CN110302819B - 一种MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂及应用 - Google Patents

一种MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂及应用 Download PDF

Info

Publication number
CN110302819B
CN110302819B CN201910521232.4A CN201910521232A CN110302819B CN 110302819 B CN110302819 B CN 110302819B CN 201910521232 A CN201910521232 A CN 201910521232A CN 110302819 B CN110302819 B CN 110302819B
Authority
CN
China
Prior art keywords
solution
catalyst
temperature
ozone
mofs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910521232.4A
Other languages
English (en)
Other versions
CN110302819A (zh
Inventor
戴启洲
詹婷婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201910521232.4A priority Critical patent/CN110302819B/zh
Publication of CN110302819A publication Critical patent/CN110302819A/zh
Application granted granted Critical
Publication of CN110302819B publication Critical patent/CN110302819B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J35/33
    • B01J35/617
    • B01J35/635
    • B01J35/647
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical

Abstract

本发明公开了一种MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂及应用。该催化剂以钴盐和锌盐为金属源,2‑甲基咪唑为C源,ZIF‑67@ZIF‑8为牺牲模板,采用高温煅烧法制得。本发明中的臭氧催化剂为正十二面体结构,与常见的改性活性炭相比,其活性金属负载量及活性位点增加,具有可控的结构,较大的比表面积及磁性回收特点;本发明制备过程简单,在臭氧化处理制药中间体废水的过程中,对有机污染物底物和COD均有良好的去除率,且Co‑Zn@NC的金属离子浸出率低,稳定性好,而且重复使用率实验证明其可多次循环使用,具有较高的实用价值。

Description

一种MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂及应用
技术领域
本发明属于臭氧化技术和环保废水处理技术领域,尤其涉及一种MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂及应用。
背景技术
我国是化学原料生产大国,化工制药行业一直是出口的支柱行业,化学制剂加工能力位居世界第一。然而化工制药废水通常具有复杂性,浓度波动大和污染物毒害性强等特点。因此,该行业制药废水的处理处置显得异常困难,常规的生物等处理方法往往难以奏效,对人类生存环境构成严重威胁,其污染控制技术已成为环境工作者研究的重点和难点之一。其次,由于这类废水化学氧化性和可生化性都较低,一般的化学药剂投加法和传统的生物法对其降解性能差,难以达到理想的去除效果。那么,如何有效的处理此类废水已成为环保行业想要攻克的难题之一。
高级氧化技术由于其简单高效而引起广泛的关注,为有效处理此类有机废水提供了一条可靠的新思路。根据其反应条件和反应类型的不同,可将高级氧化技术分为Fenton氧化法、臭氧氧化法、电化学氧化法、光催化氧化法等。以羟基自由基(·OH)为代表,在光、电、高温高压、催化剂等反应条件下,有机物直接氧化降解为小分子物质或矿化成CO2和H2O。高级氧化技术中臭氧化被认为是一种良好的废水处理技术,因为它具有强氧化性、操作简单、无二次污染等特点,在环境科学领域具有潜在应用价值。
然而,臭氧于水溶液环境不稳定,易分解,相对利用率和去除效率不高,且相关技术所需能耗较高,企业经济负担较重,限制了该技术的应用。催化臭氧氧化技术即是针对上述臭氧技术的不足而进行的改进技术,在单纯臭氧氧化基础上借助具有催化活性的材料,能够在温和的条件下产生更多的·OH,无选择性分解有毒有害污染物为可生化小分子或完全矿化为二氧化碳或碳酸盐等物质,因而被称为“环境友好型”技术之一,在高浓度难降解制药废水污染控制方面具有较好的应用前景。
目前,国内外的催化臭氧工艺根据催化剂存在形式可分为均相(金属离子)和非均相(固体催化剂)催化臭氧氧化。据已有相关报道,因非均相臭氧催化氧化技术具有催化剂可回收,处理效果好,不易造成水体中重金属离子超标等特点,在实际工业体系中相比均相臭氧催化氧化技术有更好的应用。近年来新研究开发的非均相臭氧催化剂主要为多金属氧化物、改性活性炭及负载型矿物质。多金属氧化物造价昂贵,颗粒易团聚影响催化效果;改性活性炭材料以吸附为主,其表面负载的活性物质含量过低限制其催化性能;负载型矿物质多以沸石、分子筛等为载体,表面负载金属氧化物,制备工艺复杂且相对比表面积较小。因此,有必要开发制备新型高效的催化臭氧氧化材料,其开发重点为以下两方面:
(1)催化剂的活性取决于催化剂表面的活性位点和电子转移速率,可通过将活性组分负载或锚定于载体上。要求载体具有高比表面积,高机械强度,抗压抗高温,有较好的孔道结构,以此来支撑活性组分并吸附有机分子,为反应提供更多活性位点和增强其表面自由电子获得能力;
(2)考虑实际制药废水的处理效果和经济成本,催化臭氧氧化技术通常是在常温常压下进行气-液-固三相反应,需要保证催化剂无二次污染且能反复多次使用,延长催化剂的使用时间,以此来降低商业投资成本。
根据国内外相关研究进展发现,纳米级的改性多孔碳材料兼具上述特性,在有效增大比表面积的基础上锚定活性金属于碳氮颗粒中,保证高金属含量的同时不易团聚,在反应体系中分散性较好且易分离重复利用。
发明内容
本发明的目的在于针对现有技术的不足,提供一种MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂及应用。本发明的臭氧催化剂具有高催化活性、稳定性好、易于分离回收且制备方法简单,具有可控的结构,较大的比表面积及磁性回收,具有在制药中间体废水处理中的应用价值。
本发明的目的是通过以下技术方案来实现的:一种MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂,它通过如下方法制备得到:
