BRPI0808091A2 - Catalisador, sistema de tratamento de gás de exaustão, processo para a redução de óxidos de nitrogênio, e, artigo de catalisador. - Google Patents

Catalisador, sistema de tratamento de gás de exaustão, processo para a redução de óxidos de nitrogênio, e, artigo de catalisador. Download PDF

Info

Publication number
BRPI0808091A2
BRPI0808091A2 BRPI0808091-7A BRPI0808091A BRPI0808091A2 BR PI0808091 A2 BRPI0808091 A2 BR PI0808091A2 BR PI0808091 A BRPI0808091 A BR PI0808091A BR PI0808091 A2 BRPI0808091 A2 BR PI0808091A2
Authority
BR
Brazil
Prior art keywords
catalyst
copper
gas stream
exhaust gas
substrate
Prior art date
Application number
BRPI0808091-7A
Other languages
English (en)
Inventor
Ivor Bull
R Samuel Boorse
William M Jaglowski
Gerald Stephen Koermer
Ahmad Moini
Joseph A Patchett
Wen-Mei Xue
Patrick Burk
Joseph Charles Dettling
Matthew Tyler Caudle
Original Assignee
Basf Catalysts Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45554940&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=BRPI0808091(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Basf Catalysts Llc filed Critical Basf Catalysts Llc
Publication of BRPI0808091A2 publication Critical patent/BRPI0808091A2/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/723CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/743CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/763CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/903Multi-zoned catalysts
    • B01D2255/9032Two zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/904Multiple catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J2029/062Mixtures of different aluminosilicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

“CATALISADOR, SISTEMA DE TRATAMENTO DE GÁS DE EXAUSTÃO, PROCESSO PARA A REDUÇÃO DE ÓXIDOS DE NITROGÊNIO, E, ARTIGO DE CATALISADOR”
REFERÊNCIA CRUZADA AO PEDIDO RELACIONADO
Este pedido reivindica o benefício da prioridade sob 35 U.S.C. § 119(e) ao Pedido de Patente U.S Ne 60/891.835, depositado em 27 de Fevereiro de 2007, e Pedido de Patente U.S N° 12/038.423, depositado em 27 de Fevereiro de 2008, que são aqui incorporados por referência em suas totalidades.
CAMPO TÉCNICO
Formas de realização da invenção dizem respeito a zeólitos que têm a estrutura do cristal de CHA, métodos para sua fabricação, e catalisadores compreendendo tais zeólitos. Mais particularmente, formas de realização da invenção dizem respeito a catalisadores de zeólito de CHA de cobre e métodos para sua fabricação e uso em sistemas de tratamento de gás de descarga.
FUNDAMENTOS DA TÉCNICA
Zeólitos são materiais cristalinos de aluminossilicato tendo preferivelmente tamanhos de poro uniformes que, dependendo do tipo de zeólito e o tipo e quantidade dos cátions incluídos na treliça de zeólito, tipicamente variam de cerca de 3 a 10 Angstrõms no diâmetro. Tanto zeólitos sintéticos quanto naturais e seu uso em promover certas reações, incluindo a redução seletiva de óxidos de nitrogênio com amônia na presença de oxigênio, são bem conhecidos na técnica.
Catalisadores de zeólito promovidos por metal incluindo, entre outros, catalisadores de zeólito promovidos por ferro e promovidos por cobre, para a redução catalítica seletiva de óxidos de nitrogênio com amônia são conhecidos. Zeólito beta promovido por ferro foi um catalisador eficaz para a redução seletiva de óxidos de nitrogênio com amônia. Infelizmente, verificouse que sob condições hidrotérmicas severas, tais como redução do NOx a partir da descarga de gás em temperaturas excedendo 500°C, a atividade de muitos zeólitos promovidos por metal começou a declinar. Este declínio na atividade acreditou-se ser devido a desestabilização do zeólito tal como por 5 desaluminação e redução conseqüente de sítios catalíticos contendo metal dentro do zeólito. Para manter a atividade global de redução de NOx5 níveis aumentados do catalisador de zeólito promovido por ferro devem ser fornecidos. Como os níveis do catalisador de zeólito são aumentados para fornecer remoção de NOx adequada, existe uma redução óbvia na eficiência 10 de custo do processo para a remoção de NOx conforme os custos do catalisador elevam-se.
Existe um desejo para preparar materiais que ofereçam atividade de SCR de temperatura baixa e/ou durabilidade hidrotérmica melhorada em zeólitos existentes, por exemplo, materiais de catalisador que são estáveis em temperaturas até pelo menos cerca de 650°C e superiores. SUMÁRIO
Aspectos da invenção são direcionados a zeólitos que têm a estrutura do cristal de CHA (como definido pelo International Zeolite Association), catalisadores compreendendo tais zeólitos, e tratamentos de gás 20 de descarga que incorporam tais catalisadores. O catalisador pode ser parte de um sistema de tratamento de gás de descarga usado para tratar correntes de gás de descarga, especialmente aquelas emanadas a partir de motores a gasolina ou diesel.
Uma forma de realização da presente invenção diz respeito a 25 catalisadores de CHA de cobre e sua aplicação em sistemas de gás de descarga tais como aqueles designados para reduzir óxidos de nitrogênio. Em formas de realização específicas, catalisadores de chabazita de cobre novos são fornecidos que exibem SCR de NH3 melhorada de NOx. Os catalisadores de chabazita de cobre fabricados de acordo com uma ou mais formas de realização da presente invenção fornecem um material de catalisador que exibe estabilidade hidrotérmica excelente e atividade catalítica alta em uma ampla faixa de temperatura. Quando comparado com outros catalisadores zeolíticos que encontram aplicação neste campo, tais como Beta zeólitos de 5 Fe, materiais de catalisador de CHA de cobre de acordo com formas de realização da presente invenção oferecem atividade em temperatura baixa melhorada e estabilidade hidrotérmica.
Uma forma de realização da invenção diz respeito a um catalisador compreendendo um zeólito tendo a estrutura do cristal de CHA e 10 uma razão molar de sílica para alumina maior do que cerca de 15 e uma razão atômica de cobre para alumínio excedendo cerca de 0,25. Em uma forma de realização específica, a razão molar de sílica para alumina é de cerca de 15 a cerca de 256 e a razão atômica de cobre para alumínio é de cerca de 0,25 a cerca de 0,50. Em uma forma de realização mais específica, a razão molar de 15 sílica para alumina é de cerca de 25 a cerca de 40. Ainda em uma forma de realização mais específica, a razão molar de sílica para alumina é cerca de 30. Em uma forma de realização particular, a razão atômica de cobre para alumínio é de cerca de 0,30 a cerca de 0,50. Em uma forma de realização específica, a razão atômica de cobre para alumínio é cerca de 0,40. Em uma 20 forma de realização específica, a razão molar de sílica para alumina é de cerca de 25 a cerca de 40 e a razão atômica de cobre para alumínio é de cerca de 0,30 a cerca de 0,50. Em uma outra forma de realização específica, a sílica para alumina é cerca de 30 e a razão atômica de cobre para alumina é cerca de 0,40.
Em uma forma de realização particular, o catalisador contém
cobre de troca de íon e uma quantidade de cobre não trocado suficiente para manter desempenho de conversão de NOx do catalisador em uma corrente de gás de descarga contendo óxidos de nitrogênio depois do envelhecimento hidrotérmico do catalisador. Em uma forma de realização, o desempenho de conversão de NOx do catalisador a cerca de 200°C depois do envelhecimento é pelo menos 90 % do desempenho de conversão de NOx do catalisador a cerca de 200°C antes do envelhecimento. Em uma forma de realização particular, o catalisador contém pelo menos cerca de 2,00 por cento em peso 5 de óxido de cobre.
Em pelo menos uma forma de realização, o catalisador é depositado em um substrato em forma alveolar. Em uma ou mais formas de realização, o substrato em forma alveolar compreende um substrato de fluxo de parede. Em outras formas de realização, o substrato em forma alveolar 10 compreende um substrato de fluxo atravessante. Em certas formas de realização, pelo menos uma porção do substrato de fluxo atravessante é revestida com CuCHA adaptada para reduzir óxidos de nitrogênio contidos em uma corrente de gás fluindo através do substrato. Em uma forma de realização específica, pelo menos uma porção do substrato de fluxo 15 atravessante é revestida com Pt e CuCHA adaptada para oxidar amônia na corrente de gás de descarga.
Em formas de realização que utiliza um substrato de fluxo de parede, pelo menos uma porção do substrato de fluxo de parede é revestida com CuCHA adaptada para reduzir óxidos de nitrogênio contidos em uma 20 corrente de gás fluindo através do substrato. Em outras formas de realização, pelo menos uma porção do substrato de fluxo de parede é revestida com Pt e CuCHA adaptada para oxidar amônia na corrente de gás de descarga.
Em uma forma de realização específica, um artigo de catalisador compreende um substrato em forma alveolar tendo um zeólito 25 tendo a estrutura do cristal de CHA depositada no substrato, o zeólito tendo uma razão molar de sílica para alumina maior do que cerca de 15 e uma razão atômica de cobre para alumínio excedendo cerca de 0,25 e contendo uma quantidade de cobre livre excedendo cobre de troca de íon. Em uma forma de realização, o cobre livre está presente em uma quantidade suficiente para impedir a degradação hidrotérmica da conversão de óxido de nitrogênio do catalisador. Em uma ou mais formas de realização, o cobre livre impede a degradação hidrotérmica da conversão de óxido de nitrogênio do catalisador no envelhecimento hidrotérmico. O catalisador pode compreender ainda um aglutinante. Em formas de realização particulares, o cobre de troca de íon é trocado usando acetato de cobre.
Outros aspectos da invenção dizem respeito a sistemas de tratamento de gás de descarga que incorporam catalisadores do tipo descrito acima. Ainda outros aspectos dizem respeito a um processo para a redução de óxidos de nitrogênio contidos em uma corrente de gás na presença de oxigênio em que o dito processo compreende contactar a corrente de gás com o catalisador descrito acima.
Um outro aspecto diz respeito a um sistema de tratamento de gás de descarga compreendendo uma corrente de gás de descarga contendo NOx, e um catalisador descrito acima eficaz para a redução catalítica seletiva de pelo menos um componente de NOx na corrente de gás de descarga. Ainda um outro aspecto diz respeito a um sistema de tratamento de gás de descarga compreendendo uma corrente de gás de descarga contendo amônia e um catalisador como descrito acima eficaz para destruir pelo menos uma porção da amônia na corrente de gás de descarga.
BREVE DESCRIÇÃO DOS DESENHOS
A Fig.l é um gráfico que descreve a eficiência de remoção de óxidos de nitrogênio em (%), consumo de amônia em (%) e N2O gerado em (ppm) de catalisador de CuCHA como uma função de temperaturas de reação para a CuCHA preparada de acordo com os métodos do Exemplo 1;
A Fig. IA é um gráfico que descreve a eficiência de remoção de óxidos de nitrogênio em (%), consumo de amônia em (%) e N2O gerado em (ppm) de catalisador de CuCHA como uma função de temperaturas de reação para a CuCHA preparada de acordo com os métodos do Exemplos 1 e ΙΑ;
A Fig. 2 é um gráfico que descreve a eficiência de remoção de óxidos de nitrogênio em (%), consumo de amônia em (%) e N2O gerado em (ppm) de catalisador de CuCHA como uma função de temperaturas de reação, para a CuCHA preparada de acordo com os métodos do Exemplo 2;
A Fig. 3 é um gráfico que descreve a eficiência de remoção de óxidos de nitrogênio em (%), consumo de amônia em (%) e N2O gerado em (ppm) de catalisador de CuCHA como uma função de temperaturas de reação para a CuCHA preparada de acordo com os métodos do Exemplo 3;
A Fig. 4 é um gráfico que descreve a eficiência de remoção de
óxidos de nitrogênio em (%), consumo de amônia em (%) e N2O gerado em (ppm) de catalisador de CuCHA como uma função de temperaturas de reação para a CuCHA preparada de acordo com os métodos do Exemplo 4;
A Fig. 5 é um gráfico que descreve os efeitos de CO, propeno, n-octano e água na atividade de SCR de CuCHA em várias temperaturas;
A Fig. 5A é um gráfico que mostra as quantidades de HC que são armazenados, liberados, depositados como coque e coque queimado para uma amostra testada de acordo com o Exemplo 12A;
A Fig. 5B é um gráfico de barras que mostra o desempenho de hidrocarboneto de CuCHA comparado com beta zeólitos de CuY e Fe de acordo com o Exemplo 12A;
A Fig. 6 é um gráfico que descreve emissões de NH3, NOx (= NO + NO2), N2O, e N2 a partir da saída do catalisador AMOX, fornecido como ppm em uma base de átomo de nitrogênio preparada e envelhecida de acordo com o método dos Exemplos 13 e 14;
A Fig. 7 é um gráfico que descreve a eficiência de remoção de óxidos de nitrogênio em (%), consumo de amônia em (%) e N2O gerado em (ppm) de catalisador de CuCHA como uma função de temperaturas de reação, para a CuCHLA preparada de acordo com os métodos do Exemplo 16; A Fig. 8 é um gráfico que descreve a eficiência de remoção de óxidos de nitrogênio em (%), consumo de amônia em (%) e N2O gerado em (ppm) de catalisador de CuCHA como uma função de temperaturas de reação, para a CuCHA preparada de acordo com os métodos do Exemplo 17;
A Fig. 9 é um gráfico que descreve a eficiência de remoção de
óxidos de nitrogênio em (%), consumo de amônia em (%) e N2O gerado em (ppm) de catalisador de CuCHA como uma função de temperaturas de reação para a CuCHA preparada de acordo com os métodos do Exemplo 18;
As Figs. 10A, 10B, e IOC são representações esquemáticas de três formas de realização exemplares do sistema de tratamento de emissões da invenção;
A Fig. 11 é UV/VIS do Exemplo 22 e 22A; e A Fig. 12 é 27Al MAS espectro de RMN do Exemplo 22 e 22A, comparado com CHA e amostras de CHA envelhecidas.
DESCRIÇÃO DETALHADA
Antes de descrever várias formas de realização exemplares da invenção, deve ser entendido que a invenção não é limitada aos detalhes da construção ou etapas do processo apresentadas na seguinte descrição. A invenção é capaz de outras formas de realização e de ser praticada ou ser realizada em vários modos.
Em uma forma de realização da invenção, zeólitos tendo a estrutura de CHA tais como chabazita são fornecidos. Em uma ou mais formas de realização, um zeólito tendo a estrutura do cristal de CHA e uma razão molar de sílica para alumina maior do que cerca de 15 e uma razão 25 atômica de cobre para alumínio excedendo cerca de 0,25 é fornecido. Em formas de realização específicas, a razão molar de sílica para alumina é cerca de 30 e a razão atômica de cobre para alumínio é cerca de 0,40. Outros zeólitos tendo a estrutura de CHA, incluem, não são limitados a SSZ-13, LZ218, Linde D, Linde R, Phi, ZK-14, e ZYT-6. Síntese dos zeólitos tendo a estrutura de CHA pode ser realizada de acordo com várias técnicas conhecidas no ramo. Por exemplo, em uma síntese de SSZ-13 típica, uma fonte de sílica, uma fonte de alumina, e um agente de condução orgânico são misturados sob condições aquosas 5 alcalinas. Fontes de sílica típicas incluem vários tipos de sílica fumegada, sílica precipitada, e sílica coloidal, assim como alcóxidos de silício. Fontes de alumina típicas incluem boehmitas, pseudo-boehmitas, hidróxidos de alumínio, sais de alumínio tais como sulfato de alumínio, e alcóxidos de alumínio. Hidróxido de sódio é tipicamente adicionado à mistura de reação, 10 mas não é necessário. Um agente de condução típico para esta síntese é hidróxido de adamantiltrimetilamônio, embora outras aminas e/ou sais de amônio quaternário podem ser substituídos ou adicionados ao último agente de condução. A mistura de reação é aquecida em um vaso pressurizado com agitação para produzir o produto de SSZ-13 cristalino. Temperaturas de 15 reação típicas estão na faixa de 150 e 180°C. Tempos de reação típicos estão entre 1 e 5 dias.
Na conclusão da reação, o produto é filtrado e lavado com água. Alternativamente, o produto pode ser centrifugado. Aditivos orgânicos podem ser usados para auxiliar com o manejo e isolamento do produto sólido. 20 A secagem por pulverização é uma etapa opcional no processamento do produto. O produto sólido é termicamente tratado em ar ou nitrogênio. Alternativamente, cada tratamento gasoso pode ser aplicado em várias seqüências, ou misturas de gases podem ser aplicadas. Temperaturas de calcinação típicas estão na faixa de 400°C a 700°C.
Catalisadores de zeólito CuCHA de acordo com uma ou mais
formas de realização da invenção podem ser utilizados em processos catalíticos que envolvem condições de oxidação e/ou hidrotérmicas, por exemplo em temperaturas em excesso de cerca de 600°C, por exemplo, acima cerca de 800°C e na presença de cerca de 10 % de vapor d’água. Mais especificamente, verificou-se que catalisadores de zeólito CuCHA que foram preparados de acordo com formas de realização da invenção têm estabilidade hidrotérmica aumentada comparado aos zeólitos CuY e CuBeta. Catalisadores de zeólito CuCHA preparados de acordo com formas de realização da 5 invenção produzem atividade melhorada na redução catalítica seletiva de NOx com amônia, especialmente quando operados sob temperaturas altas de pelo menos cerca de 600°C, por exemplo, cerca de 800°C e mais alto, e ambientes com alto teor de vapor d’água de cerca de 10 % ou mais. CuCHA tem atividade intrínseca elevada que permite o uso de quantidades mais 10 baixas de material de catalisador, que por sua vez deveria reduzir a contrapressão de substratos em forma alveolar revestidos com composições de revestimento reativo de catalisadores de CuCHA. Em uma ou mais formas de realização, envelhecimento hidrotérmico refere-se à exposição de catalisador a uma temperatura de cerca de 800°C em um ambiente com alto 15 teor de vapor d’água de cerca de 10 % ou mais, durante pelo menos cerca de 5 a cerca de 25 horas, e em formas de realização específicas, até cerca de 50 horas.
Formas de realização desta invenção também dizem respeito a um processo para a redução de NOx em uma corrente de gás de descarga 20 gerada por um motor de combustão interna utilizando catalisadores de zeólito CuCHA tendo uma razão molar de sílica para alumina maior do que cerca de 15 e uma razão atômica de cobre para alumínio excedendo cerca de 0,25. Outras formas de realização dizem respeito a catalisadores de SCR compreendendo um catalisador de zeólito CuCHA tendo uma razão molar de 25 sílica para alumina maior do que cerca de 15 e uma razão atômica de cobre para alumínio excedendo cerca de 0,25, e sistemas de tratamento de gás de descarga incorporando catalisadores de zeólito CuCHA. Ainda outras formas de realização dizem respeito a catalisadores de oxidação de amônia (AMOX) e sistemas de tratamento de gás de descarga incorporando catalisador de AMOX compreendendo um catalisador de zeólito CuCHA tendo uma razão molar de sílica para alumina maior do que cerca de 15 e uma razão atômica de cobre para alumínio excedendo cerca de 0,25. De acordo com uma ou mais formas de realização, catalisadores e sistemas utilizam catalisadores de 5 CuCHA tendo cobre de troca de íon e suficiente cobre livre em excesso para impedir a degradação térmica dos catalisadores quando operados sob temperaturas altas de pelo menos cerca de 600°C, por exemplo, cerca de 800°C e mais alto, e ambientes com alto teor de vapor d’água de cerca de 10 % ou mais.
A experimentação indicou que desempenho melhorado de
catalisadores de acordo com formas de realização da invenção é associada com carregamento de Cu. Embora Cu possa ser trocado para aumentar o nível de Cu associado com os sítios de troca na estrutura do zeólito, verificou-se que é benéfico deixar Cu não trocado na forma de sal, por exemplo, como CuSO4 15 dentro do catalisador de zeólito. Na calcinação, o sal de cobre decompõe a CuO, que pode ser referido aqui como “cobre livre” ou “cobre solúvel.” De acordo com uma ou mais formas de realização, este Cu livre é tanto ativo quanto seletivo, resultando em baixa formação de N2O quando usado no tratamento de uma corrente de gás contendo óxidos de nitrogênio. 20 Inesperadamente, verificou-se que este Cu “livre” comunica maior estabilidade em catalisadores submetidos ao envelhecimento térmico em temperaturas até cerca de 800°C.
Embora formas de realização da invenção não sejam intencionadas a serem ligadas por um princípio particular, acredita-se que as 25 aberturas de canal relativamente pequenas de CHA não permitem que hidrocarbonetos de peso molecular grande (HCs) típicos do combustível diesel entrem e adsorvam dentro da estrutura de CuCHA. Ao contrário de outros zeólitos como Beta ou ZSM5, catalisadores de CHA preparados de acordo com formas de realização da invenção têm uma afinidade relativamente baixa para adsorver estas espécies de HC de peso molecular grande. Esta é uma propriedade benéfica para o uso em catalisadores de redução catalítica seletiva (SCR).
Em sistemas que utilizam uma SCR a jusante de um catalisador de oxidação de diesel (DOC), as propriedades dos catalisadores de CuCHA fornecem um ou mais resultados benéficos de acordo com formas de realização da invenção. Durante a inicialização e operação de temperatura baixa prolongada, a SCR apenas ou um catalisador de oxidação de diesel (DOC) ou DOC e filtro de fuligem catalisada (CSF) a montante da SCR de CuCHA não são completamente ativados para oxidar os HCs. De acordo com uma ou mais formas de realização, porque o catalisador de SCR de CuCHA não é influenciado por HCs em temperatura baixa, permanece ativo em uma faixa mais ampla da janela de operação de temperatura baixa. De acordo com uma ou mais formas de realização, temperatura baixa refere-se a temperaturas de cerca de 25 O0C e mais baixa.
De acordo com uma ou mais formas de realização, os catalisadores de CuCHA operam dentro de uma janela de temperatura baixa. Com o passar do tempo em um sistema de tratamento de gás de descarga tendo um pré-catalisador de DOC a jusante do motor seguido por um 20 catalisador de SCR e um CSF, ou um pré-catalisador de DOC a montante de um CSF e SCR, o DOC tenderá a ativar tanto para arranque de temperatura baixa quanto para queima de combustível de HC. Em tais sistemas, é benéfico se o catalisador de SCR pode manter sua capacidade para operar em temperaturas baixas. Visto que os catalisadores de oxidação perderão sua 25 capacidade para oxidar NO a NO2, é útil fornecer um catalisador de SCR que pode tratar NO tão efetivamente quanto NO2. Catalisadores de CuCHA produzidos de acordo com formas de realização da invenção têm a capacidade para reduzir NO com NH3 em temperaturas baixas. Este atributo pode ser realçado pela adição de Cu não trocado ao catalisador de zeólito. De acordo com formas de realização da invenção, o catalisador de SCR pode estar na forma de partículas de catalisador de auto-sustentação ou como um monólito em forma alveolar formado da composição de catalisador de SCR. Em uma ou mais formas de realização da invenção 5 entretanto, a composição de catalisador de SCR é disposta como um composição de revestimento reativo ou como uma combinação de composições de revestimento reativo em um substrato cerâmico ou metálico, por exemplo um substrato de fluxo atravessante em forma alveolar.
Em uma forma de realização específica de um sistema de tratamento de emissões o catalisador de SCR é formado de um material de zeólito de CHA trocado em Cu tendo cobre livre além de cobre de troca de íon.
Quando depositado nos substratos de monólito em forma
alveolar, tais composições de catalisador de SCR são depositadas em uma
^ -2
concentração de pelo menos cerca de 0,5 g/in (30,5 kg/m ), por exemplo, cerca de 1,3 g/in (79,3 kg/m ) cerca de 2,4 g/in (146,4 kg/m ) ou mais alto para garantir que a redução de NOx desejada é obtida e para assegurar a durabilidade adequada do catalisador sobre o uso prolongado.
O termo catalisador de “SCR” é usado aqui em um sentido 20 mais amplo para significar uma redução catalítica seletiva em que uma reação catalisada de óxidos de nitrogênio com um redutor ocorre para reduzir os óxidos de nitrogênio. “Redutor” ou “agente de redução” também é amplamente usado aqui para significar qualquer substância química ou composto que tende a reduzir NOx em temperatura elevada. Em formas de 25 realização específicas, o agente de redução é amônia, especificamente um precursor de amônia, isto é, uréia e a SCR é uma SCR de redutor de nitrogênio. Entretanto, de acordo com um escopo mais amplo da invenção, o redutor pode incluir combustível, particularmente combustível diesel e frações deste assim como qualquer hidrocarboneto e hidrocarbonetos oxigenados coletivamente referidos como um redutor de HC.
SUBSTRATOS
As composições de catalisador são dispostas em um substrato. O substrato pode ser qualquer um daqueles materiais tipicamente usados para preparar catalisadores, e usualmente compreenderão uma estrutura em forma alveolar cerâmica ou metálica. Qualquer substrato adequado pode ser utilizado, tal como um substrato monolítico do tipo tendo passagens de fluxo de gás finas, paralelas estendendo-se através deste de uma entrada ou uma face de saída do substrato, tal que as passagens são abertas para que o fluido flua através delas (referido como substratos de fluxo atravessante em forma alveolar). As passagens, que são essencialmente caminhos retos de sua entrada de fluido à sua saída de fluido, são limitados por paredes sobre as quais o material catalítico é disposto como uma composição de revestimento reativo de modo que os gases que fluem através das passagens contactam o material catalítico. As passagens de fluxo do substrato monolítico são canais de parede fina, que podem ser de qualquer forma em seção transversal adequada e tamanho tal como trapezoidal, retangular, quadrada, senoidal, hexagonal, oval, circular, etc. Tais estruturas podem conter de cerca de 60 a cerca de 400 ou mais de aberturas de entrada de gás (isto é, células) por polegada quadrada de seção transversal.
O substrato também pode ser um substrato de filtro de fluxo de parede, onde os canais são alternadamente bloqueados, permitindo que uma corrente gasosa que entra nos canais a partir de uma direção (direção de entrada), flua através das paredes do canal e saia dos canais a partir da outra 25 direção (direção de saída). A composição de catalisador de AMOX e/ou SCR pode ser revestida no filtro de fluxo atravessante ou fluxo de parede. Se um substrato de fluxo de parede é utilizado, o sistema resultante será capaz de remover a matéria particulada junto com poluentes gasosos. O substrato de filtro de fluxo de parede pode ser fabricado de materiais comumente conhecidos na técnica, tais como cordierita, titanato de alumínio ou carbeto de silício. Será entendido que o carregamento da composição catalítica em um substrato de fluxo de parede dependerá de propriedades de substrato tais como porosidade e espessura da parede, e tipicamente será mais baixo do que carregamento em um substrato de fluxo atravessante.
O substrato cerâmico pode ser fabricado de qualquer material refratário adequado, por exemplo, cordierita, cordierita-alumina, nitreto de silício, mulita de zircônio, espodumênio, alumina-sílica magnésia, silicato de zircônio, silimanita, um silicato de magnésio, zircônio, petalita, alfa-alumina, um aluminossilicato e semelhantes.
Os substratos úteis para os catalisadores de formas de realização da presente invenção também podem ser metálicos em natureza e ser compostos de um ou mais metais ou ligas metálicas. Os substratos metálicos podem ser utilizados em vários formas tais como folha ondulada ou 15 forma monolítica. Suportes metálicos adequados incluem os metais e ligas metálicas resistentes ao calor tais como titânio e aço inoxidável assim como outras ligas em que o ferro é um componente substancial ou principal. Tais ligas podem conter um ou mais de níquel, cromo e/ou alumínio, e a quantidade total destes metais vantajosamente pode compreender pelo menos 20 15 % em peso da liga, por exemplo, 10 a 25 % em peso de cromo, 3 a 8 % em peso de alumínio e até 20 % em peso de níquel. As ligas também podem conter quantidades pequenas ou traço de um ou mais outros metais tais como manganês, cobre, vanádio, titânio e semelhantes. A superfície ou os substratos metálicos podem ser oxidados em temperaturas altas, por exemplo, IOOO0C e 25 mais alto, para melhorar a resistência à corrosão das ligas formando-se uma camada de óxido nas superfícies dos substratos. Tal oxidação induzida por temperatura alta pode aumentar a aderência do suporte de óxido metálico refratário e promover cataliticamente os componentes metálicos ao substrato.
Em formas de realização alternativas, uma ou ambas as composições de catalisador de CuCHA podem ser depositadas em um substrato de espuma de célula aberta. Tais substratos são bem conhecidos na técnica, e são tipicamente formados de materiais refratários cerâmicos ou metálicos.
Preparação da Composição de revestimento reativo
De acordo com uma ou mais formas de realização, composições de revestimento reativo de CuCHA podem ser preparados usando um aglutinante. De acordo com uma ou mais formas de realização o uso de um aglutinante de ZrO2 derivado de um precursor adequado tal como 10 acetato de zirconila ou qualquer outro precursor de zircônio adequado tal como nitrato de zirconila. Em uma forma de realização, aglutinante de acetato de zirconila fornece um revestimento catalítico que permanece homogêneo e intacto depois do envelhecimento térmico, por exemplo, quando o catalisador é exposto a temperaturas altas de pelo menos cerca de 600°C, por exemplo, 15 cerca de 800°C e mais alto, e ambientes com alto teor de vapor d’água de cerca de 10 % ou mais. Manter a composição de revestimento reativo intacta é benéfico porque o revestimento solto ou livre pode tamponar o CSF a jusante fazendo com que a contrapressão aumente.
De acordo com uma ou mais formas de realização, 20 catalisadores de CuCHA podem ser usados como um catalisador de oxidação de amônia. Tais catalisadores de AMOX são úteis em sistemas de tratamento de gás de descarga incluindo um catalisador de SCR. Como debatido na Patente dos Estados Unidos comumente designada Ne 5.516.497, o conteúdo inteiro da qual é incorporado aqui por referência, uma corrente gasosa 25 contendo oxigênio, óxidos de nitrogênio e amônia podem ser seqüencialmente passados através dos primeiro e segundo catalisadores, o primeiro catalisador favorecendo a redução de óxidos de nitrogênio e o segundo catalisador favorecendo a oxidação ou outra decomposição de amônia em excesso. Como descrito na Patente dos Estados Unidos Ne 5.516.497, os primeiros catalisadores podem ser um catalisador de SCR compreendendo um zeólito e o segundo catalisador pode ser um catalisador de AMOX compreendendo um zeólito.
Como é conhecido na técnica, para reduzir as emissões de óxidos de nitrogênio de gases combustíveis e de descarga, amônia é adicionada à corrente gasosa contendo os óxidos de nitrogênio e a corrente gasosa depois é contactada com um catalisador adequado em temperaturas elevadas de modo a catalisar a redução de óxidos de nitrogênio com amônia. Tais correntes gasosas, por exemplo, os produtos de combustão de um motor de combustão interna ou de um motor de turbina de gás combustível ou de óleo combustível, freqüente e inerentemente também contêm quantidades substanciais de oxigênio. Um gás de descarga típico de um motor de turbina contém de cerca de 2 a 15 por cento em volume de oxigênio e de cerca de 20 a 500 partes por milhão em volume de óxidos de nitrogênio, os últimos normalmente compreendendo uma mistura de NO e NO2. Usualmente, existe oxigênio suficiente presente na corrente gasosa para oxidar amônia residual, mesmo quando um excesso sobre a quantidade estequiométrica de amônia necessária para reduzir todos os óxidos de nitrogênio presentes é utilizado. Entretanto, em casos onde um excesso muito grande sobre a quantidade estequiométrica de amônia é utilizado, ou em que a corrente gasosa a ser tratada é ausente ou baixa em teor de oxigênio, um gás contendo oxigênio, usualmente ar, pode ser introduzido entre a primeira zona de catalisador e a segunda zona de catalisador, de modo a garantir que oxigênio adequado esteja presente na segunda zona de catalisador para a oxidação de amônia residual ou em excesso.
Zeólitos promovidos por metal foram usados para promover a reação de amônia com óxidos de nitrogênio para formar nitrogênio e H2O seletivamente na reação de competição de oxigênio e amônia. A reação catalisada de amônia e óxidos de nitrogênio é portanto algumas vezes referida como a redução catalítica seletiva (“SCR”) de óxidos de nitrogênio ou, como algumas vezes aqui, simplesmente como o “processo de SCR”. Teoricamente, seria desejável no processo de SCR fornecer amônia em excesso da quantidade estequiométrica necessária para reagir completamente com os óxidos de nitrogênio presentes, tanto para favorecer a condução da reação à conclusão quanto para ajudar a superar a mistura inadequada da amônia na corrente gasosa. Entretanto, na prática, amônia em excesso significante em tal quantidade estequiométrica não é normalmente fornecida porque a descarga de amônia não reagida do catalisador à atmosfera por si só causaria um problema de poluição do ar. Tal descarga de amônia não reagida pode ocorrer mesmo em casos onde a amônia está presente apenas em uma quantidade estequiométrica ou sub- estequiométrica, como um resultado de reação incompleta e/ou mistura deficiente da amônia na corrente gasosa, resultando na formação nesta de canais de concentração de amônia elevada. Tal formação de canal é de interesse particular quando da utilização de catalisadores compreendendo carreadores do tipo forma monolítica alveolar compreendendo corpos refratários tendo uma pluralidade de caminhos finos, paralelos de fluxo de gás estendendo-se através destes porque, ao contrário do caso dos leitos de catalisador particulado, não existe nenhuma oportunidade para mistura de gás entre os canais.
De acordo com formas de realização da presente invenção catalisadores de CuCHA podem ser formulados para favorecer (1) o processo de SCR, isto é, a redução de óxidos de nitrogênio com amônia para formar nitrogênio e H2O, ou (2) a oxidação de amônia com oxigênio para formar 25 nitrogênio e H2O, a seletividade do catalisador sendo adaptada controlando-se o teor de Cu do zeólito. Patente dos Estados Unidos N- 5.516.497 mostra níveis de carregamento de ferro e cobre em zeólitos exceto CHA de cobre para obter seletividade para uma reação SCR e seletividade do catalisador para a oxidação de amônia por oxigênio à custa do processo de SCR, melhorando deste modo a remoção da amônia. De acordo com formas de realização da invenção, carregamento de cobre CuCHA pode ser adaptado para obter seletividade para reações SCR e oxidação de amônia por oxigênio e para fornecer sistemas de tratamento de gás de descarga utilizando ambos os 5 tipos de catalisador.
Os princípios acima são utilizados fomecendo-se um catalisador estagiado ou de duas zonas em que uma primeira zona de catalisador com carregamento de cobre em um zeólito, que promove SCR seguido por um segunda zona de catalisador compreendendo um zeólito tendo 10 sobre esta carregamento de cobre e/ou um componente de metal precioso que promove a oxidação de amônia. A composição de catalisador resultante assim tem uma primeira zona (a montante) que favorece a redução de óxidos de nitrogênio com amônia, e uma segunda zona (a jusante) que favorece a oxidação de amônia. Deste modo, quando a amônia estiver presente em 15 excesso da quantidade estequiométrica, se por toda a seção transversal de fluxo da corrente gasosa que é tratada ou em canais localizados de concentração de amônia elevada, a oxidação de amônia residual por oxigênio é favorecida pela zona de catalisador a jusante ou secundária. A quantidade de amônia na corrente gasosa descarregada do catalisador é deste modo reduzida 20 ou eliminada. A primeira zona e a segunda zona podem estar em um único substrato de catalisador ou como substratos separados.
Foi demonstrado que uma composição de revestimento reativo de CuCHA contendo um metal precioso, por exemplo, Pt, fornece um catalisador de AMOX. Espera-se que não apenas estivesse amônia no fluxo de 25 gás através do catalisador destruído, mas houve remoção contínua de NOx por conversão a N2. Em uma forma de realização específica, o zeólito tem uma razão de SiO2AAl2O3 de cerca de 15 a cerca de 256, e uma razão de Al/M entre
2 e 10, em que M representa o Cu total e metal precioso. Em uma forma de realização, o metal precioso compreende platina e o teor de platina está entre 0,02 % e 1,0 % em peso do catalisador, e o carregamento em parte é de cerca
3 3
de 0,5 a cerca de 5 g/in (30,5 a cerca de 305,1 kg/m ).
De acordo com uma ou mais formas de realização da invenção, catalisadores de SCR CuCHA podem ser dispostos em um filtro de fluxo de 5 parede ou filtro de fuligem catalisada. Composições de revestimento reativo de CuCHA podem ser revestidas em um filtro poroso para levar em consideração funções de combustão de fuligem, SCR e AMOX.
Em uma ou mais formas de realização da presente invenção, o catalisador compreende um componente de metal precioso, isto é, um 10 componente de metal do grupo da platina. Por exemplo, como observado acima, catalisadores de AMOX tipicamente incluem um componente de platina. Componentes de metal precioso adequados incluem platina, paládio, ródio e misturas destes. Os vários componentes (por exemplo, CuCHA e componente de metal precioso) do material de catalisador podem ser 15 aplicados ao membro de catalisador refratário, isto é, o substrato, como uma mistura de dois ou mais componentes ou como componentes individuais em etapas seqüenciais em uma maneira que estará prontamente evidente àqueles habilitados na técnica da fabricação do catalisador. Como descrito acima e nos exemplos, um método típico de fabricar um catalisador de acordo com 20 uma forma de realização da presente invenção é fornecer o material de catalisador como um revestimento ou camada de composição de revestimento reativa sobre as paredes das passagens de fluxo de gás de um membro de carreador adequado. Isto pode ser realizado impregnando-se um material de suporte de óxido metálico refratário particulado fino, por exemplo, gama 25 alumina, com um ou mais componentes metálicos catalíticos tais como um metal precioso, isto é, grupo da platina, composto ou outros metais nobres ou metais de base, secando e calcinando as partículas de suporte impregnadas e formando uma pasta fluida aquosa destas partículas. Partículas da chabazita de cobre em massa podem ser incluídas na pasta fluida. Alumina ativada pode ser termicamente estabilizada antes que os componentes catalíticos são dispersos nesta, como é bem conhecido na técnica, impregnando-a com, por exemplo, uma solução de um sal solúvel de bário, lantânio, zircônio, metal de terra rara ou outro precursor de estabilizador adequado, e depois secando (por 5 exemplo, a IlO0C durante uma hora) e calcinando (por exemplo, a 550°C durante uma hora) a alumina ativada impregnada para formar um óxido metálico estabilizante disperso sobre a alumina. Catalisadores de metal de base opcionalmente também podem ter sido impregnados na alumina ativada, por exemplo, impregnando-se uma solução de um nitrato de metal de base nas 10 partículas de alumina e calcinando para fornecer um óxido de metal de base disperso nas partículas de alumina.
O carreador depois pode ser imerso na pasta fluida de alumina ativada impregnada e pasta fluida em excesso removida para fornecer um revestimento fino da pasta fluida sobre as paredes das passagens de fluxo de 15 gás do carreador. O carreador revestido depois é seco e calcinado para fornecer um revestimento aderente do componente catalítico e, opcionalmente, o material de CHA de cobre, às paredes das passagens deste. Uma ou mais camadas adicionais podem ser fornecidas ao carreador. Depois que cada camada é aplicada, ou depois que várias camadas desejadas são 20 aplicadas, o carreador então é seco e calcinado para fornecer um membro de catalisador acabado de acordo com uma forma de realização da presente invenção.
Alternativamente, a alumina ou outras partículas de suporte impregnadas com o componente de metal precioso ou metal de base pode ser 25 misturada com partículas em massa ou sustentadas do material de chabazita de cobre em uma pasta fluida aquosa, e esta pasta fluida mista de partículas de componente catalítico e partículas de material de chabazita de cobre pode ser aplicada como um revestimento às paredes das passagens de fluxo de gás do carreador. Em uso, a corrente de gás de descarga pode ser contactada com um catalisador preparado de acordo com formas de realização da presente invenção. Por exemplo, os catalisadores de CuCHA fabricados de acordo com formas de realização da presente invenção são bem apropriados para tratar a descarga de motores, incluindo motores diesel.
Sem intencionar limitar a invenção de qualquer maneira, formas de realização da presente invenção serão mais completamente descritas pelos seguintes exemplos.
EXEMPLO 1
Um catalisador em pó de CuCHA foi preparado misturando-se
100 g de CHA na forma de NHt+, tendo uma razão molar de sílica/alumina de
30, com 400 mL de uma solução de sulfato de cobre(II) de 1,0 M. O pH foi ajustado a 3,5 com ácido nítrico. Uma reação de troca de íon entre o CHA na forma de NH4+ e os íons de cobre foi realizada agitando-se a pasta fluida a 15 80°C durante 1 hora. A mistura resultante depois foi filtrada, lavada com 800 mL de água deionizada em três porções até que o filtrado fosse claro e incolor, que indicou que substancialmente nenhum cobre solúvel ou livre permaneceu na amostra, e a amostra lavada foi seca a 90°C. O processo acima incluindo a troca de íon, filtragem, lavagem e secagem foi repetido uma vez. 20 O produto de CuCHA resultante depois foi calcinado a 640°C
em ar durante 6 horas. O catalisador de CuCHA obtido compreendeu CuO a 2,41 % em peso, como determinado por análise de ICP. Uma pasta fluida de CuCHA foi preparada misturando-se 90 g de CuCHA, como descrito acima, com 215 mL de água deionizada. A mistura foi moída por esferas. 15,8 g de 25 acetato de zircônio em ácido acético diluído (contendo 30 % de ZrO2) foi adicionado na pasta fluida com agitação.
A pasta fluida foi revestida em núcleos cerâmicos celulares l”Dx3”L, tendo uma densidade celular de 400 cpsi (células por polegada quadrada) (62cpcm ) e uma espessura de parede de 6,5 mil (0,16 mm). Os núcleos revestidos foram secos a IIO0C durante 3 horas e calcinadas a 400°C durante 1 hora. O processo de revestimento foi repetido uma vez para obter uma carga de composição de revestimento reativo alvo de 2,4 g/in3 (146,4 kg/m3).
Eficiência e seletividade da redução catalítica seletiva (SCR)
de óxidos de nitrogênio de um núcleo de catalisador fresco foi medida adicionando-se uma mistura de gás de alimentação de 500 ppm de NO, 500 ppm de NH3, 10 % de O2, 5 % de H2O, balanceada com N2 to um reator em estado estacionário contendo um núcleo de catalisador l”Dx3”L. A reação foi 10 realizada em uma velocidade espacial de 80.000 h'1 através de uma faixa de temperatura de 150°C a 460°C.
A estabilidade hidrotérmica do catalisador foi medida por envelhecimento hidrotérmico do núcleo de catalisador na presença de 10 % de H2O a 800°C durante 50 horas, seguido por medição da eficiência e seletividade de SCR dos óxidos de nitrogênio pelo mesmo processo como esboçado acima para a avaliação de SCR em um núcleo de catalisador fresco.
A Figura 1 é um gráfico que mostra a conversão de NOx e fabricação ou formação de N2O versus temperatura para esta amostra. Estes resultados são resumidos na Tabela I. Esta amostra, que não contém cobre solúvel antes da calcinação como indicado pela cor do filtrado descrito acima, não mostra resistência realçada ao envelhecimento térmico.
EXEMPLO IA
> _
A pasta fluida de revestimento do Exemplo 1 foi adicionado sulfato de cobre pentaidratado para elevar o nível de CuO total para 3,2 %. A 25 pasta fluida foi revestida no monólito e envelhecida e testada para NOx de SCR como esboçado acima para o Exemplo 1, exceto que o monólito fosse calcinado a 640°C. O desempenho catalítico foi comparado com o Exemplo 1 na Figura IA. A adição de sulfato de cobre na pasta fluida de revestimento melhorou significativamente a estabilidade hidrotérmica e atividade em temperatura baixa.
EXEMPLO 2
Um catalisador em pó de CuCHA foi preparado misturando-se 17 Kg de CHA na forma de NH/, tendo uma razão molar de sílica/alumina de 5 30, com 68 L de uma solução de sulfato de cobre(II) de 1,0 M. O pH foi ajustado a 3,5 com ácido nítrico. Uma reação de troca de íon entre o CHA na forma de NH4+ e os íons de cobre foi realizada agitando-se a pasta fluida a 80°C durante 1 hora. A mistura resultante depois foi filtrada e seca em ar. O processo acima incluindo a troca de íon e filtragem foi repetido uma vez. 10 Depois a torta do filtro úmida foi empastada novamente em 40 L de água deionizada seguido por filtragem e secagem a 90°C. O produto de CuCHA resultante depois foi calcinado a 640°C em ar durante 6 horas. O catalisador de CuCHA obtido compreendeu CuO a 2,75 % em peso.
A preparação da pasta fluida, revestimento e avaliação de NOx de SCR foram os mesmos como esboçado acima para o Exemplo I. Este exemplo continha cobre livre, e estabilidade hidrotérmica exibida melhorada comparado com o Exemplo 1.
EXEMPLO 3
O catalisador de CuCHA compreendendo 3,36 % de CuO em peso foi preparado pelo mesmo processo como no Exemplo 2 seguido por uma impregnação de umidade incipiente.
Usando o procedimento no Exemplo 2, 134 gramas de CuCHA a 3,11 % de CuO em peso foi preparada. A este material, foi adicionado uma solução de sulfato de cobre compreendendo 1,64 g de sulfato de cobre pentaidratado e 105 mL de água deionizada. A amostra impregnada foi seca a 90°C e calcinada a 640°C durante 6 horas.
A preparação da pasta fluida, revestimento e avaliação de NOx de SCR é o mesmo como esboçado acima para o Exemplo 1. Como mostrado na Figura 3, a amostra contendo mais cobre não trocado exibiu atividade em temperatura baixa mais alta além de estabilidade hidrotérmica.
EXEMPLO 4
O catalisador de CuCHA compreendendo 3,85 % de CuO em peso foi preparado por um processo de impregnação de umidade incipiente 5 apenas. Uma solução de sulfato de cobre compreendendo 18,3 g de sulfato de cobre pentaidratado e 168 mL de água deionizada foi impregnada em 140 g de CHA na forma de NHt+, tendo uma razão molar de sílica/alumina de 30. A amostra impregnada depois foi seca a 90°C e calcinada a 640°C durante 6 horas.
A preparação da pasta fluida, revestimento e avaliação de NOx
de SCR são os mesmos como esboçado acima para o Exemplo I. Como mostrado na Fig. 4, Exemplo 4 exibiu um declínio no desempenho entre 350°C e 450°C depois do envelhecimento hidrotérmico.
EXEMPLO 5
O catalisador de CuCHA compreendendo 1,94 % de CuO em
peso foi preparado pelo mesmo processo como o que está no Exemplo 1, exceto que esta amostra foi preparada por uma troca de íon única.
A preparação da pasta fluida, revestimento e avaliação de NOx de SCR são os mesmos como esboçado acima para o Exemplo 1, exceto que a estabilidade hidrotérmica não foi medida.
EXEMPLO 6
Um catalisador em pó de CuCHA foi preparado misturando-se 0,2 g de CHA na forma de NHt+, tendo uma razão molar de sílica/alumina de
15, com 16 mL de uma solução de sulfato de cobre(II) de 25 mM. Uma 25 reação de troca de íon entre o CHA na forma de NHt+ e os íons de cobre foi realizada agitando-se a pasta fluida a 80°C durante 1 hora. A mistura resultante depois foi filtrada, lavada com água deionizada e seca a 90°C. O processo acima incluindo a troca de íon, filtragem, lavagem e secagem foi repetido uma vez. O produto de CuCHA resultante depois foi calcinado a 540°C em ar durante 16 horas. 0 catalisador de CuCHA obtido compreendeu CuO a 4,57 % em peso.
O pó de catalisador foi hidrotermicamente envelhecido na presença de 10 % de H2O a 800°C durante 50 horas, seguido por medição da eficiência de SCR dos óxidos de nitrogênio.
O desempenho do catalisador foi avaliado usando um reator catalítico de microcanal contendo um leito de aproximadamente 12,6 mm3 de catalisador. O vazão (temperatura e pressão padrão) de 500 cm3/min de reagentes, que consiste de 500 ppm de NOx, 500 ppm de NH3, 10 % de 02, 5 10 % de H2O, balanceados com He, mais 25 cm3/min do vapor passou sobre o leito em várias temperaturas (200, 250, 300, 350, 400, 450 e 500°C) para determinar a reatividade do catalisador. A conversão de NOx foi determinada por 100*(NOX alimentado - NOx eliminado)/(NOx alimentado) usando um analisador espectral de massa.
EXEMPLO 7
O catalisador em pó de CuCHA compreendendo 2,94 % de CuO em peso foi preparado pelo mesmo processo como o que está no Exemplo 6, incluindo troca de íon, filtragem, lavagem, secagem, calcinações e envelhecimento hidrotérmico, exceto que a razão molar de sílica/alumina foi 30 e que o processo de troca de íon foi repetido 4 vezes.
A avaliação de NOx de SCR é a mesma como esboçado acima para o exemplo 6.
EXEMPLO 8
O catalisador em pó de CuCHA compreendendo 0,45 % de CuO em peso foi preparado pelo mesmo processo como o que está no Exemplo 6, incluindo troca de íon, filtragem, lavagem, secagem, calcinações e envelhecimento hidrotérmico, exceto que a razão molar de sílica/alumina foi 50.
A avaliação de NOx de SCR é a mesma como esboçado acima para o exemplo 6.
EXEMPLO 9
Um catalisador em pó de CuCHA foi preparado misturando-se
15,0 g de CtLA na forma de NH4*, tendo uma razão molar de sílica/alumina 5 de 256, com 61 mL de uma solução de sulfato de cobre(II) de 0,64 M. Uma reação de troca de íon entre o CHA na forma de NH4+ e os íons de cobre foi realizada agitando-se a pasta fluida a 80°C durante 1 hora. A mistura resultante depois foi filtrada, lavada com água deionizada e seca a 90°C. O processo acima incluindo a troca de íon, filtragem, lavagem e secagem foi 10 repetido 4 vezes. O produto de CuCHA resultante depois foi calcinado a 540°C em ar durante 16 horas. O catalisador de CuCHA obtido compreendeu CuO a 2,63 % em peso.
O envelhecimento hidrotérmico e a avaliação de NOx de SCR foi a mesma como esboçado acima para o exemplo 6.
EXEMPLO COMPARATIVO 10
Um catalisador em pó de zeólito de Cu/Y foi preparado tendo razão molar de sílica/alumina de 5 como descrito mais abaixo.
Um catalisador em pó de Cu/Y foi preparado misturando-se 500 g de Zeólito Y na forma de NHt+, tendo uma razão molar de sílica/alumina de ~ 5, com 2500 mL de uma solução de sulfato de cobre(II) de
0,1 M. O pH estava entre 2,9 e 3,3. Uma reação de troca de íon entre o zeólito Y na forma de NHt+ e os íons de cobre foi realizada agitando-se a pasta fluida a 80°C durante 1 hora. A mistura resultante depois foi filtrada, lavada com água deionizada e seca a 90°C. O processo acima incluindo a troca de íon, 25 filtragem, lavagem e secagem foi repetido durante um total de 5 trocas onde o pH foi similar ao acima. O produto de zeólito Y de Cu resultante depois foi calcinado a 640°C em ar durante 16 horas. O catalisador de Zeólito Y de Cu obtido compreendeu CuO a 4,60 % em peso.
A pasta fluida de Cu/Y foi preparada misturando-se 200 g de Cu/Y, como descrito acima, com 400 mL de água deionizada. A mistura foi moída passando-se duas vezes através de um Eigermill para obter uma pasta fluida que compreendeu 90 % de partículas menores do que 8 μπι. 8,7 g de acetato de zircônio em ácido acético diluído (contendo 30 % de ZrO2) foram adicionados na pasta fluida com agitação.
A pasta fluida foi revestida em núcleos cerâmicos celulares l”Dx3”L, tendo uma densidade celular de 400 cpsi (células por polegada quadrada) (62cpcm ) e uma espessura de parede de 6,5 mil (0,16 mm). Dois revestimentos foram necessários para obter uma carga de composição de 10 revestimento reativo alvo de 1,6 g/in (97,6 kg/cm ). Os núcleos revestidos foram secos a 90°C durante 3 horas, e os núcleos foram calcinadas a 450°C durante 1 hora depois da segunda etapa de secagem.
O envelhecimento hidrotérmico e avaliação de SCR são os mesmos como esboçado no Exemplo 1, exceto que o envelhecimento em foi realizado a 750°C durante 25 horas.
EXEMPLO COAlPARATIVO 11
Um catalisador em pó de Cu/Beta foi preparado tendo razão molar de sílica/alumina de 35 usando um procedimento similar à amostra preparada no EXEMPLO 10. O envelhecimento hidrotérmico e avaliação de SCR são os mesmos como esboçado no Exemplo 1.
Um resumo dos dados para os exemplos 1 a 5 e Exemplos comparativos 10 a 11 está contido na Tabela 1 abaixo.
Tabela 1
Exemplo Razão % de Conversão de NOx (%) Preparação de N2O, ppm 210°C, 210°C, 460°C, 460°C, 460°C, 460°C, fresco envelhecido fresco envelhecido fresco envelhecido 1 0,30 2'41 75 43 95 82 0,8 5,3 2 0,33 2'75 62 59 90 83 3.1 9,3 3 0,38 3,36 74 70 91 81 2,7 10,5 4 0,44 3,8 76 60 88 72 3,5 14,2 5 0,24 Γ94 50 30 95 75 0,2 5,0 10 0,23 4,6 43 42 99 96 26 51 11 0,36 2,5 92 23 84 53 10 9,4 12 0,46 3,7 75 78 89 80 5,4 11,7 IA 0,40 3,2 61 82 11,3 A Tabela 1 indica que o Exemplo 3 exibiu a melhor combinação de atividade em temperatura baixa, atividade em temperatura alta e mostrou pouca degradação devido ao envelhecimento hidrotérmico.
A Tabela 2 mostra a conversão de NOx normalizada para os exemplos 6 a 9, que continha razões molares variadas de SiO2ZAl2O3 e razões atômicas de Cu/Al. O Exemplo 7 exibiu o melhor desempenho. Embora o desempenho dos Exemplos 6, 8 e 9 não fosse ideal, deve ser observado que cada um dos Exemplos foi envelhecido em uma temperatura preferivelmente elevada de 800°C. Nem todos os catalisadores experienciarão tais temperaturas elevadas, e acredita-se que as amostras envelhecidas em temperaturas mais baixas exibiriam desempenho aceitável em uma razão de sílica/alumina aceitável mais ampla. Por exemplo, em um sistema de tratamento de gás de descarga tendo um catalisador de SCR a jusante de um filtro de fuligem catalisado, a SCR tipicamente seria exposta a temperaturas elevadas, por exemplo, excedendo cerca de 700°C. Se a SCR é disposta no CSF, a SCR pode experienciar temperaturas tão altas quanto cerca de 800°C, ou mais alto. De acordo com formas de realização da presente invenção, maior flexibilidade em localizar um catalisador tal como um catalisador de SCR em um sistema de tratamento de gás de descarga é fornecido devido aos catalisadores de CuCHA que exibem estabilidade hidrotérmica melhorada comparado com outros tipos de materiais de zeólito. Amostras tendo uma faixa de razão de sílica para alumina entre cerca de 15 e 256 que experienciam temperaturas operacionais abaixo de cerca de 800°C seriam esperadas exibir conversão de NOx em temperatura baixa aceitável. Assim, de acordo com formas de realização da invenção, razões de sílica para alumina de cerca de 15 a cerca de 256 estão dentro do escopo da invenção, entretanto, faixas mais estreitas tendo um ponto final de faixa mais baixa de cerca de 10,
20, cerca de 25 e cerca de 30 e um ponto final de faixa mais alta de 150, 100, 75, 50 e 40 estão dentro do escopo da invenção. Tabela 2
Exemplo Razão molar de % de Razão atômica Conversão de NOx, envelhecida, SiCVAl2O3 CuO de Cu/Al normalizada 200°C 250°C 300°C 6 15 4,57 0,30 0,34 0,61 0,81 7 30 2,94 0,36 1,00 1,00 0,98 8 50 0,45 0,089 0,39 0,54 1,00 9 256 2,63 2,6 0,10 0,70 0,88 EXEMPLO 12
ESTUDO DA INIBIÇÃO DE CUCHA:
As amostras testadas neste exemplo foram preparadas como segue. Um catalisador em pó de CuCHA foi preparado misturando-se 250 g de CHA na forma de NH41", tendo uma razão molar de sílica/alumina de 30, com 2,0 L de uma solução de sulfato de cobre(II) de 0,1 M. O pH foi ajustado para 3,0 a 3,4 com ácido nítrico. Uma reação de troca de íon entre o CHA na forma de NHt+ e os íons de cobre foi realizada agitando-se a pasta fluida a 80°C durante 1 hora. A mistura resultante depois foi filtrada, lavada com água deionizada e seca a 90°C. O processo acima incluindo a troca de íon, filtragem, lavagem e secagem foi repetido durante um total de 5 vezes. O produto de CuCHA resultante depois foi calcinado a 640°C em ar durante 16 horas. O catalisador de CuCHA obtido compreendeu CuO a 3,68 % em peso. O impacto de CO, propeno, n-octano e água sobre a atividade
de SCR de CuCHA em temperaturas 170, 200, 250, 300 e 3 50°C foi investigado. Os núcleos do catalisador foram testadas em uma mistura de descarga de diesel simulada. As principais concentrações de gás foram como segue: 500 ppm de NO, 500 ppm de NH3, 10 % de CO2, 10 % de O2. Os 20 seguintes componentes foram adicionados seqüencialmente para investigar o efeito sobre a conversão de NOx: 5 % de H2O, 300 ppm de C3H6 como Cl, 600 ppm de C3H6 como Cl, 100 ppm de Octano como Cl e 500 ppm de CO. A velocidade espacial dos experimentos foi ajustada para 142.000 h'1. A reação foi deixada atingir o estado estacionário em pontos de temperatura de 170°C, 25 200°C, 250°C, 300°C e 3 50°C e as conversões subsequentes e interações do componente foram registradas. A análise de gás de NO, NO2, N2O, NH3, CO2, CO, C3H6 e H2O foi realizada usando um MKS 2030 MultiGas FTIR conduzindo em resolução de,5 cm'1.
Os resultados são resumidos na Figura 5. Em temperaturas 5 baixas de 170°C e 200°C, água foi o principal inibidor, alto nível de propeno a 200 ppm (600 ppm de Cl) estava inibindo levemente a 200°C, 100 ppm de propeno (300 ppm de Cl), CO, e n-octano não tiveram nenhum impacto. Em temperaturas mais altas do que 250°C, água foi observada ser um promotor. Nenhum dos componentes testados estava inibindo a conversão de NOx a 10 250°C, ao contrário eles foram todos promotores. A 300°C, CO e n-octano promoveram o NOx de SCR, ao passo que 600 ppm de Cl propeno inibiram a reação. A 350°C, apenas 600 ppm de Cl propeno tiveram menor inibição, e os outros componentes todos tiveram efeito positivo. Acreditou-se que este desempenho fosse melhor do que o desempenho de outros catalisadores de 15 SCR promovidos por Cu que usam zeólitos de poro médio e grande, por exemplo, beta zeólitos. Catalisadores de SCR são conhecidos serem suscetíveis ao envenenamento transitório por hidrocarbonetos de cadeia longa, que podem encher os poros com coque. Estes testes mostram que o zeólito de CuCHA de poro pequeno não mostram este problema.
EXEMPLO 12A
TESTE DE ARMAZENAMENTO/LIBERAÇÃO DE HC:
GASES E APARELHO:
Um núcleo de catalisador de CuCHA revestido em um monólito cerâmico (400 cpsi (células por polegada quadrada) (62cpcm2)/6 mil 25 (0,15 mm)) apresentando uma seção transversal de 144 células abertas e comprimento de 1” foi primeiro envelhecido durante 50 h a 800°C em 10 % de H2O, 10 % de O2, equilíbrio de nitrogênio. Subsequentemente, o catalisador foi colocado em um reator de laboratório. O catalisador foi exposto a uma mistura de gás compreendendo 4 % de H2O, 14 % de O2, 100 ppm de NO, equilíbrio de N2 e aquecido a IOO0C. Depois da estabilização da temperatura a 100°C, uma combinação de tolueno e octano foi adicionada por intermédio de controlador de fluxo de massa de modo a obter uma concentração alvo de 100 ppm de Cl como octano e 100 ppm de Cl como 5 tolueno em uma velocidade espacial total de 104 kh'1. O gás efluente foi conduzido em um pós-combustor que estava compreendendo um catalisador de oxidação com base em Pt/alumina e mantido em uma temperatura constante de 600°C. Quaisquer emissões de hidrocarboneto incluindo produtos de oxidação parcial e CO que podem ser formados no catalisador de 10 CuCHA serão oxidados em CO2 quando passados no pós-combustor. O efluente de CO2 do pós-combustor é monitorado por um analisador de CO2 em IR. Em paralelo, uma corrente de deslizamento do efluente do catalisador de CuCHA que desvia o pós-combustor foi analisada por um analisador de FID-HC.
PROTOCOLO DE TESTE:
Depois da estabilização do catalisador de CuCHA a IOO0C em uma mistura de 4 % de H2O, 14 % de O2, 100 ppm de NO, equilíbrio de N2, a combinação de hidrocarboneto de octano e tolueno foi introduzida. Durante 10 min a temperatura do catalisador foi mantida a 100°C. Durante 20 este período, HCs são armazenados no catalisador que leva a um póscombustor de CO2 fora do sinal abaixo da concentração de entrada de HC. Depois do período de armazenamento, a temperatura é elevada linearmente de IOO0C a 600°C em uma elevação de 20°C/min. O sinal de pós-combustor de CO2 aumenta severamente que é devido a uma liberação de armazenado de 25 HCs do catalisador. Na conclusão da dessorção, o sinal de CO2 volta ao valor de referência (= concentração de gás de alimentação). Conforme a temperatura eleva-se, uma diminuição pequena do pós-combustor sem CO2 abaixo do nível de gás de alimentação indica um segundo tipo de remoção de HC que é devido à deposição de depósitos carbonáceos formados de tolueno e octano sobre o catalisador. Conforme a temperatura aumenta mais quaisquer depósitos carbonáceos formados queimarão e causarão um sinal fora de póscombustor de CO2 elevado. Depois que a queima dos depósitos carbonáceos é concluída, o sinal de pós-combustor de CO2 eventualmente voltará ao seu valor de referência.
ANÁLISE DE DADOS:
O sinal de pós-combustor de CO2 foi avaliado quantitativamente de modo a determinar a quantidades de HC que são armazenados, liberados, depositados como coque e coque queimado. As 10 interseções correspondentes do traço de CO2 fora do pós-combustor mostradas na Fig. 5 A com a concentração de gás de alimentação de HC foram usadas como limites de integração. Para o exemplo de CuCHA estes limites de integração foram aproximadamente entre O e 800s para o armazenamento, entre 800s e IOOOs para a liberação, entre IOOOs e 1400s para a coqueificação, 15 respectivamente. As quantidades de HC que foram armazenados, liberados, depositados como coque e subsequentemente queimados são expressadas como mg de HC com base na razão de C:H média dos HCs de corrente de alimentação.
RESULTADOS:
Este experimento foi realizado com catalisadores de SCR de
Cu-Y (depois do envelhecimento durante 25 h @ 750°C em 10 % de H2O, 10 % de O2, equilíbrio de N2) e Fe-Beta (depois do envelhecimento durante 50 h a 800°C em 10 % de H2O, 10 % de O2, equilíbrio de N2) do mesmo volume sob as mesmas condições. No caso de CuCHA, parece haver muito pouca coqueificação e consequentemente não existe nenhum sinal de queima
r
perceptível. Os resultados são representados graficamente na Fig. 5B. E evidente que o catalisador de CuCHA armazena a quantidade mínima de HCs dos quais a maioria é liberada como HCs e pouco é depositado como coque. O catalisador de Cu-Y ao contrário não formou uma quantidade substancial de depósitos carbonáceos na faixa de temperaturas de cerca de 200°C a 450°C. Parte do coque construído é subsequentemente queimada em temperaturas mais altas.
EXEMPLO 13 PREPARAÇÃO DO CATALISADOR DE AMOX
Um catalisador de oxidação de amônia compreendendo um CuCHA foi preparado como no Exemplo 12 e tendo um teor de cobre de 3,68 % medido como CuO, e razão de S1O2/AI2O3 de 30. Este material foi revestido em um suporte de cordierita monolítico padrão, tendo uma
• T Λ
geometria celular quadrada de 400 células/in (62cpcm ), para fornecer uma
3 3
carga total de 2,4 g/in (146,4 kg/m ) com base no volume de massa de monólito. Este monólito pré-revestido depois foi imerso em uma solução de um precursor contendo platina (um complexo de platina hidróxi amina) para distribuir completa e uniformemente o precursor de platina na parte. A parte foi seca a IlO0C e depois calcinada a 450°C durante uma hora. Isto forneceu
• T Λ
uma carga de platina na parte de 4,3 g/ffe (0,15 kg/m ) com base no volume em massa de monólito. Assim o catalisador teve a seguinte composição: 3,68 % de CuO + 0,10 % de Pt sustentado em CuCHA, revestido em suporte de cordierita padrão 400/6 em carga parcial total de cerca de 2,4 g/in3 (146,4 20 kg/m ). A razão atômica de Al:Cu:Pt no presente catalisador é cerca de 190:90:1. A razão de Al/M (M = Cu + Pt) é igual a cerca de 2,1.
EXEMPLO 14 - TESTE DE AMOSTRAS DO EXEMPLO 13
A eficiência de remoção de amônia e seletividades de do produto de oxidação de núcleos do catalisador de AMOx hidrotermicamente 25 envelhecido preparadas como descrito no Exemplo 13 foram medidas adicionando-se uma mistura de gás de alimentação de 500 ppm de NH3, 10 % de O2, 5 % de H2O, balanceado com N2 (como ar) a um reator em estado estacionário contendo um núcleo de catalisador cilíndrico-quadrado de 3,0 polegadas de comprimento com uma seção transversal facial contendo 144 células abertas. A reação foi realizada em uma velocidade espacial de 100.000 h"1 através de uma faixa de temperatura de 150°C a 460°C. Condições de envelhecimento hidrotérmico são 10 horas a 700°C com 10 % de H2O em ar. A Figura 6 é um gráfico que mostra emissões comparadas com aquelas de 5 uma amostra hidrotermicamente envelhecida de CuCHA. Os dados mostram 1) a conversão de NH3 altamente seletiva a N2 catalisada pelo catalisador de CuCHA na ausência de impregnação de Pt, e 2) que a conversão de NH3 pode ser dramaticamente realçada por inclusão do componente de platina sem comprometer a alta seletividade de N2. O último é significante em que a 10 técnica anterior mostra que a platina como um gaze metálica ou sustentada em outros óxidos ou suportes zeolíticos é geralmente seletiva para a produção de N2O ou NOx.
EXEMPLO 15
Comparação da formulação de CuCHA em um substrato de fluxo atravessante e um filtro de fluxo de parede em cargas comparáveis. Um filtro de fluxo de parede foi revestido com o mesmo catalisador como o carreador de catalisador de fluxo atravessante do Exemplo 3 e as duas amostras medem para comparar sua atividade catalítica.
Uma pasta fluida de CuCHA foi preparada misturando-se 90 g 20 de CuCHA, como descrito acima, com 215 mL de água deionizada. A mistura foi moída por esferas durante 11 horas para obter uma pasta fluida que compreendeu 90 % partículas menores do que 10 μιη. 15,8 g de acetato de zircônio em ácido acético diluído (contendo 30 % de ZrO2) foram adicionados na pasta fluida com agitação.
A pasta fluida foi revestida em núcleos de filtro de fluxo de
parede cerâmico celulares de l”Dx6”L, tendo uma densidade celular de 300 cpsi (células por polegada quadrada) (46,5 cm ) e uma espessura de parede de 12 mil (0,3 mm). Os núcleos revestidos foram secos a 120°C durante 3 horas e calcinados a 540°C durante 1 hora. O processo de revestimento foi repetido uma vez para obter uma carga de composição de revestimento reativo alvo de 2,0 g/in3 (122 kg/m3).
Eficiência e seletividade da redução catalítica seletiva (SCR) de óxidos de nitrogênio de um núcleo de catalisador fresco foram medidas 5 adicionando-se uma mistura de gás de alimentação de 500 ppm de NO, 500 ppm de NH3, 10 % de O2, 5 % de H2O, balanceado com N2 a um reator em estado estacionário contendo um núcleo de catalisador de l”Dx6”L. A reação foi realizada em uma velocidade espacial de 40.000 h'1 através de uma faixa de temperatura de 150°C a 400°C.
A estabilidade hidrotérmica do catalisador foi medida por
envelhecimento hidrotérmico do núcleo de catalisador na presença de 10 % de H2O a 75O0C durante 25 horas, seguido por medição da eficiência e seletividade de SCR dos óxidos de nitrogênio pelo mesmo processo como esboçado acima para a avaliação de SCR em um núcleo de catalisador fresco. A Tabela 3 abaixo mostra a comparação do desempenho de
SCR hidrotermicamente envelhecido do CuCHA revestido em um filtro versus o CuCHA revestido em um carreador de catalisador de fluxo atravessante.
Tabela 3: Comparação do desempenho de SCR (% de conversão) do filtro e substratos de fluxo atravessante
NO NO2 NOx NH3 Preparação de N2O Temp da Amostra (ppm) (graus C) CuCHA em Fluxo atravessante, envelhecido 50 H @ 800 C w/ 10 % de água 74,6 83,5 75,0 76,9 8,4 211 96,3 95,6 96,2 93,9 9,2 255 97,6 97,5 97,6 97,3 7,6 309 82,7 36,5 81,0 98,1 12,3 441 CuCHA em filtro, envelhecido 25 H @ 750 C w/ 10 % de água 74,7 81,5 75,1 76,0 8,8 207 96,4 96,1 96,4 96,5 9,9 255 98,6 97,7 98,5 96,8 8,7 304 96,2 90,7 95,9 98,7 8,2 352 91,1 62,4 89,8 99,4 11,7 400 Não obstante de algumas diferenças em detalhe experimental exato, a comparação sustenta claramente a equivalência do desempenho catalítico de CuCHA sobre o núcleo do filtro e o catalisador de monólito de fluxo atravessante.
EXEMPLO 16
Uma pasta fluida de NHt+-CHA foi preparada misturando-se 608 g de NHt+-CHA, tendo uma razão molar de sílica/alumina de 30, com 796 mL de água deionizada. A mistura foi moída usando um Netzsch Mill para obter uma pasta fluida que compreendeu 90 % de partículas menores do 10 que 8,4 μπι. 106 g de acetato de zircônio em ácido acético diluído (contendo 30 % de ZrO2) foram adicionados na pasta fluida com agitação.
A pasta fluida foi revestida em núcleos cerâmicos celulares l”Dx3”L, tendo uma densidade celular de 400 cpsi (células por polegada quadrada) (62cpcm ) e uma espessura de parede de 6,5 mil (0,16 mm). Os 15 núcleos revestidos foram secos a IlO0C durante 3 horas. O processo de revestimento foi repetido uma vez para obter uma carga de composição de revestimento reativo alvo de 2,4 g/in (146,4 kg/m ).
Este monólito pré-revestido depois foi imerso em uma solução a 0,25 M de acetato de cobre durante 5 minutos na temperatura ambiente. O núcleo foi suavemente soprado com uma pistola de ar e seco a 110°C durante
3 horas e depois calcinado a 400°C durante 1 hora. Isto forneceu uma carga de CuO em CHA de 2,72 % em peso com base no peso de CHA sobre o monólito.
A avaliação de NOx de SCR do catalisador fresco foi a mesmo como esboçado para o Exemplo 1. Estabilidade hidrotérmica do catalisador foi medida por envelhecimento hidrotérmico do núcleo de catalisador na presença de 10 % de vapor a 85O0C durante 6 h, seguido por medição da eficiência do NOx de SCR como esboçado para o catalisador fresco.
A Figura 7 é o gráfico que mostra a conversão de NOx e formação de N2O versus temperatura para esta amostra.
EXEMPLO 17
12,1 g de acetato de cobre monoidratado foi dissolvido em 420 g de água deionizada, depois 141 g de NHt+-CHA, tendo uma razão molar de sílica/alumina de 30, foi adicionado em. A mistura foi moída usando um Netzsch Mill para obter uma pasta fluida que compreendeu 90 % de partículas menores do que 3,5 μηι.
A pasta fluida foi revestida em núcleos cerâmicos celulares l”Dx3”L, tendo uma densidade celular de 400 cpsi (células por polegada
'y
quadrada) (62cpcm ) e uma espessura de parede de 6,5 mil (0,16 mm). Os núcleos revestidos foram secos a IlO0C durante 3 horas. O processo de revestimento foi repetido duas vezes para obter uma carga de composição de revestimento reativo alvo 2,4 g/in3 (146,4 kg/m3). Os núcleos revestidos foram depois calcinados a 400° C durante 1 hora. Este forneceu um carga de 15 CuO no CHA de 3,3 % em peso.
A avaliação de NOx de SCR do catalisador fresco foi a mesma como esboçado para o Exemplo 1. Estabilidade hidrotérmica do catalisador foi medida por envelhecimento hidrotérmico do núcleo de catalisador na presença de 10 % de vapor a 850°C durante 6 h, seguido 20 por medição da eficiência de NOx de SCR como esboçado para o catalisador fresco.
A figura 8 é um gráfico que mostra a conversão de NOx e formação de N2O versus temperatura para esta amostra.
EXEMPLO 18
Um catalisador em pó de CuCHA foi preparado por troca de
íon com acetato de cobre. 0,40 M de solução de acetato cobre (II) monoidratado foi preparada dissolvendo-se 89,8 g do sal de cobre em 1,125 L de água deionizada a 70°C. 300 g de CHA na forma de NH4+ depois foi adicionado à esta solução. Uma reação de troca de íon entre o CHA na forma de NH4+ e os íons de cobre foi realizada agitando-se a pasta fluida a 70°C durante 1 hora. O pH foi entre 4,8 e 4,5 durante a reação. A mistura resultante depois foi filtrada, lavada até que o filtrado teve uma condutividade de < 200 μ8αη_1, que indicou que substancialmente nenhum 5 cobre solúvel ou livre permaneceu na amostra, e a amostra lavada foi seca a 90°C. O catalisador de CuCHA obtido compreendeu CuO a 3,06 % em peso e Na2O a 140 ppm.
A preparação da pasta fluida, revestimento e avaliação de NOx de SCR foram os mesmos como esboçado acima para o Exemplo I. Como mostrado na Fig. 7, o Exemplo 18 exibiu o mesmo desempenho de SCR como o Exemplo 3 que foi preparado por troca de íons em duas vezes com sulfato de cobre mais uma impregnação de umidade incipiente.
EXEMPLO 19
O catalisador de CuCHA compreendendo 2,99 % de CuO em peso foi preparado pelo mesmo processo como o que está no Exemplo 18, exceto que esta amostra foi preparada em solução de Cu 0,30 M.
EXEMPLO 20
O catalisador de CuCHA compreendendo 2,69 % de CuO em peso foi preparado pelo mesmo processo como o que está no Exemplo 18, exceto que a troca de íon foi processada a 45 °C.
EXEMPLO 21
O catalisador de CuCHA compreendendo 2,51 % de CuO em peso foi preparado pelo mesmo processo como o que está no Exemplo 19, exceto que a troca de íon foi processada a 45 °C.
As cargas de Cu dos Exemplos 18 a 21 são comparadas com as
do Exemplo 1 na Tabela 4. Nós observamos que o acetato de cobre é mais eficiente do que o sulfato de cobre para fornecer carga de Cu desejada com uma concentração baixa de solução de cobre em temperatura de reação mais baixa. Tabela 4
Exemplo Sal de Cu Cone. de Cu2 +, M T da Reação, 0C % em peso de CuO 1 Sulfato de Cu 1,0 80 2,41 18 Acetato de Cu 0,40 70 3,06 19 Acetato de Cu 0,30 70 2,99 20 Acetato de Cu 0,40 45 2,69 21 Acetato de Cu 0,30 45 2,51 EXEMPLO 22- Envelhecimento Hidrotérmico e Análise Química do Exemplo 2
O pó de Cu/CHA preparado no Exemplo 2 foi 5 hidrotermicamente envelhecido na presença de 10 % de H2O em ar a 800°C durante 48 horas. O material analisado do Exemplo 2 é rotulado no Exemplo 22 nas Figuras 11 e 12 e Tabelas 5 e 6. A amostra hidrotermicamente envelhecida é rotulada no Exemplo 22A nas Tabelas 5 e 6 e Figuras 11 e 12.
Os padrões de difração em pó para raio X foram determinados por técnicas padrão. Ajustes do gerador são 45 kY e 40 mA. O difratômetro óptico consiste de uma fenda de divergência variável, fendas soller de feixe incidente, uma fenda de recepção, um monocromador de grafite, e um contador de cintilação usando geometria de parafocagem de Bragg-Brentano. Os espaçamentos d foram calculados a partir dos parâmetros estruturais de a = 13,58 e c = 14,76 Â para o exemplo 22 e a = 13,56 e c = 14,75 Â para o exemplo 22A. Os parâmetros estruturais foram determinados varrendo-se a amostra com LaB6 misturado como um padrão interno. A faixa de dados foi de 15 a 38,5 graus dois teta usando um tamanho de etapa de 0,01 e contando durante 5 segundos. O exemplo resultante foi conduzido através de refinamento de perfil no software JADE. Os parâmetros estruturais de LaB6 foram mantidos constantes a 5,169 A para compensar os erros de deslocamento da amostra. A Tabela 5 mostrou as linhas de difração em pó para raio X para o Exemplo 22 e Exemplo 22A. A estrutura cristalina do CHA retida depois de envelhecimento por vapor a 800°C 48 horas. Tabela 5
Exemplo 22 Exemplo 22A 2-Teta d(À) I(%) 2-Teta d(Â) I(%) 9,63 9,201 100% 9,62 9,189 100 % 13,02 6,793 37% 13,04 6,782 36% 14,15 6,252 8% 14,17 6,247 7% 16,21 5,465 28% 16,23 5,457 26% 18,01 4,921 32% 18,03 4,917 30% 19,28 4,600 3 % 19,30 4,595 3 % 20,85 4,258 89% 20,88 4,251 82% 22,29 3,985 4% 22,31 3,981 4% 22,65 3,922 5% 22,69 3,916 4% 23,33 3,809 8% 23,37 3,804 7% 25,27 3,521 41 % 25,29 3,519 38% 26,22 3,397 24% 26,26 3,391 23 % 27,98 3,186 5% 28,03 3,181 5% 28,53 3,126 6% 28,56 3,123 5% 29,91 2,985 3 % 29,96 2,980 3 % 30,98 2,885 57% 31,03 2,880 53 % 31,21 2,864 17% 31,23 2,862 17% 31,48 2,840 28% 31,51 2,837 26 % 31,99 2,795 4% 32,04 2,792 4% 32,75 2,733 3 % 32,80 2,728 3% 33,73 2,655 2% 33,78 2,651 2% 33,95 2,639 4% 33,98 2,637 4% 34,92 2,568 13 % 34,98 2,563 12% 35,38 2,535 3 % 35,43 2,531 2% 36,50 2,460 9% 36,54 2,457 8% 38,72 2,324 2% 38,78 2,320 1 % 38,90 2,313 1 % 38,93 2,312 1 % 39,13 2,300 2% 39,18 2,297 2% 39,56 2,276 1 % 39,62 2,273 1 % 39,78 2,264 2% 39,84 2,261 2% O espectro de refletância difuso UV/VIS expressado por F(R)
foi coletado usando uma ligação de refletância difusa com uma esfera de integração e referência revestida com BaSO4 dentro de um espectrômetro de UV-Vis Cary 300. O UV/VIS do Exemplo 22 e 22A são mostrados na Figura 11.
A Tabela 6 lista os dados de RMN de 29Si MAS e a razão atômica de Si/Al de estrutura calculada do Exemplo 22 e 22A. Os dados para o CHA e o CHA envelhecido com 10 % de vapor a 800°C, 48 horas, também 10 são incluídos para comparação. Os dados indicam que um grau de desaluminação ocorre no envelhecimento tanto de amostras de CHA quanto de Cu/CHA. Entretanto, a amostra de Cu/CHA sofre muito menos desaluminação no envelhecimento. Também é observado que o processo de troca de Cu por si só levemente altera a razão atômica de Si/Al de estrutura de 15 a 17.
A Figura 12 mostra os espectros de 27Al (Magic Angle 5 Spinning Nuclear Magnetic Resonance) do Exemplo 22 e 22A, assim como as amostras de CHA e CHA envelhecido. Os espectros indicam que algumas das espécies de Al tetraédricas são convertidas a espécies penta- e octacoordenadas na troca de Cu. Os espectros fortemente sustentam que a amostra de Cu/CHA sofre muito menos desaluminação no envelhecimento do que a 10 amostra de CHA.
Tabela 6
Amostra % de intensidade Si/Al Si(OAl) Si(OAl) Si(IAl) Si(IAl) -114 ppm -111 ppm -105 ppm -101 ppm CHA 2 71 16 11 15 CHA Envelhecido 0 95 1 4 82 Exemplo 22 2 75 19 5 17 Exemplo 22A 4 85 11 <1 34 Formas de realização exemplares de sistemas de tratamento de
emissão são mostradas na Figs. 10A, IOB e 10C. Uma forma de realização do sistema de tratamento de emissões inventivo denotado como IlA é esquematicamente representada na FIG. 10A. A descarga, contendo poluentes gasosos (incluindo hidrocarbonetos não queimados, monóxido de carbono e NOx) e matéria particulada, é transportada do motor 19 a uma posição a jusante no sistema de descarga onde um redutor, isto é, amônia ou um precursor de amônia, é adicionado à corrente de descarga. O redutor é injetado como uma pulverização por intermédio de um bocal (não mostrado) na corrente de descarga. A uréia aquosa mostrada em uma linha 25 pode servir como o precursor de amônia que pode ser misturado com ar em uma outra linha 26 em uma estação de mistura 24. A válvula 23 pode ser usada para medir quantidades exatas de uréia aquosa que são convertidas na corrente de descarga a amônia. A corrente de descarga com a amônia adicionada é transportada ao substrato de catalisador de SCR 12 (também referido aqui incluindo as reivindicações como “o primeiro substrato”) contendo CuCHA de acordo com uma ou mais formas de realização. Na passagem através do 5 primeiro substrato 12, o componente de NOx da corrente de descarga é convertido através da redução catalítica seletiva de NOx com NH3 a N2 e H2O. Além disso, NH3 em excesso que emerge da zona de entrada pode ser convertido através da oxidação por um catalisador de oxidação de amônia a jusante (não mostrado) também contendo CuCHA para converter a amônia a 10 N2 e H2O. O primeiro substrato é tipicamente um substrato de monólito de fluxo atravessante.
Uma forma de realização alternativa do sistema de tratamento de emissões, denotada como IIB é representada na FIG. IOB que contém um segundo substrato 27 interposto entre o injetor de NH3 e o primeiro substrato 15 12. Nesta forma de realização, o segundo substrato é revestido com uma composição de catalisador de SCR que pode ser a mesma composição como é usado para cobrir o primeiro substrato 12 ou uma composição diferente. Um recurso vantajoso desta forma de realização é que as composições do catalisador de SCR que são usadas para cobrir o substrato podem ser 20 selecionadas para otimizar a conversão de NOx quanto às condições operacionais características daquele sítio ao longo do sistema descarga. Por exemplo, o segundo substrato pode ser revestido com uma composição de catalisador de SCR que é mais apropriado para as temperaturas operacionais mais altas experimentadas em segmentos a montante do sistema de descarga, 25 enquanto um outra composição de SCR pode ser usada para cobrir o primeiro substrato (isto é, a zona de entrada do primeiro substrato) que é mais apropriada para esfriar a temperatura de descarga que é experimentada em segmentos a jusante do sistema de descarga.
Na forma de realização representada na FIG. 10B, o segundo substrato 27 pode ser um substrato de fluxo atravessante em forma alveolar, um substrato de espuma de célula aberta ou um substrato de fluxo de parede em forma alveolar. Nas configurações desta forma de realização onde o segundo substrato é um substrato de fluxo de parede ou 5 um filtro de espuma de célula aberta de alta eficiência, o sistema pode remover mais do que 80 % da matéria particulada incluindo a fração de fuligem e o SOF. Um substrato de fluxo de parede revestido com SCR e sua utilidade na redução de NOx e matéria particulada foram descritos, por exemplo, no pedido de patente U.S. co-pendente Ser. N° 10/634.659, 10 depositado em 5 de Agosto de 2003, a divulgação da qual é por meio desta incorporada por referência.
Em algumas aplicações pode ser vantajoso incluir um catalisador de oxidação a montante do sítio de injeção de amônia/precursor de amônia. Por exemplo, na forma de realização 15 representada na FIG. IOC um catalisador de oxidação é disposto em um substrato de catalisador 34. O sistema de tratamento de emissões 11 C é fornecido com o primeiro substrato 12 e opcionalmente inclui um segundo substrato 27. Nesta forma de realização, a corrente de descarga é primeiro transportada ao substrato de catalisador 34 onde pelo menos alguns dos 20 hidrocarbonetos gasosos, CO e matéria particulada são queimados a componentes inócuos. Além disso, uma fração significante do NO do componente de NOx da descarga é convertida a NO2. Proporções mais altas de NO2 no componente de NOx facilitam a redução de NOx a N2 e H2O no(s) catalisador(es) de SCR localizado(s) a jusante. Será avaliado 25 que na forma de realização mostrada na Fig. 10C, o primeiro substrato 12 pode ser um filtro de fuligem catalisado, e o catalisador de SCR pode ser disposto no filtro de fuligem catalisado. Em uma forma de realização alternativa, o segundo substrato 27 compreendendo um catalisador de SCR pode estar localizado a montante do substrato de catalisador 34. Estará evidente àqueles habilitados na técnica que várias modificações e variações podem ser feitas à presente invenção sem divergir do espírito ou escopo da invenção. Assim, é intencionado que a presente invenção abranja modificações e variações desta invenção contanto que elas entrem dentro do escopo das reivindicações anexas e seus equivalentes.

Claims (38)

1. Catalisador, caracterizado pelo fato de que compreende: um zeólito tendo a estrutura do cristal de CHA e uma razão molar de sílica para alumina maior do que cerca de 15 e uma razão atômica de cobre para alumínio excedendo cerca de 0,25.
2. Catalisador de acordo com a reivindicação 1, caracterizado pelo fato de que a razão molar de sílica para alumina é de cerca de 15 a cerca de 256 e a razão atômica de cobre para alumínio é de cerca de 0,25 a cerca de0.50.
3. Catalisador de acordo com a reivindicação 2, caracterizado pelo fato de que a razão molar de sílica para alumina é de cerca de 25 a cerca de 40.
4. Catalisador de acordo com a reivindicação 2, caracterizado pelo fato de que a razão molar de sílica para alumina é cerca de 30.
5. Catalisador de acordo com a reivindicação 2, caracterizado pelo fato de que a razão atômica de cobre para alumínio é de cerca de 0,30 a cerca de 0,50.
6. Catalisador de acordo com a reivindicação 2, caracterizado pelo fato de que a razão atômica de cobre para alumínio é cerca de 0,40.
7. Catalisador de acordo com a reivindicação 2, caracterizado pelo fato de que a razão molar de sílica para alumina é de cerca de 25 a cerca de 40 e a razão atômica de cobre para alumínio é de cerca de 0,30 a cerca de0,50.
8. Catalisador de acordo com a reivindicação 2, caracterizado pelo fato de que a razão molar de sílica para alumina é cerca de 30 e a razão atômica de cobre para alumina é cerca de 0,40.
9. Catalisador de acordo com a reivindicação 2, caracterizado pelo fato de que o catalisador contém cobre trocado em íon e uma quantidade de cobre não trocado suficiente para manter o desempenho de conversão de NOx do catalisador em uma corrente de gás de descarga contendo óxidos de nitrogênio depois de envelhecimento hidrotérmico do catalisador.
10. Catalisador de acordo com a reivindicação 9, caracterizado pelo fato de que o desempenho de conversão de NOx do catalisador a cerca de 200°C depois do envelhecimento é pelo menos 90 % do desempenho de conversão de NOx do catalisador a cerca de 200°C antes do envelhecimento.
11. Catalisador de acordo com a reivindicação 9, caracterizado pelo fato de que o catalisador contém pelo menos cerca de 2,00 por cento em peso de óxido de cobre.
12. Catalisador de acordo com a reivindicação 1, caracterizado pelo fato de que o catalisador é depositado em um substrato em forma alveolar.
13. Catalisador de acordo com a reivindicação 12, caracterizado pelo fato de que o substrato em forma alveolar compreende um substrato de fluxo de parede.
14. Catalisador de acordo com a reivindicação 12, caracterizado pelo fato de que o substrato em forma alveolar compreende um substrato de fluxo atravessante.
15. Catalisador de acordo com a reivindicação 14, caracterizado pelo fato de que pelo menos uma porção do substrato de fluxo atravessante é revestida com CuCHA adaptado para reduzir óxidos de nitrogênio contidos em uma corrente de gás fluindo através do substrato.
16. Catalisador de acordo com a reivindicação 15, caracterizado pelo fato de que pelo menos uma porção do substrato de fluxo atravessante é revestida com Pt e CuCHA adaptado para oxidar amônia na corrente de gás de descarga.
17. Catalisador de acordo com a reivindicação 14, caracterizado pelo fato de que pelo menos uma porção do substrato de fluxo atravessante é revestida com Pt e CuCHA adaptado para oxidar amônia na corrente de gás de descarga.
18. Catalisador de acordo com a reivindicação 13, caracterizado pelo fato de que pelo menos uma porção do substrato de fluxo de parede é revestida com CuCHA adaptado para reduzir óxidos de nitrogênio contidos em uma corrente de gás fluindo através do substrato.
19. Catalisador de acordo com a reivindicação 18, caracterizado pelo fato de que pelo menos uma porção do substrato de fluxo de parede é revestida com Pt e CuCHA adaptado para oxidar amônia na corrente de gás de descarga.
20. Catalisador de acordo com a reivindicação 13, caracterizado pelo fato de que pelo menos uma porção do substrato de fluxo de parede é revestida com Pt e CuCHLA adaptado para oxidar amônia na corrente de gás de descarga.
21. Sistema de tratamento de gás de descarga, caracterizado pelo fato de que compreende o catalisador como definido na reivindicação 15.
22. Sistema de tratamento de gás de descarga, caracterizado pelo fato de que compreende o catalisador como definido na reivindicação 17.
23. Sistema de tratamento de gás de descarga, caracterizado pelo fato de que compreende o catalisador como definido na reivindicação 18.
24. Sistema de tratamento de gás de descarga, caracterizado pelo fato de que compreende o catalisador como definido na reivindicação 20.
25. Processo para a redução de óxidos de nitrogênio contidos em uma corrente de gás na presença de oxigênio, caracterizado pelo fato de que o dito processo compreende contactar a corrente de gás com o catalisador como definido na reivindicação 1.
26. Processo para a redução de óxidos de nitrogênio contidos em uma corrente de gás na presença de oxigênio, caracterizado pelo fato de que o dito processo compreende contactar a corrente de gás com o catalisador como definido na reivindicação 15.
27. Processo para a redução de óxidos de nitrogênio contidos em uma corrente de gás na presença de oxigênio, caracterizado pelo fato de que o dito processo compreende contactar a corrente de gás com o catalisador como definido na reivindicação 16.
28. Processo de acordo com a reivindicação 26, caracterizado pelo fato de que compreende adicionalmente contactar a corrente de gás com o catalisador como definido na reivindicação 17.
29. Processo para a redução de óxidos de nitrogênio contidos em uma corrente de gás na presença de oxigênio, caracterizado pelo fato de que o dito processo compreende contactar a corrente de gás com o catalisador como definido na reivindicação 18.
30. Processo para a redução de óxidos de nitrogênio contidos em uma corrente de gás na presença de oxigênio, caracterizado pelo fato de que o dito processo compreende contactar a corrente de gás com o catalisador como definido na reivindicação 19.
31. Processo de acordo com a reivindicação 29, caracterizado pelo fato de que compreende adicionalmente contactar a corrente de gás com o catalisador como definido na reivindicação 20.
32. Artigo de catalisador, caracterizado pelo fato de que compreende um substrato em forma alveolar tendo um zeólito tendo a estrutura do cristal de CHA depositado no substrato, o zeólito tendo uma razão molar de sílica para alumina maior do que cerca de 15 e uma razão atômica de cobre para alumínio excedendo cerca de 0,25 e contendo uma quantidade de cobre livre excedendo o cobre trocado em íon.
33. Artigo de catalisador de acordo com a reivindicação 32, caracterizado pelo fato de que o cobre livre está presente em uma quantidade suficiente para impedir a degradação hidrotérmica da conversão de óxido de nitrogênio do catalisador.
34. Artigo de catalisador de acordo com a reivindicação 33, caracterizado pelo fato de que o cobre livre impede a degradação hidrotérmica da conversão de óxido de nitrogênio do catalisador no envelhecimento hidrotérmico.
35. Artigo de catalisador de acordo com a reivindicação 32, caracterizado pelo fato de que compreende adicionalmente um aglutinante.
36. Artigo de catalisador de acordo com a reivindicação 32, caracterizado pelo fato de que o cobre trocado em íon é trocado usando acetato de cobre.
37. Sistema de tratamento de gás de descarga, caracterizado pelo fato de que compreende uma corrente de gás de descarga contendo NOx, e um catalisador como definido na reivindicação 1 eficaz para a redução catalítica seletiva de pelo menos um componente de NOx na corrente de gás de descarga.
38. Sistema de tratamento de gás de descarga, caracterizado pelo fato de que compreende uma corrente de gás de descarga contendo amônia e um catalisador como definido na reivindicação 1 eficaz para destruir pelo menos uma porção da amônia na corrente de gás de descarga.
BRPI0808091-7A 2007-02-27 2008-02-27 Catalisador, sistema de tratamento de gás de exaustão, processo para a redução de óxidos de nitrogênio, e, artigo de catalisador. BRPI0808091A2 (pt)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US89183507P 2007-02-27 2007-02-27
US60/891835 2007-02-27
PCT/US2008/055140 WO2008106519A1 (en) 2007-02-27 2008-02-27 Copper cha zeolite catalysts

Publications (1)

Publication Number Publication Date
BRPI0808091A2 true BRPI0808091A2 (pt) 2014-07-15

Family

ID=45554940

Family Applications (1)

Application Number Title Priority Date Filing Date
BRPI0808091-7A BRPI0808091A2 (pt) 2007-02-27 2008-02-27 Catalisador, sistema de tratamento de gás de exaustão, processo para a redução de óxidos de nitrogênio, e, artigo de catalisador.

Country Status (13)

Country Link
US (2) US7601662B2 (pt)
EP (1) EP2117707B2 (pt)
JP (1) JP5683111B2 (pt)
KR (1) KR101358482B1 (pt)
CN (1) CN101668589B (pt)
AR (1) AR065501A1 (pt)
BR (1) BRPI0808091A2 (pt)
CA (1) CA2679590C (pt)
ES (1) ES2542510T5 (pt)
MX (1) MX2009009095A (pt)
PL (1) PL2117707T5 (pt)
WO (1) WO2008106519A1 (pt)
ZA (1) ZA200906640B (pt)

Families Citing this family (233)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601662B2 (en) * 2007-02-27 2009-10-13 Basf Catalysts Llc Copper CHA zeolite catalysts
US7998423B2 (en) 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
US10384162B2 (en) * 2007-03-26 2019-08-20 Pq Corporation High silica chabazite for selective catalytic reduction, methods of making and using same
DK2150328T5 (da) * 2007-04-26 2015-06-29 Johnson Matthey Plc SCR-fremgangsmåde og system med Cu/SAPO-34 zeolitkatalysator
US8114354B2 (en) * 2007-12-18 2012-02-14 Basf Corporation Catalyzed soot filter manufacture and systems
US20090155525A1 (en) * 2007-12-18 2009-06-18 Yuejin Li Passivation-Free Coating Process For A CSF
US20090196812A1 (en) * 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
BRPI0912247B1 (pt) * 2008-05-07 2019-04-16 Umicore Ag & Co. Kg Processo para a redução de óxido de nitrogênio em gases de escape, contendo hidrocarbonetos, mediante emprego de um catalisador scr na base de um crivo molecular.
CN102099293B (zh) 2008-05-21 2014-03-26 巴斯夫欧洲公司 直接合成具有CHA结构的含Cu沸石的方法
EP2138681B1 (de) 2008-06-27 2019-03-27 Umicore AG & Co. KG Verfahren und Vorrichtung zur Reinigung von Dieselabgasen
GB2464478A (en) * 2008-10-15 2010-04-21 Johnson Matthey Plc Aluminosilicate zeolite catalyst and use thereof in exhaust gas after-treatment
US8524185B2 (en) * 2008-11-03 2013-09-03 Basf Corporation Integrated SCR and AMOx catalyst systems
US10632423B2 (en) 2008-11-03 2020-04-28 Basf Corporation Bimetallic catalysts for selective ammonia oxidation
US10583424B2 (en) 2008-11-06 2020-03-10 Basf Corporation Chabazite zeolite catalysts having low silica to alumina ratios
EP2192807B1 (en) * 2008-12-01 2012-10-03 Vodafone Holding GmbH Access control for M2M ("machine-to-machine") devices in a mobile communication network
JP5482179B2 (ja) * 2008-12-22 2014-04-23 東ソー株式会社 チャバザイト型ゼオライト及びその製造方法
EP2382031B2 (en) * 2008-12-24 2022-12-14 BASF Corporation Emissions treatment systems and methods with catalyzed scr filter and downstream scr catalyst
US8252258B2 (en) * 2009-01-16 2012-08-28 Basf Corporation Diesel oxidation catalyst with layer structure for improved hydrocarbon conversion
WO2010084930A1 (ja) * 2009-01-22 2010-07-29 三菱化学株式会社 窒素酸化物浄化用触媒及びその製造方法
US9662611B2 (en) * 2009-04-03 2017-05-30 Basf Corporation Emissions treatment system with ammonia-generating and SCR catalysts
GB2469581A (en) 2009-04-17 2010-10-20 Johnson Matthey Plc Method of using copper/small pore molecular sieve catalysts in a chemical process
KR101809040B1 (ko) * 2009-04-17 2017-12-14 존슨 맛쎄이 퍼블릭 리미티드 컴파니 질소 산화물의 환원에 대한 희박/농후 노화에 대해 내구적인 소기공 분자 체 지지된 구리 촉매
BRPI1015322B1 (pt) * 2009-04-22 2020-03-10 Basf Corporation Artigo catalítico para uso em um sistema para tratar uma corrente de gás de descarga de motor, sistema de tratamento de emissões de motor a diesel, e, método de tratar uma corrente de gás de descarga de motor
EP2269733A1 (en) 2009-06-08 2011-01-05 Basf Se Process for the direct synthesis of cu containing silicoaluminophosphate (cu-sapo-34)
WO2010146720A1 (ja) * 2009-06-16 2010-12-23 トヨタ自動車株式会社 内燃機関の排気浄化装置
US8635855B2 (en) * 2009-06-17 2014-01-28 GM Global Technology Operations LLC Exhaust gas treatment system including a lean NOx trap and two-way catalyst and method of using the same
US8207084B2 (en) * 2009-06-23 2012-06-26 Ford Global Technologies, Llc Urea-resistant catalytic units and methods of using the same
US20110033353A1 (en) * 2009-08-05 2011-02-10 Basf Corporation Preparation of Diesel Oxidation Catalyst Via Deposition of Colloidal Nanoparticles
US8246922B2 (en) * 2009-10-02 2012-08-21 Basf Corporation Four-way diesel catalysts and methods of use
MX2012003978A (es) * 2009-10-14 2012-05-08 Basf Catalysts Llc Tamiz molecular de levyne que contiene cobre para la reduccion selectiva de nox.
JP5833560B2 (ja) 2009-11-24 2015-12-16 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Cha構造を有するゼオライトの製造方法
US8409546B2 (en) 2009-11-24 2013-04-02 Basf Se Process for the preparation of zeolites having B-CHA structure
EP2335810B1 (de) * 2009-12-11 2012-08-01 Umicore AG & Co. KG Selektive katalytische Reduktion von Stickoxiden im Abgas von Dieselmotoren
US8293198B2 (en) * 2009-12-18 2012-10-23 Basf Corporation Process of direct copper exchange into Na+-form of chabazite molecular sieve, and catalysts, systems and methods
US8293199B2 (en) * 2009-12-18 2012-10-23 Basf Corporation Process for preparation of copper containing molecular sieves with the CHA structure, catalysts, systems and methods
JP5005050B2 (ja) * 2010-01-22 2012-08-22 中国電力株式会社 アンモニアガス浄化用触媒
US8017097B1 (en) 2010-03-26 2011-09-13 Umicore Ag & Co. Kg ZrOx, Ce-ZrOx, Ce-Zr-REOx as host matrices for redox active cations for low temperature, hydrothermally durable and poison resistant SCR catalysts
US8529853B2 (en) 2010-03-26 2013-09-10 Umicore Ag & Co. Kg ZrOx, Ce-ZrOx, Ce-Zr-REOx as host matrices for redox active cations for low temperature, hydrothermally durable and poison resistant SCR catalysts
US9352307B2 (en) 2010-04-08 2016-05-31 Basf Corporation Cu-CHA/Fe-MFI mixed zeolite catalyst and process for the treatment of NOx in gas streams
MX360154B (es) * 2010-04-08 2018-10-24 Basf Se Catalizador de zeolita mixta de cu-cha/fe-mfi y proceso para tratar nox en corriente de gas usando el mismo.
US8293182B2 (en) 2010-05-05 2012-10-23 Basf Corporation Integrated SCR and AMOx catalyst systems
MX350977B (es) 2010-05-05 2017-09-27 Basf Corp Star Filtro catalítico de hollín y sistemas y métodos de tratamiento de emisiones.
US9289756B2 (en) 2010-07-15 2016-03-22 Basf Se Copper containing ZSM-34, OFF and/or ERI zeolitic material for selective reduction of NOx
US8987161B2 (en) 2010-08-13 2015-03-24 Ut-Battelle, Llc Zeolite-based SCR catalysts and their use in diesel engine emission treatment
US8987162B2 (en) 2010-08-13 2015-03-24 Ut-Battelle, Llc Hydrothermally stable, low-temperature NOx reduction NH3-SCR catalyst
JP5810852B2 (ja) * 2010-11-09 2015-11-11 東ソー株式会社 チャバザイト型ゼオライト及びこれを含む窒素酸化物還元触媒
US8778833B2 (en) 2010-11-11 2014-07-15 Basf Corporation Copper-zirconia catalyst and method of use and manufacture
DE112011103996T8 (de) * 2010-12-02 2013-12-19 Johnson Matthey Public Limited Company Metall-enthaltender Zeolithkatalysator
EP2463028A1 (en) 2010-12-11 2012-06-13 Umicore Ag & Co. Kg Process for the production of metal doped zeolites and zeotypes and application of same to the catalytic removal of nitrogen oxides
EP2465606A1 (de) 2010-12-16 2012-06-20 Umicore Ag & Co. Kg Zeolith-basierter Katalysator mit verbesserter katalytischer Aktivität zur Reduktion von Stickoxiden
JP5895510B2 (ja) 2010-12-22 2016-03-30 東ソー株式会社 チャバザイト型ゼオライト及びその製造方法、銅が担持されている低シリカゼオライト、及び、そのゼオライトを含む窒素酸化物還元除去触媒、並びに、その触媒を使用する窒素酸化物還元除去方法
US20130281284A1 (en) * 2010-12-27 2013-10-24 Mitsubishi Plastics, Inc. Catalyst for nitrogen oxide removal
KR101841317B1 (ko) * 2010-12-28 2018-03-22 토소가부시키가이샤 구리 및 알칼리 토금속을 담지한 제올라이트
US8722000B2 (en) 2011-03-29 2014-05-13 Basf Corporation Multi-component filters for emissions control
CN106279485B (zh) 2011-03-30 2018-10-02 日本聚乙烯株式会社 乙烯类聚合物、烯烃聚合用催化剂成分、包含所述成分的烯烃聚合用催化剂以及使用所述催化剂生产乙烯类聚合物的方法
US9242239B2 (en) 2011-04-08 2016-01-26 Johnson Matthey Public Limited Company Catalysts for the reduction of ammonia emission from rich-burn exhaust
US8101146B2 (en) * 2011-04-08 2012-01-24 Johnson Matthey Public Limited Company Catalysts for the reduction of ammonia emission from rich-burn exhaust
EP2699345A4 (en) * 2011-04-18 2015-05-06 Pq Corp GROSS CIRCULAR INORGANIC CHABAZITE AND METHOD FOR ITS PREPARATION AND USE
US9273578B2 (en) * 2011-06-07 2016-03-01 Umicore Ag & Co. Kg Catalytic converter for the selective catalytic reduction of nitrogen oxides in the exhaust gas of diesel engines
RU2634702C2 (ru) * 2011-07-27 2017-11-03 Джонсон Мэтти Паблик Лимитед Компани Низкофосфористые хабазиты
US9174849B2 (en) 2011-08-25 2015-11-03 Basf Corporation Molecular sieve precursors and synthesis of molecular sieves
US9999877B2 (en) * 2011-10-05 2018-06-19 Basf Se Cu-CHA/Fe-BEA mixed zeolite catalyst and process for the treatment of NOx in gas streams
JP2014530097A (ja) 2011-10-05 2014-11-17 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ガス流中のNOxを処理するためのCu−CHA/Fe−BEA混合ゼオライト触媒および方法
JP5938819B2 (ja) 2011-10-06 2016-06-22 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 排気ガス処理用酸化触媒
US8956992B2 (en) 2011-10-27 2015-02-17 GM Global Technology Operations LLC SCR catalysts preparation methods
US20120258032A1 (en) * 2011-11-02 2012-10-11 Johnson Matthey Public Limited Company Catalyzed filter for treating exhaust gas
GB2497597A (en) 2011-12-12 2013-06-19 Johnson Matthey Plc A Catalysed Substrate Monolith with Two Wash-Coats
GB201200783D0 (en) 2011-12-12 2012-02-29 Johnson Matthey Plc Substrate monolith comprising SCR catalyst
GB201200784D0 (en) 2011-12-12 2012-02-29 Johnson Matthey Plc Exhaust system for a lean-burn internal combustion engine including SCR catalyst
GB201200781D0 (en) 2011-12-12 2012-02-29 Johnson Matthey Plc Exhaust system for a lean-burn ic engine comprising a pgm component and a scr catalyst
US20130202524A1 (en) 2012-02-06 2013-08-08 Basf Se Iron- And Copper-Containing Zeolite Beta From Organotemplate-Free Synthesis And Use Thereof In The Selective Catalytic Reduction Of NOx
US9295978B2 (en) 2012-02-15 2016-03-29 Basf Corporation Catalyst and method for the direct synthesis of dimethyl ether from synthesis gas
US20130213008A1 (en) * 2012-02-21 2013-08-22 Cummins Inc. Method and system for improving the robustness of aftertreatment systems
KR20150003283A (ko) * 2012-04-11 2015-01-08 존슨 맛쎄이 퍼블릭 리미티드 컴파니 금속을 함유하는 제올라이트 촉매
GB2513364B (en) * 2013-04-24 2019-06-19 Johnson Matthey Plc Positive ignition engine and exhaust system comprising catalysed zone-coated filter substrate
GB201207313D0 (en) 2012-04-24 2012-06-13 Johnson Matthey Plc Filter substrate comprising three-way catalyst
EP3165733B1 (en) * 2012-04-27 2018-09-05 Umicore AG & Co. KG Method for the purification of exhaust gas from an internal combustion engine
US20140044625A1 (en) * 2012-08-08 2014-02-13 Ford Global Technologies, Llc Hydrocarbon trap having improved adsorption capacity
JP6416096B2 (ja) 2012-09-28 2018-10-31 パシフィック インダストリアル デベロップメント コーポレイション 選択触媒還元反応における触媒として使用するためのstt型ゼオライトの調製方法
CN104797337B (zh) * 2012-09-28 2018-04-20 太平洋工业发展公司 在选择性催化还原中用作催化剂的氧化铝硅酸盐沸石‑型材料及其制造方法
JP6664961B2 (ja) 2012-10-19 2020-03-13 ビーエーエスエフ コーポレーション 高温scr触媒としての8員環小孔分子ふるい
RU2015118441A (ru) 2012-10-19 2016-12-10 Басф Корпорейшн Мелкопористые молекулярные сита с 8-членными кольцами и с промотором для улучшения низкотемпературных характеристик
EP2908947B1 (en) 2012-10-19 2021-09-29 BASF Corporation Mixed metal 8-ring small pore molecular sieve catalytic articles and methods
GB201221025D0 (en) * 2012-11-22 2013-01-09 Johnson Matthey Plc Zoned catalysed substrate monolith
PL2931406T3 (pl) * 2012-12-12 2020-03-31 Umicore Ag & Co. Kg Sposób syntezy cu-ssz-13 w jednym naczyniu reakcyjnym
US8992869B2 (en) 2012-12-20 2015-03-31 Caterpillar Inc. Ammonia oxidation catalyst system
EP2772302A1 (en) 2013-02-27 2014-09-03 Umicore AG & Co. KG Hexagonal oxidation catalyst
US9802182B2 (en) 2013-03-13 2017-10-31 Basf Corporation Stabilized metal-exchanged SAPO material
KR102300817B1 (ko) * 2013-03-14 2021-09-13 바스프 코포레이션 선택적 촉매 환원 촉매 시스템
CN105026038B (zh) * 2013-03-14 2018-09-28 巴斯夫公司 选择性催化还原催化剂系统
DE102013005749A1 (de) * 2013-04-05 2014-10-09 Umicore Ag & Co. Kg CuCHA Material für die SCR-Katalyse
GB2512648B (en) * 2013-04-05 2018-06-20 Johnson Matthey Plc Filter substrate comprising three-way catalyst
US9999879B2 (en) 2013-05-30 2018-06-19 Corning Incorporated Formed ceramic substrate composition for catalyst integration
DE102014107667A1 (de) * 2013-05-31 2014-12-04 Johnson Matthey Public Ltd., Co. Katalysiertes filter zum behandeln von abgas
GB2517035C (en) * 2013-05-31 2020-02-26 Johnson Matthey Plc Catalyzed filter for treating exhaust gas
US9339791B2 (en) * 2013-06-18 2016-05-17 Corning Incorporated Low thermal expansion aluminum titanate zirconium tin titanate ceramics
US9579638B2 (en) * 2013-07-30 2017-02-28 Johnson Matthey Public Limited Company Ammonia slip catalyst
JP6245895B2 (ja) * 2013-08-27 2017-12-13 イビデン株式会社 ハニカム触媒及び排ガス浄化装置
JP6245896B2 (ja) 2013-08-27 2017-12-13 イビデン株式会社 ハニカム触媒及び排ガス浄化装置
JP6204751B2 (ja) 2013-08-27 2017-09-27 イビデン株式会社 ハニカム触媒及び排ガス浄化装置
KR102227793B1 (ko) * 2013-08-30 2021-03-15 존슨 맛쎄이 퍼블릭 리미티드 컴파니 NOx를 함유하는 배기가스를 처리하기 위한 제올라이트 블렌드 촉매
GB2520148B (en) 2013-09-16 2017-10-18 Johnson Matthey Plc Exhaust system with a modified lean NOx trap
US9782761B2 (en) 2013-10-03 2017-10-10 Ford Global Technologies, Llc Selective catalytic reduction catalyst
JP2015093209A (ja) 2013-11-08 2015-05-18 トヨタ自動車株式会社 排ガス浄化用触媒
JP6047477B2 (ja) * 2013-11-18 2016-12-21 日立造船株式会社 脱硝触媒、およびその製造方法
US11266981B2 (en) * 2013-12-02 2022-03-08 Johnson Matthey Public Limited Company Mixed template synthesis of low silica CHA zeolite
GB2522527B (en) * 2013-12-02 2018-01-24 Johnson Matthey Plc Mixed template synthesis of high silica Cu-CHA
RU2697482C1 (ru) * 2013-12-03 2019-08-14 Джонсон Мэтти Паблик Лимитед Компани Scr катализатор
JP5732169B1 (ja) 2013-12-27 2015-06-10 イビデン株式会社 ゼオライトの製造方法及びハニカム触媒
GB2522435B (en) * 2014-01-23 2018-10-03 Johnson Matthey Plc Catalytic extruded solid honeycomb body
DE102014204682A1 (de) 2014-03-13 2015-10-01 Umicore Ag & Co. Kg Katalysatorsystem zur Reduzierung von Schadgasen aus Benzinverbrennungsmotoren
GB2528737B (en) * 2014-03-24 2019-01-23 Johnson Matthey Plc Method for treating exhaust gas
JP6294126B2 (ja) * 2014-03-31 2018-03-14 株式会社キャタラー Scr用触媒及び排ガス浄化触媒システム
CA2945010C (en) * 2014-04-07 2020-07-21 Haldor Topsoe A/S Method for producing metal exchanged zeolites by solid-state ion exchange at low temperatures
GB2530129B (en) * 2014-05-16 2016-10-26 Johnson Matthey Plc Catalytic article for treating exhaust gas
US9616384B2 (en) * 2014-06-11 2017-04-11 Basf Se Base metal catalyst
CN106660021B (zh) 2014-06-18 2020-09-11 巴斯夫公司 分子筛催化剂组合物、催化复合材料、系统和方法
MX394402B (es) * 2014-06-18 2025-03-24 Basf Mobile Emissions Catalysts Llc Composiciones catalizadoras de tamiz molecular, compuestos catalizadores, sistemas y métodos.
US10850265B2 (en) 2014-06-18 2020-12-01 Basf Corporation Molecular sieve catalyst compositions, catalytic composites, systems, and methods
US9764313B2 (en) 2014-06-18 2017-09-19 Basf Corporation Molecular sieve catalyst compositions, catalyst composites, systems, and methods
US9889437B2 (en) 2015-04-15 2018-02-13 Basf Corporation Isomorphously substituted catalyst
CN104234802B (zh) * 2014-07-14 2017-01-11 浙江大学 基于NOx反馈和储氨预测的SCR催化器老化判定方法
CN104128200B (zh) * 2014-07-22 2017-02-15 清华大学苏州汽车研究院(吴江) 铜基scr催化剂及其制备方法
CN105314670B (zh) * 2014-07-29 2017-09-26 孙红 碳酸四氨基合铜溶液的制备方法
EP2985068A1 (de) 2014-08-13 2016-02-17 Umicore AG & Co. KG Katalysator-System zur Reduktion von Stickoxiden
JP6923436B2 (ja) * 2014-08-15 2021-08-18 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company 排ガス処理のためのゾーン化触媒
CN104368380A (zh) * 2014-10-08 2015-02-25 宁波高新区永石科技有限公司 一种用于柴油车尾气催化还原脱硝的催化剂及其制备方法
US10173211B2 (en) 2014-10-14 2019-01-08 California Institute Of Technology Organic-free synthesis of small pore zeolite catalysts
EP3015167A1 (en) 2014-10-31 2016-05-04 Heesung Catalysts Corporation Ammonia oxidation catalyst in scr system
JP6131281B2 (ja) * 2015-03-02 2017-05-17 中国電力株式会社 アンモニアガス浄化用触媒
CN107406264A (zh) 2015-03-20 2017-11-28 巴斯夫公司 沸石材料和制造方法
US10377638B2 (en) * 2015-04-09 2019-08-13 Pq Corporation Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of NOx
ES2586775B1 (es) 2015-04-16 2017-08-14 Consejo Superior De Investigaciones Científicas (Csic) Método de preparación de la estructura zeolítica aei en su forma silicoaluminato con grandes rendimientos, y su aplicación en catálisis
ES2589059B1 (es) 2015-05-05 2017-08-17 Consejo Superior De Investigaciones Cientificas SÍNTESIS DIRECTA DE Cu-CHA MEDIANTE LA COMBINACIÓN DE UN COMPLEJO DE Cu Y TETRAETILAMONIO, Y APLICACIONES EN CATÁLISIS
JP6830451B2 (ja) * 2015-06-18 2021-02-17 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Nh3過剰負荷耐性scr触媒
KR102660644B1 (ko) * 2015-06-18 2024-04-26 존슨 맛쎄이 퍼블릭 리미티드 컴파니 구역이 나누어진 배기 시스템
GB2564333B (en) 2015-06-28 2019-12-04 Johnson Matthey Plc Catalytic wall-flow filter having a membrane
WO2017019958A1 (en) * 2015-07-30 2017-02-02 Basf Corporation Diesel oxidation catalyst
US10792616B2 (en) * 2015-08-14 2020-10-06 Basf Corporation Ion exchanged synthetic phyllosilicate as SCR catalyst
CA2996461C (en) 2015-09-01 2023-01-31 The University Of Sydney Blasting agent
CN121016839A (zh) 2015-11-17 2025-11-28 巴斯夫公司 排气处理催化剂
GB2547288B (en) 2016-02-03 2021-03-17 Johnson Matthey Plc Catalyst for oxidising ammonia
JP6925350B2 (ja) 2016-02-03 2021-08-25 ビーエーエスエフ コーポレーション 銅および鉄共交換チャバザイト触媒
KR20180114238A (ko) * 2016-03-08 2018-10-17 바스프 코포레이션 감소된 n2o 배출을 나타내는 이온-교환된 분자체 촉매
CN105688980A (zh) * 2016-03-10 2016-06-22 镇江翰宏新材料科技有限公司 一种分子筛负载scr催化剂的制备方法
EP3452215B1 (de) 2016-05-03 2021-09-01 Umicore AG & Co. KG Scr-aktiver katalysator
CN109311684B (zh) * 2016-06-07 2022-05-06 日挥触媒化成株式会社 高耐水热性菱沸石型沸石和其制造方法
EP3281698A1 (de) 2016-08-11 2018-02-14 Umicore AG & Co. KG Scr-aktives material
US20190176087A1 (en) 2016-08-11 2019-06-13 Umicore Ag & Co. Kg SCR-Active Material Having Enhanced Thermal Stability
WO2018054929A1 (en) 2016-09-20 2018-03-29 Umicore Ag & Co. Kg Diesel particle filter
WO2018069199A1 (de) 2016-10-10 2018-04-19 Umicore Ag & Co. Kg Katalysatoranordnung
CN107961813B (zh) * 2016-10-19 2020-07-28 中国科学院大连化学物理研究所 提高柴油车尾气脱硝分子筛整体催化剂涂层均匀度的方法
RU2019115863A (ru) 2016-10-24 2020-11-24 Басф Корпорейшн Интегрированный катализатор scr и lnt для уменьшения nox
WO2018079569A1 (ja) 2016-10-25 2018-05-03 日揮触媒化成株式会社 基材コート用チャバザイト型ゼオライト
GB2558371B (en) 2016-10-28 2021-08-18 Johnson Matthey Plc Catalytic wall-flow filter with partial surface coating
KR101846918B1 (ko) * 2016-11-16 2018-04-09 현대자동차 주식회사 Cu/LTA 촉매 및 이를 포함하는 배기 시스템, 그리고 Cu/LTA 촉매 제조 방법
KR101879695B1 (ko) 2016-12-02 2018-07-18 희성촉매 주식회사 2가 구리 이온들을 특정비율로 담지한 제올라이트, 이의 제조방법 및 이를 포함하는 촉매조성물
CN110312565A (zh) 2016-12-07 2019-10-08 索尔维公司 使用碱性吸附剂和包含Ca缺陷型羟基磷灰石的DeNOx负载型催化剂的多污染物气体净化方法
PL3357558T3 (pl) 2017-02-03 2020-03-31 Umicore Ag & Co. Kg Katalizator do oczyszczania gazów spalinowych silników wysokoprężnych
BR112019015734A2 (pt) 2017-02-08 2020-03-24 Basf Corporation Artigo catalítico, sistema de tratamento de gases de escape e método para o tratamento de uma corrente gasosa de escape
US20200055035A1 (en) * 2017-02-22 2020-02-20 Basf Corporation Exhaust gas treatment catalyst for abatement of nitrogen oxides
CN110621402B (zh) 2017-03-20 2023-04-14 巴斯夫公司 选择性催化还原制品和系统
GB2560990A (en) 2017-03-31 2018-10-03 Johnson Matthey Catalysts Germany Gmbh Composite material
GB201705279D0 (en) 2017-03-31 2017-05-17 Johnson Matthey Plc Selective catalytic reduction catalyst
US11179707B2 (en) 2017-03-31 2021-11-23 Johnson Matthey Catalysts (Germany) Gmbh Composite material
GB201705241D0 (en) 2017-03-31 2017-05-17 Johnson Matthey Catalysts (Germany) Gmbh Catalyst composition
EP3607179B1 (en) 2017-04-04 2024-11-27 BASF Mobile Emissions Catalysts LLC Hydrogen reductant for catalytic pollution abatement
WO2018185660A1 (en) 2017-04-04 2018-10-11 Basf Corporation On-board vehicle hydrogen generation and use in exhaust streams
JP7254712B2 (ja) 2017-04-04 2023-04-10 ビーエーエスエフ コーポレーション 車載型アンモニアおよび水素発生
WO2018187141A1 (en) * 2017-04-04 2018-10-11 Sabic Global Technologies B.V. Nano-sized zeolite catalyst having a high silica to alumina ratio
JP2020515766A (ja) 2017-04-04 2020-05-28 ビーエーエスエフ コーポレーション 統合された排出制御システム
WO2018185655A1 (en) 2017-04-04 2018-10-11 Basf Corporation Ammonia generation system for nox emission control
BR112019020825A2 (pt) 2017-04-04 2020-04-28 Basf Corp sistema de controle de emissão para tratamento de uma corrente de gás de exaustão e método para tratar uma corrente de gás de exaustão
CN110997138A (zh) 2017-06-09 2020-04-10 巴斯夫公司 用于NOx减排的具有受控孔隙率的催化洗涂层
EP3449999A1 (de) 2017-08-31 2019-03-06 Umicore Ag & Co. Kg Passiver stickoxid-adsorber
EP3450016A1 (de) 2017-08-31 2019-03-06 Umicore Ag & Co. Kg Palladium-zeolith-basierter passiver stickoxid-adsorber-katalysator zur abgasreinigung
EP3450015A1 (de) 2017-08-31 2019-03-06 Umicore Ag & Co. Kg Palladium-zeolith-basierter passiver stickoxid-adsorber-katalysator zur abgasreinigung
KR20200047651A (ko) 2017-08-31 2020-05-07 우미코레 아게 운트 코 카게 배기 가스 정화용 수동적 질소 산화물 흡착제로서의 팔라듐/백금/제올라이트 기반 촉매의 용도
WO2019042883A1 (de) 2017-08-31 2019-03-07 Umicore Ag & Co. Kg Palladium-zeolith-basierter passiver stickoxid-adsorber-katalysator zur abgasreinigung
DE102018121503A1 (de) 2017-09-05 2019-03-07 Umicore Ag & Co. Kg Abgasreinigung mit NO-Oxidationskatalysator und SCR-aktivem Partikelfilter
WO2019049069A1 (en) * 2017-09-07 2019-03-14 Basf Corporation ZEOLITE WITH REDUCED CONTENT IN ALUMINUM EXTRA-CHARPENTE
US10711674B2 (en) 2017-10-20 2020-07-14 Umicore Ag & Co. Kg Passive nitrogen oxide adsorber catalyst
CN107673369B (zh) * 2017-10-30 2019-05-10 太原理工大学 一种合成具有多级孔道结构的Chabazite沸石分子筛的方法
KR102659805B1 (ko) 2017-11-10 2024-04-23 바스프 코포레이션 암모니아 산화가 감소된 촉매화된 매연 필터
JP7158141B2 (ja) 2017-11-27 2022-10-21 エヌ・イーケムキャット株式会社 触媒用スラリー組成物及びその製造方法、これを用いた触媒の製造方法、並びに、Cu含有ゼオライトの製造方法
WO2019135182A1 (en) * 2018-01-03 2019-07-11 Basf Corporation Surface-treated silicoaluminophosphate molecular sieve
EP3735310A1 (de) 2018-01-05 2020-11-11 Umicore Ag & Co. Kg Passiver stickoxid-adsorber
DE102018100834A1 (de) 2018-01-16 2019-07-18 Umicore Ag & Co. Kg Verfahren zur Herstellung eines SCR-Katalysators
DE102018100833A1 (de) 2018-01-16 2019-07-18 Umicore Ag & Co. Kg Verfahren zur Herstellung eines SCR-Katalysators
US10898889B2 (en) 2018-01-23 2021-01-26 Umicore Ag & Co. Kg SCR catalyst and exhaust gas cleaning system
US10456746B2 (en) 2018-02-12 2019-10-29 GM Global Technology Operations LLC Selective catalytic reduction filter for reducing nitrous oxide formation and methods of using the same
ES3033001T3 (en) 2018-02-20 2025-07-29 Dyno Nobel Inc Inhibited emulsions for use in blasting in reactive ground or under high temperature conditions
KR20210006380A (ko) 2018-04-23 2021-01-18 바스프 코포레이션 디젤 엔진 배기 가스 처리용 선택적 접촉 환원 촉매
US11014821B2 (en) 2018-07-09 2021-05-25 Zeolyfe, LLC Methods for preparation of CHA Zeolite at ambient pressure
CN109126862A (zh) * 2018-08-20 2019-01-04 中国汽车技术研究中心有限公司 一种加快合成cha结构分子筛的方法及其催化剂在nh3-scr反应中的应用
EP3613503A1 (en) 2018-08-22 2020-02-26 Umicore Ag & Co. Kg Passive nitrogen oxide adsorber
EP3616792A1 (de) 2018-08-28 2020-03-04 Umicore Ag & Co. Kg Stickoxid-speicherkatalysator
US11724249B2 (en) 2018-10-23 2023-08-15 N.E. Chemcat Corporation Cu—P co-supported zeolite, and selective catalytic reduction catalyst and catalyst for exhaust gas using same
EP3873663A4 (en) * 2018-10-30 2022-09-07 BASF Corporation IN SITU COPPER ION EXCHANGE ON PRE-EXCHANGED COPPER ZEOLITE MATERIAL
JP7467448B2 (ja) 2018-11-02 2024-04-15 ビーエーエスエフ コーポレーション 希薄燃焼エンジン用の排気処理システム
EP3880345B1 (en) 2018-11-16 2023-03-29 UMICORE AG & Co. KG Low temperature nitrogen oxide adsorber
US11278874B2 (en) 2018-11-30 2022-03-22 Johnson Matthey Public Limited Company Enhanced introduction of extra-framework metal into aluminosilicate zeolites
US11772077B2 (en) 2019-01-08 2023-10-03 Umicore Ag & Co. Kg Passive nitrogen oxide adsorber having oxidation-catalytically active function
DE102019103765B4 (de) 2019-02-14 2023-01-12 Umicore Ag & Co. Kg Verfahren zur Herstellung von Autoabgaskatalysatoren
EP3695902B1 (de) 2019-02-18 2021-09-01 Umicore Ag & Co. Kg Katalysator zur reduktion von stickoxiden
DE102019109188B4 (de) 2019-04-08 2022-08-11 Umicore Galvanotechnik Gmbh Verwendung eines Elektrolyten zur Abscheidung von anthrazit/schwarzen Rhodium/Ruthenium Legierungsschichten
EP3965929A4 (en) 2019-05-09 2022-12-28 BASF Corporation SELECTIVE CATALYTIC REDUCTION CATALYST COMPRISING COPPER CARBONATE
JP7194431B2 (ja) 2019-05-15 2022-12-22 株式会社 Acr 触媒、触媒製品および触媒の製造方法
EP3782726A1 (en) * 2019-08-20 2021-02-24 Umicore Ag & Co. Kg Catalyst for the abatement of ammonia and nitrogen oxide emissions from the exhaust gases of combustion engines
KR20210029943A (ko) 2019-09-09 2021-03-17 현대자동차주식회사 고성능 질소산화물 저감용 제올라이트 및 이의 제조방법 그리고 이를 이용한 촉매
EP3791955A1 (de) 2019-09-10 2021-03-17 Umicore Ag & Co. Kg Kupfer-zeolith- und kupfer/alumina-haltiges katalytisches material für die scr, abgasreinigungsverfahren mit diesem material und verfahren zur herstellung dieses materials
EP3812034A1 (en) 2019-10-24 2021-04-28 Dinex A/S Durable copper-scr catalyst
EP3824988B1 (en) 2019-11-20 2025-03-05 Umicore AG & Co. KG Catalyst for reducing nitrogen oxides
EP3885040B1 (de) 2020-03-24 2025-07-16 Umicore AG & Co. KG Ammoniakoxidationskatalysator
EP4609948A3 (en) * 2020-06-03 2025-11-19 Johnson Matthey Public Limited Company Method for forming a catalyst article
CN115916401A (zh) * 2020-06-25 2023-04-04 巴斯夫公司 制备铜促进的沸石的方法
WO2022069465A1 (de) 2020-09-30 2022-04-07 Umicore Ag & Co. Kg Bismut enthaltender dieseloxidationskatalysator
EP3978100A1 (de) 2020-09-30 2022-04-06 UMICORE AG & Co. KG Bismut enthaltender gezonter dieseloxidationskatalysator
WO2022079141A1 (en) 2020-10-14 2022-04-21 Umicore Ag & Co. Kg Passive nitrogen oxide adsorber
CN116322938A (zh) * 2020-10-22 2023-06-23 巴斯夫公司 用于从室内空气或机舱空气中去除氮氧化物的吸附剂材料
EP4063003A1 (en) 2021-03-23 2022-09-28 UMICORE AG & Co. KG Filter for the aftertreatment of exhaust gases of internal combustion engines
CN113117738B (zh) * 2021-04-20 2023-07-25 北京工业大学 一种用于非氨scr脱硝反应的催化剂的制备方法及其用途
DE202021103624U1 (de) 2021-07-06 2022-10-14 Umicore Ag & Co. Kg WC Applikator
DE102021118803A1 (de) 2021-07-21 2023-01-26 Umicore Ag & Co. Kg Abgasreinigungssystem zur Reinigung von Abgasen von Benzinmotoren
DE102021118801A1 (de) 2021-07-21 2023-01-26 Umicore Ag & Co. Kg Abgasreinigungssystem zur Reinigung von Abgasen von Benzinmotoren
DE102021118802A1 (de) 2021-07-21 2023-01-26 Umicore Ag & Co. Kg Abgasreinigungssystem zur Reinigung von Abgasen von Benzinmotoren
CN116474716A (zh) * 2022-01-15 2023-07-25 中国石油化工股份有限公司 一种高效低氯一氧化碳吸附剂及其制备方法
WO2023198575A1 (de) 2022-04-11 2023-10-19 Umicore Ag & Co. Kg Abgassystem für überwiegend stöchiometrisch betriebene verbrennungsmotoren aufweisend einen katalysator zur verminderung der ammoniakemissionen
EP4268940A1 (en) 2022-04-27 2023-11-01 Johnson Matthey Public Limited Company Method of treating exhaust gas and system for same
DE102022121499A1 (de) 2022-08-25 2024-03-07 Umicore Ag & Co. Kg Applikator zum Auftragen von Beschichtungsmedium auf Substrate
KR102839426B1 (ko) * 2022-11-01 2025-07-28 주식회사 에코앤드림 Cu-CHA 제올라이트 촉매
WO2025160461A1 (en) * 2024-01-24 2025-07-31 Heller Industries, Inc. Reflow oven with flux reactor and method of operation
JP2025156915A (ja) * 2024-04-02 2025-10-15 エヌ・イーケムキャット株式会社 アンモニア分解触媒

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017A (en) * 1845-05-01 Reid r
US6001A (en) * 1849-01-02 Manufacture of lampblack and colophane
US6003A (en) * 1849-01-09 Method of bending shelf from which iron tubes abe made
US3346328A (en) * 1967-03-30 1967-10-10 Francis J Sergeys Method of treating exhaust gases
US4220632A (en) * 1974-09-10 1980-09-02 The United States Of America As Represented By The United States Department Of Energy Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia
JPS51147470A (en) 1975-06-12 1976-12-17 Toa Nenryo Kogyo Kk A process for catalytic reduction of nitrogen oxides
US4503023A (en) 1979-08-14 1985-03-05 Union Carbide Corporation Silicon substituted zeolite compositions and process for preparing same
US4297328A (en) 1979-09-28 1981-10-27 Union Carbide Corporation Three-way catalytic process for gaseous streams
US4544538A (en) * 1982-07-09 1985-10-01 Chevron Research Company Zeolite SSZ-13 and its method of preparation
US4440871A (en) * 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4567029A (en) * 1983-07-15 1986-01-28 Union Carbide Corporation Crystalline metal aluminophosphates
US4753927A (en) * 1983-08-12 1988-06-28 Immunetech Pharmaceuticals Method of blocking immune complex binding to immunoglobulin Fc receptors
US4735927A (en) 1985-10-22 1988-04-05 Norton Company Catalyst for the reduction of oxides of nitrogen
US4735930A (en) * 1986-02-18 1988-04-05 Norton Company Catalyst for the reduction of oxides of nitrogen
JPH0611381B2 (ja) * 1986-10-17 1994-02-16 株式会社豊田中央研究所 排ガス浄化方法
US4861743A (en) * 1987-11-25 1989-08-29 Uop Process for the production of molecular sieves
US4867954A (en) * 1988-04-07 1989-09-19 Uop Catalytic reduction of nitrogen oxides
US4874590A (en) * 1988-04-07 1989-10-17 Uop Catalytic reduction of nitrogen oxides
JP2557712B2 (ja) 1988-12-27 1996-11-27 株式会社豊田中央研究所 排気ガス浄化方法
FR2645141B1 (fr) * 1989-03-31 1992-05-29 Elf France Procede de synthese de precurseurs de tamis moleculaires du type silicoaluminophosphate, precurseurs obtenus et leur application a l'obtention desdits tamis moleculaires
US5024981A (en) * 1989-04-20 1991-06-18 Engelhard Corporation Staged metal-promoted zeolite catalysts and method for catalytic reduction of nitrogen oxides using the same
US4961917A (en) * 1989-04-20 1990-10-09 Engelhard Corporation Method for reduction of nitrogen oxides with ammonia using promoted zeolite catalysts
ES2053858T3 (es) 1989-04-28 1994-08-01 Siemens Ag Procedimiento para la eliminacion de cobre de agua residual.
JP2533371B2 (ja) 1989-05-01 1996-09-11 株式会社豊田中央研究所 排気ガス浄化用触媒
US5477014A (en) * 1989-07-28 1995-12-19 Uop Muffler device for internal combustion engines
JPH04193710A (ja) * 1990-11-26 1992-07-13 Tosoh Corp 銅含有ゼオライトの製造方法
US5233117A (en) * 1991-02-28 1993-08-03 Uop Methanol conversion processes using syocatalysts
JPH0557194A (ja) 1991-07-06 1993-03-09 Toyota Motor Corp 排気ガス浄化用触媒の製造方法
JP2887984B2 (ja) * 1991-09-20 1999-05-10 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP3303341B2 (ja) 1992-07-30 2002-07-22 三菱化学株式会社 ベータ型ゼオライトの製造方法
US6171556B1 (en) * 1992-11-12 2001-01-09 Engelhard Corporation Method and apparatus for treating an engine exhaust gas stream
US6248684B1 (en) * 1992-11-19 2001-06-19 Englehard Corporation Zeolite-containing oxidation catalyst and method of use
CA2146244A1 (en) 1992-11-19 1994-05-26 Patrick Lee Burk Method and apparatus for treating an engine exhaust gas stream
JPH06238131A (ja) * 1992-12-24 1994-08-30 Tosoh Corp 窒素酸化物の除去方法
DE69427932T2 (de) * 1993-05-10 2002-04-04 Cosmo Oil Co. Ltd., Tokio/Tokyo Katalysator zur katalytischen Reduktion von Stickstoffoxiden
WO1994027709A1 (en) 1993-05-28 1994-12-08 Engelhard Corporation Nitrous oxide decomposition catalyst
US5417949A (en) * 1993-08-25 1995-05-23 Mobil Oil Corporation NOx abatement process
EP0728033B1 (en) * 1993-11-09 1999-04-21 Union Carbide Chemicals & Plastics Technology Corporation Absorption of mercaptans
US5589147A (en) * 1994-07-07 1996-12-31 Mobil Oil Corporation Catalytic system for the reducton of nitrogen oxides
JP3375790B2 (ja) * 1995-06-23 2003-02-10 日本碍子株式会社 排ガス浄化システム及び排ガス浄化方法
JPH0938464A (ja) * 1995-07-27 1997-02-10 Idemitsu Kosan Co Ltd 排ガス浄化用触媒及びこれを使用した排ガスの浄化方法
US6133185A (en) 1995-11-09 2000-10-17 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst
JPH10180041A (ja) * 1996-12-20 1998-07-07 Ngk Insulators Ltd 排ガス浄化用触媒及び排ガス浄化システム
JPH10272341A (ja) * 1997-03-28 1998-10-13 Sekiyu Sangyo Kasseika Center 窒素酸化物の除去方法
JPH11114413A (ja) * 1997-10-09 1999-04-27 Ngk Insulators Ltd 排ガス浄化用吸着材
US6162415A (en) * 1997-10-14 2000-12-19 Exxon Chemical Patents Inc. Synthesis of SAPO-44
JPH11179158A (ja) * 1997-10-15 1999-07-06 Ngk Insulators Ltd 小細孔多孔体を含む自動車排ガス浄化用の吸着材及び吸着体、これを用いた排ガス浄化システム及び排ガス浄化方法
WO1999056859A1 (en) 1998-05-07 1999-11-11 Engelhard Corporation Catalyzed hydrocarbon trap and method using the same
US6576203B2 (en) * 1998-06-29 2003-06-10 Ngk Insulators, Ltd. Reformer
KR20010079583A (ko) * 1998-07-29 2001-08-22 엑손 케미칼 패턴츠 인코포레이티드 분자체의 제조방법
EP1005904A3 (en) * 1998-10-30 2000-06-14 The Boc Group, Inc. Adsorbents and adsorptive separation process
DE19854502A1 (de) * 1998-11-25 2000-05-31 Siemens Ag Katalysatorkörper und Verfahren zum Abbau von Stickoxiden
KR100293531B1 (ko) 1998-12-24 2001-10-26 윤덕용 이산화탄소로부터탄화수소생성을위한혼성촉매
US6316683B1 (en) * 1999-06-07 2001-11-13 Exxonmobil Chemical Patents Inc. Protecting catalytic activity of a SAPO molecular sieve
US6395674B1 (en) * 1999-06-07 2002-05-28 Exxon Mobil Chemical Patents, Inc. Heat treating a molecular sieve and catalyst
US6503863B2 (en) * 1999-06-07 2003-01-07 Exxonmobil Chemical Patents, Inc. Heat treating a molecular sieve and catalyst
JP3350707B2 (ja) * 1999-08-02 2002-11-25 独立行政法人産業技術総合研究所 金属イオン交換ゼオライトを用いた第三級カルボン酸及びそのエステルの製造方法
DK1129764T3 (da) * 2000-03-01 2006-01-23 Umicore Ag & Co Kg Katalysator til rensning af udstödningsgas fra dieselmotorer og fremgangsmåde til dens fremstilling
US6606856B1 (en) * 2000-03-03 2003-08-19 The Lubrizol Corporation Process for reducing pollutants from the exhaust of a diesel engine
DE10059520A1 (de) 2000-11-30 2001-05-17 Univ Karlsruhe Verfahren zur Abtrennung von Zeolith-Kristallen aus Flüssigkeiten
US20020084223A1 (en) * 2000-12-28 2002-07-04 Feimer Joseph L. Removal of sulfur from naphtha streams using high silica zeolites
US20050096214A1 (en) * 2001-03-01 2005-05-05 Janssen Marcel J. Silicoaluminophosphate molecular sieve
JP5189236B2 (ja) * 2001-07-25 2013-04-24 日本碍子株式会社 排ガス浄化用ハニカム構造体及び排ガス浄化用ハニカム触媒体
US6709644B2 (en) * 2001-08-30 2004-03-23 Chevron U.S.A. Inc. Small crystallite zeolite CHA
US6914026B2 (en) * 2001-09-07 2005-07-05 Engelhard Corporation Hydrothermally stable metal promoted zeolite beta for NOx reduction
US7014827B2 (en) 2001-10-23 2006-03-21 Machteld Maria Mertens Synthesis of silicoaluminophosphates
US6696032B2 (en) * 2001-11-29 2004-02-24 Exxonmobil Chemical Patents Inc. Process for manufacturing a silicoaluminophosphate molecular sieve
US6660682B2 (en) * 2001-11-30 2003-12-09 Exxon Mobil Chemical Patents Inc. Method of synthesizing molecular sieves
EP1458960B1 (en) 2001-12-20 2011-02-09 Johnson Matthey Public Limited Company Improvements in selective catalytic reduction
US6685905B2 (en) * 2001-12-21 2004-02-03 Exxonmobil Chemical Patents Inc. Silicoaluminophosphate molecular sieves
US6928806B2 (en) * 2002-11-21 2005-08-16 Ford Global Technologies, Llc Exhaust gas aftertreatment systems
US7049261B2 (en) * 2003-02-27 2006-05-23 General Motors Corporation Zeolite catalyst and preparation process for NOx reduction
JP4413520B2 (ja) * 2003-04-17 2010-02-10 株式会社アイシーティー 排ガス浄化用触媒及びその触媒を用いた排ガスの浄化方法
US7229597B2 (en) * 2003-08-05 2007-06-12 Basfd Catalysts Llc Catalyzed SCR filter and emission treatment system
CA2548315C (en) * 2003-12-23 2009-07-14 Exxonmobil Chemical Patents Inc. Chabazite-containing molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins
US7481983B2 (en) * 2004-08-23 2009-01-27 Basf Catalysts Llc Zone coated catalyst to simultaneously reduce NOx and unreacted ammonia
CA2589467C (en) 2004-11-29 2013-07-02 Chevron U.S.A. Inc. High-silica molecular sieve cha
US20060115403A1 (en) * 2004-11-29 2006-06-01 Chevron U.S.A. Inc. Reduction of oxides of nitrogen in a gas stream using high-silics molecular sieve CHA
JP4931602B2 (ja) 2004-12-17 2012-05-16 臼井国際産業株式会社 ディーゼルエンジンの排気ガス用電気式処理装置
JP4897669B2 (ja) * 2005-03-30 2012-03-14 ズードケミー触媒株式会社 アンモニアの分解方法
US7879295B2 (en) 2005-06-30 2011-02-01 General Electric Company Conversion system for reducing NOx emissions
WO2007004774A1 (en) 2005-07-06 2007-01-11 Heesung Catalysts Corporation An oxidation catalyst for nh3 and an apparatus for treating slipped or scrippedd nh3
US8048402B2 (en) * 2005-08-18 2011-11-01 Exxonmobil Chemical Patents Inc. Synthesis of molecular sieves having the chabazite framework type and their use in the conversion of oxygenates to olefins
US20070149385A1 (en) * 2005-12-23 2007-06-28 Ke Liu Catalyst system for reducing nitrogen oxide emissions
US8383080B2 (en) * 2006-06-09 2013-02-26 Exxonmobil Chemical Patents Inc. Treatment of CHA-type molecular sieves and their use in the conversion of oxygenates to olefins
CN101121532A (zh) 2006-08-08 2008-02-13 中国科学院大连化学物理研究所 一种小孔磷硅铝分子筛的金属改性方法
RU2009132612A (ru) * 2007-01-31 2011-03-10 Басф Каталистс Ллк (Us) Газовые катализаторы, включающие пористую сотовидную стенку
US7601662B2 (en) * 2007-02-27 2009-10-13 Basf Catalysts Llc Copper CHA zeolite catalysts
MX2009010369A (es) * 2007-03-26 2010-02-17 Pq Corp Material cristalino, microporoso, novedoso, que comprende un tamiz molecular o zeolita que tiene una estructura de abertura de poro de 8 anillos y metodos para hacer y utilizar los mismos.
US10384162B2 (en) * 2007-03-26 2019-08-20 Pq Corporation High silica chabazite for selective catalytic reduction, methods of making and using same
DK2150328T5 (da) 2007-04-26 2015-06-29 Johnson Matthey Plc SCR-fremgangsmåde og system med Cu/SAPO-34 zeolitkatalysator
JP6176891B2 (ja) * 2007-08-13 2017-08-09 ピーキュー コーポレイション 新規鉄含有アルミノケイ酸塩ゼオライト、ならびにその作製方法および使用方法
US20090196812A1 (en) * 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
US8293199B2 (en) * 2009-12-18 2012-10-23 Basf Corporation Process for preparation of copper containing molecular sieves with the CHA structure, catalysts, systems and methods
US9120056B2 (en) * 2010-02-16 2015-09-01 Ford Global Technologies, Llc Catalyst assembly for treating engine exhaust
US8101146B2 (en) * 2011-04-08 2012-01-24 Johnson Matthey Public Limited Company Catalysts for the reduction of ammonia emission from rich-burn exhaust

Also Published As

Publication number Publication date
US8404203B2 (en) 2013-03-26
PL2117707T3 (pl) 2015-11-30
KR101358482B1 (ko) 2014-02-05
EP2117707A1 (en) 2009-11-18
CA2679590A1 (en) 2008-09-04
US20080226545A1 (en) 2008-09-18
CN101668589B (zh) 2013-06-12
PL2117707T5 (pl) 2019-01-31
MX2009009095A (es) 2009-09-14
US20090285737A1 (en) 2009-11-19
KR20090123920A (ko) 2009-12-02
CN101668589A (zh) 2010-03-10
AR065501A1 (es) 2009-06-10
WO2008106519A1 (en) 2008-09-04
CA2679590C (en) 2016-06-07
EP2117707B2 (en) 2018-08-15
EP2117707B1 (en) 2015-04-29
JP2010519038A (ja) 2010-06-03
ZA200906640B (en) 2010-12-29
JP5683111B2 (ja) 2015-03-11
ES2542510T3 (es) 2015-08-06
ES2542510T5 (es) 2019-01-16
US7601662B2 (en) 2009-10-13

Similar Documents

Publication Publication Date Title
US20240091751A1 (en) Copper cha zeolite catalysts
BRPI0808091A2 (pt) Catalisador, sistema de tratamento de gás de exaustão, processo para a redução de óxidos de nitrogênio, e, artigo de catalisador.
BRPI0808091B1 (pt) Catalyst, exhaust gas treatment system, process for the reduction of nitrogen oxides, and, catalyst article.

Legal Events

Date Code Title Description
B07A Application suspended after technical examination (opinion) [chapter 7.1 patent gazette]
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]