WO2020073398A1 - 超薄Ni-Fe-MOF纳米片及其制备方法和应用 - Google Patents

超薄Ni-Fe-MOF纳米片及其制备方法和应用 Download PDF

Info

Publication number
WO2020073398A1
WO2020073398A1 PCT/CN2018/114307 CN2018114307W WO2020073398A1 WO 2020073398 A1 WO2020073398 A1 WO 2020073398A1 CN 2018114307 W CN2018114307 W CN 2018114307W WO 2020073398 A1 WO2020073398 A1 WO 2020073398A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
mof
thin
preparation
nanosheets
Prior art date
Application number
PCT/CN2018/114307
Other languages
English (en)
French (fr)
Inventor
郎建平
李飞龙
黄小青
倪春燕
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US17/252,711 priority Critical patent/US11396521B2/en
Publication of WO2020073398A1 publication Critical patent/WO2020073398A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/085Organic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the invention relates to the technical field of metal organic framework materials, in particular to an ultra-thin Ni-Fe-MOF nano-sheet, its preparation method and application.
  • the strategies for preparing 2D ultra-thin MOF materials are mainly divided into “top-down” and “bottom-up”.
  • the former is mainly through mechanical grinding and ultrasonic peeling (see Y. Peng, Y. Li, Y. Ban, H. Jin, W. Jiao, X. Liu, W. Yang, Science 2014, 346, 1356-1359; PZLi, Y. Maeda, Q. Xu, Chem. Commun. 2011, 47, 8436-8438.),
  • the disadvantage is that the yield of the product is low (-15%), the uniformity is poor, and the peeled nanosheets are often Broken and re-stacked phenomena will occur.
  • the technical problem to be solved by the present invention is to provide a preparation method of ultra-thin Ni-Fe-MOF nano-sheets, which does not require the introduction of surfactants, the product surface is clean and easy to clean, and can realize a large amount of 2D ultra-thin MOF material synthesis .
  • the organic ligand is dissolved in an organic solvent, and the resulting solution is added dropwise to an aqueous solution in which nickel salts and iron salts are dissolved. After mixing uniformly, the ultra-thin Ni is obtained by reacting at 140 to 160 ° C for 3 to 6 hours.
  • -Fe-MOF nanosheets
  • the metal salt and the organic ligand have different solubility in water and organic solvent, in order to obtain a uniform mixed solution, the reactants should be completely dissolved in the solvent to prepare a corresponding solution.
  • the molar ratio of nickel ions to iron ions in the reaction solution is 5: 1 to 5: 2. More preferably, the molar ratio of nickel ions to iron ions in the reaction solution is 10: 3.
  • the volume ratio of water to organic solvent is 1 to 2: 1. More preferably, the volume ratio of water to organic solvent is 1: 1.
  • the reaction temperature is 150 ° C and the reaction time is 3h.
  • the preparation method further includes steps of washing, centrifuging and drying the product obtained by the reaction;
  • the washing solvent is deionized water and ethanol;
  • the rotation speed of the centrifugation is 8000-10000rpm, and the centrifugation time is 3- 5min;
  • the drying temperature is 50 ⁇ 60 °C, and the drying time is 10 ⁇ 12h.
  • the rotation speed of the centrifugation is 8000 rpm, and the centrifugation time is 3 min; the drying is drying at 60 ° C. for 12 h in a blast drying cabinet.
  • Another object of the present invention is to provide an ultra-thin Ni-Fe-MOF nanosheet prepared by the foregoing preparation method, the nanosheet having the chemical formula [Ni 2 Fe (OH) 2 (1,4-BDC) 2 (H 2 O) 4 (SO 4 ) 0.5 ] ⁇ nH 2 O, where Ni stands for nickel ion, Fe stands for iron ion, OH stands for bridged hydroxyl ligand, and 1,4-BDC stands for deprotonated p-benzene
  • Ni stands for nickel ion
  • Fe stands for iron ion
  • OH stands for bridged hydroxyl ligand
  • 1,4-BDC stands for deprotonated p-benzene
  • the dicarboxylic acid ligand the former H 2 O represents water molecules participating in the coordination, the latter H 2 O represents free water molecules, and SO 4 represents sulfate.
  • the present invention also provides the application of the aforementioned ultra-thin Ni-Fe-MOF nanosheets as an electrocatalyst for catalyzing oxygen evolution reaction (OER).
  • OER oxygen evolution reaction
  • the target product can be obtained by one-step solvothermal reaction, the operation is simple, the reaction time is short, and the reaction can be completed in only a few hours.
  • the present invention adopts a "bottom-up" wet chemical synthesis method, and the obtained product has uniform morphology and high yield.
  • the present invention can realize the large-scale synthesis of 2D ultra-thin MOF materials.
  • a gram-level target product can be collected in a single reaction.
  • the 2D ultra-thin MOF material prepared by the present invention can be used as an electrocatalyst to catalyze the OER reaction, showing excellent catalytic performance.
  • the overpotential value is only 221 mV, and the Tafel slope It is also as low as 56.0mV ⁇ dec -1 , which is obviously superior to commercial Ir / C materials.
  • Figure 1 is a scanning electron microscope (SEM) image of ultra-thin Ni-Fe-MOF nanosheets
  • Figure 2 is a transmission electron microscope (TEM) image of ultra-thin Ni-Fe-MOF nanosheets
  • Figure 3 is an X-ray powder diffraction (PXRD) diagram of ultra-thin Ni-Fe-MOF nanosheets
  • Figure 4 is an infrared spectrum (IR) diagram of ultra-thin Ni-Fe-MOF nanosheets
  • EDX energy dispersive X-ray spectrum
  • AFM atomic force microscope
  • XPS X-ray photoelectron spectroscopy
  • Figure 9 is the SEM images (a), TEM images (b and c), high-angle circular dark field images of Ni-MOF nanosheets and the corresponding element distribution maps (d) and EDX images (e);
  • Figure 10 is a PXRD diagram of Ni-MOF nanosheets
  • Figure 11 is an IR diagram of Ni-MOF nanosheets
  • Figure 12 is a photograph of the dispersion and powder of ultra-thin Ni-Fe-MOF nanosheets prepared by the expansion reaction;
  • Fig. 15 is (a) polarization curve and (b) Tafel slope graph of ultrathin Ni-Fe-MOF nanosheets catalyzing OER reaction;
  • 16 is a histogram of over-potential and current density when ultra-thin Ni-Fe-MOF nanosheets catalyze OER reaction;
  • Figure 17 is a timing diagram of ultrathin Ni-Fe-MOF nanosheets catalyzing OER reaction.
  • the ultra-thin Ni-Fe-MOF nanosheets have a uniform morphology and high quality and yield.
  • the powder diffraction pattern (PXRD) of ultra-thin Ni-Fe-MOF nanoplates is in agreement with the simulated MOF materials (CCDC No. 638866 and JCPDS No. 00-035-1677).
  • the infrared spectra of ultra-thin Ni-Fe-MOF nanosheets also confirmed the presence of hydroxyl groups, terephthalate and sulfate in the synthesized ultra-thin Ni-Fe-MOF nanosheets.
  • ultra-thin Ni-Fe-MOF nanosheets are composed of Ni, Fe, C, O, and S elements, and each element is evenly distributed.
  • the thickness of ultra-thin Ni-Fe-MOF nanosheets is between 1.67 nm and 2.58 nm.
  • the photoelectron spectroscopy (XPS) of ultra-thin Ni-Fe-MOF nanosheets shows that the valences of Ni, Fe, and S are +2, +3, and +2, respectively.
  • Ni nickel ion
  • OH bridged hydroxyl group
  • 1,4-BDC represents a deprotonated terephthalic acid ligand
  • H 2 O water molecules participating in coordination
  • H 2 O free water molecules
  • Ni-MOF material exhibits a two-dimensional sheet-like morphology, mainly composed of Ni, C and O elements, and each element is evenly distributed.
  • the powder diffraction pattern (PXRD) of Ni-MOF nanosheets is in agreement with the simulated MOF materials (CCDC No. 638866 and JCPDS No. 00-035-1677).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Iron (AREA)