(1)将钴盐、锌盐、2-甲基咪唑分别溶解于无水甲醇中得到第一溶液、第二溶液、第三溶液;其中,钴盐、锌盐、2-甲基咪唑的物质的量之比为1:1:4;第一溶液中钴盐和无水甲醇的配比为1mmol:20~30mL;第二溶液中锌盐和无水甲醇的配比为1mmol:20~30mL;第三溶液中2-甲基咪唑和无水甲醇的配比为2mmol:10~15mL;将第三溶液倒入第一溶液中均匀搅拌混合5~15分钟后,倒入第二溶液均匀搅拌混合10~30分钟,得到紫红色混合溶液。
(2)将步骤(1)所得的紫红色混合溶液于0~25℃条件下恒温静置12~24小时,将形成的紫红色乳浊液进行固液分离,得到固体。
(3)将步骤(2)所得的固体用无水甲醇洗涤3~5次,得到紫红色催化剂前体。
(4)将步骤(3)所得的紫红色催化剂前体干燥并碾磨,得到催化剂粗品;
(5)N2或惰性气体保护下,管式炉于700~900℃煅烧步骤(4)所得的催化剂粗品2~4h,然后退火,退火温度为350~450℃,退火时间为2~4h,最终得到MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂。
进一步地,所述步骤(1)中,第一溶液中钴盐和无水甲醇的配比优选为1mmol:25mL;第二溶液中锌盐和无水甲醇的配比为1mmol:25mL;第三溶液中2-甲基咪唑和无水甲醇的配比优选为4mmol:25mL。
进一步地,所述步骤(1)中,钴盐为硝酸钴或氯化钴;锌盐为硝酸锌或氯化锌。
进一步地,所述步骤(4)中,干燥方法选自真空烘箱干燥、空气烘箱干燥、鼓风烘箱干燥;干燥温度为70~90℃,优选为80℃;干燥时间为8~12小时,优选为10小时。
进一步地,所述步骤(5)中,煅烧温度优选为800℃;煅烧时间优选为3h;从初始温度升温至煅烧温度的升温速率为1~4℃/min,优选为2℃/min。
进一步地,所述步骤(5)中,退火温度优选为400℃;退火时间优选为3h;从煅烧温度降温至退火温度的降温速率为2~4℃/min,优选为3℃/min。
进一步地,所述步骤(5)中N2或惰性气体通入管式炉的流速为0.6~1L/min,优选为0.8L/min。
本发明还公开了上述任一种MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂在催化臭氧化降解制药中间体废水中的应用。
本发明的有益效果是:本发明的臭氧催化剂为正十二面体结构,采用简单的种子介导法室温制备,通过高温炭化来实现其金属掺杂多孔碳材料制备,具有较好的结晶度及较大的比表面积,且颗粒表面可吸附较多的·OH基团,在与臭氧分子的接触过程中拥有大量活性位点,可通过向金属活性位点提供协同效应来增强催化活性,具有优越的催化活性;本发明金属离子浸出率低,稳定性好,可多次循环使用,具有良好的顺磁性特征,易于从反应溶液中分离;在臭氧化处理有机废水的过程中,本发明对污染物底物和COD(ChemicalOxygen Demand,化学需氧量)均有良好的去除率且优于单独臭氧化,提高了臭氧化技术处理效率,缓解了难降解废水对环境污染的压力,为此类催化剂应用于催化臭氧化降解有机废水开辟了新的思路,对社会和科技发展均具有重要的意义。
附图说明
图1为实施例1制备的纳米磁性臭氧催化剂Co-Zn@NC的X射线衍射分析图;
图2为实施例1制备的纳米磁性臭氧催化剂Co-Zn@NC的SEM、TEM表征图;其中,(a)为ZIF-67@ZIF-8的SEM图,(b)为Co-Zn@NC的SEM图,(c)为Co-Zn@NC的TEM图;
图3为实施例1制备的纳米磁性臭氧催化剂Co-Zn@NC的EDX元素谱图;其中(a)为C元素谱图,(b)为N元素谱图,(c)为Co元素谱图,(d)为Zn元素谱图;
图4为实施例1制备的纳米磁性臭氧催化剂Co-Zn@NC的X射线光电子能谱图;
图5为实施例1制备的纳米磁性臭氧催化剂Co-Zn@NC的吸脱附曲线图和孔径分布图;其中,嵌入的图像为孔径分布图;
图6为实施例2中安替比林的浓度随时间的变化曲线示意图;
图7为实施例2中安替比林COD值的浓度随时间的变化曲线示意图;
图8为实施例3中4-氨基乙酰苯胺的浓度随时间的变化曲线示意图;
图9为实施例3中4-氨基乙酰苯胺COD值的浓度随时间的变化曲线示意图;
图10为实施例3中4-氨基乙酰苯胺的去除率与催化剂Co-Zn@NC重复使用次数的关系图;
图11为实施例4中钴、锌离子浸出浓度随反应时间的变化曲线示意图。
具体实施方式
下面结合具体实例对本发明作详细的描述,但本发明不仅限于这些具体的实施例。
实施例1:
制备纳米磁性臭氧催化剂Co-Zn@NC,方法步骤如下:
1)称取六水合硝酸钴(4mmol)、九水合硝酸锌(4mmol)和2-甲基咪唑(16mmol)分别溶解于100mL无水甲醇中得到第一溶液、第二溶液、第三溶液,第三溶液迅速倒入第一溶液中均匀搅拌混合5分钟后,迅速倒入第二溶液均匀搅拌混合10分钟,得到紫红色混合溶液;
2)将步骤(1)所得紫红色混合溶液密封并转移至恒温水浴锅中4℃温育24小时,将得到的紫红色乳浊液转移至离心管内进行离心固液分离,所得固体用无水甲醇洗涤3次,将洗涤后的固体放入烘箱中,调节烘箱的温度为80℃,将固体烘干后得到催化剂ZIF-67@ZIF-8粗品;
3)将步骤(2)所得催化剂ZIF-67@ZIF-8粗品进行充分碾磨后,放入通有N2的管式炉中,以2℃/min升温至800℃,煅烧3h后以3℃/min降温速率进行退火,退火温度为400℃,退火时间为3h,最终冷却至室温,最终得到所述的磁性纳米臭氧催化剂Co-Zn@NC产品;所制得的磁性纳米臭氧催化剂Co-Zn@NC产品属于正十二面体结构,其外观呈黑色固体粉末状,平均粒径为500nm。
本实施例1制备得到的磁性纳米臭氧催化剂Co-Zn@NC的XRD(X-ray diffraction,X射线衍射)图和SEM(scanning electron microscope,扫描电子显微镜)、TEM(Transmission Electron Microscope,透射电子显微镜)分别如图1和图2所示。通过图1和图2的表征图可以看出,催化剂为规则正十二面体结构,催化剂的平均粒径为400~550nm之间,表现出了较好的结晶度和较小的颗粒尺寸。图3的EDX(energy dispersive x-rayspectroscopy,能量色散X射线光谱仪)图对单晶粒Co-Zn@NC进行元素分布描述,表面活性金属Co,Zn受CN限制均匀分布,在一定程度上减少Co,Zn元素的团聚和浸出。本实施例1制备得到的磁性纳米臭氧催化剂Co-Zn@NC的吸脱附曲线图和孔径分布图以及X射线光电子能谱图,分别如图4,图5和表1所示,说明此催化剂具有较大的比表面积,易暴露更多的活性位点,而XPS中532.5eV处的O1S结合能属于表面吸附羟基氧,这些结果表明该催化剂在与臭氧分子的接触过程中能表现出更佳的催化活性。
表1:纳米磁性臭氧催化剂Co-Zn@NC的比表面积特征
样品 比表面积(m<sup>2</sup>/g) 平均孔径(nm) 孔容(cm<sup>3</sup>/g)
Co-Zn@NC 831.42 2.46 0.52
实施例2:
目标污染物安替比林溶液的配制:准确称量安替比林溶解于去离子水中,配制成初始浓度为1000mg/L的安替比林溶液。
取1.5L上述配制好的安替比林溶液置于臭氧反应器中,臭氧反应器连接臭氧发生装置。准确称取1500mg实施例1制备的催化剂Co-Zn@NC置于安替比林溶液中,开始通氧气对臭氧反应器内进行曝气,使得催化剂Co-Zn@NC在安替比林溶液内均匀分布,设置氧气流量为0.33L/min,氧气曝气3min后,开启臭氧发生装置,用臭氧对臭氧反应器内的安替比林溶液进行曝气,设置臭氧投加量为16mg/min,曝气反应时间80min,其中前60分钟每隔10分钟进行取样检测,之后隔20分钟进行取样检测,所取样品经过滤膜过滤后,进行测定样品中安替比林的浓度变化及COD值的浓度变化,样品中安替比林的浓度随时间的变化曲线如图6所示,样品中安替比林COD值的浓度随时间的变化曲线如图7所示。
设置对照空白组:重复上述实验操作过程,但是不同的是:不添加实施例1制备的催化剂Co-Zn@NC。按照上述实验方法进行使用臭氧进行曝气实验,验证只单单使用臭氧时,安替比林的去除率和COD的降低值的反应效果。在空白组中,样品中安替比林的浓度随时间的变化曲线如图6所示,样品中COD值的浓度随时间的变化曲线如图7所示。
从图6和图7可以看出,在反应40min时间时,单独臭氧化下的安替比林的去除率为66.7%,而在催化剂Co-Zn@NC存在的情况下,安替比林的去除率达到了85.6%,降解效率得到明显提高。从COD的去除率来看,反应80min后,单独臭氧化下,COD的去除率只有37.1%,而在投加了催化剂Co-Zn@NC后,COD的去除率达到了45.9%。这一结果也证明了催化剂Co-Zn@NC良好的催化活性。
实施例3:
目标污染物4-氨基乙酰苯胺溶液的配制:准确称量4-氨基乙酰苯胺溶解于去离子水中,配制成初始浓度为600mg/L的4-氨基乙酰苯胺溶液。
取1.5L上述配制好的4-氨基乙酰苯胺溶液置于臭氧反应器中,臭氧反应器连接臭氧发生装置。准确称取1500mg实施例1制备的催化剂Co-Zn@NC置于4-氨基乙酰苯胺溶液中,开始用氧气对臭氧反应器内进行曝气,使得催化剂Co-Zn@NC在4-氨基乙酰苯胺溶液内均匀分布,氧气曝气3min后,开启臭氧发生装置,用臭氧对臭氧反应器内的4-氨基乙酰苯胺溶液进行曝气,设置臭氧投加量为10mg/min,曝气反应时间120min,其中前20分钟每隔10分钟进行取样检测,后100分钟每隔20分钟进行取样检测,所取样品经过滤膜过滤后,进行测定样品中4-氨基乙酰苯胺的浓度,计算4-氨基乙酰苯胺的去除率。样品中4-氨基乙酰苯胺的浓度随时间的变化曲线如图8所示,样品中4-氨基乙酰苯胺COD值的浓度随时间的变化曲线如图9所示。对反应完成后的催化剂Co-Zn@NC进行收集,然后烘干,继续按照上述实验操作过程,再重复实验反应3次,4-氨基乙酰苯胺的去除率与催化剂Co-Zn@NC重复使用次数的关系如图10所示。
从图8和图9可以看出,在反应120min后,单独臭氧化下的安替比林的去除率为82.3%,而在催化剂Co-Zn@NC存在的情况下,安替比林的去除率达到了98.1%,基本降解完全。从COD的去除率来看,反应120min后,单独臭氧化下,COD的去除率只有39.3%,而在投加了催化剂Co-Zn@NC后,COD的去除率达到了58.1%。这一结果再次证明了催化剂Co-Zn@NC良好的催化活性,且对多种医药中间体具有明显催化性能,表现来其催化无选择性。
对比图8和图10可以看出,催化剂Co-Zn@NC在经过连续四次的催化反应后,4-氨基乙酰苯胺的去除率从98.1%下降到了96.3%,其催化活性并没有明显的降低。这也说明了本发明所制备的催化剂稳定性良好。
实施例4:
目标污染物4-氨基乙酰苯胺溶液的配制:准确称量4-氨基乙酰苯胺溶解于去离子水中,配制成初始浓度为500mg/L的4-氨基乙酰苯胺溶液。
取1.5L上述配制好的4-氨基乙酰苯胺溶液置于臭氧反应器中,臭氧反应器连接臭氧发生装置。准确称取1500mg实施例1制备的催化剂Co-Zn@NC置于4-氨基乙酰苯胺溶液中,开始用氧气对臭氧反应器内进行曝气,使得催化剂Co-Zn@NC在4-氨基乙酰苯胺溶液内均匀分布,氧气曝气3min后,开启臭氧发生装置,用臭氧对臭氧反应器内的4-氨基乙酰苯胺溶液进行曝气,设置臭氧投加量为10mg/min,曝气反应时间120min,其中每隔20分钟进行取样检测。催化剂Co-Zn@NC的金属离子浸出率利用原子吸收光谱仪测得。所取样品经0.22μm滤膜过滤后,通过火焰燃烧使微粒原子化后,不同的光源下检测,结果代入标准曲线的回归方程计算得到催化剂离子浸出率(可以预先配制一系列不同浓度的金属离子水溶液,按照上述方法进行检测,然后绘制标准曲线,确定回归方程)。
样品中锌离子和钴离子浓度随反应时间的变化曲线见图11所示,在反应时间为120min的时间里,锌离子和钴离子的最大离子浸出率分别为0.08mg/L和0.56mg/L,总离子浸出率量只占到了催化剂中金属离子的0.44%。低的离子浸出率也表明了催化剂Co-Zn@NC良好的稳定性。
本说明书所述的内容仅仅是对发明构思实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式。

Claims (11)

1.一种MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂的应用,其特征在于,所述MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂在催化臭氧化降解制药中间体废水中的应用;
所述MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂通过如下方法制备得到:
(1)将钴盐、锌盐、2-甲基咪唑分别溶解于无水甲醇中得到第一溶液、第二溶液、第三溶液;其中,钴盐、锌盐、2-甲基咪唑的物质的量之比为1:1:4;第一溶液中钴盐和无水甲醇的配比为1mmol:20~30mL;第二溶液中锌盐和无水甲醇的配比为1mmol:20~30mL;第三溶液中2-甲基咪唑和无水甲醇的配比为2mmol:10~15mL;将第三溶液倒入第一溶液中均匀搅拌混合5~15分钟后,倒入第二溶液均匀搅拌混合10~30分钟,得到紫红色混合溶液;
(2)将步骤(1)所得的紫红色混合溶液于0~25℃条件下恒温静置12~24小时,将形成的紫红色乳浊液进行固液分离,得到固体;
(3)将步骤(2)所得的固体用无水甲醇洗涤3~5次,得到紫红色催化剂前体;
(4)将步骤(3)所得的紫红色催化剂前体干燥并碾磨,得到催化剂粗品;
(5)N2或惰性气体保护下,管式炉于700~900℃煅烧步骤(4)所得的催化剂粗品2~4h,然后退火,退火温度为350~450℃,退火时间为2~4h,最终得到MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂。
2.根据权利要求1所述应用,其特征在于,所述步骤(1)中,第一溶液中钴盐和无水甲醇的配比为1mmol:25mL;第二溶液中锌盐和无水甲醇的配比为1mmol:25mL;第三溶液中2-甲基咪唑和无水甲醇的配比为4mmol:25mL。
3.根据权利要求1所述应用,其特征在于,所述步骤(1)中,钴盐为硝酸钴或氯化钴;锌盐为硝酸锌或氯化锌。
4.根据权利要求1所述应用,其特征在于,所述步骤(4)中,干燥方法选自真空烘箱干燥、空气烘箱干燥、鼓风烘箱干燥;干燥温度为70~90℃;干燥时间为8~12小时。
5.根据权利要求1所述应用,其特征在于,所述步骤(4)中,干燥温度为80℃,干燥时间为10小时。
6.根据权利要求1所述应用,其特征在于,所述步骤(5)中,煅烧温度为800℃;煅烧时间为3h;从初始温度升温至煅烧温度的升温速率为1~4℃/min。
7.根据权利要求1所述应用,其特征在于,所述步骤(5)中,从初始温度升温至煅烧温度的升温速率为2℃/min。
8.根据权利要求1所述应用,其特征在于,所述步骤(5)中,退火温度为400℃;退火时间为3h;从煅烧温度降温至退火温度的降温速率为2~4℃/min。
9.根据权利要求1所述应用,其特征在于,所述步骤(5)中,从煅烧温度降温至退火温度的降温速率为3℃/min。
10.根据权利要求1所述应用,其特征在于,所述步骤(5)中N2或惰性气体通入管式炉的流速为0.6~1L/min。
11.根据权利要求1所述应用,其特征在于,所述步骤(5)中N2或惰性气体通入管式炉的流速为0.8L/min。
CN201910521232.4A 2019-06-17 2019-06-17 一种MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂及应用 Active CN110302819B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910521232.4A CN110302819B (zh) 2019-06-17 2019-06-17 一种MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910521232.4A CN110302819B (zh) 2019-06-17 2019-06-17 一种MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂及应用

