光刻膠以勾勒一臺面區,其中,該第二 光刻膠的邊緣與該第一光刻膠的邊緣對齊;蝕刻該臺面區的該第一閘極導通層以形成具有一凸起的一第二閘極導通層;以及結晶式地鈦化該第二閘極導通層以形成一鈦閘極導通層。
本發明還提供一種單元溝槽金屬氧化物半導體場效電晶體(MOSFET),包括:一外延層;一氧化層,位於該外延層上和該外延層中所形成的一溝槽內;以及一鈦閘極導通,其係填滿該溝槽且形成溢出該溝槽的一凸起,其中,有過半的該鈦閘極導通層包括一鈦閘極導通材料。
本發明還提供一種功率轉換系統,包括:至少一開關,該開關包括溝槽金屬氧化物半導體場效電晶體(MOSFET),該溝槽MOSFET包括多個單元溝槽MOSFET,每一該單元溝槽MOSFET包括:一外延層;一氧化層,位於該外延層上且覆蓋該外延層中所形成的一溝槽的底部和側面;以及一具有一凸起的鈦閘極導通層,該鈦閘極導通層填入該溝槽,其中,有過半的該鈦閘極導通層包括一鈦閘極導通材料。
以下將對本發明的實施例給出詳細的說明。雖然本發明將結合實施例進行闡述,但應理解這並非意指將本發明限定於這些實施例。相反地,本發明意在涵蓋由後附申請專利範圍所界定的本發明精神和範圍內所定義的各種變化、修改和均等物。
以下部分詳細描述係以程序、邏輯方塊、步驟、以及 其他代表電腦記憶體內資料位元的運算之符號表示之。這些描述與表述係為資料處理技術領域中具有通常知識者傳達其工作實質內容的最有效方式。在本發明中,一程序、一邏輯方塊、一步驟或其他等等,被認定為以一自身一致順序之步驟或指令導引產生一所需之結果。這些步驟係需要將物理量做物理處理。
然而,應該明白的是,這些相似的用語皆與適當的物理量有關,且僅僅是在這些物理量上標上方便辨識之標示。除非特別強調,否則顯然從以下述描述可知,在本發明中,這些“塗層(coating)”、“沉積(depositing)”、蝕刻“(etching)”、製造“(fabricating)”、“矽化(siliciding)”、“佈植(implanting)”、“金屬化(metalizing)”、“鈦化(titanizing)”等等之用語,係參考半導體材料製造之動作及製程。
應理解圖示並未按照比例繪製,且僅描述其中部分結構,以及顯示行程這些結構之各層。
此外,亦可結合其他的製程及步驟與此處所討論之製程與步驟,亦即,此處所顯示及描述之步驟之前、中間、及/或之後可有多種製程及步驟。重要的是,本發明之實施例可結合其他製程及步驟而實施之,並不會對其造成重大影響。一般而言,本發明之各種實施例可取代習知製程的某些部分,而不會對其週邊製程及步驟造成重大影響。
在一實施例中,本發明公開了一種單元溝槽MOSFET的製造方法。在第一外延層上沉積第一光刻膠以勾勒溝槽區。然後,在第一閘極導通層上沉積第二光刻膠以勾勒臺 面區,其中,臺面區的邊緣與溝槽區的邊緣對齊。蝕刻臺面區的部分第一閘極導通層以形成具有凸起的第二閘極導通層。沉積鈦然後蝕刻臺面區的鈦。因此,同時從凸起的頂部和側面結晶式地鈦化凸起,且第二閘極導通層以向下方式被結晶式地鈦化。有利之處在於,第二閘極導通層(包括凸起)中過半的閘極導通材料轉化成鈦閘極導通材料。而在傳統凹蝕刻技術中,只轉化約10%的閘極導通材料。因此,本發明降低了單元溝槽MOSFET的阻抗,且改善了單元溝槽MOSFET的閘極導通性。此外,本發明還形成間隙壁以保護鈦閘極導通層的拐角處,使得閘極導通結構更適於機械應用。
圖1至圖8所示為根據本發明一實施例的單元溝槽MOSFET的製造程序截面圖。圖1至圖8中單元溝槽MOSFET的製造程序用於說明性的目的,而不限於這些特定的製造程序。
在圖1中,進行外延沉積以形成一外延層。例如,進行N型外延沉積以形成一晶圓的半導體基板(例如,N型高摻雜基板,圖1中未示出)上的N型外延層110。隨後,沉積一第一光刻膠以形成N型外延層110上的一光刻膠區120A和120B。光刻膠區120A和120B覆蓋N型外延層110,作為一掩膜以為一單元溝槽MOSFET勾勒一溝槽區,例如,單元溝槽MOSFET的溝槽的位置。
在圖2中,採用微影(lithgrapgy)方法蝕刻溝槽區的部分N型外延層110以勾勒出一溝槽。換言之,透過圖1所示的開口130去除溝槽區的矽,進而形成有效之溝槽。 因此,形成N型外延層201。從晶圓表面去除第一光刻膠,然後氧化溝槽。因此,在N型外延層201之周圍即形成一閘極氧化層203。閘極氧化層203環繞著溝槽,亦即,閘極氧化層203覆蓋溝槽的表面(側面和底部)。沉積一閘極導通材料並摻雜磷氧3氯(POCl3)以在閘極氧化層203上形成一閘極導通層205。更具體地說,部分之閘極導通層205填滿溝槽,且閘極導通層205以一預定厚度覆蓋閘極氧化層203。閘極導通材料可為多晶矽、鎢、鍺、氮化鎵(GaN)或碳化矽(SiC)。
在圖3中,在閘極導通層205上沉積第二光刻膠以勾勒單元溝槽MOSFET的臺面區。第二光刻膠的邊緣與第一光刻膠的邊緣對齊。因此,閘極導通層205上形成一光刻膠區310。光刻膠區310的邊緣與光刻膠區120A和120B的邊緣對齊。
在圖4中,蝕刻圖3中所示之臺面區的部分閘極導通層205以形成表面具有一凸起407的閘極導通層405。在一實施例中,凸起407為矩形凸起。凸起407具有預定厚度,剩餘之閘極導通層405填入單元溝槽MOSFET的溝槽。在形成閘極導通層405之後,第二光刻膠被去除。
隨後,在圖5中,在N型外延層201中佈植用於通道體的P型摻雜物至一適當深度以形成P阱510A和510B。換言之,在形成閘極導通層405之後,在N型外延層530中佈植P型摻雜物,進而在N型外延層201的上部形成P阱510A和510B。N型外延層530上之P阱510A和510B作為溝槽的體區。隨後,佈植用於通道體的N型摻雜物被 佈植以在溝槽的體區分別形成N型層(例如,N+型層520A和520B)。N+型層520A和520B係分別在P阱510A和510B之上。
在形成N+型層520A和520B之後,在圖6中,結晶式地鈦化閘極導通層405以形成一鈦閘極導通層605。同時從圖5中所示之凸起407的頂部和側面結晶式地鈦化凸起407以形成一鈦化凸起607。從閘極導通層405的頂部向下結晶式地鈦化閘極導通層405。例如,採用快速加熱回火(rapid thermal anneal,RTA)或溶爐技術濺鍍一鈦薄膜以在鈦閘極導通層605中形成矽化鈦。更具體而言,同時從凸起407的頂部和側面結晶式地濺鍍鈦薄膜。然後,從閘極導通層405之頂部朝閘極導通層405持續地向下濺鍍鈦薄膜。隨後,進行回火步驟。採用過氧化濕蝕刻技術蝕刻臺面區的鈦,且鈦閘極導通材料被保留在圖6中所示的包括凸起607的鈦閘極導通層605的上部。
有利之處在於,相較於傳統的凹蝕刻技術,由於圖3中所示的閘極導通層205上沉積第二光刻膠,因此圖4中所示的閘極導通層405包括更多的閘極導通材料。相較於傳統的向下鈦化技術,閘極導通層405中更多的閘極導通材料可被轉化成鈦閘極導通材料。例如,包括凸起407的閘極導通層405中約過半的閘極導通材料被轉化成鈦閘極導通材料。有利之處在於,相較於傳統的凹蝕刻技術,圖6中所示之鈦閘極導通層605中包括更多的鈦閘極導通材料,鈦閘極導通層605可構成單元溝槽MOSFET的閘極。由於更多的多晶閘極的閘極導通材料被結晶式地鈦化,因 此,降低了單元溝槽MOSFET的閘極導通材料的阻抗。在一實施例中,單元溝槽MOSFET的閘極的阻抗約為每平方0.13歐姆(Ohm/SQ)。換言之,單元溝槽MOSFET的阻抗約為0.13Ohm/SQ。有利之處在於,由於閘極導通結構中包括更多的鈦閘極導通材料,進而改善了單元溝槽MOSFET的閘極傳導性。
此外,圖6中所示在鈦閘極導通層605側面形成之間隙壁,例如低溫氧化(LTO)間隙壁601A和601B,在連續地佈植步驟中保護鈦閘極導通層605的拐角處不受損壞。另外,間隙壁601A和601B使閘極導通結構更適於機械應用。
在圖7中,沉積矽酸四乙酯(TEOS)和矽磷酸玻璃(BPSG)以在鈦閘極導通層605上和間隙壁601A和601B周圍形成一TEOS和BPSG層710。隨後,佈植P型摻雜物,並進一步佈植適當深度,進而形成分別與N+型層520A和520B相鄰的P型高摻雜(P+)型層720A和720B。隨後,回火並回流P+型層720A和720B。N+型層520A和520B構成單元溝槽MOSFET的源極。P+型層720A和720B形成本體二極體之觸點。因此,開始蝕刻此觸點。
在圖8中,進行金屬化以隔離閘極和源極的金屬接觸。金屬層801金屬化整個單元。
圖9所示為根據本發明一實施例溝槽MOSFET 900的結的截面圖。採用圖1至圖8中所述的過程和步驟製造溝槽MOSFET 900。在一實施例中,溝槽MOSFET 900包括多個單元,例如,採用圖1至圖8所示的過程和步驟所製造的單 元溝槽MOSFET。
在一實施例中,每個單元溝槽MOSFET包括N+基板9001。在N+基板9001上形成一N型外延層9530。部分具有鈦化凸起9607的鈦閘極導通層9605填入由閘極氧化層9203環繞的單元溝槽MOSFET的溝槽中。如前所述,鈦閘極導通層9605包括鈦化區和非鈦化區,在一實施例中,有大約過半的鈦閘極導通層9605(包括鈦化凸起9607)鈦化,而剩餘的鈦閘極導通層9605未鈦化。有利之處在於,由於圖3中所示之第二光刻膠的沉積,使得鈦閘極導通層9605包括更多的鈦閘極導通材料。在一實施例中,降低了溝槽MOSFET 900中鈦閘極導通層9605的阻抗。換言之,溝槽MOSFET 900的阻抗可從0.50Ohm/SQ降至0.13Ohm/SQ。因此,改善了溝槽MOSFET的閘極導通率。
間隙壁(例如,低溫氧化間隙壁9601A和9601B)可平滑鈦閘極導通層9605的表面。鈦閘極導通層9605構成溝槽MOSFET 900的閘極。
在N型外延層9530上形成溝槽體(例如,P阱9510)。在P阱9510中形成P+型層9720和N+型層9520A和9520B。在一實施例中,作為本體二極體之觸點的P+型層9720位於N+型層9520A和9520B之間。N+型層9520A和9520B構成溝槽MOSFET 900的源極。底層(例如,N+基板9001)構成溝槽MOSFET 900的汲極。
在一實施例中,在TEOS和BPSG層9710上形成金屬層9801。TEOS和BPSG層9710隔離閘極和源極的金屬接觸。
圖10所示為根據本發明一實施例功率轉換系統1000 的方塊圖。在一實施例中,功率轉換系統1000將輸入電壓轉換成輸出電壓。功率轉換系統1000可為直流/直流(DC/DC)轉換器、交流/直流(AC/DC)轉換器或直流/交流(DC/AC)轉換器。功率轉換系統1000包括一或多個開關1010。
在一實施例中,開關1010可為圖1至圖8所示的過程和步驟所製造的溝槽MOSFET(例如,圖9中溝槽MOSFET 900),但不以此為限。開關1010可用作功率轉換系統1000中的高側開關或低側開關。由於降低了溝槽MOSFET的多晶阻抗,開關1010的閘極阻抗相對較低。有利之處在於,開關1010可相對更快地導開或關閉,進而提高了功率轉換系統1000的效率。
圖11所示為根據本發明一實施例單元溝槽MOSFET的製造方法流程圖1100。流程圖1100將結合圖1至圖8進行描述。
在步驟1110中,在第一外延層上沉積一第一光刻膠以勾勒溝槽區。在步驟1120中,在閘極導通層205上沉積一第二光刻膠以勾勒臺面區,其中,第二光刻膠的邊緣與第一光刻膠的邊緣對齊。在步驟1130中,蝕刻臺面區的部分閘極導通層205以形成具有凸起407的閘極導通層405。在步驟1140中,結晶式地鈦化閘極導通層405以形成鈦閘極導通層605。
本發明揭露在外延層(例如,N型外延層110)上沉積第一光刻膠以勾勒溝槽區。蝕刻溝槽區的部分N型外延層110以形成N型外延層201,隨後,去除第一光刻膠。在N 型外延層201周圍形成閘極氧化層203之後,在溝槽區沉積閘極導通材料,並摻雜磷氧3氯,進而在閘極氧化層203上形成閘極導通層205。在閘極導通層205上沉積第二光刻膠以勾勒臺面區,其中,第二光刻膠的邊緣與第一光刻膠的邊緣對齊。隨後,蝕刻臺面區的部分閘極導通層206以形成具有凸起的閘極導通層405,然後去除第二光刻膠。隨後,在形成作為溝槽體的P阱(例如,P阱510A和510B)之後,在P阱520A和520B上形成作為單元溝槽MOSFET的源極的N+型層520A和520B。在P阱510A和510B上分別形成作為體二極體觸點的P+型層720A和720B。
沉積鈦薄膜以形成在鈦閘極導通層605中的鈦閘極導通材料。蝕刻臺面區的鈦,並保留鈦閘極導通層605中的鈦閘極導通材料。有利之處在於,沉積第二光刻膠以勾勒覆在閘極導通層205上的臺面區,用於閘極導通結構。因此,鈦閘極導通層605中更多的閘極導通材料轉換成鈦閘極導通材料。因此,單元溝槽MOSFET的阻抗可從約0.50Ohm/SQ降至約0.13Ohm/SQ以改善單元溝槽MOSFET的閘極導通率。形成間隙壁可保護鈦閘極導通層605的拐角處,且使閘極導通結構更適於機械應用。隨後,進行觸點蝕刻和金屬化步驟。
上文具體實施方式和附圖僅為本發明之常用實施例。顯然,在不脫離權利要求書所界定的本發明精神和發明範圍的前提下可以有各種增補、修改和替換。本領域技術人員應該理解,本發明在實際應用中可根據具體的環境和工作要求在不背離發明準則的前提下在形式、結構、佈 局、比例、材料、元素、元件及其它方面有所變化。因此,在此披露之實施例僅用於說明而非限制,本發明之範圍由後附權利要求及其合法等同物界定,而不限於此前之描述。
110‧‧‧外延層
120A、120B‧‧‧光刻膠區
130‧‧‧開口
201‧‧‧外延層
203‧‧‧閘極氧化層
205‧‧‧閘極導通層
310‧‧‧光刻膠區
405‧‧‧閘極導通層
407‧‧‧凸起
510A、510B‧‧‧P阱
520A、520B‧‧‧N+型層
601A、601B‧‧‧間隙壁
605‧‧‧鈦閘極導通層
607‧‧‧凸起
710‧‧‧TEOS和BPSG層
720A、720B‧‧‧P+型層
801‧‧‧金屬層
900‧‧‧溝槽MOSFET
1000‧‧‧功率轉換系統
1010‧‧‧開關
1100‧‧‧流程圖
1110、1120、1130、1140‧‧‧步驟
9001‧‧‧N+基板
9203‧‧‧閘極氧化層
9510‧‧‧P阱
9520A、9520B‧‧‧N+型層
9530‧‧‧N型外延層
9601A、9601B‧‧‧間隙壁
9605‧‧‧鈦閘極導通層
9607‧‧‧凸起
9710‧‧‧TEOS和BPSG層
9720‧‧‧P+型層
9801‧‧‧金屬層
以下結合附圖和具體實施例對本發明的技術方法進行詳細的描述,以使本發明的特徵和優點更為明顯。其中:圖1至圖8所示為根據本發明一實施例的單元溝槽MOSFET的製造程序截面圖。
圖9所示為根據本發明一實施例溝槽MOSFET的結的截面圖。
圖10所示為根據本發明一實施例功率轉換系統的方塊圖。
圖11所示為根據本發明一實施例單元溝槽MOSFET的製造方法流程圖。
1100‧‧‧流程圖
1110、1120、1130、1140‧‧‧步驟

Claims (23)

  1. 一種單元溝槽金屬氧化物半導體場效電晶體(MOSFET)的製造方法,包括:在一第一外延層上沉積一第一光刻膠以勾勒一溝槽區;在一第一閘極導通層上沉積一第二光刻膠以勾勒一臺面區,其中,該第二光刻膠的邊緣與該第一光刻膠的邊緣對齊;蝕刻該臺面區的該第一閘極導通層以形成具有一凸起的一第二閘極導通層;以及結晶式地鈦化該第二閘極導通層以形成一鈦閘極導通層。
  2. 如申請專利範圍第1項的製造方法,進一步包括:蝕刻該溝槽區的部分該第一外延層以形成一第二外延層;以及在形成該第二外延層之後去除該第一光刻膠。
  3. 如申請專利範圍第2項的製造方法,進一步包括:在該第二外延層周圍形成一氧化層;在沉積該第二光刻膠之前,在該氧化層上形成該第一閘極導通層;以及在形成該第二閘極導通層之後去除該第二光刻膠。
  4. 如申請專利範圍第2項的製造方法,進一步包括:在形成該第二閘極導通層之後,在該第二外延層的上部中形成多個P阱;以及在鈦化該第二閘極導通層之前,在該多個P阱上分別形成多個N型高摻雜層,該多個N型高摻雜層構成該單元溝槽MOSFET的一源極。
  5. 如申請專利範圍第4項的製造方法,進一步包括: 在該鈦閘極導通層的側面形成多個間隙壁;在該鈦閘極導通層上面和該多個間隙壁周圍形成一矽酸四乙酯(TEOS)和矽磷酸玻璃(BPSG)層;以及形成分別與該N型高摻雜層相鄰的多個P型高摻雜層。
  6. 如申請專利範圍第1項的製造方法,其中,從該凸起的頂部和側面同時結晶式地鈦化該凸起,且該凸起下之該第二閘極導通層以向下方式被結晶式地鈦化。
  7. 如申請專利範圍第1項的製造方法,其中,該第二閘極導通層之一閘極導通材料過半被結晶式地鈦化。
  8. 一種單元溝槽金屬氧化物半導體場效電晶體(MOSFET),包括:一外延層;一氧化層,位於該外延層上和該外延層中所形成的一溝槽內;以及一鈦閘極導通層,包括填滿該溝槽的一內部區和溢出該溝槽且與該內部區相鄰的一凸起區,其中,該凸起區的一寬度小於該內部區的一寬度,該鈦閘極導通層包括一鈦閘極導通材料,該鈦閘極導通材料貫穿該凸起區,從該凸起區延伸到該內部區,且其中過半的該鈦閘極導通層包括該鈦閘極導通材料。
  9. 如申請專利範圍第8項的單元溝槽金屬氧化物半導體場效電晶體,進一步包括一第一光刻膠,其中,該第一光刻膠被沉積以形成該溝槽後被去除。
  10. 如申請專利範圍第8項的單元溝槽金屬氧化物半導體場效電晶體,其中,該鈦閘極導通材料包括一鈦矽化物,該凸起 區和該內部區從該凸起區的頂部 側面和該內部區的頂部表面被同時鈦化並退火,形成該鈦矽化物。
  11. 如申請專利範圍第8項的單元溝槽金屬氧化物半導體場效電晶體,進一步包括:多個P阱,位於該外延層上;以及多個N型高摻雜層,分別位於該P阱上,該多個N型高摻雜層構成該單元溝槽MOSFET的一源極。
  12. 如申請專利範圍第11項的單元溝槽金屬氧化物半導體場效電晶體,進一步包括:多個間隙壁,位於該鈦閘極導通層側面;在該鈦閘極導通層上面和該多個間隙壁周圍的一矽酸四乙酯(TEOS)和矽磷酸玻璃(BPSG)層;以及分別與該多個N型高摻雜層相鄰的多個P型高摻雜層。
  13. 如申請專利範圍第12項的單元溝槽金屬氧化物半導體場效電晶體,其中,該內部區包括該溝槽定義的一頂部表面和該多個間隙壁定義的一內部表面。
  14. 如申請專利範圍第8項的單元溝槽金屬氧化物半導體場效電晶體,其中,該鈦閘極導通層進一步包括一閘極導通材料,其中,該閘極導通材料可為多晶矽、鎢、鍺、氮化鎵或碳化矽。
  15. 如申請專利範圍第8項的單元溝槽金屬氧化物半導體場效電晶體,其中,該鈦閘極導通層進一步包括一磷氧三氯。
  16. 一種功率轉換系統,包括:至少一開關,該開關包括一溝槽金屬氧化物半導體場效電晶體(MOSFET),該溝槽MOSFET包括多個單元溝槽MOSFET, 該多個單元溝槽MOSFET的每一個單元溝槽MOSFET包括:一外延層;一氧化層,位於該外延層上且覆蓋該外延層中所形成的一溝槽的底部和側面;以及一鈦閘極導通層,包括填入該溝槽的一內部區和溢出該溝槽且與該內部區相鄰的一凸起區,其中,該凸起區的一寬度小於該內部區的一寬度,該鈦閘極導通層包括一鈦閘極導通材料,該鈦閘極導通材料貫穿該凸起區,從該凸起區延伸到該內部區,且其中有過半的該鈦閘極導通層包括該鈦閘極導通材料。
  17. 如申請專利範圍第16項的功率轉換系統,進一步包括一第一光刻膠,其中,該第一光刻膠被沉積以形成該溝槽後被去除。
  18. 如申請專利範圍第16項的功率轉換系統,其中,該鈦閘極導通材料包括一鈦矽化物,該凸起區和該內部區從該凸起區的頂部與側面和該內部區的頂部表面被同時鈦化並退火,以形成該鈦矽化物。
  19. 如申請專利範圍第16項的功率轉換系統,其中,該每一個單元溝槽MOSFET進一步包括:多個P阱,位於該外延層上;以及分別在該多個P阱上的多個N型高摻雜層,該多個N型高摻雜層構成該單元溝槽MOSFET的一源極。
  20. 如申請專利範圍第16項的功率轉換系統,其中,該每一個單元溝槽MOSFET進一步包括:多個間隙壁,位於該鈦閘極導通層側面; 在該鈦閘極導通層上面和該多個間隙壁周圍的一矽酸四乙酯(TEOS)和矽磷酸玻璃(BPSG)層;以及分別與該多個N型高摻雜層相鄰的多個P型高摻雜層。
  21. 如申請專利範圍第20項的功率轉換系統,其中,該內部區包括該溝槽定義的一頂部表面和該多個間隙壁定義的一內部表面。
  22. 如申請專利範圍第16項的功率轉換系統,其中,該鈦閘極導通層進一步包括一閘極導通材料,其中,該閘極導通材料可為多晶矽、鎢、鍺、氮化鎵或碳化矽。
  23. 如申請專利範圍第16項的功率轉換系統,其中,該鈦閘極導通層進一步包括一磷氧三氯。
TW099138428A 2009-11-09 2010-11-09 單元溝槽金屬氧化物半導體場效電晶體(mosfet)及其製造方法、以及使用單元溝槽金屬氧化物半導體場效電晶體之功率轉換系統 TWI447817B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25927509P 2009-11-09 2009-11-09
US12/905,362 US20110108912A1 (en) 2009-11-09 2010-10-15 Methods for fabricating trench metal oxide semiconductor field effect transistors

Publications (2)

Publication Number Publication Date
TW201137983A TW201137983A (en) 2011-11-01
TWI447817B true TWI447817B (zh) 2014-08-01

Family

ID=43973521

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099138428A TWI447817B (zh) 2009-11-09 2010-11-09 單元溝槽金屬氧化物半導體場效電晶體(mosfet)及其製造方法、以及使用單元溝槽金屬氧化物半導體場效電晶體之功率轉換系統

Country Status (5)

Country Link
US (1) US20110108912A1 (zh)
JP (1) JP2011101018A (zh)
CN (1) CN102082097B (zh)
FR (1) FR2967298B1 (zh)
TW (1) TWI447817B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI647848B (zh) * 2014-11-26 2019-01-11 新電元工業股份有限公司 碳化矽半導體裝置及其製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10056303B1 (en) * 2017-04-21 2018-08-21 Globalfoundries Inc. Integration scheme for gate height control and void free RMG fill
CN112103187B (zh) * 2020-09-22 2021-12-07 深圳市芯电元科技有限公司 一种提高沟槽mosfet元胞密度的工艺方法及沟槽mosfet结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262353A (en) * 1992-02-03 1993-11-16 Motorola, Inc. Process for forming a structure which electrically shields conductors
US6100173A (en) * 1998-07-15 2000-08-08 Advanced Micro Devices, Inc. Forming a self-aligned silicide gate conductor to a greater thickness than junction silicide structures using a dual-salicidation process
US20030020102A1 (en) * 2001-07-24 2003-01-30 Koninklijke Philips Electronics N.V. Trench-gate semiconductor devices, and their manufacture
US20050056890A1 (en) * 2000-12-14 2005-03-17 Norio Yasuhara Offset-gate-type semiconductor device

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285093A (en) * 1992-10-05 1994-02-08 Motorola, Inc. Semiconductor memory cell having a trench structure
JP3287621B2 (ja) * 1992-12-24 2002-06-04 シャープ株式会社 半導体装置の製造方法
US5460983A (en) * 1993-07-30 1995-10-24 Sgs-Thomson Microelectronics, Inc. Method for forming isolated intra-polycrystalline silicon structures
US5554870A (en) * 1994-02-04 1996-09-10 Motorola, Inc. Integrated circuit having both vertical and horizontal devices and process for making the same
JPH0823092A (ja) * 1994-07-06 1996-01-23 Mitsubishi Electric Corp 半導体装置およびその製造方法
US6777759B1 (en) * 1997-06-30 2004-08-17 Intel Corporation Device structure and method for reducing silicide encroachment
US5960280A (en) * 1997-09-03 1999-09-28 United Microelectronics Corp. Method of fabricating a fin/cavity capacitor structure for DRAM cell
GB9815021D0 (en) * 1998-07-11 1998-09-09 Koninkl Philips Electronics Nv Semiconductor power device manufacture
US6674124B2 (en) * 2001-11-15 2004-01-06 General Semiconductor, Inc. Trench MOSFET having low gate charge
US6635535B2 (en) * 2001-11-20 2003-10-21 Fairchild Semiconductor Corporation Dense trench MOSFET with decreased etch sensitivity to deposition and etch processing
JP3640945B2 (ja) * 2002-09-02 2005-04-20 株式会社東芝 トレンチゲート型半導体装置及びその製造方法
US6806126B1 (en) * 2002-09-06 2004-10-19 Advanced Micro Devices, Inc. Method of manufacturing a semiconductor component
US7368392B2 (en) * 2003-07-10 2008-05-06 Applied Materials, Inc. Method of fabricating a gate structure of a field effect transistor having a metal-containing gate electrode
JP4917246B2 (ja) * 2003-11-17 2012-04-18 ローム株式会社 半導体装置およびその製造方法
KR100549950B1 (ko) * 2003-12-23 2006-02-07 삼성전자주식회사 리세스 타입 모오스 트랜지스터의 제조방법 및 그의 구조
DE102004046697B4 (de) * 2004-09-24 2020-06-10 Infineon Technologies Ag Hochspannungsfestes Halbleiterbauelement mit vertikal leitenden Halbleiterkörperbereichen und einer Grabenstruktur sowie Verfahren zur Herstellung desselben
JP2006114834A (ja) * 2004-10-18 2006-04-27 Toshiba Corp 半導体装置
US7253049B2 (en) * 2004-12-20 2007-08-07 Texas Instruments Incorporated Method for fabricating dual work function metal gates
US7453119B2 (en) * 2005-02-11 2008-11-18 Alphs & Omega Semiconductor, Ltd. Shielded gate trench (SGT) MOSFET cells implemented with a schottky source contact
JP2007134674A (ja) * 2005-10-11 2007-05-31 Elpida Memory Inc 半導体装置の製造方法及び半導体装置
KR100702324B1 (ko) * 2005-12-14 2007-03-30 동부일렉트로닉스 주식회사 반도체 소자 및 이의 제조 방법
KR20080074647A (ko) * 2007-02-09 2008-08-13 주식회사 하이닉스반도체 리세스 게이트를 갖는 반도체 소자의 제조방법
US20080246082A1 (en) * 2007-04-04 2008-10-09 Force-Mos Technology Corporation Trenched mosfets with embedded schottky in the same cell
JP2009135354A (ja) * 2007-12-03 2009-06-18 Renesas Technology Corp 半導体装置の製造方法および半導体装置
JP2009170532A (ja) * 2008-01-11 2009-07-30 Sanyo Electric Co Ltd 絶縁ゲート型半導体装置およびその製造方法
JP2009212369A (ja) * 2008-03-05 2009-09-17 Elpida Memory Inc 半導体装置及び半導体装置の製造方法並びにデータ処理システム
JP5612268B2 (ja) * 2008-03-28 2014-10-22 株式会社東芝 半導体装置及びdc−dcコンバータ
US7929321B2 (en) * 2008-08-22 2011-04-19 Force-Mos Technology Corp Depletion mode trench MOSFET for improved efficiency of DC/DC converter applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262353A (en) * 1992-02-03 1993-11-16 Motorola, Inc. Process for forming a structure which electrically shields conductors
US6100173A (en) * 1998-07-15 2000-08-08 Advanced Micro Devices, Inc. Forming a self-aligned silicide gate conductor to a greater thickness than junction silicide structures using a dual-salicidation process
US20050056890A1 (en) * 2000-12-14 2005-03-17 Norio Yasuhara Offset-gate-type semiconductor device
US20030020102A1 (en) * 2001-07-24 2003-01-30 Koninklijke Philips Electronics N.V. Trench-gate semiconductor devices, and their manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI647848B (zh) * 2014-11-26 2019-01-11 新電元工業股份有限公司 碳化矽半導體裝置及其製造方法

Also Published As

Publication number Publication date
CN102082097B (zh) 2013-07-31
FR2967298B1 (fr) 2013-08-23
JP2011101018A (ja) 2011-05-19
CN102082097A (zh) 2011-06-01
TW201137983A (en) 2011-11-01
FR2967298A1 (fr) 2012-05-11
US20110108912A1 (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP6472776B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
TWI593108B (zh) 帶有保護遮罩氧化物的分裂柵溝槽功率金屬氧化物半導體場效應電晶體
TWI538063B (zh) 使用氧化物填充溝槽之雙氧化物溝槽閘極功率mosfet
CN101621031B (zh) 形成用于沟槽栅器件的厚的底部电介质(tbd)的结构和方法
US7906388B2 (en) Semiconductor device and method for manufacture
US20210028305A1 (en) Trench mosfets with oxide charge balance region in active area and junction charge balance region in termination area
US8034686B2 (en) Method of manufacturing a trench MOSFET having trench contacts integrated with trench Schottky rectifiers having planar contacts
US20130168760A1 (en) Trench mosfet with resurf stepped oxide and diffused drift region
TWI405270B (zh) 低閘極電荷的溝槽式功率半導體之製造方法及其結構
JP2005525703A (ja) トレンチ二重拡散金属酸化膜半導体構造
TWI407564B (zh) 具有溝槽底部多晶矽結構之功率半導體及其製造方法
JP2008098593A (ja) 半導体装置及びその製造方法
US8587061B2 (en) Power MOSFET device with self-aligned integrated Schottky diode
JP4183620B2 (ja) 半導体装置およびその製造方法
TW200531175A (en) Method of manufacturing a superjunction device
KR20120086700A (ko) 초고밀도 전력 트렌치 mosfet
TWI517411B (zh) 半導體裝置、功率金屬氧化物半導體場效電晶體裝置及其製作方法
JP5583846B2 (ja) 半導体装置
TWI503983B (zh) 半導體裝置及其製造方法
US8088662B2 (en) Fabrication method of trenched metal-oxide-semiconductor device
TW201327656A (zh) 功率半導體元件的製作方法
TWI447817B (zh) 單元溝槽金屬氧化物半導體場效電晶體(mosfet)及其製造方法、以及使用單元溝槽金屬氧化物半導體場效電晶體之功率轉換系統
TWI470698B (zh) 超級介面電晶體及其製作方法
CN106935645B (zh) 具有底部栅极的金氧半场效晶体管功率元件
US11444167B2 (en) Method of manufacturing trench type semiconductor device