CN107335422B - 一种碳功能化氧化铈的制备方法 - Google Patents

一种碳功能化氧化铈的制备方法 Download PDF

Info

Publication number
CN107335422B
CN107335422B CN201710418119.4A CN201710418119A CN107335422B CN 107335422 B CN107335422 B CN 107335422B CN 201710418119 A CN201710418119 A CN 201710418119A CN 107335422 B CN107335422 B CN 107335422B
Authority
CN
China
Prior art keywords
carbon
cerium oxide
mixed solution
water
aging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710418119.4A
Other languages
English (en)
Other versions
CN107335422A (zh
Inventor
郝仕油
王辉
费楠楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xingzhi College of Zhejiang Normal University
Original Assignee
Xingzhi College of Zhejiang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xingzhi College of Zhejiang Normal University filed Critical Xingzhi College of Zhejiang Normal University
Priority to CN201710418119.4A priority Critical patent/CN107335422B/zh
Publication of CN107335422A publication Critical patent/CN107335422A/zh
Application granted granted Critical
Publication of CN107335422B publication Critical patent/CN107335422B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明涉及一种碳功能化氧化铈的制备方法:首先,在去离子水中溶解一定量的Ce(NO3)3·6H2O,然后加入氨水,调节其pH值至一定范围,混合液陈化一定时间后,过滤、烘干;取一定量的烘干样品对一定浓度的染料进行吸附,获得吸附染料的混合物;混合物经过滤、烘干后,在氮气保护下,以一定升温速率至一定温度对混合物进行加热,获得碳功能化氧化铈材料。

Description

一种碳功能化氧化铈的制备方法
技术领域
本发明属于复合氧化物制备技术领域,特别涉及一种碳功能化氧化铈的制备方法。
背景技术
众所周知,水是生命之源、生产之要、生态之基。近年来,由于我国工业化程度不断提高,导致水体污染严重。因此,水污染防治是人们十分关注的领域。在所有的水污染物中,染料所占比例较高,结构复杂,属难处理工业废料之一。据统计,在印染过程中,每加工1吨纺织品需耗水100~200吨,其中80~90%为废水,因此废水量大,不但严重污染受纳水体和环境,而且还通过渗透或淋溶作用,对地下水及地表水造成次生污染,给人体及生态环境造成严重威胁。因此,开发具有自主知识产权、经济高效的染料去除技术,对经济可持续发展和营造良好生活环境具有重要意义。
在所有染料污水处理方法中,光催化降解法备受关注,因为它能把染料降解为无毒、无害的小分子物质,如H2O,CO2。CeO2由于具有无毒性、高稳定性,同时对可见光具有潜在吸收性能(Fallah J E,Hilaire L,Romeo M,et al.J.ElectronSpectrosc.Relat.Phenom.,1995,73:89-103),所以在光催化领域可发挥重要作用(HuangY,Long B,Tang M,et al.Appl.Catal.B:Environ.,2016,181:779-781;Tambat S,UmaleS,Sontakke S,Mater.Res.Bull.,2016,76:466-472;Zhang X Y,Ge S S,Shao Q,etal.Chin.J.Inorg.Chem.,2016,32:1535-1542)。由于禁带宽度较大(约3.1eV),导致CeO2在可见光照射下,光电子和空穴产率较低。为了提高可见光吸收强度,研究者常采用掺杂形成掺杂能级,降低CeO2禁带宽度(Chang J L,Ma Q L,Ma J C,et al.Ceram.Int.,2016,42:11827-11837;Xu B,Zhang Q,Yuan S,et al.Catal.Today,2017,281:135-143)。吸附能力是衡量催化剂的重要指标,为了提高CeO2的吸附容量,研究者常采用加入碳材料的方式,提高CeO2的光催化性能(Wang C,Ao Y,Wang P,et al.J.Hazard.Mater.,2010,184:1-5;Verma R,Samdarshi S K,J.Phys.Chem.C,2016,120:22281-22290)。
在现有中国专利文献中,公开氧化铈掺杂及碳功能化的相关专利如下:
CN106430315A“四氧化三锰/氧化铈复合纳米管、纳米管自组装膜及其制备方法和应用”中,公开了一种利用水热合成技术和氧化还原沉淀原理,制备四氧化三锰/氧化铈复合纳米管的方法。
CN104759287A“一种铁掺杂的二氧化铈光催化剂及其制备方法”中,公开了一种以硝酸铈、硝酸铁、碳酸钠为起始原料,采用共沉淀法,制备片状FexCe1-xO2-0.5x的方法。
CN106206068A“一种碳纳米管复合纳米二氧化铈电极材料的制备方法”中,公开了一种以Ce(NO3)3·6H2O,聚乙烯吡咯烷酮,改性碳纳米管为原料,利用水热法,制备碳纳米管复合纳米二氧化铈电极材料的方法。
CN105854865A“一种三维多孔结构石墨烯-二氧化铈复合物光催化剂”中,公开了一种以氧化石墨烯和三氯化铈为原料,通过水热反应制备三维多孔结构石墨烯-二氧化铈复合物光催化剂的方法。
据以上文献可知,目前,主要利用过渡金属与其它离子对CeO2进行掺杂,掺杂效果(如禁带结构匹配、高效分离光生电子与空穴)有待提高;使用的碳材料一般为商用品,在催化剂制备过程中,它们与CeO2结合力较弱,易导致CeO2与碳材料界面间光电子传导受阻,降低光电子与空穴分离效率。针对以上问题,本发明专利通过空气中的氧气部分氧化Ce3+,制备Ce3+掺杂的CeO2材料,利用自掺杂改善CeO2禁带结构,提高其对可见光的吸收。由于CeO2前躯体Ce(OH)3/Ce(OH)4中含有大量羟基与铵根,可对相关阴阳离子进行吸附,利用吸附染料为碳源,通过高温转化为碳,对CeO2进行功能化。上述碳功能化过程不仅可使染料分子变废为宝(转化为碳),而且还可使碳与CeO2中的氧形成共价键,提高碳与催化剂基体的结合力。此外,利用炭氧键可使光生电子有效通过碳与CeO2界面,到达催化剂表面,与相关物质(如O2、H2O2)形成活性物种(如
Figure GDA0002468265670000021
·HO2、·HO等),从而彻底催化降解染料。
截止目前,还未有专利及相关文献报道利用Ce(OH)3/Ce(OH)4对相关阴阳离子染料进行吸附,利用吸附染料为碳源,对CeO2进行功能化提高其光催化降解染料效率。
发明内容
本发明要解决的技术问题是提供一种对有机物(以酸性橙7为探针分子)具有高效光催化降解效率的碳功能化氧化铈的制备方法。
为了解决该技术问题,本发明采用的技术方案如下:
一种碳功能化氧化铈的制备方法,包括以下步骤:
1)在30-60℃水浴中,通过磁力搅拌方式使3-6g的Ce(NO3)3·6H2O完全溶解在80-120mL的去离子水中,快速滴加质量百分比浓度为28%的氨水,使混合溶液pH值为9-11,再用保鲜膜迅速密封反应容器,继续搅拌5-15min,混合液陈化20-30h;
2)陈化混合液经过滤后,置于50-80℃的烘箱中烘6-12h;
3)将烘干后的样品置于研钵中研磨,取其中的0.05-0.5g样品对0.05-0.6mmol/L的阴、阳离子染料进行吸附,吸附时间为10-40min,获得不同染料含量的铈基混合物;
4)将铈基混合物过滤、水洗、醇洗、烘干,获得碳功能化氧化铈前躯体;
5)将前躯体置于管式炉内,在氮气保护下,以2-5℃/min升温速率升温至500-800℃,并恒温2-5h,再自然冷却至室温,获得碳功能化氧化铈材料。
在上述制备过程中,当Ce(NO3)3·6H2O完全溶解后,氨水滴加要快速,且加完后要迅速用保鲜膜密封反应容器,防止空气中氧气过渡氧化Ce3+为Ce4+,以期获得Ce3+与Ce4+共存的氢氧化物。
在上述制备过程中,加入氨水的目的除提供氢氧根与溶液中的Ce3+/Ce4+结合为Ce(OH)3/Ce(OH)4外,还会产生铵根离子,并使其包杂于Ce(OH)3/Ce(OH)4中。
在上述制备过程中,为了获得铵根包杂于Ce(OH)3/Ce(OH)4的产物,陈化液过滤后,不用洗涤,直接烘干产物。
在上述制备过程中,是利用样品中所含的羟基和铵根,与阴、阳离子染料中的相关基团通过静电引力结合,从而达到吸附染料目的。
在上述制备过程中,是利用吸附的阴、阳离子染料为碳源,经高温转化为碳功能化氧化铈材料。
在上述制备过程中,碳化是在以2-5℃/min升温速率升温至500-800℃,并恒温2-5h的条件下进行的。
本发明与现有技术相比,具有以下突出特征及效果:在本发明中,利用Ce3+与氨水及空气中的氧气反应,生成Ce(OH)3/Ce(OH)4,并在反应过程中包杂铵根离子;由于形成产物中含羟基与铵根,与相应阴阳离子染料通过静电引力结合,因而可对相关染料进行有效吸附;由于染料中含有碳,因而可作为碳源,对催化剂进行碳功能化;利用碳的强吸附作用,对染料进行吸附,提高光催化效率。在本发明中,加入氨水要迅速,且加完后要用保鲜膜密封反应容器,防止氧气过渡氧化Ce3+;在氮气保护下高温分解Ce(OH)3/Ce(OH)4,同时使染料碳化为碳,对Ce2O3/CeO2进行碳功能化。在本发明中,利用吸附染料为碳源,可提高碳与基体的结合力,提高重复使用性能,同时碳与氧可形成共价键,作为电子通道,可高效分离光电子与空穴,提高光催化效率,与现有相关技术比较,该法设计巧妙,易行,对染料具有高效去除作用。从XRD(附图1)可知,所合成产物在晶面(111)、(220)及(311)等处出现氧化铈的特征峰,证明合成产物为氧化铈。碳功能化后,样品对紫外-可见光的吸收强度高于纯样品的(详见附图2)。通过XPS图(附图3)可知,碳功能化样品中含有一定量的Ce3+,证明样品中存在Ce2O3,由于其禁带宽度(2.4eV)小于CeO2的,所以掺杂后,样品的可见光吸收强度增加。由于掺杂后可见光吸收效率提高,且碳功能化后染料吸附效率提高,所以合成样品对相关染料(酸性橙7)具有更好的光催化降解效率(详见附图4)。
综上所述,本发明所制备的碳功能化氧化铈具有染料吸附量高、光吸收(特别是可见光吸收)强度较大、利用紫外-可见光能高效降解酸性橙7的优点,所以在光催化降解有机污染物方面具有潜在应用价值。
附图说明
图1 CeO2与C-CeO2的XRD图;
图2 CeO2与C-CeO2的紫外-可见光吸收图;
图3 C-CeO2的XPS图;
图4可见光照射下,CeO2与C-CeO2酸性橙7的催化降解效率图(酸性橙7浓度为0.4mM,染料溶液体积为50mL,催化剂质量为50mg,pH值为6)。
具体实施方式
下面通过实施例对本发明的制备方法作进一步说明,但本发明并不限于以下实施例。
实施例1
在30℃水浴中,通过磁力搅拌方式使3g的Ce(NO3)3·6H2O完全溶解在80mL的去离子水中,快速滴加质量百分比浓度为28%的氨水,使混合溶液pH值为9,再用保鲜膜迅速密封反应容器,继续搅拌5min,混合液陈化20h;陈化混合液经过滤后,置于50℃的烘箱中烘6h;将烘干后的样品置于研钵中研磨,取其中的0.05g样品对0.05mmol/L的阴、阳离子染料进行吸附,吸附时间为10min,获得不同染料含量的铈基混合物;将铈基混合物过滤、水洗、醇洗、烘干,获得碳功能化氧化铈前躯体;将前躯体置于管式炉内,在氮气保护下,以2℃/min升温速率升温至500℃,并恒温2h,再自然冷却至室温,获得碳功能化氧化铈材料。
实施例2
在30℃水浴中,通过磁力搅拌方式使4g的Ce(NO3)3·6H2O完全溶解在100mL的去离子水中,快速滴加质量百分比浓度为28%的氨水,使混合溶液pH值为10,再用保鲜膜迅速密封反应容器,继续搅拌10min,混合液陈化25h;陈化混合液经过滤后,置于65℃的烘箱中烘9h;将烘干后的样品置于研钵中研磨,取其中的0.3g样品对0.3mmol/L的阴、阳离子染料进行吸附,吸附时间为25min,获得不同染料含量的铈基混合物;将铈基混合物过滤、水洗、醇洗、烘干,获得碳功能化氧化铈前躯体;将前躯体置于管式炉内,在氮气保护下,以4℃/min升温速率升温至600℃,并恒温4h,再自然冷却至室温,获得碳功能化氧化铈材料。
实施例3
在30℃水浴中,通过磁力搅拌方式使6g的Ce(NO3)3·6H2O完全溶解在120mL的去离子水中,快速滴加质量百分比浓度为28%的氨水,使混合溶液pH值为11,再用保鲜膜迅速密封反应容器,继续搅拌15min,混合液陈化30h;陈化混合液经过滤后,置于80℃的烘箱中烘12h;将烘干后的样品置于研钵中研磨,取其中的0.5g样品对0.6mmol/L的阴、阳离子染料进行吸附,吸附时间为40min,获得不同染料含量的铈基混合物;将铈基混合物过滤、水洗、醇洗、烘干,获得碳功能化氧化铈前躯体;将前躯体置于管式炉内,在氮气保护下,以5℃/min升温速率升温至800℃,并恒温5h,再自然冷却至室温,获得碳功能化氧化铈材料。
实施例4
在45℃水浴中,通过磁力搅拌方式使3g的Ce(NO3)3·6H2O完全溶解在80mL的去离子水中,快速滴加质量百分比浓度为28%的氨水,使混合溶液pH值为9,再用保鲜膜迅速密封反应容器,继续搅拌5min,混合液陈化20h;陈化混合液经过滤后,置于50℃的烘箱中烘6h;将烘干后的样品置于研钵中研磨,取其中的0.05g样品对0.05mmol/L的阴、阳离子染料进行吸附,吸附时间为10min,获得不同染料含量的铈基混合物;将铈基混合物过滤、水洗、醇洗、烘干,获得碳功能化氧化铈前躯体;将前躯体置于管式炉内,在氮气保护下,以2℃/min升温速率升温至500℃,并恒温2h,再自然冷却至室温,获得碳功能化氧化铈材料。
实施例5
在45℃水浴中,通过磁力搅拌方式使4g的Ce(NO3)3·6H2O完全溶解在100mL的去离子水中,快速滴加质量百分比浓度为28%的氨水,使混合溶液pH值为10,再用保鲜膜迅速密封反应容器,继续搅拌10min,混合液陈化25h;陈化混合液经过滤后,置于65℃的烘箱中烘9h;将烘干后的样品置于研钵中研磨,取其中的0.3g样品对0.3mmol/L的阴、阳离子染料进行吸附,吸附时间为25min,获得不同染料含量的铈基混合物;将铈基混合物过滤、水洗、醇洗、烘干,获得碳功能化氧化铈前躯体;将前躯体置于管式炉内,在氮气保护下,以4℃/min升温速率升温至600℃,并恒温4h,再自然冷却至室温,获得碳功能化氧化铈材料。
实施例6
在45℃水浴中,通过磁力搅拌方式使6g的Ce(NO3)3·6H2O完全溶解在120mL的去离子水中,快速滴加质量百分比浓度为28%的氨水,使混合溶液pH值为11,再用保鲜膜迅速密封反应容器,继续搅拌15min,混合液陈化30h;陈化混合液经过滤后,置于80℃的烘箱中烘12h;将烘干后的样品置于研钵中研磨,取其中的0.5g样品对0.6mmol/L的阴、阳离子染料进行吸附,吸附时间为40min,获得不同染料含量的铈基混合物;将铈基混合物过滤、水洗、醇洗、烘干,获得碳功能化氧化铈前躯体;将前躯体置于管式炉内,在氮气保护下,以5℃/min升温速率升温至800℃,并恒温5h,再自然冷却至室温,获得碳功能化氧化铈材料。
实施例7
在60℃水浴中,通过磁力搅拌方式使3g的Ce(NO3)3·6H2O完全溶解在80mL的去离子水中,快速滴加质量百分比浓度为28%的氨水,使混合溶液pH值为9,再用保鲜膜迅速密封反应容器,继续搅拌5min,混合液陈化20h;陈化混合液经过滤后,置于50℃的烘箱中烘6h;将烘干后的样品置于研钵中研磨,取其中的0.05g样品对0.05mmol/L的阴、阳离子染料进行吸附,吸附时间为10min,获得不同染料含量的铈基混合物;将铈基混合物过滤、水洗、醇洗、烘干,获得碳功能化氧化铈前躯体;将前躯体置于管式炉内,在氮气保护下,以2℃/min升温速率升温至500℃,并恒温2h,再自然冷却至室温,获得碳功能化氧化铈材料。
实施例8
在60℃水浴中,通过磁力搅拌方式使4g的Ce(NO3)3·6H2O完全溶解在100mL的去离子水中,快速滴加质量百分比浓度为28%的氨水,使混合溶液pH值为10,再用保鲜膜迅速密封反应容器,继续搅拌10min,混合液陈化25h;陈化混合液经过滤后,置于65℃的烘箱中烘9h;将烘干后的样品置于研钵中研磨,取其中的0.3g样品对0.3mmol/L的阴、阳离子染料进行吸附,吸附时间为25min,获得不同染料含量的铈基混合物;将铈基混合物过滤、水洗、醇洗、烘干,获得碳功能化氧化铈前躯体;将前躯体置于管式炉内,在氮气保护下,以4℃/min升温速率升温至600℃,并恒温4h,再自然冷却至室温,获得碳功能化氧化铈材料。
实施例9
在60℃水浴中,通过磁力搅拌方式使6g的Ce(NO3)3·6H2O完全溶解在120mL的去离子水中,快速滴加质量百分比浓度为28%的氨水,使混合溶液pH值为11,再用保鲜膜迅速密封反应容器,继续搅拌15min,混合液陈化30h;陈化混合液经过滤后,置于80℃的烘箱中烘12h;将烘干后的样品置于研钵中研磨,取其中的0.5g样品对0.6mmol/L的阴、阳离子染料进行吸附,吸附时间为40min,获得不同染料含量的铈基混合物;将铈基混合物过滤、水洗、醇洗、烘干,获得碳功能化氧化铈前躯体;将前躯体置于管式炉内,在氮气保护下,以5℃/min升温速率升温至800℃,并恒温5h,再自然冷却至室温,获得碳功能化氧化铈材料。

Claims (6)

1.一种碳功能化氧化铈的制备方法,其特征在于包括如下步骤:
1)在30-60℃水浴中,通过磁力搅拌方式使3-6g的Ce(NO3)3·6H2O完全溶解在80-120mL的去离子水中,快速滴加质量百分比浓度为28%的氨水,使混合溶液pH值为9-11,再用保鲜膜迅速密封反应容器,继续搅拌5-15min,混合液陈化20-30h;
2)陈化混合液经过滤后,置于50-80℃的烘箱中烘6-12h;
3)将烘干后的样品置于研钵中研磨,取其中的0.05-0.5g样品对0.05-0.6mmol/L的阴、阳离子染料进行吸附,吸附时间为10-40min,获得不同染料含量的铈基混合物;
4)将铈基混合物过滤、水洗、醇洗、烘干,获得碳功能化氧化铈前躯体;
5)将前躯体置于管式炉内,在氮气保护下,以2-5℃/min升温速率升温至500-800℃,并恒温2-5h,再自然冷却至室温,获得碳功能化氧化铈材料。
2.根据权利要求1所述的制备方法,其特征在于:在上述制备过程中,当Ce(NO3)3·6H2O完全溶解后,氨水要快速滴加,且加完后要迅速用保鲜膜密封反应容器,防止空气中氧气过渡氧化Ce3+为Ce4+
3.根据权利要求1所述的制备方法,其特征在于:在上述制备过程中,加入氨水的目的是提供氢氧根与铵根,使溶液中Ce3+/Ce4+转化为Ce(OH)3/Ce(OH)4,并包杂铵根离子。
4.根据权利要求1所述的制备方法,其特征在于:在上述制备过程中,陈化液过滤后,不用洗涤,直接可得包杂铵根离子的Ce(OH)3/Ce(OH)4
5.根据权利要求1所述的制备方法,其特征在于:在上述制备过程中,使用的染料为阴、阳离子染料,因为氧化铈前躯体中所含的羟基和铵根,可与阴、阳离子染料中的相关基团通过静电引力结合,从而达到吸附染料目的。
6.根据权利要求1所述的制备方法,其特征在于:在上述制备过程中,是利用吸附的阴、阳离子染料为碳源,经高温转化为碳功能化氧化铈材料。
CN201710418119.4A 2017-06-06 2017-06-06 一种碳功能化氧化铈的制备方法 Active CN107335422B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710418119.4A CN107335422B (zh) 2017-06-06 2017-06-06 一种碳功能化氧化铈的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710418119.4A CN107335422B (zh) 2017-06-06 2017-06-06 一种碳功能化氧化铈的制备方法

Publications (2)

Publication Number Publication Date
CN107335422A CN107335422A (zh) 2017-11-10
CN107335422B true CN107335422B (zh) 2020-07-31

Family

ID=60220299

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710418119.4A Active CN107335422B (zh) 2017-06-06 2017-06-06 一种碳功能化氧化铈的制备方法

Country Status (1)

Country Link
CN (1) CN107335422B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107919482A (zh) * 2017-11-24 2018-04-17 内蒙古大学 一种直接醇燃料电池阳极催化剂及其制备方法
CN109395710B (zh) * 2018-08-20 2021-05-25 浙江师范大学 一种铈、碳共掺杂氧化锌的制备方法
CN111966479B (zh) * 2020-08-19 2024-03-29 支付宝(杭州)信息技术有限公司 业务处理、风险识别业务处理方法、装置及电子设备
CN112028103B (zh) * 2020-08-19 2022-08-26 浙江师范大学行知学院 一种碳功能化Pr6O11的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115146A (zh) * 2011-01-06 2011-07-06 云南大学 一种纳米结构氧化铈及其应用
WO2012040652A2 (en) * 2010-09-23 2012-03-29 Molycorp Minerals Llc Particulate cerium dioxide and an in situ method for making and using the same
US8883519B1 (en) * 2009-03-17 2014-11-11 University Of Central Florida Research Foundation, Inc. Oxidase activity of polymeric coated cerium oxide nanoparticles
CN104258839A (zh) * 2014-08-25 2015-01-07 浙江师范大学 一种氨基功能化介孔氧化铈的制备方法
CN106315658A (zh) * 2016-08-19 2017-01-11 浙江师范大学 一种功能化氧化铈的制备方法
CN106622206A (zh) * 2016-12-30 2017-05-10 西安交通大学 一种介孔二氧化铈空心球或介孔二氧化铈/碳复合材料空心球及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101021567B1 (ko) * 2009-05-25 2011-03-16 성균관대학교산학협력단 광촉매, 이의 제조방법 및 이를 이용한 휘발성 유기물의 분해 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883519B1 (en) * 2009-03-17 2014-11-11 University Of Central Florida Research Foundation, Inc. Oxidase activity of polymeric coated cerium oxide nanoparticles
WO2012040652A2 (en) * 2010-09-23 2012-03-29 Molycorp Minerals Llc Particulate cerium dioxide and an in situ method for making and using the same
CN102115146A (zh) * 2011-01-06 2011-07-06 云南大学 一种纳米结构氧化铈及其应用
CN104258839A (zh) * 2014-08-25 2015-01-07 浙江师范大学 一种氨基功能化介孔氧化铈的制备方法
CN106315658A (zh) * 2016-08-19 2017-01-11 浙江师范大学 一种功能化氧化铈的制备方法
CN106622206A (zh) * 2016-12-30 2017-05-10 西安交通大学 一种介孔二氧化铈空心球或介孔二氧化铈/碳复合材料空心球及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CeO2 mediated photocatalytic degradation studies of C.I. acid orange 7;Pengfei Ji et al.;《Environmental Technology》;20111118;第33卷;第467-472页 *
Preparation, characterization and photocatalytic activity of a novel composite photocatalyst: Ceria-coated activated carbon;Chao Wang et al.;《Journal of Hazardous Materials》;20100716;第184卷;第1-5页 *

Also Published As

Publication number Publication date
CN107335422A (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
Liang et al. Highly dispersed bismuth oxide quantum dots/graphite carbon nitride nanosheets heterojunctions for visible light photocatalytic redox degradation of environmental pollutants
Zhai et al. Novel biochar@ CoFe2O4/Ag3PO4 photocatalysts for highly efficient degradation of bisphenol a under visible-light irradiation
He et al. Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity
Wang et al. Fabrication of 1D/2D BiPO4/g-C3N4 heterostructured photocatalyst with enhanced photocatalytic efficiency for NO removal
CN107335422B (zh) 一种碳功能化氧化铈的制备方法
Jiang et al. Alkali-free synthesis of a novel heterostructured CeO2-TiO2 nanocomposite with high performance to reduce Cr (VI) under visible light
CN106732524B (zh) 一种α/β-氧化铋相异质结光催化剂及其制法和用途
Wang et al. CO 2-assisted synthesis of mesoporous carbon/C-doped ZnO composites for enhanced photocatalytic performance under visible light
CN110152711B (zh) 一种CeO2@MoS2/g-C3N4三元复合光催化剂及其制备方法
Salari et al. Fabrication of novel Fe2O3/MoO3/AgBr nanocomposites with enhanced photocatalytic activity under visible light irradiation for organic pollutant degradation
Wang et al. Simple synthesis of Zr-doped graphitic carbon nitride towards enhanced photocatalytic performance under simulated solar light irradiation
Ammar et al. Synthesis, characterization and environmental remediation applications of polyoxometalates-based magnetic zinc oxide nanocomposites (Fe3O4@ ZnO/PMOs)
Zhong et al. Efficient degradation of organic pollutants by activated peroxymonosulfate over TiO2@ C decorated Mg–Fe layered double oxides: Degradation pathways and mechanism
Li et al. Microwave hydrothermal synthesis of BiP1− xVxO4/attapulgite nanocomposite with efficient photocatalytic performance for deep desulfurization
Wu The fabrication of magnetic recyclable nitrogen modified titanium dioxide/strontium ferrite/diatomite heterojunction nanocomposite for enhanced visible-light-driven photodegradation of tetracycline
Wei et al. Efficient photocatalytic oxidation of methane over β-Ga 2 O 3/activated carbon composites
Fang et al. Ternary heterojunction stabilized photocatalyst of Co-TiO2/g-C3N4 in boosting sulfite oxidation during wet desulfurization
CN104128183A (zh) 一种高效降解微囊藻毒素的纳米级磁性石墨烯复合材料及其制备和应用
CN103894172A (zh) ZnGa2O4-Ga2O3异质结光催化材料及其制备方法和应用
Yin et al. Synergistically enhanced photocatalytic degradation of tetracycline hydrochloride by Z-scheme heterojunction MT-BiVO4 microsphere/P-doped g-C3N4 nanosheet composite
Zhang et al. Non-metal group doped g-C3N4 combining with BiF3: Yb3+, Er3+ upconversion nanoparticles for photocatalysis in UV–Vis–NIR region
An et al. CuBi2O4 surface-modified three-dimensional graphene hydrogel adsorption and in situ photocatalytic Fenton synergistic degradation of organic pollutants
Yang et al. Highly efficient flower-like Dy3+-doped Bi2MoO6 photocatalyst under simulated sunlight: design, fabrication and characterization
CN113441142B (zh) 一种富含氧空位的石墨烯负载多孔纳米氧化铁电催化剂的制备方法及应用
Shi et al. In situ synthesis of donut-like Fe-doped-BiOCl@ Fe-MOF composites using for excellent performance photodegradation of dyes and tetracycline

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200708

Address after: 321100 Yingbin Avenue 3388, Lanxi City, Jinhua City, Zhejiang Province

Applicant after: ZHEJIANG NORMAL UNIVERSITY XINGZHI College

Address before: 321004 Zhejiang Province, Jinhua city Wucheng District Yingbin Road No. 688

Applicant before: ZHEJIANG NORMAL University

GR01 Patent grant
GR01 Patent grant