CN115283014A - 一种具有甲硫醇净化功能的MOFs纳米片光催化剂的制备方法及应用 - Google Patents

一种具有甲硫醇净化功能的MOFs纳米片光催化剂的制备方法及应用 Download PDF

Info

Publication number
CN115283014A
CN115283014A CN202210149355.1A CN202210149355A CN115283014A CN 115283014 A CN115283014 A CN 115283014A CN 202210149355 A CN202210149355 A CN 202210149355A CN 115283014 A CN115283014 A CN 115283014A
Authority
CN
China
Prior art keywords
methyl mercaptan
photocatalyst
mofs
purification function
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210149355.1A
Other languages
English (en)
Inventor
李钱
张家惠
陈东之
陈建孟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Ocean University ZJOU
Original Assignee
Zhejiang Ocean University ZJOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Ocean University ZJOU filed Critical Zhejiang Ocean University ZJOU
Priority to CN202210149355.1A priority Critical patent/CN115283014A/zh
Publication of CN115283014A publication Critical patent/CN115283014A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8606Removing sulfur compounds only one sulfur compound other than sulfur oxides or hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/2243At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种具有甲硫醇净化功能的MOFs纳米片光催化剂的制备方法及其应用,属于催化剂技术领域。该催化剂的制备方法包括如下步骤:1)将有机配体与过渡金属盐均匀分散于N,N‑二甲基甲酰胺;2)加入乙腈后将混合液置于高压反应釜进行水热处理;3)将水热所得固体经DMF和甲醇离心洗涤,冷冻干燥后得到MOF纳米片光催化剂。本发明光催化剂的制备工艺简单,比表面积较大,甲硫醇吸附强度与光吸收范围可调,可用于低浓度甲硫醇臭气的光催化净化。

