CN107464924B - 一种片状氧缺陷钒酸锂正极材料及其制备方法 - Google Patents
一种片状氧缺陷钒酸锂正极材料及其制备方法 Download PDFInfo
- Publication number
- CN107464924B CN107464924B CN201710605231.9A CN201710605231A CN107464924B CN 107464924 B CN107464924 B CN 107464924B CN 201710605231 A CN201710605231 A CN 201710605231A CN 107464924 B CN107464924 B CN 107464924B
- Authority
- CN
- China
- Prior art keywords
- solution
- vanadate
- polyacrylonitrile
- lithium
- lithium vanadate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 47
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 title claims abstract description 47
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 35
- 239000001301 oxygen Substances 0.000 title claims abstract description 35
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 230000007547 defect Effects 0.000 title claims description 24
- 239000010406 cathode material Substances 0.000 title claims description 10
- 239000010405 anode material Substances 0.000 claims abstract description 27
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 20
- 239000010416 ion conductor Substances 0.000 claims abstract description 13
- 239000000243 solution Substances 0.000 claims description 40
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 14
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 claims description 13
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 12
- 239000000835 fiber Substances 0.000 claims description 12
- 229910012952 LiV3 Inorganic materials 0.000 claims description 10
- 239000003960 organic solvent Substances 0.000 claims description 10
- 239000002243 precursor Substances 0.000 claims description 10
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 6
- 238000001354 calcination Methods 0.000 claims description 5
- 238000010041 electrostatic spinning Methods 0.000 claims description 5
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 claims description 5
- 239000011259 mixed solution Substances 0.000 claims description 5
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 4
- 239000007774 positive electrode material Substances 0.000 claims description 4
- 230000002950 deficient Effects 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- 239000008139 complexing agent Substances 0.000 claims description 2
- 238000009826 distribution Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- 235000006408 oxalic acid Nutrition 0.000 claims description 2
- 239000011148 porous material Substances 0.000 claims description 2
- 238000005245 sintering Methods 0.000 claims description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 16
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 16
- 239000000463 material Substances 0.000 abstract description 13
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 230000001351 cycling effect Effects 0.000 description 5
- 239000007772 electrode material Substances 0.000 description 4
- 230000000536 complexating effect Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- RLTFLELMPUMVEH-UHFFFAOYSA-N [Li+].[O--].[O--].[O--].[V+5] Chemical compound [Li+].[O--].[O--].[O--].[V+5] RLTFLELMPUMVEH-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229910000686 lithium vanadium oxide Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明属于锂离子电池正极材料技术领域,尤其涉及一种片状钒酸锂正极材料及其制备方法。通过形成片状形貌和有氧缺陷的LiV3O7.9,并在其表面形成快离子导体Li0.3V2O5层和碳层,提高钒酸锂材料的电子导电性和离子导电性,用作高倍率和循环性能的锂离子电池正极材料。
Description
技术领域
本发明属于锂离子电池正极材料技术领域,尤其涉及一种片状钒酸锂正极材料及其制备方法。
背景技术
层状单斜锂钒氧化物(LiV3O8)具有比能量高、工作电压高、循环寿命长,有望成为一种优异的锂离子电池正极材料。然而,其较低的电子电导率(~10-6Scm-1)和低的锂离子扩散系数(10-13cm2S-1)导致电极充放电库仑效率低、倍率性能差。这些问题通常是通过减小尺寸到纳米级或改进合成方法如喷雾热解法、表面涂覆碳处理、溶胶-凝胶法、水热合成、微波合成等等来改善。然而,纳米结构和碳包覆粉末的方法会产生很多负面影响,例如,振实密度低,不可逆容量损失大及大颗粒间的电阻大等。此外,现有的方法往往涉及复杂的后处理步骤或昂贵的化学药品。
最近,通过在电极材料表面形成氧缺陷以改善电极的电化学性能成为研究人员关注的一种新方法。例如,宋等人利用水热法制备Mo掺杂改性LiV3O8过程中发现,这种复合材料具有氧空位,这会为锂离子扩散提供更多的开放空间,并可作为锂离子嵌入/脱出时的相变成核中心。此外,氧空位和V4+的存在可以提高电化学电极的离子电导率(Song H,Liu Y,Zhang C,et al.Mo-doped LiV3O8nanorod-assembled nanosheets as a highperformance cathode material for lithium ion batteries[J].Journal ofMaterials Chemistry A,2015,3(7):3547-3558.)。陈等人合成了表面非晶态和氧缺陷的Li3VO4-δ,可逆容量和库仑效率同时表现出很大的改进,这些改进是由于有足够的氧缺陷的晶面,大大提高了Li3VO4-δ电荷转移动力学(Chen L,Jiang X,Wang N,et al.Surface‐Amorphous and Oxygen‐Deficient Li3VO4-δas a Promising Anode Material forLithium‐Ion Batteries[J].Advanced Science,2015,2:1500090)。这些实例表明:设计和制备氧缺陷结构电极材料可能是一种改善锂离子电池电化学性能很有前途的方法。本发明则是在控制氧缺陷的基础上,通过形成高比表面的片状形貌,并进一步进行表面改性,即在表面形成快离子导体层和碳层,同时提高钒酸锂材料的电子导电性和离子导电性,有望开发出高倍率和循环性能的锂离子电池正极材料。
发明内容
本发明的发明目的是针对上述钒酸锂正极材料及其制备方法存在的缺点,提供一种片状钒酸锂正极材料及其制备方法,通过形成片状形貌和有氧缺陷的LiV3O7.9,并在其表面形成快离子导体Li0.3V2O5层和碳层,提高钒酸锂材料的电子导电性和离子导电性,用作高倍率和循环性能的锂离子电池正极材料。
本发明的发明目的是通过以下技术方案实现的:
一种片状氧缺陷钒酸锂正极材料,其主要特征在于:所述的钒酸锂正极材料同时具有片状形貌和氧缺陷两个特征,片厚为80~120nm,化学分子式写为LiV3O7.9。
同时,片状LiV3O7.9表面含有快离子导体Li0.3V2O5层和导电碳层,钒酸锂中碳含量为3~5%,Li0.3V2O5与LiV3O7.9摩尔比可随着热处理条件调节在0.1:1~1:1范围。
一种片状氧缺陷钒酸锂正极材料制备方法,具体制备过程包括:
(1)按化学计量比将一定量钒酸铵与乙酸锂溶解于有机溶剂中,加入2~3倍钒酸铵摩尔数的草酸作络合剂,并加硝酸进行调节,直至钒酸铵完全溶解形成A溶液;然后将不同分子量的聚丙烯腈溶解于有机溶剂中形成B溶液;将A溶液缓慢滴加到B溶液中,磁力搅拌至混合均匀。
(2)将混合溶液利用静电纺丝方法制备出钒酸锂前驱体纤维;
(3)将前驱体纤维直接在空气中400~500℃煅烧1~5小时,得到表面改性的片状氧缺陷钒酸锂正极材料。
其中,所述化学计量比是指Li:V:O=1:3:8。
B溶液中的聚丙烯腈是分子量为50000的聚丙烯腈与分子量为150000的聚丙烯腈的混合物,质量比为1:2~1:4。小分子量的聚丙烯腈在烧结时容易分解掉,对纤维孔隙的产生及活性颗粒的分布有帮助,大分子量聚丙烯腈是用来形成碳骨架。A溶液和B溶液中的有机溶剂为N,N二甲基甲酰胺、N,N二甲基乙酰胺、乙腈中的一种。
B溶液中添加的高分子量的聚丙烯腈的质量与A溶液中的钒酸铵的质量比为1.5:1~3.5:1,A溶液中钒酸铵与有机溶剂的质量比为0.4~0.55:1,B溶液中聚丙烯腈与有机溶剂的质量比为1:4.5~6。
相比于现有技术,本发明不仅仅在电极材料表面形成氧缺陷,而是使整个材料具有氧缺陷,并在LiV3O7.9表面形成快离子导体Li0.3V2O5层和碳层,以及控制形成有利于电子传导和离子传导的片状形貌,可同时提高钒酸锂材料的电子导电性和离子导电性,适合用作高倍率和循环性能的锂离子电池正极材料。
本发明的有益效果是:
(1)本发明通过形成片状形貌、氧缺陷结构以及表面复合快离子导体Li0.3V2O5层和碳层,可提高钒酸锂电极材料的电子导电性与锂离子扩散能力,大大提高了材料的高倍率性能和循环性能;
(2)本发明制备过程简单,电极生产成本低,易规模化生产。
附图说明
图1是本发明实施例1,2,3的钒酸锂正极材料的XRD图。
图2是本发明实施例1的钒酸锂正极材料的扫描电镜图。
图3是本发明实施例1的钒酸锂正极材料的透射电镜图和能谱图。
图4是本发明实施例1的钒酸锂正极材料的高分辨透射电镜图。
图5是本发明实施例1的钒酸锂正极材料的不同倍率下充放电曲线图。
图6是本发明实施例1,2,3的钒酸锂正极材料在5C电流密度下的循环性能曲线图。
图7是本发明实施例1,2,3的钒酸锂正极材料在10C电流密度下的循环性能曲线图。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1
(1)按化学计量比将2.632g钒酸铵与0.765g乙酸锂溶解于5g N,N二甲基甲酰胺中,并加入0.5ml HNO3和5.673g C2H2O4·2H2O进行络合调节,不断搅拌直至完全溶解形成A溶液;然后将2g分子量为50000和4g分子量为150000的聚丙烯腈溶解于30g N,N二甲基甲酰胺中形成B溶液;将A溶液缓慢滴加到B溶液中,搅拌至混合均匀。
(2)将混合溶液利用通用的静电纺丝方法制备出钒酸锂前驱体纤维,加料速度为0.5ml/h,电压24kV,湿度控制在40%,温度保持在25℃,喷嘴和接收体之间的距离为15cm;
(3)将前驱体纤维直接在空气中500℃煅烧3小时,得到表面改性的片状氧缺陷钒酸锂正极材料。
由图1,2,3,4可见,所制备的钒酸锂正极材料具有片状形貌,平均厚度为120nm,主要化学成分为氧缺陷的LiV3O7.9;同时,片状钒酸锂表面含有快离子导体Li0.3V2O5层和导电碳层,材料含碳量约3%;Li0.3V2O5与LiV3O7.9摩尔比约1:1。由图5所示的不同倍率下充放电曲线及图6、7所示的在5C和10C电流密度下的循环性能曲线可见,通过形成这种片状形貌和有氧缺陷的LiV3O7.9,并在其表面形成快离子导体Li0.3V2O5层和碳层,可提高钒酸锂材料的电子导电性和离子导电性,可用作高倍率和循环性能的锂离子电池正极材料,5C下循环500圈,容量保持在142mAh/g,10C下循环1000圈,容量保持在102mAh/g。
实施例2
(1)按化学计量比将1.316g钒酸铵与0.383g乙酸锂溶解于3g N,N二甲基乙酰胺中,并加入0.3ml HNO3和2.837g C2H2O4·2H2O进行络合调节,不断搅拌直至完全溶解形成A溶液;然后将1g分子量为50000和4g分子量为150000的聚丙烯腈溶解于30g N,N二甲基乙酰胺中形成B溶液;将A溶液缓慢滴加到B溶液中,搅拌至混合均匀。
(2)将混合溶液利用通用的静电纺丝方法制备出钒酸锂前驱体纤维,如加料速度为0.5ml/h,电压20kV,湿度控制在40%,温度保持在25℃,喷嘴和接收体之间的距离为15cm;
(3)将前驱体纤维直接在空气中400℃煅烧5小时,得到表面改性的片状氧缺陷钒酸锂正极材料。
所制备的片状氧缺陷钒酸锂正极材料具有片状形貌,平均厚度为100nm,主要化学成分为氧缺陷的LiV3O7.9;同时,片状钒酸锂表面含有快离子导体Li0.3V2O5层和导电碳层,材料含碳量约4%;Li0.3V2O5与LiV3O7.9摩尔比约0.63:1。由图6、7所示的在5C和10C电流密度下的循环性能曲线可见,通过形成这种片状形貌和有氧缺陷的LiV3O7.9,并在其表面形成快离子导体Li0.3V2O5层和碳层,可提高钒酸锂材料的电子导电性和离子导电性,可用作高倍率和循环性能的锂离子电池正极材料,5C下循环500圈,容量保持在133mAh/g,10C下循环1000圈,容量保持在85mAh/g。
实施例3
(1)按化学计量比将5.264g钒酸铵与1.53g乙酸锂溶解于10g乙腈中,并加入1mlHNO3和11.346g C2H2O4·2H2O进行络合调节,不断搅拌直至完全溶解形成A溶液;然后将4g分子量为50000和8g分子量为150000的聚丙烯腈溶解于55g乙腈中形成B溶液;将A溶液缓慢滴加到B溶液中,搅拌至混合均匀。
(2)将混合溶液利用通用的静电纺丝方法制备出钒酸锂前驱体纤维,加料速度为0.5ml/h,电压24kV,湿度控制在40%,温度保持在25℃,喷嘴和接收体之间的距离为15cm;
(3)将前驱体纤维直接在空气中500℃煅烧1小时,得到表面改性的片状氧缺陷钒酸锂正极材料。
所制备的片状氧缺陷钒酸锂正极材料具有片状形貌,平均厚度为80nm,主要化学成分为氧缺陷的LiV3O7.9;同时,片状钒酸锂表面含有快离子导体Li0.3V2O5层和导电碳层,材料含碳量约5%;Li0.3V2O5与LiV3O7.9摩尔比约0.1:1。由图6、7所示的在5C和10C电流密度下的循环性能曲线可见,通过形成这种片状形貌和有氧缺陷的LiV3O7.9,并在其表面形成快离子导体Li0.3V2O5层和碳层,可提高钒酸锂材料的电子导电性和离子导电性,可用作高倍率和循环性能的锂离子电池正极材料,5C下循环500圈,容量保持在117mAh/g,10C下循环1000圈,容量保持在56mAh/g。
Claims (5)
1.一种片状氧缺陷钒酸锂正极材料的制备方法,所述的钒酸锂正极材料同时具有片状形貌和氧缺陷两个特征,片厚为80~120nm,化学分子式写为LiV3O7.9;同时,片状LiV3O7.9表面含有快离子导体Li0.3V2O5层和导电碳层,钒酸锂中碳含量为3~5%,Li0.3V2O5 与LiV3O7.9摩尔比可随着热处理条件调节在0.1:1~1:1范围,其特征在于,具体制备过程包括:
(1)按化学计量比将一定量钒酸铵与乙酸锂溶解于有机溶剂中, 加入2~3倍钒酸铵摩尔数的草酸作络合剂,并加硝酸进行调节,直至钒酸铵完全溶解形成A溶液;然后将不同分子量的聚丙烯腈溶解于有机溶剂中形成B溶液;将A溶液缓慢滴加到B溶液中,磁力搅拌至混合均匀;
(2)将混合溶液利用静电纺丝方法制备出钒酸锂前驱体纤维;
(3)将前驱体纤维直接在空气中400~500℃煅烧1~5小时,得到表面改性的片状氧缺陷钒酸锂正极材料。
2.如权利要求1所述的一种片状氧缺陷钒酸锂正极材料的制备方法,其特征在于,所述化学计量比是指Li:V:O=1:3:8。
3.如权利要求1所述的一种片状氧缺陷钒酸锂正极材料的制备方法,其特征在于,B溶液中的聚丙烯腈是分子量为50000的聚丙烯腈与分子量为150000的聚丙烯腈的混合物,质量比为1:2~1:4;小分子量的聚丙烯腈在烧结时容易分解掉,对纤维孔隙的产生及活性颗粒的分布有帮助,大分子量聚丙烯腈是用来形成碳骨架。
4.如权利要求1所述的一种片状氧缺陷钒酸锂正极材料的制备方法,其特征在于,A溶液和B溶液中的有机溶剂为N,N二甲基甲酰胺、N,N二甲基乙酰胺、乙腈中的一种。
5.如权利要求1所述的一种片状氧缺陷钒酸锂正极材料的制备方法,其特征在于,B溶液中添加的高分子量的聚丙烯腈的质量与A溶液中的钒酸铵的质量比为1.5:1~3.5:1, A溶液中钒酸铵与有机溶剂的质量比为0.4~0.55:1,B溶液中聚丙烯腈与有机溶剂的质量比为1:4.5~6。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710605231.9A CN107464924B (zh) | 2017-07-24 | 2017-07-24 | 一种片状氧缺陷钒酸锂正极材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710605231.9A CN107464924B (zh) | 2017-07-24 | 2017-07-24 | 一种片状氧缺陷钒酸锂正极材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107464924A CN107464924A (zh) | 2017-12-12 |
CN107464924B true CN107464924B (zh) | 2020-06-09 |
Family
ID=60546336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710605231.9A Active CN107464924B (zh) | 2017-07-24 | 2017-07-24 | 一种片状氧缺陷钒酸锂正极材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107464924B (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109244423B (zh) * | 2018-10-23 | 2021-03-09 | 大连交通大学 | 一种具有多孔海绵状碳基纳米电极材料的制备方法 |
CN109950538A (zh) * | 2019-04-15 | 2019-06-28 | 北京航空航天大学 | 一种锌离子电池用的钒基正极材料 |
CN110112398B (zh) * | 2019-05-22 | 2022-04-08 | 中南大学 | 一种LiCuVO4纳米纤维的制备方法及其产品与应用 |
CN110474043B (zh) * | 2019-08-13 | 2022-09-02 | 青岛大学 | 一种锂离子电池的电极材料及其制备方法 |
CN113764636A (zh) * | 2021-08-18 | 2021-12-07 | 三峡大学 | 柔性自支撑Li3VO4/C纳米纤维锂离子电池负极材料的制备方法 |
CN114084905B (zh) * | 2021-10-10 | 2024-01-05 | 中国计量大学 | 富氧缺陷的钾嵌入钒酸铵纳米阵列正极材料的制备方法 |
CN114300675B (zh) * | 2021-12-31 | 2023-08-15 | 欣旺达电动汽车电池有限公司 | 一种正极材料、其制备方法和水系锌离子电池 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101521276A (zh) * | 2009-03-30 | 2009-09-02 | 深圳大学 | 一种锂离子电池正极材料包覆碳的制备方法 |
CN102299312A (zh) * | 2011-08-08 | 2011-12-28 | 浙江大学 | 三维多孔钒酸锂正极材料及其制备方法 |
CN102438948A (zh) * | 2009-05-27 | 2012-05-02 | 科诺科菲利浦公司 | 制备锂钒氧化物粉末的方法及粉末的用途 |
CN105322161A (zh) * | 2014-07-28 | 2016-02-10 | 中国科学院大连化学物理研究所 | 一种碳载钒酸锂及其制备和应用 |
-
2017
- 2017-07-24 CN CN201710605231.9A patent/CN107464924B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101521276A (zh) * | 2009-03-30 | 2009-09-02 | 深圳大学 | 一种锂离子电池正极材料包覆碳的制备方法 |
CN102438948A (zh) * | 2009-05-27 | 2012-05-02 | 科诺科菲利浦公司 | 制备锂钒氧化物粉末的方法及粉末的用途 |
CN102299312A (zh) * | 2011-08-08 | 2011-12-28 | 浙江大学 | 三维多孔钒酸锂正极材料及其制备方法 |
CN105322161A (zh) * | 2014-07-28 | 2016-02-10 | 中国科学院大连化学物理研究所 | 一种碳载钒酸锂及其制备和应用 |
Non-Patent Citations (1)
Title |
---|
"锂离子电池正极材料LiV3O8的制备及动力学研究";李枝贤等;《合肥工业大学学报》;20070831;第1、2部分 * |
Also Published As
Publication number | Publication date |
---|---|
CN107464924A (zh) | 2017-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107464924B (zh) | 一种片状氧缺陷钒酸锂正极材料及其制备方法 | |
Zhang et al. | Li4Ti5O12 prepared by a modified citric acid sol–gel method for lithium-ion battery | |
CN102738458B (zh) | 一种富锂正极材料的表面改性方法 | |
Zhao et al. | Titanium niobium oxides (TiNb2O7): Design, fabrication and application in energy storage devices | |
CN108288703B (zh) | 一种石墨烯包覆掺氟钛酸锂纳米线的制备方法及其应用 | |
Tang et al. | High-performance LiMn2O4 with enwrapped segmented carbon nanotubes as cathode material for energy storage | |
Duan et al. | Synthesis and electrochemical property of LiMn 2 O 4 porous hollow nanofiber as cathode for lithium-ion batteries | |
Yan et al. | Effect of precipitators on the morphologies and electrochemical properties of Li1. 2Mn0. 54Ni0. 13Co0. 13O2 via rapid nucleation and post-solvothermal method | |
CN107845801B (zh) | 一种协同改性的氟磷酸钴锂正极材料及其制备方法 | |
CN111193014B (zh) | 蛋壳-蛋黄结构的四氧化三钴-氮掺杂碳/碳纳米笼复合材料及其制备方法和应用 | |
Wang et al. | A versatile nitrogen-doped carbon coating strategy to improve the electrochemical performance of LiFePO4 cathodes for lithium-ion batteries | |
Jiang et al. | Synthesis and characterization of oriented linked LiFePO 4 nanoparticles with fast electron and ion transport for high-power lithium-ion batteries | |
CN104577072A (zh) | 一种氧化石墨烯基MoO2高性能锂/钠离子电池电极材料的制备方法 | |
Chen et al. | Electrochemical properties of self-assembled porous micro-spherical LiFePO4/PAS composite prepared by spray-drying method | |
Wang et al. | Polymer-chelation synthesis of compositionally homogeneous LiNi1/3Co1/3Mn1/3O2 crystals for lithium-ion cathode | |
Yang et al. | Insights into electrochemical performances of NiFe2O4 for lithium-ion anode materials | |
Kong et al. | Synthesis of lithium rich layered oxides with controllable structures through a MnO2 template strategy as advanced cathode materials for lithium ion batteries | |
Niu et al. | High-rate lithium storage of TiNb2O7/reduced graphene oxide | |
Chen et al. | Facile preparation of carbon-LiNi1/3Co1/3Mn1/3O2 with enhanced stability and rate capability for lithium-ion batteries | |
Zhao et al. | Environmentally benign and scalable synthesis of LiFePO4 nanoplates with high capacity and excellent rate cycling performance for lithium ion batteries | |
CN111933904A (zh) | 双金属硫化物及其制备方法、复合物及其制备方法、锂硫正极材料及锂硫电池 | |
CN111924864A (zh) | 一种锂离子电池MnO/MgO复合负极材料及其制备方法 | |
CN105161678A (zh) | 一种用于锂电池电极的多层复合二氧化钛纳米管材料 | |
Ram et al. | Synthesis and improved electrochemical performance of LiMn2–xGdxO4 based cathodes | |
Wu et al. | Study on Li1+ xV3O8 synthesized by microwave sol–gel route |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240925 Address after: 434000 East of Minsheng Fourth Road and North of Xingye Road, Qingji Industrial Park, Gong'an County, Jingzhou City, Hubei Province (self declared) Patentee after: Hubei Xiaodi Vanadium Industry Co.,Ltd. Country or region after: China Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301 Patentee before: JIANGSU University Country or region before: China |