Abstract

提供一种超薄Ni-Fe-MOF纳米片的制备方法,包括以下步骤:将有机配体溶于有机溶剂中,得到的溶液滴加到溶有镍盐和铁盐的水溶液中,混合均匀后,在密闭反应釜中于140~160℃下反应3~6小时,即得到所述超薄Ni-Fe-MOF纳米片;其中,有机配体为对苯二甲酸和/或对苯二甲酸二钠盐,有机溶剂为N,N-二甲基乙酰胺和/或N,N-二甲基甲酰胺。还提供了超薄Ni-Fe-MOF纳米片及其应用。该制备方法无需引入表面活性剂,产物表面洁净易清洗,能够实现2D超薄MOF材料的大量合成。

Description

超薄Ni-Fe-MOF纳米片及其制备方法和应用 技术领域
本发明涉及金属有机框架材料技术领域,具体涉及一种超薄Ni-Fe-MOF纳米片及其制备方法和应用。
背景技术
随着石油资源的过度使用,能源枯竭和环境污染问题变得日益严重,氢气作为一种清洁能源而备受关注。高效的能源转化及储存体系成为了目前研究的热点,例如电化学领域中的燃料电池和电解水等,其中通过电解水来生产氢气在理论上具有很高的研究价值,氧气析出反应(4OH -→2H 2O+O 2+4e -)作为其中一个重要的半反应,其缓慢的动力学往往限制了体系的整体效率。目前大部分的电催化剂都是基于贵金属材料,而对于非贵金属尤其是镍铁基的材料来说,如何提高活性位点的本征活性和增加活性位点数目已经成为该研究方向的主要问题。金属有机框架(MOF)材料作为一种新型的多孔材料,因其高比表面积,丰富可调的化学结构以及多样的金属位点和官能基团目前已经被广泛地应用于气体的分离储存,生物传感,光电催化等领域。相比于传统的晶体MOF材料,二维(2D)超薄MOF材料的优势在于不仅能够暴露更多的活性位点,还能促进物质传输和电子转移,在电催化领域具有潜在的应用价值。但是制备方法的局限性使其未能得到广泛而深入的研究,主要困难在于如何在保证层内结构完整的同时有效地打破层与层之间的结合作用。
目前,制备2D超薄MOF材料的策略主要分为“自上而下”和“自下而上”。前者主要是通过机械研磨和超声剥离的手段(参见Y.Peng,Y.Li,Y.Ban,H.Jin,W.Jiao,X.Liu,W.Yang,Science 2014,346,1356-1359;P.Z.Li,Y. Maeda,Q.Xu,Chem.Commun.2011,47,8436-8438.),但是缺点在于产物的产率较低(~15%),均一性较差,剥离的纳米片经常会发生破碎和重新堆叠现象。与“自上而下”的策略相比,“自下而上”的湿化学合成方法理论上更容易实现2D超薄MOF材料的大规模合成。然而传统的“自下而上”的合成策略往往需要借助基底材料和表面活性剂的辅助(参见J.Duan,S.Chen,C.Zhao,Nat.Co mmun.2017,8,15341-15348;M.Jahan,Z.Liu,K.P.Loh,Adv.Funct.Mat er.2013,23,5363-5372;M.Zhao,Y.Wang,Q.Ma,Y.Huang,X.Zhang,J.Ping,Z.Zhang,Q.Lu,Y.Yu,H.Xu,Y.Zhao,H.Zhang,Adv.Mater.2015,27,7372-7378),制备分散的2D超薄MOF纳米片仍比较困难,而且产物中残留的表面活性剂很难清除干净,这在很大程度上限制了这类材料的应用。
因此,设计一种简单有效,而且能低成本大规模制备高质量、高催化活性的2D超薄MOF材料的方法,不仅对其在电化学方面的基础研究有着重要的意义,还能够有效地推动MOF材料在能源相关领域的实际应用。
发明内容
本发明要解决的技术问题是提供一种超薄Ni-Fe-MOF纳米片的制备方法,该制备方法无需引入表面活性剂,产物表面洁净易清洗,还能够实现2D超薄MOF材料的大量合成。
为了解决上述技术问题,本发明提供了一种超薄Ni-Fe-MOF纳米片的制备方法,包括以下步骤:
将有机配体溶于有机溶剂中,得到的溶液滴加到溶有镍盐和铁盐的水溶液中,混合均匀后,在140~160℃下反应3~6小时,即得到所述超薄Ni-Fe-MOF纳米片;
其中,所述有机配体为对苯二甲酸和/或对苯二甲酸二钠盐,所述有机溶剂为N,N-二甲基乙酰胺(DMAC)和/或N,N-二甲基甲酰胺(DMF)。
本发明中,由于金属盐和有机配体在水和有机溶剂中具有不同溶解性,为 了得到均匀的混合溶液,应预先将反应物分别用溶剂完全溶解配成相应溶液。
本发明中,在将两种溶液进行混合时为避免产生大量的絮状沉淀,应遵循将溶有有机配体的有机溶液加入溶有金属盐的水溶液中的添加顺序。
本发明中,由于两种溶液混合时会有明显的发热现象,滴加时要缓慢,边滴加边搅拌均匀。
作为优选,所述镍盐为四水合醋酸镍和/或六水合硝酸镍,所述铁盐为七水合硫酸亚铁。
作为优选,反应液中镍离子与铁离子的摩尔比为5:1~5:2。更优选地,反应液中镍离子与铁离子的摩尔比为10:3。
作为优选,反应液中铁离子的浓度为1.67~3.33mmol/L。更优选地,反应液中镍离子的浓度为8.33mmol/L,铁离子的浓度为2.50mmol/L,对苯二甲酸的浓度为4.17mmol/L。
作为优选,水和有机溶剂的体积比为1~2:1。更优选地,水和有机溶剂的体积比为1:1。
作为优选,所述反应的温度为150℃,反应时间为3h。
作为优选,所述制备方法还包括将反应得到的产物洗涤、离心和干燥的步骤;所述洗涤的溶剂为去离子水和乙醇;所述离心的转速为8000~10000rpm,离心的时间为3~5min;所述干燥的温度为50~60℃,干燥的时间为10~12h。更优选的,所述离心的转速为8000rpm,离心的时间为3min;所述干燥是在鼓风干燥箱中60℃干燥12h。
本发明的另一目的在于提供一种由前述的制备方法制得的超薄Ni-Fe-MOF纳米片,该纳米片的化学式为[Ni 2Fe(OH) 2(1,4-BDC) 2(H 2O) 4(SO 4) 0.5]·nH 2O,其中,Ni代表镍离子,Fe代表铁离子,OH代表桥联的羟基配体,1,4-BDC代表去质子化的对苯二甲酸配体,前一个H 2O代表参与配位的水分子,后一个H 2O代表游离的水分子,SO 4代表于硫酸根。
此外,本发明还提供了前述的超薄Ni-Fe-MOF纳米片作为电催化剂催化析氧反应(OER)的应用。
本发明的有益效果:
1.本发明通过溶剂热反应一步即可得到目标产物,操作简单,反应时间短,只需数小时就可以使反应进行完全。
2.本发明采用“自下而上”的湿化学合成方法,得到的产物形貌均匀,产率高。
3.本发明在制备过程中不引入表面活性剂进行形貌调控,因此产物表面洁净易清洗。
4.本发明能够实现2D超薄MOF材料的大量合成,在实验室规模下,单次反应就能够收集到克级的目标产物。
5.本发明制备的2D超薄MOF材料可作为电催化剂来催化OER反应,表现出优异的催化性能,在10mA·cm -2的电流密度下,过电势的值仅为221mV,塔菲尔斜率也低至56.0mV·dec -1,明显优于商业的Ir/C材料。
附图说明
图1为超薄Ni-Fe-MOF纳米片的扫描电镜(SEM)图;
图2为超薄Ni-Fe-MOF纳米片的透射电镜(TEM)图;
图3为超薄Ni-Fe-MOF纳米片的X-射线粉末衍射(PXRD)图;
图4为超薄Ni-Fe-MOF纳米片的红外光谱(IR)图;
图5为超薄Ni-Fe-MOF纳米片的能量色散X射线光谱(EDX)图;
图6为超薄Ni-Fe-MOF纳米片的高角环形暗场图像及相应的元素分布图;
图7为超薄Ni-Fe-MOF纳米片的原子力显微镜(AFM)图;
图8为超薄Ni-Fe-MOF纳米片的X射线光电子能谱(XPS)图;
图9为Ni-MOF纳米片的SEM图(a),TEM图(b和c),高角环形暗场图像及相应的元素分布图(d)和EDX图(e);
图10为Ni-MOF纳米片的PXRD图;
图11为Ni-MOF纳米片的IR图;
图12为通过扩大反应制备得到的超薄Ni-Fe-MOF纳米片的分散液及粉末的照片;
图13为通过扩大反应制备得到的超薄Ni-Fe-MOF纳米片的TEM图;
图14为通过扩大反应制备得到的超薄Ni-Fe-MOF纳米片的XRD图;
图15为超薄Ni-Fe-MOF纳米片催化OER反应时的(a)极化曲线和(b)塔菲尔斜率图;
图16为超薄Ni-Fe-MOF纳米片催化OER反应时过电势和电流密度的柱状图;
图17为超薄Ni-Fe-MOF纳米片催化OER反应时计时电势图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1:超薄Ni-Fe-MOF纳米片的制备
分别称取24.8mg(0.1mmol)的四水合醋酸镍和7.38mg(0.03mmol)的七水合硫酸亚铁固体溶于6mL去离子水中配成溶液A,称取8.3mg有机配体对苯二甲酸溶于6mL DMAC中配成溶液B,在搅拌条件下,将溶液B缓慢加入溶液A中混合均匀,然后将混合溶液转入含有聚四氟乙烯内衬的不锈钢反应釜中,密封后置于烘箱中,在150℃下反应3h,反应结束后自然冷却至室温,经去离子水和乙醇洗涤,离心分离和烘干后得到黄色粉末状的超薄Ni-Fe-MOF 纳米片,简写为Ni-Fe-MOF NSs。
如图1和图2所示,超薄Ni-Fe-MOF纳米片的形貌均一,且质量和产率较高。
如图3所示,超薄Ni-Fe-MOF纳米片的粉末衍射图谱(PXRD)和模拟的MOF材料(CCDC No.638866和JCPDS No.00-035-1677)吻合。
如图4所示,超薄Ni-Fe-MOF纳米片的红外光谱也证实了合成的超薄Ni-Fe-MOF纳米片中羟基、对苯二甲酸根和硫酸根的存在。
如图5和图6所示,超薄Ni-Fe-MOF纳米片是由Ni,Fe,C,O和S元素组成,且每种元素分布均匀。
如图7所示,超薄Ni-Fe-MOF纳米片的厚度在1.67nm~2.58nm之间。
如图8所示,超薄Ni-Fe-MOF纳米片的光电子能谱(XPS)显示Ni,Fe和S的化合价分别为+2,+3和+2价。
对比例1:单金属Ni-MOF纳米片的制备
单金属Ni-MOF纳米片的化学式为[Ni 3(OH) 2(1,4-BDC) 2(H 2O) 4]·2H 2O,其中Ni代表镍离子,OH代表桥联的羟基配体,1,4-BDC代表去质子化的对苯二甲酸配体,前一个H 2O代表参与配位的水分子,后一个H 2O代表游离的水分子。制备过程如下:
分别称取24.8mg(0.1mmol)的四水合醋酸镍固体溶于6mL去离子水中配成溶液A,称取8.3mg有机配体对苯二甲酸溶于6mL DMAC中配成溶液B,在搅拌条件下,将溶液B缓慢加入溶液A中混合均匀,然后将混合溶液转入含有聚四氟乙烯内衬的不锈钢反应釜中,密封后置于烘箱中,在150℃下反应3h,反应结束后自然冷却至室温,经去离子水和乙醇洗涤,离心分离和烘干后得到浅蓝色粉末状的单金属Ni-MOF纳米片。
如图9所示,Ni-MOF材料呈现出二维的片状形貌,主要由Ni,C和O元 素组成,且每种元素分布均匀。
如图10所示,Ni-MOF纳米片的粉末衍射图谱(PXRD)和模拟的MOF材料(CCDC No.638866和JCPDS No.00-035-1677)吻合。
如图11所示,Ni-MOF纳米片的红外光谱也证实了羟基和对苯二甲酸根的存在。
实施例2:超薄Ni-Fe-MOF纳米片的大量制备
分别称取2.48g(10mmol)的四水合醋酸镍和0.738g(3mmol)的七水合硫酸亚铁固体溶于300mL去离子水中配成溶液A,称取0.830g(5mmol)有机配体对苯二甲酸溶于300mL DMAC中配成溶液B,在搅拌条件下,将溶液B缓慢加入溶液A中混合均匀,然后将混合溶液转入1000mL的厚壁反应瓶中,密封后置于烘箱中,在150℃下反应3h,反应结束后自然冷却至室温,经去离子水和乙醇洗涤,离心分离和烘干后得到黄色粉末状的超薄Ni-Fe-MOF纳米片,质量为1.7486g,如图12所示。
如图13所示,大批量合成的超薄Ni-Fe-MOF纳米片的形貌均一,而且质量和产率较高。
如图14所示,大批量合成的超薄Ni-Fe-MOF纳米片的粉末衍射图谱(PXRD)和模拟的MOF材料(CCDC No.638866和JCPDS No.00-035-1677)吻合。
实施例3:电催化剂的制备
称量2.5mg的超薄Ni-Fe-MOF纳米片固体粉末和2.5mg的商业炭黑进行混合,加入970μL的异丙醇和30μL 5wt.%的Nafion溶液,超声1h使其分散均匀形成油墨状溶液。取20μL上述溶液分批滴加到打磨好的玻碳电极表面,自然晾干后待用。
作为对比,称量2.5mg的Ni-MOF固体粉末和2.5mg的商业炭黑进行混合,加入970μL的异丙醇和30μL 5wt.%的Nafion溶液,超声1h使其分散 均匀形成油墨状溶液。取20μL上述溶液分批滴加到打磨好的玻碳电极表面,自然晾干后待用。
作为对比,称量5.0mg的商业Ir/C(5wt.%Ir),加入970μL的异丙醇和30μL 5wt.%的Nafion溶液,超声1h使其分散均匀形成油墨状溶液。取20μL上述溶液分批滴加到打磨好的玻碳电极表面,自然晾干后待用。
实施例4:OER性能测试
整个电催化测试都是在标准的三电极体系下进行,其中工作电极为涂有催化剂的玻碳电极,参比电极为Ag/AgCl(饱和KCl溶液)电极,辅助电极为铂丝电极。用于线性扫描伏安法(LSV)测试的电解质溶液为O 2饱和的1M KOH溶液,电势的扫描范围为0~0.8V,扫描速度为5mV/s,测试的数据都经过了iR的补偿。
如图15和图16所示,相比于单金属的Ni-MOF纳米片和商业的Ir/C,超薄Ni-Fe-MOF纳米片表现出优异的OER电催化性能,在10mA·cm -2的电流密度下,过电势的值仅为221mV,塔菲尔斜率也低至56.0mV·dec -1
实施例5:材料电催化稳定性测试
在标准的三电极体系下,将参比电极,辅助电极和涂有催化剂的玻碳电极插入O 2饱和的1M KOH溶液,进行计时电位测试,测试的电流值恒定为2mA。
如图17所示,超薄Ni-Fe-MOF纳米片表现出优异的稳定性,在恒电流计时电位测试时,经过20h后,电催化性能没有明显的下降。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种超薄Ni-Fe-MOF纳米片的制备方法,其特征在于,包括以下步骤:
    将有机配体溶于有机溶剂中,得到的溶液滴加到溶有镍盐和铁盐的水溶液中,混合均匀后,在140~160℃下反应3~6小时,即得到所述超薄Ni-Fe-MOF纳米片;
    其中,所述有机配体为对苯二甲酸和/或对苯二甲酸二钠盐,所述有机溶剂为N,N-二甲基乙酰胺和/或N,N-二甲基甲酰胺。
  2. 如权利要求1所述的超薄Ni-Fe-MOF纳米片的制备方法,其特征在于,所述镍盐为四水合醋酸镍和/或六水合硝酸镍,所述铁盐为七水合硫酸亚铁。
  3. 如权利要求1所述的超薄Ni-Fe-MOF纳米片的制备方法,其特征在于,反应液中镍离子与铁离子的摩尔比为5:1~2。
  4. 如权利要求3所述的超薄Ni-Fe-MOF纳米片的制备方法,其特征在于,反应液中镍离子与铁离子的摩尔比为10:3。
  5. 如权利要求1所述的超薄Ni-Fe-MOF纳米片的制备方法,其特征在于,反应液中铁离子的浓度为1.67~3.33mmol/L。
  6. 如权利要求5所述的超薄Ni-Fe-MOF纳米片的制备方法,其特征在于,反应液中镍离子的浓度为8.33mmol/L,铁离子的浓度为2.50mmol/L,对苯二甲酸的浓度为4.17mmol/L。
  7. 如权利要求1所述的超薄Ni-Fe-MOF纳米片的制备方法,其特征在于,水和有机溶剂的体积比为1~2:1。
  8. 如权利要求1所述的超薄Ni-Fe-MOF纳米片的制备方法,其特征在于,所述制备方法还包括将反应得到的产物洗涤、离心和干燥的步骤;所述洗涤的 溶剂为去离子水和乙醇;所述离心的转速为8000~10000rpm,离心的时间为3~5min;所述干燥的温度为50~60℃,干燥的时间为10~12h。
  9. 一种超薄Ni-Fe-MOF纳米片,其特征在于,由权利要求1-8任一项所述的制备方法制备得到的。
  10. 权利要求9所述的超薄Ni-Fe-MOF纳米片作为电催化剂催化析氧反应的应用。
PCT/CN2018/114307 2018-10-09 2018-11-07 超薄Ni-Fe-MOF纳米片及其制备方法和应用 WO2020073398A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/252,711 US11396521B2 (en) 2018-10-09 2018-11-07 Ultra-thin Ni—Fe-MOF nanosheet, preparation method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811173331.XA CN109267093B (zh) 2018-10-09 2018-10-09 超薄Ni-Fe-MOF纳米片及其制备方法和应用
CN201811173331.X 2018-10-09

Publications (1)

Publication Number Publication Date
WO2020073398A1 true WO2020073398A1 (zh) 2020-04-16

Family

ID=65196188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114307 WO2020073398A1 (zh) 2018-10-09 2018-11-07 超薄Ni-Fe-MOF纳米片及其制备方法和应用

Country Status (3)

Country Link
US (1) US11396521B2 (zh)
CN (1) CN109267093B (zh)
WO (1) WO2020073398A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111905820A (zh) * 2020-07-24 2020-11-10 辽宁科技大学 一种含过渡金属有机聚合物的氧析出电催化剂制备方法
CN111957315A (zh) * 2020-08-28 2020-11-20 齐鲁工业大学 一步法制备高性能的三金属氢氧化物电催化剂
CN113813999A (zh) * 2021-09-26 2021-12-21 上海师范大学 一种SiO2@金属-有机纳米片核壳材料、制备工艺及催化性能检测方法
CN114717583A (zh) * 2022-04-19 2022-07-08 浙江师范大学 一种铋纳米片负载钯双金属催化剂的制备方法与应用
CN114855207A (zh) * 2022-06-09 2022-08-05 安徽师范大学 FeNiP空心材料及其制备方法和应用
CN115094438A (zh) * 2022-07-05 2022-09-23 安徽师范大学 一种一维结构二硒化钼/钼-mof复合纳米材料及其制备方法和应用
CN115386408A (zh) * 2022-07-21 2022-11-25 扬州大学 一种ZIF-7/2D Ni-BDC纳米复合润滑材料及其制备方法

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109225274B (zh) * 2018-10-26 2020-08-14 苏州大学 Fe掺杂的MoS2纳米材料及其制备方法和应用
CN110075925B (zh) * 2019-05-08 2022-06-21 南京理工大学 一种基于金属有机骨架材料析氧催化剂的制备方法
CN111193011A (zh) * 2020-01-08 2020-05-22 青岛科技大学 FeS2/FeNiS2纳米颗粒的制备及其应用
CN111378148B (zh) * 2020-03-24 2022-08-05 安徽中烟工业有限责任公司 一种二元金属MOFs材料的制备方法及其在香烟烟气减害中的应用
CN111450889B (zh) * 2020-04-03 2023-08-01 哈尔滨师范大学 一种Ni2Fe-ICP纳米片及其室温生长的制备方法
CN111468190A (zh) * 2020-05-21 2020-07-31 福州大学 不同金属掺杂的MIL-100(Fe)金属有机骨架材料的制备和光催化固氮
CN113769769B (zh) * 2020-06-10 2023-03-14 中国科学院兰州化学物理研究所 镍-铁磷化物/石墨烯/镍复合材料、其制备方法及应用
CN111905818A (zh) * 2020-07-13 2020-11-10 苏州科技大学 一种mof基二维超薄电催化剂及其制备方法与应用
CN111939984A (zh) * 2020-08-25 2020-11-17 太原理工大学 一种电化学催化剂、其制备方法及其应用
CN112138701A (zh) * 2020-10-20 2020-12-29 中国石油大学(华东) Ni0.85Se@NC电催化材料的制备方法
CN112391649A (zh) * 2020-11-23 2021-02-23 西北师范大学 一种NiFe-LDH复合材料的制备及应用
CN112481639B (zh) * 2020-12-01 2022-02-11 中国海洋大学 分等级多孔镍基金属有机骨架电催化材料的制备方法及应用
CN112851957B (zh) * 2020-12-29 2022-11-11 江苏集萃智能液晶科技有限公司 一种超薄金属有机框架纳米片的制备方法及应用其的调光器件
CN113224332A (zh) * 2021-05-10 2021-08-06 杭州小麻雀环保科技有限公司 一种锌-空气液流电池阴极材料催化剂及其制备方法
TWI794836B (zh) * 2021-06-16 2023-03-01 國立成功大學 高熵複合甘油酸酯及其製法和包含其的電催化劑
CN113652715B (zh) * 2021-08-13 2022-09-20 中南林业科技大学 一种无粘结剂的自支撑电催化产氢材料的制备方法
CN113698617B (zh) * 2021-08-25 2022-06-17 福州大学 一种超薄二维分级多孔zif-67的合成方法
CN113702472B (zh) * 2021-09-01 2022-07-26 吉林大学 (Ni1-xFex)-MOF为敏感电极的混成电位型室温NO传感器及制备方法
CN113769748B (zh) * 2021-09-13 2022-11-08 东北林业大学 一种FeNi@玉米芯活性炭复合材料的制备
CN113663712B (zh) * 2021-09-16 2023-09-01 西华师范大学 一种基于双模板法衍生的高效双金属oer催化剂及其制备方法
CN113897235B (zh) * 2021-10-08 2022-08-05 扬州大学 一种氮掺杂碳量子点/2D Ni-BDC纳米复合润滑材料的制备方法
CN114196987A (zh) * 2021-11-18 2022-03-18 上海大学 一种二维NiFe-MOF纳米片的碳量子点复合材料的制备方法
CN114293221B (zh) * 2021-11-22 2023-07-07 江西师范大学 一种硝基修饰的金属有机框架制备泡沫碳支撑FeNi合金催化剂的方法及应用
CN114308040B (zh) * 2022-01-07 2023-07-25 桂林电子科技大学 一种具有片层结构的CoB-LDH-CNT纳米材料及其制备方法和应用
CN114318404A (zh) * 2022-01-07 2022-04-12 辽宁大学 Co-Ni基电催化材料的制备方法及其应用
CN114430076B (zh) * 2022-01-25 2024-05-28 中国石油大学(华东) 一种全mof柔性镍铁电池及其制备方法
CN114438516B (zh) * 2022-02-16 2023-12-19 中国海洋大学 一种多孔镍铁基双金属有机骨架电催化剂的制备方法及在水氧化反应中的应用
CN115283014A (zh) * 2022-02-18 2022-11-04 浙江海洋大学 一种具有甲硫醇净化功能的MOFs纳米片光催化剂的制备方法及应用
CN114574899B (zh) * 2022-03-30 2024-05-24 西安交通大学 一种电解水双功能电催化剂及其制备方法和应用
CN114649116B (zh) * 2022-04-02 2024-01-12 合肥工业大学 电极材料的制备方法及电化学驱动器的制备方法与应用
CN114773617B (zh) * 2022-05-09 2023-09-01 荆门市格林美新材料有限公司 一种核壳梯度三元前驱体及其制备方法和应用
CN115109263B (zh) * 2022-06-24 2023-11-24 山东大学 一种二维导电mof电磁波吸收材料及其制备方法和应用
CN115029713B (zh) * 2022-06-27 2023-04-18 海南大学 用于电解水析氧反应的镍基mof自重构异质结的制备方法及所得产品和应用
CN115287671B (zh) * 2022-06-29 2024-05-10 西南科技大学 一种用于电化学海水提铀的硫基氧化铁纳米线的制备及应用
CN115069252B (zh) * 2022-07-14 2023-08-15 齐鲁工业大学 一种三维纳米花状镍碳催化材料及其制备方法和应用
CN115400796B (zh) * 2022-08-02 2023-08-18 华南理工大学 一种二维镍基金属有机骨架催化剂及其制备方法与应用
CN115608355B (zh) * 2022-10-10 2024-04-26 河南师范大学 二维AuNPs/Ni-TCPP(Fe)纳米片的制备方法及其应用
CN115651209B (zh) * 2022-10-25 2024-02-23 常熟理工学院 一种MIL-53(Al-Cu)纳米片的制备方法及其应用
CN115746318B (zh) * 2022-10-27 2023-08-04 南京工业大学 一种金属-有机骨架纳米片及其制备方法和应用
CN115725084B (zh) * 2022-11-22 2024-05-24 浙江理工大学 一种片状镍钴双金属有机框架晶体材料及其制备方法
CN116078433A (zh) * 2022-12-15 2023-05-09 盐城工学院 一种Ni-MOFs/Ni2P边缘异质结构纳米材料的制备方法及其应用
CN115975213B (zh) * 2023-02-03 2023-12-08 上海第二工业大学 一种基于溶剂热合成法制备的镍基金属有机骨架、合成方法及其应用
CN116082656B (zh) * 2023-02-09 2024-03-22 中原工学院 镉金属-有机框架材料、制备方法和自驱动电催化应用
CN116082658B (zh) * 2023-02-24 2024-05-17 兰州大学 一种光敏mof及其制备方法和应用
CN116574264A (zh) * 2023-04-14 2023-08-11 华南理工大学 一种结合球磨和细胞粉碎超声剥离超薄二维mof纳米片及其制备方法与应用
CN116716633B (zh) * 2023-08-08 2023-12-22 四川大学 一种碳基氧化铪负载铱团簇的电催化剂及其制备和用途

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464784A (zh) * 2013-09-27 2013-12-25 南开大学 一种碳负载纳米镍的制备方法
CN105732728A (zh) * 2016-01-26 2016-07-06 国家纳米科学中心 金属有机骨架配合物纳米片、制备方法及其用途
CN107267124A (zh) * 2017-07-03 2017-10-20 中山大学 一种含Ni/Fe双金属的MOFs含氮石墨化碳材料
CN107442125A (zh) * 2017-09-05 2017-12-08 济南大学 一种碳基铜钴氧化物纳米片催化剂的制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106519281B (zh) * 2016-11-09 2019-03-08 中国科学院长春应用化学研究所 一种金属有机框架复合材料及其制备方法
CN108172418A (zh) * 2018-01-14 2018-06-15 常州大学 芳香羧酸类过渡金属有机框架物及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103464784A (zh) * 2013-09-27 2013-12-25 南开大学 一种碳负载纳米镍的制备方法
CN105732728A (zh) * 2016-01-26 2016-07-06 国家纳米科学中心 金属有机骨架配合物纳米片、制备方法及其用途
CN107267124A (zh) * 2017-07-03 2017-10-20 中山大学 一种含Ni/Fe双金属的MOFs含氮石墨化碳材料
CN107442125A (zh) * 2017-09-05 2017-12-08 济南大学 一种碳基铜钴氧化物纳米片催化剂的制备方法和应用

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111905820A (zh) * 2020-07-24 2020-11-10 辽宁科技大学 一种含过渡金属有机聚合物的氧析出电催化剂制备方法
CN111905820B (zh) * 2020-07-24 2023-04-07 辽宁科技大学 一种含过渡金属有机聚合物的氧析出电催化剂制备方法
CN111957315A (zh) * 2020-08-28 2020-11-20 齐鲁工业大学 一步法制备高性能的三金属氢氧化物电催化剂
CN113813999A (zh) * 2021-09-26 2021-12-21 上海师范大学 一种SiO2@金属-有机纳米片核壳材料、制备工艺及催化性能检测方法
CN114717583A (zh) * 2022-04-19 2022-07-08 浙江师范大学 一种铋纳米片负载钯双金属催化剂的制备方法与应用
CN114855207A (zh) * 2022-06-09 2022-08-05 安徽师范大学 FeNiP空心材料及其制备方法和应用
CN115094438A (zh) * 2022-07-05 2022-09-23 安徽师范大学 一种一维结构二硒化钼/钼-mof复合纳米材料及其制备方法和应用
CN115094438B (zh) * 2022-07-05 2023-09-29 安徽师范大学 一种一维结构二硒化钼/钼-mof复合纳米材料及其制备方法和应用
CN115386408A (zh) * 2022-07-21 2022-11-25 扬州大学 一种ZIF-7/2D Ni-BDC纳米复合润滑材料及其制备方法

Also Published As

Publication number Publication date
CN109267093A (zh) 2019-01-25
US11396521B2 (en) 2022-07-26
US20210155649A1 (en) 2021-05-27
CN109267093B (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2020073398A1 (zh) 超薄Ni-Fe-MOF纳米片及其制备方法和应用
CN109225274B (zh) Fe掺杂的MoS2纳米材料及其制备方法和应用
Xue et al. Recent advances in pristine tri-metallic metal–organic frameworks toward the oxygen evolution reaction
CN109216712B (zh) 基于金属有机框架的非贵金属/碳复合材料的制备方法、非贵金属/碳复合材料及其应用
CN109252180B (zh) 一种三元mof纳米片阵列材料、制备方法及其应用
CN106784658B (zh) 一种锂离子电池用金属氧化物/碳负极材料的形貌调控方法
CN108754531B (zh) 一种含Co和Ru双金属碳纳米复合电催化材料的制备方法
CN108080015B (zh) 基于希夫碱-mof的功能化碳材料的制备及作为电催化剂的应用
CN109208030A (zh) 一种金属氢氧化物-金属有机框架复合材料及其制备方法
CN110813350B (zh) 一种碳基复合电催化剂及其制备方法与应用
Yu et al. Zeolitic-imidazolate framework (ZIF)@ ZnCo-ZIF core-shell template derived Co, N-doped carbon catalysts for oxygen reduction reaction
CN108190963B (zh) 一种多级中空CoFe2O4材料、CoFe2O4/C复合材料的制备方法及应用
Ye et al. Synergistic effects of Co/CoO nanoparticles on imine-based covalent organic frameworks for enhanced OER performance
Shang et al. Atomically dispersed iron on nitrogen-decorated carbon for high-performance oxygen reduction and zinc-air batteries
Sun et al. Self-supporting metal–organic framework-based hydrogen and oxygen electrocatalysts
CN110980673B (zh) 一种金属磷化物及其制备方法和在超级电容器中的应用
CN110624540A (zh) 新型钌基自支撑电催化材料及其制备方法和在电催化氮气还原产氨中的应用
CN107464938A (zh) 一种具有核壳结构的碳化钼/碳复合材料及其制备方法和在锂空气电池中的应用
CN113745549A (zh) 一种负载Mn单原子的N掺杂碳多面体催化剂的制备方法
CN113270597A (zh) 一种C3N4包覆的碳纳米管负载NiFe双功能氧气电催化剂及其制备方法
CN114628696B (zh) 一种多孔碳载钴基双功能氧催化剂的制备方法
CN111825126A (zh) 一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料的制备方法
CN112490451A (zh) 一种由叶酸衍生的Cu-CoNCNs催化剂及制备和应用
CN111822054A (zh) 一种纳米多孔材料阳极催化剂及其制备方法
Liu et al. Facile construction of S-containing Co-based metal organic framework core–shell microspheres as an efficient bifunctional oxygen electrocatalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936817

Country of ref document: EP

Kind code of ref document: A1