CN111482189A - 核壳结构NiSe2@NC电催化材料及其制备方法和用途 - Google Patents

核壳结构NiSe2@NC电催化材料及其制备方法和用途 Download PDF

Info

Publication number
CN111482189A
CN111482189A CN202010309545.6A CN202010309545A CN111482189A CN 111482189 A CN111482189 A CN 111482189A CN 202010309545 A CN202010309545 A CN 202010309545A CN 111482189 A CN111482189 A CN 111482189A
Authority
CN
China
Prior art keywords
nise
core
electrocatalytic
precursor
organic framework
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010309545.6A
Other languages
English (en)
Inventor
黄招娣
袁帅
徐奔
孙道峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Publication of CN111482189A publication Critical patent/CN111482189A/zh
Priority to US17/224,998 priority Critical patent/US20210316286A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0573Selenium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • B01J2531/0216Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nanotechnology (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种核壳结构NiSe2@NC电催化材料,其通式为NiSe2@NC。本发明还提供了该催化材料的制备方法和应用,采用水合肼为还原剂,硒粉为硒源,金属有机框架物为前驱物,通过水热反应对混合配体的金属有机框架物进行选择性硒化。再通过一步管式炉煅烧反应,从而制备出一系列具有可调节的氮掺杂的碳包覆的立方相核壳二硒化镍正八面体材料。通过调节金属有机框架物中混合配体的种类,获得了具有不同吡啶氮含量掺杂的碳包覆的二硒化镍复合材料,再经相应的电化学测试以及理论计算证明,电催化活性与吡啶氮的含量具有很强的相关性。

Description

核壳结构NiSe2@NC电催化材料及其制备方法和用途
技术领域
本发明属于新能源纳米材料合成及电化学技术领域,具体地说,涉及一种核壳结构NiSe2@NC电催化材料及其制备方法和用途。
背景技术
通过氢气析出反应进行电化学水裂解是一种环境友好且高效的氢能经济策略。铂族金属被认为是最有效的电催化剂,但其丰度低且成本高严重阻碍了其大规模应用。因此,开发基于地球储量丰富且高活性的电催化剂是可行的,但仍然具有挑战性。基于非贵金属材料的多种催化剂,如过渡金属氢氧化物、氮化物、碳化物和磷化物,已被研究作为铂族金属的潜在替代材料。其中,过渡金属硒化物(TMSs)以其丰富的地球资源和导电性而引人注目。然而,由于其在碱性条件下的稳定性相对较低和活性较差,限制了其进一步的应用。因此,对于硒化物的表面电子结构进行优化是非常必要的。已经证明,与氮掺杂碳材料的杂化可以通过在碳-TMSs界面上产生额外的局部反应位点来激活TMSs,同时通过避免与电解质直接接触来稳定TMSs表面。通常,N掺杂碳中的氮物种由吡啶-N、吡咯-N和石墨-N组成。对于N掺杂的碳,吡啶-N可以通过增加费米能级附近的p态密度和降低功函数来影响碳材料的电子结构,从而提高氧还原电催化活性。然而,目前还没有系统的实验和理论证据来揭示吡啶-N对碳材料电催化活性的影响以及在调节TMSs@NC界面电子结构和协同电催化中的作用。这是由于合成具有可控界面结构和可调谐N-物种的TMSs@NC材料是比较困难的。为此,我们建议使用金属-有机框架(MOF)作为TMSs@NC材料的合成平台。MOFs是一种由金属节点和有机配体组成的多孔无机-有机杂化材料,已被用作各种功能材料的前驱体。金属和含碳/含氮配体的存在使MOFs成为构建掺氮多孔炭包覆的金属纳米粒子复合材料的理想平台。在典型的纳米杂化材料合成中,MOFs通常在惰性气氛下热解。例如,CoP@NC是由含有MOF(ZIF-9)的Co2+-苯并咪唑热解合成的,随后是磷化反应。类似地,NiSe2@NC是通过热解和硒化Ni-MOF获得的。MOFs的多孔性允许形成以碳为载体的金属化合物的多孔结构,从而促进电催化应用。然而,金属化合物的不规则形貌阻碍了活性位点的识别。此外,在直接热解过程中,常难以控制载体中氮的种类及含量。
因此,制备理想的新型的界面结构可调控的氮掺杂的碳包覆的二硒化镍电催化氢气析出材料是该领域具有挑战性的研究课题。
发明内容
本发明提供了一种核壳结构NiSe2@NC电催化材料及其制备方法和用途,解决了目前此类材料活性位点及其活性位点调控的问题。
本发明是通过以下技术方案实现的:
一种核壳结构NiSe2@NC电催化材料,其通式为NiSe2@NC。
一种如前述的NiSe2@NC-X电催化析氢材料的制备方法如下:
S1、利用溶剂热反应制备镍-有机框架前驱体,记为Ni-MOF-X;
S2、将所述制备的镍-有机框架前驱体溶于水中,得到均匀的MOF水溶液,将硒粉分散于水合肼中后,滴加到所述MOF水溶液中,混匀后,在100~160℃下进行水热反应12~72h,得到X@NiSe2前驱体;
S3、将所述X@NiSe2前驱体在氮气的保护下,以1~5℃·min-1的升温速率加热至330~450℃,保温30~120min进行退火,然后冷却至室温,得到所述NiSe2@NC电催化析氢材料;
其中,X为4,4'-联吡啶、1,4-二氮杂双环辛烷、吡嗪、氨基吡嗪中的一种。
作为优选方案,步骤S1中所述的金属有机框架前驱体的制备方法为:
将硝酸镍、均苯三甲酸和N-供体辅助配体溶于N,N-二甲基甲酰胺中,混匀后,在100~130℃下进行反应24~72小时,得到所述镍-有机框架前驱体。
作为优选方案,所述含氮配体为4,4'-联吡啶(简称BP),1,4-二氮杂双环辛(简称DO),吡嗪(简称PZ),氨基吡嗪(简称AE)中的一种。
一种如前述的核壳结构NiSe2@NC电催化材料在电催化分解水制氢气反应中的用途。
本发明的反应机理为:
通过水热反应选择性硒化金属有机框架物,允许Se2 2-取代阴离子羧酸配体,同时在NiSe2纳米晶中获得中性N配位的配体。再通过一步管式炉煅烧反应,从而制备出一系列氮掺杂的碳含量可调的氮掺杂的碳包覆的立方相二硒化镍正八面体材料。
与现有技术相比,本发明的优点和积极的效果是:
本发明提供了一种基于混合配体的金属有机框架物选择性硒化衍生的界面结构可调控的氮掺杂的碳包覆的二硒化镍电催化氢气析出材料,通过改变金属有机框架物合成前驱体中含氮配体的种类制备了一系列吡啶氮含量不同的核壳纳米立方体,为氮掺杂的碳包覆的过渡金属硒化物的合成提供了一种可控的途径,所得到的NiSe2@NC-X,尤其是当X=PZ时,能够用于高效的电催化水分解反应的催化剂。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明中实施例1制备的纳米立方体结构的PZ@NiSe2的SEM图;
图2为本发明中实施例1制备的纳米立方体结构的PZ@NiSe2的TEM图;
图3为本发明中实施例1制备的纳米立方体结构的PZ@NiSe2的HRTEM图;
图4为本发明中实施例1制备的纳米立方体结构的PZ@NiSe2的SAED图;
图5为本发明中实施例2制备的纳米立方体结构的NiSe2@NC-PZ的SEM图;
图6为本发明中实施例2制备的纳米立方体结构的NiSe2@NC-PZ的TEM图;
图7为本发明中实施例2制备的核壳纳米立方体结构的NiSe2@NC-PZ的HRTEM图;
图8为本发明中实施例2制备的核壳纳米立方体结构的NiSe2@NC-PZ的SAED图;
图9为本发明中实施例2制备的核壳纳米立方体结构的NiSe2@NC-PZ的元素映射图;
图10为本发明中实施例1和2制备的核壳纳米立方体结构的PZ@NiSe2以及NiSe2@NC-PZ的XRD谱图;
图11为本发明实施例1中制备的Ni-MOF-PZ的1H NMR谱图;
图12为本发明实施例1中制备的PZ@NiSe的1H NMR谱图;
图13为本发明实施例2制备的NiSe2@NC-PZ的1H NMR谱图;
图14为本发明中对比例1~3制备的电催化材料的SEM图;
图15为本发明中实施例1和2以及对比例1~3制备的电催化材料的极化曲线谱图;
图16为本发明中实施例1和2以及对比例1~3制备的电催化材料的塔菲尔斜率图;
图17为本发明中实施例1和2以及对比例1~3制备的电催化材料的吡啶氮含量与10mA·cm-2的电流密度下的过电势关系图;
图18为本发明中实施例1和2以及对比例1~3制备的电催化材料的电化学双电层电容图;