Description

一种具有甲硫醇净化功能的MOFs纳米片光催化剂的制备方法 及应用
技术领域
本发明属于催化剂技术领域,具体涉及一种用于光催化净化甲硫醇臭气的MOFs纳米片光催化剂的制备方法及应用。
背景技术
挥发性含硫有机物(Volatile Organic Sulfur Compounds, VOSCs)是一类重要的恶臭污染物,嗅阈值低,毒性强,来源范围广,不仅对人类感官神经、呼吸系统、中枢神经系统等造成较大的刺激和伤害,其排放到大气中还可与NOx等发生光化学反应,造成光化学烟雾、雾霾等环境问题,严重威胁人类健康和生态环境。甲硫醇(MeSH)是一种典型的VOSCs,嗅阈值极低,被称之为“世界上最难闻的气体”,对其进行治理具有重要现实意义。吸附吸收、热力焚烧、低温等离子体、生物、催化氧化等技术在MeSH臭气净化中发挥了重要作用。然而,常规处理技术在处理低浓度MeSH臭气(<50 mg/m3)时,往往存在运行费用高、安全性不佳、运维复杂等不足。因此,探索安全经济简便的低浓度VOSCs臭气净化技术迫在眉睫。
光催化氧化技术利用催化剂受光激发产生的羟基自由基、超氧自由基等强氧化性基团降解气态污染物,兼备操作简单、反应条件温和、绿色经济等优点,在低浓度气态污染物治理中展现出巨大的应用潜力。目前,国内外研究学者围绕光催化氧化VOSCs开展了一些探索性研究。然而,现有报道的光催化剂对甲硫醇的净化效果不佳,其产生的氧化中间产物(含碳/硫有机物、SO2等)不仅易沉积在催化剂表面占据活性位点,还会逃逸至空气中引发二次污染。光催化剂是光催化氧化技术的核心,其催化性能的优劣直接决定着污染物净化降解效率的高低和产物组成,因而开发高效稳定的光催化剂始终是提高VOSCs光催化氧化效率与矿化率的重要抓手。研究表明,集吸附和催化为一体的多孔催化剂能有效促进底物的吸附活化以及活性自由基的生成,可显著提高污染物的光催化净化效率。金属有机框架材料(Metal organic frameworks,MOFs)是一类新型多孔多功能材料,兼备比表面积和孔隙率高、对反应物吸附容量大、结构与功能可调性强等独特优势,尤其是近年来发展起来的MOFs纳米片,其超薄片状结构还可显著改善气体传输,增强活性位点的暴露,更有利于污染物的吸附与催化降解。
发明内容
本发明的目的在于提供一种具有甲硫醇净化功能的MOFs纳米片光催化剂的制备方法,该制备方法拟通过对MOFs的金属中心、有机配体进行筛选与优化构建,调控其对甲硫醇吸附强度和光吸收性能,研制一种甲硫醇吸附活化佳、氧化能力较强的MOFs纳米片,实现MeSH的高效净化。
本发明的另一目的在于提供一种MOFs纳米片催化剂及其应用,该MOFs纳米片催化剂具有制备工艺简单、比表面积较大、甲硫醇吸附强度与光吸收范围可调等优点,可用于低浓度甲硫醇臭气的光催化净化。
为了实现上述目的,本发明通过以下技术方案加以实现:
所述的一种具有甲硫醇净化功能的MOFs纳米片光催化剂的制备方法,该制备方法包括以下步骤:
1)将有机配体与过渡金属盐溶液均匀分散于N, N-二甲基甲酰胺中,制得混合物;
2)往步骤1)制得的混合物中加入乙腈,混合后将混合液置于高压反应釜进行水热处理;
3)将步骤2)水热处理所得的固体经DMF和甲醇离心洗涤,冷冻干燥后得到MOF纳米片光催化剂。
本发明通过上述一步水热法,实现了MOFs纳米片的可控制备,制备方法简单,且具有光催化净化甲硫醇的功能。
优选地,步骤1)中,有机配体为对苯二甲酸、2-氨基对苯二甲酸、2, 5-二氨基对苯二甲酸中的任一种或一种以上的组合。
优选地,步骤1)中,过渡金属盐溶液为Cu2+、Ni2+、Zn2+盐溶液中的任一种或一种以上的组合。
优选地,步骤1)中,有机配体的浓度为0.02~0.2 mmol/mL,过渡金属盐溶液的浓度为0.02~0.2 mmol/mL。
优选地,步骤1)中,有机配体与过渡金属盐溶液的摩尔比为1:1~10:1。
优选地,步骤2)中,乙腈体积与步骤1)中N, N-二甲基甲酰胺的体积比为1:40~1:4。
优选地,步骤2)中,水热处理的温度为100~180℃,时间为10~16h。
上述制备方法得到的MOFs纳米片催化剂及其在低浓度甲硫醇臭气净化中的应用。
本发明最优选的制备方法,包括以下步骤:
1)将2, 5-二氨基对苯二甲酸与CuCl2均匀分散于N, N-二甲基甲酰胺中;2, 5-二氨基对苯二甲酸的浓度为0.05mmol/mL,CuCl2的浓度为0.05mmol/mL,2, 5-二氨基对苯二甲酸与CuCl2的摩尔比为4:1;
2)加入乙腈混匀后,将混合液置于高压反应釜,在120 ℃条件下水热12 h;乙腈与DMF的体积比为1:20;
3)水热所得固体经DMF和甲醇离心洗涤,冷冻干燥后得到MOF纳米片光催化剂。
本发明具有以下有益效果:
1)本发明制备方法制得的MOFs纳米片光催化剂,比表面积大,活性位点丰富,MeSH吸附量高、吸附强度可调。传统光催化剂比表面积小,活性位点有限,VOSCs吸附量低,且吸附强度难以调控;
2)本发明制得的MOFs纳米片光催化剂,能够在可见光波段响应,具有较强的氧化能力。常规三维MOF材料仅对紫外光响应,光吸收性能较差,氧化能力欠佳;
3)本发明首次将MOFs纳米片应用于光催化净化MeSH臭气领域,填补了该领域的空白。
附图说明
图1为实施例1所制得的样品的SEM图;
图2为实施例1、2所制备样品的X射线衍射(XRD)图;
图3为实施例1、2、3所制备样品的甲硫醇脱附曲线;
图4为实施例1、3、4所制备样品的UV-Vis图谱;
图5为实施例1、2、3、4所制备样品的可见光催化氧化MeSH性能测试结果。
具体实施方式
以下结合具体实施例及说明书附图对本发明做进一步描述,以便更好地理解本技术方案。
实施例1
Cu-MOF纳米片的制备:将2mmol对苯二甲酸和2mmol硝酸铜溶于40 mLDMF中,搅拌至完全溶解,然后加入1mL乙腈,搅拌10 min,然后将混合溶液转移至高压反应釜中,于120℃下反应10 h,待温度降至室温后,所得固体经DMF和甲醇离心洗涤,冷冻干燥后得到Cu-MOF纳米片。
对实施例1制得的产品采用日立SU8010型扫描电镜(SEM)分析样品的形貌结构,如图1所示,从图1中可知,Cu-MOF为纳米片状,大小不一。与此同时,采用北京精微高博JW-BK132F型全自动静态容量法分析仪测定该样品在液氮温度下的N2吸脱附曲线,依据Brunauer-Emmett-Teller模型进行拟合,获悉其比表面积为1060 m2 g-1.
实施例2
本实施例与实施例1的制备步骤相同,不同之处仅在于所用金属盐溶液为NiCl2和ZnCl2,获得Ni-MOF和Zn-MOF纳米片。
对实施例2制得的产品采用丹东方圆DX-2700型X射线衍射(XRD)进行结构分析。如图2所示,Cu-MOF、Ni-MOF和Zn-MOF纳米片的XRD图谱。由图2可知,通过改变金属盐溶液种类,可成功合成Cu-MOF、Ni-MOF和Zn-MOF纳米片。
实施例3
本实施例与实施例1的制备步骤相同,不同之处仅在于所用有机配体为2-氨基对苯二甲酸和2,5-二氨基对苯二甲酸。
图3为实施例1、2、3所制备催化剂的甲硫醇吸脱附曲线。由图3可知,改变MOFs的金属中心与有机配体种类可调控其对甲硫醇的吸脱附性能。金属中心Cu对甲硫醇的吸附较Zn、Ni更佳,2-氨基对苯二甲酸和2,5-二氨基对苯二甲酸配体较对苯二甲酸具有更优的甲硫醇的吸脱附性能,以Cu为金属中心,以2,5-二氨基对苯二甲酸为有机配制制备得到的MOFs纳米片具有最优的甲硫醇吸附量。此外,以2-氨基对苯二甲酸和2,5-二氨基对苯二甲酸为配体合成的MOFs纳米片的甲硫醇脱附温度较以对苯二甲酸为配体制备的MOFs纳米片更低,更有利于甲硫醇的吸附活化。
实施例4
本实施例与实施例1的制备步骤相同,不同之处仅在于所用的有机配体为2,5-二氨基对苯二甲酸,并将水热时间延长至12 h和16 h。
采用TU-1901型双光束紫外可见分光光度计进行紫外可见漫反射测试。图4为几个典型样品的UV-Vis图谱。由图4可知,以2,5-二氨基对苯二甲酸为有机配体制备得到的MOFs纳米片较对苯二甲酸具有更优的光吸收性能,且水热时间亦会影响MOFs纳米片的光吸收性能。
实施例5
对上述各实施例中制得的MOFs纳米片光催化剂在可见光下进行光催化净化MeSH的性能测试。性能测试装置拟采用自主设计搭建的常压气固连续流反应系统,反应器由5个S型通道组成,每个通道的尺寸为30 mm×100 mm×20 mm,实验时,各通道内放置一片均匀涂覆50 mg催化剂的玻璃片(尺寸为28 mm×96 mm);甲硫醇浓度为20 ppm,相对湿度为70%,气体流量为1L/min;所用光源为北京中教金源科技有限公司CEL-WLAX500全光谱氙灯光源,配有420-nm紫外截止滤光片(模拟可见光),置于反应器正上方;反应过程中甲硫醇的浓度变化和最终产物CO2的浓度由带微硫装置和FID检测器的气相色谱检测。
图5为实施例1~4所制备样品可见光催化净化甲硫醇臭气的性能。由图可知,所有样品在可见光照射下对甲硫醇臭气有一定的净化效果;其中,以Cu为金属中心,以2,5-二氨基对苯二甲酸为有机配体,120℃水热处理12h所制备得到的Cu-MOFs纳米片对甲硫醇臭气的净化效果最佳,高达67%,较g-C3N4、TiO2等催化剂效果更佳。

Claims (9)

1.一种具有甲硫醇净化功能的MOFs纳米片光催化剂的制备方法,其特征在于,该制备方法包括以下步骤:
1)将有机配体与过渡金属盐溶液均匀分散于N, N-二甲基甲酰胺中,制得混合物;
2)往步骤1)制得的混合物中加入乙腈,混合后将混合液置于高压反应釜进行水热处理;
3)将步骤2)水热处理所得的固体经DMF和甲醇离心洗涤,冷冻干燥后得到MOF纳米片光催化剂。
2.如权利要求1所述的一种具有甲硫醇净化功能的MOFs纳米片光催化剂的制备方法,其特征在于步骤1)中,有机配体为对苯二甲酸、2-氨基对苯二甲酸、2, 5-二氨基对苯二甲酸中的任一种或一种以上的组合。
3.如权利要求1所述的一种具有甲硫醇净化功能的MOFs纳米片光催化剂的制备方法,其特征在于步骤1)中,过渡金属盐溶液为Cu2+、Ni2+、Zn2+盐溶液中的任一种或一种以上的组合。
4.如权利要求1所述的一种具有甲硫醇净化功能的MOFs纳米片光催化剂的制备方法,其特征在于步骤1)中,有机配体的浓度为0.02~0.2 mmol/mL,过渡金属盐溶液的浓度为0.02~0.2 mmol/mL。
5.如权利要求1所述的一种具有甲硫醇净化功能的MOFs纳米片光催化剂的制备方法,其特征在于步骤1)中,有机配体与过渡金属盐溶液的摩尔比为1:1~10:1。
6.如权利要求1所述的一种具有甲硫醇净化功能的MOFs纳米片光催化剂的制备方法,其特征在于步骤2)中,乙腈体积与步骤1)中N, N-二甲基甲酰胺的体积比为1:40~1:4。
7.如权利要求1所述的一种具有甲硫醇净化功能的MOFs纳米片光催化剂的制备方法,其特征在于步骤2)中,水热处理的温度为100~180℃,时间为10~16h。
8.一种如权利要求1~7任一所述的制备方法得到的MOFs纳米片催化剂。
9.权利要求1~7任一所述的制备方法制得的MOFs纳米片催化剂在低浓度甲硫醇臭气净化中的应用。
CN202210149355.1A 2022-02-18 2022-02-18 一种具有甲硫醇净化功能的MOFs纳米片光催化剂的制备方法及应用 Pending CN115283014A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210149355.1A CN115283014A (zh) 2022-02-18 2022-02-18 一种具有甲硫醇净化功能的MOFs纳米片光催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210149355.1A CN115283014A (zh) 2022-02-18 2022-02-18 一种具有甲硫醇净化功能的MOFs纳米片光催化剂的制备方法及应用

Publications (1)

Publication Number Publication Date
CN115283014A true CN115283014A (zh) 2022-11-04

Family

ID=83820251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210149355.1A Pending CN115283014A (zh) 2022-02-18 2022-02-18 一种具有甲硫醇净化功能的MOFs纳米片光催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN115283014A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024103939A1 (zh) * 2022-11-18 2024-05-23 电子科技大学长三角研究院(湖州) 一种新型光催化剂、制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180274013A1 (en) * 2015-09-23 2018-09-27 Nanyang Technological University Metal-organic framework nanosheet
CN109776812A (zh) * 2019-02-21 2019-05-21 河北工业大学 Cu基二维片状MOFs材料的制备方法
CN112442186A (zh) * 2019-09-04 2021-03-05 中国科学院大连化学物理研究所 金属有机框架Mn-MOF单晶材料及纳米片与制备和应用
US20210155649A1 (en) * 2018-10-09 2021-05-27 Soochow University Ultra-thin ni-fe-mof nanosheet, preparation method and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180274013A1 (en) * 2015-09-23 2018-09-27 Nanyang Technological University Metal-organic framework nanosheet
US20210155649A1 (en) * 2018-10-09 2021-05-27 Soochow University Ultra-thin ni-fe-mof nanosheet, preparation method and use thereof
CN109776812A (zh) * 2019-02-21 2019-05-21 河北工业大学 Cu基二维片状MOFs材料的制备方法
CN112442186A (zh) * 2019-09-04 2021-03-05 中国科学院大连化学物理研究所 金属有机框架Mn-MOF单晶材料及纳米片与制备和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TANIA RODENAS 等: "Metal–organic framework nanosheets in polymer composite materials for gas separation", vol. 14, pages 48 - 55, XP055371118, DOI: 10.1038/nmat4113 *
XIANG MA 等: "Reactive adsorption of low concentration methyl mercaptan on a Cu-based MOF with controllable size and shape", vol. 6, pages 96997 - 97003 *
李庆 等: "Cu-有机骨架对染料废水的吸附和可见光降解", 纺织学报, vol. 39, no. 2, pages 112 - 118 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024103939A1 (zh) * 2022-11-18 2024-05-23 电子科技大学长三角研究院(湖州) 一种新型光催化剂、制备方法及应用

Similar Documents

Publication Publication Date Title
Zhang et al. TiO2-UiO-66-NH2 nanocomposites as efficient photocatalysts for the oxidation of VOCs
Liu et al. Selective removal of H2S from biogas using a regenerable hybrid TiO2/zeolite composite
Feng et al. Porphyrin-based Ti-MOFs conferred with single-atom Pt for enhanced photocatalytic hydrogen evolution and NO removal
CN107174919A (zh) 石墨烯改性的复合介孔碳微球空气净化剂
CN107952429B (zh) 用于甲苯催化氧化的纳米催化剂、制备方法及其应用
Liu et al. Fe-MOF by ligand selective pyrolysis for Fenton-like process and photocatalysis: accelerating effect of oxygen vacancy
CN107744806B (zh) 一种以膨胀石墨为载体催化分解臭氧的催化剂的制备方法
CN108686673B (zh) 一种臭氧催化氧化催化剂及其制备方法
CN106345505A (zh) 一种多孔异质结构的复合光催化剂及其制备方法
CN106861626B (zh) 一种吸附-光催化双功能材料及其制备方法与在挥发性有机气体治理工艺的应用
CN113275034B (zh) 一种用于VOCs消除的多级孔分子筛催化剂及其制备方法
WO2021169079A1 (zh) 可同时脱除垃圾气化中cos和h2s的催化剂及其制备方法
CN111530490A (zh) 一种Co3O4-TiO2异质结负载碳纳米管光催化降解材料及其制法
CN114409917B (zh) 一种具有催化臭氧分解能力的抗湿性铁基金属有机框架材料及其制备方法和应用
CN111992255B (zh) 用于去除水中双酚A的片状g-C3N4/ZIF-8/AgBr复合材料及其制备方法
CN114950409A (zh) 一种锰基催化材料及其制备方法与应用
CN115283014A (zh) 一种具有甲硫醇净化功能的MOFs纳米片光催化剂的制备方法及应用
Song et al. Different degradation mechanisms of low-concentration ozone for MIL-100 (Fe) and MIL-100 (Mn) over wide humidity fluctuation
CN112691542B (zh) 一种用于吸附-催化氧化VOCs的金属复合分子筛材料及其制备方法与应用
CN113731402A (zh) 一种催化剂及其制备方法和应用
CN110302819B (zh) 一种MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂及应用
CN115646454B (zh) 一种多级孔ZIFs材料及其低温等离子体制备方法与应用
CN105817236A (zh) 一种甲苯低温燃烧催化剂及其制备方法
Zhang et al. Removal of ammonia and hydrogen sulfide from livestock farm by copper modified activated carbon
CN115318273A (zh) 一种无定形两相异质结光催化剂及其原位合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination