WO2022069465A1 - Bismut enthaltender dieseloxidationskatalysator - Google Patents

Bismut enthaltender dieseloxidationskatalysator Download PDF

Info

Publication number
WO2022069465A1
WO2022069465A1 PCT/EP2021/076630 EP2021076630W WO2022069465A1 WO 2022069465 A1 WO2022069465 A1 WO 2022069465A1 EP 2021076630 W EP2021076630 W EP 2021076630W WO 2022069465 A1 WO2022069465 A1 WO 2022069465A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum
palladium
length
material zone
zone
Prior art date
Application number
PCT/EP2021/076630
Other languages
English (en)
French (fr)
Inventor
Anke Woerz
Andrea DE TONI
Original Assignee
Umicore Ag & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore Ag & Co. Kg filed Critical Umicore Ag & Co. Kg
Priority to US18/246,071 priority Critical patent/US20230356204A1/en
Priority to KR1020237014836A priority patent/KR20230079420A/ko
Priority to EP21786132.7A priority patent/EP4221871A1/de
Priority to JP2023514094A priority patent/JP2023542828A/ja
Priority to CN202180048821.0A priority patent/CN115803104A/zh
Publication of WO2022069465A1 publication Critical patent/WO2022069465A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/644Arsenic, antimony or bismuth
    • B01J23/6447Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7415Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2096Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/903Multi-zoned catalysts
    • B01D2255/9032Two zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only

