WO2018062912A2 - 강판 표면처리용 용액 조성물 및 이를 이용하여 표면처리된 강판 - Google Patents

강판 표면처리용 용액 조성물 및 이를 이용하여 표면처리된 강판 Download PDF

Info

Publication number
WO2018062912A2
WO2018062912A2 PCT/KR2017/010862 KR2017010862W WO2018062912A2 WO 2018062912 A2 WO2018062912 A2 WO 2018062912A2 KR 2017010862 W KR2017010862 W KR 2017010862W WO 2018062912 A2 WO2018062912 A2 WO 2018062912A2
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
silane
acrylate
less
acid
Prior art date
Application number
PCT/KR2017/010862
Other languages
English (en)
French (fr)
Other versions
WO2018062912A3 (ko
Inventor
최창훈
김동윤
조민호
고재덕
손원호
김종화
Original Assignee
주식회사 포스코
주식회사 노루코일코팅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 주식회사 노루코일코팅 filed Critical 주식회사 포스코
Priority to EP17856798.8A priority Critical patent/EP3521381B1/en
Priority to CN201780060164.5A priority patent/CN109790402A/zh
Priority to JP2019516601A priority patent/JP6815493B2/ja
Priority to US16/337,575 priority patent/US11939489B2/en
Publication of WO2018062912A2 publication Critical patent/WO2018062912A2/ko
Publication of WO2018062912A3 publication Critical patent/WO2018062912A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/04Thixotropic paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/309Sulfur containing acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups

Definitions

  • the present invention relates to a surface treatment composition of a steel sheet excellent in resistance to acids such as sulfuric acid and a coated steel sheet to which the surface treatment composition is applied.
  • sulfur oxides, nitrogen oxides, and the like are generated.
  • strong acids such as sulfuric acid and nitric acid are generated. They adhere to the surface of structures, such as metals, at temperatures below the dew point and undergo dew point corrosion which promotes corrosion. Therefore, facilities such as heat exchangers and ducts of thermal power plants are exposed to the corrosive environment caused by such strong acids.
  • Techniques for preventing such dew point corrosion include Korean Patent Application Nos. 2013-0151739, 2013-0145717, 2013-0141627, 2013-0130161, etc.
  • a technique for improving the corrosion resistance to strong acids it is different from a technique for forming a coating layer on the surface of the steel sheet to suppress such dew point corrosion.
  • the present invention seeks to improve corrosion resistance to strong acids, including the dew point corrosion described above, by coating the surface of the steel sheet rather than adjusting the composition of the steel sheet itself.
  • the present invention is to provide a solution composition for surface treatment of steel sheet excellent in corrosion resistance to acids such as sulfuric acid, 30 to 50% by weight of colloidal silica containing silica of 5 ⁇ 20nm size, silane 40 containing three or more alkoxy groups It provides a solution composition for steel sheet surface treatment comprising ⁇ 60% by weight, 5-15% by weight of acrylate-based organic monomer, 0.01-1% by weight of acid and 1-15% by weight of solvent.
  • the colloidal silica may have a silica content of 10 to 45% by weight.
  • the silane is vinyl trimethoxy silane (Vinyl trimethoxy silane), vinyl triethoxy silane (Vinyl triethoxy silane), vinyl tri-isopropoxy silane (Vinyl tri-isopropoxy silane), 3-methacryloxypropyl trimethoxy silane (3 2-methacryloxypropyl trimethoxy silane, 2-glycidyloxy propyl trimethoxy silane, 2-glycidyloxy propyl triethoxy silane, 2-aminopropyltri 2-aminopropyl triethoxy silane, 2-ureidoalkyl triethoxy silane, tetraethoxysilane, Triethoxyphenylsilane and trimethoxyphenylsilane It may be at least one selected from (Trimethoxyphenylsilane).
  • the organic monomers are acrylic acid glacial, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and 2-ethylhexyl acrylate.
  • the acid may be at least one selected from the group consisting of acetic acid, formic acid, lactic acid, glyconic acid, sulfuric acid, nitric acid, hydrochloric acid and hydrofluoric acid.
  • the solvent may be at least one selected from the group consisting of methanol, ethanol, 2-propanol, 2-methoxypropanol and 2-butoxyethanol.
  • the composition may further comprise 0.1 to 5.0% by weight of an organic resin having a cyclic ring structure.
  • the organic resin having a cyclic ring structure is polyurethane; Amino modified phenolic resins; Polyester resins; Epoxy resins; And at least one selected from the group consisting of polyvinyl butyral or two or more hybrid resins thereof.
  • Another aspect of the present invention is to provide a surface-treated steel sheet, comprising a steel sheet and a corrosion-resistant coating layer formed on at least one surface of the steel sheet, the corrosion-resistant coating layer formed by a hydrolysis reaction of silica and alkoxy silane and It contains an acrylate-based polymer, contains 25 to 65% by weight of carbon (C), 20 to 70% by weight of silicon (Si), and 1 to 40% by weight of oxygen (O), and combines silicon (Si) with oxygen ( A surface-treated steel sheet having a ratio of Si—O bonds) and a bond between silicon (Si) and carbon (C) (Si—C bonds) of 80-95%: 5-20%.
  • the said corrosion-resistant coating layer is formed of the said steel plate surface treatment solution composition.
  • the corrosion resistant coating layer may further comprise 0.1 to 5.0% by weight of an organic resin having a cyclic ring structure.
  • the organic resin having a cyclic ring structure is a polyurethane, amino modified phenol resin; At least one selected from the group consisting of polyester resins, epoxy resins and polyvinyl butyral, or at least two or more of these hybrid resins.
  • the corrosion resistant film layer may have a thickness of 0.1 ⁇ 50 ⁇ m.
  • the said steel plate it is more preferable that it is sulfuric acid resistant steel.
  • the sulfuric acid resistant steel is in weight%, C: 0.2% or less (excluding 0), Si: 0.5% or less (excluding 0), Mn: 1.5% or less (excluding 0), S: 0.02% or less, P: 0.02% or less, Al: 0.1% or less, and Cu: 0.1-0.5%, and may include residual Fe and other unavoidable impurities, and sulfuric acid resistant steel may be Co: 0.03-0.1%, Ni 0.3% or less (excluding 0). ) And Sb: 0.3% or less (excluding 0). Further, the sulfuric acid resistant steel may be formed at least one concentrated layer selected from the group consisting of Cu, Co, Ni and Sb of 100 ⁇ 300nm thickness directly below the surface.
  • the sulfuric acid resistant steel is, in weight%, C: 0.03 to 0.1%, Si: 0.15 to 0.35%, Mn: 0.5 to 1.2, S: 0.01% or less, P: 0.015% or less, Al: 0.02 to 0.06, N: 0.004% or less and Cu: 0.2-0.4%, may be a steel sheet containing the balance Fe and other unavoidable impurities, and further at least one of Ni 0.1 ⁇ 0.25%, Sb 0.05 ⁇ 0.2%, Co 0.03 ⁇ 0.1%
  • the sulfuric acid resistant steel may include at least one thickened layer selected from the group consisting of Cu, Co, Ni, and Sb having a thickness of 100 to 300 nm directly below the surface.
  • by coating the composition provided in the present invention on the surface of the steel sheet can provide corrosion resistance to sulfuric acid without changing the composition of the steel sheet.
  • the surface treatment composition according to the present invention can prolong the life of the steel sheet by providing the structure with excellent corrosion resistance against sulfuric acid and hydrochloric acid.
  • FIG. 1 is a view schematically showing a concept for forming a surface treatment film according to the present invention.
  • FIG. 2 is a diagram showing the result of analyzing the SEM image of the cross section (left side) and the surface (right side) of the coated steel sheet obtained in Example 3, and analyzing the element weight with respect to the film.
  • the present invention intends to provide corrosion resistance to strong acids such as sulfuric acid and hydrochloric acid with respect to the steel sheet, and is not intended to provide an acid resistant steel sheet by adjusting the composition of the steel sheet itself, but to provide a steel sheet with corrosion resistance to strong acids such as sulfuric acid. That is, to provide an acid resistance property through the coating.
  • the present invention provides a solution composition for surface treatment that can impart acid resistance properties to the steel sheet
  • the solution composition for surface treatment provided by the present invention comprises colloidal silica, silane, organic monomers and the like.
  • the colloidal silica included in the surface treatment solution composition of the present invention forms a dense structure with respect to the surface of the steel sheet to form a surface treatment film of the steel sheet according to the present invention, and provides hardness to the coating.
  • the colloidal silica is chemically bonded to the silane during the film forming process is coated on the surface of the steel sheet during the drying and curing process, serves to provide acid resistance to the steel sheet.
  • the colloidal silica can be used having a particle size of the nano-size, for example, may be used having a particle size of 5nm to 50nm. If the particle size of the colloidal silica is less than 5nm, the surface area of the silica is too large, there is a lack of silane to react to this, resulting in inferior acid resistance. On the other hand, when the particle size of the colloidal silica exceeds 50nm, there is a problem in that the acid resistance is high because the porosity between the silica is high. More preferably, the colloidal silica has a particle size of 5 to 20 nm.
  • the colloidal silica is preferably contained in an amount of 10 to 45% by weight of silica. If the content is less than 10% by weight, the content of silica may be insufficient, resulting in poor corrosion resistance of the film. If the content is more than 45% by weight, too much silica particles may be precipitated.
  • the colloidal silica may be included to 30 to 50% by weight based on 100% by weight of the solution composition for metal surface treatment.
  • the content may be 3.0 to 22.5 wt% based on 100 wt% of the total composition.
  • the content of the colloidal silica is less than 30% by weight, it may not be sufficiently bonded with the alkoxy silane, thereby reducing the hardness and securing corrosion resistance against acid.
  • the silane and the unbonded silica may remain to reduce the coating film forming ability, and thus may not secure corrosion resistance to the acid.
  • the solution composition for metal surface treatment of this invention contains a silane.
  • the silane is bonded by silica and sol-gel reaction, cross-linking between the silane, and reacts with the surface of the steel sheet in the drying process to serve to attach a film to the steel sheet.
  • silica which provides corrosion resistance to acids, can form and maintain a film on the surface of the steel sheet, thereby contributing to increasing acid resistance.
  • the silane is not particularly limited, but an alkoxysilane having an alkoxy group is preferable, and the use of an alkoxysilane having three or more alkoxy groups can perform a bonding reaction with silica, silane, and steel sheet, thereby adhering the film to the steel sheet. It is more preferable at the point that can improve the corrosion resistance and can form a dense coating, and can improve corrosion resistance to an acid.
  • alkoxy silanes include, for example, vinyl trimethoxy silane, vinyl triethoxy silane, vinyl tri-isopropoxy silane, 3-methacryloxy 3-methacryloxypropyl trimethoxy silane, 2-glycidyloxy propyl trimethoxy silane, 2-glycidyloxy propyl triethoxy silane ), 2-aminopropyl triethoxy silane, 2-ureidoalkyl triethoxy silane, 2-ethidosilane, tetraethoxysilane, Triethoxyphenylsilane ), Trimethoxyphenylsilane, methyltrimethoxysilane and mixtures thereof, which may be stabilized after hydrolysis. It is preferred.
  • the alkoxy silane may include 40 wt% to 60 wt% with respect to 100 wt% of the metal surface treatment composition. If the alkoxy silane is less than 40% by weight, it may not form a sufficient bond with the colloidal silica and the steel sheet to reduce the coating film forming ability, it may not be able to secure the corrosion resistance to acid. On the other hand, when the alkoxy silane exceeds 60% by weight, organic gas may be discharged due to pyrolysis, and a large amount of silanol may remain to inhibit coating film adhesion and thereby may not secure corrosion resistance.
  • the alkoxysilane and silica form a surface treated film of a steel sheet formed by a sol-gel reaction, and the film formed thereby has a hard characteristic, and it is preferable to give flexibility of the film in the inorganic film. Therefore, the solution composition for metal surface treatment of the present invention contains an organic monomer.
  • the conditions in which the silica and the alkoxysilane bond with each other are strong acidic conditions. Under these conditions, the monomers undergo a polymer reaction to form a polymer.
  • the polymer produced from these monomers may be filled between hard inorganic materials to improve coating film forming ability, provide water resistance, and provide flexibility to the inorganic coating.
  • the monomer is an additional polymerization reaction occurs during the drying process occurs at a lower temperature than the curing process of the alkoxysilane and silane and thus also serves to lower the curing temperature as a whole.
  • the organic monomer is not particularly limited as long as it can polymerize under reaction conditions in which silica and silane are bonded, but it is more preferable to use an acrylate monomer.
  • the acrylate-based monomer is preferably polymerized under acidic conditions where the reaction between silica and silane occurs, and has a suitable size in which the particle size of the polymer produced after the polymerization is not too large.
  • the acrylate monomer is an alcohol component is produced by the sol-gel reaction of the alkoxysilane and silica, the alcohol component may promote the polymerization reaction by increasing the polymerization rate of the monomer.
  • it is easy to adjust the curing density and the hardness (Hardness) control, there is an advantage that the transparency of the film is increased.
  • the polymers obtained may be too large in gelation.
  • acrylate monomers examples include acrylic acid glacial, methyl acrylate, ethyl acrylate, N-butyl acrylate and 2-ethyl. Hexyl acrylate (2-Ethylhexyl acrylate), isobutyl acrylate, tertiary butyl acrylate, tertiary butyl methacrylate, butanediol monoacrylate , Lauryl acrylate, dimethylaminoethyl acrylate, dihydrodicyclopentadienyl acrylate, and the like, and these may be used alone or in combination of two or more. have.
  • the organic monomers contribute to coating and crosslinking reaction during coating, and may be included in an amount of 5 wt% to 15 wt% with respect to 100 wt% of the solution composition for metal surface treatment.
  • the organic monomer is less than 5% by weight relative to 100% by weight of the solution composition for metal surface treatment, sufficient bonds with the silica and alkoxy silane polymers may not be formed, and thus the coating film forming ability may be lowered, thereby preventing corrosion resistance.
  • the organic monomer is more than 15% by weight due to the unreacted residual monomer may be lowered in water resistance or acid resistance.
  • the solution composition for metal surface treatment of the present invention also includes an acid for acidity control.
  • the acid serves to improve the stability of the alkoxysilane while helping to hydrolyze the alkoxysilane, and it is preferable to adjust the acidity of the solution to a pH range of 1 to 5.
  • the acid may be included 0.01% to 1.00% by weight relative to 100% by weight of the metal surface treatment composition.
  • the hydrolysis time may increase to decrease the solution stability of the entire solution composition.
  • the acid content exceeds 1.00 wt% with respect to 100 wt% of the metal surface treatment solution composition, corrosion of the steel sheet may occur, and molecular weight control of the resin may be difficult.
  • the specific kind of the acid is not particularly limited, but preferably one selected from the group consisting of organic acids such as acetic acid, formic acid, lactic acid, glyconic acid, and organic-inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, and mixtures thereof.
  • organic acids such as acetic acid, formic acid, lactic acid, glyconic acid, and organic-inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, and mixtures thereof.
  • organic acids such as acetic acid, formic acid, lactic acid, glyconic acid
  • organic-inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid, and mixtures thereof.
  • the solution composition for metal surface treatment of this invention contains a solvent.
  • the solvent is responsible for the compatibility and hydrolyzability of the silane with water, the wettability of the resin surface on the metal surface (wetting), controlling the drying rate, and the like 1 wt% to 15 wt% based on 100 wt% of the metal surface treatment composition. % May be included.
  • the content of the solvent is less than 1% by weight, the compatibility is lowered, the storage property of the coating liquid is lowered and may not secure the corrosion resistance after coating.
  • the content of the solvent exceeds 15% by weight relative to 100% by weight of the metal surface treatment composition, the viscosity is too low, the stability of the solution may be lowered and it may not secure the corrosion resistance after coating.
  • the specific kind of the solvent in the metal surface treatment solution composition of the present invention is not particularly limited, but is preferably selected from the group consisting of methanol, ethanol, 2-propanol, 2-methoxypropanol, 2-butoxyethanol and the like. It may include one or more.
  • the present invention may further include an organic resin.
  • the organic resin serves to enhance adhesion to a material to be coated and to improve room temperature dryness, and preferably includes 0.1 wt% to 5.0 wt% with respect to 100 wt% of the metal surface treatment composition. If the content of the organic resin is less than 0.1% by weight, the synergistic effect due to the addition is insignificant, and when the content of the organic resin exceeds 5.0% by weight, water resistance may be lowered to cause peeling of the coating film.
  • the organic resin uses a resin having a cyclic ring structure in the resin structure.
  • the cyclic ring structure in the resin structure is relatively stable from various reactions, contributing to improving acid resistance.
  • organic resin which has such a cyclic ring structure in a resin structure
  • a polyurethane, an amino modified phenol resin, a polyester resin, an epoxy resin, polyvinyl butyral, etc. are mentioned, for example,
  • the hybrid form of each said resin can be used. These may be used alone or in combination.
  • the coating can be applied to the coating method generally used, it is not particularly limited. For example, methods such as roll coating, spraying, dipping, spray squeezing or dipping squeezing may be applied, and two or more methods may be used as needed.
  • the drying may be carried out by applying a method of a hot air drying furnace or an induction heating furnace, the drying may be performed in a temperature range of 150-420 °C based on the final reaching temperature (PMT) of the steel sheet. If the drying temperature does not reach a temperature of 150 ° C. or higher on a PMT basis, a solid film layer may not be formed properly, and a residual liquid solution may be removed in a later process, thereby preventing target corrosion resistance. In addition, when the drying temperature exceeds 420 ° C on the basis of the PMT, the organic resin layer in the coating layer is oxidized (meaning burned out), thereby changing the structure of the coating layer and failing to secure desired corrosion resistance. To this end, for example, when drying by the hot air drying furnace it can be dried by setting the internal temperature of the hot air drying furnace to 150 to 420 °C.
  • the surface treatment coating of the steel sheet according to the present invention is not particularly limited, and may be made in a continuous process, where the continuous process speed may be performed, for example, at 60 to 180 mpm (m / min).
  • the surface treated coated steel sheet thus obtained may have a film thickness of 0.1 to 50 ⁇ m in thickness after drying. If the film thickness is less than 0.1 ⁇ m, there is a problem that the film is not enough due to lack of corrosion resistance, and if the thickness is more than 50 ⁇ m, there is a problem that a sufficient film may not be formed during operation in the coating process, so that a hard film may not be formed.
  • the coating is an organic-inorganic composite coating, and has a bonding structure as shown in FIG. 1 below to form a coating on the surface of the steel sheet.
  • 1 conceptually illustrates the bonding structure of the coating according to the present invention.
  • the film according to the present invention is bonded by the hydrolysis reaction of silica and alkoxy silane, and other alkoxy groups of the alkoxy silane are combined with the steel sheet to form a firm film on the surface of the steel sheet. Therefore, it can be said that the coating according to the present invention has a hydrolysis reaction product of alkoxy silane and silica on the surface of the steel sheet. Alcohol is produced in the course of the hydrolysis reaction as described above, but it is volatilized during the drying process. Such a coating provides corrosion resistance to the steel sheet, that is, excellent corrosion resistance to acids. An example of this is schematically shown in FIG. 1.
  • the organic monomer of the present invention is polymerized to exist as a polymer.
  • the organic monomer is an acrylate monomo, and in the coating, an acrylate polymer, which is a polymer of the organic monomer, is present on the surface of the steel sheet.
  • the organic-inorganic composite film formed by applying the solution composition for steel sheet surface treatment of the present invention to the steel sheet surface is 25-65% by weight of carbon (C), 20-70% by weight of silicon (Si) and oxygen (O) 1- It contains in the range of 40 weight%.
  • analytical methods such as electron probe micro-analysis (EPMA) and energy-dispersive X-ray spectroscopy (EDS).
  • the organic resin may be included in the content of 0.1 to 5.0% by weight in the film.
  • a film of the present invention can obtain good corrosion resistance to sulfuric acid and the like even when applied to ordinary steel sheets, that is, zinc-based galvanized steel sheet.
  • the coating of the present invention is applied to sulfuric acid steel which has a high corrosion resistance to sulfuric acid or the like, and forms a thin film on the surface of the steel when exposed to an acidic corrosive environment, and has strong corrosion resistance to acids.
  • the synergistic action is performed together with the corrosion resistance to sulfuric acid and the like of the steel itself, and remarkably excellent sulfuric acid corrosion resistance can be obtained.
  • the sulfuric acid resistant steel is not particularly limited, but, for example, in weight%, C: 0.2% or less (excluding 0), Si: 0.5% or less (excluding 0), Mn: 1.5% or less (0 , S: 0.02% or less, P: 0.02% or less, Al: 0.1% or less, N: 0.008% or less, and Cu: 0.1-0.5%, and may be a steel sheet containing residual Fe and other unavoidable impurities. .
  • Co: 0.03 ⁇ 0.1% and Ni and Sb: may include 0.3% or less (excluding 0), in this case, the sulfuric acid resistant steel is 100, 300nm thickness of Cu, Co, Ni directly below the surface And at least one concentrated layer selected from the group consisting of Sb.
  • the sulfuric acid resistant steel is, for example, in weight%, C: 0.03 to 0.1%, Si: 0.15 to 0.35%, Mn: 0.5 to 1.2, S: 0.01% or less, P: 0.015% or less , Al: 0.02 to 0.06, N: 0.004% or less, and Cu: 0.2 to 0.4%, and may be a steel sheet containing residual Fe and other unavoidable impurities.
  • Ni 0.1 ⁇ 0.25%, Sb 0.05 ⁇ 0.2%, Co 0.03 ⁇ 0.1% may be further included
  • the sulfuric acid resistant steel is 100, 300nm thickness of Cu, Co, Ni and Sb directly below the surface What formed at least 1 type of thickening layer chosen from the group which consists of can be used.
  • Tetraethoxy silane and acetic acid, ethanol and acidity regulator were added to colloidal silica Ludox HSA (solid content 30%, particle size 12nm, WR Grace & Co.-Conn.), Respectively, and the temperature exceeded about 50 ° C. Stir for about 5 hours while cooling to avoid.
  • colloidal silica Ludox HSA solid content 30%, particle size 12nm, WR Grace & Co.-Conn.
  • the colloidal silica is surface modified by the silane and the silane is hydrolyzed. After sufficiently reacting, the reaction was further performed for about 24 hours by adding each of acrylate as a monomer and poly (meth) acrylic acid as an organic resin.
  • Example 1 36.00% 45.00% 10.00% 0.50% 8.00% 0.50%
  • Example 2 42.00% 44.00% 3.40% 0.60% 10.00% 0.00%
  • Example 3 32.00% 45.00% 10.00% 0.60% 12.00% 0.40%
  • Comparative Example 6 36.00% 42.00% 4.80% 0.20% 7.00% 10.00% Comparative Example 7 30.00% 62.00% 1.00% 0.70% 5.60% 0.70%
  • Steel plate (ANCOR-CS steel made by POSCO) was immersed in and subtracted from each surface treatment composition as shown in Table 1, and then placed in a hot air drying furnace at about 250 ° C. and heated to PMT 250 ° C. of the steel plate to dry and harden the surface. Each treated steel sheet was prepared.
  • the evaluation criteria are as follows.
  • the evaluation criteria are as follows.
  • the film adhesion to the surface treated steel sheet was evaluated, and the results are shown in Table 2 below.
  • the evaluation method and evaluation criteria are as follows.
  • the surface of the surface-treated steel sheet is lined to form 100 cells each horizontally and vertically at intervals of 1 mm using a cross cut guide.
  • the area where the cell is formed is pushed up to a height of 6 mm using an Ericsson tester, and the peeling tape (NB-1, Ichiban Co., Ltd.) is attached to the pushed-up part and then the peeled off part is removed.
  • NB-1 Ichiban Co., Ltd.
  • the evaluation criteria are as follows.
  • Comparative Example 2 sulfuric acid corrosion resistance and composite corrosion resistance were decreased. This is because the surface of the colloidal silica was not sufficiently modified as in Comparative Example 1 due to the lack of the silane content, and thus a large amount of residual silica prevented the film formation.
  • Comparative Example 3 is a case in which the acidity regulator is added in excess, the molecular weight of the organic-inorganic mixed resin in the silica, monomer and organic resin modified with silane is excessively increased to cause gelation of the solution, even if coating or sulfuric acid corrosion resistance or composite It can be seen that the corrosion resistance is lowered. In addition, corrosion of the steel sheet may proceed due to the residual acidity regulator.
  • Comparative Example 4 can be seen that the gelation is easily generated during the preparation of the solution composition because the solvent is not included, sulfuric acid corrosion resistance and composite corrosion resistance is reduced even if the coating.
  • Comparative Example 7 is a case where an excessive amount of the silane is added, it can be seen that the organic gas due to pyrolysis in the solution composition manufacturing process can be discharged and sulfuric acid resistance is reduced after coating due to the large amount of remaining silane.

Abstract

본 발명은 황산 등의 산에 대한 저항성이 우수한 강판의 표면처리 조성물 및 상기 표면처리 조성물이 적용된 코팅강판에 관한 것으로서, 상기 표면처리 조성물은 5~20nm 크기의 실리카를 포함하는 콜로이달 실리카 30~50 중량%, 3 이상의 알콕시기를 포함하는 실란 40~60 중량%, 아크릴레이트계 유기 모노머 5~15 중량%, 산(acid) 0.01~1 중량%; 및 용제(solvent) 1~15 중량%를 포함한다.

Description

강판 표면처리용 용액 조성물 및 이를 이용하여 표면처리된 강판
본 발명은 황산 등의 산에 대한 저항성이 우수한 강판의 표면처리 조성물 및 상기 표면처리 조성물이 적용된 코팅강판에 관한 것이다.
일반적으로, 황 등이 포함된 연료를 연소시키는 경우, 황산화물, 질소산화물 등이 발생하게 되는데, 황산화물이나 질소산화물 등이 수분을 만나게 되면 황산이나 질산 등의 강산이 생성된다. 이들은 이슬점 아래의 온도에서 금속 등의 구조물 표면에 부착하여 부식을 촉진시키는 노점 부식이 진행된다. 따라서, 화력발전소의 열 교환기, 덕트(Duct) 등의 설비들은 이러한 강산에 의한 부식 환경에 노출되게 된다.
이러한 노점 부식을 저하시키기 위해 해당 업체들은 고가의 스테인리스 스틸이나 법랑강판 등을 사용하거나 상대적으로 저가이면서도 노점 부식에 대한 저항성이 큰 내황산강 등을 적용하고 있다. 부식 반응은 구조체의 표면에서 진행되게 되는데 법랑강판을 제외한 대부분의 소재들은 표면에 별도의 코팅층 없이 사용되고 있는 현실이다.
이러한 노점 부식을 방지하기 위한 기술들로는 대한민국 특허출원번호 제2013-0151739호, 제2013-0145717호, 제2013-0141627호, 제2013-0130161호 등이 있으나, 이들은 모두 강판 자체의 성분조정 등을 통해 강산에 대한 내식성을 향상시키고자 한 기술들로서, 강판 표면에 코팅층을 형성하여 이러한 노점 부식을 억제하고자 하는 기술과는 상이하다.
본 발명은 강판 자체의 성분조정이 아닌 강판의 표면에 코팅을 통해 상기 기술된 노점 부식을 포함한 강산에 대한 내식성을 향상시키고자 한다.
본 발명은 황산 등의 산에 대한 내식성이 우수한 강판 표면처리용 용액조성물을 제공하고자 하는 것으로서, 5~20nm 크기의 실리카를 포함하는 콜로이달 실리카 30~50 중량%, 3 이상의 알콕시기를 포함하는 실란 40~60 중량%, 아크릴레이트 계 유기 모노머 5~15 중량%, 산(acid) 0.01~1 중량% 및 용제(solvent) 1~15 중량%를 포함하는 강판 표면처리용 용액 조성물을 제공한다.
상기 콜로이달 실리카는 실리카 함량이 10~45중량%일 수 있다.
상기 실란은 비닐트리메톡시실란(Vinyl trimethoxy silane), 비닐트리에톡시실란(Vinyl triethoxy silane), 비닐트리이소프로필실란(Vinyl tri-isopropoxy silane), 3-메타크릴옥시프로필 트리메톡시실란(3-methacryloxypropyl trimethoxy silane), 2-글리실옥시프로필트리메톡시실란(2-Glycidyloxy propyl trimethoxy silane), 2-글리시딜옥시프로필트리에톡시실란(2-Glycidyloxy propyl triethoxy silane), 2-아미노프로필트리에톡시실란(2-aminopropyl triethoxy silane), 2-우레이도알킬트리에톡시실란(2-ureidoalkyl triethoxy silane), 테트라에톡시실란(tetraethoxysilane), 트리에톡시페닐실란(Triethoxyphenylsilane) 및 트리메톡시페닐실란(Trimethoxyphenylsilane)으로부터 선택되는 적어도 하나일 수 있다.
상기 유기 모노머는 아크릴릭 애시드 글레이셜(Acrylic acid glacial), 메틸 아크릴레이트(Methyl acrylate), 에틸 아크릴레이트(Ethyl acrylate), 부틸 아크릴레이트(Butyl acrylate), 2-에틸헥실 아크릴레이트(2-Ethylhexyl acrylate), 이소부틸 아크릴레이트(Isobutyl acrylate), 터셔리 부틸 아크릴레이트(Tertiary butyl acrylate), 터셔리 부틸 메타크릴레이트(Tertiary butyl methacrylate), 부탄디올 모노아크릴레이트(Butanediol monoacrylate), 라우릴 아크릴레이트(Lauryl acrylate), 디메틸아미노에틸 아크릴레이트(Dimethylaminoethyl acrylate) 및 디히드로디시클로펜타디에닐 아크릴레이트(Dihydrodicyclopentadienyl acrylate)로 이루어진 그룹으로부터 선택되는 적어도 하나일 수 있다.
상기 산은 아세트산, 포름산, 락틱산, 글리코닉산, 황산, 질산, 염산 및 불산으로 이루어진 군으로부터 선택되는 하나 이상일 수 있다.
상기 용제는 메탄올, 에탄올, 2-프로판올, 2-메톡시프로판올 및 2-부톡시에탄올로 이루어진 군으로부터 선택되는 적어도 하나일 수 있다.
상기 조성물은 환형 고리 구조를 갖는 유기 수지 0.1 내지 5.0중량% 더 포함할 수 있다.
상기 환형 고리 구조를 갖는 유기 수지는 폴리우레탄; 아미노 변성 페놀 수지; 폴리에스테르 수지; 에폭시 수지; 및 폴리비닐부티랄로 이루어진 그룹으로부터 선택되는 적어도 하나 또는 이들 2 이상의 하이브리드 수지일 수 있다.
본 발명의 다른 견지는 표면처리된 강판을 제공하고자 하는 것으로서, 강판 및 상기 강판의 적어도 일 표면상에 형성된 내식성 피막층을 포함하며, 상기 내식성 피막층은 실리카와 알콕시 실란의 가수분해 반응에 의해 형성된 생성물 및 아크릴레이트계 고분자를 포함하고, 탄소 (C) 25~65 중량%, 실리콘 (Si) 20~70 중량%, 산소 (O) 1~40 중량%를 포함하고, 실리콘 (Si)과 산소의 결합 (Si-O결합) 및 실리콘(Si)과 탄소(C)와의 결합(Si-C결합)의 비율이 80-95% : 5-20%인 표면처리된 강판을 제공한다.
상기 내식성 피막층은 상기한 강판 표면처리용 용액 조성물에 의해 형성된 것이다.
상기 내식성 피막층은 환형 고리 구조를 갖는 유기 수지 0.1 내지 5.0중량% 더 포함할 수 있다.
상기 환형 고리 구조를 갖는 유기 수지는 폴리우레탄, 아미노 변성 페놀 수지; 폴리에스테르 수지, 에폭시 수지 및 폴리비닐부티랄로 이루어진 그룹으로부터 선택되는 적어도 하나 또는 이들 2 이상의 하이브리드 수지일 수 있다.
상기 내식성 피막층은 0.1~50㎛의 두께를 가질 수 있다.
상기 강판은 내황산강인 것이 보다 바람직하다.
상기 내황산강은 중량%로, C: 0.2% 이하 (0은 제외), Si: 0.5% 이하 (0은 제외), Mn: 1.5% 이하 (0은 제외), S: 0.02% 이하, P: 0.02% 이하, Al: 0.1% 이하 및 Cu: 0.1~0.5%이고, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 것일 수 있으며, 내황산강은 Co: 0.03~0.1%, Ni 0.3% 이하 (0은 제외) 및 Sb: 0.3% 이하 (0은 제외) 중 적어도 하나를 더 포함하는 것일 수 있다. 나아가, 상기 내황산강은 표면 직하에 100~300nm 두께의 Cu, Co, Ni 및 Sb로 이루어지는 그룹으로부터 선택된 적어도 1종의 농화층이 형성된 것일 수 있다.
또한, 상기 내황산강은, 중량%로, C: 0.03~0.1%, Si: 0.15~0.35%, Mn: 0.5~1.2, S: 0.01% 이하, P: 0.015% 이하, Al: 0.02~0.06, N: 0.004% 이하 및 Cu: 0.2~0.4%이고, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 강판일 수 있으며, Ni 0.1~0.25%, Sb 0.05~0.2%, Co 0.03~0.1% 중 적어도 하나를 더 포함할 수 있으며, 상기 내황산강은 표면 직하에 100~300nm 두께의 Cu, Co, Ni 및 Sb로 이루어지는 그룹으로부터 선택된 적어도 1종의 농화층이 형성된 것일 수 있다.
본 발명의 일 구현예에 따르면, 강판 표면에 본 발명에서 제공하는 조성물을 코팅함으로써 강판의 조성을 변경하지 않더라도 황산에 대한 내식성을 제공할 수 있다.
나아가, 본 발명에 따른 표면처리 조성물은 구조물에 황산과 염산에 대한 우수한 내식성을 제공함으로써 강판의 수명을 장기화할 수 있다.
도 1은 본 발명에 따른 표면처리 피막 형성에 대한 개념을 개략적으로 나타낸 도면이다.
도 2는 실시예 3에 의해 얻어진 표면처리 강판의 단면(좌측) 및 피막의 표면(우측)에 대하여 SEM 이미지를 촬영하고, 또 피막에 대한 원소 중량을 분석한 결과를 나타낸 도면이다.
본 발명은 강판에 대하여 황산, 염산 등의 강산에 대한 내식성을 제공하고자 하는 것으로서, 강판 자체의 성분조정을 통해 내산성 강판을 제공하고자 하는 것이 아니라, 강판에 황산 등의 강산에 대한 내식성을 갖는 부여하는 표면처리, 즉 코팅을 통해 내산성의 특성을 제공하고자 하는 것이다.
이를 위해, 본 발명은 강판에 내산성의 특성을 부여할 수 있는 표면처리용 용액 조성물을 제공하며, 본 발명에 의해 제공되는 표면처리용 용액 조성물은 콜로이달 실리카와 실란, 유기 모노머 등을 포함한다.
본 발명의 표면처리용 용액 조성물에 포함되는 상기 콜로이달 실리카는 강판 표면에 대하여 치밀한 구조의 피막을 형성하여 본 발명에 따른 강판의 표면처리 피막을 형성하는 주요 성분으로서, 피막에 경도를 제공한다. 또한, 상기 콜로이달 실리카는 상기 피막 형성과정 중에 실란과 화학적으로 결합하여 건조 및 경화 과정에서 강판 표면에 코팅되어, 강판에 대한 내산성을 제공하는 역할을 수행한다.
상기 콜로이달 실리카는 나노 사이즈의 입자 크기를 갖는 것을 사용할 수 있는 것으로서, 예를 들어, 입자 크기가 5nm 내지 50nm인 것을 사용할 수 있다. 상기 콜로이달 실리카의 입자 크기가 5nm 미만이면 실리카의 표면적이 너무 넓어 이에 반응할 실란이 부족하게 되며, 이로 인해 내산성이 열위하게 된다. 한편, 콜로이달 실리카의 입자 크기가 50nm를 초과하면 실리카 사이의 공극율(porosity)이 높아 내산성이 저하되는 문제가 있다. 상기 콜로이달 실리카는 5 내지 20㎚의 입자 사이즈를 갖는 것이 보다 바람직하다.
상기 콜로이달 실리카는 실리카의 함량이 10 내지 45중량%의 함량으로 포함하는 것이 바람직하다. 10중량% 미만이면 실리카의 함량이 부족하여 피막의 내식성이 열위해지는 문제가 발생할 수 있고, 45중량%를 초과하면 지나치게 많은 실리카 입자가 침전하는 문제가 있다.
상기 콜로이달 실리카는 금속 표면처리용 용액 조성물 100중량%에 대하여 30중량% 내지 50중량%가 되도록 포함될 수 있다. 이를 실리카 함량으로 나타내면 조성물 전체 100중량%에 대하여 3.0~22.5중량%의 함량일 수 있다. 상기 콜로이달 실리카의 함량이 30중량% 미만이면 알콕시 실란과 충분한 결합하지 못하여 경도를 감소시키고 산에 대한 내식성을 확보하지 못할 수 있다. 반면, 상기 콜로이달 실리카의 함량이 50중량%를 초과하면 실란과 미결합된 실리카가 잔존하여 도막형성능을 저하시킬 수 있고, 이로 인해 산에 대한 내식성을 확보하지 못할 수 있다.
본 발명의 금속 표면처리용 용액 조성물은 실란을 포함한다. 상기 실란은 실리카와 솔젤반응하여 결합하고, 또 실란 간에 가교하며, 건조과정에서 강판 표면과 반응하여 강판에 피막을 부착시키는 역할을 수행한다. 이로 인해, 산에 대한 내식성을 제공하는 실리카가 강판 표면에 견고하게 피막을 형성하고 유지할 수 있도록 하여 내산성을 증대시키는데 기여한다.
상기 실란은 특별히 한정하지 않으나, 알콕시 그룹을 갖는 알콕시실란이 바람직하며, 알콕시 그룹이 3개 이상인 알콕시실란을 사용하는 것이 실리카, 실란, 강판과의 결합반응을 수행할 수 있어 강판에 대한 피막의 밀착성을 향상시킬 수 있으며, 또 치밀한 코팅을 형성할 수 있어 산에 대한 내식성을 향상시킬 수 있는 점에서 보다 바람직하다.
이와 같은 알콕시 실란으로는 예를 들어, 비닐트리메톡시실란(Vinyl trimethoxy silane), 비닐트리에톡시실란(Vinyl triethoxy silane), 비닐트리이소프로필실란(Vinyl tri-isopropoxy silane), 3-메타크릴옥시프로필 트리메톡시실란(3-methacryloxypropyl trimethoxy silane), 2-글리실옥시프로필트리메톡시실란(2-Glycidyloxy propyl trimethoxy silane), 2-글리시딜옥시프로필트리에톡시실란(2-Glycidyloxy propyl triethoxy silane), 2-아미노프로필트리에톡시실란(2-aminopropyl triethoxy silane), 2-우레이도알킬트리에톡시실란(2-ureidoalkyl triethoxy silane), 테트라에톡시실란(tetraethoxysilane), 트리에톡시페닐실란(Triethoxyphenylsilane), 트리메톡시페닐실란(Trimethoxyphenylsilane), 메틸트리메톡시실란 및 이들의 혼합물로 이루어진 군으로부터 선택되는 하나 이상의 것을 포함할 수 있으며, 이들은 가수분해 후 안정화될 수 있어 보다 바람직하다.
본 발명의 금속 표면처리용 용액 조성물에서 상기 알콕시 실란은 금속 표면처리 조성물 100중량%에 대하여 40중량% 내지 60중량% 포함할 수 있다. 상기 알콕시 실란이 40중량% 미만이면 콜로이달 실리카 및 강판과 충분한 결합을 형성하지 못하여 도막형성능이 저하되며, 이로 인해 산에 대한 내식성을 확보하지 못할 수 있다. 한편, 상기 알콕시 실란이 60중량%를 초과하면 열분해로 인한 유기가스가 배출될 수 있으며, 다량의 실란올이 잔존하여 도막 밀착성이 저해되고 이로 인해 내식성을 확보하지 못할 수 있다.
상기 알콕시실란과 실리카는 솔젤 반응에 의해 형성되는 강판의 표면처리 피막을 형성하는데, 이에 의해 형성된 피막은 딱딱한 특성을 갖는바, 무기 피막 내에서 피막의 유연성을 부여하는 것이 바람직하다. 이에 본 발명의 금속 표면처리용 용액 조성물은 유기 모노머를 포함한다.
상기 실리카와 알콕시실란이 결합 반응하는 조건은 강한 산성 조건인데, 이러한 조건하에서 모노머는 고분자 반응이 진행되어 고분자로 된다. 이러한 모노머로부터 생성된 고분자는 딱딱한 무기물 사이를 충진하여 도막 형성능을 향상시키고, 내수성을 제공하며, 무기물 피막에 유연성을 제공할 수 있다. 또한, 상기 모노머는 건조과정에서 추가적인 중합반응이 일어나는데 알콕시실란과 실란의 경화과정보다 낮은 온도에서 일어나므로 전체적으로 경화온도를 낮추는 역할도 수행한다.
상기 유기 모노머는 실리카와 실란이 결합하는 반응조건하에서 중합할 수 있는 것이라면 특별히 한정하지 않으나, 아크릴레이트계 모노머를 사용하는 것이 보다 바람직하다. 상기 아크릴레이트계 모노머는 실리카와 실란의 반응이 일어나는 산성의 조건에서 중합 반응이 일어나며, 중합 반응 후에 생성된 고분자의 입자 크기가 너무 크지 않은 적당한 사이즈를 가져 바람직하다.
또한, 상기 아크릴레이트계 모노머는 상기 알콕시실란과 실리카의 솔젤 반응에 의해서 알코올 성분이 생성되는데, 상기 알코올 성분은 모노머의 중합속도를 상승시켜 폴리머화 반응을 촉진시킬 수 있다. 또한, 경화밀도를 조절 및 경도(Hardness) 조절이 용이하며, 피막의 투명도가 높아지는 장점이 있다. 이외의 다른 양이온(cation) 타입의 모노머를 사용하는 경우에는 얻어지는 고분자들은 입자가 너무 커서 겔화가 심하게 일어날 수 있다.
상기 아크릴레이트계 모노머의 예로는, 아크릴릭 애시드 글레이셜(Acrylic acid glacial), 메틸 아크릴레이트(Methyl acrylate), 에틸 아크릴레이트(Ethyl acrylate), N-부틸 아크릴레이트(N-Butyl acrylate), 2-에틸헥실 아크릴레이트(2-Ethylhexyl acrylate), 이소부틸 아크릴레이트(Isobutyl acrylate), 터셔리 부틸 아크릴레이트(Tertiary butyl acrylate), 터셔리 부틸 메타크릴레이트(Tertiary butyl methacrylate), 부탄디올 모노아크릴레이트 (Butanediol monoacrylate), 라우릴 아크릴레이트(Lauryl acrylate), 디메틸아미노에틸 아크릴레이트(Dimethylaminoethyl acrylate), 디히드로디시클로펜타디에닐 아크릴레이트(Dihydrodicyclopentadienyl acrylate) 등을 들 수 있으며, 이들은 단독으로 또는 2 이상을 혼합하여 사용할 수 있다.
상기 유기 모노머는 코팅시 도막형성 및 가교반응에 기여하는 것으로, 금속 표면처리용 용액 조성물 100중량%에 대하여 5중량% 내지 15중량% 포함될 수 있다. 금속 표면처리용 용액 조성물 100중량%에 대하여 상기 유기 모노머가 5중량% 미만이면 실리카 및 알콕시 실란 중합체와 충분한 결합이 형성되지 않아 도막 형성능이 저하될 수 있고, 이로 인해 내식성을 확보하지 못할 수 있다. 한편, 상기 유기 모노머가 15중량%를 초과하면 반응하지 않은 잔존 모노머로 인해 내수성이 저하되거나 산 내식성이 감소될 수 있다.
본 발명의 금속 표면처리용 용액 조성물은 산도조절을 위한 산을 또한 포함한다. 상기 산은 알콕시실란의 가수분해반응을 도와주면서 알콕시실란의 안정성을 향상시켜주는 역할을 하는 것으로, 용액의 산도를 1 내지 5의 pH 범위로 조절하는 것이 바람직하다. 이를 위해, 상기 산은 금속 표면처리 조성물 100중량%에 대하여 0.01중량% 내지 1.00중량% 포함될 수 있다. 금속 표면처리용 용액 조성물 100중량%에 대하여 상기 산의 함량이 0.01중량%부 미만이면 가수분해 시간이 증가하여 전체 용액 조성물의 용액 안정성이 저하될 수 있다. 금속 표면처리용 용액 조성물 100중량%에 대하여 상기 산의 함량이 1.00중량%를 초과하면 강판의 부식이 발생할 수 있으며 수지의 분자량 제어가 어려워질 수 있다.
상기 산의 구체적인 종류는 특별히 제한되지 않지만, 바람직하게는 아세트산, 포름산, 락틱산, 글리코닉산 등의 유기산 및 황산, 질산, 염산, 불산 등의 유-무기산 및 이들의 혼합물로 이루어진 군으로부터 선택되는 하나 이상을 본 발명의 금속 표면처리용 용액 조성물에 포함할 수 있다.
본 발명의 금속 표면처리용 용액 조성물은 용제를 포함한다. 상기 용제는 실란의 물에 대한 상용성과 가수분해성, 수지조성물의 금속 표면에 대한 젖음성(Wetting), 건조속도 조절 등의 역할을 하는 것으로, 금속 표면처리 조성물 100중량%에 대하여 1중량% 내지 15중량% 포함될 수 있다. 상기 용제의 함량이 1중량% 미만이면 상용성이 저하되어 코팅액의 저장성이 떨어지고 코팅 후 내식성을 확보하지 못할 수 있다. 한편, 상기 금속 표면처리 조성물 100중량%에 대하여 상기 용제의 함량이 15중량%를 초과하면 점도가 지나치게 낮아져 용액의 안정성이 저하되고 코팅 후 내식성을 확보하지 못할 수 있다.
본 발명의 금속 표면처리용 용액 조성물에서 상기 용제의 구체적인 종류는 특별히 제한되지 않지만, 바람직하게는 메탄올, 에탄올, 2-프로판올, 2-메톡시프로판올, 2-부톡시에탄올 등으로 이루어진 군으로부터 선택되는 하나 이상의 것을 포함할 수 있다.
나아가, 본 발명은 유기수지를 더 포함할 수 있다. 상기 유기수지는 코팅하고자 하는 소재와의 부착성을 증진시키고 상온 건조성을 향상시키는 역할을 하는 것으로서, 금속 표면처리 조성물 100중량%에 대하여 0.1중량% 내지 5.0중량% 포함하는 것이 바람직하다. 상기 유기 수지의 함량이 0.1중량% 미만이면 첨가로 인한 상승 효과가 미미하며, 5.0중량%를 초과하면 내수성이 저하되어 도막 박리 현상 등이 발생할 수 있다.
본 발명의 금속 표면처리 조성물에서 상기 유기 수지는 수지 구조 내에 환형 고리 구조를 갖는 수지를 사용하는 것이 바람직하다. 수지 구조 내의 환형 고리 구조는 다양한 반응으로부터 상대적으로 안정하여 내산성을 향상시키는데 기여한다.
이러한 환형 고리 구조를 수지 구조 내에 갖는 유기 수지로는 예를 들어, 폴리우레탄, 아미노 변성 페놀 수지, 폴리에스테르 수지, 에폭시 수지, 폴리비닐부티랄 등을 들 수 있고, 상기 각 수지의 하이브리드 형태를 사용할 수 있으며, 이들을 단독으로, 또는 혼합하여 사용할 수 있다.
상기와 같은 본 발명에 따른 금속 표면처리용 용액 조성물을 강판 표면에 코팅하고, 건조함으로써 산에 대한 우수한 내식성을 갖는 표면처리 피막을 형성할 수 있다. 상기 코팅은 일반적으로 사용되는 코팅법을 적용할 수 있는 것으로서, 특별히 한정하지 않는다. 예를 들면, 롤코팅, 스프레이, 침적, 스프레이 스퀴징 또는 침적 스퀴징 등의 방법을 적용할 수 있으며, 필요에 따라서는 2 이상의 방법을 혼용할 수도 있다.
한편, 상기 건조는 열풍건조로 또는 유도가열로의 방법을 적용하여 수행할 수 있으며, 상기 건조는 소재 강판 최종도달온도(PMT) 기준으로 150-420℃의 온도범위에서 수행할 수 있다. 상기 건조 온도가 PMT 기준으로 150℃ 이상의 온도에 도달하지 못한다면 제대로 된 고형의 피막층이 형성되지 않고 액상의 잔류 용액이 추후 공정에서 제거되어 목표로 하는 내식성을 확보하지 못할 수 있다. 또한 상기 건조 온도가 PMT 기준으로 420℃를 초과하면 피막층 내의 유기수지 층이 산화(타버린다는 의미)하여 피막층 구조가 변화하게 되고 원하는 내식성을 확보하지 못할 수 있다. 이를 위해, 예를 들어, 상기 열풍건조로에 의해 건조하는 경우에는 열풍건조로의 내부 온도를 150 내지 420℃로 하여 건조할 수 있다.
본 발명에 따른 강판의 표면처리 코팅은 특별히 한정하지 않으며, 연속공정으로 이루어질 수 있으며, 이때, 연속 공정 속도는 예를 들어 60 내지 180mpm(m/min)으로 수행할 수 있다.
이에 의해 얻어진 표면처리 코팅 강판은 건조 후 두께로 0.1 내지 50㎛의 피막 두께를 가질 수 있다. 피막 두께가 0.1㎛ 미만인 경우에는 피막이 충분하지 않아 내식성이 부족한 문제가 있고, 50㎛를 초과하는 경우에는 상기의 코팅 공정에서 작업 중 충분한 건조가 되지 않아 견고한 피막이 형성되지 않을 수 있는 문제가 있다.
상기 피막은 유무기 복합 피막으로서, 아래 도 1에 나타낸 바와 같은 결합 구조를 가져 강판 표면에 피막을 형성한다. 도 1은 본 발명에 따른 피막의 결합구조를 개념적으로 나타낸 것이다. 이와 같이, 본 발명에 따른 피막은 실리카와 알콕시 실란의 가수분해 반응에 의해 결합하고, 또한 알콕시 실란의 다른 알콕시기가 강판과 결합하여 강판 표면에 견고한 피막을 형성한다. 따라서, 본 발명에 따른 피막은 강판 표면에 알콕시 실란과 실리카의 가수분해 반응생성물이 존재한다고 할 수 있다. 상기와 같은 가수분해 반응 등의 과정에서 알코올이 생성되나, 이는 건조과정에서 휘발된다. 이러한 피막은 강판에 대한 내식성, 즉, 산에 대한 우수한 내식성을 제공한다. 이에 대한 예를 도 1에 개략적으로 나타내었다.
한편, 본 발명의 유기 모노머는 중합하여 중합체로 존재한다. 상기 유기모노머는 아크릴레이트계 모노모로서, 피막 중에는 상기 유기 모노머의 중합체인 아크릴레이트계 고분자가 강판 표면에 존재하게 된다.
이와 같이, 본 발명의 강판 표면처리용 용액 조성물을 강판 표면에 도포하여 형성된 유무기 복합 피막은 탄소(C) 25-65중량%, 실리콘(Si) 20-70중량% 및 산소(O) 1-40중량%의 범위로 포함한다. 이는 Electron probe micro-analysis(EPMA), Energy-dispersive X-ray spectroscopy(EDS) 등의 분석방법을 통해 확인할 수 있는 것이다.
이중 실리콘은 산소 또는 탄소와 결합하여 존재하는데, 상기 실리콘이 산소와 결합한 Si-O 결합과 실리콘이 탄소와 결합한 Si-C 결합 간의 비율은 80 내지 95%(Si-O) 대 5-20%(Si-C)의 범위를 갖는다.
한편, 본 발명에 있어서 유기 수지를 더 포함하는 경우에는 상기 유기수지는 피막 내에 0.1 내지 5.0중량%의 함량으로 포함될 수 있다. 이러한 본 발명의 피막은 통상의 강판, 즉, 아연계 도금강판에 대하여 적용되더라도 황산 등에 대하여 양호한 내식성을 얻을 수 있다. 특히, 통상적으로 황산 등에 대한 내식성을 높힌 강으로서, 산성의 부식환경에 노출되었을 때 강 표면에 얇은 피막을 형성하여 산에 대한 강한 내식성을 갖는 내황산강에 대하여 본 발명의 피막을 적용하는 경우에는 강 자체의 황산 등에 대한 내식성과 함께 상승작용을 일으켜, 현저히 우수한 황산 내식성을 얻을 수 있다.
상기 내황산강은, 특별히 한정하지 않으나, 예를 들어, 중량%로, C: 0.2% 이하 (0은 제외한다), Si: 0.5% 이하 (0은 제외한다), Mn: 1.5% 이하 (0은 제외한다), S: 0.02% 이하, P: 0.02% 이하, Al: 0.1% 이하, N: 0.008% 이하 및 Cu: 0.1~0.5%이고, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 강판일 수 있다. 이때, Co: 0.03~0.1% 및 Ni 및 Sb: 0.3% 이하(0은 제외한다)를 더 포함할 수 있으며, 이 경우, 상기 내황산강은 표면 직하에 100~300nm 두께의 Cu, Co, Ni 및 Sb로 이루어지는 그룹으로부터 선택된 적어도 1종의 농화층이 형성된 것일 수 있다.
상기 내황산강은, 보다 바람직하게는, 예를 들어, 중량%로, C: 0.03~0.1%, Si: 0.15~0.35%, Mn: 0.5~1.2, S: 0.01% 이하, P: 0.015% 이하, Al: 0.02~0.06, N: 0.004% 이하 및 Cu: 0.2~0.4%이고, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 강판일 수 있다. 이때, Ni 0.1~0.25%, Sb 0.05~0.2%, Co 0.03~0.1% 중 1종을 더 포함할 수 있으며, 상기 내황산강은 표면 직하에 100~300nm 두께의 Cu, Co, Ni 및 Sb로 이루어지는 그룹으로부터 선택된 적어도 1종의 농화층이 형성된 것을 사용할 수 있다.
이하 본 발명에 따르는 실시예 및 본 발명에 따르지 않는 비교예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
표면처리 조성물
콜로이달 실리카 Ludox HSA(고형분 30%, 입자크기 12㎚, W.R. Grace & Co. - Conn.)에 테트라 에톡시 실란과 용제로 에탄올 및 산도조절제인 아세트산을 각각 첨가 후, 온도가 약 50℃를 초과하지 않도록 냉각시키면서 약 5시간 동안 교반하였다.
이때 콜로이달 실리카는 실란에 의해 표면개질이 일어나고 실란은 가수분해된다. 충분히 반응을 시킨 후 모노머로 에틸아크릴레이트와 유기 수지로서 폴리(메타)아크릴산을 각각 후첨하여 추가로 약 24시간 동안 반응시켰다.
각 성분들의 함량은 표 1에 나타낸 바와 같이 조절하여 표면처리 조성물을 제조하였다.
구분 콜로이달 실리카 실란 용제 산도조절제 모노머 유기수지
실시예 1 36.00% 45.00% 10.00% 0.50% 8.00% 0.50%
실시예 2 42.00% 44.00% 3.40% 0.60% 10.00% 0.00%
실시예 3 32.00% 45.00% 10.00% 0.60% 12.00% 0.40%
실시예 4 35.00% 52.00% 4.00% 0.50% 6.00% 2.50%
비교예 1 53.00% 40.00% 1.00% 0.20% 5.00% 0.80%
비교예 2 50.00% 22.00% 14.00% 0.80% 9.00% 4.20%
비교예 3 42.00% 40.00% 5.00% 2.50% 10.00% 0.50%
비교예 4 45.00% 48.00% 0.00% 0.50% 6.00% 0.50%
비교예 5 35.00% 41.00% 5.00% 0.60% 18.00% 0.40%
비교예 6 36.00% 42.00% 4.80% 0.20% 7.00% 10.00%
비교예 7 30.00% 62.00% 1.00% 0.70% 5.60% 0.70%
상기 표 1과 같은 각 표면처리 조성물에 강판(포스코제 ANCOR-CS 강)을 침지시켰다가 뺀 뒤, 약 250℃의 열풍건조로에 넣고 강판의 PMT 250℃로 가열하여 상기 조성물을 건조 및 경화시켜 표면처리된 강판을 각각 제조하였다.
이와 같이 제조된 표면처리 강판을 70℃로 유지되는 황산 50vol% 수용액에 1시간 동안 침지시킨 후 시편의 부식감량을 측정하여, 황산 부식 조건에서의 부식특성을 조사하고, 그 결과를 표 2에 나타내었다.
그 평가 기준은 다음과 같다.
○: 15㎎/㎠/hr 미만
△: 15 이상 65㎎/㎠/hr 미만
×: 65㎎/㎠/hr 이상
또한, 상기 표면처리 강판을 60℃로 유지되는 황산 16.9vol%+염산 0.35 vol%의 혼합 수용액에 6시간 동안 침지시킨 후 시편의 부식감량을 측정하여 황산-염산 복합부식조건에서의 부식특성을 조사하고, 그 결과를 표 2에 나타내었다.
그 평가기준은 다음과 같다.
○: 3㎎/㎠/hr 미만
△: 3 이상 6㎎/㎠/hr 미만
×: 6㎎/㎠/hr 이상
상기 표면처리 강판에 대한 피막밀착성을 평가하고, 그 결과를 아래 표 2에 나타내었다. 그 평가 방법 및 평가기준은 다음과 같다.
-평가방법-
가로×세로 150㎝×75㎝의 크기 상기 표면처리 강판의 표면을 크로스 컷 가이드(cross cut guide)를 이용하여 1㎜의 간격으로 가로 및 세로 각각 100개의 칸을 형성하도록 줄을 긋고, 상기 100개의 칸이 형성된 부분을 에릭슨(erichsen) 시험기를 이용하여 6㎜의 높이로 밀어 올리고, 밀어 올린 부위에 박리 테이프(NB-1, Ichiban사(제))를 부착한 후 떼어내면서 에릭슨 부분이 박리되는지 여부를 관찰하였다.
그 평가 기준은 다음과 같다.
○: 표면의 박리가 없는 경우
△: 표면의 박리가 100 개 중 1개 내지 3개인 경우
×: 표면의 박리가 100 개 중 3개를 초과한 경우
상기 실시예 1 내지 4 및 비교예 1 내지 7에서 제조된 표면처리 강판에 대한 물성 측정 결과를 하기의 표 2에 기재하였다.
구분 황산 내식성 복합 내식성 피막 밀착성
실시예 1
실시예 2
실시예 3
실시예 4
비교예 1 × × ×
비교예 2 × × ×
비교예 3 ×
비교예 4 × × ×
비교예 5 × ×
비교예 6 × ×
비교예 7 × ×
상기 표 2에 나타난 바와 같이, 본 발명에 따른 실시예 1 내지 4의 경우 황산 내식성, 복합 내식성 및 피막 밀착성이 매우 우수함을 알 수 있다. 또한 코팅 및 건조 과정에서 끓음 현상 등의 표면결함이 발생하지 않아 매우 양호한 표면품질을 확보하였다.
그러나 비교예 1의 경우, 황산 내식성과 복합 내식성이 현저히 저하됨을 알 수 있다. 이는 콜로이달 실리카의 함량이 과량 첨가되어 실란과의 반응에서의 잔류 실리카가 다량 남아 피막 형성을 방해하였기 때문이다.
또, 비교예 2의 경우에도 황산 내식성과 복합 내식성이 저하된 결과를 나타내었다. 이는 실란의 함량이 부족하여 비교예 1과 같이 콜로이달 실리카의 표면이 충분히 개질되지 않았고, 이로 인해 다량의 잔류 실리카가 피막 형성을 방해하였기 때문이다.
한편, 비교예 3은 산도조절제가 과량 첨가된 경우로서, 실란으로 개질된 실리카와 모노머 및 유기 수지에서 유무기 혼합 수지의 분자량이 지나치게 증가되어 용액의 겔화가 일어나거나, 코팅을 하더라도 황산 내식성이나 복합 내식성이 저하됨을 알 수 있다. 또한 잔류 산도조절제로 인해 강판의 부식이 진행될 수도 있다.
또한, 비교예 4는 용제가 포함되지 않아 용액 조성물의 제조과정에서 겔화가 쉽게 일어나고, 코팅을 하더라도 황산 내식성과 복합 내식성이 저하됨을 알 수 있다.
비교예 5와 비교예 6의 경우에는 각각 모노머와 유기수지가 과량 첨가된 경우로서, 이와 같이 무기성분 대비 유기성분의 함량이 과량일 경우 황산 내식성 및 복합 내식성이 저하됨을 알 수 있다.
비교예 7은 실란의 함량이 과량 첨가된 경우로서, 용액 조성물 제조 과정에서 열분해로 인한 유기가스가 배출될 수 있고 다량의 잔존 실란으로 인해 코팅 후 내황산성이 저하됨을 알 수 있다.
나아가, 상기 실시예 3에 의해 얻어진 표면처리 강판에 대한 표면 및 단면 피막에 대하여 SEM 및 EPMA 분석을 수행하였다. 이에 의해 얻어진 SEM 이미지를 도 2에 나타내었다. 한편, 표면 피막에 존재하는 C, S 및 O의 중량을 측정하고, 그 결과를 함께 표시하였다.

Claims (19)

  1. 5~20nm 크기의 실리카를 포함하는 콜로이달 실리카 30~50 중량%;
    3 이상의 알콕시기를 포함하는 실란 40~60 중량%;
    아크릴레이트 계 유기 모노머 5~15 중량%;
    산(acid) 0.01~1 중량%; 및
    용제(solvent) 1~15 중량%
    를 포함하는 강판 표면처리용 용액 조성물.
  2. 제1항에 있어서, 상기 콜로이달 실리카는 실리카 함량이 10~45중량%인 강판 표면처리용 용액 조성물.
  3. 제1항에 있어서, 상기 실란은 비닐트리메톡시실란(Vinyl trimethoxy silane), 비닐트리에톡시실란(Vinyl triethoxy silane), 비닐트리이소프로필실란(Vinyl tri-isopropoxy silane), 3-메타크릴옥시프로필 트리메톡시실란(3-methacryloxypropyl trimethoxy silane), 2-글리실옥시프로필트리메톡시실란(2-Glycidyloxy propyl trimethoxy silane), 2-글리시딜옥시프로필트리에톡시실란(2-Glycidyloxy propyl triethoxy silane), 2-아미노프로필트리에톡시실란(2-aminopropyl triethoxy silane), 2-우레이도알킬트리에톡시실란(2-ureidoalkyl triethoxy silane), 테트라에톡시실란(tetraethoxysilane), 트리에톡시페닐실란(Triethoxyphenylsilane) 및 트리메톡시페닐실란(Trimethoxyphenylsilane)으로부터 선택되는 적어도 하나인 강판 표면처리용 용액 조성물.
  4. 제1항에 있어서, 상기 유기 모노머는 아크릴릭 애시드 글레이셜(Acrylic acid glacial), 메틸 아크릴레이트(Methyl acrylate), 에틸 아크릴레이트(Ethyl acrylate), 부틸 아크릴레이트(Butyl acrylate), 2-에틸헥실 아크릴레이트(2-Ethylhexyl acrylate), 이소부틸 아크릴레이트(Isobutyl acrylate), 터셔리 부틸 아크릴레이트(Tertiary butyl acrylate), 터셔리 부틸 메타크릴레이트(Tertiary butyl methacrylate), 부탄디올 모노아크릴레이트(Butanediol monoacrylate), 라우릴 아크릴레이트(Lauryl acrylate), 디메틸아미노에틸 아크릴레이트(Dimethylaminoethyl acrylate) 및 디히드로디시클로펜타디에닐 아크릴레이트(Dihydrodicyclopentadienyl acrylate)로 이루어진 그룹으로부터 선택되는 적어도 하나인 강판 표면처리용 용액 조성물.
  5. 제1항에 있어서, 상기 산은 아세트산, 포름산, 락틱산, 글리코닉산, 황산, 질산, 염산 및 불산으로 이루어진 군으로부터 선택되는 하나 이상인 강판 표면처리용 용액 조성물.
  6. 제1항에 있어서, 상기 용제는 메탄올, 에탄올, 2-프로판올, 2-메톡시프로판올 및 2-부톡시에탄올로 이루어진 군으로부터 선택되는 적어도 하나인 강판 표면처리용 용액 조성물.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 환형 고리 구조를 갖는 유기 수지 0.1 내지 5.0중량% 더 포함하는 강판 표면처리용 용액 조성물.
  8. 제7항에 있어서, 상기 환형 고리 구조를 갖는 유기 수지는 폴리우레탄; 아미노 변성 페놀 수지; 폴리에스테르 수지; 에폭시 수지; 및 폴리비닐부티랄로 이루어진 그룹으로부터 선택되는 적어도 하나 또는 이들 2 이상의 하이브리드 수지인 강판 표면처리용 용액 조성물.
  9. 강판; 및 상기 강판의 적어도 일 표면 상에 형성된 내식성 피막층을 포함하며,
    상기 내식성 피막층은 실리카와 알콕시 실란의 가수분해 반응에 의해 형성된 생성물 및 아크릴레이트계 고분자를 포함하고,
    탄소 (C) 25~65 중량%, 실리콘 (Si) 20~70 중량%, 산소 (O) 1~40 중량%를 포함하며,
    실리콘 (Si)과 산소의 결합 (Si-O결합) 및 실리콘(Si)과 탄소(C)와의 결합(Si-C결합)의 비율이 80-95% : 5-20%인 표면처리된 강판.
  10. 제9항에 있어서, 상기 내식성 피막층은 제1항 내지 제6항 중 어느 한 항의 강판 표면처리용 용액 조성물에 의해 형성된 것인 표면처리된 강판.
  11. 제9항에 있어서, 환형 고리 구조를 갖는 유기 수지 0.1 내지 5.0중량% 더 포함하는 표면처리된 강판.
  12. 제11항에 있어서, 상기 환형 고리 구조를 갖는 유기 수지는 폴리우레탄; 아미노 변성 페놀 수지; 폴리에스테르 수지; 에폭시 수지; 및 폴리비닐부티랄로 이루어진 그룹으로부터 선택되는 적어도 하나 또는 이들 2 이상의 하이브리드 수지인 표면처리된 강판.
  13. 제9항에 있어서, 상기 내식성 피막층은 0.1~50㎛의 두께를 갖는 것인 표면처리된 강판.
  14. 제9항에 있어서, 상기 강판은 내황산강인 표면처리된 강판.
  15. 제14항에 있어서, 상기 내황산강은 중량%로, C: 0.2% 이하 (0은 제외), Si: 0.5% 이하 (0은 제외), Mn: 1.5% 이하 (0은 제외), S: 0.02% 이하, P: 0.02% 이하, Al: 0.1% 이하, N: 0.008% 이하 및 Cu: 0.1~0.5%이고, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 표면처리된 강판.
  16. 제15항에 있어서, 상기 내황산강은 중량%로, Co: 0.03~0.1%, Ni 0.3% 이하 (0은 제외) 및 Sb: 0.3% 이하 (0은 제외) 중 적어도 하나를 더 포함하는 것인 표면처리된 강판.
  17. 제14항에 있어서, 상기 내황산강은, 중량%로, C: 0.03~0.1%, Si: 0.15~0.35%, Mn: 0.5~1.2, S: 0.01% 이하, P: 0.015% 이하, Al: 0.02~0.06, N: 0.004% 이하 및 Cu: 0.2~0.4%이고, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 표면처리된 강판.
  18. 제17항에 있어서, 상기 내황산강은 중량%로, Co 0.03~0.1%, Ni 0.1~0.25%, 및 Sb 0.05~0.2% 중 적어도 하나를 더 포함하는 것인 표면처리된 강판.
  19. 제16항 또는 제18항에 있어서, 상기 내황산강은 표면 직하에 100~300nm 두께의 Cu, Co, Ni 및 Sb로 이루어지는 그룹으로부터 선택된 적어도 1종의 농화층이 형성된 것인 표면처리된 강판.
PCT/KR2017/010862 2016-09-28 2017-09-28 강판 표면처리용 용액 조성물 및 이를 이용하여 표면처리된 강판 WO2018062912A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17856798.8A EP3521381B1 (en) 2016-09-28 2017-09-28 Solution composition for surface treatment of steel sheet and surface-treated steel sheet using same
CN201780060164.5A CN109790402A (zh) 2016-09-28 2017-09-28 钢板表面处理用溶液组合物及利用其进行表面处理的钢板
JP2019516601A JP6815493B2 (ja) 2016-09-28 2017-09-28 鋼板表面処理用溶液組成物及びこれを用いて表面処理された鋼板
US16/337,575 US11939489B2 (en) 2016-09-28 2017-09-28 Solution composition for surface treatment of steel sheet and surface-treated steel sheet using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0124991 2016-09-28
KR1020160124991A KR102045881B1 (ko) 2016-09-28 2016-09-28 강판 표면처리용 용액 조성물 및 이를 이용하여 표면처리된 강판

Publications (2)

Publication Number Publication Date
WO2018062912A2 true WO2018062912A2 (ko) 2018-04-05
WO2018062912A3 WO2018062912A3 (ko) 2018-08-09

Family

ID=61759922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010862 WO2018062912A2 (ko) 2016-09-28 2017-09-28 강판 표면처리용 용액 조성물 및 이를 이용하여 표면처리된 강판

Country Status (6)

Country Link
US (1) US11939489B2 (ko)
EP (1) EP3521381B1 (ko)
JP (1) JP6815493B2 (ko)
KR (1) KR102045881B1 (ko)
CN (1) CN109790402A (ko)
WO (1) WO2018062912A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021507991A (ja) * 2017-12-22 2021-02-25 ポスコPosco 鋼板表面処理用溶液組成物及びそれを用いて表面処理された鋼板
CN113227278A (zh) * 2018-12-19 2021-08-06 Posco公司 钢板表面处理用双层组合物及利用该双层组合物进行表面处理的钢板

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200017108A (ko) * 2018-08-08 2020-02-18 주식회사 포스코 강판 표면코팅용 조성물 및 이를 이용하여 표면이 코팅된 강판
KR102310526B1 (ko) * 2018-08-08 2021-10-08 주식회사 포스코 강판 표면코팅용 조성물 및 이를 이용하여 표면이 코팅된 강판
KR102329503B1 (ko) * 2019-12-03 2021-11-19 주식회사 포스코 강판 표면처리용 용액 조성물, 이를 이용하여 표면처리된 강판 및 그 제조 방법
KR102329418B1 (ko) * 2019-12-03 2021-11-22 주식회사 포스코 강판 표면처리용 용액 조성물, 이를 이용하여 표면처리된 강판 및 그 제조 방법
KR102357081B1 (ko) * 2019-12-12 2022-01-28 주식회사 포스코 내열성 및 테이프 부착성이 우수한 전기아연도금 강판용 코팅 조성물, 이를 이용하여 표면처리된 강판 및 그 제조 방법

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602186B2 (ja) 1980-12-24 1985-01-19 日本鋼管株式会社 塗装下地用表面処理鋼板
JPS6160766A (ja) * 1984-08-31 1986-03-28 Kansai Paint Co Ltd 潤滑性塗膜形成用水系組成物
DE4243797C2 (de) 1992-12-23 1997-01-30 Hoechst Ag Härtbare phenolharzmodifizierte Furanharze als Bindemittel für Kitte und Beschichtungsmassen mit verbesserter Thermostabilität, Verfahren zu ihrer Herstellung und ihre Verwendung
US5804616A (en) 1993-05-19 1998-09-08 Ameron International Corporation Epoxy-polysiloxane polymer composition
KR100250342B1 (ko) * 1995-04-21 2000-04-01 이마이 기요스케 코팅용 수지 조성물
KR100241546B1 (ko) 1995-11-28 2000-03-02 이구택 내식성이 우수한 자동차용 표면처리 강판
KR100287964B1 (ko) 1995-12-22 2001-05-02 이구택 금속 기지상의 실리카 코팅막 제조방법
KR100293282B1 (ko) 1996-07-10 2001-09-17 이구택 내산코팅된롤지지대의코팅방법
KR19990053056A (ko) 1997-12-23 1999-07-15 차동천 열전사형 화상보호 필름
EP1051645A1 (en) * 1998-01-27 2000-11-15 Minnesota Mining And Manufacturing Company Adhesion-enhancing coatings for optically functional coating materials
KR100409202B1 (ko) 1999-10-22 2003-12-11 주식회사 포스코 흑색수지의 제조방법 및 이렇게 제조된 흑색수지를 이용하여 강판을 피복하는 피복방법
KR100470046B1 (ko) 2000-06-05 2005-02-04 주식회사 포스코 내황산 부식특성이 우수한 냉연강판
US6458462B1 (en) * 2000-12-13 2002-10-01 3M Innovative Properties Company Sporting goods having a ceramer coating
KR20020051320A (ko) 2000-12-22 2002-06-29 이구택 도료밀착성 및 내식성이 우수한 용기용 표면처리강판의제조방법
KR20010106334A (ko) 2001-10-19 2001-11-29 김휘주 전분성형물의 성형공정중 상변화와 상평형을 이용한 표면차단물질의 코팅 방법
KR100544499B1 (ko) 2001-11-26 2006-01-24 주식회사 포스코 아연도금강판용 몰리포스페이트 피막 형성용액, 및 이용액을 이용한 내식성이 우수한 몰리포스페이트처리강판의 제조방법 및 내식성이 우수한 수지피복강판의제조방법
KR20030043192A (ko) 2001-11-27 2003-06-02 배종섭 내화학성이 우수한 무기세라믹 코팅제 및 그 제조방법
KR100544507B1 (ko) 2001-12-10 2006-01-24 주식회사 포스코 내황산 부식특성이 우수한 열연강판
KR100544506B1 (ko) 2001-12-10 2006-01-24 주식회사 포스코 내황산 부식특성이 우수한 고강도 냉연강판과 그 제조방법
KR100833055B1 (ko) 2001-12-24 2008-05-27 주식회사 포스코 내식성, 성형성 및 열안정성이 우수한 수지코팅용액제조방법 및 이를 이용한 강판 표면처리방법
KR100456951B1 (ko) 2001-12-28 2004-11-10 현대하이스코 주식회사 표면외관과 내식성이 우수한 용융아연도금강판용크로메이트 대체 처리용액을 이용한 아연도금강판 및 그제조방법
JP4064130B2 (ja) * 2002-03-15 2008-03-19 株式会社きもと 透明ハードコートフィルム
KR200280434Y1 (ko) 2002-03-28 2002-07-04 이국희 수지 조성물이 성형 코팅된 다이아프램 밸브
EP1526922B1 (en) 2002-07-30 2007-10-10 Koninklijke Philips Electronics N.V. Personal care appliance and use of a sol gel coating on such an appliance
KR100484596B1 (ko) 2002-10-31 2005-04-20 윤명중 내식성이 우수한 유무기 복합형 아연도금강판용 크로메이트 대체 처리 용액을 이용한 아연도금강판의 제조방법
KR101079412B1 (ko) 2002-12-30 2011-11-02 주식회사 포스코 강판에 우수한 내식성과 도장성을 부여하는 화성처리 조성물 및 이를 이용한 아연도금강판의 표면처리방법
DE602004029673D1 (de) 2003-11-21 2010-12-02 Jfe Steel Corp Oberflächenbehandeltes stahlblech mit ausgezeichnegkeit und beschichtungsfilmerscheinungsbild
KR100550832B1 (ko) 2003-12-24 2006-02-10 동부제강주식회사 폴리에틸렌폼, 폴리스틸렌폼, 폴리우레탄폼과 부착성이있는 아연 또는 아연-알루미늄합금 강판용 고내식성박막형 수용성 유기피막제 및 이를 피복한 강판의 제조방법
KR101060823B1 (ko) 2003-12-29 2011-08-30 주식회사 포스코 박막수지피복 하지용 실란올 용액 처리 강판
US7196136B2 (en) * 2004-04-29 2007-03-27 Hewlett-Packard Development Company, L.P. UV curable coating composition
KR100643353B1 (ko) 2004-12-27 2006-11-10 주식회사 포스코 내식성, 내알카리성 및 내지문성이 우수한 금속표면처리제및 이를 이용하여 처리된 강판
KR100657160B1 (ko) 2005-01-14 2006-12-13 현대하이스코 주식회사 내화학성이 우수한 크롬프리 전기아연도금 강판용 고윤활성 내지문수지 도료조성물 및 이를 도장한 표면처리강판의 제조방법
EP1897921B1 (en) 2005-06-24 2014-07-16 Nippon Kasei Chemical Company Limited Coating composition, process for production thereof, resin moldings and process for production of the moldings
JP4896495B2 (ja) * 2005-11-02 2012-03-14 株式会社神戸製鋼所 耐食性および耐アブレージョン性に優れた表面処理亜鉛系メッキ鋼板およびその製造方法
KR100742909B1 (ko) 2005-12-23 2007-07-25 주식회사 포스코 내식성, 성형성 및 도장성이 우수한 자동차용 강판에사용하는 표면처리제, 상기 처리제를 사용한 강판 및표면처리 방법
KR100742903B1 (ko) 2005-12-23 2007-07-25 주식회사 포스코 가공성 및 가공후 내식성이 우수한 크롬을 함유하지 않는금속 표면 처리 조성물 및 이를 이용한 표면처리 강판
DE102006003956A1 (de) * 2006-01-26 2007-08-02 Degussa Gmbh Korrossionsschutzschicht auf Metalloberflächen
KR100787737B1 (ko) 2006-06-30 2007-12-24 동부제강주식회사 내식성 및 분체 도장성 등이 우수한 환경 친화형 합금화용융아연도금 강판 제조 방법 및 그 표면처리 조성물
DE102006046860A1 (de) * 2006-10-02 2008-04-03 Celanese Emulsions Gmbh Putze und Farben, Copolymerdispersionen und deren Verwendung
JP5239089B2 (ja) 2006-11-21 2013-07-17 ポスコ 硫酸に対する耐食性が優れた鉄鋼及びその製造方法
KR100775311B1 (ko) 2006-12-27 2007-11-08 주식회사 포스코 다기능, 고내식 표면처리강판용 수지조성물 및 이를 이용한수지피복 강판
KR100877921B1 (ko) 2007-05-30 2009-01-12 현대하이스코 주식회사 전도성 고분자 전해(電解) 중합을 이용한 갈바륨 표면처리강판의 제조방법
DE102007026724A1 (de) 2007-06-06 2008-12-11 Basf Coatings Japan Ltd., Yokohama Bindemittel mit hoher OH-Zahl und sie enthaltende Klarlackzusammensetzungen mit guten optischen Eigenschaften und guter Kratz- und Chemikalienbeständigkeit
KR20090046262A (ko) 2007-11-05 2009-05-11 주식회사 포스코 전도성과 내식성이 우수한 금속표면처리제, 이를 이용하여처리된 강판 및 강판의 표면처리방법
KR100928798B1 (ko) 2007-11-13 2009-11-25 주식회사 포스코 향상된 내알칼리성과 가공성을 갖는 크롬 프리 수지 용액조성물, 이를 이용한 강판의 표면처리 방법 및 표면처리된 강판
WO2009141007A1 (de) 2008-05-21 2009-11-26 Basf Construction Polymers Gmbh Pfropf-copolymer, verfahren zu dessen herstellung und seine verwendung
KR101004817B1 (ko) 2008-10-01 2010-12-28 현대하이스코 주식회사 고내식성 도금강판의 제조방법 및 이를 이용하여 제조된 도금강판
KR101053370B1 (ko) 2008-12-11 2011-08-01 주식회사 포스코 내고온고습성 및 가공성이 우수한 크롬 프리 수지 조성물 및 표면처리 강판 제조방법
KR101053316B1 (ko) 2008-12-12 2011-08-01 주식회사 비아이티범우연구소 불소계 수지를 이용한 내열성이 우수한 내지문 강판용 크롬프리 수지 조성물 및 이를 이용한 표면처리 강판
KR101008109B1 (ko) 2008-12-12 2011-01-13 주식회사 비아이티범우연구소 내열성 및 내고온고습성이 향상된 크롬프리 수지 조성물 및이를 이용한 표면처리강판 및 이의 제조방법
KR100986617B1 (ko) * 2008-12-31 2010-10-08 주식회사 노루홀딩스 수용성 방청 코팅제 조성물 및 이의 제조 방법
US8372504B2 (en) * 2009-01-13 2013-02-12 Korea Advanced Institute Of Science And Technology Transparent composite compound
US9029460B2 (en) 2009-02-06 2015-05-12 Stacey James Marsh Coating compositions containing acrylic and aliphatic polyester blends
KR101171973B1 (ko) 2009-03-27 2012-08-08 포항공과대학교 산학협력단 내부식제가 봉입된 나노 캡슐, 그 제조방법, 이를 포함하는 조성물 및 이를 이용한 표면처리 강판
JP5600417B2 (ja) 2009-11-25 2014-10-01 Jfeスチール株式会社 表面処理組成物及び表面処理鋼板
KR101139616B1 (ko) 2009-12-16 2012-04-27 한국세라믹기술원 고강도 안전유리 제조방법
KR20120011105A (ko) * 2010-07-28 2012-02-07 경희대학교 산학협력단 초음파를 이용한 나노자성체의 밀도영상 장치 및 방법
KR101304637B1 (ko) 2010-07-28 2013-09-05 주식회사 포스코 내식성이 우수한 고강도 고연성 열연강판 및 그 제조방법
KR101304708B1 (ko) 2010-07-28 2013-09-06 주식회사 포스코 내식성이 우수한 고연성 열연강판 및 그 제조방법
KR101242807B1 (ko) 2010-09-29 2013-03-12 주식회사 포스코 내식성이 우수한 저합금 열연강판 및 그 제조방법
KR101243011B1 (ko) 2010-09-29 2013-03-12 주식회사 포스코 내식성이 우수한 저합금 고강도 열연강판 및 그 제조방법
KR101232606B1 (ko) * 2010-12-02 2013-02-13 연세대학교 산학협력단 난접착 금속소재용 광경화성 코팅 또는 접착 조성물 및 이의 제조방법
KR101233507B1 (ko) 2011-02-25 2013-02-14 삼성전자주식회사 수용성 크롬프리 표면처리 조성물 및, 이를 이용한 아연도금강판의 제조방법 및 수용성 크롬프리 표면처리 조성물이 코팅된 아연도금강판
KR101301210B1 (ko) 2011-03-31 2013-09-10 (주)디포유건업 철재표면을 수분산성의 세라믹도료로 표면처리하는 방법
KR101372794B1 (ko) 2011-08-26 2014-03-10 주식회사 포스코 황산 및 염산 복합내식성 및 용접성이 우수한 강판 및 그 제조방법
KR101313441B1 (ko) 2011-10-25 2013-10-01 주식회사 포스코 용접성, 내스크래치성 및 내식성이 우수한 표면처리 강판
KR101180060B1 (ko) 2011-12-26 2012-09-04 (주)청우산업개발 콘크리트 구조물의 보수ㆍ보강재
KR101313443B1 (ko) 2011-12-28 2013-10-01 주식회사 포스코 나노 돌기가 형성된 자기세정성 부재 및 그 제조방법
KR101197732B1 (ko) 2012-06-19 2012-11-14 (합)일광 건축물 옥상 단열ㆍ방수 시공방법
KR101310324B1 (ko) 2012-06-19 2013-10-16 (주)청우산업개발 건물 내ㆍ외벽 단열 시공방법
KR101417294B1 (ko) 2012-06-21 2014-07-08 주식회사 포스코 복합내식성 및 용접성이 우수한 열연강판 및 그 제조방법
KR101417295B1 (ko) 2012-06-21 2014-07-08 주식회사 포스코 황산내식성 및 표면특성이 우수한 냉연강판 및 그 제조방법
KR101220861B1 (ko) 2012-07-10 2013-01-10 (합)일광 친환경 단열ㆍ방수도료를 이용한 건축물 복합시공방법
KR20140009698A (ko) 2012-07-12 2014-01-23 (주)청우산업개발 건축물 바닥의 친환경 표면강화 시공방법
KR101478285B1 (ko) 2013-03-28 2014-12-31 주식회사 나노솔루션 방열 코팅액 조성물 및 이의 제조 방법
KR101493853B1 (ko) 2013-05-24 2015-02-16 주식회사 포스코 열연강판 및 그 제조 방법
JP6315750B2 (ja) * 2013-06-10 2018-04-25 関西ペイント株式会社 水性金属表面処理剤
KR101518578B1 (ko) 2013-09-10 2015-05-07 주식회사 포스코 내마모성 및 표면품질이 우수한 황산 및 염산 복합내식용 강판 및 그 제조방법
KR101499342B1 (ko) * 2013-09-12 2015-03-12 조인형 아파트 배관 전용 스패너
KR101499352B1 (ko) * 2013-10-21 2015-03-05 현대제철 주식회사 내흑변성이 우수한 유무기 복합 코팅액 및 이를 이용한 표면처리강판 제조 방법
KR101536429B1 (ko) 2013-10-30 2015-07-13 주식회사 포스코 황산 및 염산 복합내식성이 우수한 열연강판 및 이의 제조방법
KR101536438B1 (ko) 2013-11-20 2015-07-24 주식회사 포스코 황산 및 염산 복합내식용 강판 및 이의 제조방법
KR101405368B1 (ko) 2013-11-22 2014-06-11 채우병 무기질계 수지의 제조방법 및 이를 이용한 코팅재 조성물
KR101543874B1 (ko) 2013-11-27 2015-08-11 주식회사 포스코 우수한 내식성을 갖는 황산 및 염산 복합내식용 열연강판 및 그 제조방법
KR101560902B1 (ko) 2013-12-06 2015-10-15 주식회사 포스코 황산 및 염산 복합내식성이 우수한 열연강판 및 그 제조방법
KR101560929B1 (ko) 2013-12-20 2015-10-15 주식회사 포스코 우수한 내식성을 부여하는 아연도금강판용 표면처리 조성물 및 이를 이용하여 표면처리된 아연도금강판
JP6203291B2 (ja) * 2013-12-24 2017-09-27 日本パーカライジング株式会社 金属材料用表面処理剤
KR101424082B1 (ko) 2014-02-24 2014-07-28 주식회사 에코인프라홀딩스 졸겔법을 이용하여 제조된 복합 세라믹, 이를 함유하는 초고온 내열성 및 고 내식성을 갖는 박막 코팅재 및 이의 제조방법
CN103911031B (zh) 2014-04-10 2016-04-06 攀钢集团攀枝花钢铁研究院有限公司 一种热镀锌自润滑处理剂组合物和自润滑镀锌板及其制备方法
KR101696604B1 (ko) 2014-10-08 2017-01-17 삼화페인트공업주식회사 도금 강판용 유무기 하이브리드 코팅 조성물
KR101657787B1 (ko) * 2014-12-04 2016-09-20 주식회사 포스코 황산 내식성 및 법랑 밀착성이 우수한 강판 및 그 제조방법
KR101696038B1 (ko) 2014-12-09 2017-01-13 주식회사 포스코 유무기 복합 피막용 수지 조성물, 이를 이용한 자동차용 연료탱크강판 및 이의 제조방법
KR20160077568A (ko) 2014-12-23 2016-07-04 주식회사 포스코 경도 및 내식성이 우수한 슬래그 코팅 강판 및 그 제조 방법
KR101693516B1 (ko) 2014-12-24 2017-01-06 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR101736557B1 (ko) 2014-12-26 2017-05-17 주식회사 포스코 내흑변성 및 내식성이 우수한 크롬프리 코팅 조성물 및 표면처리 강판
KR101521812B1 (ko) 2015-02-12 2015-05-21 김나현 염장식품의 저장기능을 향상시키는 친환경 코팅제를 이용한 시공방법
KR101634367B1 (ko) 2015-06-24 2016-06-30 이은숙 수지모르타르를 이용한 콘크리트구조물 방수공법
WO2017113269A1 (en) * 2015-12-31 2017-07-06 3M Innovative Properties Company Anti-fog coating composition including functionalized silica nanoparticles and multifunctional (meth) acrylate monomers
KR102065224B1 (ko) * 2017-12-22 2020-01-10 주식회사 포스코 강판 표면처리용 용액 조성물 및 이를 이용하여 표면처리된 강판

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021507991A (ja) * 2017-12-22 2021-02-25 ポスコPosco 鋼板表面処理用溶液組成物及びそれを用いて表面処理された鋼板
JP7281467B2 (ja) 2017-12-22 2023-05-25 ポスコ カンパニー リミテッド 表面処理された鋼板
CN113227278A (zh) * 2018-12-19 2021-08-06 Posco公司 钢板表面处理用双层组合物及利用该双层组合物进行表面处理的钢板

Also Published As

Publication number Publication date
KR102045881B1 (ko) 2019-11-19
KR20180035283A (ko) 2018-04-06
EP3521381B1 (en) 2021-11-03
US11939489B2 (en) 2024-03-26
WO2018062912A3 (ko) 2018-08-09
CN109790402A (zh) 2019-05-21
EP3521381A4 (en) 2020-03-25
JP2019536895A (ja) 2019-12-19
US20200032080A1 (en) 2020-01-30
EP3521381A2 (en) 2019-08-07
JP6815493B2 (ja) 2021-01-20

Similar Documents

Publication Publication Date Title
WO2018062912A2 (ko) 강판 표면처리용 용액 조성물 및 이를 이용하여 표면처리된 강판
WO2019124865A1 (ko) 강판 표면처리용 용액 조성물 및 이를 이용하여 표면처리된 강판
WO2020130295A1 (ko) 강판 표면처리용 이층 조성물 및 이를 이용하여 표면처리된 강판
EP0608888A1 (de) Zu Elastomeren vernetzende Organopolysiloxanmassen
WO2020085716A1 (ko) 3가 크롬 및 무기화합물을 함유한 표면처리 용액 조성물, 이를 이용하여 표면 처리된 용융아연 도금강판 제조방법
JP2006307124A (ja) 常温硬化型無機質コーティング膜及びコーティング剤
CN113913073B (zh) 一种耐候防水阻燃一体化涂料及其制备方法
WO2020091274A1 (ko) 방청 피막
WO2011145782A1 (ko) 편면 용융도금강판의 제조방법
KR102329503B1 (ko) 강판 표면처리용 용액 조성물, 이를 이용하여 표면처리된 강판 및 그 제조 방법
WO2019027148A1 (ko) 온수 배관용 알루미늄관 제조 방법 및 이에 의하여 제조된 온수 배관용 알루미늄관
KR102117999B1 (ko) 고내열, 소수성 코팅용 폴리실록산계 폴리머 및 이를 포함하는 코팅용 조성물
WO2020032557A1 (ko) 강판 표면코팅용 조성물 및 이를 이용하여 표면이 코팅된 강판
WO2021112583A1 (ko) 강판 표면처리용 용액 조성물, 이를 이용하여 표면처리된 강판 및 그 제조 방법
KR102101394B1 (ko) 고내열, 소수성 코팅용 폴리실록산계 폴리머 및 이를 포함하는 코팅용 조성물
WO2019132325A1 (ko) 내슬립성이 우수한 금속 표면처리 조성물 및 이를 적용한 금속재
WO2024014918A1 (ko) 바이러스 불활성화 기능이 우수한 항바이러스 복합수지 조성물 및 이를 이용한 복합수지 코팅강판
CN115895438B (zh) 一种用于聚碳酸酯表面的透明有机硅涂料及其制备方法
CN112940621B (zh) 一种仿生非光滑耐磨涂层及其制备方法和应用
KR20090063550A (ko) 자기세정성 불소수지 칼라강판
CN117820923A (zh) 一种水性功能涂料、彩涂板及它们的制备工艺
WO2011145783A1 (ko) 도금 도장 복합강판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856798

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2019516601

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017856798

Country of ref document: EP

Effective date: 20190429