CN112138701A - Ni0.85Se@NC电催化材料的制备方法 - Google Patents

Ni0.85Se@NC电催化材料的制备方法 Download PDF

Info

Publication number
CN112138701A
CN112138701A CN202011124821.8A CN202011124821A CN112138701A CN 112138701 A CN112138701 A CN 112138701A CN 202011124821 A CN202011124821 A CN 202011124821A CN 112138701 A CN112138701 A CN 112138701A
Authority
CN
China
Prior art keywords
nickel
preparation
based metal
organic framework
nise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011124821.8A
Other languages
English (en)
Inventor
孙道峰
黄招娣
戴昉纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN202011124821.8A priority Critical patent/CN112138701A/zh
Publication of CN112138701A publication Critical patent/CN112138701A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了Ni0.85Se@NC电催化材料的制备方法,其包括如下步骤:S1、利用溶剂热反应制备镍基金属有机框架物纳米片,记为Ni‑MOF,即[Ni(HBTC)(DABCO)3DMF];S2、将所述镍基金属有机框架物纳米片以程序升温的方式加热退火后,自然降温得到氮掺杂碳包覆的镍纳米粒子,命名为Ni@NC;S3、将所述Ni@NC与商业硒粉混合均匀后,以程序升温的方式加热退火后,自然降温得到氮掺杂碳包覆的二硒化镍纳米粒子,记为NiSe2@NC;S4、将所述NiSe2@NC在750~850℃下进行高温煅烧2h,制备氮掺杂碳包覆的硒化镍纳米粒子,记为Ni0.85Se@NC。与现有技术相比,本发明的优点和积极的效果是:本发明提供了一种可控的由正交晶系的硒化镍向六方相硒化镍相变的方法,为硒化镍材料物相的合成及其优化提供了指导。

Description

Ni0.85Se@NC电催化材料的制备方法
技术领域
本发明属于新能源纳米材料合成及电化学技术领域,具体地说,涉及Ni0.85Se@NC电催化材料的制备方法。
背景技术
电化学水解技术在氢能的可持续储存、转化和输送方面具有广阔的应用前景,它主要依赖于两个半反应(析氢反应和析氧反应)的热力学和动力学参数。虽然Pt基和Ru/Ir基电催化剂在降低反应能垒和提高水分解效率方面是有效的,但有限的地球丰度和昂贵的市场价格严重阻碍了它们的广泛应用。因此,人们一直在努力寻找贵金属催化剂的先进替代品。过渡金属硫属化合物具有地壳储量丰富及成本低等特点,是一种很有前途的全水解电催化剂。其中,过渡金属硒化物,比如Ni0.85Se、NiSe、Ni3Se2和NiSe2等,因其具有阴离子半径大、电子迁移速度快以及带隙合适等特点能加速电荷快速转移以及扩大其固有催化位点。然而,大多数Ni-Se电催化剂在电解过程中不稳定,难以保持稳定的催化活性中心。因此,开发具有良好催化活性和持续稳定性的高效双功能电催化剂是非常必要的。
以提高材料的催化活性和稳定性为目标,杂原子掺杂的碳基复合材料能够提供丰富的电催化活性位点,增强的导电性以及合适的碳保护层。使用金属-有机框架物(MOFs)作为可控的反应平台可达到上述目标。与三维大块MOFs相比,二维MOFs纳米片具有高的长径比和超薄特性,作为制备特殊纳米材料的预组装反应平台具有潜在优势:
(1)MOFs纳米片的超薄特性可以使其在煅烧过程中自然卷曲,而MOFs配体的碳骨架可以形成稳定的保护层,进而形成一个不可分割的功能界面,便于系统地研究不同组分间的相互作用机理。
(2)MOFs纳米片的超薄特性将有助于在热解后形成几层而不是多层的碳外壳,从而形成具有明确核壳/卵黄壳结构的复合材料。这种特殊的结构可以暴露高比例的活性中心以及增强电子转移能力,从而优化本征吸附自由能。
(3)在热解条件下,超薄MOFs纳米片可以有效地触发阴离子空位的产生,在电子水平上有助于本征催化活性的改变,从而提高电解水性能。
基于以上考虑,选择MOFs纳米片作为反应平台可控构建具有特殊核壳/蛋黄壳结构和丰富阴离子空位的氮掺杂的碳包覆的硒化镍纳米材料对优化电解水性能具有特殊的意义。
发明内容
本发明提供了Ni0.85Se@NC电催化材料的制备方法,解决了目前此类材料物相及电子结构调控问题。
本发明是通过以下技术方案实现的:
Ni0.85Se@NC电催化材料的制备方法,其包括如下步骤:
S1、利用溶剂热反应制备镍基金属有机框架物纳米片,记为Ni-MOF,即[Ni(HBTC)(DABCO)3DMF];
S2、将所述镍基金属有机框架物纳米片以程序升温的方式加热退火后,自然降温得到氮掺杂碳包覆的镍纳米粒子,命名为Ni@NC;
S3、将所述Ni@NC与商业硒粉混合均匀后,以程序升温的方式加热退火后,自然降温得到氮掺杂碳包覆的二硒化镍纳米粒子,记为NiSe2@NC;
S4、将所述NiSe2@NC在750~850℃下进行高温煅烧,制备氮掺杂碳包覆的硒化镍纳米粒子,记为Ni0.85Se@NC。
作为优选方案,所述镍基金属有机框架物纳米片的制备方法为:
将硝酸镍、三乙烯二胺、均苯三甲酸、聚乙烯吡咯烷酮溶解在N,N-二甲基甲酰胺中,超声30分钟后,在100~150℃下进行溶剂热反应,得到所述的镍基金属有机框架物纳米片。
作为优选方案,所述Ni@NC的制备方法为:
将镍基金属有机框架物纳米片经研磨后,在氩气气氛中,以5℃/min的速率加热至600℃进行退火,得到Ni@NC。
作为优选方案,步骤S3中所述的程序升温的速率为5℃,退火温度为350℃。
一种由前述的制备方法得到的Ni0.85Se@NC电催化材料。
本发明的反应机理为:
硒和氮原子的电负性差别不大,分别为2.55和3.04。NiSe2@NC在较高温度下会导致部分不稳定的Se原子挥发,然后,最初与Se原子配位的Ni原子与N原子通过化学键Ni-N配位,从而导致电子从Ni原子转移到N原子。这些都导致了Ni和Se的化学计量比以及相应电子态的变化。这种化学键辅助的电子转移不仅能诱导Ni0.85Se核与碳壳层之间的界面电荷重新分布,形成新的平衡态,而且能有效地削弱Ni对H的亲和力,促进碳层对H的亲和力,从而提高电催化活性。
与现有技术相比,本发明的优点和积极的效果是:
本发明提供了一种可控的由正交晶系的硒化镍向六方相硒化镍相变的方法,为硒化镍材料物相的合成及其优化提供了指导。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明中实施例1制备的Ni-MOF的XRD图;
图2为本发明中实施例1制备的Ni-MOF的TEM图;
图3为本发明中实施例1制备的Ni-MOF的结构图;
图4为本发明中实施例2制备的核壳结构Ni@NC电催化材料的SEM图;
图5为本发明中实施例2制备的核壳结构Ni@NC电催化材料的XRD图;
图6为本发明中实施例3制备的NiSe2@NC和Ni0.85Se@NC电催化材料的XRD图;
图7为本发明中实施例3制备的NiSe2@NC和Ni0.85Se@NC电催化材料的EPR图;
图8为本发明中实施例3制备的核壳结构NiSe2@NC电催化材料的SEM图;
图9为本发明中实施例3制备的核壳结构NiSe2@NC电催化材料的HRTEM图;
图10为本发明中实施例4制备的蛋黄壳结构Ni0.85Se@NC电催化材料的SEM图;
图11为本发明中实施例4制备的蛋黄壳结构Ni0.85Se@NC电催化材料的HRTEM图;
图12是实施例1-4制备的电催化材料在1.0M KOH电解液中测试产氢的LSV图;
图13是实施例1-4制备的电催化材料在1.0M KOH电解液中测试产氧的LSV图;
图14是实施例1-4制备的电催化材料在1.0M KOH电解液中测试全水解的LSV图;
图15为本发明中对比例1制备的电催化材料的SEM图;
图16为本发明中对比例2制备的电催化材料的SEM图;
图17为本发明中对比例2制备的电催化材料的TEM图;
图18为本发明中对比例2制备的电催化材料的HRTEM图;
图19为本发明中对比例2制备的电催化材料的XRD图;
图20为本发明中对比例1制备的材料在1.0M KOH电解液中测试产氢的LSV图;
图21为本发明中对比例2制备的材料在1.0M KOH电解液中测试产氧的LSV图;
图22为本发明中对比例2制备的材料的EPR图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
本实施例提供了一种镍基金属有机框架物纳米片的制备方法,具体包括如下步骤:
Ni-MOF纳米片的制备:首先,将0.145g(0.5mmol)Ni(NO3)2·6H2O、0.056g(0.5mmol)DABCO、0.105g(0.5mmol)H3BTC和1g PVP溶解在DMF(10mL)溶液中。将溶液在室温下以600rpm搅拌速度搅拌30分钟后转移至25mL反应斧中,封装完后置于120℃的烘箱中维持24h。等到自然冷却至室温,用DMF和甲醇离心三次,除去未反应残渣和溶剂分子,得到淡绿色的Ni-MOF粉末。最后,在120℃真空干燥12h,得到活化的Ni-MOF纳米片。
图1为实施例1制备的Ni-MOF纳米片的XRD图,可以看出合成的Ni-MOF的X射线衍射图与单晶数据模拟的结果吻合良好,表明合成的Ni-MOF具有较高的相纯度。
图2为实施例1制备的Ni-MOF的TEM图,证明合成的Ni-MOF具有松散堆积的纳米片形貌。
图3为实施例1制备的Ni-MOF的结构图,根据单晶结构,计算出Ni-MOF纳米片的理论层间距离为0.96nm。
对比例1
大块Ni-MOF的制备:首先,将0.145g(0.5mmol)Ni(NO3)2·6H2O、0.12g(1.0mmol)DABCO、0.105g(0.5mmol)H3BTC溶解在DMF(10mL)溶液中。将溶液在室温下以600rpm搅拌速度搅拌30分钟后转移至25mL反应斧中,封装完后置于120℃的烘箱中维持24h。等到自然冷却至室温,用DMF和甲醇离心三次,除去未反应残渣和溶剂分子,得到淡绿色的粉末,记为B-Ni-MOF。最后,在120℃真空干燥12h,得到活化的B-Ni-MOF。
为了证明MOF纳米片衍生的纳米材料的优势,还合成的了大块MOF以及相应的衍生物进行系统比较。
实施例2
本实施例提供了Ni@NC的制备方法,具体包括如下步骤:
取100mg绿色的Ni-MOF纳米片于研钵中研磨10min后转移到管式炉的方形瓷舟中,在氩气气氛下以5℃·min-1的升温速率从室温加热到600℃,维持2h,等待自然降温后得到黑色粉末,记为Ni@NC。
图4为实施例2制备的核壳结构的Ni@NC电催化材料的TEM图,可以看出合成纳米薄片的表面变得粗糙,并且出现许多均匀分布的纳米颗粒。
图5为实施例2制备的核壳结构的Ni@NC电催化材料的XRD图,证明合成的材料与Ni(PDF#04-0850)匹配良好,具有很高的相纯度。
实施例3
本实施例提供了Ni0.85Se@NC的制备方法,具体包括如下步骤:
(1)NiSe2@NC的制备:准备称量50mg黑色粉末Ni@NC与200mg硒粉于研钵中混合均匀后,转移到管式炉的方形瓷舟上,在氩气气氛下以5℃·min-1的升温速率从室温加热到350℃,反应维持2h,自然降温得到氮掺杂碳包覆的二硒化镍纳米粒子,命名为NiSe2@NC
(2)Ni0.85Se@NC的制备:将所得到的50mg NiSe2@NC置于管式炉的方形瓷舟中,将管式炉在800℃下加热2小时,降至室温后得到氮掺杂碳包覆的硒化镍纳米粒子,记为Ni0.85Se@NC。
图6是实施例3制备的核壳结构NiSe2@NC与Ni0.85Se@NC两种电催化材料的XRD图,证明生成的两种不同物相的硒化镍,分别属于Ni0.85Se(PDF#18-0888)和NiSe2(PDF#18-0886)。
图7是实施例3制备的核壳结构NiSe2@NC与Ni0.85Se@NC两种电催化材料的EPR图,证明合成的Ni0.85Se@NC结构显示明显的不成对电子信号,观察到g值为2.003,表明存在丰富的Se空位。
图8是实施例3制备的核壳结构NiSe2@NC电催化材料的SEM图,证实生成了许多不规则的纳米粒子。
图9是实施例3制备的核壳结构NiSe2@NC电催化材料的HRTEM图,证实0.244nm和0.34nm的晶格条纹分别与NiSe2的(211)和碳层的(002)晶面匹配良好,证明物相和结构准确。
图10是实施例3制备的核壳结构Ni0.85Se@NC电催化材料的SEM图,证实材料表面仍为不规则的纳米粒子。
图11是实施例3制备的核壳结构Ni0.85Se@NC电催化材料的HRTEM图,证实0.35nm和0.34nm的晶格条纹分别与Ni0.85Se的(110)和碳层的(002)晶面匹配良好,证明物相和结构准确。
对比例2
B-Ni0.85Se@NC纳米材料的制备:
本对比例与实施例3的区别仅在于前驱体Ni-MOF换成B-Ni-MOF。
实施例4
HER和OER的测试:将制备的样品(5mg)和Nafion溶液(5μL,5wt%)分散在去离子水(450μL)和乙醇(1mL)的混合物中。将混合物超声处理30分钟以形成均匀的溶液。然后,将5μL溶液滴在直径为3mm的抛光玻碳电极(GCE)上,负载0.35mg·cm-2。在进行测量之前,让GCE在室温下干燥一小时。作为对比,5.0mg商品Pt/C和RuO2粉末也以相同的方式分散在抛光GCE上。
全水解的测试:将5mg活性样品分散在水/乙醇溶液(500μL,3:1v/v)和25μLNafion溶液中,超声处理2小时,形成均匀的溶液。然后,取200μL均匀溶液滴在碳布(CC,1.0×1.0cm2)上,并在室温下干燥,负载量为:1.0mg·cm-2。CC使用之前首先进行预处理,分别在6.0M HCl、去离子水和乙醇中分别超声15min以去除表面的氧化物。选择CC作为导电基底的原因是由于它的多孔性,并且在研究的电位区域内催化活性可以忽略不计。
图12是实施例1-3制备的电催化材料在1.0M KOH电解液中测试得到的LSV曲线图,验证Ni-MOF、Ni@NC、Ni0.85Se@NC和NiSe2@NC的HER电催化性能,其中,Ni0.85Se@NC性能最佳,在10mA·cm-2时表现出最高的活性,其过电位为131mV。
图13是实施例1-3制备的电催化材料在1.0M KOH电解液中测试得到的LSV曲线图,验证Ni-MOF、Ni@NC、Ni0.85Se@NC和NiSe2@NC的OER电催化性能,其中,Ni0.85Se@NC性能最佳,在10mA·cm-2时表现出最高的活性,其过电位为131mV。
图14是实施例2-3制备的电催化材料在1.0M KOH电解液中测试得到的LSV曲线图,验证Ni-MOF、Ni@NC、Ni0.85Se@NC和NiSe2@NC的全水解电催化性能,其中,Ni0.85Se@NC性能最佳,在10mA·cm-2时表现出最高的活性,其过电位为131mV。
图15是对比例1制备B-Ni-MOF的SEM图,证明合成的B-Ni-MOF为块状的形貌。
图16是对比例2制备的B-Ni0.85Se@NC的SEM图,证明合成的B-Ni0.85Se@NC表面开始变得粗糙。
图17是对比例2制备的B-Ni0.85Se@NC的TEM图,证明合成的B-Ni0.85Se@NC表面粗糙且有很多大小不一的纳米粒子出现。
图18是对比例2制备的B-Ni0.85Se@NC的HRTEM图,证明合成的B-Ni0.85Se@NC物相和结构准确。
图19是对比例2制备的B-Ni0.85Se@NC的XRD图,证明合成的B-Ni0.85Se@NC属于Ni0.85Se(PDF#18-0888)。
图20是对比例1-2制备的电催化材料在1.0M KOH电解液中测试得到的LSV曲线图,验证Bulk Ni-MOF以及Bulk Ni-MOF煅烧得到的Ni@NC、Ni0.85Se@NC和NiSe2@NC的HER电催化性能,其中,Ni0.85Se@NC性能最佳,在10mA·cm-2时表现出最高的活性,其过电位为131mV。
图21是对比例1-2制备的电催化材料在1.0M KOH电解液中测试得到的LSV曲线图,验证Bulk Ni-MOF以及Bulk Ni-MOF煅烧得到的Ni@NC、Ni0.85Se@NC和NiSe2@NC的OER电催化性能,其中,Ni0.85Se@NC性能最佳,在10mA·cm-2时表现出最高的活性,其过电位为131mV。
图22是对比例2和实施例2制备得到的两种电催化材料的EPR图,证明与Bulk Ni-MOF相比,Ni-MOF纳米片衍生得到的Ni0.85Se@NC存在丰富的Se空位。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (5)

1.Ni0.85Se@NC电催化材料的制备方法,其特征在于,包括如下步骤:
S1、利用溶剂热反应制备镍基金属有机框架物纳米片,记为Ni-MOF,即[Ni(HBTC)(DABCO)3DMF];
S2、将所述镍基金属有机框架物纳米片以程序升温的方式加热退火后,自然降温得到氮掺杂碳包覆的镍纳米粒子,命名为Ni@NC;
S3、将所述Ni@NC与商业硒粉混合均匀后,以程序升温的方式加热退火后,自然降温得到氮掺杂碳包覆的二硒化镍纳米粒子,记为NiSe2@NC;
S4、将所述NiSe2@NC在750~850℃下进行高温煅烧,制备氮掺杂碳包覆的硒化镍纳米粒子,记为Ni0.85Se@NC。
2.如权利要求1所述的Ni0.85Se@NC电催化材料的制备方法,其特征在于,所述镍基金属有机框架物纳米片的制备方法为:
将硝酸镍、三乙烯二胺、均苯三甲酸、聚乙烯吡咯烷酮溶解在N,N-二甲基甲酰胺中,超声30分钟后,在100~150℃下进行溶剂热反应,得到所述的镍基金属有机框架物纳米片。
3.如权利要求1所述的Ni0.85Se@NC电催化材料的制备方法,其特征在于,所述Ni@NC的制备方法为:
将镍基金属有机框架物纳米片经研磨后,在氩气气氛中,以5℃/min的速率加热至到550~650℃进行退火,得到Ni@NC。
4.如权利要求1所述的Ni0.85Se@NC电催化材料的制备方法,其特征在于,步骤S3中所述的程序升温的速率为5℃,退火温度为300~400℃。
5.一种由权利要求1所述的制备方法得到的Ni0.85Se@NC电催化材料。
CN202011124821.8A 2020-10-20 2020-10-20 Ni0.85Se@NC电催化材料的制备方法 Pending CN112138701A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011124821.8A CN112138701A (zh) 2020-10-20 2020-10-20 Ni0.85Se@NC电催化材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011124821.8A CN112138701A (zh) 2020-10-20 2020-10-20 Ni0.85Se@NC电催化材料的制备方法

Publications (1)

Publication Number Publication Date
CN112138701A true CN112138701A (zh) 2020-12-29

Family

ID=73954128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011124821.8A Pending CN112138701A (zh) 2020-10-20 2020-10-20 Ni0.85Se@NC电催化材料的制备方法

Country Status (1)

Country Link
CN (1) CN112138701A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113430564A (zh) * 2021-06-08 2021-09-24 北京科技大学 一种硼掺杂硒化物异质结纳米材料的制备方法
US20210316286A1 (en) * 2020-04-14 2021-10-14 China University Of Petroleum (East China) Core-shell structured nise2@nc electrocatalytic material and preparation method and use thereof
CN114016073A (zh) * 2021-10-25 2022-02-08 吉林师范大学 一种Fe掺杂Ni0.85Se纳米片阵列电催化剂的制备方法
CN114717599A (zh) * 2022-04-26 2022-07-08 浙江大学衢州研究院 一种钌负载的镍金属三维碳球电催化剂及其制备方法和应用
CN114774975A (zh) * 2022-05-03 2022-07-22 台州学院 一种两相硒化镍复合物的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107587161A (zh) * 2017-08-11 2018-01-16 济南大学 一种棒状NiFeSe/C电解水催化剂的制备方法
CN108842167A (zh) * 2018-06-20 2018-11-20 中国石油大学(华东) 一种类似于珊瑚状NiSe@NC的制备方法及其用途
CN109267093A (zh) * 2018-10-09 2019-01-25 苏州大学 超薄Ni-Fe-MOF纳米片及其制备方法和应用
CN110479271A (zh) * 2019-08-26 2019-11-22 西北师范大学 一种用于电解水产氢的二维镍碳纳米片催化剂的制备方法
US20200071458A1 (en) * 2016-12-02 2020-03-05 Council Of Scientific & Industrial Research Metalloporphyrin 2d-sheets for efficient photo- and electro- catalytic splitting of water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200071458A1 (en) * 2016-12-02 2020-03-05 Council Of Scientific & Industrial Research Metalloporphyrin 2d-sheets for efficient photo- and electro- catalytic splitting of water
CN107587161A (zh) * 2017-08-11 2018-01-16 济南大学 一种棒状NiFeSe/C电解水催化剂的制备方法
CN108842167A (zh) * 2018-06-20 2018-11-20 中国石油大学(华东) 一种类似于珊瑚状NiSe@NC的制备方法及其用途
CN109267093A (zh) * 2018-10-09 2019-01-25 苏州大学 超薄Ni-Fe-MOF纳米片及其制备方法和应用
CN110479271A (zh) * 2019-08-26 2019-11-22 西北师范大学 一种用于电解水产氢的二维镍碳纳米片催化剂的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
XIAOLIN WU ET AL.: ""Ni0.85Se as an efficient non-noble bifunctional electrocatalyst for full water splitting"", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *
YOU XU ET AL.: ""Nickel Nanoparticles Encapsulated in Few-Layer Nitrogen-Doped Graphene Derived from Metal–Organic Frameworks as Efficient Bifunctional Electrocatalysts for Overall Water Splitting"", 《ADVANCED MATERIALS》 *
ZHAODI HUANG ET AL.: ""Accurately Regulating the Electronic Structure of NixSey@NC Core–Shell Nanohybrids through Controllable Selenization of a Ni-MOF for pH-Universal Hydrogen Evolution Reaction"", 《SMALL》 *
ZHAODI HUANG ET AL.: ""Selective selenization of mixed-linker Ni-MOFs: NiSe2@NC core-shell nano-octahedrons with tunable interfacial electronic structure for hydrogen evolution reaction"", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
黄招娣 等: ""MOF衍生NiSe2@NC纳米片用于酸性条件下电解水产氢"", 《中国化学会第十届全国无机化学学术会议论文集(第一卷)》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210316286A1 (en) * 2020-04-14 2021-10-14 China University Of Petroleum (East China) Core-shell structured nise2@nc electrocatalytic material and preparation method and use thereof
CN113430564A (zh) * 2021-06-08 2021-09-24 北京科技大学 一种硼掺杂硒化物异质结纳米材料的制备方法
CN113430564B (zh) * 2021-06-08 2022-04-19 北京科技大学 一种硼掺杂硒化物异质结纳米材料的制备方法
CN114016073A (zh) * 2021-10-25 2022-02-08 吉林师范大学 一种Fe掺杂Ni0.85Se纳米片阵列电催化剂的制备方法
CN114016073B (zh) * 2021-10-25 2023-12-19 吉林师范大学 一种Fe掺杂Ni0.85Se纳米片阵列电催化剂的制备方法
CN114717599A (zh) * 2022-04-26 2022-07-08 浙江大学衢州研究院 一种钌负载的镍金属三维碳球电催化剂及其制备方法和应用
CN114717599B (zh) * 2022-04-26 2024-05-17 浙江大学衢州研究院 一种钌负载的镍金属三维碳球电催化剂及其制备方法和应用
CN114774975A (zh) * 2022-05-03 2022-07-22 台州学院 一种两相硒化镍复合物的制备方法

Similar Documents

Publication Publication Date Title
Li et al. Metal–organic framework templated Pd@ PdO–Co3O4 nanocubes as an efficient bifunctional oxygen electrocatalyst
CN112138701A (zh) Ni0.85Se@NC电催化材料的制备方法
Xu et al. Cobalt and cobalt oxides N-codoped porous carbon derived from metal-organic framework as bifunctional catalyst for oxygen reduction and oxygen evolution reactions
CN107946560B (zh) 碳限域金属或金属氧化物复合纳米结构材料及其制备方法和应用
KR101733492B1 (ko) 음극 및 양극에서 각각 수소와 산소를 발생시키는 비귀금속계 수전해 촉매 및 이의 제조방법
Wan et al. Oxygen-evolution catalysts based on iron-mediated nickel metal–organic frameworks
Zhang et al. Prussian blue analogues-derived bimetallic iron-cobalt selenides for efficient overall water splitting
Song et al. Self-templating construction of hollow Fe-CoxP nanospheres for oxygen evolution reaction
Luo et al. Biomass derived Fe, N-doped carbon material as bifunctional electrocatalysts for rechargeable Zn-air batteries
Xiong et al. In-situ self-templating construction of FeNi/N co-doped 3D porous carbon from bimetallic ions-coordinated porous organic polymer for rechargeable zinc-air batteries
Zhang et al. CoS2 particles loaded on MOF-derived hollow carbon spheres with enhanced overall water splitting
Guan et al. Surface-engineered cobalt nitride composite as efficient bifunctional oxygen electrocatalyst
CN111482189A (zh) 核壳结构NiSe2@NC电催化材料及其制备方法和用途
Gu et al. Cobalt fluoride/nitrogen-doped carbon derived from ZIF-67 for oxygen evolution reaction
Kang et al. Surface reconstruction establishing Mott-Schottky heterojunction and built-in space-charging effect accelerating oxygen evolution reaction
Yin et al. Self-template synthesis of atomically dispersed Fe/N-codoped nanocarbon as efficient bifunctional alkaline oxygen electrocatalyst
Yang et al. Electrochemical deposition of CeO2 nanocrystals on Co3O4 nanoneedle arrays for efficient oxygen evolution
CN114959780B (zh) 一种核壳结构钴掺杂二硒化镍电催化材料及其制备方法
Li et al. Rational design of self-supported WC/Co3W3N/Co@ NC yolk/shell nitrogen-doped porous carbon catalyst for highly efficient overall water splitting
Sun et al. In-situ phosphating Co@ Nitrogen-doping graphene boosts overall water splitting under alkaline condition
Mi et al. Cuboid-like phosphorus-doped metal–organic framework-derived CoSe2 on carbon cloth as an advanced bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries
Deng et al. Metal-organic framework derived FeNi alloy nanoparticles embedded in N-doped porous carbon as high-performance bifunctional air-cathode catalysts for rechargeable zinc-air battery
Wei et al. Cobalt nanocrystals embedded into N-doped carbon as highly active bifunctional electrocatalysts from pyrolysis of triazolebenzoate complex
Li et al. N, S heteroatom co-doped carbon-based materials carrying Mn and Co atoms as bifunctional catalysts for stable rechargeable zinc-air batteries
Xu et al. Ruthenium-nickel oxide derived from Ru-coupled Ni metal–organic framework for effective oxygen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Huang Zhaodi

Inventor after: Sun Daofeng

Inventor after: Dai Fangna

Inventor before: Sun Daofeng

Inventor before: Huang Zhaodi

Inventor before: Dai Fangna

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201229