CN111825126A - 一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料的制备方法 - Google Patents

一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料的制备方法 Download PDF

Info

Publication number
CN111825126A
CN111825126A CN202010611304.7A CN202010611304A CN111825126A CN 111825126 A CN111825126 A CN 111825126A CN 202010611304 A CN202010611304 A CN 202010611304A CN 111825126 A CN111825126 A CN 111825126A
Authority
CN
China
Prior art keywords
mof
anion
cation
ldh
shaped hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010611304.7A
Other languages
English (en)
Inventor
肖振宇
鲍玉香
刘鹏
李彬
李明瑞
王磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202010611304.7A priority Critical patent/CN111825126A/zh
Publication of CN111825126A publication Critical patent/CN111825126A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明公开一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料的制备方法,包括以下步骤:Co‑MOF前驱体的制备:将质量比为1:2.3的六水合硝酸钴和二甲基咪唑(2‑MI)分别溶于水,然后将上述两种溶液混合并在室温下静置1~6小时;Co‑MOF前驱体的硝酸镍刻蚀:将50mg Co‑MOF分散到乙醇溶液中,然后加入80mg硝酸镍常温下搅拌30分钟,制备氢氧化钴镍包覆的Co‑MOF(Ni/Co‑LDH@Co‑MOF)的悬浮液;Ni/Co‑LDH@Co‑MOF的偏钒酸盐刻蚀:向Ni/Co‑LDH@Co‑MOF的悬浮液加入6~15mmol的NaVO3的25mL水溶液,并在室温下搅拌1~3个小时,制备目标产物阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料(Ni‑Co/V‑x‑a;其中x为偏钒酸盐的量,a为反应时间)。通过本发明制备的阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料跟其他制备途径得到的双金属氢氧化物材料相比具有更高的比容量、更优的倍率性能以及更长的循环寿命。

Description

一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧 化物材料的制备方法
技术领域
本发明属于功能性纳米复合材料技术领域,更具体的说,是一种基于Co-金属有机框架材料为前驱体,阴阳离子双掺杂改性的中空多孔层状氢氧化物的制备方法及其电化学储能应用。
背景技术
随着化石燃料的过度开发以及环境问题的日益严峻,清洁能源及其相关的能源存储装置的研发受到了国内外的广泛关注。超级电容器,作为一种经济高效的新型储能装置,具有功率密度高,充电速度快,电化学性能突出等优点,近年来成为储能器件领域的研究热点。众所周知,电极材料是决定超级电容器性能的关键因素。层状双金属氢氧化物(LDHs)由于具有较高的理论比容量,优异的氧化还原行为和环境友好等特性,被公认为是最有前途的超级电容器电极材料之一。但是LDHs有两个明显的缺点:1材料自身导电性差;2材料的循环寿命短。因此,需要采用一系列的元素掺杂、相复合、形貌调控等策略来增强LDHs材料的导电率和稳定性。
金属-有机框架物(MOFs,Metal-Organic Frameworks),一类由无机金属离子/团簇与有机配体通过配位键作用构筑而成的多孔三维网络,近年来被广泛的用作前驱体模板制备了一系列结构与形态各异的优良电极材料。MOF作为模板剂,主要具有以下优点:①结构和组成多样,提供了大量可供选择的前驱体;②高比表面和丰富的孔结构,其衍生物可部分继承这一优势,为电化学反应提供更多的活性中心和扩散通道;③独特的无机和有机杂化结构,金属离子/团簇和配体相互交错连接,可实现无机纳米粒子和纳米碳的原位杂化,促进电化学反应的动力学过程。近年来,从配位键的可逆性机理发展而来的MOFs蚀刻策略被逐渐推广,一系列基于刻蚀法的高性能电极材料,例如Ni(OH)2、Ni/Co(OH)2、Ni/Co/Mn-OH、Ni3(PO4)2、Co(VO3)-Co(OH)2和NiCo-LDH/Co9S8被陆续报道。然而,到目前为止,阳离子和阴离子双掺杂的MOFs衍生中空纳米材料还没有有效的合成方法。
发明内容
本发明提出一种两步刻蚀的策略,向金属-有机框架物(MOFs)衍生物内部引入阴离子和阳离子,实现共掺杂增强;同时通过精准的调控制备工艺,有效的保持了MOFs的母体框架,构筑了具有高比表面积的中空结构,显著增强了MOFs衍生氢氧化物的比容量和循环稳定性。
为实现MOFs衍生氢氧化物材料电化学性能增强的目的,本发明的一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料的制备方法,可以通过如下技术路线予以实现:
(1)Co-MOF前驱体的制备:将质量比为1:2.3的六水合硝酸钴和二甲基咪唑(2-MI)分别溶于水,然后将上述两种溶液混合并在室温下静置1~6小时;这里静置1~6小时的目的是为了Co-MOF材料可以充分结晶并矿化,静置时间过短,纳米材料的结晶度和尺寸较小,静置时间增长,材料结晶度和尺寸会逐渐增加。
(2)Co-MOF前驱体的硝酸镍刻蚀:将50mg Co-MOF分散到乙醇溶液中,然后加入80mg硝酸镍常温下搅拌30分钟,制备氢氧化钴镍包覆的Co-MOF(Ni/Co-LDH@Co-MOF)的悬浮液。
(3)Ni/Co-LDH@Co-MOF的偏钒酸盐刻蚀:向步骤(2)中得到的Ni/Co-LDH@Co-MOF的悬浮液加入6~15mmol的NaVO3的25mL水溶液,并在室温下搅拌1~3个小时,制备目标产物阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料(Ni-Co/V-x-a;其中x为偏钒酸盐的量,a为反应时间);这里不同NaVO3的量会影响Ni-Co/V-x-a中VO3 -阴离子的引入量,从而调整材料的电子结构,赋予材料不同的电化学性能;在室温下反应1~3个小时,则可以达到充分刻蚀Co-MOF材料,同时调整产物Ni:Co比以及VO3 -阴离子的引入量的目的。
作为本发明的进一步特征:所述步骤(1)静置时间为2小时,得到的Co-MOF材料呈现出典型的纳米片状结构;虽然静置不同时间得到的Co-MOF的结晶性与纳米尺寸会有区别,本发明的后续刻蚀过程也同样适用,只是性能会有所区别。
作为本发明的进一步特征:所述步骤(2)Co-MOF前驱体刻蚀得到的Ni/Co-LDH@Co-MOF的悬浮液无须进行离心分离,以保证溶液中有足够的Ni源用于步骤(3);同时Ni/Co-LDH@Co-MOF呈现出典型的核壳结构,其中Ni/Co-LDH为壳,Co-MOF为核,Ni/Co-LDH为壳的存在可以有效的保护材料的形貌不会在步骤(3)中被破坏。
作为本发明的进一步特征:所述步骤(3)加入NaVO3的物质的量为12mmol,并在室温下搅拌2个小时,并命名为Ni-Co/V-12-2。
作为本发明的进一步特征:经过步骤(3)得到的阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物具有优异的超级电容器性能,当在三电极体系条件下,其在1Ag-1的电流密度下的比容量达到720~1162F g-1,其中最优样品Ni-Co/V-12-2在1-10A g-1的倍率性能高达92.6%。
由于采用以上技术方案,本发明具有以下有益效果:
通过本发明作为本发明的进一步特征:经过步骤(3)得到的阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物还可以与石墨烯基超级电容器负极材料组装构筑两电极超级电容器,其在0.375kW·kg-1功率密度下,能量密度高达55.22Wh·kg-1
制备的阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物,其原理是基于配位键可逆性和原位水解过程,在硝酸镍刻蚀过程中,Ni2+离子会水解产生自由氢离子(H+),H+与Co-MOF中的咪唑阴离子反应生成电中性的自由配体并释放出Co2+离子,Co2+离子与水解的Ni2+离子在Co-MOF表面沉积,生成Ni/Co-LDH壳层,该壳层可以有效防止Co-MOF在后续NaVO3刻蚀过程中的骨架破坏,最大程度保持材料的比表面和优异的多孔性。此外,通过两步刻蚀过程,可以实现Ni2+阳离子和VO3 -阴离子的共掺杂增强材料的倍率和循环稳定性能,同时还可以实现中空材料的构筑,显著增强材料的活性表面积,提高材料的比容量。所以,通过本发明方法制备的阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物具有更优异的超级电容器性能,具体的说,在1A g-1的电流密度下的比容量达到720~1162Fg-1,其中最优样品Ni-Co/V-12-2在1-10A g-1的倍率性能高达92.6%,循环5000轮保持初始容量的93.14%。
具体实施方式
下面结合具体实验方案和附图阐述本发明的技术特点,但本发明并不局限于此。下面实施例所述试验方法,如无特殊说明,均为常规方法;所述仪器及材料,如无特殊说明,均可从商业途径获得。
实施例1
一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料的制备方法,包括以下步骤:
(1)将质量比为1:2.3的六水合硝酸钴和二甲基咪唑(2-MI)分别溶于水,然后将上述两种溶液混合并在室温下静置2小时,离心后干燥,得到前驱体Co-MOF。Co-MOF的形貌如其扫面电镜图所示(图1);Co-MOF的结晶性如其粉末X-射线衍射图所示(图2)。
(2)将50mg Co-MOF分散到乙醇溶液中,然后加入80mg硝酸镍常温下搅拌30分钟,制备氢氧化钴镍包覆的Co-MOF(Ni/Co-LDH@Co-MOF)的悬浮液。
(3)向步骤(2)中得到的Ni/Co-LDH@Co-MOF的悬浮液加入12mmol的NaVO3,并在室温下搅拌2个小时,制备Ni-Co/V-12-2。Ni-Co/V-12-2的结晶性如其粉末X-射线衍射图所示(图3);Ni-Co/V-12-2的形貌如其扫面电镜图所示(图4),材料表面变的粗糙并呈现出典型的中空结构;Ni-Co/V-12-2的微观形貌如其透射电镜图所示(图5),材料由一个几纳米的纳米片彼此支撑构筑而成;Ni-Co/V-12-2的电子能谱如其XPS图所示(图6),材料内部含有Co、Ni、V、O等元素,表明阳离子Ni2+和阴离子VO3 -成功引入衍生材料内部。Ni-Co/V-12-2在不同扫速下的恒流充放电如图7所示,通过图中计算得Ni-Co/V-12-2在1A g-1的电流密度下的比容量达到1162F g-1,1-10A g-1的倍率性能高达92.6%(图7),循环5600轮保持初始容量的93.14%(图8)。
实施例2
一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料的制备方法,包括以下步骤:
(1)Co-MOF前驱体的制备同实施例1。
(2)此过程无须对Co-MOF进行硝酸镍刻蚀处理。
(3)直接将Co-MOF前驱体加入12mmol的NaVO3的25mL水溶液中,并在室温下搅拌2个小时,制备MOF/V。MOF/V在不同扫速下的恒流充放电如图9所示,通过图中计算得MOF/V在1A g-1的电流密度下的比容量达到112F g-1
实施例3
一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料的制备方法,包括以下步骤:
(1)Co-MOF前驱体的制备同实施例1。
(2)Ni/Co-LDH@Co-MOF悬浮液的制备同实施例1。
(3)向步骤(2)中得到的Ni/Co-LDH@Co-MOF的悬浮液加入6mmol的NaVO3,并在室温下搅拌2个小时,制备Ni-Co/V-6-2。Ni-Co/V-6-2在不同扫速下的恒流充放电如图10所示,通过图中计算得Ni-Co/V-6-2在1A g-1的电流密度下的比容量达到720F g-1
实施例4
一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料的制备方法,包括以下步骤:
(1)Co-MOF前驱体的制备同实施例1。
(2)Ni/Co-LDH@Co-MOF悬浮液的制备同实施例1。
(3)向步骤(2)中得到的Ni/Co-LDH@Co-MOF的悬浮液加入9mmol的NaVO3,并在室温下搅拌2个小时,制备Ni-Co/V-9-2。Ni-Co/V-9-2在不同扫速下的恒流充放电如图11所示,通过图中计算得Ni-Co/V-9-2在1A g-1的电流密度下的比容量达到988F g-1
实施例5
一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料的制备方法,包括以下步骤:
(1)Co-MOF前驱体的制备同实施例1。
(2)Ni/Co-LDH@Co-MOF悬浮液的制备同实施例1。
(3)向步骤(2)中得到的Ni/Co-LDH@Co-MOF的悬浮液加入15mmol的NaVO3,并在室温下搅拌2个小时,制备Ni-Co/V-15-2。Ni-Co/V-15-2在不同扫速下的恒流充放电如图12所示,通过图中计算得Ni-Co/V-15-2在1A g-1的电流密度下的比容量达到900F g-1
实施例6
一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料的制备方法,包括以下步骤:
(1)Co-MOF前驱体的制备同实施例1。
(2)Ni/Co-LDH@Co-MOF悬浮液的制备同实施例1。
(3)向步骤(2)中得到的Ni/Co-LDH@Co-MOF的悬浮液加入12mmol的NaVO3,并在室温下搅拌1个小时,制备Ni-Co/V-12-1。Ni-Co/V-12-1在不同扫速下的恒流充放电如图13所示,通过图中计算得Ni-Co/V-12-1在1A g-1的电流密度下的比容量达到820F g-1
实施例7
一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料的制备方法,包括以下步骤:
(1)Co-MOF前驱体的制备同实施例1。
(2)Ni/Co-LDH@Co-MOF悬浮液的制备同实施例1。
(3)向步骤(2)中得到的Ni/Co-LDH@Co-MOF的悬浮液加入12mmol的NaVO3,并在室温下搅拌3个小时,制备Ni-Co/V-12-3。Ni-Co/V-12-3在不同扫速下的恒流充放电如图14所示,通过图中计算得Ni-Co/V-12-3在1A g-1的电流密度下的比容量达到470F g-1
对本发明中所公开的实施方式的描述并非为了限制本发明的范围,而是用于描述本发明。相应地,本发明的范围不受以上实施方式的限制,而是由权利要求或其等同物进行限定。
附图说明:
图1:实施例1中得到的Co-MOF的扫描电镜图;
图2:实施例1中得到的Co-MOF的X-射线谱图;
图3:实施例1中得到的Ni-Co/V-12-2的X-射线谱图;
图4:实施例1中得到的Ni-Co/V-12-2的扫描电镜图;
图5:实施例1中得到的Ni-Co/V-12-2的透射电镜图;
图6:实施例1中得到的Ni-Co/V-12-2的XPS图;
图7:实施例1中得到的Ni-Co/V-12-2的恒流充放电图(a)和比容量图(b);
图8:实施例1中得到的Ni-Co/V-12-2在电流密度2A g-1的循环稳定性能图;
图9:实施例2中得到的MOF/V,在不同电流密度下的恒流充放电图;
图10:实施例3中得到的Ni-Co/V-6-2,在不同电流密度下的恒流充放电图;
图11:实施例4中得到的Ni-Co/V-9-2,在不同电流密度下的恒流充放电图;
图12:实施例5中得到的Ni-Co/V-15-2,在不同电流密度下的恒流充放电图;
图13:实施例6中得到的Ni-Co/V-12-1,在不同电流密度下的恒流充放电图;
图14:实施例7中得到的Ni-Co/V-12-3,在不同电流密度下的恒流充放电图。

Claims (6)

1.一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料的制备方法,其特征在于,包括以下步骤:
(1)Co-MOF前驱体的制备:将质量比为1:2.3的六水合硝酸钴和二甲基咪唑(2-MI)分别溶于水,然后将上述两种溶液混合并在室温下静置1~6小时。
(2)Co-MOF前驱体的硝酸镍刻蚀:将50mg Co-MOF分散到乙醇溶液中,然后加入80mg硝酸镍常温下搅拌30分钟,制备氢氧化钴镍包覆的Co-MOF(Ni/Co-LDH@Co-MOF)的悬浮液。
(3)Ni/Co-LDH@Co-MOF的偏钒酸盐刻蚀:向步骤(2)中得到的Ni/Co-LDH@Co-MOF的悬浮液加入6~15mmol的NaVO3的25mL水溶液,并在室温下搅拌1~3个小时,制备目标产物阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料(Ni-Co/V-x-a;其中x为偏钒酸盐的量,a为反应时间)。
2.根据权利要求书1所述的制备方法,其特征在于:所述步骤(1)两种混合溶液在室温静置2小时。
3.根据权利要求书1所述的制备方法,其特征在于:所述步骤(2)Co-MOF前驱体刻蚀得到的Ni/Co-LDH@Co-MOF的悬浮液无须进行离心分离。
4.根据权利要求书1所述的制备方法,其特征在于:所述步骤(3)加入NaVO3的物质的量为12mmol,并在室温下搅拌2个小时。
5.根据权利要求书1所述的制备方法,其特征在于:经过步骤(3)得到的阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物在1A g-1的电流密度下的比容量达到720~1162F g-1,其中最优样品Ni-Co/V-12-2在1-10A g-1的倍率性能高达92.6%。
6.根据权利要求书1所述的制备方法,其特征在于:经过步骤(3)得到的阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物还可以与石墨烯基超级电容器负极材料组装构筑两电极超级电容器,其在0.375kW·kg-1功率密度下,能量密度高达55.22Wh·kg-1
CN202010611304.7A 2020-06-30 2020-06-30 一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料的制备方法 Pending CN111825126A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010611304.7A CN111825126A (zh) 2020-06-30 2020-06-30 一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010611304.7A CN111825126A (zh) 2020-06-30 2020-06-30 一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料的制备方法

Publications (1)

Publication Number Publication Date
CN111825126A true CN111825126A (zh) 2020-10-27

Family

ID=72900613

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010611304.7A Pending CN111825126A (zh) 2020-06-30 2020-06-30 一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料的制备方法

Country Status (1)

Country Link
CN (1) CN111825126A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112834478A (zh) * 2020-12-16 2021-05-25 江苏师范大学 一种基于AgNPs/MOFs/g-C3N4的复合薄膜及其制备方法和应用
CN113363080A (zh) * 2021-05-28 2021-09-07 上海应用技术大学 一种NF@Co-MOF@NiMoO4复合材料及其制备方法与应用
CN113963954A (zh) * 2021-11-05 2022-01-21 扬州大学 一种nhno纳米阵列及其制备方法、以及在超级电容器电极中的应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109354698A (zh) * 2018-11-05 2019-02-19 青岛科技大学 基于金属-有机框架物的双金属纳米磷酸盐、其制备方法及应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109354698A (zh) * 2018-11-05 2019-02-19 青岛科技大学 基于金属-有机框架物的双金属纳米磷酸盐、其制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YINGXI ZHANG ET AL.: ""Energy-Saving Synthesis of MOF-Derived Hierarchical and Hollow Co(VO3)2‑Co(OH)2 Composite Leaf Arrays for Supercapacitor Electrode Materials"" *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112834478A (zh) * 2020-12-16 2021-05-25 江苏师范大学 一种基于AgNPs/MOFs/g-C3N4的复合薄膜及其制备方法和应用
CN113363080A (zh) * 2021-05-28 2021-09-07 上海应用技术大学 一种NF@Co-MOF@NiMoO4复合材料及其制备方法与应用
CN113363080B (zh) * 2021-05-28 2023-02-10 上海应用技术大学 一种NF@Co-MOF@NiMoO4复合材料及其制备方法与应用
CN113963954A (zh) * 2021-11-05 2022-01-21 扬州大学 一种nhno纳米阵列及其制备方法、以及在超级电容器电极中的应用

Similar Documents

Publication Publication Date Title
Li et al. Thin-film electrode based on zeolitic imidazolate frameworks (ZIF-8 and ZIF-67) with ultra-stable performance as a lithium-ion battery anode
CN108767260B (zh) 一种碳包覆FeP中空纳米电极材料及其制备方法和应用
Wu et al. Defect Electrocatalysts and Alkaline Electrolyte Membranes in Solid‐State Zinc–Air Batteries: Recent Advances, Challenges, and Future Perspectives
CN107611382B (zh) 石墨烯复合的碳限域金属氧化物纳米点材料及其制备方法和应用
Jiang et al. Co 3 O 4 nanocage derived from metal-organic frameworks: An excellent cathode catalyst for rechargeable Li-O 2 battery
CN112233912B (zh) 一种泡沫镍载MnCo2O4.5/MXene复合纳米材料的制备方法及应用
CN111825126A (zh) 一种阴阳离子共掺杂改性的MOFs衍生树叶状中空双金属氢氧化物材料的制备方法
Kim et al. Formation of ordered macroporous ZnFe2O4 anode materials for highly reversible lithium storage
CN107464924B (zh) 一种片状氧缺陷钒酸锂正极材料及其制备方法
Huang et al. Fabrication of multi-layer CoSnO3@ carbon-caged NiCo2O4 nanobox for enhanced lithium storage performance
Li et al. CoNi-embedded nitrogen-enriched porous carbon framework for long-life lithium–sulfur batteries
Zhu et al. Three-dimensional hierarchical porous MnCo2O4@ MnO2 network towards highly reversible lithium storage by unique structure
CN113258083B (zh) 一种CoXP纳米颗粒嵌入氮和磷掺杂碳的双功能催化剂及其制备方法和应用
Tang et al. Carbon-coated Li4Ti5O12 tablets derived from metal-organic frameworks as anode material for lithium-ion batteries
Li et al. MOF-derived hollow cage Ni–Co mixed oxide/CNTs nanocomposites with enhanced electrochemical performance for lithium–sulfur batteries
Li et al. Fabricated Ga (III) heterovalent substituted NiCo layered double hydroxides (NiCoGa-LDHs) electrode material for designed hybrid supercapacitor
Zhang et al. A novel SnS2 nanomaterial based on nitrogen-doped cubic-like carbon skeleton with excellent lithium storage
CN102169980A (zh) 一种负极活性材料的制备方法
Wang et al. Micro/nanostructured MnCo2O4. 5 anodes with high reversible capacity and excellent rate capability for next generation lithium-ion batteries
CN102774893A (zh) 一种纳米花瓣状Ni(OH)2的制备方法
CN102205989A (zh) 电池正极材料LiMn2O4的制备方法
CN109950055B (zh) 一种二硒化钴复合材料、制备方法及其应用
Jia et al. BIMMOF-derived ZnS/Co9S8 heterojunctions decorated hollow carbon nanospheres as advanced anode materials for lithium-ion batteries
CN109574078B (zh) 一种一氧化锰纳米颗粒及其应用和制备方法
Xiang et al. Facile synthesis of lithium-rich layered oxide Li [Li 0.2 Ni 0.2 Mn 0.6] O 2 as cathode of lithium-ion batteries with improved cyclic performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination