WO2019154438A1 - 固态电解质及其制备方法与应用 - Google Patents

固态电解质及其制备方法与应用 Download PDF

Info

Publication number
WO2019154438A1
WO2019154438A1 PCT/CN2019/078874 CN2019078874W WO2019154438A1 WO 2019154438 A1 WO2019154438 A1 WO 2019154438A1 CN 2019078874 W CN2019078874 W CN 2019078874W WO 2019154438 A1 WO2019154438 A1 WO 2019154438A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
solid
organic phase
film
polymer
Prior art date
Application number
PCT/CN2019/078874
Other languages
English (en)
French (fr)
Inventor
胡晨吉
沈炎宾
卢威
陈立桅
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州纳米技术与纳米仿生研究所 filed Critical 中国科学院苏州纳米技术与纳米仿生研究所
Priority to EP19750692.6A priority Critical patent/EP3751638A4/en
Priority to JP2020565016A priority patent/JP7083043B2/ja
Priority to US16/969,159 priority patent/US20200403266A1/en
Priority to KR1020207024449A priority patent/KR20200138713A/ko
Publication of WO2019154438A1 publication Critical patent/WO2019154438A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1506Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode
    • G02F1/1508Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode using a solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties

Definitions

  • the invention belongs to the field of electrochemistry, and in particular relates to a solid electrolyte, a preparation method thereof and an electrochemical device comprising the solid electrolyte.
  • lithium-ion batteries have achieved great success due to their high energy density, good cycle performance and rate performance.
  • the ongoing lithium-ion battery safety incidents that have occurred over the past few decades have been a concern in the field.
  • Lithium-ion batteries have a hidden danger of fire and explosion due to internal short-circuit or other causes, and the main reason is the use of high-temperature flammable organic electrolytes as lithium-ion conductive networks. Therefore, once the internal temperature of the battery reaches the ignition point of the organic solvent for various reasons (such as internal short circuit of the battery), it may cause fire or even explosion of the battery, and the higher the energy density of the battery, the greater the harm. This safety issue has existed since the birth of lithium-ion batteries. Research in recent decades has suggested that the development of all-solid-state lithium-ion batteries may solve this safety hazard from the root cause.
  • the properties of the gel state of the gel state are similar to those of the liquid electrolyte, but the conductivity is slightly poor, and the contact with the particles of the positive and negative electrode materials is relatively close, so between the positive and negative electrodes.
  • the transport of ions is not a problem.
  • the ion transport between the positive and negative electrodes depends on the solid electrolyte.
  • the ionic conductivity of the solid electrolyte is two orders of magnitude lower than that of the liquid electrolyte, and even between the solid electrolyte and the positive and negative materials. It is in close contact and is usually in a state of point-to-point contact, so ion transport between positive and negative materials is particularly difficult.
  • the solid electrolyte has a large interfacial impedance between the solid active particles of the positive and negative electrodes, and the impedance between the electrodes and the internal particles of the electrolyte is large, so that the battery is difficult to be normally charged and discharged.
  • the solid electrolyte should be as thin as possible, so that the electric conductivity per unit area is high, and the total resistance of the electrolyte is small; at the same time, it has good mechanical properties, effectively separating the positive and negative electrodes, inhibiting lithium dendrites; and having certain flexibility. In order to obtain good processing properties, and to accommodate the large volume changes caused by the positive and negative materials of the charging and discharging battery.
  • the solid electrolyte also needs to have good thermal stability, electrochemical stability, and chemical potential matching with the positive and negative electrodes of the battery.
  • the existing solid electrolyte can be divided into an inorganic solid electrolyte and an organic polymer solid electrolyte.
  • the ionic conductivity of the inorganic solid electrolyte at room temperature is 1-2 orders of magnitude higher than that of the polymer solid electrolyte.
  • Improvement, but the disadvantages are that the preparation conditions are harsh and the cost is too high, the interface impedance is large, and there is a contradiction between the film thickness and the material flexibility (the thickness is small and brittle), and the solid electrolyte composed entirely of inorganic materials is not suitable for Large-scale industrial production of all solid-state batteries in the future.
  • the polymer electrolyte disclosed in Examples 2 and 3 can have an ionic conductivity of 10 -4 S/cm, but it must be added with a specific anatase type titanium oxide.
  • CN107492680A The electrolyte membrane disclosed in Example 1 can have an ionic conductivity of 10 -4 S/cm, but it must employ a specific polymer. Still other polymer electrolytes must add expensive fast ionic conductors in order to achieve higher ionic conductivity.
  • a first aspect of the present invention provides a solid electrolyte comprising a film material and an electrolyte salt, wherein the film material comprises an organic phase formed of a polymer material, the organic phase comprising a three-dimensionally connected interface and a specific area
  • the electrolyte salt is dissolved in the organic phase at 1 ⁇ 10 4 cm 2 /cm 3 or more.
  • the solid electrolyte has a room temperature ionic conductivity of 1.0 ⁇ 10 -4 S/cm or more.
  • the solid electrolyte has a room temperature ionic conductivity of 1.0 x 10 -4 S/cm to 1.0 x 10 -3 S/cm.
  • the organic phase has a specific boundary area of from 1 ⁇ 10 4 cm 2 /cm 3 to 1 ⁇ 10 8 cm 2 /cm 3 . Further preferably, the organic phase has a specific boundary area of from 3 ⁇ 10 4 cm 2 /cm 3 to 1 ⁇ 10 8 cm 2 /cm 3 .
  • the solid electrolyte has an area specific conductance of 500 to 2500 mS.cm -2 at room temperature, preferably 1000 to 2500 mS.cm -2 , more preferably 2,000 to 2500 mS ⁇ cm -2 .
  • the specific form and preparation manner of the organic phase are not limited.
  • the organic phase of the present invention is formed by aggregation of polymeric fibers.
  • the diameter of the polymer fiber may be, for example, 50 nm to 2 ⁇ m, preferably 100 nm to 1 ⁇ m, more preferably 100 nm to 800 nm, still more preferably 100 nm to 500 nm, and most preferably 100 to 400 nm. Specifically, it may be, for example, about 100 nm, 150 nm, 200 nm, 300 nm, or 400 nm.
  • the organic phase is formed by electrospinning a solution of the polymeric material onto a selected receiving surface to form a continuous two-dimensional or three-dimensional structure after pressure treatment. Dense film.
  • the organic phase has good mechanical properties and processability and provides a high specific area.
  • the membrane material consists of the organic phase, i.e. the membrane material contains only the organic phase.
  • the organic phase has a secondary structure formed by the primary structural unit in agglomerated and/or superposed manner, the secondary structure providing the three-dimensionally connected interface.
  • the film further comprises inorganic particles for increasing the specific interfacial area of the organic phase, the inorganic particles being distributed between the primary structural units.
  • the primary structural unit is a combination of one or more selected from the group consisting of a polymer fiber, a polymer particle, and a polymer sheet, and the inorganic particles are attached and/or embedded in the primary structural unit. s surface.
  • the inorganic particles are inorganic nonionic conductors, and the solid electrolyte obtained by the solution has good room temperature conductivity and is relatively low in cost.
  • the inorganic nonionic conductor may specifically be, for example, a combination of one or more of an oxide, a sulfide, a nitride, a fluoride, a chloride, and a carbide.
  • the content of the inorganic particles in the solid electrolyte is 20% by weight to 80% by weight. According to still another embodiment of the present invention, the content of the inorganic particles in the solid electrolyte is 50% by weight to 80% by weight.
  • the content of the inorganic particles in the solid electrolyte is from 70% by weight to 80% by weight.
  • the solid electrolyte not only has good room temperature ionic conductivity but also good flexibility.
  • the solid electrolyte is prepared by the following steps:
  • a solution of the electrolyte salt is dropped or sprayed into the film; or the film is dipped into a solution of the electrolyte salt.
  • the solid electrolyte prepared by the above steps is compared with the solid electrolyte prepared by other methods.
  • the electrolyte salt can be well complexed in the organic phase without crystallization; on the other hand, the quality of the raw material of the polymer material used At the same time, it will have a higher three-dimensional connected ratio area (10 5 cm 2 /cm 3 or more), thereby having a higher room temperature ionic conductivity.
  • the solid electrolyte is prepared by the following steps:
  • Electrostatic spinning technology is used to spray a solution of the polymer material onto a selected receiving surface to form a primary structure in the form of fibers and to aggregate the primary structures in the form of fibers to form a three-dimensional secondary structure, while performing electrospinning, Spraying a dispersion of inorganic particles onto the selected receiving surface by electrostatic spraying to obtain a composite material composed of an organic phase and an inorganic particle composed of a polymer material, and then pressurizing the composite material to further After densification, as the film material;
  • a solution of the electrolyte salt is dropped or sprayed into the film; or the film is dipped into a solution of the electrolyte salt.
  • the solid electrolyte prepared by the above steps is compared with the solid electrolyte prepared by other methods.
  • the electrolyte salt can be well complexed in the organic phase without crystallization; on the other hand, the quality of the raw material of the polymer material used At the same time, it will have a higher three-dimensional connected specific area (10 7 cm 2 /cm 3 or more), thereby having a higher room temperature ionic conductivity.
  • the molecular structure of the polymer material has a polar group capable of complexing with a metal ion of an electrolyte salt.
  • polar groups include, but are not limited to, ether groups, carbonyl groups, ester groups, amine groups, fluorine, amide groups, nitrile groups, and the like.
  • the polymer material generally has a good solubility for an electrolyte salt.
  • the polymer material is one or more polar groups having a molecular structure selected from the group consisting of an ether group, a carbonyl group, an ester group, an amine group, a fluorine group, an amide group, and a nitrile group.
  • Polymer material is one or more polar groups having a molecular structure selected from the group consisting of an ether group, a carbonyl group, an ester group, an amine group, a fluorine group, an amide group, and a nitrile group.
  • the polymer material may be selected from the group consisting of polyacrylonitrile (PAN), polyvinylpyrrolidone (PVP), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVDF), and polytetrafluoroethylene (PTFE). Any one or more of polyethylene oxide, polypropylene oxide, polyethylene succinate, polyethylene sebacate, polyethylene glycol, polyethylene glycol diamine The combination.
  • PAN polyacrylonitrile
  • PVP polyvinylpyrrolidone
  • PMMA polymethyl methacrylate
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the solid electrolyte consists of the membrane material and an electrolyte salt.
  • the solid electrolyte has been able to obtain excellent comprehensive properties and has a simple structure and is easy to prepare.
  • the film material is composed of the organic phase or consists of an organic phase and inorganic particles distributed at the interface of the organic phase, wherein the content of the inorganic particles in the solid electrolyte does not exceed 80% by weight. .
  • a second aspect of the present invention provides a solid electrolyte comprising a continuous organic phase which is formed by electrospinning a polymer solution onto a selected receiving surface to form a continuous two-dimensional or three-dimensional structure. Processing the formed dense film, and the electrolyte salt is distributed in the pores of the polymer fiber constituting the continuous organic phase and the continuous organic phase; and the solid electrolyte is in the form of a flexible film, and the thickness is ⁇ 5 ⁇ m and ⁇ 90 ⁇ m.
  • the solid electrolyte further includes a plurality of inorganic particles filled in pores contained in the continuous organic phase, and the inorganic particles may be inorganic particles as described above.
  • the content of the inorganic particles in the solid electrolyte is more than zero, 95% by weight or less, preferably 50 to 95% by weight, particularly preferably 70 to 95% by weight, particularly preferably 70 to 80% by weight.
  • the solid electrolyte is sprayed by the electrostatic spray technique while spraying a polymer solution onto a selected receiving surface by an electrospinning technique to form the two-dimensional or three-dimensional structure.
  • the obtained composite material is then subjected to a pressure treatment to form a dense film, which is then formed by impregnation with an electrolyte salt solution.
  • the electrolyte salt may be those known in the art, and is not particularly limited.
  • the electrolyte salt may specifically be those used in the electrolyte of the secondary metal battery, such as a lithium salt, a sodium salt, a potassium salt, a magnesium salt or an aluminum salt, and the like, among which those which are easily dissolved in the polymer material are preferable.
  • the electrolyte salt when a solid electrolyte is used for preparing a lithium battery, the electrolyte salt may be a lithium salt such as lithium perfluoroalkylsulfonate.
  • the solid electrolyte has a density of from 1 to 6 g/cm 3 .
  • the solid electrolyte film has a bending strength of 5 to 20 MPa.
  • the solid electrolyte prepared by the above method not only has an organic phase having a three-dimensionally connected interface, but also can easily reach 10 5 cm 2 /cm 3 or more in a specific area.
  • the method ensures that the electrolyte salt is better dissolved in the organic phase.
  • the electrospinning technique and the electrostatic spray technique are all known techniques.
  • the receiving device is provided with a negative charge generating device.
  • the receiving device is a drum receiving device that maintains a rotating state when the jetting is performed.
  • the electrospinning liquid outlet and the electrostatic spray liquid outlet and the receiving surface are along the axis of the receiving device. Relative movement in the direction of the length, the length or the width.
  • the solid electrolyte of the present invention is particularly suitable for the preparation of electrochemical devices.
  • the present invention also provides an electrochemical device comprising the solid electrolyte as described above.
  • the electrochemical device may be an energy storage device or an electrochromic device.
  • the energy storage device may be, for example, a battery, and the battery is preferably an all-solid battery, and further may be a lithium ion battery, a sodium ion battery, an aluminum ion battery, a magnesium ion battery, a ferroion battery, a zinc ion battery, or the like.
  • the electrochromic device may be, for example, an e-book, and the e-book may further be a black and white e-book, which may be a color e-book.
  • the present invention also relates to an all-solid lithium battery comprising a positive electrode, a negative electrode, and a solid electrolyte according to the present invention.
  • the positive electrode is formed by coating a positive electrode material on a positive electrode current collector.
  • the positive electrode material is a composite of a positive electrode active material and a solid electrolyte material.
  • the positive electrode is formed by coating a positive electrode current collector with a film-form positive electrode composite material.
  • An electron conductor additive may be selected with or without addition, which is dispersed throughout the solid cathode composite
  • An inorganic ion conductor additive may be selected with or without addition, which is dispersedly distributed in the solid cathode composite;
  • the solid cathode composite material is in the form of a flexible membrane and has a thickness of 30 to 500 ⁇ m.
  • the negative electrode is composed of a metal lithium coated with a solid electrolyte material.
  • the negative electrode is formed by coating a negative electrode composite material on a negative electrode current collector.
  • the film-form negative electrode composite material comprises:
  • An electron conductor additive may be selected with or without addition, which is dispersed throughout the solid anode composite
  • the solid negative electrode composite material is in the form of a flexible film and has a thickness of 30 to 500 ⁇ m.
  • the present invention has the following advantages compared with the prior art:
  • FIG. 1 is a schematic diagram showing the comparison of the structure of a liquid lithium ion battery and an all solid state battery
  • Example 2 is an electrochemical impedance diagram of a solid electrolyte formed by immersing a lithium salt of a polyacrylonitrile fiber prepared by electrospinning in Example 1-1 of the present invention
  • Example 3 is an electrochemical impedance diagram of a solid electrolyte formed by immersing a lithium salt of a polymethyl methacrylate fiber prepared by electrospinning in Example 1-2 of the present invention
  • FIG. 4 is a schematic view showing a method of preparing a solid electrolyte membrane by simultaneous electrospinning and electrostatic spray method according to an exemplary embodiment of the present invention
  • FIG. 5 is a schematic view showing the structure of a battery assembled by using a solid electrolyte according to an exemplary embodiment of the present invention
  • FIG. 6 is an electron micrograph of a solid electrolyte membrane prepared by simultaneous electrospinning and electrostatic spray method according to an exemplary embodiment of the present invention
  • Figure 7 is a macroscopic photograph of a solid electrolyte membrane prepared by simultaneous electrospinning and electrostatic spray method according to an exemplary embodiment of the present invention.
  • FIG. 8 is a trend diagram showing changes in electrical conductivity of a solid electrolyte formed by soaking a lithium salt of a polyacrylonitrile fiber prepared by electrospinning in accordance with the change of a lithium salt content in Examples 1-4 of the present invention
  • Figure 9 is a trend diagram showing changes in electrical conductivity of a solid electrolyte film prepared by simultaneous electrospinning and electrostatic spraying in accordance with changes in lithium salt content in Examples 1-6 of the present invention (in which inorganic particles are ionic conductors);
  • Figure 10 is a trend diagram showing changes in electrical conductivity of a solid electrolyte film prepared by simultaneous electrospinning and electrostatic spray method as a function of lithium salt content in Examples 1-7 of the present invention (in which inorganic particles are nonionic conductors);
  • Figure 11 is a scanning electron micrograph of a flexible solid cathode film prepared in Example 2-1 of the present invention.
  • Figure 12 is a macro photograph of a flexible solid cathode film prepared in Example 2-1 of the present invention.
  • Example 13 is a scanning electron micrograph of a flexible solid cathode composite obtained after the lithium salt is added dropwise in Example 2-1 of the present invention.
  • Example 14 is a graph showing electrochemical cycle performance of a flexible solid cathode composite material prepared in Example 2-1 of the present invention.
  • Figure 15 is a scanning electron micrograph of a flexible solid cathode composite material prepared in Example 2-2 of the present invention.
  • Example 16 is a first charge and discharge curve diagram of the flexible solid cathode composite material prepared in Example 2-2 of the present invention as a positive electrode;
  • Example 17 is a scanning electron micrograph of a flexible solid cathode composite material prepared in Example 2-3 of the present invention.
  • Example 18 is a charge and discharge curve of a flexible solid cathode composite material prepared in Example 2-3 of the present invention.
  • Figure 20 is a scanning electron micrograph of the flexible solid cathode composite material prepared in Comparative Example 2-2 of the present invention.
  • Example 21 is a scanning electron micrograph of a flexible solid-state negative electrode composite prepared in Example 3-1 of the present invention.
  • Figure 22 is a macro photograph of a flexible solid negative electrode composite material prepared in Example 3-1 of the present invention.
  • Example 23 is a scanning electron micrograph of a flexible solid negative electrode composite prepared in Example 3-2 of the present invention.
  • Figure 24 is a scanning electron micrograph of the flexible solid negative electrode composite prepared in Comparative Example 3-1 of the present invention.
  • Figure 25 is a scanning electron micrograph of a flexible solid negative electrode composite prepared in Example 3-7 of the present invention.
  • A is a fiber membrane formed by aggregation of polymer fibers having a diameter of about 200 nm
  • B is a fiber membrane formed by aggregation of polymer fibers having a diameter of about 300 nm
  • D is a fiber membrane formed by agglomeration of polymer fibers having a diameter of about 500 nm.
  • the specific boundary area of the organic phase means the area of the interface of the organic phase per unit volume.
  • the interface includes an interface in which the organic phase is in contact with a substance other than the organic phase (including but not limited to an atmospheric environment, inorganic particles or an organic material having a chemical composition different from the organic phase, etc.), and an interface inside the organic phase (for example)
  • a primary structural unit such as a polymer fiber, a polymer particle, a polymer sheet or the like in a manner of aggregation, superposition or the like, an interface formed between the contacted primary structural units).
  • the specific boundary area of the organic phase is the interface area of the organic phase per unit volume, wherein the interface area is the area of the interface described in the present invention, and the value of the interface area is determined by the general calculation method of the interface area in the present invention.
  • the model can be considered as a cylinder.
  • is the pi
  • d is the diameter of the fiber
  • l is the length of the fiber.
  • V is the volume of the fiber
  • is the density of the polymer and m is the mass.
  • V' is the volume of the polymer fiber membrane
  • S' is the surface area per unit volume, that is, the specific boundary area.
  • V’ m/ ⁇ ’ formula (7)
  • ⁇ ' is the compacted density of the polymer fiber membrane.
  • the surface area S 1 4m 1 /( ⁇ 1 *d 1 ), where m 1 is the mass of the polymer fiber, ⁇ 1 is the density of the polymer fiber, and d 1 is the polymer fiber. diameter.
  • m 2 is the total mass of the inorganic particles and m 0 is the mass of the individual inorganic particles
  • V (m 1 + m 2 ) / ⁇ ', where ⁇ ' is the compacted density of the composite;
  • l are the length and width of the film, respectively.
  • h is the thickness of the film.
  • S' is the surface area of the polymer material coated per unit volume, that is, the specific boundary area.
  • the conductivity test method and conditions of the solid electrolyte are: sputtering 200 nm gold metal on both sides of the solid electrolyte for ion conductivity test, wherein the area of gold is 0.28 cm 2 , and the test is at room temperature (25 ° C). ) proceed.
  • the present invention provides a solid electrolyte in the form of a flexible film comprising a film and an electrolyte salt dissolved therein.
  • the membrane material comprises an organic phase formed by a polymer material having a three-dimensionally connected interface, wherein by controlling the specific boundary area of the organic phase to be 1*10 4 cm 2 /cm 3 or more, the room temperature ionic conductivity can be made 10 - 4 S/cm or more. Further increasing the specific boundary area of the organic phase can further increase the room temperature ionic conductivity to 10 -3 S/cm or even higher.
  • the method of obtaining the specific boundary area includes optimizing the structure of the organic phase itself and adding inorganic particles to the organic phase.
  • the organic phase having a high specific boundary area can be easily obtained by agglomeration of polymer fibers, and can be specifically prepared by a well-known electrospinning technique.
  • An organic phase having a different specific boundary area can be obtained by adjusting the diameter of the polymer fiber, the degree of aggregation of the polymer fiber, and the like.
  • the conditions and parameter settings at the time of carrying out electrospinning to prepare a polymer fiber can be carried out by conventional implementation conditions without particular limitation.
  • the solution of the polymer material is sprayed onto a selected receiving surface to form a continuous three-dimensional structure by electrostatic spinning, and then subjected to a pressure treatment to make the three-dimensional structure. More dense, the continuous organic phase is obtained as the film.
  • the distance between the electrospinning liquid outlet and the receiving surface may be 5 to 30 cm, and the electrostatic voltage may be, for example, 5 to 50 KV.
  • the pressure of the pressurization treatment may be 100 KPa to 20 MPa, the time is 1 to 60 minutes, preferably 1 to 10 minutes, and the temperature is 25 to 60 °C.
  • the addition of inorganic particles can further increase the specific boundary area of the organic phase. Specifically, a film having a different specific area can be obtained by adjusting the amount of the inorganic particles added and the size of the inorganic particles.
  • the amount of inorganic particles is generally as large as possible, but not excessively affecting the flexibility of the prepared solid electrolyte.
  • the inorganic particles may be added, but it is preferably carried out by means of electrostatic spraying, and the addition is carried out while electrospinning, and the inorganic particles thus added do not block the continuity of the organic phase interface.
  • the added benefit of this addition is that it can regulate the amount of inorganic particles (0 to 95% by weight) in a larger range than other possible addition methods, and this method accounts for the solid electrolyte in the added inorganic particles. The content remains at a good flexibility when it exceeds 70%.
  • the polymer solution is sprayed onto the selected receiving surface by electrospinning to form (ie, polymer fibers are aggregated) a continuous three-dimensional structure, while the inorganic particles are electrostatically sprayed.
  • the film material may have a distance between the electrospinning liquid outlet and the receiving surface of 5 to 30 cm, and an electrostatic voltage of, for example, 5 to 50 kV.
  • the pressure of the pressurization treatment may be 100 KPa to 20 MPa, the time is 1 to 60 minutes, preferably 1 to 10 minutes, and the temperature is 25 to 60 °C.
  • the preparation method comprises: placing a film collected from a receiving surface on a rolling machine at a pressure of 100 KPa to 20 MPa for repeated rolling.
  • the flow ratio of the polymer solution to the inorganic particle dispersion is from 100:1 to 1:100, preferably from 1:10 to 1:50, particularly preferably from 1:3 to 1:7.
  • Flexible films of different solid electrolyte contents can be prepared by controlling the ratio of the flow rates of both spinning and spraying.
  • the formation of a dense continuous organic phase by the pressure treatment, followed by the addition of the electrolyte salt can further greatly increase the ionic conductivity of the organic polymer solid electrolyte while substantially reducing the proportion of the electrolyte salt.
  • the electrospinning liquid outlet for ejecting the polymer solution is disposed in parallel with the electrostatic spray liquid outlet for spraying the inorganic particle dispersion, and the electrospinning is performed
  • the ejection direction of the liquid outlet is at an angle greater than or equal to 0 and less than 90° to the ejection direction of the electrostatic spray outlet.
  • the shape of the electrospinning liquid outlet and/or the electrostatic spray liquid outlet includes a circular or slit shape, preferably a slit shape, wherein the slit type has a high productivity.
  • the liquid outlet of the slit structure can make the distribution of the polymer solution and the inorganic particle dispersion sprayed onto the receiving surface more uniform.
  • the inorganic particle dispersion further contains a surfactant to prevent sedimentation of the inorganic particles in the dispersion, causing clogging of the electrostatic spray outlet and uneven spraying, thereby affecting the uniformity of the formed solid electrolyte membrane.
  • the surfactant may be selected from cationic surfactants, anionic surfactants, ionic surfactants, nonionic surfactants, amphoteric surfactants, complex surfactants, and other surfactants, but is not limited thereto. this.
  • the surfactant is generally contained in the inorganic particle dispersion in an amount of from 0.1 to 1% by weight.
  • the receiving surface is a surface of a receiving device.
  • the receiving device includes any one or a combination of two or more of a drum receiving device, a flat receiving device, and an aqueous solution receiving device, but is not limited thereto.
  • a negative charge generating device may be disposed on the receiving surface.
  • the electrospinning liquid outlet and the electrostatic spray liquid outlet and the receiving surface are along the receiving device. Reciprocating relative motion in the axial or longitudinal direction or in the width direction.
  • the receiving surface is disposed at a set angle of, for example, 0 to 89.9° with the electrospinning liquid outlet and the electrostatic spray liquid outlet.
  • the drum when the polymer solution and the inorganic particle dispersion are sprayed toward the surface of the drum of the drum receiving device, the drum is kept in a rotating state (rotational speed, for example, 300 to 1000 rpm). A film is obtained after maintaining the above working state for a while, and the obtained product can be easily peeled off from the drum.
  • polymer materials include, but are not limited to, polyacrylonitrile (PAN), polyvinylpyrrolidone (PVP), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVDF), Polytetrafluoroethylene (PTFE), polyethylene oxide, polypropylene oxide, polyethylene succinate, polyethylene sebacate, polyethylene glycol, polyethylene glycol diamine, It is preferred to have a good ability to dissolve the electrolyte salt and better mechanical and electrical properties.
  • PAN polyacrylonitrile
  • PVP polyvinylpyrrolidone
  • PMMA polymethyl methacrylate
  • PVDF polyvinylidene fluoride
  • PTFE Polytetrafluoroethylene
  • polyethylene oxide polypropylene oxide
  • polyethylene succinate polyethylene succinate
  • polyethylene sebacate polyethylene glycol
  • polyethylene glycol polyethylene glycol diamine
  • the method for preparing the polymer solution is usually to dissolve the polymer material in a corresponding solvent.
  • solvents include water, N-methylpyrrolidone, ethanol and other alcohol liquids, N, N-dimethylformamide, dimethyl sulfoxide, dimethyl acetamide. Any one or a combination of two or more types may dissolve all of the liquid materials of the above polymer materials, but is not limited thereto.
  • specific inorganic particles include, but are not limited to, inorganic nonionic conductors such as oxides, sulfides, nitrides, fluorides, chlorides, and carbides, and lithium ion conductors, magnesium ion conductors, and aluminum ion conductors.
  • inorganic nonionic conductors such as oxides, sulfides, nitrides, fluorides, chlorides, and carbides, and lithium ion conductors, magnesium ion conductors, and aluminum ion conductors.
  • the solvent for preparing the inorganic particle dispersion liquid may be any one or a combination of two or more of an alcohol liquid such as water, ethanol or isopropyl alcohol or a ketone liquid such as acetone, but is not limited thereto.
  • the electrolyte salt solution is impregnated into the film or impregnated into the electrolyte salt solution in any one of liquid dropping and spraying, followed by high-temperature drying.
  • the solvent can be used to prepare the desired solid electrolyte.
  • the ratio of the electrolyte salt to the organic phase required for control can be obtained by adjusting the concentration of the electrolyte salt solution, the time of the immersion, and external conditions such as vacuum, pressurization, and the like at the time of immersion.
  • the solid electrolyte is impregnated with an electrolyte salt solution for a period of from 1 minute to 24 hours, preferably from 5 to 10 minutes, followed by a drying treatment.
  • the solid electrolyte in the form of a flexible film prepared in the above manner achieves the complementary advantages of the inorganic electrolyte and the organic electrolyte, that is, has electrical conductivity comparable to that of the inorganic electrolyte conductor, and has good processability. More specifically, the existing inorganic electrolyte conductors have high electrical conductivity, generally up to 1.6 ⁇ 10 -3 S/cm, but generally the thickness is in the millimeter range, so the conductance per unit area is low, and the processing performance is poor, in contrast,
  • the solid electrolyte provided by the invention can obtain very high unit area conductance when made into a very thin (5-20 ⁇ m), and can maintain good mechanical integrity, has high flexibility, is not broken and can be processed.
  • the solid electrolyte provided by the invention has high mechanical modulus, can inhibit dendrite, and maintains the morphology after combustion, thereby ensuring that the positive and negative electrodes do not directly contact each other to cause an internal short circuit, so the safety is high. .
  • the solid electrolyte membrane provided by the invention has the following performance characteristics: 1) high ionic conductivity (to meet the requirements of electrochemical device application); 2) special mechanical properties, and can maintain mechanical integrity in the case of a very thin membrane. Sex, bending without breaking, good processability; 3) showing good electrochemical performance in secondary battery applications.
  • the preparation process of the solid electrolyte of the invention is simple, can be batch-produced and has low raw material cost, mild conditions, no expensive production equipment, high yield, controllability, repeatability and stability, and Applicable to different battery systems, providing a good idea for the development of all solid state batteries.
  • the spun fiber itself has good flexibility, it is also ensured that the film prepared by this method is also flexible, and different solid electrolytes can be prepared by controlling the flow ratio of both the spinning and the spraying.
  • a flexible film of content For this system, the preparation of a flexible solid electrolyte membrane can be realized by using a process which is easy to carry out and which is easy to control in the preparation process.
  • a solid state positive electrode that includes a positive current collector overlying a solid state positive electrode composite.
  • the cathode current collector includes any one of aluminum foil, carbon coated aluminum foil, carbon felt, and carbon paper, but is not limited thereto.
  • the solid cathode composite material is uniformly coated on the surface of the cathode current collector, and the solid cathode composite material has a thickness of 30 to 500 ⁇ m, preferably 50 to 300 ⁇ m, further preferably 150 to 250 ⁇ m, and ions at 25 ° C.
  • the electric conductivity is 1.0 ⁇ 10 -4 to 1.0 ⁇ 10 -2 S/cm.
  • a solid cathode composite comprising:
  • An electron conductor additive may be selected with or without addition, which is dispersed throughout the solid cathode composite
  • An inorganic ion conductor additive may be selected with or without addition, which is dispersedly distributed in the solid cathode composite;
  • the solid cathode composite material is in the form of a flexible membrane and has a thickness of 30 to 500 ⁇ m.
  • the continuous organic phase can be obtained by the method of the organic phase of the solid electrolyte described above.
  • An aspect of the present invention provides a solid cathode composite material which is mainly formed by a pressure treatment of a composite material and then impregnation with an electrolyte salt solution;
  • the composite material includes:
  • a continuous organic phase which is formed by electrospinning a polymer solution onto a selected receiving surface to form a continuous two-dimensional or three-dimensional structure, the organic fiber material having at least an ionic conductor function;
  • a dispersion of the positive electrode active material or a mixed dispersion of the positive electrode active material and the electron conductor additive and/or the inorganic ion conductor additive is sprayed onto the selected receiving surface by an electrostatic spray technique.
  • the positive active material is distributed in the pores contained in the continuous organic phase, and the electrolyte salt is dissolved in the organic phase;
  • the electron conductor additive and/or the inorganic ion conductor additive are present, the electron conductor additive and/or the inorganic ion conductor additive are dispersedly distributed in the solid cathode composite material;
  • the solid cathode composite material is in the form of a flexible membrane and has a thickness of 30 to 500 ⁇ m.
  • the solid cathode composite material comprises:
  • the organic fibrous material also functions as an electronic conductor. Accordingly, the solid cathode composite material may include only the cathode active material, the organic fiber material, and the electrolyte salt.
  • the solid cathode composite may further include an electron conductor additive and/or an inorganic ion conductor additive or the like to further improve the solid cathode composite. Performance. These electron conductor additives and/or inorganic ion conductor additives may be dispersed throughout the solid cathode composite.
  • the organic fiber material only has the function of an ionic conductor.
  • the solid cathode composite material may include a cathode active material, an electron conductor additive, an organic fiber material, and an electrolyte salt. These electron conductor additives may be dispersed throughout the solid cathode composite.
  • the organic fiber material only has the function of an ionic conductor
  • the solid cathode composite may include a cathode active material, an electron conductor additive, an inorganic ion conductor additive, an organic fiber material, and an electrolyte salt. These electron conductor additives and inorganic ion conductor additives may be dispersed and distributed in the solid cathode composite.
  • the solid cathode composite has a thickness of from 30 to 500 ⁇ m, preferably from 50 to 300 ⁇ m, particularly preferably from 150 to 250 ⁇ m.
  • the solid cathode composite has an ionic conductivity of 1.0 ⁇ 10 -4 to 1.0 ⁇ 10 -2 S / cm.
  • the solid cathode composite has an ionic conductivity of from 1.0 ⁇ 10 -4 to 1.0 ⁇ 10 -2 S/cm at 25 °C.
  • the solid cathode composite material has a density of 1 to 5 g/cm 3 .
  • the solid cathode composite material has a bending strength of 1 to 20 MPa.
  • the mass ratio of the electrolyte salt to the organic fiber material in the solid cathode composite is from 1:2 to 1:10, preferably from 1:3 to 1:6.
  • the content of the electrolyte salt in the solid cathode composite material is from 1 to 10% by weight, preferably from 1 to 5% by weight.
  • the electrolyte salt may be a lithium salt such as lithium bis(trifluoromethanesulfonimide) (LiTFSI), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium hexafluorophosphate (LiPF 6 )
  • LiTFSI lithium bis(trifluoromethanesulfonimide)
  • LiClO 4 lithium perchlorate
  • LiAsF 6 lithium hexafluoroarsenate
  • LiPF 6 lithium hexafluorophosphate
  • the electrolyte salt may be an electrolyte salt used in all secondary metal batteries such as a sodium salt, a magnesium salt, and an aluminum salt.
  • the organic fiber material in the solid cathode composite has a diameter of 50 nm to 2 ⁇ m, preferably 100 nm to 1 ⁇ m, further preferably 150 nm to 800 nm, and particularly preferably 300 nm to 600 nm.
  • the content of the organic fiber material in the solid cathode composite material is 5 to 60% by weight, preferably 10 to 20% by weight.
  • the material of the organic fiber material comprises a polymer having at least an ion conductive function.
  • the polymer comprises polyacrylonitrile (PAN), polyethylene oxide, polyvinylpyrrolidone (PVP), polyethylene glycol, polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVDF). Any one or a combination of two or more of polytetrafluoroethylene (PTFE), but is not limited thereto.
  • PAN polyacrylonitrile
  • PVP polyvinylpyrrolidone
  • PMMA polymethyl methacrylate
  • PVDF polyvinylidene fluoride
  • the organic fiber material comprises a polymer formed by blending and grafting a conductive polymer with a conductive ionomer and having both ion and electron conductor functions.
  • the content of the positive electrode active material in the solid cathode composite is from 30 to 95% by weight, preferably from 50 to 90% by weight, further preferably from 60 to 80% by weight, particularly preferably from 70 to 80% by weight.
  • the content of the positive electrode active material particles is 70% by weight or more, the solid cathode composite material can still have good flexibility.
  • the inorganic positive electrode active material particles have a particle diameter of 2 nm to 20 ⁇ m, preferably 5 nm to 1 ⁇ m, further preferably 10 nm to 1 ⁇ m, and particularly preferably 20 nm to 1 ⁇ m.
  • the material of the positive electrode active material may be any one or any of a precursor of an oxide positive electrode material, a sulfide positive electrode material, a polyanion positive electrode material, or the like, or may be a sodium ion.
  • the positive electrode material of the battery, the positive electrode material of the magnesium ion battery, the positive electrode material of the aluminum ion battery, and the like can be applied to the positive electrode material of the secondary battery and the precursor thereof.
  • the material of the positive electrode active material includes any one of lithium iron phosphate, lithium manganate, lithium cobaltate, lithium nickel cobalt manganese oxide (Li(NiCoMn)O 2 ), lithium manganate, and lithium nickel manganese oxide. Or a combination of two or more, but is not limited thereto.
  • the content of the electron conductor additive in the solid cathode composite is from 0 to 50% by weight, preferably from 0 to 20% by weight, further preferably from 0 to 10% by weight.
  • the electron conductor additive includes any one or a combination of two or more of acetylene black, Super P conductive carbon black, ketjen black, carbon nanotubes, carbon fibers, and conductive graphite, but is not limited thereto.
  • the content of the inorganic ionic conductor additive in the solid cathode composite is from 0 to 70% by weight, preferably from 0 to 40% by weight, further preferably from 0 to 20% by weight.
  • the inorganic ion conductor additive comprises a lithium ion conductor additive, a sodium ion conductor additive, a magnesium ion conductor additive or an aluminum ion conductor additive
  • the lithium ion conductor additive comprises a NASICON type lithium ceramic electrolyte, a perovskite type lithium Any one or two of a ceramic electrolyte, a garnet-type lithium ceramic electrolyte, a LISICON-type lithium ceramic electrolyte, a Li3N-type lithium ceramic electrolyte, a lithiated BPO 4- lead lithium ceramic electrolyte, and a lithium ceramic electrolyte using Li 4 SiO 4 as a precursor
  • the above combination may be, for example, lithium lanthanum zirconium oxide (LLZTO), but is not limited thereto.
  • the positive electrode active material in the solid cathode composite material of the invention may be added in an amount of more than 70 wt%, and the addition thereof can enhance the dissociation of the electrolyte salt, increase the free volume of the organic phase, reduce the crystallinity, thereby prolonging the cycle life of the lithium ion battery, and improving The coulombic efficiency of the battery. Meanwhile, in the case where the positive electrode active material is added, the organic fiber material, the positive electrode active material and the electrolyte salt in the solid cathode composite material of the present invention are synergistic, and the ionic conductivity of the solid cathode composite material can be further improved, in the second time. Good electrochemical performance in battery applications.
  • the solid cathode composite material is in the form of a flexible film.
  • the organic fibrous material also functions as an electronic conductor. Accordingly, the solid cathode composite material may include only the cathode active material, the organic fiber material, and the electrolyte salt.
  • the solid cathode composite may further include an electron conductor additive and/or an inorganic ion conductor additive or the like to further improve the solid state.
  • the performance of the positive electrode composite may be dispersed throughout the solid cathode composite.
  • the organic fiber material only has the function of an ionic conductor.
  • the solid cathode composite material may include a cathode active material, an electron conductor additive, an organic fiber material, and an electrolyte salt. These electron conductor additives may be dispersed throughout the solid cathode composite.
  • the organic fiber material only has the function of an ionic conductor
  • the solid cathode composite may include a cathode active material, an electron conductor additive, an inorganic ion conductor additive, an organic fiber material, and an electrolyte salt. These electron conductor additives and inorganic ion conductor additives may be dispersed and distributed in the solid cathode composite.
  • the flow ratio of the polymer solution to the dispersion of the positive electrode active material or the mixed dispersion is from 100:1 to 1:100, preferably from 1:10 to 1:50, particularly preferably 1: 5 to 1:7.
  • the present invention can prepare flexible films of different positive electrode material contents by controlling the ratio of the flow rates of both the spinning and the spraying.
  • the pressure of the pressurization treatment may be 100 KPa to 20 MPa, the time is 1 to 60 minutes, preferably 1 to 10 minutes, and the temperature is 25 to 60 °C.
  • the immersion time may be from 1 minute to 24 hours, preferably from 5 to 10 minutes.
  • the solid cathode composite material is in the form of a film, and particularly preferably in the form of a flexible film.
  • the addition of the organic fiber material in the solid cathode composite of the present invention imparts flexibility to the cathode material, and can be made very thin (10-20 microns) while maintaining good integrity and processability.
  • the inorganic material can effectively inhibit the growth of lithium dendrites in energy storage devices such as lithium ion batteries, thereby prolonging the cycle life of such devices and improving the coulombic efficiency of the battery.
  • the solid cathode composite material as described above has the following performance characteristics: 1) high ionic conductivity (to meet the requirements of electrochemical device applications); 2) special mechanical properties, and can maintain mechanics in the case of a very thin membrane Integrity, bending without breaking, good processability; 3) Good electrochemical performance in secondary battery applications.
  • Another aspect of the embodiments of the present invention further provides a method for preparing a solid cathode composite material, comprising:
  • Electrostatic spinning techniques are used to spray a polymer solution (which may be referred to as solution 1) onto a selected receiving surface to form a continuous two- or three-dimensional structure having at least an ionic conductor function;
  • a dispersion of the positive electrode active material or a mixed dispersion of the positive electrode active material and the electron conductor additive and/or the inorganic ion conductor additive (which may be referred to as solution 2) is sprayed onto the device by electrostatic spraying.
  • the selected receiving surface is described, and then the obtained composite material is subjected to pressure treatment to be densified, the positive active material is distributed in the pores contained in the continuous organic phase, and the composite material is impregnated with the electrolyte salt solution.
  • the electron conductor additive and/or the inorganic ion conductor additive are present, the electron conductor additive and/or the inorganic ion conductor additive are dispersedly distributed in the solid cathode composite material;
  • the solid cathode composite material is in the form of a flexible membrane and has a thickness of 30 to 500 ⁇ m.
  • the organic fiber material is formed into a dense continuous organic phase by pressure treatment, and then the electrolyte salt is added, and the ion of the organic polymer solid cathode composite material can be further greatly increased while substantially reducing the proportion of the electrolyte salt.
  • the solid cathode composite material is in the form of a film, preferably in the form of a flexible film.
  • the electrospinning technique and the electrostatic spray technique are all known techniques.
  • the preparation of the organic phase of the solid cathode composite material it can be specifically set as follows.
  • the distance between the electrospinning liquid outlet and the receiving surface is 5 to 30 cm, and the electrostatic voltage is 5 to 50 kV.
  • the distance between the electrostatic spray liquid outlet and the receiving surface is 5 to 30 cm, and the electrostatic voltage is 5 to 50 kV.
  • the electrospinning liquid outlet for ejecting the polymer solution is side by side with the electrostatic spray outlet for spraying the dispersion of the positive active material or the mixed dispersion.
  • the form is set in parallel.
  • the ejection direction of the electrospinning liquid outlet is set to an angle greater than or equal to 0 and less than 90° to the ejection direction of the electrostatic spray outlet.
  • the ejection direction of the electrospinning liquid outlet is at an angle greater than or equal to 0 and less than 90° to the ejection direction of the electrostatic spray outlet.
  • the shape of the electrospinning liquid outlet and/or the electrostatic spray liquid outlet includes a circular or slit shape, preferably a slit shape, wherein the slit type has a high productivity.
  • the liquid outlet of the slit structure can make the dispersion of the polymer solution sprayed onto the receiving surface and the dispersion of the positive electrode active material or the mixed dispersion more uniform.
  • the dispersion of the positive active material or the mixed dispersion further contains a surfactant to prevent sedimentation of the positive active material in the dispersion, and cause clogging and ejection of the electrostatic spray outlet. Uniform, thereby affecting the uniformity and performance of the formed solid cathode film.
  • the content of the surfactant in the dispersion of the positive electrode active material or the mixed dispersion is 0.1 to 1% by weight.
  • the surfactant may be selected from cationic surfactants, anionic surfactants, ionic surfactants, nonionic surfactants, amphoteric surfactants, complex surfactants, and other surfactants, but is not limited thereto.
  • an applied electric field is applied between the receiving surface and the electrospinning liquid outlet and/or the electrostatic spray outlet, and the polymer solution is sprayed into the chamber by an electrospinning technique under the action of the applied electric field.
  • the receiving surface and the dispersion or mixed dispersion of the positive electrode active material are sprayed onto the receiving surface by electrostatic spraying.
  • the receiving surface is a surface of a receiving device.
  • the receiving device includes any one or a combination of two or more of a drum receiving device, a flat receiving device, and an aqueous solution receiving device, but is not limited thereto.
  • the receiving surface is also provided with a negative charge generating device.
  • the electrospinning liquid outlet and the electrostatic spray liquid outlet are The relative movement between the receiving faces in the axial direction of the receiving device or in the longitudinal or width direction of the receiving surface.
  • the receiving surface is disposed at a set angle of, for example, 0 to 89.9° with the electrospinning liquid outlet and the electrostatic spray liquid outlet.
  • the drum when the polymer solution and the dispersion of the positive electrode active material or the mixed dispersion are sprayed toward the surface of the drum of the drum receiving device, the drum maintains a rotating state (for example, the number of revolutions is 300 to 1000 rpm). A film is obtained after maintaining the above working state for a period of time, and the obtained product can be easily peeled off from the drum.
  • a rotating state for example, the number of revolutions is 300 to 1000 rpm.
  • the solvent for dissolving the polymer includes all alcohol liquids such as water, N-methylpyrrolidone, ethanol, and the like, N,N-dimethylformamide, dimethyl sulfoxide, and dimethylacetamide. Or a combination of two or more types may dissolve all of the liquids of the aforementioned polymers, but is not limited thereto.
  • the solvent in which the positive electrode active material, the electron conductor additive, and the inorganic ion conductor additive are dispersed may be any one or a combination of two or more of an alcohol liquid such as water, ethanol, or isopropyl alcohol or another ketone liquid such as acetone. Not limited to this.
  • a solid state negative electrode that includes a negative electrode current collector overlying a solid negative electrode composite.
  • An electron conductor additive may be selected with or without addition, which is dispersed throughout the solid anode composite
  • An inorganic ion conductor additive may be selected with or without addition, which is dispersed in the solid anode composite material;
  • the solid negative electrode composite material is in the form of a flexible film and has a thickness of 30 to 500 ⁇ m.
  • the solid negative electrode composite has a thickness of from 30 to 500 ⁇ m, preferably from 50 to 300 ⁇ m, particularly preferably from 150 to 250 ⁇ m.
  • the solid anode composite material has an ionic conductivity of 1.0 ⁇ 10 -4 to 1.0 ⁇ 10 -2 S/cm.
  • the solid negative electrode composite has an ionic conductivity of from 1.0 ⁇ 10 -4 to 1.0 ⁇ 10 -2 S/cm at 25 °C.
  • the solid negative electrode composite has a density of 0.5 to 5 g/cm 3 .
  • the solid-state negative electrode composite has a bending strength of 1 to 20 MPa.
  • the mass ratio of the electrolyte salt to the organic fiber material in the solid negative electrode composite is from 1:2 to 1:10, preferably from 1:3 to 1:6.
  • the content of the electrolyte salt in the solid negative electrode composite material is from 1 to 10% by weight, preferably from 1 to 5% by weight.
  • the content of the negative electrode active material in the solid negative electrode composite is 30 to 95% by weight, preferably 50 to 90% by weight, further preferably 60 to 80% by weight, particularly preferably 70 to 80% by weight.
  • the content of the negative electrode active material particles is 70% by weight or more, the solid negative electrode composite material can still have good flexibility.
  • the inorganic negative electrode active material particles have a particle diameter of 2 nm to 20 ⁇ m, preferably 5 nm to 10 ⁇ m, further preferably 10 nm to 1 ⁇ m, and particularly preferably 20 nm to 1 ⁇ m.
  • the material of the anode active material may be a carbon material anode and a non-carbon material anode or a combination of the two, wherein the non-carbon material may also be a tin-based material, a silicon-based material, a titanium-based material, Oxide anode material, nitride anode material, etc., and the anode material may also be suitable for lithium ion battery anode material, sodium ion battery anode material, magnesium ion battery anode material, aluminum ion battery anode material, etc.
  • the negative electrode material of the battery and/or its precursor is not limited thereto.
  • the material of the negative electrode active material includes any one or a combination of two or more of lithium titanate, graphene, nano silicon, graphite, and molybdenum oxide, but is not limited thereto.
  • the content of the electron conductor additive in the solid negative electrode composite is from 0 to 50% by weight, preferably from 0 to 20% by weight, further preferably from 0 to 10% by weight.
  • the all solid state battery described in the present invention may be a lithium ion battery, a sodium ion battery, a potassium ion battery, an aluminum ion battery, a magnesium ion battery, a ferroion battery, a zinc ion battery or the like.
  • an all-solid battery includes a positive electrode, a negative electrode, and a solid electrolyte of the present invention
  • the positive electrode is a positive electrode current collector coated with a positive electrode active material and a solid electrolyte complex
  • the solid electrolyte is an organic polymer a composite lithium salt and/or a low melting point solid electrolyte
  • the organic polymer composite lithium salt is a polyoxyethylene composite lithium salt, a polyvinylidene fluoride-hexafluoropropylene composite lithium salt, a polyacetal resin composite lithium salt, a polyvinyl chloride composite a lithium salt, a polypropylene composite lithium salt or a polycarbonate composite lithium salt
  • the low melting solid electrolyte is a solid electrolyte Li 3 -xA X BC having an anti-perovskite structure, wherein A is an alkaline earth metal element and B is an oxygen element element , C is a halogen element or an ion
  • the negative electrode is composed of a negative electrode active material and a solid electrolyte complex coated on the negative electrode current collector, wherein the solid electrolyte is an organic polymer composite lithium salt and/or a low melting solid electrolyte; the organic polymer composite lithium salt is a polyethylene oxide composite Lithium salt, polyvinylidene fluoride-hexafluoropropylene composite lithium salt, polyacetal resin composite lithium salt, polyvinyl chloride composite lithium salt, polypropylene composite lithium salt or polycarbonate composite lithium salt; the low melting solid electrolyte is reversed A solid electrolyte Li 3 -xA X BC of a perovskite structure, wherein A is an alkaline earth metal element, B is an oxygen group element, and C is a halogen element or an ion cluster.
  • the positive electrode active material and the solid electrolyte composite, the negative electrode active material, and the solid electrolyte composite are prepared according to the prior art scheme.
  • an all-solid battery includes a positive electrode, a negative electrode, and a solid electrolyte of the present invention, wherein the positive electrode is a solid-state positive electrode prepared according to the present invention (ie, a positive-working current collector is coated with a flexible film-like solid cathode composite material).
  • the negative electrode is composed of a negative electrode active material and a solid electrolyte composite coated on the negative electrode current collector.
  • the negative active material and the solid electrolyte composite can be implemented according to the prior art scheme.
  • an all-solid battery includes a positive electrode, a negative electrode, and a solid electrolyte of the present invention, wherein the positive electrode is a positive electrode current collector coated with a positive electrode active material and a solid electrolyte complex, and the negative electrode is a solid state prepared by the foregoing invention.
  • the negative electrode ie, the negative electrode current collector is coated with a flexible film-like solid negative electrode composite material).
  • the positive active material and the solid electrolyte composite are prepared in accordance with the prior art scheme.
  • the all-solid-state battery includes a positive electrode, a negative electrode, and a solid electrolyte of the present invention, wherein the positive electrode is the solid-state positive electrode prepared according to the present invention (ie, the positive electrode current collector is coated with a flexible film-like solid cathode composite material).
  • the negative electrode is also a solid-state negative electrode prepared in accordance with the present invention (that is, the negative electrode current collector is coated with a flexible film-like solid negative electrode composite material).
  • PAN polyacrylonitrile
  • DMF N,N-dimethylformamide
  • the spinning was carried out under an electrostatic voltage of 15 kV, the distance between the nozzle and the roller collector was 15 cm, and the flow rate of the polyacrylonitrile solution was 15 ⁇ l/min.
  • the roller device was removed from the roller device.
  • the flexible polymer film was then rolled at about 2 MPa for about 10 minutes, then immersed in a 1 mol/L lithium perchlorate/ethanol solution for 5 minutes, and then vacuum dried to remove the solvent to obtain a 20 ⁇ m thick polymer.
  • a solid electrolyte having a mass ratio of lithium salt of 2:1 was measured to have a density of 1.9 g/cm 3 .
  • the specific boundary area of the solid electrolyte is calculated to be about 1.0 ⁇ 10 5 cm 2 /cm 3 .
  • the conductivity of the test solid electrolyte was 2.3 ⁇ 10 -4 S/cm.
  • the electrochemical impedance of the solid electrolyte was tested and the results are shown in Fig. 2.
  • the specific boundary area of the solid electrolyte is calculated to be about 500 cm 2 /cm 3 .
  • the conductivity of the test solid electrolyte was 1.2 ⁇ 10 -7 S/cm.
  • PMMA polymethyl methacrylate
  • DMF dimethyl methacrylate
  • the spinning is carried out under an electrostatic voltage of 15 kV
  • the distance between the nozzle and the roller collector is 15 cm
  • the flow rate of the polymethyl methacrylate solution is 15 ⁇ l/min.
  • the nozzle can be uncovered from the roller device.
  • the next flexible polymer film was then rolled at about 2 MPa for about 10 minutes, then immersed in a 1 mol/L lithium hexafluorophosphate/ethanol solution for 5 minutes, and then vacuum dried to remove the solvent to obtain a 30 ⁇ m thick polymer.
  • a solid electrolyte having a mass ratio of lithium salt of 4:1 was measured to have a density of 2.2 g/cm 3 .
  • the specific boundary area of the solid electrolyte is calculated to be about 3.5 ⁇ 10 5 cm 2 /cm 3 .
  • the conductivity of the test solid electrolyte was 3.1 ⁇ 10 -4 S/cm.
  • the electrochemical impedance of the solid electrolyte was tested and the results are shown in FIG.
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • the flexible polymer film was then rolled at about 2 MPa for about 10 minutes, then immersed in a 1 mol/L lithium perchlorate/ethanol solution for 5 minutes, and then vacuum dried to remove the solvent to obtain a 5 ⁇ m thick polymer.
  • a solid electrolyte having a mass ratio of lithium ion salt of 3:1 was measured to have a density of 1.2 g/cm 3 .
  • the specific boundary area of the solid electrolyte is calculated to be about 6 ⁇ 10 5 cm 2 /cm 3 .
  • the conductivity of the test solid electrolyte was 8.1 ⁇ 10 -4 S/cm.
  • PAN polyacrylonitrile
  • DMF N,N-dimethylformamide
  • the flexible polymer film is then rolled at about 2 MPa for about 10 minutes, and then immersed in different concentrations of lithium hexafluorophosphate/ethanol solution for 5 minutes, respectively, and then vacuum dried to remove the solvent to obtain some 20 ⁇ m thick and different lithium salt contents (A solid electrolyte having a lithium salt content of 10%, 15%, 20%, 25%, respectively.
  • PAN polyacrylonitrile
  • DMF N,N-dimethylformamide
  • the roller device can be removed from the roller device.
  • the flexible solid electrolyte membrane is then rolled at about 2 MPa for about 10 minutes, then immersed in different concentrations of lithium perchlorate/ethanol solution for 1 minute, and then vacuum dried to remove the solvent to obtain some 20 ⁇ m thick and different lithium.
  • PAN polyacrylonitrile
  • DMF N,N-dimethylformamide
  • PAN polyacrylonitrile
  • inorganic particles Li 6.8 La 3 Zr 1.8 Ta 0.2 O 12 , LLZTO powder
  • a surfactant polyvinylpyrrolidone
  • a flexible solid electrolyte membrane having a thickness of 25 ⁇ m was obtained, wherein the content of LLZTO reached about 75 wt%, the lithium salt content was 4 wt%, and the polymer content was 21 wt. %, the solid electrolyte has a conductivity of about 10 -3 S/cm.
  • the specific boundary area of the solid electrolyte is about 8.0 ⁇ 10 5 cm 2 /cm 3 .
  • PAN polyacrylonitrile
  • DMF N,N-dimethylformamide
  • LLZTO inorganic solid ceramic particles Li 6.8 La 3 Zr 1.8 Ta 0.2 O 12
  • the distance between the two nozzles is about 10 cm from the roller receiving device, and the flow rate of the polyacrylonitrile solution in the spinning nozzle is about 10 ⁇ l/min.
  • the flow rate of the lithium ion electrolyte dispersion in the nozzle is about 100 ⁇ l/min.
  • the shoulders of the nozzles mean that the plane formed by the electrospinning nozzle along the axial direction of the drum coincides with the plane formed by the electrostatic spray nozzle along the axial direction of the drum; the vertical nozzle refers to the electrospinning nozzle along the drum The plane formed by the axial movement is perpendicular to the plane formed by the electrostatic spray nozzle along the axial movement of the drum.
  • PAN polyacrylonitrile
  • DMF N,N-dimethylformamide
  • LLZTO inorganic solid ceramic particles Li 6.8 La 3 Zr 1.8 Ta 0.2 O 12
  • the nozzle After working for about 20 hours, the nozzle can be removed from the roller receiving device. a film, which is then rolled at about 2 MPa for about 10 minutes. Although the content of LLZTO reaches about 60% by weight, the specific boundary area of the solid electrolyte is calculated to be about 7 ⁇ according to the above-described calculation method of the bounded area according to the present invention. 10 5 cm 2 /cm 3 .
  • the obtained solid electrolyte membrane has poor compactness and electrical conductivity (less than 10 -4 S/cm), because the inorganic particles in the solid electrolyte membrane prepared by the method block the interface of the organic phase to some extent, resulting in The organic phase does not form a three-dimensionally connected interface or significantly reduces the area of the three-dimensionally connected interface.
  • Example 1-7 nonionic conductor inorganic particles - zinc oxide
  • PAN polyacrylonitrile
  • DMF N,N-dimethylformamide
  • ZEO zinc oxide powder having a particle size of about 20 nm was added to about 20 g of ethanol containing about 1% by weight of a surfactant and stirred to obtain an inorganic particle dispersion.
  • the flow rate of the inorganic particle dispersion is about 1000 ⁇ l/min.
  • a flexible ceramic film can be removed from the roller receiving device and then rolled at about 2 MPa for about 10 minutes, followed by 1 mol/
  • the 30 ⁇ m flexible solid electrolyte membrane was obtained by immersing in a lithium perchlorate/ethanol solution for 10 minutes, followed by vacuum drying to remove the solvent therein, wherein the zinc oxide content reached about 70% by weight. Further, solid electrolyte membranes having different lithium salt contents were prepared, and ionic conductivity values were measured, as shown in Fig. 10, wherein the highest ionic conductivity was 1.0 ⁇ 10 -3 S/cm.
  • Example 1-8 nonionic conductor inorganic particles - zirconia
  • PAN polyacrylonitrile
  • DMF N,N-dimethylformamide
  • Zrconia powder having a particle size of about 100 nm was added to about 20 g of ethanol containing about 1% by weight of a surfactant and stirred to obtain an inorganic particle dispersion.
  • the flow rate of the inorganic particle dispersion is about 50 ⁇ l/min.
  • a flexible ceramic film can be removed from the roller receiving device and then rolled at about 20 MPa for about 10 minutes, followed by 1 mol/
  • a lithium perchlorate/ethanol solution of L followed by vacuum drying to remove the solvent therein, a 30 ⁇ m thick flexible solid electrolyte membrane was obtained in which the content of zirconia reached about 50% by weight.
  • solid electrolyte membranes with different lithium salt contents were prepared, and the ionic conductivity values were tested. It was found that the conductivity and the change with lithium salt were similar to those shown in Fig. 10.
  • Example 1-9 nonionic conductor inorganic particles - cadmium sulfide
  • PAN polyacrylonitrile
  • DMF N,N-dimethylformamide
  • cadmium sulfide powder having a particle size of about 100 nm was added to about 20 g of ethanol containing about 1% by weight of a surfactant and stirred to obtain an inorganic particle dispersion.
  • the flow rate of the inorganic particle dispersion is about 30 ⁇ l/min.
  • a flexible ceramic film can be removed from the roller receiving device and then rolled at about 2 MPa for about 10 minutes, followed by 1 mol/ Soaking in a lithium perchlorate/ethanol solution for two minutes, followed by vacuum drying to remove the solvent, thereby preparing a 30 ⁇ m thick flexible polymer electrolyte membrane having a polymer/lithium salt mass ratio of 6:1.
  • the cadmium content is up to about 50% by weight.
  • Example 1-10 nonionic conductor inorganic particles - boron nitride
  • PAN polyacrylonitrile
  • DMF N,N-dimethylformamide
  • boron nitride powder having a particle size of about 100 nm was added to about 20 g of ethanol containing about 1% by weight of a surfactant and stirred to obtain an inorganic particle dispersion.
  • the flow rate of the inorganic particle dispersion is about 500 ⁇ l/min.
  • a flexible ceramic film can be removed from the roller receiving device and then rolled at about 100 KPa for about 60 minutes, followed by 1 mol/ Soaking in a lithium perchlorate/ethanol solution for four minutes, followed by vacuum drying to remove the solvent, to obtain a 20 ⁇ m thick flexible polymer electrolyte membrane having a polymer/lithium salt mass ratio of 5:1, wherein nitrogen The boron content is up to about 70% by weight.
  • PVP polyvinylpyrrolidone
  • inorganic particle LiPON type solid electrolyte powder
  • the distance between the two nozzles from the drum receiving device is about 5 cm
  • the flow rate of the polyvinylpyrrolidone solution in the spinning nozzle is about 10 ⁇ l/min.
  • the flow rate of the inorganic particle dispersion is about 100 ⁇ l/min.
  • a flexible lithium ion electrolyte membrane can be removed from the roller receiving device and then rolled at about 20 MPa for about 1 minute, followed by A 1 mol/L lithium perchlorate/ethanol solution is immersed for about two minutes, followed by vacuum drying to remove the solvent, thereby preparing a flexible solid electrolyte membrane having a thickness of 10 ⁇ m and a polymer/lithium salt mass ratio of 6:1.
  • the LiPON content reached 75 wt%
  • the test conductivity was 1.0 x 10 -4 S/cm
  • the density was 3.1 g/cm 3 .
  • PMMA polymethyl methacrylate
  • DMF N,N-dimethylformamide
  • magnesium oxide powder having a particle size of about 200 nm was added to about 20 g of water containing about 1% by weight of a surfactant and stirred to obtain a magnesium oxide dispersion. Simultaneous spinning and spraying in a parallel side-by-side manner at a high pressure of about 5 kV, the distance between the two nozzles from the drum receiving device is about 30 cm, and the flow rate of the polymethyl methacrylate solution in the spinning nozzle is about 200 ⁇ l/min.
  • the flow rate of the magnesium oxide dispersion in the spray nozzle is about 2 ⁇ l/min.
  • a flexible magnesium ion electrolyte membrane can be removed from the roller receiving device and then rolled at about 2 MPa for about 10 minutes. Then, it is immersed in the magnesium salt solution for 24 hours, and then vacuum-dried to remove the solvent, thereby preparing a flexible solid electrolyte membrane having a thickness of 50 ⁇ m and a polymer/magnesium salt ratio of 10:1, wherein the content of the magnesium ion conductor is It reached about 76% by weight, the electrical conductivity was 1.1 ⁇ 10 -3 S/cm, and the density was 3.0 g/cm 3 .
  • a commercially available polytetrafluoroethylene powder was dissolved in about 10 g of dimethylacetamide to obtain a polytetrafluoroethylene solution.
  • about 1 g of inorganic particles (alumina powder) having a particle size of about 10 ⁇ m was added to about 20 g of ethanol containing about 1% by weight of a surfactant and stirred to obtain an inorganic particle dispersion.
  • the flow rate of the dispersion of the inorganic particle dispersion is about 100 ⁇ l/min.
  • a flexible film can be removed from the roller receiving device, and then rolled at about 2 MPa for about 10 minutes, followed by aluminum.
  • the flexible solid electrolyte membrane was obtained by immersing in a salt solution for two minutes, wherein the content of alumina reached about 90% by weight.
  • the electrolyte preparation process of the present invention is suitable for producing a plurality of different solid electrolytes, and can be obtained higher than the conventional blade coating method.
  • Conductivity It can be seen from Examples 1-4 and 1-5 that the lithium ion solid electrolyte produced by the electrolyte process of the present invention can obtain the maximum value of the conductivity by adjusting the concentration of the lithium salt, and this rule is applicable to different lithium salt species.
  • the electrolyte preparation process of the present invention can obtain a solid electrolyte conductivity by a composite organic-inorganic two solid electrolyte, which is superior to the conventional blade coating method. And the organic-inorganic composite electrolyte prepared by compounding inorganic materials into organic fibers is much higher. It can be seen from the above Examples 1-7, 1-8, 1-9, and 1-10 that the non-conducting inorganic ceramic is used as the inorganic phase of the composite electrolyte, and the obtained organic-inorganic composite electrolytic film is made to have electrical conductivity and ion-containing type.
  • the composite electrolyte membrane of inorganic ceramics is similar.
  • the electrolyte preparation process of the present invention is suitable for preparing a composite solid electrolyte of other organic and inorganic ceramic combinations.
  • the electrolyte preparation process of the present invention is suitable for preparing a plurality of different types of electrolytes, such as a magnesium ion solid electrolyte, an aluminum ion solid electrolyte.
  • the flexible solid electrolyte membranes obtained in Examples 1-5 and 1-6 have high ionic conductivity (to meet the application requirements of electrochemical devices), and have special mechanical properties, and can maintain the mechanics in the case of making a very thin membrane. Integrity, bending without breaking, good processability, and good electrochemical performance in secondary battery applications.
  • the properties of the PAN:LLZTO-CSE flexible solid electrolyte obtained in Examples 1 to 6 of the present invention were compared with those obtained in the following prior documents 1 to 7, and the results are shown in Table 1-1. Since the solid electrolyte obtained by the present invention has high conductivity and the electrolyte can be made thin, for example, in the case of 5 ⁇ m, the area ratio of the solid electrolyte is 2400 mS ⁇ cm -2 , which is reported in the currently reported solid electrolyte. At the highest level.
  • the inventors of the present invention conducted experiments with reference to the other materials and conditions listed in the present specification by referring to the methods of Examples 1-1 to 1-13, and also obtained high ionic conductivity (greater than 10 -4 S). /cm), a flexible solid electrolyte excellent in mechanical properties and electrochemical properties.
  • the diameters of the polyacrylonitrile fibers were changed using spinning nozzles having different pore sizes (SEM photographs of fiber membranes made of polyacrylonitrile fibers of different diameters are shown in Fig. 26) to obtain a film.
  • the materials have solid electrolytes with different specific boundaries (other conditions are exactly the same as in Example 14) and the ionic conductivity of the solid electrolyte was tested. The results are shown in Table 1-2.
  • PAN polyacrylonitrile
  • DMF N,N-dimethylformamide
  • inorganic particles zinc oxide powder having a particle size of about 20 nm was added to about 20 g of ethanol containing about 1% by weight of a surfactant and stirred to obtain an inorganic particle dispersion.
  • the preparation method of the solid electrolyte provided by the invention is applicable to both the lithium ion battery system and the Mg/Al plasma battery system, and provides a good idea for the development of the all solid state battery.
  • the method provided by the invention is not only suitable for the preparation of solid electrolyte membranes, but also for the preparation of all inorganic material membranes, and has universal significance.
  • PVDF polyvinylidene fluoride
  • DMF N,N-dimethylformamide
  • About 1 g of a commercially available lithium iron phosphate powder having a particle size of about 700 nm and 0.14 g of a commercially available acetylene black were added to about 20 g of ethanol containing about 1% by weight of a surfactant and stirred to obtain a positive electrode active material and acetylene black. Mix the dispersion.
  • the distance between the spinning and spraying needles from the drum receiving device is about 8 cm
  • the flow rate of the polyvinylidene fluoride solution in the spinning needle is about 10 ⁇ l/min
  • the spray needle is mixed and dispersed.
  • the flow rate of the liquid is about 80 ⁇ l/min.
  • a flexible positive electrode film can be removed from the roller receiving device, and then rolled at about 100 KPa for about 60 minutes to obtain a thickness of 80 ⁇ m.
  • the flexible solid cathode film has a density of 2.5 g/cm 3 , wherein the content of the cathode active material reaches about 70% by weight.
  • the scanning electron micrograph of the flexible solid cathode film prepared by this example is shown in Fig. 11, and the macro photograph thereof is shown in Fig. 12. Further, succinonitrile-5 wt% lithium bis(trifluoromethylsulfonyl)imide (SN-5 wt% LITFSI) is heated and melted, and a drop is dropped into the flexible positive electrode film to make an electrolyte salt and a solid electrolyte in the solid cathode composite. The mass ratio of the organic fiber material is 1:6, that is, the solid cathode composite material is obtained.
  • the scanning electron micrograph is shown in Fig. 13, and it is applied to the all-solid lithium battery to exhibit good electrochemical performance, and the cycle performance is as shown in the figure. 14 is shown.
  • PTFE polytetrafluoroethylene
  • N methylpyrrolidone N methylpyrrolidone
  • LLZTO lithium lanthanum zirconium oxide
  • the distance between the spinning and spraying needles from the drum receiving device is about 5 cm
  • the flow rate of the polytetrafluoroethylene solution in the spinning needle is about 10 ⁇ l/min
  • the spray needle is mixed and dispersed.
  • the flow rate of the liquid is about 100 ⁇ l/min.
  • the flexible solid cathode composite material has an ionic conductivity of 1.0 ⁇ 10 -3 .
  • S/cm the density is 2.8 g/cm 3 , wherein the content of the lithium iron phosphate positive active material reaches about 80% by weight.
  • the scanning electron micrograph of the flexible solid cathode composite prepared by the present embodiment is shown in Fig. 15, and the first charge and discharge curve is shown in Fig. 16.
  • PAN polyacrylonitrile
  • DMF N,N-dimethylformamide
  • Ketjen black a commercially available polyacrylonitrile powder was dissolved in about 10 g of N,N-dimethylformamide (DMF) to obtain a polyacrylonitrile solution.
  • LiNi 0.5 Mn 0.5 O 2 lithium nickel manganese oxide
  • Ketjen black a commercially available Ketjen black was added to about 20 g of ethanol containing about 1% by weight of a surfactant and stirred to obtain a mixed dispersion.
  • the mass ratio of the electrolyte salt to the organic fiber material is 1:5, that is, the solid cathode composite material has an ionic conductivity of 1.0 ⁇ 10 -4 S. /cm, density is 3.8 g/cm 3 , wherein the content of lithium nickel manganate is about 85 wt%.
  • the scanning electron micrograph of the flexible solid cathode composite prepared by the present embodiment is shown in Fig. 17, and the first charge and discharge curve is shown in Fig. 18.
  • PVDF polyvinylidene fluoride
  • a flexible solid positive electrode film can be removed from the roller receiving device, and then rolled at about 10 MPa for about 5 minutes to obtain a thickness of 200 ⁇ m.
  • the solid cathode composite material has an ionic conductivity of 1.0 ⁇ 10 -4 S/cm and a density of 4.3 g/cm 3 , and its scanning electron micrograph is shown in Fig. 19.
  • PAN polyacrylonitrile
  • Li manganate dispersion About 1 g of a commercially available polyacrylonitrile (PAN) powder was dissolved in about 10 g of dimethyl sulfoxide to obtain a polyacrylonitrile solution. About 2 g of a commercially available lithium manganate powder having a particle size of about 700 nm was added to about 20 g of isopropyl alcohol and stirred to obtain a lithium manganate dispersion. Simultaneous spinning and spraying in a parallel side-by-side manner at a high pressure of about 5 kV, the distance between the spinning and spraying needles is about 5 cm from the drum receiving device, and the flow rate of the polyacrylonitrile solution in the spinning needle is about 10 ⁇ l/min.
  • PAN polyacrylonitrile
  • the flow rate of the lithium manganate dispersion in the needle is about 500 ⁇ l/min.
  • a flexible solid cathode film can be removed from the roller receiving device, and the film is rolled at about 20 MPa for about 1 minute. After the thickness is 300 ⁇ m, and then immersed in a lithium salt solution for a period of time and then dried, so that the mass ratio of the electrolyte salt to the organic fiber material is 1:3, that is, the flexible solid cathode composite material has a density of 2.5 g/cm 3 , The content of lithium manganate is about 60% by weight.
  • PMMA polymethyl methacrylate
  • acetonitrile acetonitrile
  • a commercially available lithium cobalt oxide powder having a particle size of about 700 nm and about 0.14 g of a commercially available acetylene black having a particle size of about 30 to 45 nm were added to about 20 g of water and stirred to obtain a mixed dispersion.
  • the mass ratio of the electrolyte salt to the organic fiber material is 1:5, that is, the flexible solid cathode composite material has an ionic conductivity of 1.0 ⁇ 10 -4 S. /cm, the density is 1.9 g/cm 3 , wherein the content of lithium cobaltate reaches about 30% by weight.
  • PAN polyacrylonitrile
  • DMF N,N-dimethylformamide
  • Na 0.5 CoO 2 sodium cobaltate
  • the distance between the spinning and spraying needles is about 6 cm from the drum receiving device
  • the flow rate of the polyacrylonitrile solution in the spinning needle is about 2 ⁇ l/min
  • the positive active material in the spray needle The flow rate of the dispersion is about 200 ⁇ l/min.
  • a flexible film can be removed from the roller receiving device, and then rolled at about 5 MPa for about 5 minutes to obtain a thickness of 500 ⁇ m flexible solid cathode film, wherein the content of the cathode active material reaches about 50 wt%, and then an appropriate amount of 0.5 M sodium perchlorate-ethanol solution is added dropwise to the flexible cathode film, and the ethanol solution is removed under vacuum heating.
  • the mass ratio of the electrolyte salt to the organic fiber material was 1:10, that is, a solid cathode composite material having an ionic conductivity of 1.0 ⁇ 10 -4 S/cm and a density of 2.6 g/cm 3 .
  • PVDF polyvinylidene fluoride
  • DMF N,N-dimethylformamide
  • About 1 g of a commercially available lithium nickel manganese oxide having a particle size of about 0.5 ⁇ m was added to about 20 g of ethanol containing about 0.1% by weight of a surfactant and stirred to obtain a lithium nickel manganese oxide dispersion.
  • the two nozzles are simultaneously spun and sprayed in a mutually perpendicular manner at a high pressure of about 25 kV.
  • the distance between the two nozzles of spinning and spraying is about 10 cm from the roller receiving device, and the flow rate of the polyvinylidene fluoride solution in the spinning nozzle is About 10 ⁇ l/min, the flow rate of the lithium nickel manganese oxide dispersion in the spray needle is about 70 ⁇ l/min.
  • a flexible positive electrode film can be removed from the roller receiving device, wherein lithium nickel manganese oxide is used. The content is 60% by weight.
  • a scanning electron micrograph of the film prepared from this comparative example is shown in Fig. 20, and it can be seen that the distribution of lithium nickel manganese oxide is not very uniform.
  • PVDF polyvinylidene fluoride
  • DMF N,N-dimethylformamide
  • PVDF polyvinylidene fluoride
  • DMF N,N-dimethylformamide
  • the ionic conductivity of the flexible solid cathode composite obtained by the above technical solution of the present invention is high (the electrochemical device application requirements are met by the examples 2-1 to 2-7 and the comparative examples 2-1 to 2-3). ), with good mechanical properties, bending without breaking, good processability, and good electrochemical performance in secondary battery applications.
  • PAN polyacrylonitrile
  • DMF N,N-dimethylformamide
  • the succinonitrile-5wt% lithium bis(trifluoromethylsulfonyl)imide (SN-5wt%LITFSI) is heated and melted, and a drop is dropped into the flexible negative electrode film to make the mass ratio of the electrolyte salt to the organic fiber material is 1.
  • SN-5wt%LITFSI succinonitrile-5wt% lithium bis(trifluoromethylsulfonyl)imide
  • SN-5wt%LITFSI succinonitrile-5wt% lithium bis(trifluoromethylsulfonyl)imide
  • PTFE polytetrafluoroethylene
  • a commercially available manganese oxide powder having a particle size of about 400 nm and about 0.14 g of a commercially available acetylene black were added to about 20 g of ethanol containing about 1% by weight of a surfactant and stirred to obtain a negative electrode carbon material mixed dispersion.
  • the distance between the spinning and spraying needles is about 10 cm from the drum receiving device
  • the flow rate of the polytetrafluoroethylene solution in the spinning needle is about 5 ⁇ l/min
  • the negative electrode carbon in the spray needle The flow rate of the material mixed dispersion is about 250 ⁇ l/min.
  • the mass ratio of the electrolyte salt to the organic fiber material is 1:5, that is, a flexible solid anode composite material having a thickness of 250 ⁇ m is obtained, and the ionic conductivity is about 1.0 after being tested.
  • a scanning electron micrograph of the flexible solid-state negative electrode composite prepared by this embodiment is shown in FIG.
  • PVDF polyvinylidene fluoride
  • DMF N,N-dimethylformamide
  • About 1 g of a commercially available lithium titanate powder having a particle size of about 700 nm and about 0.1 g of commercially available graphene are added to about 20 g of ethanol containing about 1% by weight of a surfactant and stirred to obtain an ethanol dispersion of the negative electrode active material. .
  • the distance between the spinning and spraying needles from the drum receiving device is about 8 cm
  • the flow rate of the polyvinylidene fluoride solution in the spinning needle is about 10 ⁇ l/min
  • the negative electrode activity in the spray needle The flow rate of the ethanol dispersion of the material is about 80 ⁇ l/min.
  • a flexible solid negative electrode film can be removed from the roller receiving device, followed by rolling at about 100 KPa for about 1 minute, after which After immersing in a lithium perchlorate/ethanol solution for a certain period of time, the mass ratio of the electrolyte salt to the organic fiber material is 1:3, that is, a flexible solid anode composite material having a thickness of 50 ⁇ m, which has been tested to have a density of 3.2 g/ Cm 3 wherein the content of the negative electrode active material reaches about 95% by weight.
  • PAN polyacrylonitrile
  • DMF N,N-dimethylformamide
  • MoO 3 molybdenum oxide powder
  • the distance between the spinning and spraying needles from the drum receiving device is about 10 cm
  • the flow rate of the polyacrylonitrile solution in the spinning needle is about 10 ⁇ l/min.
  • the flow rate of the molybdenum oxide negative electrode active material precursor dispersion in the needle is about 100 ⁇ l/min.
  • PAN polyacrylonitrile
  • DMF N,N-dimethylformamide
  • LLZTO lithium ion fast-conducting lithium lanthanum zirconium oxide
  • the spinning and spraying needles are spaced from the drum receiving device by a distance of about 10 cm, and the flow rate of the polyacrylonitrile solution in the spinning needle is about 10 ⁇ l/min.
  • the flow rate of the molybdenum oxide negative electrode active material precursor dispersion in the needle is about 50 ⁇ l/min.
  • the solid anode composite material having a thickness of 80 ⁇ m is obtained, wherein the content of molybdenum oxide is about 60 wt%, and the electrolyte salt and the organic fiber material in the solid anode composite material are obtained.
  • the mass ratio is 1:4.
  • PVDF polyvinylidene fluoride
  • the distance between the spinning and spraying needles is about 20 cm from the drum receiving device, and the flow rate of the polyvinylidene fluoride solution in the spinning needle is about 200 ⁇ l/min, and the spray needle is mixed and dispersed.
  • the flow rate of the liquid is about 2 ⁇ l/min.
  • the flexible solid anode composite material having a thickness of 300 ⁇ m is obtained, wherein the content of the anode active material reaches about 70% by weight, and the mass ratio of the electrolyte salt to the organic fiber material in the solid anode composite material is 1:2.
  • PAN polyacrylonitrile
  • NAN polyacrylonitrile
  • the distance between the spinning and spraying needles is about 5 cm from the drum receiving device, and the flow rate of the polyacrylonitrile solution in the spinning needle is about 5 ⁇ l/min.
  • the flow rate of the nano-silicon dispersion in the needle is about 500 ⁇ l/min.
  • a flexible solid negative electrode film can be removed from the roller receiving device, followed by rolling at about 100 KPa for about 60 minutes, after which After immersing in a lithium salt solution for a certain period of time, the flexible solid anode composite material having a thickness of 60 ⁇ m is obtained, wherein the content of the nano-silicon is about 80% by weight, and the mass ratio of the electrolyte salt to the organic fiber material in the solid anode composite material is 1:3.
  • a scanning electron micrograph of the solid negative electrode composite material is shown in Fig. 24.
  • PMMA polymethyl methacrylate
  • ethanol ethanol
  • molybdenum oxide powder having a diameter of about 0.3 ⁇ m was added to about 20 g of water containing about 0.1% by weight of a surfactant and stirred to obtain a dispersion of a molybdenum oxide negative electrode active material precursor.
  • the distance between the spinning and spraying needles from the drum receiving device is about 30 cm
  • the flow rate of the polymethyl methacrylate solution in the spinning needle is about 10 ⁇ l/min
  • the flow rate of the molybdenum oxide negative electrode active material precursor dispersion is about 30 ⁇ l/min.
  • a flexible solid negative electrode film can be removed from the roller receiving device, and then rolled at about 800 KPa for about 25 After a minute, after immersing in the lithium salt for a certain period of time, the solid anode composite material having a thickness of 30 ⁇ m can be obtained, wherein the content of molybdenum oxide reaches about 50 wt%, and the electrolyte salt and the organic fiber material in the solid anode composite material are obtained.
  • the mass ratio is 1:6.
  • PVDF polyvinylidene fluoride
  • the distance between the spinning and spraying needles is about 20 cm from the drum receiving device, and the flow rate of the polyvinylidene fluoride solution in the spinning needle is about 10 ⁇ l/min, and the spray needle is mixed and dispersed.
  • the flow rate of the liquid is about 100 ⁇ l/min.
  • a flexible solid anode composite material having a thickness of 500 ⁇ m can be obtained, wherein the content of the anode active material reaches about 70% by weight, and the mass ratio of the electrolyte salt to the organic fiber material in the solid anode composite is 1: 3.
  • PMMA polymethyl methacrylate
  • ethanol ethanol
  • molybdenum oxide powder having a diameter of about 0.3 ⁇ m was added to about 20 g of water containing about 0.1% by weight of a surfactant and stirred to obtain a dispersion of a molybdenum oxide negative electrode active material precursor.
  • the distance between the spinning and spraying needles from the drum receiving device is about 30 cm
  • the flow rate of the polymethyl methacrylate solution in the spinning needle is about 10 ⁇ l/min
  • the flow rate of the molybdenum oxide negative electrode active material precursor dispersion is about 30 ⁇ l/min.
  • a flexible solid negative electrode film can be removed from the roller receiving device, and then rolled at about 800 KPa for about 25 After a minute, after soaking in the sodium salt for a certain period of time and drying, a solid anode composite material having a thickness of 30 ⁇ m can be obtained, wherein the content of molybdenum oxide reaches about 50 wt%, and the electrolyte salt and the organic fiber material in the solid anode composite material are obtained.
  • the mass ratio is 1:6.
  • PVDF polyvinylidene fluoride
  • DMF N,N-dimethylformamide
  • Li titanate dispersion About 1 g of commercially available lithium titanate powder was added to about 20 g of ethanol and stirred to obtain a lithium titanate dispersion. Simultaneous spinning and spraying at a high pressure of 15 kV, unlike the drum with a negative charge generating device before, the drum is grounded, the distance between the spinning and the spray needle is 10 cm from the drum receiving device, and the spinning is performed.
  • the flow rate of the polyvinylidene fluoride solution in the needle is 10 ⁇ l/min, and the flow rate of the lithium titanate dispersion in the spray needle is 70 ⁇ l/min.
  • a flexible negative electrode film can be removed from the roller receiving device.
  • the content of lithium titanate in the negative electrode material reaches 75 wt%, and the silk is flying randomly during the spinning process and the uniformity of the final film is relatively poor.
  • a scanning electron micrograph of the flexible negative electrode film prepared by the present comparative example is shown in Fig. 25.
  • PAN polyacrylonitrile
  • DMF N,N-dimethylformamide
  • nano silicon powder was added to about 20 g of ethanol and stirred to obtain a nano-silicon dispersion.
  • the two nozzles are simultaneously spun and sprayed in mutually perpendicular form.
  • the distance between the two nozzles is about 8 cm from the roller receiving device, and the flow rate of the polyacrylonitrile solution in the spinning nozzle is about 10 ⁇ l/min.
  • the flow rate of the nano-silicon dispersion in the nozzle is about 70 ⁇ l/min.
  • a flexible negative electrode film can be removed from the roller receiving device, wherein the content of nano-silicon is about 60 wt%, and the uniformity is poor. .
  • PEO polyethylene oxide
  • ethanol ethanol
  • a commercially available lithium titanate powder having a particle size of about 700 nm and about 0.14 g of commercially available graphene were added to the above polyethylene oxide solution and stirred to obtain a negative electrode mixture solution.
  • the next film followed by rolling at about 100 KPa for about 10 minutes, and then immersing in a lithium salt for 2 minutes, can produce a flexible lithium titanate film having a thickness of 140 ⁇ m, although the content of the inorganic negative electrode particles reaches 66 wt%.
  • the compactness and electrical conductivity of the film were both poor, and the yield of the production process of the comparative example was low.
  • PTFE polytetrafluoroethylene
  • DMF dimethylformamide
  • the film was prepared by stirring for a long time, and then the film of the negative electrode was prepared by knife coating or casting to obtain a film having an inorganic particle solid content of about 50%.
  • the inorganic negative electrode particles of the negative electrode film prepared by the method have uneven distribution and low electrical conductivity.
  • the flexible solid-state negative electrode composite obtained by the above technical solution of the present invention has high ionic conductivity (to meet the application requirements of the electrochemical device) and has good mechanical properties. Good processability and good electrochemical performance in secondary battery applications.
  • Example 3-1 to Example 3-10 the inventors of the present invention conducted experiments with reference to the other materials and conditions listed in the present specification in the manner of Example 3-1 to Example 3-10, and also obtained high ionic conductivity, mechanical properties and electricity. Flexible solid-state anode composite with excellent chemical properties.
  • the embodiment provides an all-solid lithium battery including a positive electrode, a negative electrode, and a flexible solid electrolyte membrane.
  • the positive electrode is composed of a positive electrode active material coated with a positive electrode active material and a solid electrolyte complex
  • the negative electrode is composed of a negative electrode active material and a solid electrolyte composite coated on the negative electrode current collector.
  • the positive electrode active material and the solid electrolyte composite, the negative electrode active material, and the solid electrolyte composite are prepared according to the prior art scheme.
  • the flexible solid electrolyte film was a solid electrolyte prepared in accordance with Examples 1-6.
  • the thickness of the positive electrode active material and the solid electrolyte composite coating is 50-100 ⁇ m, and the composition and coating process are as follows: the positive electrode active material, the solid electrolyte, the conductive carbon black, and the binder are in a mass ratio of 6:3:0.5:0.5. The ratio is uniformly mixed in a solvent, and then it is coated on a current collector, followed by heating at a high temperature to evaporate the solvent to form a positive electrode material.
  • the solid electrolyte is a polyoxyethylene composite lithium salt.
  • the thickness of the negative electrode active material and the solid electrolyte composite coating is 50-100 ⁇ m, and the composition and coating process are as follows: the negative electrode active material, the solid electrolyte, the conductive carbon black, and the binder are in a mass ratio of 6:3:0.5:0.5. The ratio is uniformly mixed in a solvent, and then it is coated on a current collector, followed by heating at a high temperature to evaporate the solvent to form a negative electrode material.
  • the solid electrolyte is a polyoxyethylene composite lithium salt.
  • the prepared all-solid lithium battery has good electrochemical performance and mechanical properties.
  • This embodiment provides an all-solid lithium battery including a positive electrode, a negative electrode, and a solid electrolyte.
  • the positive electrode is composed of the flexible film-like solid cathode composite material of the embodiment 2-1
  • the negative electrode is composed of the flexible film-like solid anode composite material of the embodiment 3-1
  • the solid electrolyte is composed of the solid electrolyte.
  • the prepared all-solid lithium battery has good electrochemical performance and mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nonlinear Science (AREA)
  • Textile Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Cell Separators (AREA)

Abstract

本发明公开了一种固态电解质及其制备方法与应用,固态电解质包含膜材和电解质盐,有机相包含有三维连通的界面且比界面积大于等于1×104cm2/cm3,电解质盐溶解于有机相中。固态电解质的制备方法包括采用静电纺丝技术将高分子材料的溶液喷射到选定接收面形成连续的三维结构和选择性地同时采用静电喷雾技术将无机颗粒的分散液喷射到选定接收面上,并之后进行加压处理得到膜材;再将电解质盐的溶液滴加或喷射到膜材中或将膜材浸渍到电解质盐的溶液中。本发明的固态电解质室温电导率高达10-3S/cm以上,且不依赖于特种聚合物或填料的添加,具有制备简单、成本较低、原料来源广泛等优势。

Description

固态电解质及其制备方法与应用 技术领域
本发明属于电化学领域,具体涉及固态电解质,其制备方法及包含该固态电解质的电化学器件。
背景技术
过去20年,伴随着便携式消费电子产业的飞速发展,锂离子电池由于能量密度高,循环性能及倍率性能良好,商业化取得了巨大成功。然而,过去几十年不断发生的锂离子电池安全事故一直是领域内的隐忧。
锂离子电池因为发生内部短路或其他原因导致的电池内部温度过高会发生起火爆炸的隐患,最主要的原因是使用了高温易燃的有机电解液作为锂离子导电网络。所以,一旦电池内部温度因为各种原因(比如电池内部短路)达到有机溶剂的燃点,就会引发电池的起火,甚至爆炸,电池能量密度越高,危害越大。这个安全问题早在锂离子电池诞生之初就已经存在。近数十年来的研究认为,发展全固态锂离子电池,有可能从根源上解决这个安全隐患。
具体而言,如图1所示,在全固态电池中,由于没有易燃易分解的有机溶剂,电池的安全性能就可以得到大幅提升,同时电池也不会有漏液,电解液干涸,气胀等影响电池电化学性能的问题。而且,全固态电池的质量更小,体积能量密度更高,电池的设计组装也更加灵活。因此,发展不易燃烧的全固态锂离子电池是发展高安全性、高能量密度、高功率密度、长循环寿命的下一代电池的必然选择。但是,目前全固态电池的推广应用还受到很多技术方面的制约,尤其是其中固态电解质的开发存在很多技术挑战。一般来说,电池能够工作的一个重要必要条件是离子可以在电池内部的正负极之间来回传输,而电子可以通过外电路形成可被利用的电流。对于液态电池来说,正负电极之间有离子电导率很好的液态电解液作为离子传输媒介,而且液态电解液跟正负极的接触都很充分,所以正负极之间离子的传输自然不成问题。对于目前已经产业化的准固态电池来讲,凝胶态的电解质的性质与液态电解液类似,只是电导率略差,与正负极电极材料颗粒的接触也相对紧密,所以正负极之间的离子的传输也不成问题。但是,对于全固态电池来说,正负极之间的离子传输需要依赖固态电解质,一般固态电解质的离子电导率比液态电解液要低两个数量级,且固态电解质与正负极材料之间即使是紧密接触,也通常是处于点对点接触的状态,所以正负极材料之间的离子传输尤其困难。
因此,全固态电池的核心组分就是固态电解质,理论上一个良好的固态电解质需要具备以下特征:
(1)良好的离子电导率,通常是要接近10 -3S/cm。目前固态电解质的锂离子电导率都比较低(一般比液态电解液低2个数量级),很难满足电池实际应用,尤其是大电流充放电的需求。
(2)低的界面阻抗,包含固态电极与电解质之间的界面阻抗,以及电极和电解质内部颗粒之间的界面阻抗。目前固态电解质与正负极的固态活性颗粒界面阻抗大,以及电极和电解质内部颗粒之间的阻抗大,使得电池很难正常充放电。
(3)固态电解质要尽可能的薄,这样单位面积电导高,电解质的总电阻小;同时要有良好的力学性能,以有效分隔正负极,抑制锂枝晶;又要有一定的柔韧性,以得到良好的加工性能,以及能够包容充放电池正负极材料产生的大体积变化。
除了以上几点,固态电解质还需要具有良好的热稳定性、电化学稳定性,以及与电池正负极化学势匹配等。
现有的固态电解质可以分为无机固态电解质和有机聚合物固态电解质两种,通常无机固态电解质在室温下的离子电导率相对于聚合物固态电解质,在离子电导率上有1-2个数量级的提升,但是其缺点是制备的条件苛刻且成本太高,界面阻抗大,且成膜厚度和材料柔韧性存在矛盾(厚度小则易脆裂),完全由无机材料组成的固态电解质并不适用于未来全固态电池大规模产业化生产。现有技术制作的有机聚合物固体电解质虽然室温离子电导率较低,一般在10 -7-10 -5S/cm范围之内,尚不能满足储能器件的要求。但是,有机聚合物固体电解质相较无机固态电解质而言,通常具备良好的柔性以及易加工性,很容易加工成成类似于液态电解液电池中使用的隔膜的形态,很适合大规模产业化。因此,开发高电导率,高力学强度以及高稳定性的有机聚合物固体电解质,是实现全固态电池产业化的一个重要研究方向。
1973年,Wright课题组首次研究了聚氧化乙烯(PEO)和锂盐复合物的离子导电性,在此之后,研究者们在探索新型聚合物电解质体系方面做了大量的研究,同时也对聚合物电解质导电机理等进行了广泛的研究。研究了通过锂盐的改进、聚合物的改进以及填料的加入等方式来直接或间接的提高聚合物电解质的离子电导率和其他性能。关于填料的加入,有的研究认为加入后可以明显提高离子电导率,有的研究则认为对离子电导率的影响较小。总而言之,目前人们对于固态聚合物的离子传导机理还没有形成统一的认识,离子传导机理还需进一步深入研究。截至目前为止,大多数改进的聚合物固态电解质的离子导电性能只能达到10 -5S/cm,有少数报道的方案可以达到10 -4S/cm(例如CN102780032A实施例2、3披露的聚合物电解质),鲜少见室温离子电导率可以达到10 -3S/cm的聚合物固态电解质的报道。此外,已经报道的离子电导率可以达到10 -4S/cm以上的聚合物固态电解质一般都需要依赖于特定材料和/或昂贵材料的使用。例如CN102780032A实施例2、3披露的聚合物电解质的离子电导率可以达到10 -4S/cm,但是其必须添加特定的锐钛型氧化钛。CN107492680A实施例1披露的电解质膜的离子电导率可以达到10 -4S/cm,但是其必须采用特定的聚合物。还有一些聚合物电解质为了获得较高的离子电导率,必须添加昂贵的快离子导体。
发明内容
本发明的目的是提供一种改进的聚合物固态电解质,以克服现有技术的不足。
本发明同时提供一种固态电解质的制备方法。
为实现上述目的,本方面第一方面提供一种固态电解质,包含膜材和电解质盐,其中膜材包括由高分子材料形成的有机相,所述有机相包含有三维连通的界面且比界面积大于等于1×10 4cm 2/cm 3,所述的电解质盐溶解于所述有机相中。
优选地,所述固态电解质的室温离子电导率大于等于1.0×10 -4S/cm。
在根据本发明的一些具体且优选实施方式中,所述固态电解质的室温离子电导率为1.0×10 -4S/cm~1.0×10 -2S/cm。
在根据本发明的又一些具体实施方式中,所述固态电解质的室温离子电导率为1.0×10 -4S/cm~1.0×10 -3S/cm。
根据本发明,所述固态电解质的室温离子电导率随着有机相的比界面积的提高而提高。因此,所述的有机相的比界面积越大越好。
根据本发明的一个优选方面,所述的有机相的比界面积为1×10 4cm 2/cm 3~1×10 8cm 2/cm 3。进一步优选地,所述的有机相的比界面积为3×10 4 cm 2/cm 3~1×10 8cm 2/cm 3
根据本发明的膜材,其可以被方便地制成任何实际需要的厚度。进一步地,所述膜材的厚度(即固态电解质的厚度)可以为5~90μm。优选地,所述的膜材的厚度为5~89μm。更进一步优选地,所述的膜材的厚度为10~60μm。在根据本发明的一些特别优选的实施方式中,膜材的厚度为10~30μm。在根据本发明的另一些优选的实施方式中,膜材的厚度为10~30μm。本发明的膜材,其厚度为10~30μm时,不仅具有良好的力学性能与加工性能,且单位面积电导高,电解质的总电阻小,室温离子电导率高。
根据本发明的一个方面,所述固态电解质室温下的面积比电导为500~2500mS.cm -2,优选为1000~2500mS.cm -2,更优选为2000~2500mS.cm -2
根据本发明的一个方面,所述的电解质盐与所述有机相的质量比优选为1∶2~1∶10,尤其优选为1∶3~1∶6(具体例如1∶5)。在其他条件相同时,将电解质盐与所述有机相控制在前述范围内,可以获得最优的室温离子电导率。
根据本发明,所述的有机相的重要特征之一是具有三维连通的界面,该三维连通的界面可以实现将导电离子在固态电解质两侧的正负极之间的横向导通,同时也可以实现导电离子在固态电解质内部的纵向导通;所述的有机相的重要特征之二是,这种三维连通的界面的面积要较高,从而可以实现离子的快速导通。
根据本发明,对于有机相的具体形式和制备方式不做限制。作为本发明有机相的一个优选实施方案,有机相由高分子纤维聚集形成。所述的高分子纤维的直径可以为例如50nm~2μm,优选为100nm~1μm,进一步优选为100nm~800nm,尤其优选为100nm~500nm,最优选为100~400nm。具体可以是例如约100nm、150nm、200nm、300nm或400nm等。
根据本发发明的一个具体且优选方面,所述有机相是采用静电纺丝技术将所述高分子材料的溶液喷射到选定接收面形成连续的二维或三维结构经加压处理后形成的致密薄膜。该有机相具有良好的力学性能和加工性能,并且提供了高的比界面积。
根据本发明的一个方面,所述的膜材由所述的有机相构成,即膜材只含有机相。
根据本发明的又一方面,所述的膜材除包括有机相外,还包括用于增加所述的有机相的比界面积的无机颗粒。
根据本发明的一个优选方面,所述有机相具有由初级结构单元以聚集和/或叠加的方式形成的次级结构,该次级结构提供所述三维连通的界面。进一步优选地,所述的膜材还包括用于增加有机相的比界面积的无机颗粒,无机颗粒分布在初级结构单元之间。在根据本发明的某些优选实施方式中,初级结构单元为选自高分子纤维、高分子颗粒、高分子片中的一种或多种的组合,无机颗粒附着和/或嵌在初级结构单元的表面。
根据本发明,一般地,所述的无机颗粒的粒径为2nm~10μm,优选为10nm~2μm,进一步优选为20nm~2μm,更优选为50nm~2μm,更进一步优选为50nm~500nm,尤其优选是50nm~300nm。
本发明所述的无机颗粒,其目的在于提供更高的比界面积,对于无机颗粒是否是离子导体无特别限制,例如既可以是无机非离子导体;也可以是无机离子导体;还可以是无机非离子导体与无机离子导体的组合。
根据本发明的一个优选方面,无机颗粒为无机非离子导体,该方案得到的固体电解质具有良好的室温电导率且成本较小。无机非离子导体具体可以是例如氧 化物、硫化物、氮化物、氟化物、氯化物和碳化物等中的一种或多种的组合。
根据本发明,所述的固态电解质中无机颗粒的含量越高,其将提供更高的比界面积,在一定范围内,固态电解质的含量越高越好。优选地,所述的固态电解质中无机颗粒的含量大于等于5wt%,更优选大于等于10wt%,进一步优选大于等于20wt%。无机颗粒的含量不能过高,否则会影响到固态电解质的柔性以及影响电解质的离子电导率。优选地,所述的固态电解质中无机颗粒的含量小于等于95wt%。更优选地,所述的固态电解质中无机颗粒的含量小于等于80wt%。根据本发明的一些实施方式:所述的固态电解质中无机颗粒的含量为20wt%~80wt%。根据本发明的又一些实施方式:所述的固态电解质中无机颗粒的含量为50wt%~80wt%。
根据本发明的一个特别优选的实施方式,所述的固态电解质中无机颗粒的含量为70wt%~80wt%。此时,固态电解质不仅具有良好的室温离子电导率且柔韧性也保持良好。
根据本发明的一个具体且优选方面,固态电解质通过以下步骤制备:
采用静电纺丝技术将所述高分子材料的溶液喷射到选定接收面上制成纤维形式的初级结构,并使纤维形式的初级结构聚集形成三维的次级结构,之后进行加压处理使次级结构更加致密,得到所述有机相,作为所述膜材;
将所述电解质盐的溶液滴加或喷射到所述膜材中;或者,将膜材浸渍到所述电解质盐的溶液中。
由上述步骤制备的固态电解质,与其他方法制备的固态电解质相比,一方面,电解质盐能够很好的络合在有机相中,没有结晶;另一方面,在采用的高分子材料原料的质量相同时,其将具有更高的三维连通的比界面积(10 5cm 2/cm 3以上),从而具有更高的室温离子电导率。
根据本发明的又一个具体且优选方面,固态电解质通过以下步骤制备:
采用静电纺丝技术将所述高分子材料的溶液喷射到选定接收面上制成纤维形式的初级结构并使纤维形式的初级结构聚集形成三维的次级结构,在进行静电纺丝的同时,采用静电喷雾技术将无机颗粒的分散液喷射到所述选定接收面上,得到由高分子材料构成的有机相与无机颗粒组成的复合材料,之后对所述复合材料进行加压处理使其更加致密后,作为所述的膜材;
将所述电解质盐的溶液滴加或喷射到所述膜材中;或者,将膜材浸渍到所述电解质盐的溶液中。
由上述步骤制备的固态电解质,与其他方法制备的固态电解质相比,一方面,电解质盐能够很好的络合在有机相中,没有结晶;另一方面,在采用的高分子材料原料的质量相同时,其将具有更高的三维连通的比界面积(10 7cm 2/cm 3以上),从而具有更高的室温离子电导率。
根据本发明的一个优选方面,所述的高分子材料的分子结构具有能够与电解质盐的金属离子络合的极性基团。所述极性基团包括但不限于醚基、羰基、酯基、胺基、氟、酰胺基、腈基等。该高分子材料通常对于电解质盐有较好的溶解性。
根据本发明的一个具体方面,所述的高分子材料是分子结构中具有选自醚基、羰基、酯基、胺基、氟、酰胺基、腈基中的一种或多种极性基团的高分子材料。
进一步地,所述高分子材料可以是选自聚丙烯腈(PAN)、聚乙烯吡咯烷酮(PVP)、聚甲基丙烯酸甲酯(PMMA)、聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚环氧乙烷、聚环氧丙烷、聚丁二酸乙二醇酯、聚癸二酸乙二醇酯、聚乙二醇、聚乙二醇二胺中的任意一种或多种的组合。
根据本发明的一个具体且优选方面,所述的高分子材料是聚丙烯腈。此时,获得的固态电解质不仅具有良好的室温电导率,并且具有良好的力学性能和电化学稳定性。根据本发明的一个具体方面,聚丙烯腈的分子量(重均)为90000~150000。
根据本发明的一个优选方面,所述的固态电解质由所述的膜材与电解质盐组成。该固态电解质已经能够获得优异的综合性能且结构简单,制备方便。
根据本发明的另一优选方面,膜材由所述的有机相组成或由有机相与分布在有机相的界面处的无机颗粒组成,其中无机颗粒在所述固态电解质中的含量不超过80wt%。
本发明第二方面提供一种固态电解质,其包括连续有机相,所述连续有机相是采用静电纺丝技术将高分子溶液喷射到选定接收面上形成连续的二维或三维结构经加压处理形成的致密薄膜,并且组成所述连续有机相的高分子纤维内和所述连续有机相所含的孔洞内均分布有电解质盐;并且,所述固态电解质为柔性薄膜形态的,且厚度≥5μm而<90μm。
进一步地,所述的电解质盐与高分子纤维的质量比为1∶2~1∶10,优选为1∶3~1∶6(具体例如1∶5)。
优选地,所述固态电解质还包括多个无机颗粒,所述多个无机颗粒填充在所述连续有机相所含的孔洞内,所述无机颗粒可以是如前所述的无机颗粒。
优选地,所述固态电解质内无机颗粒的含量为大于零,小于等于95wt%,优选为50~95wt%,尤其优选为70~95wt%,尤其优选为70~80wt%。
优选地,所述固态电解质是在采用静电纺丝技术将高分子溶液喷射到选定接收面上以形成所述二维或三维结构的同时,采用静电喷雾技术将所述无机颗粒的分散液喷射到所述选定接收面上,之后将所获复合材料进行加压处理形成致密薄膜,再以电解质盐溶液浸渍后形成。
优选地,所述高分子纤维的材质为聚丙烯腈、聚乙烯吡咯烷酮、聚甲基丙烯酸甲酯、聚偏氟乙烯和聚四氟乙烯中的任意一种或两种以上的组合。
根据本发明,所述电解质盐可以是本领域已知的那些,没有特别限制。电解质盐具体可以为二次金属电池电解液中所使用的那些锂盐、钠盐、钾盐、镁盐或铝盐等,其中优选那些容易溶解到高分子材料中的盐。作为本发明的一个方面,当固态电解质用于制备锂电池时,所述的电解质盐可以是例如全氟烷基磺酸锂一类的锂盐。具体地,所述的电解质盐是例如三氟甲基磺酸锂(LiTf)、双(五氟乙基磺酰)亚胺锂(LiBETI)、双(氟磺酰)亚胺锂(LiFSI)、双(三氟甲烷磺酰)亚胺锂(LiTFSI)、高氯酸锂、六氟砷酸锂和六氟磷酸锂中的任意一种或者两种以上的组合。
根据本发明的一些实施方式,所述固态电解质的密度为1~6g/cm 3
根据本发明的一些实施方式,所述固态电解质薄膜的抗弯折强度为5~20MPa。
本发明第三方面提供一种前述的固态电解质的制备方法,其包括:
(1)通过以下方式a)或b)获得所述膜材:
a)采用静电纺丝技术将所述高分子材料的溶液喷射到选定接收面上并使得高分子纤维聚集形成三维结构,之后进行加压处理使所述三维结构更加致密,得到所述具有三维连通界面的有机相,作为所述膜材;
b)采用静电纺丝技术将高分子材料的溶液喷射到选定接收面上并使得高分子纤维聚集形成三维结构,静电纺丝的同时,采用静电喷雾技术将无机颗粒的分 散液喷射到所述选定接收面上,得到由所述有机相与无机颗粒组成的复合材料,之后对将所述复合材料进行加压处理使其更加致密后,作为所述的膜材,其中将用于喷射所述高分子溶液的静电纺丝出液口与用于喷射所述无机颗粒分散液的静电喷雾出液口以肩并肩的形式平行设置,并使所述静电纺丝出液口的喷射方向与所述静电喷雾出液口的喷射方向成大于或等于0而小于90°的夹角;
(2)将所述电解质盐的溶液滴加或喷射到所述膜材中;或者,将所述膜材浸渍到所述电解质盐的溶液中。
如上方法所制备的固态电解质,不仅其有机相具有三维连通的界面,且比界面积可以很容易的达到10 5cm 2/cm 3以上。此外,该方法可以确保电解质盐能够较好的溶解在有机相中。
根据本发明,所述的静电纺丝技术、静电喷雾技术均为已知技术。
根据本发明,所述接收面可以为接收装置的表面,所述接收装置为滚筒接收装置、平面接收装置和水溶液接收装置中的任意一种或两种以上的组合。
根据本发明的一个优选方面,所述接收装置设置有负电荷发生装置。
优选地,所述接收装置为滚筒接收装置,进行喷射时,所述滚筒保持旋转状态。
优选地,为了更好地获得所需的有机相,步骤(1)中,进行喷射时,静电纺丝出液口及静电喷雾出液口与所述接收面之间沿所述接收装置的轴向、长度方向或宽度方向相对运动。
本发明的固态电解质特别适用于制备电化学器件。为此,本发明还提供一种电化学器件,其包括如前所述的固态电解质。
进一步地,所述电化学器件可以是储能装置或电致变色器件。所述储能装置可以是例如电池,电池优选是全固态电池,进一步地,可以是锂离子电池、钠离子电池、铝离子电池、镁离子电池、铁离子电池、锌离子电池等。所述电致变色器件例如可以是电子书,电子书进一步可以是黑白电子书,可以是彩色电子书。
本发明还涉及一种全固态锂电池,其包括正极、负极以及如本发明所述的固态电解质。
根据本发明的一个方面,所述正极由正极集流体上涂覆正极材料形成。进一步地,所述正极材料是正极活性材料与固态电解质材料的复合物。
根据本发明的又一方面,所述正极由正极集流体上覆设膜状正极复合材料形成。
优选地,所述正极复合材料包含:
连续的有机相,其由至少具有离子导体功能的有机纤维材料聚集形成;
正极活性材料,其分布于连续的有机相所含的孔洞内;
电解质盐,其分布于所述有机纤维材料内部及所述有机纤维材料与正极活性材料构成的网络结构所含的孔洞内;
可以选择添加或不添加的电子导体添加剂,其弥散分布于所述固态正极复合材料内;以及,
可以选择添加或不添加的无机离子导体添加剂,其弥散分布于所述固态正极复合材料内;
并且,所述固态正极复合材料为柔性膜形态的,且厚度为30~500μm。
根据本发明的一个方面,所述负极为金属锂上涂覆固态电解质材料构成。
根据本发明的又一方面,所述负极为负极集流体上覆设膜状负极复合材料形成。
优选地,膜状负极复合材料包含:
连续的有机相,其由至少具有离子导体功能的有机纤维材料聚集形成;
负极活性材料,其分布于连续的有机相所含的孔洞内;
电解质盐,其分布于所述有机纤维材料内部及所述有机纤维材料与负极活性材料构成的网络结构所含的孔洞内;
可以选择添加或不添加的电子导体添加剂,其弥散分布于所述固态负极复合材料内;以及,
可以选择添加或不添加的无机离子导体添加剂,其弥散分布于所述固态负极复合材料内;
并且,所述固态负极复合材料为柔性膜形态的,且厚度为30~500μm。
由于以上技术方案的实施,本发明与现有技术相比具有如下优点:
与传统认为锂离子等导电离子是从聚合物内部进行传导的原理不同,本发明的发明人在大量实验研究中意外发现,对于聚合物固态电解质来说,导电离子主要从聚合物的界面进行传导。由此,本发明提供的具有三维连通的界面且比界面积高的有机相可以实现离子快速的在正极与负极之间传导,从而具有显著提高的室温离子电导率。利用这一原理,发明人已经成功制备了室温电导率高达10 -3S/cm以上的固态电解质,满足固态电池应用需求。此外,本发明的固态电解质,不依赖于特种聚合物或填料的添加,具有制备简单、成本较低、原料来源广泛等优势。
本发明提供的固态电解质的制备方法,可以批量获得室温电导率高、均一性和稳定性好且厚度薄的固态电解质(本发明实施例所制备的5微米厚的固态电解质,其面积比电导高达2400mS.cm -2,在目前报道的固态电解质中处于最高水平),且方法重复性和稳定性好;此外,该方法可调控性好,可以方便的得到各种比介面积的固态电解质。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是液态锂离子电池和全固态电池的结构比较示意图;
图2是本发明实施例1-1中采用静电纺丝制备的聚丙烯腈纤维浸泡锂盐形成的固态电解质的电化学阻抗图;
图3是本发明实施例1-2中采用静电纺丝制备的聚甲基丙烯酸甲酯纤维浸泡锂盐形成的固态电解质的电化学阻抗图;
图4是本发明一典型实施例采用同时静电纺丝和静电喷雾法制备固态电解质薄膜的方法示意图;
图5是本发明一典型实施例采用固态电解质组装的电池结构示意图;
图6是本发明一典型实施例采用同时静电纺丝和静电喷雾法制备固态电解质薄膜的电镜图片;
图7是本发明一典型实施例采用同时静电纺丝和静电喷雾法制备固态电解质薄膜的宏观照片;
图8是本发明实施例1-4中采用静电纺丝制备的聚丙烯腈纤维浸泡锂盐形成的固态电解质的电导率随着锂盐含量的变化而变化的趋势图;
图9是本发明实施例1-6中采用同时静电纺丝和静电喷雾法制备固态电解质薄膜电导率随着锂盐含量的变化而变化的趋势图(其中无机颗粒为离子导体);
图10是本发明实施例1-7中采用同时静电纺丝和静电喷雾法制备固态电解质薄膜电导率随着锂盐含量的变化而变化的趋势图(其中无机颗粒为非离子导体);
图11是本发明实施例2-1中制备的柔性固态正极薄膜的扫描电镜图;
图12是本发明实施例2-1中制备的柔性固态正极薄膜的宏观照片;
图13是本发明实施例2-1中滴加锂盐之后所获柔性固态正极复合材料的扫描电镜图;
图14是本发明实施例2-1中制备的柔性固态正极复合材料的电化学循环性能图;
图15是本发明实施例2-2中制备的柔性固态正极复合材料的扫描电镜图;
图16是本发明实施例2-2中制备的柔性固态正极复合材料作为正极时首次充放电曲线图;
图17是本发明实施例2-3中制备的柔性固态正极复合材料的扫描电镜图;
图18是本发明实施例2-3中制备的柔性固态正极复合材料的充放电曲线;
图19是本发明实施例2-4中制备的柔性固态正极复合材料的扫描电镜图;
图20是本发明对照例2-2中制备的柔性固态正极复合材料的扫描电镜图;
图21是本发明实施例3-1中制备的柔性固态负极复合材料的扫描电镜图;
图22是本发明实施例3-1中制备的柔性固态负极复合材料的宏观照片;
图23是本发明实施例3-2中制备的柔性固态负极复合材料的扫描电镜图;
图24是本发明对比例3-1中制备的柔性固态负极复合材料的扫描电镜图;
图25是本发明实施例3-7中制备的柔性固态负极复合材料的扫描电镜图;
图26是不同直径的高分子纤维聚集形成的纤维膜的SEM图,其中A为直径约200nm的高分子纤维聚集形成的纤维膜;B为直径约300nm的高分子纤维聚集形成的纤维膜;C为直径约400nm的高分子纤维聚集形成的纤维膜;D为直径约500nm的高分子纤维聚集形成的纤维膜。
具体实施方式
【有关术语的说明】
本发明中,有机相的比界面积是指单位体积内有机相所具有的界面的面积。所述的界面包括有机相与该有机相以外的物质(包括但不限于大气环境、无机颗粒或化学成分不同于该有机相的有机材料等)相接触的界面、该有机相内部的界面(例如当该有机相由初级结构单元例如高分子纤维、高分子颗粒、高分子薄片等以聚集、叠加等方式形成次级结构时,在相接触的初级结构单元之间所产生的界面)。
有机相的比界面积是单位体积有机相所具有的界面面积,其中界面面积是本发明所述的界面的面积,本发明中通过界面面积的一般计算方法确定界面面积的值。例如:
(1)有机相由高分子纤维聚集形成时,计算方法如下:
对于高分子纤维来说,其模型可以视为一个圆柱体。
其表面积公式为:S=π*d*l,  公式(1)
其中π为圆周率,d为纤维的直径,l是纤维的长度。
l=V/(π*d 2/4)  公式(2)
其中V为纤维的体积
故表面积S=π*d*V/(πd 2/4)  公式(3)
又V=m/ρ  公式(4)
其中ρ为高分子的密度,m为质量。
故S=π*d*m/ρ/(πd 2/4)=4m/(ρ*d)  公式(5)
S’=S/V’  公式(6)
其中V’为高分子纤维膜的体积,S’为单位体积的表面积即比界面积。
V’=m/ρ’  公式(7)
故S’=4ρ’/(d*ρ)
其中ρ’为高分子纤维膜的压实密度。
(2)有机相由高分子纤维聚集形成且添加了增加比界面积的无机颗粒时,计算方法如下:
当有机相中被填充了高比界面积的无机颗粒时,有机相的比界面积为高分子纤维的比界面积和无机颗粒的比界面积的体积加权平均值,具体公式为S’=(S 1+S 2)/V,其中S’为有机相的比界面积;S 1、S 2分别为高分子纤维与无机颗粒的表面积;V为由高分子纤维和无机颗粒复合形成的膜材的体积。
对于高分子纤维来说,其表面积S 1=4m 1/(ρ 1*d 1),其中,m 1为高分子纤维的质量,ρ 1为高分子纤维的密度,d 1为高分子纤维的直径。
对于无机颗粒来说,可以视为一个球体,其表面积S 2=π*d 2 2*n
其中π为圆周率,d 2为无机颗粒的直径,n是无机颗粒的数量。 公式(1)
n=m 2/m 0  公式(2)
其中m 2为无机颗粒的总质量,m 0为单个无机颗粒的质量
又m 0=4/3*π*(d 2/2) 32其中ρ 2为密度  公式(3)
故S 2=π*d 2 2*m 2/m 0  公式(4)
故,S’=(S 1+S 2)/V=[4m 1/(ρ 1*d 1)+π*d 2 2*m 2/m 0]/V  公式(5)
又V=(m 1+m 2)/ρ’,其中ρ’为复合材料的压实密度;
故,S’=[4m 1/(ρ 1*d 1)+π*d 2 2*m 2/m 0]*ρ’/(m 1+m 2)。
(3)有机相由含有高分子材料的混合物涂布形成时,计算方法如下:
对于涂布的高分子材料来说,可以视为一个致密的膜,其表面积S=l*d公式(1)
其中l,d分别为膜的长和宽。
其体积V=l*d*h  公式(2)
其中h为膜的厚度。
故S’=S/V=l/h  公式(3)
其中S’为单位体积涂布的高分子材料的表面积即比界面积。
本发明中,固态电解质的电导率的测试方法及条件为:在固态电解质两侧溅射200nm的金金属用于离子电导率的测试,其中金的面积为0.28cm 2,测试在室温(25℃)下进行。
【固态电解质】
本发明提供一种提高固态电解质的离子电导率的全新思路。
本发明提供的柔性薄膜形态的固态电解质,其包括膜材和溶解其中的电解质盐。其中,膜材包括由高分子材料形成的具有三维连通的界面的有机相,其中通过控制有机相的比界面积在1*10 4cm 2/cm 3以上,可以使室温离子电导率达到 10 -4S/cm以上。进一步提高有机相的比界面积,可以进一步提高室温离子电导率到10 -3S/cm,甚至更高。
获得具有所述比界面积的方法包括优化有机相本身的结构以及在有机相中添加无机颗粒等方式。
具有高的比界面积的有机相可以很容易地通过通过高分子纤维聚集获取,具体可采用熟知的静电纺丝技术来制备。通过调节高分子纤维的直径、高分子纤维聚集的紧密程度等可以获得不同比界面积的有机相。
在实施静电纺丝制备高分子纤维时的条件和参数设置可采用常规的实施条件,没有特别限制。
在一些具体实施方式中,采用静电纺丝技术将所述高分子材料的溶液喷射到选定接收面形成(即高分子纤维聚集形成)连续的三维结构并之后进行加压处理使所述三维结构更加致密,得到所述连续的有机相,作为所述膜材。其中,静电纺丝出液口与所述接收面的间距可以设为5~30cm,静电电压可以为例如5~50KV。所述加压处理的压力可以为100KPa~20MPa,时间为1~60分钟,优选为1~10分钟,温度为25~60℃。
无机颗粒的添加可以进一步提高有机相的比界面积。具体可以通过调节添加的无机颗粒的量以及无机颗粒的大小来获得不同比界面积的膜材。无机颗粒的量一般来说是越多越好,但不能过多而影响所制备的固态电解质的柔性。
无机颗粒添加的方式可以有很多种,但优选采用静电喷雾的方式,且在静电纺丝的同时进行添加,如此添加的无机颗粒,不会阻断有机相界面的连续性。该添加方式还有的好处是,与其他可能的添加方式比,其可以在一个较大的范围内调控无机颗粒的量(0~95wt%),并且这种方式在添加的无机颗粒占固态电解质的含量超过70%时仍然保持好的柔性。
在一些具体实施方式中,采用静电纺丝技术将高分子溶液喷射到选定接收面上以形成(即高分子纤维聚集形成)连续的三维结构,同时,采用静电喷雾技术将所述无机颗粒的分散液喷射到所述选定接收面上,得到由高分子材料构成的有机相与无机颗粒组成的复合材料,之后对将所述复合材料进行加压处理使其更加致密后,作为所述的膜材,其中静电纺丝出液口与所述接收面的间距可以设为5~30cm,静电电压可以为例如5~50KV。所述加压处理的压力可以为100KPa~20MPa,时间为1~60分钟,优选为1~10分钟,温度为25~60℃。作为较佳实施方案之一,所述制备方法包括:以100KPa~20MPa的压力,将从接收面收集得到的薄膜置于滚压机上进行反复滚压。
具体地,所述高分子溶液与所述无机颗粒分散液的流量比为100∶1~1∶100,优选为1∶10~1∶50,尤其优选为1∶3~1∶7。可以通过控制纺丝和喷雾的二者流速比例来制备不同固态电解质含量的柔性薄膜。
在前述的实施方案中,通过加压处理使高分子纤维形成致密的连续有机相,继而添加电解质盐,可以在大幅减少电解质盐用量比例的同时,进一步大幅提升有机高分子固态电解质的离子电导率。
此外,优选将用于喷射所述高分子溶液的静电纺丝出液口与用于喷射所述无机颗粒分散液的静电喷雾出液口以肩并肩的形式平行设置,以及使所述静电纺丝出液口的喷射方向与所述静电喷雾出液口的喷射方向成大于或等于0而小于90°的夹角。
进一步地,所述静电纺丝出液口和/或静电喷雾出液口的形状包括圆形或狭缝形,优选为狭缝形,其中狭缝型有较高的产能。采用狭缝结构的出液口可以使得喷射到接收面上的高分子溶液和无机颗粒分散液分布更加均匀。
优选地,所述无机颗粒分散液还包含有表面活性剂,以防止无机颗粒在分散液中沉降,而引起静电喷雾出液口的堵塞和喷射不均匀,从而影响形成的固态电解质膜的均匀度和性能。所述表面活性剂可以选用是阳离子表面活性剂、阴离子表面活性剂等离子型表面活性剂、非离子型表面活性剂、两性表面活性剂、复配表面活性剂以及其他表面活性剂等,但不限于此。表面活性剂一般在无机颗粒分散液中的含量为0.1~1wt%。
进一步地,于接收面和静电纺丝出液口和/或静电喷雾出液口之间施加外加电场,并与所述外加电场作用下,采用静电纺丝技术将所述高分子溶液喷射到所述接收面上,以及,采用静电喷雾技术将所述无机颗粒分散液喷射到所述接收面上。在一些实施例中,所述接收面为接收装置的表面。接收装置包括滚筒接收装置、平面接收装置和水溶液接收装置中的任意一种或两种以上的组合,但不限于此。接收面上可设置有负电荷发生装置。
进一步的,在将所述高分子溶液和无机颗粒分散液向所述接收面喷射时,所述静电纺丝出液口及静电喷雾出液口与所述接收面之间沿所述接收装置的轴向或长度方向或宽度方向进行往复的相对运动。
更进一步的,所述接收面与所述静电纺丝出液口及静电喷雾出液口呈设定角度例如0~89.9°设置。
在一些实施例中,在将所述高分子溶液和无机颗粒分散液向所述滚筒接收装置的滚筒的表面喷射时,所述滚筒保持旋转状态(转速例如300~1000rpm)。保持上述的工作状态一段时间后即可得一张薄膜,所得产物可以轻易地从滚筒上揭下来。
本发明中,具体可供选择的这类高分子材料包括但不限于聚丙烯腈(PAN)、聚乙烯吡咯烷酮(PVP)、聚甲基丙烯酸甲酯(PMMA)、聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、聚环氧乙烷、聚环氧丙烷、聚丁二酸乙二醇酯、聚癸二酸乙二醇酯、聚乙二醇、聚乙二醇二胺,以具有较好的溶解电解质盐的能力以及较好的力学和电学等性能为优选。
制备所述高分子溶液的方法通常是将高分子材料溶解在相应的溶剂中即可。例如对于上述的高分子材料,可选的溶剂包括水、N-甲基吡咯烷酮、乙醇等所有醇类液体、N,N-二甲基甲酰胺、二甲基亚砜、二甲基乙酰胺中的任意一种或两种以上的组合等可以溶解前述的高分子材料的所有液体,但并不限于此。
本发明中,具体可供选择的无机颗粒包括但不限于所有氧化物、硫化物、氮化物、氟化物、氯化物和碳化物等无机非离子导体以及锂离子导体、镁离子导体和铝离子导体等无机离子导体等。制备无机颗粒分散液的溶剂具体可选择水、乙醇、异丙醇等醇类液体、丙酮等酮类液体中的任意一种或两种以上的组合,但并不限于此。
在如上所述得到高比界面积的膜材后,以液体滴加、喷雾中的任一种方式将电解质盐溶液浸润所述膜材或将膜材浸渍到电解质盐溶液中,之后高温烘干溶剂,即可制备得到所需的固态电解质。通过调节电解质盐溶液的浓度,浸渍的时间以及浸渍时的外部条件如真空、加压等可以获得控制需要的电解质盐与有机相的比例。例如在一些实施方式中,以电解质盐溶液浸渍所述固态电解质,时间为1分钟~24小时,优选为5~10分钟,之后进行干燥处理。
按照上述方式制备的呈柔性膜状的固态电解质实现了无机电解质和有机电解质的优势互补,即,既具有能与无机电解质导体比拟的电导率,同时又具有良好的加工性能。更具体的讲,现有的无机电解质导体电导率高,一般可达1.6×10 -3S/cm,但是一般厚度是毫米级别,故单位面积电导低,而且加工性能差,相比之下,本发明提供的固态电解质在做成很薄(5-20μm)的情况下,可获得极高单位面积电导,而且可以保持良好的力学完整性,具有较高的柔性,弯折不断裂,可加工性良好,同时与有机电解质相比,本发明提供的固态电解质力学模量高可抑制枝晶,燃烧后依然维持形貌可保证正负极之间不会直接接触造成内短路,故安全性高。
本发明提供的固态电解质膜具有如下性能特征:1)离子电导性高(达到电化学器件应用需求);2)具有特殊的力学性能,在做成很薄的膜情况下,仍然可以保持力学完整性,弯折不断裂,可加工性良好;3)在二次电池应用中展现出良好的电化学性能。
藉由上述技术方案,本发明的固态电解质的制备过程简单,可批量制备且使用原料成本低,条件温和,无需昂贵的生产设备,产率高,且可调控,重复性和稳定性好,能够适用于不同电池体系,为全固态电池的研发提供了一个良好的思路。
此外,由于纺丝的纤维本身是具备很好的柔性性能,因此也可以保证用此方法制备出的薄膜也同样具备柔性,且可以通过控制纺丝和喷雾的二者流速比例来制备不同固态电解质含量的柔性薄膜。对于此体系,利用工艺容易进行,制备过程容易控制的特性,可以实现一种柔性固态电解质薄膜的制备。
【固态电池的正极】
本发明的一些实施方式中提供固态正极,其包括正极集流体,所述正极集流体上覆设有固态正极复合材料。
进一步地,所述正极集流体包括铝箔、涂炭铝箔、碳毡、碳纸中的任一种,但不限于此。
进一步的,所述固态正极复合材料均匀覆设在正极集流体表面,且所述固态正极复合材料的厚度为30~500μm,优选为50~300μm,进一步优选为150~250μm,在25℃下离子电导率为1.0×10 -4~1.0×10 -2S/cm。
本发明的一些实施方式中提供一种固态正极复合材料,其包含:
连续的有机相,其由至少具有离子导体功能的有机纤维材料聚集形成;
正极活性材料,其分布于连续的有机相所含的孔洞内;
电解质盐,其溶解在所述连续的有机相中;
可以选择添加或不添加的电子导体添加剂,其弥散分布于所述固态正极复合材料内;以及,
可以选择添加或不添加的无机离子导体添加剂,其弥散分布于所述固态正极复合材料内;
并且,所述固态正极复合材料为柔性膜形态的,且厚度为30~500μm。
所述连续有机相可以按照上述的固态电解质的有机相的方法来获得。
本发明实施例的一个方面提供的一种固态正极复合材料,它主要由复合材料经加压处理,再以电解质盐溶液浸渍后形成;
所述复合材料包括:
连续有机相,所述连续有机相是采用静电纺丝技术将聚合物溶液喷射到选定接收面上形成连续的二维或三维结构,所述有机纤维材料至少具有离子导体功能;
在喷射所述聚合物溶液的同时,采用静电喷雾技术将正极活性材料的分散液或者正极活性材料与电子导体添加剂和/或无机离子导体添加剂的混合分散液喷射到所述选定接收面上形成的网络结构,
其中,所述正极活性材料分布于所述连续的有机相所含的孔洞内,所述电解质盐溶解在有机相中;
其中,若所述电子导体添加剂和/或无机离子导体添加剂存在,则所述电子导体添加剂和/或无机离子导体添加剂弥散分布于所述固态正极复合材料内;
并且,所述固态正极复合材料为柔性膜形态的,且厚度为30~500μm。
在一些较佳实施方案中,所述固态正极复合材料包括:
主要由所述有机纤维材料紧密聚集形成的、连续的二维或三维结构;
分散于所述二维或三维结构中的正极活性材料;以及,
溶解在所述有机相中的电解质盐。
在一些实施方案中,所述有机纤维材料还具有电子导体的功能。相应的,所述固态正极复合材料可以仅仅包括正极活性材料、有机纤维材料和电解质盐。
在另一些实施方案中,尽管所述有机纤维材料还具有电子导体的功能,但所述固态正极复合材料也还可包括电子导体添加剂和/或无机离子导体添加剂等,以进一步改善固态正极复合材料的性能。这些电子导体添加剂和/或无机离子导体添加剂可以弥散分布于所述固态正极复合材料内。
在些实施方案中,所述有机纤维材料仅具有离子导体的功能。相应的,所述固态正极复合材料可以包括正极活性材料、电子导体添加剂、有机纤维材料和电解质盐。这些电子导体添加剂可以弥散分布于所述固态正极复合材料内。
在本发明的一些实施方案中,所述有机纤维材料仅具有离子导体的功能,而所述固态正极复合材料可以包括正极活性材料、电子导体添加剂、无机离子导体添加剂、有机纤维材料和电解质盐。这些电子导体添加剂、无机离子导体添加剂可以弥散分布于所述固态正极复合材料内。
在一些较佳实施方案中,所述固态正极复合材料的厚度为30~500μm,优选为50~300μm,尤其优选为150~250μm。
进一步地,所述固态正极复合材料的离子电导率为1.0×10 -4~1.0×10 -2S/cm。
进一步地,所述固态正极复合材料在25℃下离子电导率为1.0×10 -4~1.0×10 -2S/cm。
进一步地,所述固态正极复合材料的密度为1~5g/cm 3
进一步地,所述固态正极复合材料的抗弯折强度为1~20MPa。
优选地,所述固态正极复合材料内电解质盐与有机纤维材料的质量比为1∶2~1∶10,优选为1∶3~1∶6。
进一步地,所述固态正极复合材料中电解质盐的含量为1~10wt%,优选为1~5wt%。
优选的,所述电解质盐可以是锂盐,如双三氟甲烷磺酰亚胺锂(LiTFSI)、高氯酸锂(LiClO 4)、六氟砷酸锂(LiAsF 6)、六氟磷酸锂(LiPF 6)等其中的一种或者两种以上组合,也可以是小分子聚合物的锂盐,例如丁二腈-双三氟甲烷磺酰亚胺锂,但不限于此。另外,所述电解质盐也可以是钠盐、镁盐、铝盐等所有二次金属电池所使用的电解质盐。
在一些实施例中,所述固态正极复合材料内有机纤维材料的直径为50nm~2μm,优选为100nm~1μm,进一步优选为150nm~800nm,尤其优选为300nm~600nm。
进一步地,所述固态正极复合材料内有机纤维材料的含量为5~60wt%,优选为10~20wt%。
在一些实施例中,所述有机纤维材料的材质包括聚合物,其至少具有离子导电功能。
优选的,所述聚合物包括聚丙烯腈(PAN)、聚环氧乙烷、聚乙烯吡咯烷酮(PVP)、聚乙二醇、聚甲基丙烯酸甲酯(PMMA)、聚偏氟乙烯(PVDF)和聚四氟乙烯(PTFE)中的任意一种或两种以上的组合,但不限于此。
更优选的,所述有机纤维材料包括导电聚合物与导离子聚合物共混接枝形成的且同时具有离子和电子导体功能的聚合物。
在一些较佳实施方案中,所述固态正极复合材料内正极活性材料的含量为30~95wt%,优选为50~90wt%,进一步优选为60~80wt%,尤其优选为70~80wt%。在本发明中,正极活性材料颗粒的含量在70wt%以上时,所述固态正极复合材料仍然能够具有很好的柔性。
在一些实施例中,所述无机正极活性材料颗粒的粒径为2nm~20μm,优选为5nm~1μm,进一步优选为10nm~1μm,尤其优选为20nm~1μm。
在一些较佳实施方案中,所述正极活性材料的材质可以是氧化物正极材料、硫化物正极材料、聚阴离子正极材料等中的任意一种或任意几种的前驱体,也可以是钠离子电池正极材料、镁离子电池正极材料、铝离子电池正极材料等所有可以适用于二次电池的正极材料及其前驱体。
优选的,所述正极活性材料的材质包括磷酸铁锂、锰酸锂、钴酸锂、镍钴锰酸锂(Li(NiCoMn)O 2)、锰酸锂和镍锰酸锂中的任意一种或两种以上的组合,但不限于此。
在一些实施例中,所述固态正极复合材料内电子导体添加剂的含量为0~50wt%,优选为0~20wt%,进一步优选为0~10wt%。
进一步的,所述电子导体添加剂包含乙炔黑、Super P导电炭黑、科琴黑、碳纳米管、碳纤维、导电石墨中的任意一种或两种以上的组合,但不限于此。
在一些实施例中,所述固态正极复合材料内无机离子导体添加剂的含量为0~70wt%,优选为0~40wt%,进一步优选为0~20wt%。
进一步的,所述无机离子导体添加剂包括锂离子导体添加剂、钠离子导体添加剂、镁离子导体添加剂或铝离子导体添加剂,其中,所述锂离子导体添加剂包括NASICON型锂陶瓷电解质、钙钛矿型锂陶瓷电解质、石榴石型锂陶瓷电解质、LISICON型锂陶瓷电解质、Li3N型锂陶瓷电解质、锂化BPO 4导锂陶瓷电解质和以Li 4SiO 4为母体的锂陶瓷电解质中的任意一种或两种以上的组合,例如可以是锂镧锆钽氧(LLZTO),但不限于此。
本发明的固态正极复合材料中正极活性材料的添加量可大于70wt%,其添加可以加强电解质盐的解离,增加有机相的自由体积,降低结晶度,从而延长锂离子电池的循环寿命,提高电池的库伦效率。同时,在添加有正极活性材料的情况下,本发明的固态正极复合材料中有机纤维材料、正极活性材料和电解质盐三者相互协同,可以进一步提升固态正极复合材料的离子电导率,在二次电池应用中展现出良好的电化学性能。
优选的,所述固态正极复合材料为柔软薄膜形态的。
在本发明的一些实施方案中,所述有机纤维材料还具有电子导体的功能。相应的,所述固态正极复合材料可以仅仅包括正极活性材料、有机纤维材料和电解质盐。
在本发明的另一些实施方案中,尽管所述有机纤维材料还具有电子导体的功能,但所述固态正极复合材料也还可包括电子导体添加剂和/或无机离子导体添加剂等,以进一步改善固态正极复合材料的性能。这些电子导体添加剂和/或无机离子导体添加剂可以弥散分布于所述固态正极复合材料内。
在本发明的一些实施方案中,所述有机纤维材料仅具有离子导体的功能。相应的,所述固态正极复合材料可以包括正极活性材料、电子导体添加剂、有机纤维材料和电解质盐。这些电子导体添加剂可以弥散分布于所述固态正极复合材料内。
在本发明的一些实施方案中,所述有机纤维材料仅具有离子导体的功能,而所述固态正极复合材料可以包括正极活性材料、电子导体添加剂、无机离子导体添加剂、有机纤维材料和电解质盐。这些电子导体添加剂、无机离子导体添加剂可以弥散分布于所述固态正极复合材料内。
优选的,所述聚合物溶液与所述正极活性材料的分散液或所述混合分散液的流量比为100∶1~1∶100,优选为1∶10~1∶50,尤其优选为1∶5~1∶7。本发明可以通过控制纺丝和喷雾的二者流速比例来制备不同正极材料含量的柔性薄膜。
所述加压处理的压力可以为100KPa~20MPa,时间为1~60分钟,优选为1~10分钟,温度为25~60℃。
所述浸渍的时间可以为1分钟~24小时,优选为5~10分钟。
优选的,所述固态正极复合材料是膜状的,尤其优选为柔性薄膜状。
概括的讲,本发明的固态正极复合材料中有机纤维材料的添加赋予正极材料柔性的特征,可以做到很薄(10-20微米)还保持良好的完整性和加工性能。而无机材料能够有效的抑制诸如锂离子电池等储能设备中锂枝晶等的生长,从而延长此类设备的循环寿命,提高电池的库伦效率。
如上所述的固态正极复合材料具有如下性能特征:1)离子电导性高(达到电化学器件应用需求);2)具有特殊的力学性能,在做成很薄的膜情况下,仍然可以保持力学完整性,弯折不断裂,可加工性良好;3)在二次电池应用中展现出良好的电化学性能。
本发明实施例的另一个方面还提供的一种固态正极复合材料的制备方法,其包括:
采用静电纺丝技术将聚合物溶液(可以称为溶液1)喷射到选定接收面上而形成连续的二维或三维结构,所述有机纤维材料至少具有离子导体功能;
在喷射所述聚合物溶液的同时,采用静电喷雾技术将正极活性材料的分散液或者正极活性材料与电子导体添加剂和/或无机离子导体添加剂的混合分散液(可以称为溶液2)喷射到所述选定接收面上,之后将所获复合材料进行加压处理使其致密化,使所述正极活性材料分布于连续的有机相所含的孔洞内,再以电解质盐溶液浸渍所述复合材料,使电解质盐进入所述复合材料内的有机纤维材料内部及所述有机纤维材料与正极活性材料构成的网络结构所含的孔洞内,形成所述固态正极复合材料;
其中,若所述电子导体添加剂和/或无机离子导体添加剂存在,则所述电子导体添加剂和/或无机离子导体添加剂弥散分布于所述固态正极复合材料内;
并且,所述固态正极复合材料为柔性膜形态的,且厚度为30~500μm。
在前述的实施方案中,通过加压处理使有机纤维材料形成致密的连续有机相,继而添加电解质盐,可以在大幅减少电解质盐用量比例的同时,进一步大幅提升 有机高分子固态正极复合材料的离子电导率。
优选的,所述固态正极复合材料是膜状的,优选为柔性薄膜形态的。
所述静电纺丝技术、静电喷雾技术都是已知技术。在实施固态正极复合材料的有机相的制备时,具体可以如下设置。
静电纺丝出液口与所述接收面的间距为5~30cm,静电电压为5~50KV。
静电喷雾技术中,静电喷雾出液口与所述接收面的间距为5~30cm,静电电压为5~50KV。
在一些实施例中,将用于喷射所述聚合物溶液的静电纺丝出液口与用于喷射所述正极活性材料的分散液或者所述混合分散液的静电喷雾出液口以肩并肩的形式平行设置。使所述静电纺丝出液口的喷射方向与所述静电喷雾出液口的喷射方向成大于或等于0而小于90°的夹角。
在一些实施例中,所述静电纺丝出液口的喷射方向与所述静电喷雾出液口的喷射方向成大于或等于0而小于90°的夹角。
所述静电纺丝出液口和/或静电喷雾出液口的形状包括圆形或狭缝形,优选为狭缝形,其中狭缝型有较高的产能。采用狭缝结构的出液口可以使得喷射到接收面上的聚合物溶液和所述正极活性材料的分散液或者所述混合分散液分布更加均匀。
在一些实施例中,所述正极活性材料的分散液或者所述混合分散液还包含有表面活性剂,以防止正极活性材料在分散液中沉降,而引起静电喷雾出液口的堵塞和喷射不均匀,从而影响形成的固态正极薄膜的均匀度和性能。一般地,所述表面活性剂在所述正极活性材料的分散液或者所述混合分散液中的含量为0.1~1wt%。表面活性剂可以选用是阳离子表面活性剂、阴离子表面活性剂等离子型表面活性剂、非离子型表面活性剂、两性表面活性剂、复配表面活性剂以及其他表面活性剂等,但不限于此。
具体地,于接收面和静电纺丝出液口和/或静电喷雾出液口之间施加外加电场,并与所述外加电场作用下,采用静电纺丝技术将所述聚合物溶液喷射到所述接收面上,以及,采用静电喷雾技术将所述正极活性材料的分散液或者混合分散液喷射到所述接收面上。
在一些实施例中,所述接收面为接收装置的表面。接收装置包括滚筒接收装置、平面接收装置和水溶液接收装置中的任意一种或两种以上的组合,但不限于此。在一些实施例中,所述接收面还带有负电荷发生装置。
进一步的,在将所述聚合物溶液和所述正极活性材料的分散液或者所述混合分散液向所述接收面喷射时,所述静电纺丝出液口及静电喷雾出液口与所述接收面之间沿所述接收装置的轴向相对运动或沿接收面的长度方向或宽度方向进行往复的相对运动。
更进一步的,所述接收面与所述静电纺丝出液口及静电喷雾出液口呈设定角度例如0~89.9°设置。
在一些实施例中,在将所述聚合物溶液和所述正极活性材料的分散液或者所述混合分散液向所述滚筒接收装置的滚筒表面喷射时,所述滚筒保持旋转状态(例如转速为300~1000rpm)。保持上述的工作状态一段时间后即可得一张薄膜,所得产物可以轻易从滚筒上揭下来。
具体地,溶解聚合物的溶剂包括水、N-甲基吡咯烷酮、乙醇等所有醇类液体、N,N-二甲基甲酰胺、二甲基亚砜、二甲基乙酰胺中的任意一种或两种以上的组合等可以溶解前述的聚合物的所有液体,但并不限于此。
分散前述正极活性材料、电子导体添加剂及无机离子导体添加剂的溶剂,可以是水、乙醇、异丙醇等醇类液体、丙酮等其他酮类液体中的任意一种或两种以上的组合,但并不限于此。
【固态电池的负极】
本发明的一些实施方式中提供固态负极,其包括负极集流体,所述负极集流体上覆设有固态负极复合材料。
本发明实施例的一个方面提供的一种固态负极复合材料,其包含:
连续的有机相,其由至少具有离子导体功能的有机纤维材料聚集形成;
负极活性材料,其分布于所述连续的有机相所含的孔洞内;
电解质盐,其溶解于所述有机相中;
可以选择添加或不添加的电子导体添加剂,其弥散分布于所述固态负极复合材料内;以及,
可以选择添加或不添加的无机离子导体添加剂,其弥散分布于所述固态负极复合材料内;
并且,所述固态负极复合材料为柔性膜形态的,且厚度为30~500μm。
其中,连续的有机相、电解质盐、电子导体添加剂、无机离子导体添加剂等具体方案均可以完全同前述固态电池的正极中所描述的。固态负极复合材料的制备方法和条件同样可以参照前述固态电池的正极中所描述的。
在一些较佳实施方案中,所述固态负极复合材料的厚度为30~500μm,优选为50~300μm,尤其优选为150~250μm。
进一步地,所述固态负极复合材料的离子电导率为1.0×10 -4~1.0×10 -2S/cm。
进一步地,所述固态负极复合材料在25℃下离子电导率为1.0×10 -4~1.0×10 -2S/cm。
进一步地,所述固态负极复合材料的密度为0.5~5g/cm 3
进一步地,所述固态负极复合材料的抗弯折强度为1~20MPa。
在一些较佳实施方案中,所述固态负极复合材料内电解质盐与有机纤维材料的质量比为1∶2~1∶10,优选为1∶3~1∶6。
进一步地,所述固态负极复合材料中电解质盐的含量为1~10wt%,优选为1~5wt%。
在一些较佳实施方案中,所述固态负极复合材料内负极活性材料的含量为30~95wt%,优选为50~90wt%,进一步优选为60~80wt%,尤其优选为70~80wt%。在本发明中,负极活性材料颗粒的含量在70wt%以上时,所述固态负极复合材料仍然能够具有很好的柔性。
在一些实施例中,所述无机负极活性材料颗粒的粒径为2nm~20μm,优选为5nm~10μm,进一步优选为10nm~1μm,尤其优选为20nm~1μm。
在一些较佳实施方案中,所述负极活性材料的材质可以是碳材料负极和非碳材料负极或两种的组合,其中非碳材料也可以是锡基材料、硅基材料、钛基材料、氧化物负极材料、氮化物负极材料等,且其中负极材料也可以是适用于锂离子电池负极材料、钠离子电池负极材料、镁离子电池负极材料、铝离子电池负极材料等所有可以适用于二次电池的负极材料和/或其前驱体,但不限于此。
优选的,所述负极活性材料的材质包括钛酸锂、石墨烯、纳米硅、石墨和氧化钼中的任意一种或两种以上的组合,但不限于此。
在一些实施例中,所述固态负极复合材料内电子导体添加剂的含量为0~50wt%,优选为0~20wt%,进一步优选为0~10wt%。
【全固态电池】
本发明中所述的全固态电池可以是锂离子电池、钠离子电池、钾离子电池、铝离子电池、镁离子电池、铁离子电池、锌离子电池等。
根据本发明的一些具体实施方式,全固态电池包括正极、负极和本发明的固态电解质,其中正极是正极集流体上涂布正极活性材料与固态电解质复合物形成,其中,固态电解质是有机高分子复合锂盐和/或低熔点固态电解质;所述有机高分子复合锂盐为聚氧化乙烯复合锂盐、聚偏氟乙烯-六氟丙烯复合锂盐、聚甲醛树脂复合锂盐、聚氯乙烯复合锂盐、聚丙烯复合锂盐或聚碳酸酯复合锂盐;所述低熔点固态电解质为反钙钛矿结构的固态电解质Li 3-xA XBC,其中A为碱土金属元素,B为氧族元素,C为卤素元素或离子簇。负极是负极集流体上涂布负极活性材料与固态电解质复合物构成,其中,固态电解质是有机高分子复合锂盐和/或低熔点固态电解质;所述有机高分子复合锂盐为聚氧化乙烯复合锂盐、聚偏氟乙烯-六氟丙烯复合锂盐、聚甲醛树脂复合锂盐、聚氯乙烯复合锂盐、聚丙烯复合锂盐或聚碳酸酯复合锂盐;所述低熔点固态电解质为反钙钛矿结构的固态电解质Li 3-xA XBC,其中A为碱土金属元素,B为氧族元素,C为卤素元素或离子簇。正极活性材料与固态电解质复合物、负极活性材料与固态电解质复合物是按照现有技术的方案来制备的。
根据本发明的另一些具体实施方式,全固态电池包括正极、负极和本发明的固态电解质,其中正极是本发明前述制备的固态正极(即正极集流体上覆设柔性薄膜状固态正极复合材料构成),负极是负极集流体上涂布负极活性材料与固态电解质复合物构成。其中负极活性材料与固态电解质复合物可以按照现有技术的方案来实施。
根据本发明的又一些具体实施方式,全固态电池包括正极、负极和本发明的固态电解质,其中正极是正极集流体上涂布正极活性材料与固态电解质复合物,负极是本发明前述制备的固态负极(即负极集流体上覆设柔性薄膜状固态负极复合材料构成)。正极活性材料与固态电解质复合物是按照现有技术的方案来制备的。
根据本发明的还一些具体实施方式,全固态电池包括正极、负极和本发明的固态电解质,其中正极是本发明前述制备的固态正极(即正极集流体上覆设柔性薄膜状固态正极复合材料构成),负极也是本发明前述制备的固态负极(即负极集流体上覆设柔性薄膜状固态负极复合材料构成)。
下面将对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。本发明以下实施例中未注明的实验手段或测试手段,在没有特别说明时,均为本领域常规手段。
实施例1-1
将约1g市售的聚丙烯腈(PAN)粉末溶解于7g的N,N-二甲基甲酰胺(DMF)中,得到聚丙烯腈溶液。随后在15KV的静电电压下进行纺丝,喷头距离滚筒收集器的距离为15cm,聚丙烯腈溶液的流速为15μl/min,如此工作约5个小时后,即可从滚筒装置上揭下一张柔性聚合物薄膜,然后在约2MPa下进行滚压约10分钟,随后在1mol/L高氯酸锂/乙醇溶液中浸泡5分钟,继而真空干燥除去其中的溶剂,得到一张20μm厚、聚合物/锂盐质量比为2∶1的固态电解质,测其密度为1.9g/cm 3
按照本发明前述记载的比界面积计算方法计算得到该固态电解质的比界面积为约1.0×10 5cm 2/cm 3。测试固态电解质的电导率为2.3×10 -4S/cm。对固态电解质的电化学阻抗进行测试,结果如图2所示。
对照例1-1
将1g市售的聚丙烯腈(PAN)和高氯酸锂按照质量比2∶1的比例溶解到10g的DMF溶剂中,长时间搅拌均匀,随后用刮涂的方法来制备,得到厚度20μm的固态电解质薄膜。
按照本发明前述记载的比界面积计算方法计算得到该固态电解质的比界面积为约500cm 2/cm 3。测试固态电解质的电导率为1.2×10 -7S/cm。
实施例1-2
将约1g市售的聚甲基丙烯酸甲酯(PMMA)粉末溶解于9g的DMF中,得到聚甲基丙烯酸甲酯溶液。随后在15KV的静电电压下进行纺丝,喷头距离滚筒收集器的距离为15cm,聚甲基丙烯酸甲酯溶液的流速为15μl/min,如此工作约7个小时后,即可从滚筒装置上揭下一张柔性聚合物薄膜,然后在约2MPa下进行滚压约10分钟,随后在1mol/L六氟磷酸锂/乙醇溶液中浸泡5分钟,继而真空干燥除去其中的溶剂,得到一张30μm厚、聚合物/锂盐质量比为4∶1的固态电解质,测其密度为2.2g/cm 3
按照本发明前述记载的比界面积计算方法计算得到该固态电解质的比界面积为约3.5×10 5cm 2/cm 3。测试固态电解质的电导率为3.1×10 -4S/cm。对固态电解质的电化学阻抗进行测试,结果如图3所示。
实施例1-3
将约1g市售的聚偏氟乙烯(PVDF)粉末溶解于9g的N-甲基吡咯烷酮(NMP)中,得到聚偏氟乙烯溶液。随后在15KV的静电电压下进行纺丝,喷头距离滚筒收集器的距离为15cm,聚偏氟乙烯溶液的流速为15μl/min,如此工作约5个小时后,即可从滚筒装置上揭下一张柔性聚合物薄膜,然后在约2MPa下进行滚压约10分钟,随后在1mol/L高氯酸锂/乙醇溶液中浸泡5分钟,继而真空干燥除去其中的溶剂,得到一张5μm厚、聚合物/锂离子盐质量比为3∶1的固态电解质,测其密度为1.2g/cm 3
按照本发明前述记载的比界面积计算方法计算得到该固态电解质的比界面积为约6×10 5cm 2/cm 3。测试固态电解质的电导率为8.1×10 -4S/cm。
实施例1-4
将约1g市售的聚丙烯腈(PAN)粉末溶解于7g的N,N-二甲基甲酰胺(DMF)中,得到聚丙烯腈溶液。随后在15KV的静电电压下进行纺丝,喷头距离滚筒收集器的距离为15cm,聚丙烯腈溶液的流速为15μl/min,如此工作约5个小时后,即可从滚筒装置上揭下一张柔性聚合物薄膜,然后在约2MPa下进行滚压约10分钟,随后分别在不同浓度的六氟磷酸锂/乙醇溶液中浸泡5分钟,继而真空干燥除去其中的溶剂,得到一些20μm厚、不同锂盐含量(锂盐含量分别为10%,15%,20%,25%)的固态电解质。
测试不同锂盐浓度对应的固态电解质的电导率,根据结果绘制曲线,如图8所示。从图8可见,离子电导率随着锂盐浓度有一个极大值,可见锂盐浓度是调节电导率的重要因素。
实施例1-5
将约1g市售的聚丙烯腈(PAN)粉末溶解于7g的N,N-二甲基甲酰胺(DMF)中,得到聚丙烯腈溶液。随后在50KV的静电电压下进行纺丝,喷头距离滚筒收 集器的距离为30cm,聚丙烯腈溶液的流速为15μl/min,如此工作约5个小时后,即可从滚筒装置上揭下一张柔性固态电解质薄膜,然后在约2MPa下进行滚压约10分钟,随后分别在不同浓度的高氯酸锂/乙醇溶液中浸泡1分钟,继而真空干燥除去其中的溶剂,得到一些20μm厚,不同锂盐含量(锂盐含量分别为10%,15%,20%,25%)的固态电解质。测试不同锂盐浓度对应的固态电解质的电导率,得到的电导率分布与图8类似。
实施例1-6
将约1g市售的聚丙烯腈(PAN)粉末溶解于约10g的N,N-二甲基甲酰胺(DMF)中,得到聚丙烯腈溶液。将约1g颗粒大小为约400nm的无机颗粒(Li 6.8La 3Zr 1.8Ta 0.2O 12,LLZTO粉末)加入到约20g含有约1wt%表面活性剂(聚乙烯吡咯烷酮)的乙醇中并搅拌分散得到无机颗粒分散液。在约20KV的高压下以肩并肩平行形式同时进行纺丝和喷雾,两个喷头距离滚筒接收装置的距离为约10cm,纺丝喷头中聚丙烯腈溶液的流速是约10μl/min,喷雾喷头中无机颗粒分散液的流速约为70μl/min,如此工作约10小时后,即可从滚筒接收装置上揭下一张柔性薄膜,随后在约1MPa下进行滚压约10分钟,随后在高氯酸锂/乙醇溶液中浸泡两分钟,继而真空干燥除去其中的溶剂,即可制得厚度25μm的柔性固态电解质膜,其中LLZTO的含量达到约75wt%,锂盐含量为4wt%,聚合物含量为21wt%,该固态电解质的电导率为约10 -3S/cm。
按照本发明前述记载的比界面积计算方法计算得到该固态电解质的比界面积为均为约8.0×10 5cm 2/cm 3
保持其他条件不变,改变锂盐的含量,得到不同锂盐含量的固态电解质,测试电导率并根据结果绘制曲线,如图9所示。
对照例1-2(刮涂制膜)
现有技术将1g市售的聚丙烯腈(PAN)和高氯酸锂按照质量比2∶1的比例,和约3g颗粒大小为约400nm的无机固体陶瓷颗粒Li 6.8La 3Zr 1.8Ta 0.2O 12(LLZTO)粉末分散到10g的DMF中,长时间搅拌均匀,随后选用刮涂的方法来制备固态电解质薄膜,制备的固态电解薄膜无机含量较低(少于约50wt%),离子电导率低于10 -4S/cm。
对照例1-3(喷头肩并肩对比喷头垂直)
将约1g市售的聚丙烯腈(PAN)粉末溶解于约10g的N,N-二甲基甲酰胺(DMF)中,得到聚丙烯腈溶液。将约1g颗粒大小为约400nm的无机固体陶瓷颗粒Li 6.8La 3Zr 1.8Ta 0.2O 12(LLZTO)粉末加入到约20g含有约1wt%表面活性剂的乙醇中并搅拌分散得到LLZTO分散液。约25KV的高压下两个喷头以相互垂直的形式同时进行纺丝和喷雾,两个喷头距离滚筒接收装置的距离约为10cm,纺丝喷头中聚丙烯腈溶液的流速是约10μl/min,喷雾喷头中锂离子电解质分散液的流速约为100μl/min,如此工作约10小时后,即可从滚筒接收装置上揭下一张柔性锂离子电解质薄膜,其中LLZTO的含量约为60wt%,且均匀性较差。
其中,喷头肩并肩是指静电纺丝喷头沿着滚筒的轴向运行所形成的平面与静电喷雾喷头沿着滚筒的轴向运行所形成的平面重合;喷头垂直是指静电纺丝喷头沿着滚筒的轴向运行所形成的平面与静电喷雾喷头沿着滚筒的轴向运行所形成的平面相垂直。
对照例1-4(有机相无机相混合后共同纺丝)
将约0.5g市售的聚丙烯腈(PAN)粉末和约0.25g的高氯酸锂溶解于10g的N,N-二甲基甲酰胺(DMF)中,得到聚丙烯腈聚合物溶液。随后将约1.25g颗粒 大小为约400nm的无机固体陶瓷颗粒Li 6.8La 3Zr 1.8Ta 0.2O 12(LLZTO)粉末加入到上述聚丙烯腈聚合物溶液中并搅拌分散得到混合溶液。约20KV的高压下进行纺丝,喷头距离滚筒接收装置的距离为约10cm,纺丝喷头中混合溶液的流速是约10μl/min,如此工作约20小时后,即可从滚筒接收装置上揭下一张薄膜,随后在约2MPa下进行滚压约10分钟,虽然其中LLZTO的含量达到约60wt%,按照本发明前述记载的比界面积计算方法计算得到该固态电解质的比界面积为约7×10 5cm 2/cm 3。然而所得固态电解质膜的致密性和电导率都较差(低于10 -4S/cm),这是由于该方法制备的固态电解质膜中无机颗粒一定程度上阻断了有机相的界面,导致有机相没有形成三维连通的界面或者使三维连通的界面的面积显著降低。
实施例1-7(非离子导体无机颗粒-氧化锌)
将约1g市售的聚丙烯腈(PAN)粉末溶解于约10g的N,N-二甲基甲酰胺(DMF)中,得到聚丙烯腈溶液。将约1g颗粒大小为约20nm的氧化锌粉末加入到约20g含有约1wt%表面活性剂的乙醇中并搅拌分散得到无机颗粒分散液。在约20KV的高压下以肩并肩平行形式同时进行纺丝和喷雾,两个喷头距离滚筒接收装置的距离为约10cm,纺丝喷头中聚丙烯腈溶液的流速是约10μl/min,喷雾喷头中无机颗粒分散液的流速约为1000μl/min,如此工作约10小时后,即可从滚筒接收装置上揭下一张柔性陶瓷薄膜,然后在约2MPa下进行滚压约10分钟,随后在1mol/L的高氯酸锂/乙醇溶液中浸泡10分钟,继而真空干燥除去其中的溶剂,即可制得30μm柔性固态电解质膜,其中氧化锌的含量达到约70wt%。此外,配制不同锂盐含量的固态电解质膜,并测试离子电导率值,如图10所示,其中最高的离子电导率为1.0×10 -3S/cm。
实施例1-8(非离子导体无机颗粒-氧化锆)
将约1g市售的聚丙烯腈(PAN)粉末溶解于约10g的N,N-二甲基甲酰胺(DMF)中,得到聚丙烯腈溶液。将约1g颗粒大小为约100nm的氧化锆粉末加入到约20g含有约1wt%表面活性剂的乙醇中并搅拌分散得到无机颗粒分散液。在约20KV的高压下以肩并肩平行形式同时进行纺丝和喷雾,两个喷头距离滚筒接收装置的距离为约5cm,纺丝喷头中聚丙烯腈溶液的流速是约10μl/min,喷雾喷头中无机颗粒分散液的流速约为50μl/min,如此工作约10小时后,即可从滚筒接收装置上揭下一张柔性陶瓷薄膜,然后在约20MPa下进行滚压约10分钟,随后在1mol/L的高氯酸锂/乙醇溶液中浸泡两分钟,继而真空干燥除去其中的溶剂,即可制得30μm厚的柔性固态电解质膜,其中氧化锆的含量达到约50wt%。此外,配制不同锂盐含量的固态电解质膜,并测试离子电导率值,发现其电导率大小及随锂盐变化规律类似于图10所示。
实施例1-9(非离子导体无机颗粒-硫化镉)
将约1g市售的聚丙烯腈(PAN)粉末溶解于约10g的N,N-二甲基甲酰胺(DMF)中,得到聚丙烯腈溶液。将约1g颗粒大小为约100nm的硫化镉粉末加入到约20g含有约1wt%表面活性剂的乙醇中并搅拌分散得到无机颗粒分散液。在约20KV的高压下以肩并肩平行形式同时进行纺丝和喷雾,两个喷头距离滚筒接收装置的距离为约5cm,纺丝喷头中聚丙烯腈溶液的流速是约10μl/min,喷雾喷头中无机颗粒分散液的流速约为30μl/min,如此工作约8小时后,即可从滚筒接收装置上揭下一张柔性陶瓷薄膜,然后在约2MPa下进行滚压约10分钟,随后在1mol/L的高氯酸锂/乙醇溶液中浸泡两分钟,继而真空干燥除去其中的溶剂,即可制得一张30μm厚、聚合物/锂盐质量比为6∶1的柔性固态电解质膜,其中硫化镉的含量达到约50wt%。
实施例1-10(非离子导体无机颗粒-氮化硼)
将约1g市售的聚丙烯腈(PAN)粉末溶解于约10g的N,N-二甲基甲酰胺(DMF)中,得到聚丙烯腈溶液。将约1g颗粒大小为约100nm的氮化硼粉末加入到约20g含有约1wt%表面活性剂的乙醇中并搅拌分散得到无机颗粒分散液。在约20KV的高压下以肩并肩平行形式同时进行纺丝和喷雾,两个喷头距离滚筒接收装置的距离为约5cm,纺丝喷头中聚丙烯腈溶液的流速是约10μl/min,喷雾喷头中无机颗粒分散液的流速约为500μl/min,如此工作约6小时后,即可从滚筒接收装置上揭下一张柔性陶瓷薄膜,然后在约100KPa下进行滚压约60分钟,随后在lmol/L的高氯酸锂/乙醇溶液中浸泡四分钟,继而真空干燥除去其中的溶剂,即可制得一张20μm厚、聚合物/锂盐质量比为5∶1的柔性固态电解质膜,其中氮化硼的含量达到约70wt%。
实施例1-11
将约1g市售的聚乙烯吡咯烷酮(PVP)粉末溶解于约10g的乙醇中,得到聚乙烯吡咯烷酮溶液。将约1g市售的、颗粒大小约为300nm的无机颗粒(LiPON型固体电解质粉末)加入到约20g含有约1wt%表面活性剂的丙酮中并搅拌分散得到无机颗粒分散液。在约30KV的高压下以肩并肩平行形式同时进行纺丝和喷雾,两个喷头距离滚筒接收装置的距离为约5cm,纺丝喷头中聚乙烯吡咯烷酮溶液的流速是约10μl/min,喷雾喷头中无机颗粒分散液的流速约为100μl/min,如此工作约3小时后,即可从滚筒接收装置上揭下一张柔性锂离子电解质薄膜,然后在约20MPa下进行滚压约1分钟,随后在1mol/L的高氯酸锂/乙醇溶液中浸泡约两分钟,继而真空干燥除去其中的溶剂,即可制得一张10μm厚、聚合物/锂盐质量比为6∶1的柔性固态电解质膜,其中LiPON的含量达到75wt%,测试电导率为1.0×10 -4S/cm,密度为3.1g/cm 3
实施例1-12
将约1g市售的聚甲基丙烯酸甲酯(PMMA)粉末溶解于约10g的N,N-二甲基甲酰胺(DMF)中,得到聚甲基丙烯酸甲酯溶液。将约1g颗粒大小为约200nm的氧化镁粉末加入到约20g含有约1wt%表面活性剂的水中并搅拌分散得到氧化镁分散液。在约5KV的高压下以肩并肩平行形式同时进行纺丝和喷雾,两个喷头距离滚筒接收装置的距离为约30cm,纺丝喷头中聚甲基丙烯酸甲酯溶液的流速是约200μl/min,喷雾喷头中氧化镁分散液的流速为约2μl/min,如此工作约10小时后,即可从滚筒接收装置上揭下一张柔性镁离子电解质薄膜,然后在约2MPa下进行滚压约10分钟,随后在镁盐溶液中浸泡24h,继而真空干燥除去其中的溶剂,即可制得一张50μm厚、聚合物/镁盐质量比为10∶1的柔性固态电解质膜,其中镁离子导体的含量达到约76wt%,电导率为1.1×10 -3S/cm,密度为3.0g/cm 3
实施例1-13
将约1g市售的聚四氟乙烯粉末溶解于约10g的二甲基乙酰胺中,得到聚四氟乙烯溶液。将约1g颗粒大小为约10μm的无机颗粒(氧化铝粉末)加入到约20g含有约1wt%表面活性剂的乙醇中并搅拌分散得到无机颗粒分散液。在约50KV的高压下以肩并肩平行形式同时进行纺丝和喷雾,两个喷头距离滚筒接收装置的距离约为25cm,纺丝喷头中聚四氟乙烯溶液的流速是7μl/min,喷雾喷头中无机颗粒分散液分散液的流速约为100μl/min,如此工作约10小时后,即可从滚筒接收装置上揭下一张柔性薄膜,然后在约2MPa下进行滚压约10分钟,随后在铝盐溶液中浸泡两分钟,即可制得柔性固态电解质膜,其中氧化铝的含量达到约90wt%。
通过以上实施例1-1、1-2、1-3以及对照例1-1可知,藉由本发明的电解质制作工艺适合于制作多种不同的固态电解质,可以获得比传统刮涂方法更高的电导率。通过实施例1-4和1-5可知,本发明的电解质工艺制作的锂离子固态电解质可通过调整锂盐的浓度来获得电导率的极大值,且此规律适用于不同的锂盐种类。通过以上实施例1-6以及对照例1-2、1-3、1-4可知,本发明的电解质制作工艺可以通过复合有机无机两种固态电解质,获得的固态电解质电导率比传统刮涂方法,以及把无机物复合到有机纤维里面制备得到的有机无机复合电解质高得多。通过以上实施例1-7、1-8、1-9、1-10可知,用非导体型的无机陶瓷作为复合电解质的无机相,所得到的有机无机复合电解制膜电导率与含离子型无机陶瓷的复合电解质膜类似。通过以上实施例1-11可知,本发明的电解质制作工艺适合于制备其他的有机物和无机陶瓷组合的复合固态电解质。通过以上实施例1-12、1-13可知,本发明的电解质制作工艺适合于制备多种不同类型的电解质,如镁离子固态电解质、铝离子固态电解质。
实施例1-5、1-6所获柔性固态电解质薄膜的离子电导性高(达到电化学器件应用需求),同时具有特殊的力学性能,在做成很薄的膜情况下,仍然可以保持力学完整性,弯折不断裂,可加工性良好,在二次电池应用中展现出良好的电化学性能。
将本发明实施例1-6中所获PAN:LLZTO-CSE柔性固态电解质的性能与以下现有文献1至7中所获电解质进行比较,结果参见表1-1。由于本发明获得的固态电解质电导率高,且电解质可以做到很薄,例如在做到5微米的情况下,该固态电解质的面积比电导是2400mS.cm -2,在目前报道的固态电解质中处于最高水平。
文献1 Kamaya,N.et al.A lithium superionic conductor.Nature materials 10,682-686,doi:10.1038/nmat3066(2011).制备的硫化物Li 10GeP 2S 12的离子电导率、厚度、面积比电导、柔性等性能参数参见表1。
文献2 Kato,Y.et al.High-power all-solid-state batteries using sulfide superionic conductors.Nature Energy 1,16030,doi:10.1038/nenergy.2016.30(2016).制备的硫化物Li 9.54Si 1.74P 1.44S 11.7C 10.3的离子电导率、厚度、面积比电导、柔性等性能参数参见表1。
文献3 Liu,Z.et al.Anomalous High Ionic Conductivity of Nanoporous β-Li3PS4.Journal of the American Chemical Society 135,975-978,doi:10.1021/ja3110895(2013).制备的硫化物β-Li 3PS 4的离子电导率、厚度、面积比电导、柔性等性能参数参见表1。
文献4 Murugan,R.,Thangadurai,V.&Weppner,W.Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12.Angewandte Chemie International Edition 46,7778-7781,doi:10.1002/anie.200701144(2007).制备的氧化物Li 7La 3Zr 2O 12的离子电导率、厚度、面积比电导、柔性等性能参数参见表1。
文献5 Fu,K.K.et al.Flexible,solid-state,ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries.Proc Natl Acad Sci U S A 113,7094-7099,doi:10.1073/pnas.1600422113(2016).制备的复合电解质FRPC的离子电导率、厚度、面积比电导、柔性等性能参数参见表1。
文献6 Zhao,C.Z.et al.An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes.Proc Natl Acad Sci U S A,doi:10.1073/pnas.1708489114(2017).制备的复合电解质PLL的离子电导率、厚度、 面积比电导、柔性等性能参数参见表1。
文献7 Zhang,X.et al.Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride)Induces High Ionic Conductivity,Mechanical Strength,and Thermal Stability of Solid Composite Electrolytes.Journal of the American Chemical Society,doi:10.1021/jacs.7b06364(2017).制备的复合电解质PVDF/LLZTO-CPE的离子电导率、厚度、面积比电导、柔性等性能参数参见表1。
表1-1现有文献1-7、实施例1-6所获固态电解质的性能参数
Figure PCTCN2019078874-appb-000001
此外,本案发明人还参照实施例1-1至实施例1-13方式,以本说明书中列出的其它原料和条件等进行了试验,并同样制得了离子电导性高(大于10 -4S/cm)、力学性能和电化学性能优异的柔性固态电解质。
实施例1-14
将约1g市售的聚丙烯腈(PAN)粉末溶解于7g的N,N-二甲基甲酰胺(DMF)中,得到聚丙烯腈溶液。随后在15KV的静电电压下进行纺丝,喷头距离滚筒收集器的距离为15cm,聚丙烯腈溶液的流速为15μl/min,如此工作约5个小时后,即可从滚筒装置上揭下一张柔性聚合物薄膜,其中聚丙烯腈的纤维直径约为400nm,然后在约2MPa下进行滚压约10分钟,随后在1mol/L高氯酸锂/乙醇溶液中浸泡,继而真空干燥除去其中的溶剂,得到一张20μm厚、聚合物/锂盐质量比为5∶1的固态电解质,测试固态电解质的离子电导率为5×10 -4S/cm。
实施例1-15
基于实施例1-14的方法,采用不同孔径的纺丝喷头,改变聚丙烯腈纤维的直径(不同直径的聚丙烯腈纤维制成的纤维膜的SEM照片如图26所示),以获得膜材具有不同比界面积的固态电解质(其他条件完全同实施例14),并测试固态电解质的离子电导率。结果如表1-2所示。
表1-2不同比界面积的固态电解质的性能参数
Figure PCTCN2019078874-appb-000002
Figure PCTCN2019078874-appb-000003
从表1-2可见,其他条件不变时,固态电解质的离子电导率随着有机相的比界面积的增加而提高。
实施例1-16
将约1g市售的聚丙烯腈(PAN)粉末溶解于约10g的N,N-二甲基甲酰胺(DMF)中,得到聚丙烯腈溶液。将约1g颗粒大小为约20nm的无机颗粒(氧化锌粉末)加入到约20g含有约1wt%表面活性剂的乙醇中并搅拌分散得到无机颗粒分散液。在约15KV的高压下以肩并肩平行形式同时进行纺丝和喷雾,两个喷头距离滚筒接收装置的距离为约10cm,纺丝喷头中聚丙烯腈溶液的流速是约10μl/min,纺丝直径为400nm,喷雾喷头中无机颗粒分散液的流速约为1000μl/min,如此工作约10小时后,即可从滚筒接收装置上揭下一张柔性陶瓷薄膜,然后在约2MPa下进行滚压约10分钟,随后在1mol/L的高氯酸锂/乙醇溶液中浸泡,继而真空干燥除去其中的溶剂,即可制得30μm厚、聚合物/锂盐质量比为5∶1、氧化锌的含量达到约70wt%的柔性固态电解质薄膜。
基于上述基本相同的方法,只是改变无机颗粒的含量,制备得到不同无机颗粒含量的柔性固态电解质薄膜,计算比界面积并测试固态电解质的离子电导率,结果如表1-3所示。
表1-3不同无机颗粒含量的固态电解质的性能参数
Figure PCTCN2019078874-appb-000004
从表1-3可见,加入不同量的无机颗粒,可以获得不同比界面积的膜材,且由此制备的固态电解质的离子电导率随着有机相的比界面积的增加而增加。
又及,本发明提供的固态电解质的制备方法既适用于锂离子电池体系,也适用于Mg/Al等离子电池体系,为全固态电池的研发提供了一个良好的思路。同时,本发明提供的方法不仅仅适用于固态电解质薄膜的制备,也可以适用于所有的无机材料薄膜的制备,具有普适意义。
实施例2-1
将约1g市售的聚偏氟乙烯(PVDF)粉末溶解于约10g的N,N-二甲基甲酰胺(DMF)中,得到聚偏氟乙烯溶液。将约1g市售的、颗粒大小约为700nm的磷酸铁锂粉末和0.14g市售的乙炔黑加入到约20g含有约1wt%表面活性剂的 乙醇中并搅拌分散得到正极活性材料和乙炔黑的混合分散液。在约20KV的高压下同时进行纺丝和喷雾,纺丝和喷雾针头距离滚筒接收装置的距离为约8cm,纺丝针头中聚偏氟乙烯溶液的流速是约10μl/min,喷雾针头中混合分散液的流速为约80μl/min,如此工作约8小时后,即可从滚筒接收装置上揭下一张柔性正极薄膜,随后在约100KPa下进行滚压约60分钟,即可制得厚度为80μm的柔性固态正极薄膜,密度为2.5g/cm 3,其中正极活性材料的含量达到约70wt%。由本实施例制备的柔性固态正极薄膜的扫描电镜图参见图11所示,其宏观照片参见图12所示。此外,将丁二腈-5wt%二(三氟甲基磺酰)亚胺锂(SN-5wt%LITFSI)加热熔融后滴一滴到该柔性正极薄膜中,使得固态正极复合材料内的电解质盐和有机纤维材料的质量比为1∶6,即得固态正极复合材料,其扫描电镜图参见图13所示,将其应用于全固态锂电池中展现了良好的电化学性能,其循环性能如图14所示。
实施例2-2
将约1g市售的聚四氟乙烯(PTFE)溶解于约10g的N甲基吡咯烷酮中,得到聚四氟乙烯溶液。将约0.8g市售的、颗粒大小约为700nm的磷酸铁锂粉末和约0.14g市售的、颗粒大小约为30~45nm的科琴黑,以及0.2g的颗粒大小约为300~450nm的锂离子快导体锂镧锆钽氧(LLZTO)加入到约20g含有约1wt%表面活性剂的乙醇中并搅拌分散得到混合分散液。在约15KV的高压下同时进行纺丝和喷雾,纺丝和喷雾针头距离滚筒接收装置的距离为约5cm,纺丝针头中聚四氟乙烯溶液的流速是约10μl/min,喷雾针头中混合分散液的流速为约100μl/min,如此工作约8小时后,即可从滚筒接收装置上揭下一张柔性固态正极薄膜,该薄膜在约1MPa下进行滚压约1分钟后厚度为100μm,之后在高氯酸锂/乙醇溶液中浸泡约20分钟并烘干,使得电解质盐和有机纤维材料的质量比为1∶3,即得柔性固态正极复合材料,其离子电导率为1.0×10 -3S/cm,密度为2.8g/cm 3,其中磷酸铁锂正极活性材料的含量达到约80wt%。由本实施例制备的柔性固态正极复合材料的扫描电镜图参见图15所示,其首次充放电曲线如图16所示。
实施例2-3
将约1g市售的聚丙烯腈(PAN)粉末溶解于约10g的N,N-二甲基甲酰胺(DMF)中,得到聚丙烯腈溶液。将约1g镍锰酸锂(LiNi 0.5Mn 0.5O 2)粉末和0.14g市售的科琴黑加入到约20g含有约1wt%表面活性剂的乙醇中并搅拌分散得到混合分散液。在约15KV的高压下以肩并肩平行形式同时进行纺丝和喷雾,纺丝和喷雾针头距离滚筒接收装置的距离为约15cm,纺丝针头中聚丙烯腈溶液的流速是约10μl/min,喷雾针头中混合分散液的流速为约70μl/min,如此工作约16小时后,即可从滚筒接收装置上揭下一张柔性固态正极薄膜,在约1MPa下进行滚压约1分钟厚度为250μm,之后在高氯酸锂/乙醇溶液中浸泡一段时间后烘干,使得电解质盐和有机纤维材料的质量比为1∶5,即得固态正极复合材料,其离子电导率为1.0×10 -4S/cm,密度为3.8g/cm 3,其中镍锰酸锂的含量为约85wt%。由本实施例制备的柔性固态正极复合材料的扫描电镜图参见图17所示,其首次充放电曲线如图18所示。
实施例2-4
将约0.4g市售的聚偏氟乙烯(PVDF)粉末溶解于约10g的N-甲基吡咯烷酮中,得到聚偏氟乙烯溶液。将约1g市售的、颗粒大小约为5μm的镍钴锰酸锂Li(NiCoMn)O 2粉末和约0.15g市售的、颗粒大小约为30~45nm的乙炔黑加入到约20g含有约0.1wt%表面活性剂的丙酮中并搅拌分散得到混合分散液。在约 50KV的高压下同时进行纺丝和喷雾,纺丝和喷雾针头距离滚筒接收装置的距离为约20cm,纺丝针头中聚偏氟乙烯溶液的流速是约200μl/min,喷雾针头中混合分散液的流速为约2μl/min,如此工作约15小时后,即可从滚筒接收装置上揭下一张柔性固态正极薄膜,随后在约10MPa下进行滚压约5分钟即可制得厚度为200μm的柔性固态正极薄膜,其中无机正极活性材料颗粒镍钴锰酸锂的含量达到约95wt%。此外,将1mol/L的二(三氟甲基磺酰)亚胺锂-乙醇溶液滴到该柔性正极薄膜中并烘干,使电解质盐和有机纤维材料的质量比为1∶4,即得固态正极复合材料,其离子电导率为1.0×10 -4S/cm,密度为4.3g/cm 3,其扫描电镜图参见图19所示。
实施例2-5
将约1g市售的聚丙烯腈(PAN)粉末溶解于约10g的二甲基亚砜中,得到聚丙烯腈溶液。将约2g市售的、颗粒大小约为700nm的锰酸锂粉末加入到约20g异丙醇中并搅拌分散得到锰酸锂分散液。在约5KV的高压下以肩并肩平行形式同时进行纺丝和喷雾,纺丝和喷雾针头距离滚筒接收装置的距离为约5cm,纺丝针头中聚丙烯腈溶液的流速是约10μl/min,喷雾针头中锰酸锂分散液的流速为约500μl/min,如此工作约30小时后,即可从滚筒接收装置上揭下一张柔性固态正极薄膜,该膜在约20MPa下进行滚压约1分钟后厚度为300μm,之后在锂盐溶液中浸泡一段时间后烘干,使电解质盐和有机纤维材料的质量比为1∶3,即得柔性固态正极复合材料,其密度为2.5g/cm 3,其中锰酸锂的含量为约60wt%。
实施例2-6
将约1g市售的聚甲基丙烯酸甲酯(PMMA)溶解于约10g的乙腈中,得到聚甲基丙烯酸甲酯溶液。将约1g市售的、颗粒大小约为700nm的钴酸锂粉末和约0.14g市售的、颗粒大小约为30~45nm的乙炔黑加入到约20g水中并搅拌分散得到混合分散液。在约25KV的高压下同时进行纺丝和喷雾,纺丝和喷雾针头距离滚筒接收装置的距离为约30cm,纺丝针头中聚甲基丙烯酸甲酯溶液的流速是约10μl/min,喷雾针头中混合分散液的流速为约30μl/min,如此工作约10小时后,即可从滚筒接收装置上揭下一张柔性固态正极薄膜,随后在约100KPa下进行滚压约60分钟厚度为30μm,之后在高氯酸锂/乙醇溶液中浸泡一段时间后烘干,使电解质盐和有机纤维材料的质量比为1∶5,即得柔性固态正极复合材料,其离子电导率为1.0×10 -4S/cm,密度为1.9g/cm 3,其中钴酸锂的含量达到约30wt%。
实施例2-7
将约1g市售的聚丙烯腈(PAN)粉末溶解于约10g的N,N-二甲基甲酰胺(DMF)中,得到聚丙烯腈溶液。将约1g市售的、颗粒大小约为700nm的钴酸钠(Na 0.5CoO 2)粉末加入到约20g含有约1wt%表面活性剂的乙醇中并搅拌分散得到正极活性材料的分散液。在约15KV的高压下同时进行纺丝和喷雾,纺丝和喷雾针头距离滚筒接收装置的距离为约6cm,纺丝针头中聚丙烯腈溶液的流速是约2μl/min,喷雾针头中正极活性材料的分散液的流速为约200μl/min,如此工作约8小时后,即可从滚筒接收装置上揭下一张柔性薄膜,之后在约5MPa下进行滚压约5分钟,即可制得厚度为500μm的柔性固态正极薄膜,其中正极活性材料的含量达到约50wt%,然后往该柔性正极薄膜中滴加适量的0.5M的高氯酸钠--乙醇溶液,并于真空加热状态下除去乙醇溶液,使电解质盐和有机纤维材料的质量比为1∶10,即得固态正极复合材料,其离子电导率为1.0×10 -4S/cm,密度为2.6g/cm 3
对照例2-1(肩并肩对相互垂直)
将约1g市售的聚偏氟乙烯(PVDF)粉末溶解于约10g的N,N-二甲基甲酰胺(DMF)中,得到聚偏氟乙烯溶液。将约1g市售的、颗粒大小约为0.5微米的镍锰酸锂加入到约20g含有约0.1wt%表面活性剂的乙醇中并搅拌分散得到镍锰酸锂分散液。在约25KV的高压下两个喷头以相互垂直的形式同时进行纺丝和喷雾,纺丝和喷雾两个喷头距离滚筒接收装置的距离为约10cm,纺丝喷头中聚偏氟乙烯溶液的流速是约10μl/min,喷雾针头中镍锰酸锂分散液的流速为约70μl/min,如此工作约10小时后,即可从滚筒接收装置上揭下一张柔性正极薄膜,其中镍锰酸锂的含量为60wt%。由本对比例制备的薄膜的扫描电镜图参见图20,从中可见,镍锰酸锂的分布不是很均匀。
对照例2-2(聚合物与正极活性材料复合后一起纺丝)
将1g市售的聚偏氟乙烯(PVDF)粉末和1g市售的、颗粒大小约为0.5微米的镍锰酸锂粉末分散到N,N-二甲基甲酰胺(DMF)中,长时间搅拌均匀,将混合均匀的溶液在约15KV的高压下进行纺丝,纺丝喷头距离滚筒接收装置的距离为约Scm,纺丝喷头中正极混合溶液的流速是约15μl/min,如此工作约20小时后,即可从滚筒接收装置上揭下一张薄膜,随后在约1000KPa下进行滚压约10分钟,无机颗粒固含量约50%。
对照例2-3(刮涂)
将1g市售的聚偏氟乙烯(PVDF)粉末和1g市售的、颗粒大小约为0.5微米的镍锰酸锂粉末分散到N,N-二甲基甲酰胺(DMF)中,长时间搅拌均匀,随后选用刮涂或者流延的方法来制备正极薄膜,该方法制备的正极薄膜正极材料分散不均匀且极片电导率较低。
通过实施例2-1至2-7以及对照例2-1至2-3,可以发现,藉由本发明的上述技术方案所获柔性固态正极复合材料的离子电导性高(达到电化学器件应用需求),同时具有良好的力学性能,弯折不断裂,可加工性良好,在二次电池应用中展现出良好的电化学性能。
此外,本案发明人还参照实施例2-1至实施例2-7的方式,以本说明书中列出的其它原料和条件等进行了试验,并同样制得了离子电导性高、力学性能和电化学性能优异的柔性固态正极复合材料。
实施例3-1
将约1g市售的聚丙烯腈(PAN)粉末溶解于约10g的N,N-二甲基甲酰胺(DMF)中,得到聚丙烯腈溶液。将约1g市售的纳米硅粉末和0.14g市售的乙炔黑加入到约20g含有约1wt%表面活性剂的乙醇中并搅拌分散得到纳米硅和乙炔黑的混合分散液。在约20KV的高压下以肩并肩平行形式同时进行纺丝和喷雾,纺丝和喷雾针头距离滚筒接收装置的距离为约10cm,纺丝针头中聚丙烯腈溶液的流速是约10μl/min,喷雾针头中混合分散液的流速为约70μl/min,如此工作约10小时后,即可从滚筒接收装置上揭下一张柔性固态负极薄膜,随后在约100KPa下进行滚压约60分钟,此外,将丁二腈-5wt%二(三氟甲基磺酰)亚胺锂(SN-5wt%LITFSI)加热熔融后滴一滴到该柔性负极薄膜中,使电解质盐和有机纤维材料的质量比为1∶6,即得柔性固态负极复合材料,其中纳米硅的含量约为60wt%。由本实施例制备的固态负极复合材料的扫描电镜图参见图21所示,其宏观照片参见图22所示,经测试其厚度为60μm,密度为1.3g/cm 3。此外,将本实施例的柔性固态负极复合材料应用于全固态锂电池中也展现良好的电化学性能。
实施例3-2
将约1g市售的聚四氟乙烯(PTFE)溶解于约10g的乙醇中,得到聚四氟乙烯溶液。将约1g市售的、颗粒大小约为400nm的氧化锰粉末和约0.14g市售的乙炔黑加入到约20g含有约1wt%表面活性剂的乙醇中并搅拌分散得到负极碳材料混合分散液。在约20KV的高压下同时进行纺丝和喷雾,纺丝和喷雾针头距离滚筒接收装置的距离为约10cm,纺丝针头中聚四氟乙烯溶液的流速是约5μl/min,喷雾针头中负极碳材料混合分散液的流速为约250μl/min,如此工作约30小时后,即可从滚筒接收装置上揭下一张柔性固态负极薄膜,随后在约500KPa下进行滚压约10分钟,之后在高氯酸锂/乙醇溶液中浸泡一段时间后烘干,使电解质盐和有机纤维材料的质量比为1∶5,即得厚度为250μm的柔性固态负极复合材料,经测试其离子电导率约为1.0x10 -4S/cm,密度为3.5g/cm 3,其中负极氧化锰的含量达到约85wt%。由本实施例制备的柔性固态负极复合材料的扫描电镜图参见图23所示。
实施例3-3
将约1g市售的聚偏氟乙烯(PVDF)粉末溶解于约10g的N,N-二甲基甲酰胺(DMF)中,得到聚偏氟乙烯溶液。将约1g市售的、颗粒大小约为700nm的钛酸锂粉末和约0.1g市售的石墨烯加入到约20g含有约1wt%表面活性剂的乙醇中并搅拌分散得到负极活性材料的乙醇分散液。在约15KV的高压下同时进行纺丝和喷雾,纺丝和喷雾针头距离滚筒接收装置的距离为约8cm,纺丝针头中聚偏氟乙烯溶液的流速是约10μl/min,喷雾针头中负极活性材料的乙醇分散液的流速为约80μl/min,如此工作约8小时后,即可从滚筒接收装置上揭下一张柔性固态负极薄膜,随后在约100KPa下进行滚压约1分钟,之后在高氯酸锂/乙醇溶液中浸泡一定时间后烘干,使电解质盐和有机纤维材料的质量比为1∶3,即得厚度为50μm的柔性固态负极复合材料,经测试其密度为3.2g/cm 3,其中负极活性材料的含量达到约95wt%。
实施例3-4
将约1g市售的聚丙烯腈(PAN)粉末溶解于约10g的N,N-二甲基甲酰胺(DMF)中,得到聚丙烯腈溶液。将约1g市售的、直径为0.2微米的氧化钼粉末(MoO 3)加入到约20g约20g含有约1wt%表面活性剂的乙醇中并搅拌分散得到负极活性材料的乙醇中并搅拌分散得到氧化钼负极活性物质前驱体分散液。在约20KV的高压下以肩并肩平行形式同时进行纺丝和喷雾,纺丝和喷雾针头距离滚筒接收装置的距离为约10cm,纺丝针头中聚丙烯腈溶液的流速是约10μl/min,喷雾针头中氧化钼负极活性物质前驱体分散液的流速为约100μl/min,如此工作约20小时后,即可从滚筒接收装置上揭下一张柔性固态负极薄膜,随后在约10MPa下进行滚压约5分钟,此外,将1mol/L的二(三氟甲基磺酰)亚胺锂-乙醇溶液滴到该柔性负极薄膜中并烘干,即可制得厚度为150μm的固态负极复合材料,经测试其密度为3.7g/cm 3。其中氧化钼的含量为约75wt%,固态负极内的电解质盐和有机纤维材料的质量比为1∶10。
实施例3-5
将约1g市售的聚丙烯腈(PAN)粉末溶解于约10g的N,N-二甲基甲酰胺(DMF)中,得到聚丙烯腈溶液。将约1g市售的、直径为0.3微米的氧化钼粉末(MoO 3),以及0.2g的颗粒大小约为300nm的锂离子快导体锂镧锆钽氧(LLZTO)加入到约20g乙醇中并搅拌分散得到氧化钼负极活性物质前驱体分散液。在约50KV的高压下以肩并肩平行形式同时进行纺丝和喷雾,纺丝和喷雾针头距离滚 筒接收装置的距离为约10cm,纺丝针头中聚丙烯腈溶液的流速是约10μl/min,喷雾针头中氧化钼负极活性物质前驱体分散液的流速为约50μl/min,如此工作约10小时后,即可从滚筒接收装置上揭下一张柔性固态负极薄膜,随后在约400KPa下进行滚压约1分钟,之后在锂盐溶液中浸泡一定时间后烘干,即得厚度为80μm的固态负极复合材料,其中氧化钼的含量为约60wt%,固态负极复合材料内的电解质盐和有机纤维材料的质量比为1∶4。
实施例3-6
将约1g市售的聚偏氟乙烯(PVDF)粉末溶解于约10g的N-甲基吡咯烷酮中,得到N-甲基吡咯烷酮溶液。将约1g市售的、颗粒大小约为700nm的钛酸锂粉末和约0.14g市售的石墨加入到约20g含有约0.1wt%表面活性剂的丙酮中并搅拌分散得到混合分散液。在约30KV的高压下同时进行纺丝和喷雾,纺丝和喷雾针头距离滚筒接收装置的距离为约20cm,纺丝针头中聚偏氟乙烯溶液的流速是约200μl/min,喷雾针头中混合分散液的流速为约2μl/min,如此工作约35小时后,即可从滚筒接收装置上揭下一张柔性固态负极薄膜,随后在约200KPa下进行滚压约20分钟,之后在锂盐溶液中浸泡一定时间后烘干,即得厚度为300μm的柔性固态负极复合材料,其中负极活性材料的含量达到约70wt%,固态负极复合材料内的电解质盐和有机纤维材料的质量比为1∶2。
实施例3-7
将约1g市售的聚丙烯腈(PAN)粉末溶解于约10g的二甲基亚砜中,得到聚丙烯腈溶液。将约1g市售的纳米硅粉末加入到约20g含有约0.1wt%表面活性剂的异丙醇中并搅拌分散得到纳米硅分散液。在约5KV的高压下以肩并肩平行形式同时进行纺丝和喷雾,纺丝和喷雾针头距离滚筒接收装置的距离为约5cm,纺丝针头中聚丙烯腈溶液的流速是约5μl/min,喷雾针头中纳米硅分散液的流速为约500μl/min,如此工作约8小时后,即可从滚筒接收装置上揭下一张柔性固态负极薄膜,随后在约100KPa下进行滚压约60分钟,之后在锂盐溶液中浸泡一定时间后烘干,即得厚度为60μm的柔性固态负极复合材料,其中纳米硅的含量为约80wt%,固态负极复合材料内的电解质盐和有机纤维材料的质量比为1∶3。该固态负极复合材料的扫描电镜图如图24所示。
实施例3-8
将约1g市售的聚甲基丙烯酸甲酯(PMMA)溶解于约10g的乙醇中,得到聚甲基丙烯酸甲酯溶液。将约1g市售的、直径约为0.3微米的氧化钼粉末加入到约20g的含有约0.1wt%表面活性剂的水中并搅拌分散得到氧化钼负极活性物质前驱体分散液。在约25KV的高压下同时进行纺丝和喷雾,纺丝和喷雾针头距离滚筒接收装置的距离为约30cm,纺丝针头中聚甲基丙烯酸甲酯溶液的流速是约10μl/min,喷雾针头中氧化钼负极活性物质前驱体分散液的流速为约30μl/min,如此工作约5小时后,即可从滚筒接收装置上揭下一张柔性固态负极薄膜,随后在约800KPa下进行滚压约25分钟,之后在锂盐中浸泡一定时间后烘干,即可制得厚度为30μm的固态负极复合材料,其中氧化钼的含量达到约50wt%,固态负极复合材料内的电解质盐和有机纤维材料的质量比为1∶6。
实施例3-9
将约1g市售的聚偏氟乙烯(PVDF)粉末溶解于约10g的N-甲基吡咯烷酮中,得到N-甲基吡咯烷酮溶液。将约1g市售的、颗粒大小约为700nm的钛酸锂粉末和约0.14g市售的石墨加入到约20g含有约0.1wt%表面活性剂的丙酮中并搅拌分散得到混合分散液。在约30KV的高压下同时进行纺丝和喷雾,纺丝和喷 雾针头距离滚筒接收装置的距离为约20cm,纺丝针头中聚偏氟乙烯溶液的流速是约10μl/min,喷雾针头中混合分散液的流速为约100μl/min,如此工作约35小时后,即可从滚筒接收装置上揭下一张柔性固态负极薄膜,随后在约200KPa下进行滚压约20分钟,之后在钠盐溶液中浸泡一定时间后烘干,即可制得厚度为500μm的柔性固态负极复合材料,其中负极活性材料的含量达到约70wt%,固态负极复合材料内的电解质盐和有机纤维材料的质量比为1∶3。
实施例3-10
将约1g市售的聚甲基丙烯酸甲酯(PMMA)溶解于约10g的乙醇中,得到聚甲基丙烯酸甲酯溶液。将约1g市售的、直径约为0.3微米的氧化钼粉末加入到约20g的含有约0.1wt%表面活性剂的水中并搅拌分散得到氧化钼负极活性物质前驱体分散液。在约25KV的高压下同时进行纺丝和喷雾,纺丝和喷雾针头距离滚筒接收装置的距离为约30cm,纺丝针头中聚甲基丙烯酸甲酯溶液的流速是约10μl/min,喷雾针头中氧化钼负极活性物质前驱体分散液的流速为约30μl/min,如此工作约5小时后,即可从滚筒接收装置上揭下一张柔性固态负极薄膜,随后在约800KPa下进行滚压约25分钟,之后在钠盐中浸泡浸泡一定时间后烘干,即可制得厚度为30μm的固态负极复合材料,其中氧化钼的含量达到约50wt%,固态负极复合材料内的电解质盐和有机纤维材料的质量比为1∶6。
对照例3-1(滚筒无负电压)
将约1g市售的聚偏氟乙烯(PVDF)粉末溶解于约10g的N,N-二甲基甲酰胺(DMF)中,得到聚偏氟乙烯溶液。将约1g市售的钛酸锂粉末加入到约20g乙醇中并搅拌分散得到钛酸锂分散液。在15KV的高压下同时进行纺丝和喷雾,与之前接收面为带有负电荷发生装置的滚筒不同,该对比例中滚筒接地,纺丝和喷雾针头距离滚筒接收装置的距离为10cm,纺丝针头中聚偏氟乙烯溶液的流速是10μl/min,喷雾针头中钛酸锂分散液的流速为70μl/min,如此工作8小时后,即可从滚筒接收装置上揭下一张柔性负极薄膜,其中负极材料钛酸锂的含量达到75wt%,纺丝过程中丝乱飞且最终的膜的均匀性比较差。由本对比例制备的柔性负极薄膜的扫描电镜图参见图25所示。
对照例3-2(肩并肩对相互垂直)
将约1g市售的聚丙烯腈(PAN)粉末溶解于约10g的N,N-二甲基甲酰胺(DMF)中,得到聚丙烯腈溶液。将约1g市售的纳米硅粉末加入到约20g乙醇中并搅拌分散得到纳米硅分散液。约15KV的高压下两个喷头以相互垂直的形式同时进行纺丝和喷雾,两个喷头距离滚筒接收装置的距离约为8cm,纺丝喷头中聚丙烯腈溶液的流速是约10μl/min,喷雾喷头中纳米硅分散液的流速约为70μl/min,如此工作约8小时后,即可从滚筒接收装置上揭下一张柔性负极薄膜,其中纳米硅的含量约为60wt%,均匀性较差。
对照例3-3(聚合物与负极活性材料复合后一起纺丝)
将约1g市售的聚氧化乙烯(PEO)溶解于约10g的乙醇中,得到聚氧化乙烯溶液。随后将约2g市售的、颗粒大小约为700nm的钛酸锂粉末和约0.14g市售的石墨烯加入到上述聚氧化乙烯溶液中并搅拌分散得到负极混合溶液。约15KV的高压下进行纺丝,喷头距离滚筒接收装置的距离为约8cm,纺丝喷头中负极混合溶液的流速是约10μl/min,如此工作约20小时后,即可从滚筒接收装置上揭下一张薄膜,随后在约100KPa下进行滚压约10分钟,之后在锂盐中浸泡2分钟,即可制得厚度为140μm的柔性钛酸锂薄膜,虽然其中无机负极颗粒的含量达到66wt%,但是膜的致密性和电导率都较差,且该对照例的生产工艺产 率较低。
对照例3-4(刮涂)
将约1g市售的聚四氟乙烯(PTFE),约1g市售的、颗粒大小约为400nm的氧化锰粉末和约0.14g市售的乙炔黑,以及适量的高氯酸锂分散到N,N-二甲基甲酰胺(DMF)中,长时间搅拌均匀,随后选用刮涂或者流延的方法来制备负极薄膜,得到无机颗粒固含量约50%的薄膜。但是该类方法制备的负极薄膜无机负极颗粒分布不均匀且电导率较低。
通过实施例3-1至3-10,可以发现,藉由本发明的上述技术方案所获柔性固态负极复合材料的离子电导性高(达到电化学器件应用需求),同时具有良好的力学性能,可加工性良好,在二次电池应用中展现出良好的电化学性能。
此外,本案发明人还参照实施例3-1-实施例3-10的方式,以本说明书中列出的其它原料和条件等进行了试验,并同样制得了离子电导性高、力学性能和电化学性能优异的柔性固态负极复合材料。
实施例4-1
本实施例提供一种全固态锂电池,其包括正极、负极和柔性固态电解质薄膜。其中,正极是正极集流体上涂布正极活性材料与固态电解质复合物构成,负极是负极集流体上涂布负极活性材料与固态电解质复合物构成。正极活性材料与固态电解质复合物、负极活性材料与固态电解质复合物是按照现有技术的方案来制备的。其中柔性固态电解质薄膜为按照实施例1-6制备的固态电解质。
正极活性材料与固态电解质复合物涂层厚度为50-100μm,组成及涂布过程如下:将正极活性物质,固态电解质,导电炭黑,粘结剂按照质量比为6∶3∶0.5∶0.5的比例在溶剂中混合均匀,随后将其在集流体上进行涂布,随后高温加热挥发溶剂,形成正极材料。其中固态电解质为聚氧化乙烯复合锂盐。
负极活性材料与固态电解质复合物涂层厚度为50-100μm,组成及涂布过程如下:将负极活性物质,固态电解质,导电炭黑,粘结剂按照质量比为6∶3∶0.5∶0.5的比例在溶剂中混合均匀,随后将其在集流体上进行涂布,随后高温加热挥发溶剂,形成负极材料。其中固态电解质为聚氧化乙烯复合锂盐。
所制备的全固态锂电池具有良好的电化学性能和力学性能。
实施例4-2
本实施例提供一种全固态锂电池,其包括正极、负极和固态电解质。其中,正极是正极集流体上覆设实施例2-1的柔性薄膜状固态正极复合材料构成,负极是负极集流体上覆设实施例3-1的柔性薄膜状固态负极复合材料构成,固态电解质为实施例1-1制备的固态电解质。所制备的全固态锂电池具有良好的电化学性能和力学性能。
需要说明的是,以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (40)

  1. 一种固态电解质,包含膜材和电解质盐,其特征在于:所述膜材包括由高分子材料形成的有机相,所述有机相包含有三维连通的界面且比界面积大于等于1×10 4cm 2/cm 3,所述的电解质盐溶解于所述有机相中。
  2. 根据权利要求1所述的固态电解质,其特征在于:所述固态电解质的室温离子电导率大于等于1.0×10 -4S/cm。
  3. 根据权利要求2所述的固态电解质,其特征在于:所述固态电解质的室温离子电导率为1.0×10 -4S/cm~1.0×10 -2S/cm。
  4. 根据权利要求3所述的固态电解质,其特征在于:所述固态电解质的室温离子电导率为1.0×10 -4S/cm~2.0×10 -3S/cm。
  5. 根据权利要求1所述的固态电解质,其特征在于:所述的膜材的厚度为5~90μm。
  6. 根据权利要求5所述的固态电解质,其特征在于:所述的膜材的厚度为5~89μm,优选为10~60μm,优选为10~30μm,进一步优选为20~30μm。
  7. 根据权利要求1至6中任一项权利要求所述的固态电解质,其特征在于:所述固态电解质室温下的面积比电导为500~2500mS.cm -2,优选为1000~2500mS.cm -2,更优选为2000~2500mS.cm -2
  8. 根据权利要求1所述的固态电解质,其特征在于:所述的有机相的比界面积为1×10 4cm 2/cm 3~1×10 8cm 2/cm 3
  9. 根据权利要求8所述的固态电解质,其特征在于:所述的有机相的比界面积为3×10 4cm 2/cm 3~1×10 8cm 2/cm 3
  10. 根据权利要求1所述的固态电解质,其特征在于:所述的电解质盐与所述有机相的质量比为1∶2~1∶10。
  11. 根据权利要求10所述的固态电解质,其特征在于:所述的电解质盐与所述有机相的质量比为1∶3~1∶6。
  12. 根据权利要求1所述的固态电解质,其特征在于:所述的膜材由所述的有机相构成;或者所述的膜材还包括用于增加所述的有机相的比界面积的无机颗粒。
  13. 根据权利要求1所述的固态电解质,其特征在于:所述有机相具有由初级结构单元以聚集和/或叠加的方式形成的次级结构,该次级结构提供所述三维连通的界面。
  14. 根据权利要求13所述的固态电解质,其特征在于:所述的膜材还包括用于增加所述的有机相的比界面积的无机颗粒,所述的无机颗粒分布在所述初级结构单元之间。
  15. 根据权利要求14所述的固态电解质,其特征在于:所述初级结构单元为选自高分子纤维、高分子颗粒、高分子片中的一种或多种的组合,所述的无机颗粒附着和/或嵌在所述初级结构单元的表面。
  16. 根据权利要求1、12至15中的任一项权利要求所述的固态电解质,其特征在于:所述有机相是高分子纤维聚集形成的膜。
  17. 根据权利要求12或14所述的固态电解质,其特征在于:所述的无机颗粒的粒径为2nm~10μm,优选为10nm~2μm,进一步优选为20nm~2μm,更优选为50nm~2μm,更进一步优选为50nm~500nm。
  18. 根据权利要求17所述的固态电解质,其特征在于:所述的无机颗粒为无机非离子导体;或者,所述无机颗粒为无机离子导体;或者,所述无机颗粒为无机非离子导体与无机离子导体的组合。
  19. 根据权利要求18所述的固态电解质,其特征在于:所述无机非离子导体为选自氧化物、硫化物、氮化物、氟化物、氯化物和碳化物中的任意一种或两种以上的组合。
  20. 根据权利要求12或14所述的固态电解质,其特征在于:所述的固态电解质中无机颗粒的含量为小于等于95wt%,优选小于等于80wt%。
  21. 根据权利要求20所述的固态电解质,其特征在于:所述的固态电解质中无机颗粒的含量为20wt%~80wt%,优选为50wt%~80wt%,进一步优选为70wt%~80wt%。
  22. 根据权利要求1、12至15中任一项权利要求所述的固态电解质,其特征在于:所述固态电解质通过如下步骤制备:
    采用静电纺丝技术将所述高分子材料的溶液喷射到选定接收面上制成纤维形式的初级结构,并使纤维形式的初级结构聚集形成三维的次级结构,之后进行加压处理使次级结构更加致密,得到所述有机相,作为所述膜材;或者,采用静电纺丝技术将所述高分子材料的溶液喷射到选定接收面上制成纤维形式的初级结构并使纤维形式的初级结构聚集形成三维的次级结构,在进行静电纺丝的同时,采用静电喷雾技术将无机颗粒的分散液喷射到所述选定接收面上,得到由高分子材料构成的有机相与无机颗粒组成的复合材料,之后对所述复合材料进行加压处理使其更加致密后,作为所述的膜材;
    将所述电解质盐的溶液滴加或喷射到所述膜材中;或者,将膜材浸渍到所述电解质盐的溶液中。
  23. 根据权利要求1所述的固态电解质,其特征在于:所述的高分子材料的分子结构具有能够与所述电解质盐的金属离子络合的极性基团。
  24. 根据权利要求1或23所述的固态电解质,其特征在于:所述的高分子材料是分子结构中具有选自醚基、羰基、酯基、胺基、氟、酰胺基、腈基中的一种或多种极性基团的高分子材料。
  25. 根据权利要求23所述的固态电解质,其特征在于:所述高分子材料为选自聚丙烯腈、聚乙烯吡咯烷酮、聚甲基丙烯酸甲酯、聚偏氟乙烯、聚四氟乙烯、聚环氧乙烷、聚环氧丙烷、聚丁二酸乙二醇酯、聚癸二酸乙二醇酯、聚乙二醇、聚乙二醇二胺中的任意一种或多种的组合。
  26. 根据权利要求1、12至15以及23中任一项权利要求所述的固态电解质,其特征在于:所述的固态电解质由所述的膜材与电解质盐组成。
  27. 一种固态电解质,其特征在于:包括连续有机相,所述连续有机相是采用静电纺丝技术将高分子溶液喷射到选定接收面上形成连续的二维或三维结构经加压处理形成的致密薄膜,并且组成所述连续有机相的高分子纤维内和所述连续有机相所含的孔洞内均分布有电解质盐;
    并且,所述固态电解质为柔性薄膜形态的,且厚度≥5μm而<90μm。
  28. 根据权利要求27所述的固态电解质,其特征在于:所述的电解质盐与高分子纤维的质量比为1∶2~1∶10,优选为1∶3~1∶6。
  29. 根据权利要求27所述的固态电解质,其特征在于:所述固态电解质还包括多个无机颗粒,所述多个无机颗粒填充在所述连续有机相所含的孔洞内,所述无机颗粒是如权利要求17至19中任一项所述的无机颗粒。
  30. 根据权利要求29所述的固态电解质,其特征在于:所述固态电解质内无机颗粒的含量为小于等于95wt%,优选为50wt%~95wt%,尤其优选为70wt%~95wt%,尤其优选为70wt%~80wt%。
  31. 根据权利要求29或30所述的固态电解质,其特征在于:所述固态电解质是在采用静电纺丝技术将高分子溶液喷射到选定接收面上以形成所述二维或三维结构的同时,采用静电喷雾技术将所述无机颗粒的分散液喷射到所述选定接收面上,之后将所获复合材料进行加压处理形成致密薄膜,再以电解质盐溶液浸渍后形成。
  32. 根据权利要求27所述的固态电解质,其特征在于:所述高分子纤维的材质为聚丙 烯腈、聚乙烯吡咯烷酮、聚甲基丙烯酸甲酯、聚偏氟乙烯和聚四氟乙烯中的任意一种或两种以上的组合。
  33. 根据权利要求1或27所述的固态电解质,其特征在于:所述电解质盐为锂盐、钠盐、钾盐、镁盐或铝盐。
  34. 根据权利要求33所述的固态电解质,其特征在于:所述电解质盐为双(三氟甲烷磺酰)亚胺锂、三氟甲基磺酸锂、双(五氟乙基磺酰)亚胺锂、双(氟磺酰)亚胺锂、高氯酸锂、六氟砷酸锂和六氟磷酸锂中的任意一种或者两种以上的组合。
  35. 一种如权利要求1至34中任一项权利要求所述的固态电解质的制备方法,其特征在于包括:
    (1)通过以下方式a)或b)获得所述膜材:
    a)采用静电纺丝技术将所述高分子材料的溶液喷射到选定接收面上并使得高分子纤维聚集形成三维结构,之后进行加压处理使所述三维结构更加致密,得到所述具有三维连通界面的有机相,作为所述膜材;
    b)采用静电纺丝技术将高分子材料的溶液喷射到选定接收面上并使得高分子纤维聚集形成三维结构,静电纺丝的同时,采用静电喷雾技术将无机颗粒的分散液喷射到所述选定接收面上,得到由所述有机相与无机颗粒组成的复合材料,之后对将所述复合材料进行加压处理使其更加致密后,作为所述的膜材,其中将用于喷射所述高分子溶液的静电纺丝出液口与用于喷射所述无机颗粒分散液的静电喷雾出液口以肩并肩的形式平行设置,并使所述静电纺丝出液口的喷射方向与所述静电喷雾出液口的喷射方向成大于或等于0而小于90°的夹角;
    (2)将所述电解质盐的溶液滴加或喷射到所述膜材中;或者,将所述膜材浸渍到所述电解质盐的溶液中。
  36. 根据权利要求35所述的制备方法,其特征在于:所述接收面为接收装置的表面,所述接收装置为滚筒接收装置、平面接收装置和水溶液接收装置中的任意一种或两种以上的组合。
  37. 根据权利要求36所述的制备方法,其特征在于:所述接收装置为滚筒接收装置,进行喷射时,所述滚筒保持旋转状态。
  38. 根据权利要求35至37中任一项所述的制备方法,其特征在于:方式b)中,进行喷射时,所述静电纺丝出液口和/或静电喷雾出液口与所述接收面之间沿所述接收装置的轴向、长度方向或宽度方向相对运动。
  39. 如权利要求1-34中任一项所述的固态电解质用于制备电化学器件的用途。
  40. 一种电化学器件,其特征在于:包括如权利要求1至34中任一项所述的固态电解质。
PCT/CN2019/078874 2018-02-11 2019-03-20 固态电解质及其制备方法与应用 WO2019154438A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19750692.6A EP3751638A4 (en) 2018-02-11 2019-03-20 SOLID ELECTROLYTE, ITS PREPARATION PROCESS AND ITS APPLICATION
JP2020565016A JP7083043B2 (ja) 2018-02-11 2019-03-20 固体電解質、並びにその調製方法及び応用
US16/969,159 US20200403266A1 (en) 2018-02-11 2019-03-20 Solid electrolyte, and preparation method therefor and application thereof
KR1020207024449A KR20200138713A (ko) 2018-02-11 2019-03-20 고체 전해질 및 그의 제조방법과 응용

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810139905 2018-02-11
CN201810139905.5 2018-02-11
CN201810748844.2A CN110165291B (zh) 2018-02-11 2018-07-10 固态电解质及其制备方法与应用
CN201810748844.2 2018-07-10

Publications (1)

Publication Number Publication Date
WO2019154438A1 true WO2019154438A1 (zh) 2019-08-15

Family

ID=64786633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078874 WO2019154438A1 (zh) 2018-02-11 2019-03-20 固态电解质及其制备方法与应用

Country Status (6)

Country Link
US (1) US20200403266A1 (zh)
EP (1) EP3751638A4 (zh)
JP (1) JP7083043B2 (zh)
KR (1) KR20200138713A (zh)
CN (4) CN111653820B (zh)
WO (1) WO2019154438A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110690495A (zh) * 2019-08-23 2020-01-14 清华大学深圳研究生院 复合凝胶聚合物固态电解质、其制备方法及钠离子电池
CN111816916A (zh) * 2020-07-22 2020-10-23 珠海冠宇电池股份有限公司 复合固态电解质膜及其制备方法和锂离子电池
CN112531283A (zh) * 2020-12-09 2021-03-19 贵州梅岭电源有限公司 一种热电池隔膜料自动制备装置和方法
WO2022050252A1 (ja) * 2020-09-01 2022-03-10 ダイキン工業株式会社 全固体二次電池用合剤、全固体二次電池用合剤シート及びその製造方法並びに全固体二次電池

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200141865A (ko) * 2019-06-11 2020-12-21 현대자동차주식회사 유연성 및 강도가 우수한 고체전해질 복합체 및 이의 제조방법
CN110729452A (zh) * 2019-09-30 2020-01-24 山东玉皇新能源科技有限公司 一种锂离子电池负极极片及其制备方法
CN112909332A (zh) * 2019-12-04 2021-06-04 中国科学院宁波材料技术与工程研究所 一种高柔韧性的硫化物复合固体电解质及其制备方法
CN111463480B (zh) * 2020-03-20 2022-10-14 东华大学 一种滤膜基高性能复合固态电解质薄膜及其制备方法和应用
US20220042206A1 (en) * 2020-08-05 2022-02-10 Nano And Advanced Materials Institute Limited Particle-coated fiber and method for forming the same
CN113550071A (zh) * 2020-09-21 2021-10-26 长春工业大学 一种高锂离子电导率的聚合物薄膜及其静电纺丝制备方法
CN112234249B (zh) * 2020-09-24 2021-12-31 中国科学院化学研究所 一种复合固体电解质及其制备方法和在固态二次电池中的应用
CN112259788A (zh) * 2020-10-09 2021-01-22 上海工程技术大学 一种网格结构的固态聚合物电解质膜及其制备方法
CN114759256A (zh) * 2021-01-12 2022-07-15 南京博驰新能源股份有限公司 一种固态电解质及其制备方法和应用
CN112786951A (zh) * 2021-01-22 2021-05-11 中国科学技术大学 聚合物复合固态电解质制备方法及聚合物复合固态电解质
CN113517469B (zh) * 2021-04-20 2022-12-06 中国科学院宁波材料技术与工程研究所 一种单一相致密聚合物电解质的制备方法、产品及应用
CN113336547B (zh) * 2021-04-22 2022-05-31 海南大学 一种氧化物型固体电解质薄膜及其制备方法
CN113161604B (zh) * 2021-04-22 2024-04-02 东南大学 一种高强度固态复合电解质薄膜制备方法和应用
CN113394447B (zh) * 2021-05-26 2022-09-23 浙江南都电源动力股份有限公司 一种防止固态电池微短路的电解液、固态电池及制备方法
CN113451638B (zh) * 2021-07-22 2022-04-12 清陶(昆山)能源发展股份有限公司 一种硫化物固态电解质膜及固态锂离子电池
CN113745528A (zh) * 2021-07-30 2021-12-03 上海唐锋能源科技有限公司 具有一维质子传输通道的膜电极及其制备方法
CN113782824B (zh) * 2021-08-20 2023-06-27 蜂巢能源科技有限公司 一种硫化物电解质膜及其制备方法和应用
CN114075717B (zh) * 2021-11-11 2023-03-21 大连理工大学 一种静电纺丝制备磷化锡/碳黑纳米纤维自支撑负极材料的方法及其应用
CN113921901A (zh) * 2021-11-18 2022-01-11 北京化工大学 一种金属有机框架基复合纳米纤维膜及其制备方法和应用
CN113903986A (zh) * 2021-11-23 2022-01-07 江苏科技大学 一种复合型电解质膜及其制备方法
CN114171790B (zh) * 2021-12-02 2023-07-21 中国科学院苏州纳米技术与纳米仿生研究所 一种液晶聚合物电解质及包含其的锂二次电池
CN115084448B (zh) * 2022-07-18 2024-05-17 洛阳理工学院 固态锂电池用固体电解质/电极一体化材料及其制备方法与应用
CN115441048B (zh) * 2022-08-24 2023-10-03 哈尔滨工业大学 具有稳定梯度分布结构的复合电解质及电池与制备方法
CN115425283A (zh) * 2022-09-20 2022-12-02 浙江理工大学 一种氮化硼纳米纤维复合固态电解质、制备方法及应用
CN115799610B (zh) * 2023-02-06 2023-05-02 星源材质(南通)新材料科技有限公司 复合膜及其制备方法、包裹锂盐接枝碳纳米管的pvdf微孔膜与固态电池
CN116154154B (zh) * 2023-04-13 2023-07-04 深圳珈钠能源科技有限公司 纯相聚阴离子型硫酸盐钠离子电池正极材料及其制备方法
CN116759634A (zh) * 2023-08-21 2023-09-15 浙江久功新能源科技有限公司 一种静电纺丝喷涂硫化物电解质膜的制备方法
CN116864801B (zh) * 2023-09-04 2023-12-26 浙江久功新能源科技有限公司 一种超薄连续网络结构复合电解质膜的制备方法
CN117855583A (zh) * 2024-03-08 2024-04-09 河南师范大学 一种高填料含量体相复合固态电解质的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805454A (zh) * 2009-02-13 2010-08-18 中国科学院理化技术研究所 聚偏氟乙烯和偏氟乙烯-六氟丙烯共聚物共混纳米纤维聚合物电解质膜及其制备方法
CN102780032A (zh) 2011-05-11 2012-11-14 精工爱普生株式会社 高分子固体电解质及其制造方法、锂离子二次电池
KR20130047424A (ko) * 2011-10-31 2013-05-08 전자부품연구원 부직포 형태의 리튬 이차 전지용 분리막 및 그의 제조 방법
CN103474610A (zh) * 2013-09-29 2013-12-25 天津工业大学 一种静电纺丝/静电喷雾制备复合锂离子电池隔膜的方法
CN107492680A (zh) 2017-07-26 2017-12-19 哈尔滨工业大学无锡新材料研究院 一种碳酸亚乙烯酯及聚乙二醇(甲基)丙烯酸酯基聚合物电解质及其制备方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001091220A1 (en) * 2000-05-22 2001-11-29 Korea Institute Of Science And Technology A hybrid polymer electrolyte fabricated by a spray method, a lithium secondary battery comprising the hybrid polymer electrolyte and their fabrication methods
KR20050006540A (ko) * 2003-07-09 2005-01-17 한국과학기술연구원 초극세 섬유상 다공성 고분자 분리막을 포함하는리튬이차전지 및 그 제조방법
CA2662423C (en) * 2006-09-11 2011-09-20 Asahi Kasei Kabushiki Kaisha Polymer electrolyte comprising a ketonic carbonyl group and electrochemical device comprising said electrolyte
CN101626097A (zh) * 2009-06-05 2010-01-13 长沙高新开发区材盛新能源科技有限公司 高吸液率微纳结构聚合物电解质膜及其制备方法
CN102013516B (zh) * 2010-10-22 2012-11-07 浙江大学 一种多孔纤维凝胶聚合物电解质及其制备方法
CN102324559A (zh) * 2011-09-16 2012-01-18 中国科学院化学研究所 一种聚合物电解质及其制备方法与应用
US9346066B2 (en) * 2012-06-05 2016-05-24 GM Global Technology Operations LLC Non-woven polymer fiber mat for use in a lithium ion battery electrochemical cell
JP2014026809A (ja) * 2012-07-26 2014-02-06 Toyota Motor Corp 繊維状酸化物固体電解質及び全固体電池並びにこれらの製造方法
KR101512170B1 (ko) * 2012-07-30 2015-04-16 한국전기연구원 리튬이차전지용 고체 전해질 복합 부직포 분리막 및 이의 제조방법
KR101504709B1 (ko) * 2012-09-17 2015-03-20 동국대학교 산학협력단 개선된 전기화학 특성을 갖는 리튬이차전지 및 이의 제조방법
CN103700797B (zh) * 2012-09-27 2016-04-27 比亚迪股份有限公司 聚合物电解质及其制备方法和包括该聚合物电解质的电池
CN103147226B (zh) * 2013-02-07 2016-12-28 江西师范大学 一种制备聚合物基高介电纳米复合材料的方法
WO2015038735A1 (en) * 2013-09-11 2015-03-19 Candace Chan Nanowire-based solid electrolytes and lithium-ion batteries including the same
CN103456985B (zh) * 2013-09-13 2016-02-24 宋大余 一种无机固体电解质的制造方法
CN104638294B (zh) * 2013-11-12 2017-07-21 北京化工大学 一种纳米掺杂网格图案化凝胶聚合物电解质的制备方法
CN104681864B (zh) * 2013-11-29 2017-07-21 北京化工大学 一种高能量密度和离子电导率的凝胶型聚合物电解质
CN104681863A (zh) * 2013-11-29 2015-06-03 北京化工大学 低结晶多孔纳米纤维制备的凝胶型聚合物电解质骨架材料
KR101676688B1 (ko) * 2014-01-13 2016-11-29 울산과학기술원 미세 다공성 복합 분리막, 그 제조방법 및 이를 포함한 전기화학소자
CN104638296A (zh) * 2015-01-23 2015-05-20 清华大学深圳研究生院 一种制备固态聚合物电解质锂离子电池的方法
CN104900913A (zh) * 2015-05-12 2015-09-09 江苏科技大学 一种多孔纤维凝胶聚合物电解质的制备方法
KR101764996B1 (ko) * 2016-01-13 2017-08-03 경상대학교산학협력단 고체 전해질 제조방법
CN105470564A (zh) * 2016-01-22 2016-04-06 山东鸿正电池材料科技有限公司 一种固体电解质膜及其制备方法和锂离子电池
KR101981655B1 (ko) * 2016-07-11 2019-08-28 울산과학기술원 전기화학소자용 분리막, 이의 제조방법, 및 이를 포함하는 전기화학소자
FR3054078B1 (fr) * 2016-07-13 2018-09-07 Institut Polytechnique De Grenoble Materiau a conduction ionique pour generateur electrochimique et procedes de fabrication
CN107645013A (zh) * 2016-07-22 2018-01-30 中国科学院物理研究所 复合准固态电解质、其制法和含其的锂电池或锂离子电池
CN106785009A (zh) * 2016-12-09 2017-05-31 北京科技大学 一种有机无机全固态复合电解质及其制备和应用方法
US20200112050A1 (en) * 2017-03-29 2020-04-09 University Of Maryland, College Park Solid-state hybrid electrolytes, methods of making same, and uses thereof
CN107230803B (zh) * 2017-05-22 2020-02-07 郑州轻工业学院 一种锂离子电池用三明治结构多层凝胶聚合物电解质及其制备方法
WO2019010474A1 (en) * 2017-07-07 2019-01-10 University Of Pittsburgh-Of The Commonwealth System Of Higher Education ELECTROFILING PVDF-HFP: NEW COMPOSITE POLYMER ELECTROLYTES (CPES) HAVING INCREASED IONIC CONDUCTIVITIES FOR LITHIUM SULFUR BATTERIES
CN107634184B (zh) * 2017-09-13 2021-08-10 电子科技大学 柔性全固态聚合物锂电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805454A (zh) * 2009-02-13 2010-08-18 中国科学院理化技术研究所 聚偏氟乙烯和偏氟乙烯-六氟丙烯共聚物共混纳米纤维聚合物电解质膜及其制备方法
CN102780032A (zh) 2011-05-11 2012-11-14 精工爱普生株式会社 高分子固体电解质及其制造方法、锂离子二次电池
KR20130047424A (ko) * 2011-10-31 2013-05-08 전자부품연구원 부직포 형태의 리튬 이차 전지용 분리막 및 그의 제조 방법
CN103474610A (zh) * 2013-09-29 2013-12-25 天津工业大学 一种静电纺丝/静电喷雾制备复合锂离子电池隔膜的方法
CN107492680A (zh) 2017-07-26 2017-12-19 哈尔滨工业大学无锡新材料研究院 一种碳酸亚乙烯酯及聚乙二醇(甲基)丙烯酸酯基聚合物电解质及其制备方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
FU, K. K. ET AL.: "Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries", PROC NATLACAD SCI USA, vol. 113, 2016, pages 7094 - 7099
KAMAYA, N. ET AL.: "A lithium superionic conductor.", NATURE MATERIALS, vol. 10, 2011, pages 682 - 686, XP055386603, DOI: 10.1038/nmat3066
KATO, Y. ET AL.: "High-power all-solid-state batteries using sulfide superionic conductors", NATURE ENERGY, vol. 1, 2016, pages 16030, XP055615412, DOI: 10.1038/nenergy.2016.30
LIU, Z. ET AL.: "Anomalous High Ionic Conductivity of Nanoporous P-Li ?S", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 135, 2013, pages 975 - 978, XP055330622, DOI: 10.1021/ja3110895
MURUGAN, R.THANGADURAI, V.WEPPNER, W.: "Fast Lithium Ion Conduction in Garnet-Type Li La Zr 0", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 46, 2007, pages 7778 - 7781, XP002558033, DOI: 10.1002/anie.200701144
See also references of EP3751638A4
ZHANG, X. ET AL.: "Synergistic Coupling between Li La Zr Ta O and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017
ZHAO, C. Z. ET AL.: "An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes", PROC NATL ACAD SCI USA, 2017

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110690495A (zh) * 2019-08-23 2020-01-14 清华大学深圳研究生院 复合凝胶聚合物固态电解质、其制备方法及钠离子电池
CN111816916A (zh) * 2020-07-22 2020-10-23 珠海冠宇电池股份有限公司 复合固态电解质膜及其制备方法和锂离子电池
WO2022050252A1 (ja) * 2020-09-01 2022-03-10 ダイキン工業株式会社 全固体二次電池用合剤、全固体二次電池用合剤シート及びその製造方法並びに全固体二次電池
CN112531283A (zh) * 2020-12-09 2021-03-19 贵州梅岭电源有限公司 一种热电池隔膜料自动制备装置和方法
CN112531283B (zh) * 2020-12-09 2022-05-24 贵州梅岭电源有限公司 一种热电池隔膜料自动制备装置和方法

Also Published As

Publication number Publication date
CN208336405U (zh) 2019-01-04
EP3751638A1 (en) 2020-12-16
CN110165291A (zh) 2019-08-23
US20200403266A1 (en) 2020-12-24
JP2021514108A (ja) 2021-06-03
KR20200138713A (ko) 2020-12-10
CN111653820A (zh) 2020-09-11
CN110165291B (zh) 2020-07-17
CN111653820B (zh) 2021-04-30
CN111628211B (zh) 2021-09-28
CN111628211A (zh) 2020-09-04
EP3751638A4 (en) 2021-10-27
JP7083043B2 (ja) 2022-06-09

Similar Documents

Publication Publication Date Title
WO2019154438A1 (zh) 固态电解质及其制备方法与应用
Liu et al. Crumpled graphene balls stabilized dendrite-free lithium metal anodes
CN109411681B (zh) 用于锂电池的复合隔膜及其制备方法和应用
KR102432559B1 (ko) 금속 2차 전지용 세퍼레이터
CN107316965A (zh) 锂镧锆氧纳米纤维、复合薄膜制备方法及固态电池应用
CN112670483B (zh) 正极片、正极极板及固态电池
CN110165152B (zh) 固态正极复合材料、其制备方法与应用
KR20140112451A (ko) 다공성 탄소-실리콘 복합체의 제조방법 및 이에 의해 제조된 다공성 탄소-실리콘 복합체
US11329282B2 (en) Rechargeable batteries and methods of making same
CN111900355A (zh) 一种锂离子电池炭负极及其制备方法和应用
CN109216675A (zh) 一种铜氮化物改性的锂电池材料及其制备方法和应用
CN108808008B (zh) 一种三维混合离子电子导体集流体及其制备方法和应用
CN111370760B (zh) 一种宽电化学窗口复合固体电解质及其制备方法
Wang et al. Electrospinning techniques for inorganic–organic composite electrolytes of all-solid-state lithium metal batteries: a brief review
CN110165290B (zh) 固态钠离子电解质、其制备方法与应用
CN110165153B (zh) 固态负极复合材料、其制备方法与应用
WO2023179550A1 (zh) 一种复合油基隔膜及其制备方法和二次电池
CN111900458A (zh) 一种复合固态电解质及其制备方法
CN114695949A (zh) 腈纶基陶瓷复合纳米纤维固态电解质及其制备方法
CN111933866A (zh) 锂金属电池、其中间层及制备方法
JP2007207654A (ja) リチウムイオン電池用負極及びそれを用いたリチウムイオン電池
KR102623063B1 (ko) 리튬 이차전지용 복합음극 및 이를 포함하는 리튬 이차전지
US20240088397A1 (en) Direct-formation self-assembly graphene from cellulose nanofiber aqueous solution
Agubra et al. Forcespinning of Microfibers and their Applications in Lithium-ion and Sodium-ion Batteries
Yan Designing Solid-State Composite Electrolytes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565016

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019750692

Country of ref document: EP