图19为本发明中实施例1和2以及对比例1~3制备的电催化材料的稳定性测试图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
本实施例提供了一种PZ@NiSe2前驱体的制备方法,具体包括如下步骤:
(1)Ni-MOF前驱体的制备:0.5mmol的六水合硝酸镍、0.5mmol的均苯三甲酸和0.5mmol的吡嗪溶于10mL的N,N-二甲基甲酰胺溶液中。将混合物进一步搅拌30分钟至在室温下完全溶解。然后,将绿色溶液转移到25mL的聚四氟乙烯的不锈钢高压釜中,在130℃下保持72小时。最后,用大量N,N-二甲基甲酰胺和甲醇混合溶液离心分离,得到Ni-MOF前驱体,记为Ni-MOF-PZ。
(2)PZ@NiSe2前驱体的制备:50mg的Ni-MOF-PZ溶于10mL去离子水中,并将1.5mmol硒粉加入5.0mL水合肼(85%)中。然后在室温下强力搅拌,将水合肼-硒溶液逐滴加入MOF水溶液中。180min后,将混合物转移到23mL聚四氟乙烯内衬的高压釜中,于100℃下加热12h。反应结束后冷却至室温。
图1实施例1制备的纳米立方体结构的PZ@NiSe2的SEM图片,可以看出合成的PZ@NiSe2为正多面体结构。
图2为实施例1制备的纳米立方体结构的PZ@NiSe2的TEM谱图,证明成的PZ@NiSe2的边长大概为150nm。
图3为实施例1制备的纳米立方体结构的PZ@NiSe2的HRTEM谱图,证明生成的PZ@NiSe2为立方相的NiSe2
图4是实施例1制备的纳米立方体结构的PZ@NiSe2的SAED图,证明生成的PZ@NiSe2是单晶的状态。
实施例2
本实施例提供了一种核壳结构NiSe2@NC电催化材料的制备方法,具体包括如下步骤:
在氮气氛围下,以1℃·min-1的升温速率,将实施例1制备的PZ@NiSe2在450℃温度下退火30min,得到最终的NiSe2@NC,记为NiSe2@NC-PZ。
图5是实施例2制备的纳米立方体结构的NiSe2@NC-PZ的SEM图,证明成的PZ@NiSe2维持了前驱体的形貌,仍然为规则的正多面体形貌。
图6是实施例2制备的纳米立方体结构的NiSe2@NC-PZ的TEM图,证实超薄碳层(~1.5nm)的生成。
图7是实施例2制备的核壳纳米立方体结构的NiSe2@NC-PZ的HRTEM图,证实0.243nm的晶格条纹与立方相NiSe2的211晶面匹配良好。
图8是实施例2制备的核壳纳米立方体结构的NiSe2@NC-PZ的SAED图,证明生成的NiSe2@NC-PZ是多晶的状态。
图9为本发明中实施例2制备的核壳纳米立方体结构的NiSe2@NC-PZ的元素映射图,验证Se、Ni、C和N元素的均匀分布。
图10是实施例1和2制备的纳米立方体结构的PZ@NiSe2以及NiSe2@NC-PZ的XRD谱图,验证生成了立方相NiSe2
为了便于进行核磁图谱的测试,首先用研钵对Ni-MOF-PZ以及NiSe2@NC-PZ等固体样品进行研磨。称量5~10mg样品置于干净NMR管(5mm)中,然后加入DMSO-d6(0.5~1mL)和H2SO4-d2(0.1~0.2mL),将核磁管轻轻摇晃或者超声10~30s,直到观察不到明显的悬浮固体颗粒。此外,还收集了Ni-MOF-PZ溶剂热硒化过程中的上清液,并用HCl(2.0M)中和,所形成的沉淀物被过滤,洗涤以及干燥,同样用于1H NMR分析。
图11~13为本发明中实施例1和2制备的核壳纳米立方体结构的PZ@NiSe2以及NiSe2@NC-PZ的1H NMR谱图,用来验证Ni-MOF-PZ含有等比例的均苯三酸和吡嗪配体,水热硒化之后上清液仅剩下均苯三酸的核磁峰,依次验证生成了吡嗪镶嵌的NiSe2纳米八面体,命名为PZ@NiSe2。经过管式炉煅烧后得到产物NiSe2@NC-PZ,仅剩下DMSO-d6的峰,吡嗪的核磁峰消失,验证煅烧过程,吡嗪转换成了超薄的N掺杂的碳层。
对比例1
本对比例与实施例2的区别仅在于,Ni-MOF前驱体的制备中用4,4'-联吡啶(BP)替代了吡嗪,得到的NiSe2@NC记为NiSe2@NC-BP。
对比例2
本对比例与实施例2的区别仅在于,Ni-MOF前驱体的制备中用1,4-二氮杂双环辛烷(DO)替代了吡嗪,得到的NiSe2@NC记为NiSe2@NC-DO。
对比例3
本对比例与实施例2的区别仅在于,Ni-MOF前驱体的制备中用氨基吡嗪(AE)替代了吡嗪,得到的NiSe2@NC记为NiSe2@NC-AE。
图14为本发明中对比例1~3制备的电催化材料NiSe2@NC-BP、NiSe2@NC-DO以及NiSe2@NC-AE的SEM图,均表现为均匀的正八面体形貌,消除了形貌以及尺寸大小对电催化性能的影响。
实施例4
在标准的三电极测试系统中,以石墨棒为对电极,饱和KCl填充的Ag/AgCl电极为参比电极,玻碳电极为工作电极。将5.0mg制备好的样品分散在0.5mL Nafion(5%(w/w))、去离子水和乙醇溶液(体积比为1:9:10)的混合溶液中,借助超声波形成均匀的溶液。然后在直径为3mm的玻碳电极上滴注5μL溶液。让电极在室温下自然干燥两小时,然后进行测量(负载量:0.35mg·cm-2)。
图15是实施例1和2和对比例1~3制备的电催化材料的线性扫描伏安图,验证与NiSe2@NC-BP(235mV)、NiSe2@NC-DO(208mV)、NiSe2@NC-AE(182mV)和单独的NiSe2(283mV)相比,NiSe2@NC-PZ纳米材料在10mA·cm-2时表现出最高的活性,其过电位为162mV。
图16是实施例1和2和对比例1~3制备的电催化材料的塔菲尔斜率图,NiSe2@NC-PZ的拟合Tafel斜率为88mV·dec-1。这表明,与其他NiSe2@NC纳米材料相比,NiSe2@NC-PZ材料的反应动力学更快,其反应机理为Volmer-Heyrovsky联合机制。
图17是实施例1和2和对比例1~3制备的电催化材料的吡啶氮含量与10mA cm-2的电流密度下的过电势关系图,验证在碱性介质中的HER活性与NiSe2@NC纳米杂化物的吡啶-N含量呈线性相关,表明在碱性条件下其HER活性主要由吡啶-N含量决定.
图18是实施例1和2和对比例1~3制备的电催化材料的电化学双电层电容图,表明NiSe2@NC-PZ纳米杂化体具有略高的可用表面活性位点。
图19是实施例1和2和对比例1~3制备的电催化材料的稳定性测试图,表明NiSe2@NC-PZ纳米材料在碱性介质中具有良好的稳定性。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (5)

1.一种核壳结构NiSe2@NC电催化材料,其特征在于,通式为NiSe2@NC。
2.一种如权利要求1所述的核壳结构NiSe2@NC电催化材料的制备方法,其特征在于,包括如下步骤:
S1、利用溶剂热反应制备镍-有机框架前驱体,记为Ni-MOF-X;
S2、将所述制备的镍-有机框架前驱体溶于水中,得到均匀的MOF水溶液,将硒粉分散于水合肼中后,滴加到所述MOF水溶液中,混匀后,在100~160℃下进行水热反应12~72h,得到X@NiSe2前驱体;
S3、将所述X@NiSe2前驱体在氮气的保护下,以1~5℃·min-1的升温速率加热至330~450℃,保温30~120min进行退火,然后冷却至室温,得到所述NiSe2@NC电催化析氢材料;
其中,X为4,4'-联吡啶、1,4-二氮杂双环辛烷、吡嗪、氨基吡嗪中的一种。
3.如权利要求2所述的核壳结构NiSe2@NC电催化材料的制备方法,其特征在于,步骤S1中所述的金属有机框架前驱体的制备方法为:
将硝酸镍、均苯三甲酸和N-供体辅助配体溶于N,N-二甲基甲酰胺中,混匀后,在100~130℃下进行反应24~72小时,得到所述镍-有机框架前驱体。
4.如权利要求2或3所述的核壳结构NiSe2@NC电催化材料的制备方法,其特征在于,所述N-供体辅助配体为4,4'-联吡啶、1,4-二氮杂双环辛烷、吡嗪、氨基吡嗪中的一种。
5.一种如权利要求1所述的核壳结构NiSe2@NC电催化材料在电催化分解水制氢气反应中的用途。
CN202010309545.6A 2020-04-14 2020-04-20 核壳结构NiSe2@NC电催化材料及其制备方法和用途 Pending CN111482189A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/224,998 US20210316286A1 (en) 2020-04-14 2021-04-07 Core-shell structured nise2@nc electrocatalytic material and preparation method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010288134 2020-04-14
CN2020102881343 2020-04-14

Publications (1)

Publication Number Publication Date
CN111482189A true CN111482189A (zh) 2020-08-04

Family

ID=71789548

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010309545.6A Pending CN111482189A (zh) 2020-04-14 2020-04-20 核壳结构NiSe2@NC电催化材料及其制备方法和用途

Country Status (2)

Country Link
US (1) US20210316286A1 (zh)
CN (1) CN111482189A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112058297A (zh) * 2020-08-27 2020-12-11 中国石油大学(华东) 一种镍基电催化材料及其制备方法和用途
CN112481653A (zh) * 2020-10-29 2021-03-12 浙江大学衢州研究院 一种富含缺陷的钼掺杂硒化钴/纳米碳电催化剂及其制备方法和应用
CN113089014A (zh) * 2021-04-07 2021-07-09 西南石油大学 一种核壳结构超亲水超疏气高效析氢催化剂及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114632992B (zh) * 2022-01-26 2023-02-07 中国矿业大学 一种MOFs衍生物界面修饰层及其制备方法和在无铅钎料改性中应用
CN114657592B (zh) * 2022-04-25 2023-08-08 南昌航空大学 一种用于电催化二氧化碳还原的镍基催化剂及其制备方法
CN115275227A (zh) * 2022-06-29 2022-11-01 合肥工业大学智能制造技术研究院 一种固相宏量合成珊瑚状金属硒化物复合氮掺杂碳催化剂的方法及其应用
CN116212923B (zh) * 2023-01-15 2024-06-21 陕西科技大学 一种NiP2-NiSe/g-C3N4光催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108704648A (zh) * 2018-06-20 2018-10-26 中国石油大学(华东) 一种Ni@NC纳米微球的制备方法及其用途
CN108842167A (zh) * 2018-06-20 2018-11-20 中国石油大学(华东) 一种类似于珊瑚状NiSe@NC的制备方法及其用途
CN109908940A (zh) * 2019-04-02 2019-06-21 大连理工大学 一种氮掺杂多孔碳负载金属的m@cn复合催化材料、制备方法及应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018226158A1 (en) * 2017-06-05 2018-12-13 Agency For Science, Technology And Research A core-shell composite
CN110400926B (zh) * 2019-08-07 2022-04-12 福州大学 一种氮掺杂碳包覆两相交错分布型镍钴双金属硒化物电极材料及其制备方法
CN112138701A (zh) * 2020-10-20 2020-12-29 中国石油大学(华东) Ni0.85Se@NC电催化材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108704648A (zh) * 2018-06-20 2018-10-26 中国石油大学(华东) 一种Ni@NC纳米微球的制备方法及其用途
CN108842167A (zh) * 2018-06-20 2018-11-20 中国石油大学(华东) 一种类似于珊瑚状NiSe@NC的制备方法及其用途
CN109908940A (zh) * 2019-04-02 2019-06-21 大连理工大学 一种氮掺杂多孔碳负载金属的m@cn复合催化材料、制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAODI HUANG,ET AL.: "《Selective selenization of mixed-linker Ni-MOFs: NiSe2@NC core-shell nanooctahedrons with tunable interfacial electronic structure for hydrogen evolution reaction》", 《APPLIED CATALYSIS B:ENVIRONMENTAL》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112058297A (zh) * 2020-08-27 2020-12-11 中国石油大学(华东) 一种镍基电催化材料及其制备方法和用途
CN112481653A (zh) * 2020-10-29 2021-03-12 浙江大学衢州研究院 一种富含缺陷的钼掺杂硒化钴/纳米碳电催化剂及其制备方法和应用
CN112481653B (zh) * 2020-10-29 2022-04-01 浙江大学衢州研究院 一种富含缺陷的钼掺杂硒化钴/纳米碳电催化剂及其制备方法和应用
CN113089014A (zh) * 2021-04-07 2021-07-09 西南石油大学 一种核壳结构超亲水超疏气高效析氢催化剂及其制备方法

Also Published As

Publication number Publication date
US20210316286A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
CN111482189A (zh) 核壳结构NiSe2@NC电催化材料及其制备方法和用途
CN109841854B (zh) 一种氮掺杂碳载单原子氧还原催化剂及其制备方法
CN109046408B (zh) 一种复合析氢电催化材料及其制备方法和应用
Wei et al. Metal-organic framework derived NiCoP hollow polyhedrons electrocatalyst for pH-universal hydrogen evolution reaction
CN111468167A (zh) 一种钴单原子负载氮掺杂碳氧还原催化剂及其制备方法
Song et al. Self-templating construction of hollow Fe-CoxP nanospheres for oxygen evolution reaction
Yuan et al. Tuning carbon nanotube-grafted core-shell-structured cobalt selenide@ carbon hybrids for efficient oxygen evolution reaction
CN109898093B (zh) 一种3d结构复合析氢电极及其制备方法
CN108842167A (zh) 一种类似于珊瑚状NiSe@NC的制备方法及其用途
CN111672521A (zh) 一种过渡金属单原子材料及其制备方法和应用
CN113745549B (zh) 一种负载Mn单原子的N掺杂碳多面体催化剂的制备方法
CN110729486A (zh) 一种单质钴复合氮掺杂碳高效氧还原/氧析出催化剂的制备方法
CN109351361A (zh) 一种双功能催化剂及制备方法
CN111701607A (zh) MnCo2O4@Ni2P/NF双功能全解水催化剂及其制备方法与应用
CN114959780B (zh) 一种核壳结构钴掺杂二硒化镍电催化材料及其制备方法
Yanli et al. The synergistic effect of NiCo nanoparticles and metal organic framework: Enhancing the oxygen evolution reaction of carbon nanohorn-based catalysts
Zhang et al. In-situ integration of nickel-iron Prussian blue analog heterostructure on Ni foam by chemical corrosion and partial conversion for oxygen evolution reaction
Yang et al. Electrochemical deposition of CeO2 nanocrystals on Co3O4 nanoneedle arrays for efficient oxygen evolution
Jiang et al. 2D coordination polymer-derived CoSe 2–NiSe 2/CN nanosheets: the dual-phase synergistic effect and ultrathin structure to enhance the hydrogen evolution reaction
Ma et al. Ni single‐atom arrays as self‐supported electrocatalysts for CO2RR
Yang et al. A robust octahedral NiCoOxSy core-shell structure decorated with NiWO4 nanoparticles for enhanced electrocatalytic hydrogen evolution reaction
CN109261154B (zh) 类石墨烯框架负载单原子结构材料及其制备方法和应用
Mi et al. Cuboid-like phosphorus-doped metal–organic framework-derived CoSe2 on carbon cloth as an advanced bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries
CN112058297B (zh) 一种镍基电催化材料及其制备方法和用途
Li et al. Size-controlled Co/CoO heterogeneous nanoparticles confined in N-doped mesoporous carbon for efficient oxygen reduction in zinc-air batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200804

RJ01 Rejection of invention patent application after publication