Definitions

  • the present invention relates to a diesel oxidation catalyst comprising a plurality of catalytically active material zones, one material zone containing bismuth.
  • the exhaust gas from motor vehicles that are operated with lean-burn internal combustion engines also contains components that result from the incomplete combustion of the fuel in the combustion chamber of the cylinder.
  • residual hydrocarbons which are usually also predominantly in gaseous form, these include particle emissions, also referred to as “diesel soot” or “soot particles”.
  • Hydrocarbons (HC) and carbon monoxide (CO) can be oxidized using diesel oxidation catalysts (DOC).
  • DOC diesel oxidation catalysts
  • Conventional diesel oxidation catalysts contain, in particular, platinum and/or palladium on a suitable carrier oxide, for example aluminum oxide.
  • a known method for removing nitrogen oxides from exhaust gases in the presence of oxygen is selective catalytic reduction (SCR) using ammonia over a suitable catalyst.
  • SCR selective catalytic reduction
  • the nitrogen oxides to be removed from the exhaust gas are reacted with ammonia to form nitrogen and water.
  • Soot particles can be very effectively removed from the exhaust gas with the help of diesel particle filters (DPF), with wall-flow filters made of ceramic materials having proven particularly effective.
  • Particle filters can also be provided with catalytically active coatings. So describes For example, EP1820561 A1 describes the coating of a diesel particle filter with a catalyst layer that facilitates the burning off of the filtered soot particles. Diesel particulate filters can also be coated with SCR catalytic converters and are then referred to as SDPF for short.
  • Exhaust gas aftertreatment systems are used for the exhaust gas aftertreatment of diesel engines, which are composed of two or more of the above-mentioned components.
  • An important part of such a system is the diesel oxidation catalyst. Its main task is to convert carbon monoxide and hydrocarbons, but also to oxidize nitrogen monoxide (NO) to nitrogen dioxide (NO2), which is required by downstream components such as DPF, SCR and SDPF.
  • NO nitrogen monoxide
  • NO2 nitrogen dioxide
  • EP 1 927 399 A2 discloses a support material comprising aluminum oxide and bismuth which carries platinum.
  • US 2003/027719 relates to an oxidation catalyst containing palladium and silver and bismuth as the closest neighbor of palladium.
  • US 2012/302439 discloses a palladium-gold catalyst which is doped with bismuth and/or manganese.
  • WO 2017/064498 A1 discloses an oxidation catalyst containing bismuth or antimony and also a platinum group metal.
  • the present invention relates to a catalyst comprising a support substrate having a length L extending between the ends a and b, and four material zones A, B, C and D, wherein
  • material zone A extends from end a for part of length L and comprises platinum and no palladium, palladium and no platinum, or platinum and palladium;
  • material zone C extends from end a for part of length L and comprises platinum and no palladium, palladium and no platinum, or platinum and palladium;
  • Material zone A preferably comprises platinum and palladium, in particular in a weight ratio of 10:1 to 1:5, preferably 3:1 to 1:3.
  • Platinum and palladium are preferably present in material zone A in amounts of 10 to 200 g/ft 3 , for example 20 to 180 g/ft 3 or 40 to 150 g/ft 3 , the amounts given being the sum of the amounts of platinum and palladium . If material zone A includes platinum and palladium, it preferably does not include bismuth.
  • Platinum and palladium in material zone A are usually present on a carrier material. All materials familiar to the person skilled in the art for this purpose can be considered as carrier material. They have a BET surface area of 30 to 250 m 2 /g, preferably 100 to 200 m 2 /g (determined according to DIN 66132) and are in particular aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, cerium/titanium mixed oxides and mixtures or mixed oxides of at least two of these materials. Aluminum oxide, cerium/titanium mixed oxides, magnesium/aluminum mixed oxides and aluminum/silicon mixed oxides are preferred. If aluminum oxide is used, it is particularly preferably stabilized, for example with 1 to 6% by weight, in particular 4% by weight, of lanthanum oxide.
  • an aluminum/silicon mixed oxide it has in particular a silicon oxide content of 5 to 30% by weight, preferably 5 to 10% by weight.
  • Material zone A may be a material for storage of hydrocarbons, particularly at temperatures below the light-off of material zone A for the oxidation of hydrocarbons.
  • Such storage materials are in particular zeolites whose channels are large enough to be able to absorb hydrocarbons. Preferred zeolites for this purpose belong to the BEA structure type.
  • Material zone B comprises bismuth, for example in the form of bismuth oxide (BizOs), but in particular it is in the form of a composite oxide with aluminum or with aluminum and silicon, the silicon content being, for example, 5 to 30, preferably 5 to 15% by weight, based on the weight of aluminum and silicon oxide.
  • Bismuth is present, for example, in an amount of 1 to 15, preferably 2 to 7% by weight, based on the composite oxide and calculated as elemental bismuth.
  • the composite oxide ideally serves as a carrier material for the platinum.
  • platinum is in particular in amounts of 10 to 200 g/ft 3 , for example 20 to 180 g/ft 3 or 40 to 150 g /ft 3 ago.
  • Material zone B preferably does not include palladium.
  • the lengths of the material zones LA and LB together correspond to the length L of the carrier substrate.
  • the material zone LA has in particular a length of 20 to 80%, preferably 40 to 60% of the length L.
  • LA and LB each extend over 50% of the length L.
  • Material zone C preferably comprises platinum and no palladium or platinum and palladium, in particular in a weight ratio of 20:1 to 1:1, preferably 14:1 to 2:1.
  • Platinum and palladium are preferably present in material zone C in amounts of 10 to 200 g/ft 3 , for example 20 to 180 g/ft 3 or 40 to 150 g/ft 3 , the amounts given being the amounts of platinum for the case in which material zone C includes platinum and no palladium or the sums of the amounts of platinum and palladium are for the case that material zone C includes platinum and palladium.
  • Platinum and palladium in material zone C are usually present on a carrier material. All materials familiar to the person skilled in the art for this purpose can be considered as carrier material. They have a BET surface area of 30 to 250 m 2 /g, preferably 100 to 200 m 2 /g (determined according to DIN 66132) and are in particular aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, cerium/titanium mixed oxides and mixtures or mixed oxides of at least two of these materials. Aluminum oxide, cerium/titanium mixed oxides, magnesium/aluminum mixed oxides and aluminum/silicon mixed oxides are preferred. If aluminum oxide is used, it is particularly preferably stabilized, for example with 1 to 6% by weight, in particular 4% by weight, of lanthanum oxide.
  • an aluminum/silicon mixed oxide it has in particular a silicon oxide content of 5 to 30% by weight, preferably 5 to 10% by weight.
  • Material zone C may be a material for storage of hydrocarbons, particularly at temperatures below the light-off of material zone A for the oxidation of hydrocarbons.
  • Such storage materials are in particular zeolites whose channels are large enough to be able to absorb hydrocarbons. Preferred zeolites for this purpose belong to the BEA structure type.
  • Material zone D preferably comprises platinum and no palladium or platinum and palladium, in particular in a weight ratio of 20:1 to 1:1, preferably 14:1 to 2:1.
  • Platinum and palladium are preferably present in material zone D in amounts of 10 to 200 g/ft 3 , for example 20 to 180 g/ft 3 or 40 to 150 g/ft 3 , the amounts given being the amounts of platinum in the event that material zone C includes platinum and no palladium or the sums of the amounts of platinum and palladium are for the case that material zone C includes platinum and palladium.
  • Platinum and palladium in material zone D are usually present on a carrier material. All materials familiar to the person skilled in the art for this purpose can be considered as carrier material. They have a BET surface area of 30 to 250 m 2 /g, preferably 100 to 200 m 2 /g (determined according to DIN 66132) and are in particular aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, cerium/titanium mixed oxides and mixtures or mixed oxides of at least two of these materials. Aluminum oxide, cerium/titanium mixed oxides, magnesium/aluminum mixed oxides and aluminum/silicon mixed oxides are preferred. If aluminum oxide is used, it is particularly preferably stabilized, for example with 1 to 6% by weight, in particular 4% by weight, of lanthanum oxide.
  • an aluminum/silicon mixed oxide it has in particular a silicon oxide content of 5 to 30% by weight, preferably 5 to 10% by weight.
  • Material zone D may be a material for storage of hydrocarbons, particularly at temperatures below the light-off of material zone A for the oxidation of hydrocarbons.
  • Such storage materials are in particular zeolites whose channels are large enough to be able to absorb hydrocarbons. Preferred zeolites for this purpose belong to the BEA structure type.
  • the lengths of the material zones Lc and LD together correspond to the length L of the carrier substrate.
  • the material zone Lc has in particular a length of 20 to 80%, preferably 40 to 60% of the length L.
  • Lc and LD each extend over 50% of the length L.
  • material zones C and D are identical, i.e., contain the identical components in the identical amounts.
  • a uniform material zone extends over the entire length L of the carrier substrate and covers material zones A and B.
  • material zone A also comprises bismuth and platinum and preferably no palladium.
  • bismuth is also present in material zone A, for example in the form of bismuth oxide (BizCh), but in particular in the form of a composite oxide with aluminum. In the latter case, for example, bismuth is in an amount of 1 to 10, preferably 2 to 7% by weight, based on the composite oxide and calculated as elemental bismuth.
  • zones of material A and B are identical, i.e., contain the identical ingredients in the identical amounts.
  • a uniform material zone extends over the entire length L of the carrier substrate.
  • the catalyst comprises a material zone E, which extends from end b of the support substrate over part of the length L over material zone D and comprises platinum and no palladium, palladium and no platinum, or platinum and palladium.
  • Material zone E preferably comprises platinum and no palladium or platinum and palladium, in particular in a weight ratio of 20:1 to 1:1, preferably 14:1 to 2:1.
  • Platinum and palladium are preferably present in material zone C in amounts of 10 to 200 g/ft 3 , for example 20 to 180 g/ft 3 or 40 to 150 g/ft 3 , the amounts given being the amounts of platinum for the case in which material zone C includes platinum and no palladium or the sums of the amounts of platinum and palladium are for the case that material zone C includes platinum and palladium.
  • Platinum, palladium or platinum and palladium in material zone E are usually present on a carrier material. All materials familiar to the person skilled in the art for this purpose can be considered as carrier material. They have a BET surface area of 30 to 250 m 2 /g, preferably 100 to 200 m 2 /g (determined according to DIN 66132) and are in particular aluminum oxide, silicon oxide, magnesium oxide, titanium oxide, cerium/titanium mixed oxides and mixtures or mixed oxides of at least two of these materials.
  • Aluminum oxide, cerium/titanium mixed oxides, magnesium/aluminum mixed oxides and aluminum/silicon mixed oxides are preferred. If aluminum oxide is used, it is particularly preferably stabilized, for example with 1 to 6% by weight, in particular 4% by weight, of lanthanum oxide.
  • an aluminum/silicon mixed oxide it has in particular a silicon oxide content of 5 to 30% by weight, preferably 5 to 10% by weight.
  • Material zone E preferably extends from end b over 40 to 60% of length L.
  • each of material zones A and B and material zones C and D are identical, i.e. material zones A and B contain the identical ingredients in identical amounts and material zones C and D contain identical ingredients in identical amounts .
  • the catalyst comprises a zone E of material.
  • the catalyst according to the invention comprises a support body. This can be a flow-through substrate or a wall-flow filter.
  • a wall-flow filter is a support body comprising channels of length L extending in parallel between first and second ends of the wall-flow filter, which are alternately closed at either the first or second end and which are separated by porous walls.
  • a flow-through substrate differs from a wall-flow filter in particular in that the channels of length L are open at both ends.
  • wall-flow filters In the uncoated state, wall-flow filters have, for example, porosities of 30 to 80%, in particular 50 to 75%. Their average pore size in the uncoated state is 5 to 30 micrometers, for example.
  • the pores of the wall flow filter are so-called open pores, which means they are connected to the channels. Furthermore, the Pores usually interconnected. On the one hand, this enables the inner pore surfaces to be easily coated and, on the other hand, an easy passage of the exhaust gas through the porous walls of the wall-flow filter.
  • Flow-through substrates are known to those skilled in the art, as are wall-flow filters, and are commercially available. They consist, for example, of silicon carbide, aluminum titanate or cordierite.
  • the catalyst according to the invention generally comprises no further metal, in particular no silver, gold, copper and iron.
  • the present invention relates to a catalyst comprising a carrier substrate with a length L extending between the ends a and b, and four material zones A, B, C and D, wherein
  • Material zone A extends from end a over 40 to 60% of length L and comprises platinum and palladium in a weight ratio of 3:1 to 1:3;
  • material zone B extending from end b over 40 to 60% of length L and comprising platinum supported on a composite oxide of aluminum and bismuth or of aluminum, silicon and bismuth;
  • LA + LB L, where LA is the length of material zone A and LB is the length of material zone B;
  • material zone C extends from end a over 40 to 60% of length L and comprises platinum and palladium in a weight ratio of 14:1 to 2:1;
  • the present invention relates to a catalyst comprising a carrier substrate with a length L extending between the ends a and b, and five material zones A, B, C, D and E, wherein
  • Zone E of material comprises platinum and palladium in a weight ratio of 14:1 to 2:1; and wherein material zones C and D are disposed above material zones A and B and material zone E is disposed above material zone D.
  • the material zones A, B, C, D and, if present, E are usually present in the form of coatings on the supporting body.
  • Catalysts according to the invention in which the material zones A, B, C, D and, if present, E are present in the form of coatings on the carrier substrate, can be produced by methods familiar to the person skilled in the art, for example by the usual dip coating processes or pump and suction coating processes with subsequent thermal post-treatment (calcination).
  • the average pore size and the average particle size of the materials to be coated can be coordinated so that they on the porous walls that the Forming channels of the wall-flow filter lie (on-wall coating).
  • the mean particle size of the materials to be coated can also be chosen so that they are located in the porous walls that form the channels of the wall flow filter, so that the inner pore surfaces are coated (in-wall coating).
  • the mean particle size of the materials to be coated must be small enough to penetrate the pores of the wall-flow filter.
  • the carrier substrate is formed from the materials of material zones A and B and a matrix component, while material zones C and D are present in the form of a coating on the carrier substrate.
  • Carrier substrates, flow-through substrates as well as wall-flow filters, which not only consist of inert material such as cordierite, but also contain a catalytically active material, are known to the person skilled in the art. To produce them, a mixture of, for example, 10 to 95% by weight of inert matrix component and 5 to 90% by weight of catalytically active material is extruded using methods known per se. All inert materials otherwise used for the production of catalyst substrates can be used as matrix components. These are, for example, silicates, oxides, nitrides or carbides, magnesium aluminum silicates being particularly preferred.
  • a support substrate constructed from corrugated sheets of inert materials is used.
  • carrier substrates are known to those skilled in the art as "corrugated substrates".
  • Suitable inert materials are, for example, fibrous materials with an average fiber diameter of 50 to 250 ⁇ m and an average fiber length of 2 to 30 mm. Fibrous materials are preferred heat-resistant and consist of silicon dioxide, especially glass fibers.
  • sheets of the fiber materials mentioned are corrugated in a known manner and the individual corrugated sheets are formed into a cylindrical, monolithically structured body with channels running through the body.
  • a monolithic structured body having a crosswise corrugation structure is formed by laminating a number of the corrugated sheets into parallel layers with different orientation of corrugation between the layers.
  • uncorrugated, i.e. flat, sheets may be interposed between the corrugated sheets.
  • Corrugated sheet substrates can be coated directly with materials A and B, but preferably they are coated first with an inert material, such as titanium dioxide, and only then with the catalytic material.
  • an inert material such as titanium dioxide
  • the composite oxide can be obtained, for example, by contacting aluminum oxide or an aluminum oxide stabilized with silicon with an aqueous solution of a bismuth salt and then drying and calcining.
  • Aluminum oxide or aluminum oxide stabilized with silicon can advantageously be brought into contact with an aqueous solution of a bismuth salt by spraying the aluminum oxide with the aqueous solution of the bismuth salt in a mixer.
  • Suitable mixers are known to those skilled in the art. For example, powder mixers or devices for spray drying are suitable.
  • the catalytic converter according to the invention is outstandingly suitable as a diesel oxidation catalytic converter which efficiently converts carbon monoxide and hydrocarbons even at low temperatures, but which can also be used for catalytic converters arranged on the downstream side, such as particle filters and SCR Catalysts, forms sufficient nitrogen dioxide.
  • the catalyst according to the invention forms more nitrogen dioxide than a comparison catalyst which contains no bismuth in material zone B and is otherwise identical.
  • the present invention also relates to a method for cleaning exhaust gases from motor vehicles that are operated with lean-burn engines, characterized in that the exhaust gas is passed over a catalytic converter as described above, the exhaust gas entering the catalytic converter at end a and at End b emerges from the catalyst.
  • the present invention also relates to an exhaust system that includes a catalytic converter as described above, at the end b of which one or more further catalytic converters are connected, which are selected from the series consisting of a diesel particulate filter, a diesel particulate filter coated with an SCR catalytic converter, with a soot ignition temperature reducing coating of coated diesel particulate filters and a flow-through substrate located SCR catalyst.
  • a catalytic converter as described above, at the end b of which one or more further catalytic converters are connected, which are selected from the series consisting of a diesel particulate filter, a diesel particulate filter coated with an SCR catalytic converter, with a soot ignition temperature reducing coating of coated diesel particulate filters and a flow-through substrate located SCR catalyst.
  • the SCR catalytic converter in the exhaust system according to the invention can in principle be selected from all catalytic converters that are active in the SCR reaction of nitrogen oxides with ammonia, in particular from those that are known to the person skilled in the art in the field of automotive exhaust gas catalysis are known to be common.
  • Embodiments of the present invention employ SCR catalysts containing a small pore zeolite having a maximum ring size of eight tetrahedral atoms and a transition metal.
  • Such SCR catalysts are described, for example, in WO2008/106519 A1, WO2008/118434 A1 and WO2008/132452 A2.
  • Particularly preferred zeolites belong to the framework types BEA, AEI, AFX, CHA, KFI, ERI, LEV, MER or DDR and are particularly preferably exchanged with cobalt, iron, copper or mixtures of two or three of these metals.
  • zeolites also includes molecular sieves, which are sometimes also referred to as "zeolite-like" compounds. Molecular sieves are preferred if they belong to one of the framework types mentioned above. Examples are silica aluminum phosphate zeolites, known under the term SAPO, and aluminum phosphate zeolites , which are known under the term AIPO.
  • Preferred zeolites are also those which have an SAR (silica-to-alumina ratio) value of 2 to 100, in particular 5 to 50.
  • the zeolites or molecular sieves contain transition metal in particular in amounts of 1 to 10% by weight, in particular 2 to 5% by weight, calculated as metal oxide, ie for example as FezCh or CuO.
  • Preferred embodiments of the present invention contain beta-type (BEA), chabazite-type (CHA), AEI, AFX or Levyne-type (LEV) zeolites or molecular sieves as SCR catalysts with copper, iron or copper and iron.
  • Corresponding zeolites or molecular sieves are available, for example, under the designations ZSM-5, Beta, SSZ-13, SSZ-62, Nu-3, ZK-20, LZ-132, SAPO-34, SAPO-35, AIPO-34 and AIPO-35 known, see for example US 6,709,644 and US 8,617,474.
  • an injection device for reducing agent is located in front of the SCR catalytic converter.
  • the injection device can be chosen arbitrarily by a person skilled in the art, with suitable devices being found in the literature (see, for example, T. Mayer, solid SCR system based on ammonium carbamate, dissertation, TU Kaiserslautern, 2005, and EP 1 561 919 A1) .
  • the ammonia may be introduced into the exhaust stream via the injector as such or in the form of a compound from which ammonia is formed at ambient conditions.
  • Aqueous solutions of urea or ammonium formate for example, are suitable as such, as is solid ammonium carbamate.
  • the reducing agent or a precursor thereof is kept in stock in an entrained container which is connected to the injection device.
  • FIGS 1 and 2 show embodiments of the catalyst according to the invention with the following meanings:
  • FIG. 1 shows a catalyst according to the invention with the material zones A, B, C and D, all material zones having the same length, namely 50% of the length of the carrier substrate.
  • FIG. 2 shows a catalyst according to the invention with the material zones A, B, C, D and E, A and B and C and D being identical in each case.
  • Example 1 A commercial cordierite flow-through substrate was coated from its first end for 50% of its length with 65 g/ft 3 platinum and palladium in a weight ratio of 2:1, supported on 72.65 g/l of a lanthanum oxide stabilized alumina, and 40 g/l of a ß-zeolite coated. b) The flow-through substrate obtained according to a) was coated starting from its second end over 50% of its length with 65 g/ft 3 of platinum, supported on 100 g/l of an aluminum oxide doped with 3% by weight of bismuth oxide, and 40 g/l of a ß-zeolites coated. c) The flow-through substrate obtained according to b) was coated over its entire length with 25 g/ft 3 of platinum and palladium in a weight ratio of 14:1, supported on 60 g/l of an aluminum oxide stabilized with lanthanum oxide.
  • the total loading of platinum and palladium on the catalyst is 90 g/ft 3 .
  • the material zones C and D are identical and form a coherent layer on the material zones A and B over the entire length of the flow-through substrate.
  • Comparative Example 1 a) A commercially available flow-through substrate made of cordierite was coated over its entire length with 65 g/ft 3 of platinum and palladium in a weight ratio of 2:1, supported on 72.65 g/l of a lanthana-stabilized aluminum oxide and 40 g/l of a ß -Zeolite coated. b) The flow-through substrate obtained according to a) was coated over its entire length with 25 g/ft 3 of platinum and palladium in a weight ratio of 14:1, supported on 60 g/l of an aluminum oxide stabilized with lanthanum oxide.
  • the total loading of platinum and palladium on the catalyst is 90 g/ft 3 .
  • the material zones A and B, as well as C and D, are each identical.
  • Catalyst VK1 contains no bismuth.
  • Example 2 a) A commercially available flow-through substrate made of cordierite was coated, starting from its first end over 50% of its length, with 40 g/ft 3 of platinum and palladium in a weight ratio of 1:3 supported on Ce titanium oxide. b) The flow-through substrate obtained according to a) was coated starting from its second end over 50% of its length with 65 g/ft 3 of platinum, supported on 100 g/l of an aluminum oxide doped with 3% by weight of bismuth oxide, and 40 g/l of a ß-zeolites coated.
  • the total loading of platinum and palladium on the catalyst is 100 g/ft 3 .
  • the catalyst according to the invention thus obtained is referred to below as K2.
  • Comparative Example 2 a) A commercially available flow-through substrate made of cordierite was coated over its entire length with 40 g/ft 3 of platinum and palladium in a weight ratio of 1:3 supported on Ce titanium oxide. b) The flow-through substrate obtained according to a) was coated over its entire length with 70 g/ft 3 of platinum and palladium in a weight ratio of 2:1 supported on 62.28 g/l of aluminum oxide and 25 g/l of ⁇ -zeolite. The total loading of platinum and palladium on the catalyst is 110 g/ft 3 .
  • the comparison catalyst VK2 thus obtained, the material zones A and B, as well as C and D are identical. Catalyst VK2 contains no bismuth.
  • Example 3 a) A commercially available flow-through substrate made of cordierite was coated over its entire length with 25 g/ft 3 of platinum supported on 25 g/l of an aluminum oxide doped with 3% by weight of bismuth oxide. b) The flow-through substrate obtained according to a) was coated over its entire length with 40 g/ft 3 of platinum and palladium in a weight ratio of 2:1 supported on 110 g/l of aluminum oxide. c) The flow-through substrate obtained according to b) was coated starting from its second end over 50% of its length with 50 g/ft 3 of platinum and palladium in a weight ratio of 12:1 on 50 g/l of a silica-stabilized alumina.
  • the total loading of platinum and palladium on the catalyst is 90 g/ft 3 .
  • the catalyst according to the invention thus obtained is referred to below as K3.
  • the material zones A and B as well as C and D are identical in each case, with the material zones A and B containing bismuth.
  • material zone D carries material zone E as a further material zone.
  • FIG. 3 shows the NC/NOx ratios of Kl and VK1 in [%] downstream of the catalytic converter, measured on an engine test bench during an NEDC cycle.
  • the black curve shows the result of VK1, the gray curve that of Kl.
  • the gray curve of Kl shows a higher NO2/NOx ratio especially in the cycle between about 1125 seconds and 1500 seconds.
  • FIG. 4 shows the NOz/NOx ratios of K2 and VK2 in [%] downstream of the catalytic converter, measured on an engine test bench during an NEDC cycle.
  • the black curve shows the result of VK2, the gray curve that of K2.
  • the gray curve shows a higher NO2/NOX ratio.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Die vorliegende Erfindung betrifft einen Katalysator, der ein Trägersubstrat mit einer sich zwischen den Enden a und b erstreckenden Länge L, sowie vier Materialzonen A, B, C und D umfasst, wobei Materialzone B Bismut umfasst.

Description

Bismut enthaltender Dieseloxidationskatalysator
Die vorliegende Erfindung betrifft einen Dieseloxidationskatalysator, der mehrere katalytisch aktive Materialzonen umfasst, wobei eine Materialzone Bismut enthält.
Das Abgas von Kraftfahrzeugen, die mit mager betriebenen Verbrennungsmotoren, beispielsweise mit Dieselmotoren, betrieben werden, enthält neben Kohlenmonoxid (CO) und Stickoxiden (NOx) auch Bestandteile, die aus der unvollständigen Verbrennung des Kraftstoffs im Brennraum des Zylinders herrühren. Dazu gehören neben Rest- Koh len wasserstoffen (HC), die meist ebenfalls überwiegend gasförmig vorliegen, Partikelemissionen, auch als „Dieselruß" oder „Rußpartikel" bezeichnet.
Zur Reinigung dieser Abgase müssen die genannten Bestandteile möglichst vollständig in unschädliche Verbindungen umgewandelt werden, was nur unter Einsatz geeigneter Katalysatoren möglich ist.
Kohlenwasserstoffe (HC) und Kohlenmonoxid (CO) können mit Hilfe von Dieseloxidationskatalysatoren (DOC) oxidiert werden. Herkömmliche Dieseloxidationskatalysatoren enthalten insbesondere Platin und/oder Palladium auf einem geeigneten Trägeroxid, zum Beispiel Aluminiumoxid.
Ein bekanntes Verfahren zur Entfernung von Stickoxiden aus Abgasen in Gegenwart von Sauerstoff ist die selektive katalytische Reduktion (SCR) mittels Ammoniak an einem geeigneten Katalysator. Bei diesem Verfahren werden die aus dem Abgas zu entfernenden Stickoxide mit Ammoniak zu Stickstoff und Wasser umgesetzt.
Rußpartikel können sehr effektiv mit Hilfe von Dieselpartikelfiltern (DPF) aus dem Abgas entfernt werden, wobei sich Wandflussfilter aus keramischen Materialien besonders bewährt haben. Partikelfilter können auch mit katalytisch aktiven Beschichtungen versehen werden. So beschreibt beispielsweise die EP1820561 Al die Beschichtung eines Dieselpartikelfilters mit einer Katalysatorschicht, die das Abbrennen der gefilterten Rußpartikel erleichtert. Dieselpartikelfilter können auch mit SCR- Katalysatoren beschichtet sein und werden dann kurz als SDPF bezeichnet.
Zur Abgasnachbehandlung von Dieselmotoren werden Abgasnachbehandlungssysteme eingesetzt, die aus zwei oder mehreren der oben genannten Bausteinen zusammengesetzt sind. Ein wichtiger Bestandteil eines solchen Systems ist der Dieseloxidationskatalysator. Seine Aufgabe ist vor allem die Umsetzung von Kohlenmonoxid und Kohlenwasserstoffen, aber auch die Oxidation von Stickstoffmonoxid (NO) zu Stickstoffdioxid (NO2), das von abströmseitig angeordneten Bauteilen, wie DPF, SCR und SDPF) benötigt wird.
Zur Erfüllung kommender Gesetzgebungen sind Abgasnachbehandlungssysteme notwendig, die die genannten Schadstoffe über ein breites Betriebsfenster umsetzen. In diesem Zusammenhang ist die Entwicklung und Optimierung eines Dieseloxidationskatalysators, der einerseits Kohlenmonoxid und Kohlenwasserstoffe bei möglichst niedrigen Temperaturen umsetzt und andererseits über den gesamten Betriebsbereich genügend Stickstoffdioxid liefert, eine technische Herausforderung.
Es wurde nun gefunden, dass Dieseloxidationskatalysatoren, die eine Bismut enthaltende Materialzone aufweisen, die in bestimmter Weise auf dem Katalysator angeordnet ist, dieser technischen Herausforderung gerecht werden.
Dieseloxidationskatalysatoren, die Bismut enthalten, sind bereits bekannt. So beschreibt die US 5,911,961 einen Katalysator, bei dem Platin und Bismut auf Titandioxid geträgert sind.
Die EP 1 927 399 A2 offenbart ein Aluminiumoxid und Bismut umfassendes Trägermaterial, das Platin trägt.
Die US 2003/027719 betrifft einen Oxidationskatalysator, der Palladium und Silber und als nächsten Nachbarn von Palladium Bismut enthält. Die US 2012/302439 offenbart einen Palladium-Gold-Katalysator, der mit Bismut und/oder Mangan dotiert ist.
Die WO 2017/064498 Al offenbart einen Bismut oder Antimon, sowie ein Platingruppenmetall enthaltenden Oxidationskatalysator.
Die vorliegende Erfindung betrifft einen Katalysator, der ein Trägersubstrat mit einer sich zwischen den Enden a und b erstreckenden Länge L, sowie vier Materialzonen A, B, C und D umfasst, wobei
• Materialzone A sich ausgehend vom Ende a über einen Teil der Länge L erstreckt und Platin und kein Palladium, Palladium und kein Platin oder Platin und Palladium umfasst;
• Materialzone B sich ausgehend vom Ende b über einen Teil der Länge L erstreckt und Platin und Bismut umfasst; wobei LA + LB = L gilt, wobei LA die Länge der Materialzone A und LB die Länge der Materialzone B ist;
• Materialzone C sich ausgehend vom Ende a über einen Teil der Länge L erstreckt und Platin und kein Palladium, Palladium und kein Platin oder Platin und Palladium umfasst;
• Materialzone D sich ausgehend vom Ende b über einen Teil der Länge L erstreckt und Platin und kein Palladium, Palladium und kein Platin oder Platin und Palladium umfasst; wobei Lc + LD = L gilt, wobei Lc die Länge der Materialzone C und LD die Länge der Materialzone D ist; und wobei die Materialzonen C und D über den Materialzonen A und B angeordnet sind.
Materialzone A umfasst bevorzugt Platin und Palladium, insbesondere in einem Gewichtsverhältnis von 10: 1 bis 1 :5, bevorzugt 3: 1 bis 1 :3.
Platin und Palladium liegen in Materialzone A bevorzugt in Mengen von 10 bis 200 g/ft3, beispielsweise 20 bis 180 g/ft3 oder 40 bis 150 g/ft3 vor, wobei die angegebenen Mengen die Summen der Mengen von Platin und Palladium sind. Sofern Materialzone A Platin und Palladium umfasst, umfasst es bevorzugt kein Bismut.
Platin und Palladium in Materialzone A liegen in der Regel auf einem Trägermaterial vor. Als Trägermaterial kommen alle dem Fachmann für diesen Zweck geläufigen Materialien in Betracht. Sie weisen eine BET- Oberfläche von 30 bis 250 m2/g, bevorzugt von 100 bis 200 m2/g auf (bestimmt nach DIN 66132) und sind insbesondere Aluminiumoxid, Siliziumoxid, Magnesiumoxid, Titanoxid, Cer/Titan-Mischoxide, sowie Mischungen oder Mischoxide von mindestens zwei dieser Materialien. Bevorzugt sind Aluminiumoxid, Cer/Titan-Mischoxide, Magnesium/Aluminium-Mischoxide und AI uminium/Silizi um- Mischoxide. Sofern Aluminiumoxid verwendet wird, so ist es besonders bevorzugt stabilisiert, beispielsweise mit 1 bis 6 Gew.-%, insbesondere 4 Gew.-%, Lanthanoxid.
Sofern ein Aluminium/Silizium-Mischoxid verwendet wird, so weist es insbesondere einen Gehalt an Siliziumoxid von 5 bis 30, bevorzugt von 5 bis 10 Gew.-% auf.
Materialzone A kann ein Material zur Speicherung von Kohlenwasserstoffen, insbesondere bei Temperaturen, die unter dem Light-off der Materialzone A für die Oxidation von Kohlenwasserstoffen liegt. Solche Speichermaterialien sind insbesondere Zeolithe, deren Kanäle groß genug sind, um Kohlenwasserstoffe aufnehmen zu können. Bevorzugte Zeolithe zu diesem Zweck gehören dem Strukturtyp BEA an.
Materialzone B umfasst Bismut beispielsweise in Form von Bismutoxid (BizOs), insbesondere liegt es aber in Form eines Kompositoxides mit Aluminium oder mit Aluminium und Silizium vor, wobei der Siliziumgehalt beispielsweise 5 bis 30, bevorzugt 5 bis 15 Gew.-%, bezogen auf das Gewicht von Aluminium- und Siliziumoxid, beträgt. Bismut liegt beispielsweise in einer Menge von 1 bis 15, bevorzugt 2 bis 7 Gew.-%, bezogen auf das Kompositoxid und berechnet als elementares Bismut vor. Idealerweise dient erfindungsgemäß das Kompositoxid als Trägermaterial für das Platin.
Bezogen auf das Kompositoxid aus Aluminium und Bismut bzw. aus Aluminium, Silizium und Bismut und berechnet als Platin-Metall, liegt Platin insbesondere in Mengen von 10 bis 200 g/ft3, beispielsweise 20 bis 180 g/ft3 oder 40 bis 150 g/ft3 vor.
Materialzone B umfasst bevorzugt kein Palladium.
Die Längen der Materialzonen LA und LB entsprechen zusammen der Länge L des Trägersubstrates. Dabei weist die Materialzone LA insbesondere eine Länge von 20 bis 80%, bevorzugt 40 bis 60% der Länge L auf. In einer bevorzugten Ausführungsform erstrecken sich LA und LB jeweils über 50% der Länge L.
Materialzone C umfasst bevorzugt Platin und kein Palladium oder Platin und Palladium, insbesondere in einem Gewichtsverhältnis von 20: 1 bis 1 : 1, bevorzugt 14: 1 bis 2: 1.
Platin und Palladium liegen in Materialzone C bevorzugt in Mengen von 10 bis 200 g/ft3, beispielsweise 20 bis 180 g/ft3 oder 40 bis 150 g/ft3 vor, wobei die angegebenen Mengen die Platinmengen sind für den Fall, dass Materialzone C Platin und kein Palladium umfasst bzw. die Summen der Mengen von Platin und Palladium sind für den Fall, dass Materialzone C Platin und Palladium umfasst.
Platin und Palladium in Materialzone C liegen in der Regel auf einem Trägermaterial vor. Als Trägermaterial kommen alle dem Fachmann für diesen Zweck geläufigen Materialien in Betracht. Sie weisen eine BET- Oberfläche von 30 bis 250 m2/g, bevorzugt von 100 bis 200 m2/g auf (bestimmt nach DIN 66132) und sind insbesondere Aluminiumoxid, Siliziumoxid, Magnesiumoxid, Titanoxid, Cer/Titan-Mischoxide, sowie Mischungen oder Mischoxide von mindestens zwei dieser Materialien. Bevorzugt sind Aluminiumoxid, Cer/Titan-Mischoxide, Magnesium/Aluminium-Mischoxide und Aluminium/Silizium-Mischoxide. Sofern Aluminiumoxid verwendet wird, so ist es besonders bevorzugt stabilisiert, beispielsweise mit 1 bis 6 Gew.-%, insbesondere 4 Gew.-%, Lanthanoxid.
Sofern ein Aluminium/Silizium-Mischoxid verwendet wird, so weist es insbesondere einen Gehalt an Siliziumoxid von 5 bis 30, bevorzugt von 5 bis 10 Gew.-% auf.
Materialzone C kann ein Material zur Speicherung von Kohlenwasserstoffen, insbesondere bei Temperaturen, die unter dem Light-off der Materialzone A für die Oxidation von Kohlenwasserstoffen liegt. Solche Speichermaterialien sind insbesondere Zeolithe, deren Kanäle groß genug sind, um Kohlenwasserstoffe aufnehmen zu können. Bevorzugte Zeolithe zu diesem Zweck gehören dem Strukturtyp BEA an.
Materialzone D umfasst bevorzugt Platin und kein Palladium oder Platin und Palladium, insbesondere in einem Gewichtsverhältnis von 20: 1 bis 1 : 1, bevorzugt 14: 1 bis 2: 1.
Platin und Palladium liegen in Materialzone D bevorzugt in Mengen von 10 bis 200 g/ft3, beispielsweise 20 bis 180 g/ft3 oder 40 bis 150 g/ft3 vor, wobei die angegebenen Mengen die Platinmengen sind für den Fall, dass Materialzone C Platin und kein Palladium umfasst bzw. die Summen der Mengen von Platin und Palladium sind für den Fall, dass Materialzone C Platin und Palladium umfasst.
Platin und Palladium in Materialzone D liegen in der Regel auf einem Trägermaterial vor. Als Trägermaterial kommen alle dem Fachmann für diesen Zweck geläufigen Materialien in Betracht. Sie weisen eine BET- Oberfläche von 30 bis 250 m2/g, bevorzugt von 100 bis 200 m2/g auf (bestimmt nach DIN 66132) und sind insbesondere Aluminiumoxid, Siliziumoxid, Magnesiumoxid, Titanoxid, Cer/Titan-Mischoxide, sowie Mischungen oder Mischoxide von mindestens zwei dieser Materialien. Bevorzugt sind Aluminiumoxid, Cer/Titan-Mischoxide, Magnesium/Aluminium-Mischoxide und Aluminium/Silizium-Mischoxide. Sofern Aluminiumoxid verwendet wird, so ist es besonders bevorzugt stabilisiert, beispielsweise mit 1 bis 6 Gew.-%, insbesondere 4 Gew.-%, Lanthanoxid.
Sofern ein Aluminium/Silizium-Mischoxid verwendet wird, so weist es insbesondere einen Gehalt an Siliziumoxid von 5 bis 30, bevorzugt von 5 bis 10 Gew.-% auf.
Materialzone D kann ein Material zur Speicherung von Kohlenwasserstoffen, insbesondere bei Temperaturen, die unter dem Light-off der Materialzone A für die Oxidation von Kohlenwasserstoffen liegt. Solche Speichermaterialien sind insbesondere Zeolithe, deren Kanäle groß genug sind, um Kohlenwasserstoffe aufnehmen zu können. Bevorzugte Zeolithe zu diesem Zweck gehören dem Strukturtyp BEA an.
Die Längen der Materialzonen Lc und LD entsprechen zusammen der Länge L des Trägersubstrates. Dabei weist die Materialzone Lc insbesondere eine Länge von 20 bis 80%, bevorzugt 40 bis 60% der Länge L auf. In einer bevorzugten Ausführungsform erstrecken sich Lc und LD jeweils über 50% der Länge L.
In einer Ausführungsform der vorliegenden Erfindung sind die Materialzonen C und D identisch, d.h. sie enthalten die identischen Bestandteile in den identischen Mengen. In diesem Fall erstreckt sind somit eine einheitliche Materialzone über die gesamte Länge L des Trägersubstrates und überdeckt die Materialzonen A und B.
In einer weiteren Ausführungsform der vorliegenden Erfindung umfasst auch Materialzone A Bismut und Platin und bevorzugt kein Palladium. Wie in Materialzone B liegt auch in Materialzone A Bismut beispielsweise in Form von Bismutoxid (BizCh), insbesondere aber in Form eines Kompositoxides mit Aluminium vor. Im letztgenannten Fall liegt Bismut beispielsweise in einer Menge von 1 bis 10, bevorzugt 2 bis 7 Gew.-%, bezogen auf das Kompositoxid und berechnet als elementares Bismut vor.
In dieser Ausführungsform der vorliegenden Erfindung sind die Materialzonen A und B beispielsweise identisch, d.h. sie enthalten die identischen Bestandteile in den identischen Mengen. In diesem Fall erstreckt sind somit ein eine einheitliche Materialzone über die gesamte Länge L des Trägersubstrates.
In einer weiteren Ausführungsform der vorliegenden Erfindung umfasst der Katalysator eine Materialzone E, die sich ausgehend vom Ende b des Trägersubstrates über einen Teil der Länge L über Materialzone D erstreckt und Platin und kein Palladium, Palladium und kein Platin oder Platin und Palladium umfasst.
Materialzone E umfasst bevorzugt Platin und kein Palladium oder Platin und Palladium, insbesondere in einem Gewichtsverhältnis von 20: 1 bis 1 : 1, bevorzugt 14: 1 bis 2: 1.
Platin und Palladium liegen in Materialzone C bevorzugt in Mengen von 10 bis 200 g/ft3, beispielsweise 20 bis 180 g/ft3 oder 40 bis 150 g/ft3 vor, wobei die angegebenen Mengen die Platinmengen sind für den Fall, dass Materialzone C Platin und kein Palladium umfasst bzw. die Summen der Mengen von Platin und Palladium sind für den Fall, dass Materialzone C Platin und Palladium umfasst.
Platin, Palladium bzw. Platin und Palladium in Materialzone E liegen in der Regel auf einem Trägermaterial vor. Als Trägermaterial kommen alle dem Fachmann für diesen Zweck geläufigen Materialien in Betracht. Sie weisen eine BET-Oberfläche von 30 bis 250 m2/g, bevorzugt von 100 bis 200 m2/g auf (bestimmt nach DIN 66132) und sind insbesondere Aluminiumoxid, Siliziumoxid, Magnesiumoxid, Titanoxid, Cer/Titan-Mischoxide, sowie Mischungen oder Mischoxide von mindestens zwei dieser Materialien.
Bevorzugt sind Aluminiumoxid, Cer/Titan-Mischoxide, Magnesium/Aluminium-Mischoxide und AI um inium/Silizi um- Mischoxide. Sofern Aluminiumoxid verwendet wird, so ist es besonders bevorzugt stabilisiert, beispielsweise mit 1 bis 6 Gew.-%, insbesondere 4 Gew.-%, Lanthanoxid.
Sofern ein Aluminium/Silizium-Mischoxid verwendet wird, so weist es insbesondere einen Gehalt an Siliziumoxid von 5 bis 30, bevorzugt von 5 bis 10 Gew.-% auf.
Materialzone E erstreckt sich bevorzugt ausgehend von Ende b über 40 bis 60% der Länge L.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung sind jeweils die Materialzonen A und B und die Materialzonen C und D identisch, d.h. die Materialzonen A und B enthalten die identischen Bestandteile in den identischen Mengen und die Materialzonen C und D enthalten die identischen Bestandteile in den identischen Mengen.
In diesem Fall ist es bevorzugt, wenn der Katalysator eine Materialzone E umfasst.
Der erfindungsgemäße Katalysator umfasst einen Tragkörper. Dieser kann ein Durchflusssubstrat oder ein Wandflussfilter sein.
Ein Wandflussfilter ist ein Tragkörper, der Kanäle der Länge L umfasst, die sich parallel zwischen einem ersten und einem zweiten Ende des Wandflussfilters erstrecken, die abwechselnd entweder am ersten oder am zweiten Ende verschlossen sind und die durch poröse Wände getrennt sind. Ein Durchflusssubstrat unterscheidet sich von einem Wandflussfilter insbesondere darin, dass die Kanäle der Länge L an seinen beiden Enden offen sind.
Wandflussfilter weisen in unbeschichtetem Zustand beispielsweise Porositäten von 30 bis 80, insbesondere 50 bis 75% auf. Ihre durchschnittliche Porengröße beträgt in unbeschichtetem Zustand beispielsweise 5 bis 30 Mikrometer.
In der Regel sind die Poren des Wandflussfilters sogenannte offene Poren, das heißt sie haben eine Verbindung zur den Kanälen. Des Weiteren sind die Poren in der Regel untereinander verbunden. Dies ermöglicht einerseits die leichte Beschichtung der inneren Porenoberflächen und andererseits eine leichte Passage des Abgases durch die porösen Wände des Wandflussfilters.
Durchflusssubstrate sind dem Fachmann ebenso wie Wandflussfilter bekannt und sind am Markt erhältlich. Sie bestehen beispielsweise aus Silicium-Carbid, Aluminium-Titanat oder Cordierit.
Der erfindungsgemäße Katalysator umfasst in der Regel außer Platin, Palladium und Bismut kein weiteres Metall, insbesondere kein Silber, Gold, Kupfer und noch Eisen.
In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung einen Katalysator, der ein Trägersubstrat mit einer sich zwischen den Enden a und b erstreckenden Länge L, sowie vier Materialzonen A, B, C und D umfasst, wobei
• Materialzone A sich ausgehend vom Ende a über 40 bis 60 % der Länge L erstreckt und Platin und Palladium im Gewichtsverhältnis 3: 1 bis 1 :3 umfasst;
• Materialzone B sich ausgehend vom Ende b über 40 bis 60 % der Länge L erstreckt und Platin geträgert auf einem Kompositoxid aus Aluminium und Bismut oder aus Aluminium, Silizium und Bismut umfasst; wobei LA + LB = L gilt, wobei LA die Länge der Materialzone A und LB die Länge der Materialzone B ist;
• Materialzone C sich ausgehend vom Ende a über 40 bis 60 % der Länge L erstreckt und Platin und Palladium im Gewichtsverhältnis 14: 1 bis 2: 1 umfasst;
• Materialzone D sich ausgehend vom Ende b über 40 bis 60 % der Länge L erstreckt und Platin und Palladium im Gewichtsverhältnis 14: 1 bis 2: 1 umfasst; wobei Lc + LD = L gilt, wobei Lc die Länge der Materialzone C und LD die Länge der Materialzone D ist; und wobei die Materialzonen C und D über den Materialzonen A und B angeordnet sind.
In einer weiteren bevorzugten Ausführungsform betrifft die vorliegende Erfindung einen Katalysator, der ein Trägersubstrat mit einer sich zwischen den Enden a und b erstreckenden Länge L, sowie fünf Materialzonen A, B, C, D und E umfasst, wobei
• Materialzone A und Materialzone B identisch sind und Platin geträgert auf einem Kompositoxid aus Aluminium und Bismut oder aus Aluminium, Silizium und Bismut umfassen; wobei LA + LB = L gilt, wobei LA die Länge der Materialzone A und LB die Länge der Materialzone B ist;
• Materialzone C und Materialzone D identisch sind und Platin und Palladium im Gewichtsverhältnis 14: 1 bis 2: 1 umfassen; wobei Lc + LD = L gilt, wobei Lc die Länge der Materialzone C und LD die Länge der Materialzone D ist; und
• Materialzone E Platin und Palladium im Gewichtsverhältnis 14: 1 bis 2: 1 umfasst; und wobei die Materialzonen C und D über den Materialzonen A und B und Materialzone E über Materialzone D angeordnet sind.
Die Materialzonen A, B, C, D und falls vorhanden E liegen üblicherweise in Form von Beschichtungen auf dem Tragkörper vor.
Erfindungsgemäße Katalysatoren, bei denen die Materialzonen A, B, C, D und falls vorhanden E in Form von Beschichtungen auf dem Trägersubstrat vorliegen, können nach dem Fachmann geläufigen Methoden hergestellt werden, so etwa nach den üblichen Tauchbeschichtungsverfahren bzw. Pump- und Saug-Beschichtungsverfahren mit sich anschließender thermischer Nachbehandlung (Kalzination). Dem Fachmann ist bekannt, dass im Falle von Wandflussfiltern deren durchschnittliche Porengröße und die mittlere Teilchengröße der zu beschichtenden Materialien so aufeinander abgestimmt werden können, dass diese auf den porösen Wänden, die die Kanäle des Wandflussfilters bilden, liegen (auf-Wand-Beschichtung). Die mittlere Teilchengröße der zu beschichtenden Materialien kann aber auch so gewählt werden, dass sich diese in den porösen Wänden, die die Kanäle des Wandflussfilters bilden, befinden, dass also eine Beschichtung der inneren Porenoberflächen erfolgt (in-Wand-Beschichtung). In diesem Fall muss die mittlere Teilchengröße der der zu beschichtenden Materialien klein genug sein, um in die Poren des Wandflussfilters einzudringen.
In einer anderen Ausführungsform der vorliegenden Erfindung, bei der die Materialzonen A und B identisch sind, ist das Trägersubstrat aus den Materialien der Materialzonen A und B und einer Matrixkomponente gebildet, während die Materialzonen C und D in Form einer Beschichtung auf dem Trägersubstrat vorliegt.
Trägersubstrate, Durchflusssubstrate ebenso wie Wandflussfilter, die nicht nur aus inertem Material, wie beispielsweise Cordierit bestehen, sondern die daneben auch ein katalytisch aktives Material enthalten, sind dem Fachmann bekannt. Zu ihrer Herstellung wird eine Mischung aus beispielsweise 10 bis 95 Gew.-% inerter Matrixkomponente und 5 bis 90 Gew.-% katalytisch aktiven Materials nach an sich bekannten Verfahren extrudiert. Als Matrixkomponenten können dabei alle auch sonst zur Herstellung von Katalysatorsubstraten verwendeten inerten Materialien verwendet werden. Es handelt sich dabei beispielsweise um Silikate, Oxide, Nitride oder Carbide, wobei insbesondere Magnesium-Aluminium-Silikate bevorzugt sind.
In einer weiteren Ausführungsform der vorliegenden Erfindung wird ein Trägersubstrat verwendet, das aus gewellten Blättern aus inerten Materialien aufgebaut ist. Solche Trägersubstrate sind dem Fachmann als „corrugated substrate" bekannt. Geeignete inerte Materialien sind zum Beispiel faserförmige Materialien mit einem durchschnittlichen Faserdurchmesser von 50 bis 250 pm und einer durchschnittlichen Faserlänge von 2 bis 30 mm. Bevorzugt sind faserförmige Materialien hitze beständig und bestehen aus Siliziumdioxid, insbesondere aus Glasfasern.
Zur Herstellung solcher Trägersubstrate werden zum Bespiel Blätter aus den genannten Fasermaterialien in bekannter Weise gewellt und die einzelnen gewellten Blätter zu einem zylindrischen monolithisch strukturierten Körper mit den Körper durchziehenden Kanälen geformt. Vorzugsweise wird durch Aufschichten einer Anzahl der gewellten Blätter zu parallelen Schichten mit unterschiedlicher Orientierung der Wellung zwischen den Schichten ein monolithisch strukturierter Körper mit einer kreuzweisen Wellungsstruktur geformt. In einer Ausführungsform können zwischen den gewellten Blättern ungewellte, d.h. flache Blätter angeordnet sein.
Substrate aus gewellten Blättern können direkt mit den Materialien A und B beschichtet werden, vorzugsweise werden sie aber zunächst mit einem inerten Material, zum Beispiel Titandioxid, und erst dann mit dem katalytischen Material beschichtet.
Soweit die erfindungsgemäßem Katalysatoren Kompositoxide aus Aluminium und Bismut oder Aluminium, Silizium und Bismut umfassen, so kann das Kompositoxid beispielsweise erhalten werden durch Inkontaktbringen von Aluminiumoxid oder eines mit Silizium stabilisierten Aluminiumoxides mit einer wässrigen Lösung eines Bismutsalzes und anschließendes Trocknen und Kalzinieren. Das Inkontaktbringen von Aluminiumoxid bzw. mit Silizium stabilisiertem Aluminiumoxid mit einer wässrigen Lösung eines Bismutsalzes kann mit Vorteil durch Besprühen des Aluminiumoxides mit der wässrigen Lösung des Bismutsalzes in einem Mischer erfolgen. Geeignete Mischer sind dem Fachmann bekannt. Beispielsweise sind Pulvermischer oder Vorrichtungen zur Sprühtrocknung geeignet.
Der erfindungsgemäße Katalysator eignet sich in hervorragender Weise als Dieseloxidationskatalysator, der Kohlenmonoxid und Kohlenwasserstoffe auch bei niedrigen Temperaturen effizient umsetzt, der aber auch für abströmseitig angeordnete Katalysatoren, wie Partikelfilter und SCR- Katalysatoren, ausreichend Stickstoffdioxid bildet. Insbesondere hat sich gezeigt, dass der erfindungsgemäße Katalysator mehr Stickstoffdioxid bildet wie ein Vergleichskatalysator, der in der Materialzone B kein Bismut enthält und sonst identisch ist.
Somit betrifft die vorliegende Erfindung auch ein Verfahren zur Reinigung von Abgasen von Kraftfahrzeugen, die mit mager betriebenen Motoren betrieben werden, dadurch gekennzeichnet, dass das Abgas über einen oben beschriebenen Katalysator geleitet wird, wobei das Abgas am Ende a in den Katalysator ein- und beim Ende b aus dem Katalysator austritt.
Die vorliegende Erfindung betrifft daneben auch ein Abgassystem, das einen oben beschriebenen Katalysator umfasst, an dessen Ende b sich ein oder mehrere weitere Katalysatoren anschließen, die ausgewählt sind aus der Reihe bestehend aus Dieselpartikelfilter, mit einem SCR-Katalysator beschichteter Dieselpartikelfilter, mit einer die Rußzündtemperatur herabsetzenden Beschichtung beschichteter Dieselpartikelfilter und einem auf einem Durchflusssubstrat befindlicher SCR-Katalysator.
Die oben für die Materialzonen A, B, C, D und falls vorhanden E beschriebenen optionalen und/oder bevorzugten Ausführungsformen gelten analog auch bezüglich des erfindungsgemäßen Verfahrens und des erfindungsgemäßem Abgassystems.
Der SCR-Katalysator im erfindungsgemäßen Abgassystem, unabhängig davon, oberer auch einem Partikelfilter oder einem Durchflusssubstrat vorliegt, kann prinzipiell ausgewählt sein aus allen in der SCR-Reaktion von Stickoxiden mit Ammoniak aktiven Katalysatoren, insbesondere aus solchen, die dem Fachmann auf dem Gebiet der Autoabgaskatalyse als gebräuchlich bekannt sind. Dies schließt Katalysatoren vom Mischoxid-Typ ebenso ein, wie Katalysatoren auf Basis von Zeolithen, insbesondere von Übergangsmetall-ausgetauschten Zeolithen. In Ausführungsformen der vorliegenden Erfindung werden SCR- Katalysatoren, die einen kleinporigen Zeolithen mit einer maximalen Ringgröße von acht tetraedrischen Atomen und ein Übergangsmetall enthalten, eingesetzt. Solche SCR-Katalysatoren sind beispielsweise in W02008/106519 Al, WO2008/118434 Al und WO2008/132452 A2 beschrieben.
Daneben können aber auch groß- und mittelporige Zeolithe verwendet werden, wobei insbesondere solche vom Strukturtyp BEA in Frage kommen. So sind Eisen-BEA und Kupfer-BEA von Interesse.
Besonders bevorzugte Zeolithe gehören den Gerüsttypen BEA, AEI, AFX, CHA, KFI, ERI, LEV, MER oder DDR an und sind besonders bevorzugt mit Kobalt, Eisen, Kupfer oder Mischungen aus zwei oder drei dieser Metalle ausgetauscht.
Unter den Begriff Zeolithe fallen hier auch Molsiebe, die bisweilen auch als „zeolithähnliche" Verbindungen bezeichnet werden. Molsiebe sind bevorzugt, wenn sie einem der oben genannten Gerüsttypen angehören. Beispiele sind Silicaaluminiumphosphat-Zeolithe, die unter dem Begriff SAPO bekannt sind und Aluminiumphosphat-Zeolithe, die unter dem Begriff AIPO bekannt sind.
Auch diese sind insbesondere dann bevorzugt, wenn sie mit Kobalt, Eisen, Kupfer oder Mischungen aus zwei oder drei dieser Metalle ausgetauscht sind.
Bevorzugte Zeolithe sind weiterhin solche, die einen SAR (silica-to-alumina ratio)-Wert von 2 bis 100, insbesondere von 5 bis 50, aufweisen.
Die Zeolithe bzw. Molsiebe enthalten Übergangsmetall insbesondere in Mengen von 1 bis 10 Gew.-%, insbesondere 2 bis 5 Gew.-%, berechnet als Metalloxid, also beispielsweise als FezCh oder CuO. Bevorzugte Ausführungsformen der vorliegenden Erfindung enthalten als SCR- Katalysatoren mit Kupfer, Eisen oder Kupfer und Eisen ausgetauschte Zeolithe oder Molsiebe vom Beta-Typ (BEA), Chabazit-Typ (CHA), AEI, AFX oder vom Levyne-Typ (LEV). Entsprechende Zeolithe oder Molsiebe sind beispielsweise unter den Bezeichnungen ZSM-5, Beta, SSZ-13, SSZ-62, Nu- 3, ZK-20, LZ-132, SAPO-34, SAPO-35, AIPO-34 und AIPO-35 bekannt, siehe etwa US 6,709,644 und US 8,617,474.
In einer Ausführungsform des erfindungsgemäßen Abgassystems befindet sich vor dem SCR.- Katalysator eine Einspritzeinrichtung für Reduktionsmittel.
Die Einspritzvorrichtung kann vom Fachmann beliebig gewählt werden, wobei geeignete Vorrichtungen der Literatur entnommen werden können (siehe etwa T. Mayer, Feststoff- SCR- System auf Basis von Ammonium- carbamat, Dissertation, TU Kaiserslautern, 2005, sowie EP 1 561 919 Al). Der Ammoniak kann über die Einspritzvorrichtung als solches oder in Form einer Verbindung in den Abgasstrom eingebracht werden, aus der bei den Umgebungsbedingungen Ammoniak gebildet wird. Als solche kommen beispielsweise wässrige Lösungen von Harnstoff oder Ammoniumformiat in Frage, ebenso wie festes Ammoniumcarbamat. In der Regel wird das Reduktionsmittel bzw. ein Vorläufer davon in einem mitgeführten Behälter, der mit der Einspritzvorrichtung verbunden ist, vorrätig gehalten.
Die Figuren 1 und 2 zeigen Ausführungsformen des erfindungsgemäßen Katalysators mit den folgenden Bedeutungen:
(1) Trägersubstrat
(2) Materialzone A
(3) Materialzone B
(4) Materialzone C
(5) Materialzone D
(6) Materialzone E a und b bezeichnen die beiden Enden des Trägersubstrates, der Pfeil zeigt die Fließrichtung des Abgases bei der bestimmungsgemäßen Verwendung des Katalysators. Figur 1 zeigt einen erfindungsgemäßen Katalysator mit den Materialzonen A, B, C und D, wobei alle Materialzonen die gleiche Länge haben, nämlich 50% der Länge des Trägersubstrates.
Figur 2 zeigt einen erfindungsgemäßen Katalysator mit den Materialzonen A, B, C, D und E, wobei jeweils A und B, sowie C und D identisch sind.
Beispiel 1 a) Ein handelsübliches Durchflusssubstrat aus Cordierit wurde ausgehend von seinem ersten Ende auf 50% seiner Länge mit 65 g/ft3 Platin und Palladium im Gewichtsverhältnis 2: 1, geträgert auf 72,65 g/l eines mit Lanthanoxid stabilisierten Aluminiumoxids, sowie 40 g/l eines ß-Zeolithen beschichtet. b) Das gemäß a) erhaltene Durchflusssubstrat wurde ausgehend von seinem zweiten Ende auf 50% seiner Länge mit 65 g/ft3 Platin, geträgert auf 100 g/l eines mit 3 Gew.-% Bismutoxid dotierten Aluminiumoxids, sowie 40 g/l eines ß-Zeolithen beschichtet. c) Das gemäß b) erhaltene Durchflusssubstrat wurde über seine gesamte Länge mit 25 g/ft3 Platin und Palladium im Gewichtsverhältnis 14: 1, geträgert auf 60 g/l eines mit Lanthanoxid stabilisierten Aluminiumoxids beschichtet.
Die Gesamtbeladung des Katalysators mit Platin und Palladium ist 90 g/ft3. Im somit erhaltenen erfindungsgemäßen Katalysator Kl sind die Materialzonen C und D identisch und bilden auf den Materialzonen A und B eine zusammenhängende Schicht über die gesamte Länge des Durchflusssubstrates.
Vergleichsbeispiel 1 a) Ein handelsübliches Durchflusssubstrat aus Cordierit wurde über seine gesamte Länge mit 65 g/ft3 Platin und Palladium im Gewichtsverhältnis 2: 1, geträgert auf 72,65 g/l eines mit Lanthanoxid stabilisierten Aluminiumoxids, sowie 40 g/l eines ß-Zeolithen beschichtet. b) Das gemäß a) erhaltene Durchflusssubstrat wurde über seine gesamte Länge mit 25 g/ft3 Platin und Palladium im Gewichtsverhältnis 14: 1, geträgert auf 60 g/l eines mit Lanthanoxid stabilisierten Aluminiumoxids beschichtet.
Die Gesamtbeladung des Katalysators mit Platin und Palladium ist 90 g/ft3. Im somit erhaltenen Vergleichskatalysator VK1 sind die Materialzonen A und B, sowie C und D jeweils identisch. Der Katalysator VK1 enthält kein Bismut.
Beispiel 2 a) Ein handelsübliches Durchflusssubstrat aus Cordierit wurde ausgehend von seinem ersten Ende auf 50% seiner Länge mit 40 g/ft3 Platin und Palladium im Gewichtsverhältnis 1 :3, geträgert auf Ce-Titanoxid beschichtet. b) Das gemäß a) erhaltene Durchflusssubstrat wurde ausgehend von seinem zweiten Ende auf 50% seiner Länge mit 65 g/ft3 Platin, geträgert auf 100 g/l eines mit 3 Gew.-% Bismutoxid dotierten Aluminiumoxids, sowie 40 g/l eines ß-Zeolithen beschichtet. c) Das gemäß b) erhaltene Durchflusssubstrat wurde ausgehend von seinem ersten Ende auf 50% seiner Länge mit 70 g/ft3 Platin und Palladium im Gewichtsverhältnis 2: 1, geträgert auf 62,28 g/l Aluminiumoxid und 25 g/l ß- Zeolith beschichtet. d) Das gemäß c) erhaltene Durchflusssubstrat wurde ausgehend von seinem zweiten Ende auf 50% seiner Länge mit 25 g/ft3 Platin und Palladium im Gewichtsverhältnis 14: 1 auf 60 g/l eines mit Lanthanoxid stabilisierten Aluminiumoxids beschichtet.
Die Gesamtbeladung des Katalysators mit Platin und Palladium ist 100 g/ft3. Der somit erhaltene erfindungsgemäßen Katalysator wird nachstehend K2 genannt. Vergleichsbeispiel 2 a) Ein handelsübliches Durchflusssubstrat aus Cordierit wurde übers eine gesamte Länge mit 40 g/ft3 Platin und Palladium im Gewichtsverhältnis 1 :3, geträgert auf Ce-Titanoxid beschichtet. b) Das gemäß a) erhaltene Durchflusssubstrat wurde übers eine gesamte Länge mit 70 g/ft3 Platin und Palladium im Gewichtsverhältnis 2: 1, geträgert auf 62,28 g/l Aluminiumoxid und 25 g/l ß-Zeolith beschichtet. Die Gesamtbeladung des Katalysators mit Platin und Palladium ist 110 g/ft3. Im somit erhaltenen Vergleichskatalysator VK2 sind die Materialzonen A und B, sowie C und D jeweils identisch. Der Katalysator VK2 enthält kein Bismut.
Beispiel 3 a) Ein handelsübliches Durchflusssubstrat aus Cordierit wurde über seine gesamte Länge mit 25 g/ft3 Platin, geträgert auf 25 g/l eines mit 3 Gew.-% Bismutoxid dotierten Aluminiumoxids beschichtet. b) Das gemäß a) erhaltene Durchflusssubstrat wurde über seine gesamte Länge mit 40 g/ft3 Platin und Palladium im Gewichtsverhältnis 2: 1, geträgert auf 110 g/l Aluminiumoxid beschichtet. c) Das gemäß b) erhaltene Durchflusssubstrat wurde ausgehend von seinem zweiten Ende auf 50% seiner Länge mit 50 g/ft3 Platin und Palladium im Gewichtsverhältnis 12: 1 auf 50 g/l eines mit Siliziumdioxid stabilisierten Aluminiumoxids beschichtet.
Die Gesamtbeladung des Katalysators mit Platin und Palladium ist 90 g/ft3. Der somit erhaltene erfindungsgemäßen Katalysator wird nachstehend K3 genannt. Darin sind die Materialzonen A und B, sowie C und D jeweils identisch, wobei die Materialzonen A und B Bismut enthalten. Zusätzlich trägt Materialzone D Materialzone E als weiter Materialzone.
Vergleichsversuch 1
Figur 3 zeigt die NC /NOx Verhältnisse von Kl und VK1 in [%] nach dem Katalysator gemessen an einem Motorprüfstand während eines NEDC Zyklus. Die schwarze Kurve zeigt das Ergebnis von VK1, die graue Kurve die von Kl. Die graue Kurve von Kl zeigt ein höheres NOz/NOx Verhältnis vor allem in dem Zyklus zwischen ca. 1125 Sekunden und 1500 Sekunden.
Vergleichsversuch 2 Figur 4 zeigt die NOz/NOx Verhältnisse von K2 und VK2 in [%] nach dem Katalysator gemessen an einem Motorprüfstand während eines NEDC Zyklus. Die schwarze Kurve zeigt das Ergebnis von VK2, die graue Kurve die von K2. Die graue Kurve zeigt ein höheres NO2/NOX Verhältnis.

Claims

Patentansprüche
1. Katalysator, der ein Trägersubstrat mit einer sich zwischen den Enden a und b erstreckenden Länge L, sowie vier Materialzonen A, B, C und D umfasst, wobei
• Materialzone A sich ausgehend vom Ende a über einen Teil der Länge L erstreckt und Platin und kein Palladium, Palladium und kein Platin oder Platin und Palladium umfasst;
• Materialzone B sich ausgehend vom Ende b über einen Teil der Länge L erstreckt und Platin und Bismut umfasst; wobei LA + LB = L gilt, wobei LA die Länge der Materialzone A und LB die Länge der Materialzone B ist;
• Materialzone C sich ausgehend vom Ende a über einen Teil der Länge L erstreckt und Platin und kein Palladium, Palladium und kein Platin oder Platin und Palladium umfasst;
• Materialzone D sich ausgehend vom Ende b über einen Teil der Länge L erstreckt und Platin und kein Palladium, Palladium und kein Platin oder Platin und Palladium umfasst; wobei Lc + LD = L gilt, wobei Lc die Länge der Materialzone C und LD die Länge der Materialzone D ist; und wobei die Materialzonen C und D über den Materialzonen A und B angeordnet sind.
2. Katalysator gemäß Anspruch 1, dadurch gekennzeichnet, dass Materialzone A Platin und Palladium umfasst.
3. Katalysator gemäß Anspruch 1 und/oder 2, dadurch gekennzeichnet, dass Materialzone A kein Bismut umfasst.
4. Katalysator gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Materialzone B Bismut in Form von Bismutoxid (BizCh) oder in Form eines Kompositoxides mit Aluminium oder mit Aluminium und Silizium umfasst.
5. Katalysator gemäß Anspruch 4, dadurch gekennzeichnet, dass Bismut im Kompositoxid mit Aluminium oder mit Aluminium und Silizium in einer Menge von 1 bis 15 Gew.-%, bezogen auf das Kompositoxid und berechnet als elementares Bismut vorliegt.
6. Katalysator gemäß Anspruch 4 und/oder 5, dadurch gekennzeichnet, dass das Kompositoxid aus Bismut und Aluminium oder aus Bismut und Aluminium und Silizium Trägermaterial für das Platin ist.
7. Katalysator gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Materialzone B kein Palladium umfasst.
8. Katalysator gemäß einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Materialzone C Platin und kein Palladium oder Platin und Palladium umfasst.
9. Katalysator gemäß einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass Materialzone D Platin und kein Palladium oder Platin und Palladium umfasst.
10. Katalysator gemäß einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Materialzonen C und D identisch sind.
11. Katalysator gemäß einem oder mehreren der Ansprüche 1 und 4 bis 10, dadurch gekennzeichnet, dass Materialzone A Bismut und Platin und kein Palladium umfasst.
12. Katalysator gemäß Anspruch 11, dadurch gekennzeichnet, dass die Materialzonen A und B identisch sind.
13. Katalysator gemäß Anspruch 12, dadurch gekennzeichnet, dass die Materialzonen A und B und die Materialzonen C und D jeweils identisch sind.
14. Katalysator gemäß einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass er eine Materialzone E umfasst, die sich ausgehend vom Ende b des Trägersubstrates über einen Teil der Länge L über Materialzone D erstreckt und Platin und kein Palladium, Palladium und kein Platin oder Platin und Palladium umfasst.
15. Katalysator gemäß Anspruch 1, dadurch gekennzeichnet, dass er ein Trägersubstrat mit einer sich zwischen den Enden a und b erstreckenden Länge L, sowie vier Materialzonen A, B, C und D umfasst, wobei
• Materialzone A sich ausgehend vom Ende a über 40 bis 60 % der Länge L erstreckt und Platin und Palladium im Gewichtsverhältnis 3: 1 bis 1 :3 umfasst;
• Materialzone B sich ausgehend vom Ende b über 40 bis 60 % der Länge L erstreckt und Platin geträgert auf einem Kompositoxid aus Aluminium und Bismut oder aus Aluminium, Silizium und Bismut umfasst; wobei LA + LB = L gilt, wobei LA die Länge der Materialzone A und LB die Länge der Materialzone B ist;
• Materialzone C sich ausgehend vom Ende a über 40 bis 60 % der Länge L erstreckt und Platin und Palladium im Gewichtsverhältnis 14: 1 bis 2: 1 umfasst;
• Materialzone D sich ausgehend vom Ende b über 40 bis 60 % der Länge L erstreckt und Platin und Palladium im Gewichtsverhältnis 14: 1 bis 2: 1 umfasst; wobei Lc + LD = L gilt, wobei Lc die Länge der Materialzone C und LD die Länge der Materialzone D ist; und wobei die Materialzonen C und D über den Materialzonen A und B angeordnet sind.
16. Katalysator gemäß Anspruch 1, dadurch gekennzeichnet, dass er ein Trägersubstrat mit einer sich zwischen den Enden a und b erstreckenden Länge L, sowie fünf Materialzonen A, B, C, D und E umfasst, wobei • Materialzone A und Materialzone B identisch sind und Platin geträgert auf einem Kompositoxid aus Aluminium und Bismut oder aus Aluminium, Silizium und Bismut umfassen; wobei LA + LB = L gilt, wobei LA die Länge der Materialzone A und LB die Länge der Materialzone B ist;
• Materialzone C und Materialzone D identisch sind und Platin und Palladium im Gewichtsverhältnis 14: 1 bis 2: 1 umfassen; wobei Lc + LD = L gilt, wobei Lc die Länge der Materialzone C und LD die Länge der Materialzone D ist; und
• Materialzone E Platin und Palladium im Gewichtsverhältnis 14: 1 bis 2: 1 umfasst; und wobei die Materialzonen C und D über den Materialzonen A und B und Materialzone E über Materialzone D angeordnet sind.
17. Verfahren zur Reinigung von Abgasen von Kraftfahrzeugen, die mit mager betriebenen Motoren betrieben werden, dadurch gekennzeichnet, dass das Abgas über einen Katalysator gemäß einem oder mehreren der Ansprüche 1 bis 16 geleitet wird, wobei das Abgas am Ende a in den Katalysator ein- und beim Ende b aus dem Katalysator austritt.
18. Abgassystem, das a) einen Katalysator gemäß einem oder mehreren der Ansprüche 1 bis 16 und b) einen SCR-Katalysator umfasst.
PCT/EP2021/076630 2020-09-30 2021-09-28 Bismut enthaltender dieseloxidationskatalysator WO2022069465A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/246,071 US20230356204A1 (en) 2020-09-30 2021-09-28 Bismut containing dieseloxidation catalyst
KR1020237014836A KR20230079420A (ko) 2020-09-30 2021-09-28 비스무트를 함유하는 디젤 산화 촉매
EP21786132.7A EP4221871A1 (de) 2020-09-30 2021-09-28 Bismut enthaltender dieseloxidationskatalysator
JP2023514094A JP2023542828A (ja) 2020-09-30 2021-09-28 ディーゼル酸化触媒を含有するビスマット
CN202180048821.0A CN115803104A (zh) 2020-09-30 2021-09-28 含铋的柴油机氧化催化剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20199186 2020-09-30
EP20199186.6 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022069465A1 true WO2022069465A1 (de) 2022-04-07

Family

ID=72709055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/076630 WO2022069465A1 (de) 2020-09-30 2021-09-28 Bismut enthaltender dieseloxidationskatalysator

Country Status (6)

Country Link
US (1) US20230356204A1 (de)
EP (1) EP4221871A1 (de)
JP (1) JP2023542828A (de)
KR (1) KR20230079420A (de)
CN (1) CN115803104A (de)
WO (1) WO2022069465A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2607193A (en) * 2021-05-27 2022-11-30 Johnson Matthey Plc Adsorbent materials

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911961A (en) 1994-12-06 1999-06-15 Ict Co., Ltd. Catalyst for purification of diesel engine exhaust gas
US20030027719A1 (en) 2001-08-03 2003-02-06 Hisaya Kawabata Oxidation catalyst
JP2003093885A (ja) * 2001-09-25 2003-04-02 Mazda Motor Corp 排気ガス浄化用触媒、及び触媒の製造方法
US6709644B2 (en) 2001-08-30 2004-03-23 Chevron U.S.A. Inc. Small crystallite zeolite CHA
EP1561919A1 (de) 2004-02-05 2005-08-10 Haldor Topsoe A/S Einspritzdüse und Verfahren zur gleichmässige Einspritzung eines Fluidstroms in ein Gasstrom mittels einer Einspritzdüse bei hoher Temperatur
EP1820561A1 (de) 2006-02-20 2007-08-22 Mazda Motor Corporation Dieselpartikelfilter enthaltend eine katalytische Beschichtung
US20080125313A1 (en) * 2006-11-27 2008-05-29 Fujdala Kyle L Engine Exhaust Catalysts Containing Palladium-Gold
EP1927399A2 (de) 2006-11-20 2008-06-04 Nanostellar, Inc. Platinum-Wismut-Katalysatoren zur Behandlung von Motorenabgasen
WO2008106519A1 (en) 2007-02-27 2008-09-04 Basf Catalysts Llc Copper cha zeolite catalysts
WO2008118434A1 (en) 2007-03-26 2008-10-02 Pq Corporation Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
WO2008132452A2 (en) 2007-04-26 2008-11-06 Johnson Matthey Public Limited Company Transition metal/zeolite scr catalysts
US20120302439A1 (en) 2009-12-31 2012-11-29 Nanostellar, Inc. Engine exhaust catalysts doped with bismuth or manganese
US8617474B2 (en) 2008-01-31 2013-12-31 Basf Corporation Systems utilizing non-zeolitic metal-containing molecular sieves having the CHA crystal structure
WO2017064498A1 (en) 2015-10-14 2017-04-20 Johnson Matthey Public Limited Company Oxidation catalyst for a diesel engine exhaust
EP3501650A1 (de) * 2017-12-21 2019-06-26 Johnson Matthey Japan Godo Kaisha Oxidationskatalysator für dieselmotorabgasanlage
EP3501637A1 (de) * 2017-12-21 2019-06-26 Johnson Matthey Japan Godo Kaisha Oxidationskatalysator für dieselmotorabgasanlage

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911961A (en) 1994-12-06 1999-06-15 Ict Co., Ltd. Catalyst for purification of diesel engine exhaust gas
US20030027719A1 (en) 2001-08-03 2003-02-06 Hisaya Kawabata Oxidation catalyst
US6709644B2 (en) 2001-08-30 2004-03-23 Chevron U.S.A. Inc. Small crystallite zeolite CHA
JP2003093885A (ja) * 2001-09-25 2003-04-02 Mazda Motor Corp 排気ガス浄化用触媒、及び触媒の製造方法
EP1561919A1 (de) 2004-02-05 2005-08-10 Haldor Topsoe A/S Einspritzdüse und Verfahren zur gleichmässige Einspritzung eines Fluidstroms in ein Gasstrom mittels einer Einspritzdüse bei hoher Temperatur
EP1820561A1 (de) 2006-02-20 2007-08-22 Mazda Motor Corporation Dieselpartikelfilter enthaltend eine katalytische Beschichtung
EP1927399A2 (de) 2006-11-20 2008-06-04 Nanostellar, Inc. Platinum-Wismut-Katalysatoren zur Behandlung von Motorenabgasen
US20080125313A1 (en) * 2006-11-27 2008-05-29 Fujdala Kyle L Engine Exhaust Catalysts Containing Palladium-Gold
WO2008106519A1 (en) 2007-02-27 2008-09-04 Basf Catalysts Llc Copper cha zeolite catalysts
WO2008118434A1 (en) 2007-03-26 2008-10-02 Pq Corporation Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
WO2008132452A2 (en) 2007-04-26 2008-11-06 Johnson Matthey Public Limited Company Transition metal/zeolite scr catalysts
US8617474B2 (en) 2008-01-31 2013-12-31 Basf Corporation Systems utilizing non-zeolitic metal-containing molecular sieves having the CHA crystal structure
US20120302439A1 (en) 2009-12-31 2012-11-29 Nanostellar, Inc. Engine exhaust catalysts doped with bismuth or manganese
WO2017064498A1 (en) 2015-10-14 2017-04-20 Johnson Matthey Public Limited Company Oxidation catalyst for a diesel engine exhaust
US20190299159A1 (en) * 2015-10-14 2019-10-03 Johnson Matthey Public Limited Company Oxidation catalyst for a diesel engine exhaust
EP3501650A1 (de) * 2017-12-21 2019-06-26 Johnson Matthey Japan Godo Kaisha Oxidationskatalysator für dieselmotorabgasanlage
EP3501637A1 (de) * 2017-12-21 2019-06-26 Johnson Matthey Japan Godo Kaisha Oxidationskatalysator für dieselmotorabgasanlage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2607193A (en) * 2021-05-27 2022-11-30 Johnson Matthey Plc Adsorbent materials

Also Published As

Publication number Publication date
CN115803104A (zh) 2023-03-14
JP2023542828A (ja) 2023-10-12
US20230356204A1 (en) 2023-11-09
EP4221871A1 (de) 2023-08-09
KR20230079420A (ko) 2023-06-07

Similar Documents

Publication Publication Date Title
EP3103979B1 (de) Katalysator zur entfernung von stickoxiden aus dem abgas von dieselmotoren
EP2095865B1 (de) Vorrichtung zur Verminderung von Dibenzo-Dioxin, Dibenzo-Furan und Partikel-Emissionen
DE102014105736A1 (de) Motor mit Fremdzündung und Abgassystem, das ein katalysiertes in Zonen beschichtetes Filtersubstrat umfasst
DE102016118542A1 (de) Einen russkatalysator und einen scr-katalysator aufweisendes katalytisches filter
EP3774036A1 (de) Beschichteter wandflussfilter
DE102017129976A1 (de) NOx-Adsorberkatalysator
EP3576865B1 (de) Katalysator zur reinigung der abgase von dieselmotoren
DE102014107669A1 (de) Katalysiertes filter zum behandeln von abgas
EP3442687A1 (de) Partikelfilter mit scr-aktiver beschichtung
DE102017116461A1 (de) Katalysator-bindemittel für filtersubstrate
DE102014107667A1 (de) Katalysiertes filter zum behandeln von abgas
DE102012222801A1 (de) Katalysierter Substratmonolith
DE102017111879A1 (de) Vanadiumkatalysatoren für einen hohen NO₂-Gehalt am Motorausgang aufweisende Systeme
DE102018107376A1 (de) Drei Schichten umfassender NOx-Adsorberkatalysator
DE102018107379A1 (de) NOx-Adsorberkatalysator
DE102016123120A1 (de) Dieseloxidationskatalysator mit einer Einfangregion für Abgasverunreinigungen
DE102018107375A1 (de) NOx-Adsorberkatalysator
DE102017122846A1 (de) NOx-Adsorberkatalysator
DE102018107372A1 (de) NOx -ADSORBERKATALYSATOR
DE102017122847A1 (de) NOx-Adsorberkatalysator
DE102017109408A1 (de) NOx - ADSORBERKATALYSATOR
DE102018107371A1 (de) NOx -ADSORBERKATALYSATOR
EP3695902B1 (de) Katalysator zur reduktion von stickoxiden
EP2090352B1 (de) Vorrichtung zur Verminderung von Dibenzo-Dioxin- und Dibenzo-Furan-Emissionen aus übergangsmetallhaltigen Katalysatoren
WO2022069465A1 (de) Bismut enthaltender dieseloxidationskatalysator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21786132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023514094

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023005954

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237014836

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021786132

Country of ref document: EP

Effective date: 20230502

ENP Entry into the national phase

Ref document number: 112023005954

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230330