Publications (2)

Publication Number Publication Date
CN110302819A CN110302819A (zh) 2019-10-08
CN110302819B true CN110302819B (zh) 2022-04-19

Family

ID=68076513

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910521232.4A Active CN110302819B (zh) 2019-06-17 2019-06-17 一种MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂及应用

Country Status (1)

Country Link
CN (1) CN110302819B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114395768B (zh) * 2022-01-21 2023-11-10 辽宁大学 一种Co/B/N共掺杂碳电催化剂及其制备方法和应用
CN114950437B (zh) * 2022-06-30 2023-09-15 国纳纳米技术研究(河北)有限公司 负载型Cu-Co双金属基ZIF衍生的Cu/Co-C臭氧催化剂的制备及产品和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106608672A (zh) * 2015-10-22 2017-05-03 南开大学 一种催化臭氧氧化控制三氯硝基甲烷生成势的方法
CN106694018A (zh) * 2016-12-14 2017-05-24 北京化工大学 一种具有梯度孔结构的钴、氮共掺杂炭氧气还原催化剂及其制备方法和应用
CN108479784A (zh) * 2018-04-04 2018-09-04 清华大学 一种双载体臭氧催化剂和模块化催化氧化废水处理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106608672A (zh) * 2015-10-22 2017-05-03 南开大学 一种催化臭氧氧化控制三氯硝基甲烷生成势的方法
CN106694018A (zh) * 2016-12-14 2017-05-24 北京化工大学 一种具有梯度孔结构的钴、氮共掺杂炭氧气还原催化剂及其制备方法和应用
CN108479784A (zh) * 2018-04-04 2018-09-04 清华大学 一种双载体臭氧催化剂和模块化催化氧化废水处理装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于金属有机骨架的碳材料的合成及性质研究;赵浩阳;《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》;20190115(第01期);第15页最后一段,第16页第2.2节 *
赵浩阳.基于金属有机骨架的碳材料的合成及性质研究.《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》.2019,(第01期), *

Also Published As

Publication number Publication date
CN110302819A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
Zhang et al. Critical role of oxygen vacancies in heterogeneous Fenton oxidation over ceria-based catalysts
Chen et al. Salt-assisted synthesis of hollow Bi2WO6 microspheres with superior photocatalytic activity for NO removal
CN111359650B (zh) 铁、镍、钯共掺杂石墨相氮化碳复合催化剂的制备方法、产品及应用
CN113333011A (zh) 一种复合催化剂及其制备方法和应用
CN112337461B (zh) 锶掺杂有序介孔锰酸镧负载贵金属钯的复合材料及其制备方法与在催化氧化甲苯中的应用
CN107376921B (zh) 一种废水深度处理用石墨烯-多孔氧化镍复合催化剂及其制备方法和应用
Gai et al. An alternative scheme of biological removal of ammonia nitrogen from wastewater–highly dispersed Ru cluster@ mesoporous TiO2 for the catalytic wet air oxidation of low-concentration ammonia
CN111821982B (zh) 一种氧化石墨烯-氧化铈-氧化铁复合材料、合成方法及其在催化降解性中的应用
CN110302819B (zh) 一种MOFs衍生的双金属磁性纳米多孔碳臭氧催化剂及应用
CN106861626B (zh) 一种吸附-光催化双功能材料及其制备方法与在挥发性有机气体治理工艺的应用
CN111992255B (zh) 用于去除水中双酚A的片状g-C3N4/ZIF-8/AgBr复合材料及其制备方法
CN111974404A (zh) 光助BiFe1-xCuxO3活化过一硫酸盐处理水体残留环丙沙星的方法
CN107335422B (zh) 一种碳功能化氧化铈的制备方法
CN109364924B (zh) 一种磁性纳米臭氧催化剂CoFe2O4及其制备方法与应用
CN113441142B (zh) 一种富含氧空位的石墨烯负载多孔纳米氧化铁电催化剂的制备方法及应用
CN111389412B (zh) 基于载体形貌改性的负载型贵金属催化剂及制备与应用
CN113772710A (zh) 一种二氧化铈纳米线的制备方法及其应用
CN111545211B (zh) 一种氧化石墨烯-氧化镧-氢氧化钴复合材料、合成方法及其应用
CN113663667B (zh) 一种基于过渡金属改性的锰基复合催化剂及其制备方法和应用
CN110548519A (zh) 一种多孔纳米掺钴锰酸锌尖晶石催化剂及其制备方法和应用
CN113976107B (zh) 一种利用有机废液制备Mn基复合催化剂的方法及其分解室内甲醛的应用
CN113244929B (zh) 铁铋氧化物Bi2Fe4O9的制备方法及在有机废水处理中的应用
CN111569890B (zh) 一种氧化石墨烯-氧化铽-氧化铁复合材料、合成方法及其在催化降解中的应用
CN114602489A (zh) 一种高稳定性的非贵金属基甲醛催化剂及其制备方法
CN113941353A (zh) FeWO4/g-C3N4光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant