WO2017201248A1 - Modulatory polynucleotides - Google Patents
Modulatory polynucleotides Download PDFInfo
- Publication number
- WO2017201248A1 WO2017201248A1 PCT/US2017/033268 US2017033268W WO2017201248A1 WO 2017201248 A1 WO2017201248 A1 WO 2017201248A1 US 2017033268 W US2017033268 W US 2017033268W WO 2017201248 A1 WO2017201248 A1 WO 2017201248A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aav
- nucleic acid
- acid sequence
- sequence encoding
- flanking region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/111—General methods applicable to biologically active non-coding nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering nucleic acids [NA]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/14—Type of nucleic acid interfering nucleic acids [NA]
- C12N2310/141—MicroRNAs, miRNAs
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/35—Nature of the modification
- C12N2310/351—Conjugate
- C12N2310/3519—Fusion with another nucleic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/50—Physical structure
- C12N2310/53—Physical structure partially self-complementary or closed
- C12N2310/531—Stem-loop; Hairpin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/50—Physical structure
- C12N2310/53—Physical structure partially self-complementary or closed
- C12N2310/533—Physical structure partially self-complementary or closed having a mismatch or nick in at least one of the strands
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/50—Methods for regulating/modulating their activity
- C12N2320/52—Methods for regulating/modulating their activity modulating the physical stability, e.g. GC-content
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14121—Viruses as such, e.g. new isolates, mutants or their genomic sequences
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/50—Vector systems having a special element relevant for transcription regulating RNA stability, not being an intron, e.g. poly A signal
Definitions
- the invention relates to compositions, methods, processes, kits and devices for the design, preparation, manufacture and/or formulation of modulatory polynucleotides.
- modulatory polynucleotides may be encoded by or within recombinant adeno-associated viruses (AAV) and may comprise artificial microRNAs, artificial pre- microRNAs and/or artificial pri-microRNAs.
- AAV adeno-associated viruses
- MicroRNAs are small, non-coding, single stranded ribonucleic acid molecules (RNAs), which are usually 19-25 nucleotides in length. More than a thousand microRNAs have been identified in mammalian genomes. The mature microRNAs primarily bind to the 3' untranslated region (3'-UTR) of target messenger RNAs (mRNAs) through partially or fully pairing with the complementary sequences of target mRNAs, promoting the degradation of target mRNAs at a post-transcriptional level, and in some cases, inhibiting the initiation of translation. MicroRNAs play a critical role in many key biological processes, such as the regulation of cell cycle and growth, apoptosis, cell proliferation and tissue development.
- RNAs 3' untranslated region
- miRNA genes are generally transcribed as long primary transcripts of miRNAs (i.e. pri-miRNAs).
- the pri-miRNA is cleaved into a precursor of a miRNA (i.e. pre-miRNA) which is further processed to generate the mature and functional miRNA.
- nucleic acid based modalities While many target expression strategies employ nucleic acid based modalities, there remains a need for improved nucleic acid modalities which have higher specificity and with fewer off target effects.
- the present invention provides such improved modalities in the form of artificial pri-, pre- and mature microRNA constructs and methods of their design.
- These novel constructs may be synthetic stand-alone molecules or be encoded in a plasmid or expression vector for delivery to cells.
- vectors include, but are not limited to adeno-associated viral vectors such as vector genomes of any of the AAV serotypes or other viral delivery vehicles such as lentivirus, etc.
- compositions, methods, processes, kits and devices for the design, preparation, manufacture and/or formulation of modulatory polynucleotides are Described herein.
- modulatory polynucleotides may be encoded by or contained within plasmids or vectors or recombinant adeno-associated viruses (AAV) and may comprise artificial microRNAs, artificial pre-microRNAs and/or artificial pri-microRNAs.
- AAV adeno-associated viruses
- FIG. 1 is a schematic of an artificial pri-microRNA that is part of a viral genome packaged in an AAV vector according to the present invention.
- FIG. 1 discloses SEQ ID NO: 943.
- FIG. 2 is a diagram showing the location of the modulatory polynucleotide (MP) in relation to the ITRs, the intron (I) and the polyA (P).
- MP modulatory polynucleotide
- modulatory polynucleotides which function as artificial microRNAs.
- a "modulatory polynucleotide” is any nucleic acid polymer which functions to modulate (either increase or decrease) the level or amount of a target gene.
- Modulatory polynucleotides include precursor molecules which are processed inside the cell prior to modulation.
- Modulatory polynucleotides or the processed forms thereof may be encoded in a plasmid, vector, genome or other nucleic acid expression vector for delivery to a cell.
- the modulatory polynucleotides may comprise at least one nucleic acid sequence encoding at least one siRNA molecule.
- the nucleic acids may, independently if there is more than one, encode 1 , 2, 3, 4, 5, 6, 7, 8, 9, or more than 9 siRNA molecules.
- modulatory polynucleotides are designed as primary microRNA (pri-miRs) or precursor microRNAs (pre-miRs) which are processed within the cell to produce highly specific artificial microRNAs.
- modulatory polynucleotides especially the artificial microRNAs of the invention, may be designed based on the sequence or structure scaffold of a canonical or known
- microRNA pri-microRNA or pre-microRNA.
- sequences may correspond to any known microRNA or its precursor such as those taught in US Publication US2005/0261218 and US Publication US2005/0059005, the contents of which are incorporated herein by reference in their entirety.
- microRNAs are 19-25 nucleotide long noncoding RNAs that bind to the 3'UTR of nucleic acid molecules and down-regulate gene expression either by reducing nucleic acid molecule stability or by inhibiting translation.
- polynucleotides of the invention may comprise one or more microRNA sequences, microRNA seeds or artificial microRNAs, e.g., sequences which function as a microRNA.
- a microRNA sequence comprises a "seed" region, i.e., a sequence in the region of positions 2-9 of the mature microRNA, which sequence has perfect Watson-Crick
- a microRNA seed may comprise positions 2-8 or 2-7 or 2-9 of the mature microRNA.
- a microRNA seed may comprise 7 nucleotides (e.g., nucleotides 2-8 of the mature microRNA), wherein the seed-complementary site in the corresponding miRNA target is flanked by an adenine (A) opposed to microRNA position 1.
- a microRNA seed may comprise 6 nucleotides (e.g., nucleotides 2-7 of the mature microRNA), wherein the seed-complementary site in the corresponding miRNA target is flanked by an adenine (A) opposed to microRNA position 1.
- design parameters, or rules have been identified and applied to design modulatory polynucleotides (e.g., artificial microRNAs) which have superior target gene modulatory properties with limited off target effects.
- the molecular scaffold of the modulatory polynucleotide described herein may be designed and optimized to create a modulatory polynucleotide that has the desired target gene modulatory properties.
- the modulatory polynucleotide can have superior target gene modulatory properties with limited off target effects.
- the modulatory polynucleotides of the invention are comprised of modular elements or sequence motifs assembled according to a set of rules that result in highly specific target recognition and low guide/passenger ratio.
- modules or sequence motifs include, but are not limited to, double stranded regions, flanking regions, loops, optimized loops, UGUG loops, GU domains, spacers (to control proximal and distal motif or module spacing or to introduce structural elements such as turns, loops or bulges), CNNC motifs, and thermodynamic asymmetry regions which may embrace loops, bulges, mismatches, wobbles, and/or combinations thereof.
- Non limiting examples of rules which may be applied alone or in combination when constructing artificial miRs include those taught in Seitz et al. Silence 2011 , 2:4; Gu, et al, Cell 151 , 900-91 1, November 9, 2012; Schwartz, et al, Cell, Vol. 1 15, 199-208, October 17, 2003; Park, et al, Nature, Vol. 475, 101 , 14 July 201 1 ; Ketley et al, 2013, PLoS ONE 8(6); Liu, et al, Nucleic Acids Research, 2008, Vol. 36, No. 9 281 1-2824; Dow, et al, 2013, Nat Protoc. ; 7(2): 374-393. doi: 10.1038/nprot.201 1.446;
- any of the known RNAi constructs or RNAi agents may serve as the starting construct for the design of the passenger and/or guide strand of a modulatory
- siRNAs small interfering RNAs
- dsRNAs double stranded RNAs
- shRNAs short hairpin RNAs
- stRNA small temporally regulated RNAs
- cRNAs clustered inhibitory RNAs
- ddRNAi DNA-directed RNAi
- ssRNAi single-stranded RNAi
- miRNA microRNA
- microRNA mimics microRNA agonists
- blockmirs a.k.a.
- RNAi constructs such as those disclosed in US Publication 20090131360, the contents of which are incorporated herein in their entirety, the solo-rxRNA constructs disclosed in PCT Publication WO/2010/011346, the contents of which are incorporated herein by reference in their entirety; the sd-rxRNA constructs disclosed in PCT Publication WO/2010/033247 the contents of which are incorporated herein by reference in their entirety, dual acting RNAi constructs which reduce RNA levels and also modulate the immune response as disclosed in PCT Publications WO/2010/002851 and WO/2009/141146 the contents of which are incorporated herein by reference in their entirety and antigene RNAs (agRNA) or small activating RNAs (saRNAs) which increase expression of the target
- any pri- or pre-microRNA precursor of the above listed microRNA may also serve as the molecular scaffold of the modulatory polynucleotides of the invention.
- the starting construct may be derived from any relevant species such as, not limited to, mouse, rat, dog, monkey or human.
- the modulatory polynucleotide may be located in an expression vector downstream of a promoter such as, but not limited to, CMV, U6, HI , CBA or a CBA promoter with a SV40 or a human betaGlobin intron. Further, the modulatory polynucleotide may also be located upstream of the polyadenylation sequence in an expression vector.
- a promoter such as, but not limited to, CMV, U6, HI , CBA or a CBA promoter with a SV40 or a human betaGlobin intron.
- the modulatory polynucleotide may also be located upstream of the polyadenylation sequence in an expression vector.
- the modulatory polynucleotide may be located within 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30 or more than 30 nucleotides downstream from the promoter and/or upstream of the polyadenylation sequence in an expression vector.
- the modulatory polynucleotide may be located within 1-5, 1 -10, 1 -15, 1-20, 1 -25, 1 -30, 5-10, 5-15, 5-20, 5-25, 5-30, 10-15, 10-20, 10- 25, 10-30, 15-20, 15-25, 15-30, 20-25, 20-30 or 25-30 nucleotides downstream from the promoter and/or upstream of the polyadenylation sequence in an expression vector.
- the modulatory polynucleotide may be located within the first 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25% or more than 25% of the nucleotides downstream from the promoter and/or upstream of the polyadenylation sequence in an expression vector.
- the modulatory polynucleotide may be located with the first 1-5%, 1 -10%, 1 -15%, 1-20%, 1 -25%, 5-10%, 5-15%, 5-20%, 5-25%, 10- 15%, 10-20%, 10-25%, 15-20%, 15-25%, or 20-25% downstream from the promoter and/or upstream of the polyadenylation sequence in an expression vector.
- the modulatory polynucleotide may be located upstream of the polyadenylation sequence in an expression vector. Further, the modulatory polynucleotide may be located downstream of a promoter such as, but not limited to, CMV, U6, HI, CBA or a CBA promoter with a SV40 or a human betaGlobin intron in an expression vector. As a non-limiting example, the modulatory polynucleotide may be located within 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30 or more than 30 nucleotides downstream from the promoter and/or upstream of the polyadenylation sequence in an expression vector.
- a promoter such as, but not limited to, CMV, U6, HI, CBA or a CBA promoter with a SV40 or a human betaGlobin intron in an expression vector.
- the modulatory polynucleotide may be located within 1
- the modulatory polynucleotide may be located within 1-5, 1 -10, 1 -15, 1-20, 1 -25, 1 -30, 5-10, 5-15, 5-20, 5-25, 5-30, 10-15, 10-20, 10- 25, 10-30, 15-20, 15-25, 15-30, 20-25, 20-30 or 25-30 nucleotides downstream from the promoter and/or upstream of the polyadenylation sequence in an expression vector.
- the modulatory polynucleotide may be located within the first 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25% or more than 25% of the nucleotides downstream from the promoter and/or upstream of the polyadenylation sequence in an expression vector.
- the modulatory polynucleotide may be located with the first 1-5%, 1 -10%, 1 -15%, 1-20%, 1 -25%, 5-10%, 5-15%, 5-20%, 5-25%, 10- 15%, 10-20%, 10-25%, 15-20%, 15-25%, or 20-25% downstream from the promoter and/or upstream of the polyadenylation sequence in an expression vector.
- the modulatory polynucleotide may be located in a scAAV.
- the modulatory polynucleotide may be located in an ssAAV.
- the modulatory polynucleotide may be located near the 5 ' end of the flip ITR in an expression vector. In another embodiment, the modulatory polynucleotide may be located near the 3 'end of the flip ITR in an expression vector. In yet another embodiment, the modulatory polynucleotide may be located near the 5' end of the flop ITR in an expression vector. In yet another embodiment, the modulatory polynucleotide may be located near the 3' end of the flop ITR in an expression vector. In one embodiment, the modulatory polynucleotide may be located between the 5 ' end of the flip ITR and the 3 ' end of the flop ITR in an expression vector.
- the modulatory polynucleotide may be located between (e.g., halfway between the 5' end of the flip ITR and 3' end of the flop ITR or the 3 ' end of the flop ITR and the 5 ' end of the flip ITR), the 3 ' end of the flip ITR and the 5 ' end of the flip ITR in an expression vector.
- the modulatory polynucleotide may be located within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more than 30 nucleotides downstream from the 5' or 3' end of an ITR (e.g., Flip or Flop ITR) in an expression vector.
- the modulatory polynucleotide may be located within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more than 30 nucleotides upstream from the 5' or 3' end of an ITR (e.g., Flip or Flop ITR) in an expression vector.
- an ITR e.g., Flip or Flop ITR
- the modulatory polynucleotide may be located within 1-5, 1-10, 1-15, 1-20, 1-25, 1-30, 5-10, 5-15, 5-20, 5-25, 5-30, 10-15, 10-20, 10-25, 10-30, 15-20, 15-25, 15-30, 20-25, 20-30 or 25-30 nucleotides downstream from the 5' or 3' end of an ITR (e.g., Flip or Flop ITR) in an expression vector.
- ITR e.g., Flip or Flop ITR
- the modulatory polynucleotide may be located within 1-5, 1-10, 1-15, 1-20, 1-25, 1-30, 5-10, 5-15, 5-20, 5-25, 5-30, 10-15, 10-20, 10-25, 10-30, 15- 20, 15-25, 15-30, 20-25, 20-30 or 25-30 upstream from the 5' or 3' end of an ITR (e.g., Flip or Flop ITR) in an expression vector.
- ITR e.g., Flip or Flop ITR
- the modulatory polynucleotide may be located within the first 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25% or more than 25% of the nucleotides upstream from the 5' or 3' end of an ITR (e.g., Flip or Flop ITR) in an expression vector.
- an ITR e.g., Flip or Flop ITR
- the modulatory polynucleotide may be located with the first 1-5%, 1-10%, 1-15%, 1-20%, 1-25%, 5-10%, 5-15%, 5-20%, 5- 25%, 10-15%, 10-20%, 10-25%, 15-20%, 15-25%, or 20-25% downstream from the 5' or 3' end of an ITR (e.g., Flip or Flop ITR) in an expression vector.
- an ITR e.g., Flip or Flop ITR
- modulatory polynucleotides comprise at least one of or both a passenger and guide strand.
- the passenger and guide strand may be positioned or located on the 5' arm or 3' arm of a stem loop structure of the modulatory polynucleotide.
- the 3' stem arm of the modulatory polynucleotides may have 11 nucleotides downstream of the 3' end of the guide strand which have complementarity to the 11 of the 13 nucleotides upstream of the 5' end of the passenger strand in the 5' stem arm.
- the modulatory polynucleotides may have a cysteine which is 6 nucleotides downstream of the 3' end of the 3' stem arm of the modulatory polynucleotide.
- the modulatory polynucleotides comprise a miRNA seed match for the guide strand. In another embodiment, the modulatory polynucleotides comprise a miRNA seed match for the passenger strand. In yet another embodiment, the modulatory polynucleotides do no comprise a seed match for the guide or passenger strand.
- the modulatory polynucleotides may have almost no significant full-length off targets for the guide strand. In another embodiment, the modulatory polynucleotides may have almost no significant full-length off targets for the passenger strand. In yet another embodiment, the modulatory polynucleotides may have almost no significant full- length off targets for the guide strand or the passenger strand.
- the modulatory polynucleotides may have high activity in vitro. In another embodiment, the modulatory polynucleotides may have low activity in vitro. In yet another embodiment, the modulatory polynucleotides may have high guide strand activity and low passenger strand activity in vitro.
- the modulatory polynucleotides have a high guide strand activity and low passenger strand activity in vitro.
- the target knock-down (KD) by the guide strand may be at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, 99.5% or 100%.
- the target knock-down by the guide strand may be 60-65%, 60-70%, 60-75%, 60-80%, 60-85%, 60-90%, 60-95%, 60-99%, 60-99.5%, 60-100%, 65-70%, 65-75%, 65-80%, 65-85%, 65-90%, 65-95%, 65-99%, 65-99.5%, 65-100%, 70-75%, 70-80%, 70-85%, 70-90%, 70-95%, 70-99%, 70-99.5%, 70-100%, 75-80%, 75-85%, 75-90%, 75-95%, 75-99%, 75-99.5%, 75-100%, 80-85%, 80-90%, 80-95%, 80-99%, 80-99.5%, 80-100%, 85-90%, 85-95%, 85-99%, 85-99.5%, 85-100%, 90-95%, 90-99%, 90-99.5%, 90-100%, 95-99%, 95-99.5%, 95-100%, 99-99.5%, 99-100% or 99.5-100%.
- the IC50 of the passenger strand for the nearest off target is greater than 100 multiplied by the IC50 of the guide strand for the target.
- the modulatory polynucleotide is said to have high guide strand activity and a low passenger strand activity in vitro.
- the 5' processing of the guide strand has a correct start (n) at the 5' end at least 75%, 80%, 85%, 90%, 95%, 99% or 100% of the time in vitro or in vivo.
- the 5' processing of the guide strand is precise and has a correct start (n) at the 5' end at least 99% of the time in vitro.
- the 5' processing of the guide strand is precise and has a correct start (n) at the 5' end at least 99% of the time in vivo.
- the guide-to-passenger (G:P) strand ratio is 1 : 10, 1 :9, 1 :8, 1 :7, 1 :6, 1 :5, 1 :4, 1 :3, 1 :2, 1;1, 2: 10, 2:9, 2:8, 2:7, 2:6, 2:5, 2:4, 2:3, 2:2, 2: 1, 3: 10, 3:9, 3:8, 3:7, 3:6, 3:5, 3:4, 3:3, 3:2, 3: 1, 4: 10, 4:9, 4:8, 4:7, 4:6, 4:5, 4:4, 4:3, 4:2, 4: 1, 5: 10, 5:9, 5:8, 5:7, 5:6, 5:5, 5:4, 5:3, 5:2, 5: 1, 6: 10, 6:9, 6:8, 6:7, 6:6, 6:5, 6:4, 6:3, 6:2, 6: 1, 7: 10, 7:9, 7:8, 7:7, 7:6, 7:5, 7:4, 7:3, 7:2,
- the guide to passenger ratio refers to the ratio of the guide strands to the passenger strands after the excision of the guide strand. For example, a 80:20 guide to passenger ratio would have 8 guide strands to every 2 passenger strands clipped out of the precursor.
- the guide-to-passenger strand ratio is 8:2 in vitro.
- the guide-to-passenger strand ratio is 8:2 in vivo.
- the guide-to- passenger strand ratio is 9: 1 in vitro.
- the guide-to-passenger strand ratio is 9: 1 in vivo.
- the guide to passenger (G:P) (also referred to as the antisense to sense) strand ratio expressed is greater than 1.
- the guide to passenger (G:P) (also referred to as the antisense to sense) strand ratio expressed is greater than 2.
- the guide to passenger (G:P) (also referred to as the antisense to sense) strand ratio expressed is greater than 5.
- the guide to passenger (G:P) (also referred to as the antisense to sense) strand ratio expressed is greater than 10.
- the guide to passenger (G:P) (also referred to as the antisense to sense) strand ratio expressed is greater than 20.
- the guide to passenger (G:P) (also referred to as the antisense to sense) strand ratio expressed is greater than 50.
- the guide to passenger (G:P) (also referred to as the antisense to sense) strand ratio expressed is at least 3: 1.
- the guide to passenger (G:P) (also referred to as the antisense to sense) strand ratio expressed is at least 5: 1.
- the guide to passenger (G:P) (also referred to as the antisense to sense) strand ratio expressed is at least 10: 1.
- the guide to passenger (G:P) (also referred to as the antisense to sense) strand ratio expressed is at least 20: 1.
- the guide to passenger (G:P) (also referred to as the antisense to sense) strand ratio expressed is at least 50: 1.
- the passenger to guide (P:G) (also referred to as the sense to antisense) strand ratio expressed is 1 : 10, 1 :9, 1 :8, 1 :7, 1 :6, 1 :5, 1 :4, 1 :3, 1 :2, 1;1, 2: 10, 2:9, 2:8, 2:7, 2:6, 2:5, 2:4, 2:3, 2:2, 2: 1, 3: 10, 3:9, 3:8, 3:7, 3:6, 3:5, 3:4, 3:3, 3:2, 3: 1, 4: 10, 4:9, 4:8, 4:7, 4:6, 4:5, 4:4, 4:3, 4:2, 4: 1, 5: 10, 5:9, 5:8, 5:7, 5:6, 5:5, 5:4, 5:3, 5:2, 5: 1, 6: 10, 6:9, 6:8, 6:7, 6:6, 6:5, 6:4, 6:3, 6:2, 6: 1, 7: 10, 7:9, 7:8, 7:7, 7:6, 7:
- the passenger to guide ratio refers to the ratio of the passenger strands to the guide strands after the excision of the guide strand.
- a 80:20 passenger to guide ratio would have 8 passenger strands to every 2 guide strands clipped out of the precursor.
- the passenger-to-guide strand ratio is 80:20 in vitro.
- the passenger-to-guide strand ratio is 80:20 in vivo.
- the passenger-to- guide strand ratio is 8:2 in vitro.
- the passenger-to-guide strand ratio is 8:2 in vivo.
- the passenger-to-guide strand ratio is 9: 1 in vitro.
- the passenger-to-guide strand ratio is 9: 1 in vivo.
- the passenger to guide (P:G (also referred to as the sense to antisense) strand ratio expressed is greater than 1.
- the passenger to guide (P:G (also referred to as the sense to antisense) strand ratio expressed is greater than 2.
- the passenger to guide (P:G (also referred to as the sense to antisense) strand ratio expressed is greater than 5.
- the passenger to guide (P:G (also referred to as the sense to antisense) strand ratio expressed is greater than 10.
- the passenger to guide (P:G (also referred to as the sense to antisense) strand ratio expressed is greater than 20.
- the passenger to guide (P:G (also referred to as the sense to antisense) strand ratio expressed is greater than 50.
- the passenger to guide (P:G (also referred to as the sense to antisense) strand ratio expressed is at least 3: 1.
- the passenger to guide (P:G (also referred to as the sense to antisense) strand ratio expressed is at least 5: 1.
- the passenger to guide (P:G (also referred to as the sense to antisense) strand ratio expressed is at least 10: 1.
- the passenger to guide (P:G (also referred to as the sense to antisense) strand ratio expressed is at least 20: 1.
- the passenger to guide (P:G) (also referred to as the sense to antisense) strand ratio expressed is at least 50: 1.
- a passenger-guide strand duplex is considered effective when the pri- or pre-microRNAs demonstrate, but methods known in the art and described herein, greater than 2-fold guide to passenger strand ratio when processing is measured.
- the pri- or pre-microRNAs demonstrate great than 2-fold, 3-fold, 4-fold, 5-fold, 6- fold, 7-fold, 8-fold, 9-fold, 10-fold, 1 1-fold, 12-fold, 13-fold, 14-fold, 15-fold, or 2 to 5-fold, 2 to 10-fold, 2 to 15-fold, 3 to 5-fold, 3 to 10-fold, 3 to 15-fold, 4 to 5-fold, 4 to 10-fold, 4 to 15-fold, 5 to 10-fold, 5 to 15-fold, 6 to 10-fold, 6 to 15-fold, 7 to 10-fold, 7 to 15-fold, 8 to 10-fold, 8 to 15-fold, 9 to 10-fold, 9 to 15-fold, 10 to 15-fold, 11 to 15-fold, 12 to 15-fold, 13 to 15-
- the integrity of the vector genome is at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99% or more than 99% of the full length of the construct.
- the modulatory polynucleotides of the invention may be targeted to any gene or nucleic acid construct including coding and non-coding genes. Genes (DNA or mRNA) that encode human or primate proteins may be targeted. Further, non-coding genes may also be targeted, e.g., long noncoding RNAs (lncRNA).
- lncRNA long noncoding RNAs
- the modulatory polynucleotides of the invention may target any gene known in the art.
- the gene may be SOD1.
- the modulatory polynucleotides of the invention may target any gene known in the art.
- the gene may be Htt.
- the modulatory polynucleotide may be designed to target any gene or mRNA in the human genome, e.g., genes associated with CNS disorders such as, but not limited to, Huntington's Disease, ALS and the like.
- the starting molecular scaffold of the modulatory polynucleotide is a known or wild type pri- or pre-microRNA.
- the molecular scaffold of the modulatory polynucleotides is designed ab initio. (See Cullen, Gene Therapy (2006) 13, 503- 508 work with miR30; Chung, et al, Nucleic Acids Research, 2006, Vol. 34, No. 7 working with miR-155; the contents of which are herein incorporated by reference in their entirety).
- a “molecular scaffold” is a framework or starting molecule that forms the sequence or structural basis against which to design or make a subsequent molecule.
- the modulatory polynucleotides of the present invention may be designed as a pri-miR as shown in FIG. 1.
- a pri-miR molecular scaffold is shown.
- the modulatory polynucleotide which comprises the payload e.g., siRNA, miRNA or other RNAi agent described herein
- comprises a leading 5 ' flanking sequence which may be of any length and may be derived in whole or in part from wild type microRNA sequence or be completely artificial.
- the molecular scaffold comprises at least one 5' flanking region.
- the 5 ' flanking region may comprise a 5' flanking sequence which may be of any length and may be derived in whole or in part from wild type microRNA sequence or be a completely artificial sequence.
- the molecular scaffold comprises at least one 3' flanking region.
- the 3 ' flanking region may comprise a 3' flanking sequence which may be of any length and may be derived in whole or in part from wild type microRNA sequence or be a completely artificial sequence.
- the molecular scaffold comprises at least one loop motif region.
- the loop motif region may comprise a sequence which may be of any length.
- the molecular scaffold comprises a 5' flanking region, a loop motif region and/or a 3 ' flanking region.
- At least one payload may be encoded by a modulatory polynucleotide which may also comprise at least one molecular scaffold.
- the molecular scaffold may comprise a 5 ' flanking sequence and/or a 3' flanking sequence which may be of any length and may be derived in whole or in part from wild type microRNA sequence or be completely artificial.
- the 3' flanking sequence may mirror the 5 ' flanking sequence in size and origin. Either flanking sequence may be absent.
- the 3 ' flanking sequence may optionally contain one or more CNNC motifs, where "N" represents any nucleotide.
- Forming the stem of the stem loop structure shown is a minimum of the modulatory polynucleotide encoding at least one payload sequence.
- the payload sequence comprises at least one nucleic acid sequence which is in part complementary or will hybridize to a target sequence.
- the payload is a wild type microRNA.
- the payload is an siRNA molecule or fragment of an siRNA molecule.
- the payload is a substantially double stranded construct which may comprise one or more microRNAs, artificial microRNAs or siRNAs.
- the 5' arm of the stem loop of the modulatory polynucleotide comprises a nucleic acid sequence encoding a passenger strand.
- This strand is also known as the sense strand in that it reflects an identity to a target.
- the passenger strand may be between 15-30 nucleotides in length. It may be 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 nucleotides in length.
- the 3' arm of the stem loop of the modulatory polynucleotide comprises a nucleic acid sequence encoding a guide strand.
- This strand is also known as the antisense strand in that it reflects homology to a target.
- the guide strand may be between 15-30 nucleotides in length, 21-25 nucleotides or 22 nucleotides in length. It may be 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 nucleotides in length.
- the guide strand in some instances, comprises a "G" nucleotide at the 5' most end.
- the guide strand may comprise one or more microRNA seed sequences.
- the seed sequence may be located at positions 2-7, 2-8 or 2-9 of the guide strand relative to the first 5' nucleotide of the guide strand or relative to a dicer cleavage site.
- the passenger strand may reside on the 3' arm while the guide strand resides on the 5' arm of the stem of the stem loop structure of the modulatory
- the passenger and guide strands may be completely complementary across a substantial portion of their length.
- the passenger strand and guide strand may be at least 70, 80, 90, 95 or 99% complementary across independently at least 50, 60, 70, 80, 85, 90, 95, or 99 % of the length of the strands.
- Neither the identity of the passenger strand nor the homology of the guide strand need be 100% complementary to the target sequence.
- separating the passenger and guide strand of the stem loop structure of the modulatory polynucleotide is a loop sequence (also known as a loop motif, linker or linker motif).
- the loop sequence may be of any length, between 4-30 nucleotides, between 4-20 nucleotides, between 4-15 nucleotides, between 5-15 nucleotides, between 6-12 nucleotides, 6 nucleotides, 7, nucleotides, 8 nucleotides, 9 nucleotides, 10 nucleotides, 11 nucleotides, 12 nucleotides, 13 nucleotides, 14 nucleotides, and/or 15 nucleotides.
- the loop sequence comprises a nucleic acid sequence encoding at least one UGUG motif.
- the nucleic acid sequence encoding the UGUG motif is located at the 5 ' terminus of the loop sequence.
- spacer regions may be present in the modulatory polynucleotide to separate one or more modules (e.g., 5' flanking region, loop motif region, 3' flanking region, sense sequences, antisense sequence) from one another. There may be one or more such spacer regions present.
- modules e.g., 5' flanking region, loop motif region, 3' flanking region, sense sequences, antisense sequence
- a spacer region of between 8-20, i.e., 8, 9, 10, 1 1, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides may be present between the passenger strand and a flanking region sequence.
- the length of the spacer region is 13 nucleotides and is located between the 5 ' terminus of the passenger strand and the 3 ' terminus of the flanking sequence. In one embodiment a spacer is of sufficient length to form approximately one helical turn of the sequence.
- a spacer region of between 8-20, i.e., 8, 9, 10, 1 1, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides may be present between the guide strand and a flanking sequence.
- the spacer sequence is between 10-13, i.e., 10, 1 1, 12 or 13 nucleotides and is located between the 3 ' terminus of the guide strand and the 5' terminus of a flanking sequence.
- a spacer is of sufficient length to form approximately one helical turn of the sequence.
- the modulatory polynucleotide comprises at least one UG motif at the base of the stem whereby the G nucleotide is paired and the U nucleotide is unpaired. In some embodiments the unpaired U nucleotide is located in a flanking sequence.
- the modulatory polynucleotide comprises in the 5' to 3 ' direction, a 5 ' flanking sequence, a 5 ' arm, a loop motif, a 3' arm and a 3' flanking sequence.
- the 5 ' arm may comprise a passenger strand and the 3' arm comprises the guide strand.
- the 5 ' arm comprises the guide strand and the 3 ' arm comprises the passenger strand.
- the 5 ' arm, payload (e.g., passenger and/or guide strand), loop motif and/or 3' arm sequence may be altered (e.g., substituting 1 or more nucleotides, adding nucleotides and/or deleting nucleotides).
- the alteration may cause a beneficial change in the function of the construct (e.g., increase knock-down of the target sequence, reduce degradation of the construct, reduce off target effect, increase efficiency of the payload, and reduce degradation of the payload).
- the passenger strand sequence may be altered (e.g., substituting 1 or more nucleotides, adding nucleotides and/or deleting nucleotides).
- the passenger strand sequence may comprise 1 or 2 substitutions within the last 4 nucleotides of the sequence (e.g., C substituted for a G).
- the passenger strand sequence may comprise 1 or 2 substitutions within the 7-15 nucleotides from the 5 'end of the sequence (e.g., U substituted for an A or C substituted for a G).
- the 3' arm strand sequence may be altered (e.g., substituting 1 or more nucleotides, adding nucleotides and/or deleting nucleotides).
- the sequence of the 3' arm may comprise 1 or 2 substitutions within the first 4 nucleotides of the sequence (e.g., A substituted for a U).
- the molecular scaffold of the payload construct may comprise a 5' flanking region, a loop motif and a 3' flanking region. Between the 5' flanking region and the loop motif may be a first payload region and between the loop motif and the 3' flanking region may be a second payload region.
- the first and second payload regions may comprise siRNA, miRNA or other RNAi agents, fragments or variants described herein.
- the first and second payload regions may also comprise a sequence which is the same, different or complementary to each other.
- the first payload region sequence may be a passenger strand of a siRNA construct and the second payload region sequence may be a guide strand of an siRNA construct.
- the passenger and guide sequences may be substantially complementary to each other.
- the first payload region sequence may be a guide strand of a siRNA construct and the second payload region sequence may be a passenger strand of an siRNA construct.
- the passenger and guide sequences may be substantially complementary to each other.
- the molecular scaffold of the modulatory polynucleotides described herein may comprise a 5 ' flanking region, a loop motif region and a 3 ' flanking region.
- Non- limiting examples of the sequences for the 5' flanking region, loop motif region and the 3' flanking region which may be encoded by the modulatory polynucleotide described herein are shown in Tables 1-3.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5' flanking region listed in Table 1.
- the 5 ' flanking region may be 5F 1, 5F2, 5F3, 5F4, 5F5, 5F6, 5F7, 5F8 or 5F9.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F 1 flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one one loop motif region listed in Table 2.
- the loop motif region may be LI , L2, L3, L4, L5, L6, L7, L8, L9, or LIO.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one LI loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one L2 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one L3 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one L4 loop motif region. [00116] In one embodiment, the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one L5 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one L6 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one L7 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one L8 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one L9 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one L10 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 3' flanking region listed in Table 3.
- the molecular scaffold may comprise the 3 ' flanking region 3F 1, 3F2, 3F3, 3F4, 3F5, 3F6, 3F7 or 3F8.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 3F 1 flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 3F2 flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 3F3 flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 3F4 flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 3F5 flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 3F6 flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 3F7 flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 3F8 flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5' flanking region and at least one loop motif region as described in Tables 1 and 2.
- the 5' flanking region and the loop motif region may be 5F1 and LI , 5F1 and L2, 5F 1 and L3, 5F1 and L4, 5F1 and L5, 5F1 and L6, 5F1 and L7, 5F1 and L8, 5F 1 and L9, 5F1 and LIO, 5F1 and LI 1, 5F2 and LI , 5F2 and L2, 5F2 and L3, 5F2 and L4, 5F2 and L5, 5F2 and L6, 5F2 and L7, 5F2 and L8, 5F2 and L9, 5F2 and LIO, 5F2 and Ll l , 5F3 and LI , 5F3 and L2, 5F3 and L3, 5F3 and L4, 5F3 and L5, 5F3 and L6, 5F3 and
- the molecular scaffold may comprise at least one 3' flanking region and at least one loop motif region as described in Tables 2 and 3.
- the molecular scaffold may comprise 3F 1 and LI , 3F1 and L2, 3F 1 and L3, 3F1 and L4, 3F 1 and L5, 3F1 and L6, 3F 1 and L7, 3F1 and L8, 3F 1 and L9, 3F1 and LI O, 3F 1 and LI 1, 3F2 and LI, 3F2 and L2, 3F2 and L3, 3F2 and L4, 3F2 and L5, 3F2 and L6, 3F2 and L7, 3F2 and L8, 3F2 and L9, 3F2 and LI O, 3F2 and LI 1, 3F3 and LI , 3F3 and L2, 3F3 and L3, 3F3 and L4, 3F3 and L5, 3F3 and L6, 3F3 and L7, 3F3 and L8, 3F3 and L9, 3F3 and LI O, 3F2 and LI 1, 3F3 and LI
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F 1 flanking region and at least one nucleic acid sequence encoding at least one LI loop motif region. [00134] In one embodiment, the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 flanking region and at least one nucleic acid sequence encoding at least one L2 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 flanking region and at least one nucleic acid sequence encoding at least one L3 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 flanking region and at least one nucleic acid sequence encoding at least one L4 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 flanking region and at least one nucleic acid sequence encoding at least one L5 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 flanking region and at least one nucleic acid sequence encoding at least one L6 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 flanking region and at least one nucleic acid sequence encoding at least one L7 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 flanking region and at least one nucleic acid sequence encoding at least one L8 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 flanking region and at least one nucleic acid sequence encoding at least one L9 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 flanking region and at least one nucleic acid sequence encoding at least one L10 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 flanking region and at least one nucleic acid sequence encoding at least one LI 1 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 flanking region and at least one nucleic acid sequence encoding at least one LI loop motif region. [00145] In one embodiment, the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 flanking region and at least one nucleic acid sequence encoding at least one L2 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 flanking region and at least one nucleic acid sequence encoding at least one L3 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 flanking region and at least one nucleic acid sequence encoding at least one L4 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 flanking region and at least one nucleic acid sequence encoding at least one L5 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 flanking region and at least one nucleic acid sequence encoding at least one L6 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 flanking region and at least one nucleic acid sequence encoding at least one L7 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 flanking region and at least one nucleic acid sequence encoding at least one L8 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 flanking region and at least one nucleic acid sequence encoding at least one L9 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 flanking region and at least one nucleic acid sequence encoding at least one L10 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 flanking region and at least one nucleic acid sequence encoding at least one LI 1 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 flanking region and at least one nucleic acid sequence encoding at least one LI loop motif region. [00156] In one embodiment, the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 flanking region and at least one nucleic acid sequence encoding at least one L2 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 flanking region and at least one nucleic acid sequence encoding at least one L3 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 flanking region and at least one nucleic acid sequence encoding at least one L4 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 flanking region and at least one nucleic acid sequence encoding at least one L5 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 flanking region and at least one nucleic acid sequence encoding at least one L6 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 flanking region and at least one nucleic acid sequence encoding at least one L7 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 flanking region and at least one nucleic acid sequence encoding at least one L8 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 flanking region and at least one nucleic acid sequence encoding at least one L9 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 flanking region and at least one nucleic acid sequence encoding at least one L10 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 flanking region and at least one nucleic acid sequence encoding at least one LI 1 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 flanking region and at least one nucleic acid sequence encoding at least one LI loop motif region. [00167] In one embodiment, the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 flanking region and at least one nucleic acid sequence encoding at least one L2 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 flanking region and at least one nucleic acid sequence encoding at least one L3 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 flanking region and at least one nucleic acid sequence encoding at least one L4 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 flanking region and at least one nucleic acid sequence encoding at least one L5 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 flanking region and at least one nucleic acid sequence encoding at least one L6 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 flanking region and at least one nucleic acid sequence encoding at least one L7 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 flanking region and at least one nucleic acid sequence encoding at least one L8 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 flanking region and at least one nucleic acid sequence encoding at least one L9 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 flanking region and at least one nucleic acid sequence encoding at least one L10 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 flanking region and at least one nucleic acid sequence encoding at least one LI 1 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 flanking region and at least one nucleic acid sequence encoding at least one LI loop motif region. [00178] In one embodiment, the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 flanking region and at least one nucleic acid sequence encoding at least one L2 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 flanking region and at least one nucleic acid sequence encoding at least one L3 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 flanking region and at least one nucleic acid sequence encoding at least one L4 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 flanking region and at least one nucleic acid sequence encoding at least one L5 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 flanking region and at least one nucleic acid sequence encoding at least one L6 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 flanking region and at least one nucleic acid sequence encoding at least one L7 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 flanking region and at least one nucleic acid sequence encoding at least one L8 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 flanking region and at least one nucleic acid sequence encoding at least one L9 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 flanking region and at least one nucleic acid sequence encoding at least one L10 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 flanking region and at least one nucleic acid sequence encoding at least one LI 1 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 flanking region and at least one nucleic acid sequence encoding at least one LI loop motif region. [00189] In one embodiment, the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 flanking region and at least one nucleic acid sequence encoding at least one L2 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 flanking region and at least one nucleic acid sequence encoding at least one L3 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 flanking region and at least one nucleic acid sequence encoding at least one L4 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 flanking region and at least one nucleic acid sequence encoding at least one L5 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 flanking region and at least one nucleic acid sequence encoding at least one L6 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 flanking region and at least one nucleic acid sequence encoding at least one L7 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 flanking region and at least one nucleic acid sequence encoding at least one L8 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 flanking region and at least one nucleic acid sequence encoding at least one L9 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 flanking region and at least one nucleic acid sequence encoding at least one L10 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 flanking region and at least one nucleic acid sequence encoding at least one LI 1 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 flanking region and at least one nucleic acid sequence encoding at least one LI loop motif region. [00200] In one embodiment, the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 flanking region and at least one nucleic acid sequence encoding at least one L2 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 flanking region and at least one nucleic acid sequence encoding at least one L3 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 flanking region and at least one nucleic acid sequence encoding at least one L4 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 flanking region and at least one nucleic acid sequence encoding at least one L5 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 flanking region and at least one nucleic acid sequence encoding at least one L6 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 flanking region and at least one nucleic acid sequence encoding at least one L7 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 flanking region and at least one nucleic acid sequence encoding at least one L8 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 flanking region and at least one nucleic acid sequence encoding at least one L9 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 flanking region and at least one nucleic acid sequence encoding at least one L10 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 flanking region and at least one nucleic acid sequence encoding at least one LI 1 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 flanking region and at least one nucleic acid sequence encoding at least one LI loop motif region. [00211] In one embodiment, the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 flanking region and at least one nucleic acid sequence encoding at least one L2 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 flanking region and at least one nucleic acid sequence encoding at least one L3 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 flanking region and at least one nucleic acid sequence encoding at least one L4 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 flanking region and at least one nucleic acid sequence encoding at least one L5 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 flanking region and at least one nucleic acid sequence encoding at least one L6 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 flanking region and at least one nucleic acid sequence encoding at least one L7 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 flanking region and at least one nucleic acid sequence encoding at least one L8 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 flanking region and at least one nucleic acid sequence encoding at least one L9 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 flanking region and at least one nucleic acid sequence encoding at least one L10 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 flanking region and at least one nucleic acid sequence encoding at least one LI 1 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 flanking region and at least one nucleic acid sequence encoding at least one LI loop motif region. [00222] In one embodiment, the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 flanking region and at least one nucleic acid sequence encoding at least one L2 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 flanking region and at least one nucleic acid sequence encoding at least one L3 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 flanking region and at least one nucleic acid sequence encoding at least one L4 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 flanking region and at least one nucleic acid sequence encoding at least one L5 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 flanking region and at least one nucleic acid sequence encoding at least one L6 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 flanking region and at least one nucleic acid sequence encoding at least one L7 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 flanking region and at least one nucleic acid sequence encoding at least one L8 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 flanking region and at least one nucleic acid sequence encoding at least one L9 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 flanking region and at least one nucleic acid sequence encoding at least one L10 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 flanking region and at least one nucleic acid sequence encoding at least one LI 1 loop motif region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5' flanking region and at least one nucleic acid sequence encoding at least 3 ' flanking region as described in Tables 1 and 3.
- the molecular scaffold may comprise 5F1 and 3F 1, 5F1 and 3F2, 5F1 and 3F3, 5F1 and 3F4, 5F 1 and 3F5, 5F1 and 3F6, 5F1 and 3F7, 5F1 and 3F8, 5F2 and 3F1, 5F2 and 3F2, 5F2 and 3F3, 5F2 and 3F4, 5F2 and 3F5, 5F2 and 3F6, 5F2 and 3F7, 5F2 and 3F8, 5F3 and 3F1, 5F3 and 3F2, 5F3 and 3F3, 5F3 and 3F4, 5F3 and 3F5, 5F3 and 3F6, 5F3 and 3F7, 5F3 and 3F8, 5F4 and 3F1,
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region. [00241] In one embodiment, the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region. [00252] In one embodiment, the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5 * flanking region and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region and at least one nucleic acid sequence encoding at least one 3F8 3 ' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5 * flanking region and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region and at least one nucleic acid sequence encoding at least one 3F5 3 ' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region. [00263] In one embodiment, the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5 * flanking region and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region and at least one nucleic acid sequence encoding at least one 3F3 3 ' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5 * flanking region and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region and at least one nucleic acid sequence encoding at least one 3F8 3 ' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5 " flanking region and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region and at least one nucleic acid sequence encoding at least one 3F6 3 ' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5 * flanking region and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region and at least one nucleic acid sequence encoding at least one 3F3 3 ' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region. [00285] In one embodiment, the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region and at least one nucleic acid sequence encoding at least one 3F1 3 ' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5 * flanking region and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region and at least one nucleic acid sequence encoding at least one 3F6 3 ' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region. [00296] In one embodiment, the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one 5' flanking region, at least one loop motif region and at least one 3' flanking region.
- the molecular scaffold may comprise 5F1, LI and 3F1 ; 5F1, LI and 3F2; 5F1, LI and 3F3; 5F1, LI and 3F4; 5F1, LI and 3F5; 5F1, LI and 3F6; 5F1, LI and 3F7; 5F1, LI and 3F8; 5F2, LI and 3F1; 5F2, LI and 3F2; 5F2, LI and 3F3; 5F2, LI and 3F4; 5F2, LI and 3F5; 5F2, LI and 3F6; 5F2, LI and 3F7; 5F2, LI and 3F8; 5F3, LI and 3F1 ; 5F3, LI and 3F2; 5F3, LI and 3F3; 5F3, LI and 3F4; 5F3, LI and 3F5; 5F3, LI and 3F6;
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region. [00341] In one embodiment, the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one LI loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L2 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region. [00477] In one embodiment, the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L3 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L4 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F1 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F2 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F3 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F4 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F5 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F6 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F7 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F8 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F1 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F2 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F3 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F4 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F5 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F6 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F7 3' flanking region.
- the molecular scaffold may comprise at least one nucleic acid sequence encoding at least one 5F9 5' flanking region, at least one nucleic acid sequence encoding at least one L5 loop motif region, and at least one nucleic acid sequence encoding at least one 3F8 3' flanking region.
- the molecular scaffold may comprise one or more linkers known in the art.
- the linkers may separate regions or one molecular scaffold from another.
- the molecular scaffold may be polycistronic.
- the modulatory polynucleotide is designed using at least one of the following properties: loop variant, seed mismatch/bulge/wobble variant, stem mismatch, loop variant and vassal stem mismatch variant, seed mismatch and basal stem mismatch variant, stem mismatch and basal stem mismatch variant, seed wobble and basal stem wobble variant, or a stem sequence variant.
- the molecular scaffold may be located between the two ITRs of an expression vector.
- the molecular scaffold may be inserted into an expression vector at at least one of six different locations as shown in FIG. 2.
- FIG. 2 “ITR” is the inverted terminal repeat, "I” represents intron, "P” is the polyA and "MP” is the modulatory polynucleotide.
- the molecular scaffold may be located downstream of a promoter such as, but not limited to, CMV, U6, HI , CBA or a CBA promoter with a SV40 or a human betaGlobin intron. Further, the molecular scaffold may also be located upstream of the polyadenylation sequence. As a non-limiting example, the molecular scaffold may be located within 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more than 30 nucleotides downstream from the promoter and/or upstream of the polyadenylation sequence.
- a promoter such as, but not limited to, CMV, U6, HI , CBA or a CBA promoter with a SV40 or a human betaGlobin intron.
- the molecular scaffold may also be located upstream of the polyadenylation sequence.
- the molecular scaffold may be located within 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1, 12,
- the molecular scaffold may be located within 1-5, 1 -10, 1 -15, 1-20, 1 -25, 1 -30, 5-10, 5-15, 5-20, 5-25, 5-30, 10-15, 10-20, 10- 25, 10-30, 15-20, 15-25, 15-30, 20-25, 20-30 or 25-30 nucleotides downstream from the promoter and/or upstream of the polyadenylation sequence.
- the molecular scaffold may be located within the first 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25% or more than 25% of the nucleotides downstream from the promoter and/or upstream of the polyadenylation sequence.
- the molecular scaffold may be located with the first 1 -5%, 1-10%, 1-15%, 1-20%, 1-25%, 5-10%, 5-15%, 5- 20%, 5-25%, 10-15%, 10-20%, 10-25%, 15-20%, 15-25%, or 20-25% downstream from the promoter and/or upstream of the polyadenylation sequence.
- the molecular scaffold may be located upstream of the polyadenylation sequence. Further, the molecular scaffold may be located downstream of a promoter such as, but not limited to, CMV, U6, HI, CBA or a CBA promoter with a SV40 or a human betaGlobin intron. As a non-limiting example, the molecular scaffold may be located within 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more than 30 nucleotides downstream from the promoter and/or upstream of the polyadenylation sequence.
- a promoter such as, but not limited to, CMV, U6, HI, CBA or a CBA promoter with a SV40 or a human betaGlobin intron.
- the molecular scaffold may be located within 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more than 30 nucleo
- the molecular scaffold may be located within 1-5, 1 -10, 1 -15, 1-20, 1 -25, 1 -30, 5-10, 5-15, 5-20, 5-25, 5-30, 10-15, 10-20, 10- 25, 10-30, 15-20, 15-25, 15-30, 20-25, 20-30 or 25-30 nucleotides downstream from the promoter and/or upstream of the polyadenylation sequence.
- the molecular scaffold may be located within the first 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25% or more than 25% of the nucleotides downstream from the promoter and/or upstream of the polyadenylation sequence.
- the molecular scaffold may be located with the first 1 -5%, 1-10%, 1-15%, 1-20%, 1-25%, 5-10%, 5-15%, 5- 20%, 5-25%, 10-15%, 10-20%, 10-25%, 15-20%, 15-25%, or 20-25% downstream from the promoter and/or upstream of the polyadenylation sequence.
- the molecular scaffold may be located in a scAAV.
- the molecular scaffold may be located in an ssAAV.
- the molecular scaffold may be located near the 5' end of the flip ITR. In another embodiment, the molecular scaffold may be located near the 3 'end of the flip ITR. In yet another embodiment, the molecular scaffold may be located near the 5' end of the flop ITR. In yet another embodiment, the molecular scaffold may be located near the 3 ' end of the flop ITR. In one embodiment, the molecular scaffold may be located between the 5 ' end of the flip ITR and the 3 ' end of the flop ITR.
- the molecular scaffold may be located between (e.g., half-way between the 5 ' end of the flip ITR and 3 ' end of the flop ITR or the 3 ' end of the flop ITR and the 5' end of the flip ITR), the 3 ' end of the flip ITR and the 5 ' end of the flip ITR.
- the molecular scaffold may be located within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30 or more than 30 nucleotides downstream from the 5' or 3 ' end of an ITR (e.g., Flip or Flop ITR).
- the molecular scaffold may be located within 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25, 26, 27, 28, 29, 30 or more than 30 nucleotides upstream from the 5' or 3' end of an ITR (e.g., Flip or Flop ITR).
- an ITR e.g., Flip or Flop ITR
- the molecular scaffold may be located within 1-5, 1-10, 1-15, 1-20, 1-25, 1-30, 5-10, 5-15, 5-20, 5-25, 5-30, 10-15, 10-20, 10-25, 10-30, 15-20, 15-25, 15-30, 20-25, 20- 30 or 25-30 nucleotides downstream from the 5' or 3' end of an ITR (e.g., Flip or Flop ITR).
- ITR e.g., Flip or Flop ITR
- the molecular scaffold may be located within 1-5, 1-10, 1-15, 1- 20, 1-25, 1-30, 5-10, 5-15, 5-20, 5-25, 5-30, 10-15, 10-20, 10-25, 10-30, 15-20, 15-25, 15-30, 20-25, 20-30 or 25-30 upstream from the 5' or 3' end of an ITR (e.g., Flip or Flop ITR).
- ITR e.g., Flip or Flop ITR
- the molecular scaffold may be located within the first 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25% or more than 25% of the nucleotides upstream from the 5' or 3' end of an ITR (e.g., Flip or Flop ITR).
- the molecular scaffold may be located with the first 1-5%, 1-10%, 1-15%, 1-20%, 1-25%, 5-10%, 5- 15%, 5-20%, 5-25%, 10-15%, 10-20%, 10-25%, 15-20%, 15-25%, or 20-25% downstream from the 5' or 3' end of an ITR (e.g., Flip or Flop ITR).
- the siRNA molecules described herein can be encoded by vectors such as plasmids or viral vectors.
- the siRNA molecules are encoded by viral vectors.
- Viral vectors may be, but are not limited to, Herpesvirus (HSV) vectors, retroviral vectors, adenoviral vectors, adeno-associated viral vectors, lentiviral vectors, and the like.
- the viral vectors are AAV vectors.
- the siRNA duplex targeting SOD1 or HTT may be encoded by a retroviral vector (See, e.g., U.S. Pat. Nos. 5,399,346; 5,124,263; 4,650,764 and 4,980,289; the content of each of which are incorporated herein by reference in their entirety).
- Adenoviruses are eukaryotic DNA viruses that can be modified to efficiently deliver a nucleic acid to a variety of cell types in vivo, and have been used extensively in gene therapy protocols, including for targeting genes to neural cells.
- Various replication defective adenovirus and minimum adenovirus vectors have been described for nucleic acid therapeutics (See, e.g., PCT Patent Publication Nos. WO 199426914, WO 199502697, W0199428152, W0199412649, WO199502697 and W0199622378; the content of each of which is incorporated by reference in their entirety).
- Such adenoviral vectors may also be used to deliver siRNA molecules of the present invention to cells.
- Adeno-associated viral (AA V) vectors An adeno-associated viral (AAV) is a dependent parvovirus (like other parvoviruses) which is a single stranded non-enveloped DNA virus having a genome of about 5000 nucleotides in length and which contains two open reading frames encoding the proteins responsible for replication (Rep) and the structural protein of the capsid (Cap). The open reading frames are flanked by two Inverted Terminal Repeat (ITR) sequences, which serve as the origin of replication of the viral genome. Furthermore, the AAV genome contains a packaging sequence, allowing packaging of the viral genome into an AAV capsid.
- the AAV vector requires a co- helper (e.g., adenovirus) to undergo productive infection in infected cells. In the absence of such helper functions, the AAV virions essentially enter host cells but do not integrate into the cells' genome.
- AAV vectors have been investigated for siRNA delivery because of several unique features.
- Non-limiting examples of the features include (i) the ability to infect both dividing and non-dividing cells; (ii) a broad host range for infectivity, including human cells; (iii) wild-type AAV has not been associated with any disease and has not been shown to replicate in infected cells; (iv) the lack of cell-mediated immune response against the vector and (v) the non- integrative nature in a host chromosome thereby reducing potential for long-term genetic alterations.
- infection with AAV vectors has minimal influence on changing the partem of cellular gene expression (Stilwell and Samulski et al., Biotechniques, 2003, 34, 148).
- AAV vectors for siRNA delivery may be recombinant viral vectors which are replication defective as they lack sequences encoding functional Rep and Cap proteins within the viral genome.
- the defective AAV vectors may lack most or all coding sequences and essentially only contains one or two AAV ITR sequences and a packaging sequence.
- the AAV vectors comprising a nucleic acid sequence encoding the siRNA molecules of the present invention may be introduced into mammalian cells.
- AAV vectors may be modified to enhance the efficiency of delivery.
- modified AAV vectors comprising the nucleic acid sequence encoding the siRNA molecules of the present invention can be packaged efficiently and can be used to successfully infect the target cells at high frequency and with minimal toxicity.
- the AAV vector comprising a nucleic acid sequence encoding the siRNA molecules of the present invention may be a human serotype AAV vector.
- Such human AAV vector may be derived from any known serotype, e.g., from any one of serotypes AAVl-AAVl l .
- AAV vectors may be vectors comprising an AAV1- derived genome in an AAV 1 -derived capsid; vectors comprising an AAV2-derived genome in an AAV2-derived capsid; vectors comprising an AAV4-derived genome in an AAV4 derived capsid; vectors comprising an AAV6-derived genome in an AAV6 derived capsid or vectors comprising an AAV9-derived genome in an AAV9 derived capsid.
- the AAV vector comprising a nucleic acid sequence for encoding siRNA molecules of the present invention may be a pseudotyped hybrid or chimeric AAV vector which contains sequences and/or components originating from at least two different AAV serotypes.
- Pseudotyped AAV vectors may be vectors comprising an AAV genome derived from one AAV serotype and a capsid protein derived at least in part from a different AAV serotype.
- such pseudotyped AAV vectors may be vectors comprising an AAV2-derived genome in an AAV 1 -derived capsid; or vectors comprising an AAV2-derived genome in an AAV6-derived capsid; or vectors comprising an AAV2-derived genome in an AAV4-derived capsid; or an AAV2-derived genome in an AAV9-derived capsid.
- the present invention contemplates any hybrid or chimeric AAV vector.
- AAV vectors comprising a nucleic acid sequence encoding the siRNA molecules of the present invention may be used to deliver siRNA molecules to the central nervous system (e.g., U.S. Pat. No. 6,180,613; the contents of which is herein incorporated by reference in its entirety).
- the AAV vectors comprising a nucleic acid sequence encoding the siRNA molecules of the present invention may further comprise a modified capsid including peptides from non-viral origin.
- the AAV vector may contain a CNS specific chimeric capsid to facilitate the delivery of encoded siRNA duplexes into the brain and the spinal cord.
- an alignment of cap nucleotide sequences from AAV variants exhibiting CNS tropism may be constructed to identify variable region (VR) sequence and structure.
- the AAV vector comprising a nucleic acid sequence encoding the siRNA molecules of the present invention may encode siRNA molecules which are polycistronic molecules.
- the siRNA molecules may additionally comprise one or more linkers between regions of the siRNA molecules.
- the AAV vector used in the present invention is a single strand vector (ssAAV).
- the AAV vectors may be self-complementary AAV vectors (scAAVs).
- scAAV vectors contain both DNA strands which anneal together to form double stranded DNA. By skipping second strand synthesis, scAAVs allow for rapid expression in the cell.
- the AAV vector used in the present invention is a scAAV.
- AAV particles of the present invention may comprise or be derived from any natural or recombinant AAV serotype.
- the AAV particles may utilize or be based on a serotype selected from any of the following AAV1, AAV2, AAV2G9, AAV3, AAV3a, AAV3b, AAV3-3, AAV4, AAV4-4, AAV5, AAV6, AAV6.1, AAV6.2, AAV6.1.2, AAV7, AAV7.2, AAV8, AAV9, AAV9.11, AAV9.13, AAV9.16, AAV9.24, AAV9.45, AAV9.47, AAV9.61, AAV9.68, AAV9.84, AAV9.9, AAV10, AAV11, AAV 12, AAV16.3, AAV24.1, AAV27.3, AAV42.12, AAV42-lb, AAV42-2, AAV42-3a, AAV42-3b, AAV42-4, AAV42-5a, AAV42-5b
- AAVhu.29R AAVhu.31, AAVhu.32, AAVhu.34, AAVhu.35, AAVhu.37, AAVhu.39, AAVhu.40, AAVhu.41, AAVhu.42, AAVhu.43, AAVhu.44, AAVhu.44Rl, AAVhu.44R2, AAVhu.44R3, AAVhu.45, AAVhu.46, AAVhu.47, AAVhu.48, AAVhu.48Rl, AAVhu.48R2, AAVhu.48R3, AAVhu.49, AAVhu.51, AAVhu.52, AAVhu.54, AAVhu.55, AAVhu.56, AAVhu.57, AAVhu.58, AAVhu.60, AAVhu.61, AAVhu.63, AAVhu.64, AAVhu.66,
- AAV128.1/hu.43 true type AAV (ttAAV), UPENN AAV 10, Japanese AAV 10 serotypes, AAV CBr-7.1, AAV CBr-7.10, AAV CBr-7.2, AAV CBr-7.3, AAV CBr-7.4, AAV CBr-7.5, AAV CBr-7.7, AAV CBr-7.8, AAV CBr-B7.3, AAV CBr-B7.4, AAV CBr-El, AAV CBr-E2, AAV CBr-E3, AAV CBr-E4,
- AAVF11/HSC11 AAVF12/HSC12, AAVF13/HSC13, AAVF14/HSC14, AAVF15/HSC15, AAVF16/HSC16, AAVF17/HSC17, AAVF2/HSC2, AAVF3/HSC3, AAVF4/HSC4,
- the capsid of the recombinant AAV virus is AAV2.
- the capsid of the recombinant AAV virus is AAVrhlO.
- the capsid of the recombinant AAV virus is AAV9(hul4).
- the capsid of the recombinant AAV virus is AAV-DJ.
- the capsid of the recombinant AAV virus is AAV9.47.
- the capsid of the recombinant AAV virus is AAV-DJ8.
- the capsid of the recombinant AAV virus is AAV-PHP.B.
- the capsid of the recombinant AAV virus is AAV-PHP.A.
- the AAV serotype may be, or have, a sequence as described in United States Publication No. US20030138772, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to, AAV1 (SEQ ID NO: 6 and 64 of
- US20030138772) AAV2 (SEQ ID NO: 7 and 70 of US20030138772), AAV3 (SEQ ID NO: 8 and 71 of US20030138772), AAV4 (SEQ ID NO: 63 of US20030138772), AAV5 (SEQ ID NO: 114 of US20030138772), AAV6 (SEQ ID NO: 65 of US20030138772), AAV7 (SEQ ID NO: 1- 3 of US20030138772), AAV 8 (SEQ ID NO: 4 and 95 of US20030138772), AAV9 (SEQ ID NO: 5 and 100 of US20030138772), AAV10 (SEQ ID NO: 117 of US20030138772), AAV11 (SEQ ID NO: 118 of US20030138772), AAV 12 (SEQ ID NO: 119 of US20030138772), AAVrhlO (amino acids 1 to 738 of SEQ ID NO: 81 of US20030138772), AAV16.3
- the AAV serotype may be, or have, a sequence as described in United States Publication No. US20150159173, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to, AAV2 (SEQ ID NO: 7 and 23 of
- the AAV serotype may be, or have, a sequence as described in United States Patent No. US 7198951, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to, AAV9 (SEQ ID NO: 1-3 of US 7198951), AAV2 (SEQ ID NO: 4 of US 7198951), AAVl (SEQ ID NO: 5 of US 7198951), AAV3 (SEQ ID NO: 6 of US 7198951), and AAV 8 (SEQ ID NO: 7 of US7198951).
- AAV9 SEQ ID NO: 1-3 of US 7198951
- AAV2 SEQ ID NO: 4 of US 7198951
- AAVl SEQ ID NO: 5 of US 7198951
- AAV3 SEQ ID NO: 6 of US 7198951
- AAV 8 SEQ ID NO: 7 of US7198951.
- the AAV serotype may be, or have, a mutation in the AAV9 sequence as described by N Pulichla et al. (Molecular Therapy 19(6): 1070-1078 (2011), herein incorporated by reference in its entirety), such as but not limited to, AAV9.9, AAV9.11, AAV9.13, AAV9.16, AAV9.24, AAV9.45, AAV9.47, AAV9.61, AAV9.68, AAV9.84.
- the AAV serotype may be, or have, a sequence as described in United States Patent No. US 6156303, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to, AAV3B (SEQ ID NO: 1 and 10 of US 6156303), AAV6 (SEQ ID NO: 2, 7 and 11 of US 6156303), AAV2 (SEQ ID NO: 3 and 8 of US 6156303), AAV3A (SEQ ID NO: 4 and 9, of US 6156303), or derivatives thereof.
- AAV3B SEQ ID NO: 1 and 10 of US 6156303
- AAV6 SEQ ID NO: 2, 7 and 11 of US 6156303
- AAV2 SEQ ID NO: 3 and 8 of US 6156303
- AAV3A SEQ ID NO: 4 and 9, of US 6156303
- the AAV serotype may be, or have, a sequence as described in United States Publication No. US20140359799, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to, AAV8 (SEQ ID NO: 1 of US20140359799), AAVDJ (SEQ ID NO: 2 and 3 of US20140359799), or variants thereof.
- the serotype may be AAVDJ or a variant thereof, such as AAVDJ8 (or AAV-DJ8), as described by Grimm et al. (Journal of Virology 82(12): 5887-5911 (2008), herein incorporated by reference in its entirety).
- the amino acid sequence of AAVDJ8 may comprise two or more mutations in order to remove the heparin binding domain (HBD).
- HBD heparin binding domain
- 7,588,772 may comprise two mutations: (1) R587Q where arginine (R; Arg) at amino acid 587 is changed to glutamine (Q; Gin) and (2) R590T where arginine (R; Arg) at amino acid 590 is changed to threonine (T; Thr).
- K406R where lysine (K; Lys) at amino acid 406 is changed to arginine (R; Arg)
- R587Q where arginine (R; Arg) at amino acid 587 is changed to glutamine (Q; Gin)
- R590T where arginine (R; Arg) at amino acid 590 is changed to threonine (T; Thr).
- the AAV serotype may be, or have, a sequence of AAV4 as described in International Publication No. WO 1998011244, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to AAV4 (SEQ ID NO: 1-20 of WO1998011244).
- the AAV serotype may be, or have, a mutation in the AAV2 sequence to generate AAV2G9 as described in International Publication No. WO2014144229 and herein incorporated by reference in its entirety.
- the AAV serotype may be, or have, a sequence as described in International Publication No. WO2005033321, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to AAV3-3 (SEQ ID NO: 217 of
- WO2005033321 AAV1 (SEQ ID NO: 219 and 202 of WO2005033321), AAV106.1/hu.37 (SEQ ID No: 10 of WO2005033321), AAV114.3/hu.40 (SEQ ID No: 11 of WO2005033321), AAV127.2/hu.41 (SEQ ID NO:6 and 8 of WO2005033321), AAV128.3/hu.44 (SEQ ID No: 81 of WO2005033321), AAV130.4/hu.48 (SEQ ID NO: 78 of WO2005033321), AAV145.1/hu.53 (SEQ ID No: 176 and 177 of WO2005033321), AAV145.6/hu.56 (SEQ ID NO: 168 and 192 of WO2005033321), AAV16.12/hu. l 1 (SEQ ID NO: 153 and 57 of WO2005033321),
- AAV16.8/hu. lO (SEQ ID NO: 156 and 56 of WO2005033321), AAV161.10/hu.60 (SEQ ID No: 170 of WO2005033321), AAV161.6/hu.61 (SEQ ID No: 174 of WO2005033321), AAV1- 7/rh.48 (SEQ ID NO: 32 of WO2005033321), AAVl-8/rh.49 (SEQ ID NOs: 103 and 25 of WO2005033321), AAV2 (SEQ ID NO: 211 and 221 of WO2005033321), AAV2-15/rh.62 (SEQ ID No: 33 and 114 of WO2005033321), AAV2-3/rh.61 (SEQ ID NO: 21 of WO2005033321), AAV2-4/rh.50 (SEQ ID No: 23 and 108 of WO2005033321), AAV2-5/rh.51 (SEQ ID NO: 104 and 22 of WO
- AAV3.1/hu.9 (SEQ ID NO: 155 and 58 of WO2005033321), AAV3-1 l/rh.53 (SEQ ID NO: 186 and 176 of WO2005033321), AAV3-3 (SEQ ID NO: 200 of WO2005033321), AAV33.12/hu. l7 (SEQ ID NO:4 of WO2005033321), AAV33.4/hu. l5 (SEQ ID No: 50 of WO2005033321), AAV33.8/hu.
- WO2005033321 AAV6 (SEQ ID NO: 203 and 220 of WO2005033321), AAV7 (SEQ ID NO: 222 and 213 of WO2005033321), AAV7.3/hu.7 (SEQ ID No: 55 of WO2005033321), AAV 8 (SEQ ID NO: 223 and 214 of WO2005033321), AAVH-1/hu. l (SEQ ID No: 46 of
- WO2005033321 AAVH-5/hu.3 (SEQ ID No: 44 of WO2005033321), AAVhu. l (SEQ ID NO: 144 of WO2005033321), AAVhu.10 (SEQ ID NO: 156 of WO2005033321), AAVhu. l l (SEQ ID NO: 153 of WO2005033321), AAVhu.12 (WO2005033321 SEQ ID NO: 59), AAVhu.13 (SEQ ID NO: 129 of WO2005033321), AAVhu. l4/AAV9 (SEQ ID NO: 123 and 3 of
- WO2005033321 AAVhu.15 (SEQ ID NO: 147 of WO2005033321), AAVhu.16 (SEQ ID NO: 148 of WO2005033321), AAVhu.17 (SEQ ID NO: 83 of WO2005033321), AAVhu.18 (SEQ ID NO: 149 of WO2005033321), AAVhu.19 (SEQ ID NO: 133 of WO2005033321), AAVhu.2 (SEQ ID NO: 143 of WO2005033321), AAVhu.20 (SEQ ID NO: 134 of WO2005033321), AAVhu.21 (SEQ ID NO: 135 of WO2005033321), AAVhu.22 (SEQ ID NO: 138 of
- WO2005033321 WO2005033321
- AAVhu.23.2 SEQ ID NO: 137 of WO2005033321
- AAVhu.24 SEQ ID NO: 136 of WO2005033321
- AAVhu.25 SEQ ID NO: 146 of WO2005033321
- AAVhu.27 SEQ ID NO: 140 of WO2005033321
- AAVhu.29 SEQ ID NO: 132 of WO2005033321
- AAVhu.3 SEQ ID NO: 145 of WO2005033321
- AAVhu.31 SEQ ID NO: 121 of
- WO2005033321 WO2005033321
- AAVhu.32 SEQ ID NO: 122 of WO2005033321
- AAVhu.34 SEQ ID NO: 125 of WO2005033321
- AAVhu.35 SEQ ID NO: 164 of WO2005033321
- AAVhu.37 SEQ ID NO: 88 of WO2005033321
- AAVhu.39 SEQ ID NO: 102 of WO2005033321
- AAVhu.4 SEQ ID NO: 141 of WO2005033321
- AAVhu.40 SEQ ID NO: 87 of WO2005033321
- AAVhu.41 SEQ ID NO: 91 of WO2005033321
- AAVhu.42 SEQ ID NO: 85 of WO2005033321
- AAVhu.43 SEQ ID NO: 160 of WO2005033321
- AAVhu.44 SEQ ID NO: 144 of WO2005033321
- WO2005033321 WO2005033321
- AAVpi. l WO2005033321 SEQ ID NO: 28
- AAVpi.2 WO2005033321 SEQ ID NO: 30
- AAVpi.3 WO2005033321 SEQ ID NO: 29
- AAVrh.38 SEQ ID NO: 86 of WO2005033321
- AAVrh.40 SEQ ID NO: 92 of WO2005033321
- AAVrh.43 SEQ ID NO: 163 of WO2005033321
- AAVrh.44 WO2005033321 SEQ ID NO: 34
- WO2005033321 WO2005033321
- AAVrh.52 SEQ ID NO: 96 of WO2005033321
- AAVrh.53 SEQ ID NO: 97 of WO2005033321
- AAVrh.55 WO2005033321 SEQ ID NO: 37
- AAVrh.56 SEQ ID NO: 152 of WO2005033321
- AAVrh.57 SEQ ID NO: 105 of WO2005033321
- AAVrh.58 SEQ ID NO: 106 of WO2005033321
- AAVrh.59 WO2005033321 SEQ ID NO: 42
- AAVrh.60 WO2005033321 SEQ ID NO: 31
- AAVrh.61 SEQ ID NO: 107 of WO2005033321
- AAVrh.62 (SEQ ID NO: 114 of WO2005033321), AAVrh.64 (SEQ ID NO: 99 of
- WO2005033321 AAVrh.65 (WO2005033321 SEQ ID NO: 35), AAVrh.68 (WO2005033321 SEQ ID NO: 16), AAVrh.69 (WO2005033321 SEQ ID NO: 39), AAVrh.70 (WO2005033321 SEQ ID NO: 20), AAVrh.72 (WO2005033321 SEQ ID NO: 9), or variants thereof including, but not limited to, AAVcy.2, AAVcy.3, AAVcy.4, AAVcy.5, AAVcy.6, AAVrh.12, AAVrh.17, AAVrh.18, AAVrh.19, AAVrh.21, AAVrh.22, AAVrh.23, AAVrh.24, AAVrh.25, AAVrh.25/42 15, AAVrh.31, AAVrh.32, AAVrh.33, AAVrh.34, AAVrh.35, AAVrh.
- Non limiting examples of variants include SEQ ID NO: 13, 15, 17, 19, 24, 36, 40, 45, 47, 48, 51-54, 60-62, 64-77, 79, 80, 82, 89, 90, 93-95, 98, 100, 101, , 109-113, 118-120, 124, 126, 131, 139, 142, 151,154, 158, 161, 162, 165-183, 202, 204-212, 215, 219, 224-236, of WO2005033321, the contents of which are herein incorporated by reference in their entirety.
- the AAV serotype may be, or have, a sequence as described in International Publication No. WO2015168666, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to, AAVrh8R (SEQ ID NO: 9 of
- WO2015168666 AAVrh8R A586R mutant (SEQ ID NO: 10 of WO2015168666), AAVrh8R R533A mutant (SEQ ID NO: 11 of WO2015168666), or variants thereof.
- the AAV serotype may be, or have, a sequence as described in United States Patent No. US9233131, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to, AAVhEl.
- the AAV serotype may be, or have, a sequence as described in United States Patent Publication No. US20150376607, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to, AAV-PAEC (SEQ ID NO: l of US20150376607), AAV-LK01 (SEQ ID NO:2 of US20150376607), AAV-LK02 (SEQ ID NO:3 of US20150376607), AAV-LK03 (SEQ ID NO:4 of US20150376607), AAV-LK04 (SEQ ID NO:5 of US20150376607), AAV-LK05 (SEQ ID NO:6 of US20150376607), AAV- LK06 (SEQ ID NO:7 of US20150376607), AAV-LK07 (SEQ ID NO:8 of US20150376607), AAV-LK08 (SEQ ID NO:9 of US20150376607), AAV-LK09 (SEQ
- AAV-LK10 SEQ ID NO: 11 of US20150376607), AAV-LK11 (SEQ ID NO: 12 of US20150376607), AAV-LK12 (SEQ ID NO: 13 of US20150376607), AAV-LK13 (SEQ ID NO: 14 of US20150376607), AAV-LK14 (SEQ ID NO: 15 of US20150376607), AAV- LK15 (SEQ ID NO: 16 of US20150376607), AAV-LK16 (SEQ ID NO: 17 of US20150376607), AAV-LK17 (SEQ ID NO: 18 of US20150376607), AAV-LK18 (SEQ ID NO: 19 of
- US20150376607 AAV-LK19 (SEQ ID NO:20 of US20150376607), AAV-PAEC2 (SEQ ID NO:21 of US20150376607), AAV-PAEC4 (SEQ ID NO:22 of US20150376607), AAV-PAEC6 (SEQ ID NO:23 of US20150376607), AAV-PAEC7 (SEQ ID NO:24 of US20150376607), AAV-PAEC8 (SEQ ID NO:25 of US20150376607), AAV-PAEC11 (SEQ ID NO:26 of US20150376607), AAV-PAEC12 (SEQ ID NO:27, of US20150376607), or variants thereof.
- the AAV serotype may be, or have, a sequence as described in United States Patent No. US9163261, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to, AAV-2-pre-miRNA-lOl (SEQ ID NO: 1
- the AAV serotype may be, or have, a sequence as described in United States Patent Publication No. US20150376240, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to, AAV-8h (SEQ ID NO: 6 of US20150376240), AAV-8b (SEQ ID NO: 5 of US20150376240), AAV-h (SEQ ID NO: 2 of US20150376240), AAV-b (SEQ ID NO: 1 of US20150376240), or variants thereof.
- AAV-8h SEQ ID NO: 6 of US20150376240
- AAV-8b SEQ ID NO: 5 of US20150376240
- AAV-h SEQ ID NO: 2 of US20150376240
- AAV-b SEQ ID NO: 1 of US20150376240
- the AAV serotype may be, or have, a sequence as described in United States Patent Publication No. US20160017295, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to, AAV SM 10-2 (SEQ ID NO: 22 of US20160017295), AAV Shuffle 100-1 (SEQ ID NO: 23 of US20160017295), AAV Shuffle 100-3 (SEQ ID NO: 24 of US20160017295), AAV Shuffle 100-7 (SEQ ID NO: 25 of US20160017295), AAV Shuffle 10-2 (SEQ ID NO: 34 of US20160017295), AAV Shuffle 10-6 (SEQ ID NO: 35 of US20160017295), AAV Shuffle 10-8 (SEQ ID NO: 36 of US20160017295), AAV Shuffle 100-2 (SEQ ID NO: 37 of US20160017295), AAV SM 10-1 (SEQ ID NO: 38 of US20160017295), AAV SM 10-8 (SEQ ID NO NO:
- the AAV serotype may be, or have, a sequence as described in United States Patent Publication No. US20150238550, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to, BNP61 AAV (SEQ ID NO: 1 of US20150238550), BNP62 AAV (SEQ ID NO: 3 of US20150238550), BNP63 AAV (SEQ ID NO: 4 of US20150238550), or variants thereof.
- the AAV serotype may be or may have a sequence as described in United States Patent Publication No. US20150315612, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to, AAVrh.50 (SEQ ID NO: 108 of US20150315612), AAVrh.43 (SEQ ID NO: 163 of US20150315612), AAVrh.62 (SEQ ID NO: 1 14 of US20150315612), AAVrh.48 (SEQ ID NO: 115 of US20150315612), AAVhu.19 (SEQ ID NO: 133 of US20150315612), AAVhu.11 (SEQ ID NO: 153 of US20150315612), AAVhu.53 (SEQ ID NO: 186 of US20150315612), AAV4-8/rh.64 (SEQ ID No: 15 of
- US20150315612 AAVLG-9/hu.39 (SEQ ID No: 24 of US20150315612), AAV54.5/hu.23 (SEQ ID No: 60 of US20150315612), AAV54.2/hu.22 (SEQ ID No: 67 of US20150315612), AAV54.7/hu.24 (SEQ ID No: 66 of US20150315612), AAV54.1/hu.21 (SEQ ID No: 65 of US20150315612), AAV54.4R/hu.27 (SEQ ID No: 64 of US20150315612), AAV46.2/hu.28 (SEQ ID No: 68 of US20150315612), AAV46.6/hu.29 (SEQ ID No: 69 of US20150315612), AAV128.1/hu.43 (SEQ ID No: 80 of US20150315612), or variants thereof.
- the AAV serotype may be, or have, a sequence as described in International Publication No. WO2015121501 , the contents of which are herein incorporated by reference in their entirety, such as, but not limited to, true type AAV (ttAAV) (SEQ ID NO: 2 of WO2015121501), "UPenn AAV10” (SEQ ID NO: 8 of WO2015121501), “Japanese AAV10” (SEQ ID NO: 9 of WO2015121501), or variants thereof.
- true type AAV ttAAV
- UPenn AAV10 SEQ ID NO: 8 of WO2015121501
- Japanese AAV10 Japanese AAV10
- AAV capsid serotype selection or use may be from a variety of species.
- the AAV may be an avian AAV (AAAV).
- the AAAV serotype may be, or have, a sequence as described in United States Patent No. US 9238800, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to, AAAV (SEQ ID NO: 1, 2, 4, 6, 8, 10, 12, and 14 of US 9,238,800), or variants thereof.
- the AAV may be a bovine AAV (BAAV).
- BAAV serotype may be, or have, a sequence as described in United States Patent No. US 9,193,769, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to, BAAV (SEQ ID NO: 1 and 6 of US 9193769), or variants thereof.
- BAAV serotype may be or have a sequence as described in United States Patent No. US7427396, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to, BAAV (SEQ ID NO: 5 and 6 of US7427396), or variants thereof.
- the AAV may be a caprine AAV.
- the caprine AAV serotype may be, or have, a sequence as described in United States Patent No. US7427396, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to, caprine AAV (SEQ ID NO: 3 of US7427396), or variants thereof.
- the AAV may be engineered as a hybrid AAV from two or more parental serotypes.
- the AAV may be AAV2G9 which comprises sequences from AAV2 and AAV9.
- the AAV2G9 AAV serotype may be, or have, a sequence as described in United States Patent Publication No. US20160017005, the contents of which are herein incorporated by reference in its entirety.
- the AAV may be a serotype generated by the AAV9 capsid library with mutations in amino acids 390-627 (VP1 numbering) as described by Pulichla et al. (Molecular Therapy 19(6): 1070-1078 (2011), the contents of which are herein incorporated by reference in their entirety.
- the serotype and corresponding nucleotide and amino acid substitutions may be, but is not limited to, AAV9.1 (G1594C; D532H), AAV6.2 (T1418A and T1436X; V473D and I479K), AAV9.3 (T1238A; F413Y), AAV9.4 (T1250C and A1617T; F417S), AAV9.5 (A1235G, A1314T, A1642G, C1760T; Q412R, T548A, A587V), AAV9.6 (T1231A; F411I), AAV9.9 (G1203A, G1785T; W595C), AAV9.10 (A1500G, T1676C;
- AAV9.11 A1425T, A1702C, A1769T; T568P, Q590L
- AAV9.13 A1369C, A1720T; N457H, T574S
- AAV9.14 T1340A, T1362C, T1560C, G1713A; L447H
- AAV9.16 A1775T; Q592L
- AAV9.24 T1507C, T1521G; W503R
- AAV9.26 A1337G, A1769C; Y446C, Q590P
- AAV9.33 A1667C; D556A
- AAV9.34 A1534G, C1794T; N512D
- AAV9.35 A1289T, T1450A, C1494T, A1515T, C1794A, G1816A; Q430L, Y484N, N98K, V606I
- AAV9.40 A1694T, E565V
- the AAV serotype may be, or have, a sequence as described in International Publication No. WO2016049230, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to AAVF1/HSC1 (SEQ ID NO: 2 and 20 of WO2016049230), AAVF2/HSC2 (SEQ ID NO: 3 and 21 of WO2016049230), AAVF3/HSC3 (SEQ ID NO: 5 and 22 of WO2016049230), AAVF4/HSC4 (SEQ ID NO: 6 and 23 of WO2016049230), AAVF5/HSC5 (SEQ ID NO: 11 and 25 of WO2016049230), AAVF6/HSC6 (SEQ ID NO: 7 and 24 of WO2016049230), AAVF7/HSC7 (SEQ ID NO: 8 and 27 of
- WO2016049230 AAVF8/HSC8 (SEQ ID NO: 9 and 28 of WO2016049230), AAVF9/HSC9 (SEQ ID NO: 10 and 29 of WO2016049230), AAVF11/HSC11 (SEQ ID NO: 4 and 26 of WO2016049230), AAVF12/HSC12 (SEQ ID NO: 12 and 30 of WO2016049230),
- AAVF13/HSC13 SEQ ID NO: 14 and 31 of WO2016049230
- AAVF14/HSC14 SEQ ID NO: 15 and 32 of WO2016049230
- AAVF15/HSC15 SEQ ID NO: 16 and 33 of WO2016049230
- AAVF16/HSC16 SEQ ID NO: 17 and 34 of WO2016049230
- AAVF17/HSC17 SEQ ID NO: 13 and 35 of WO2016049230
- the AAV serotype may be, or have, a sequence as described in United States Patent No. US 8734809, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to, AAV CBr-El (SEQ ID NO: 13 and 87 of
- the AAV serotype may be, or have, a sequence as described in International Publication No. WO2016065001, the contents of which are herein incorporated by reference in their entirety, such as, but not limited to AAV CHt-P2 (SEQ ID NO: 1 and 51 of WO2016065001), AAV CHt-P5 (SEQ ID NO: 2 and 52 of WO2016065001), AAV CHt-P9 (SEQ ID NO: 3 and 53 of WO2016065001), AAV CBr-7.1 (SEQ ID NO: 4 and 54 of
- WO2016065001 AAV CBr-7.2 (SEQ ID NO: 5 and 55 of WO2016065001), AAV CBr-7.3 (SEQ ID NO: 6 and 56 of WO2016065001), AAV CBr-7.4 (SEQ ID NO: 7 and 57 of
- WO2016065001 AAV CBr-7.5 (SEQ ID NO: 8 and 58 of WO2016065001), AAV CBr-7.7 (SEQ ID NO: 9 and 59 of WO2016065001), AAV CBr-7.8 (SEQ ID NO: 10 and 60 of WO2016065001), AAV CBr-7.10 (SEQ ID NO: 11 and 61 of WO2016065001), AAV CKd-N3 (SEQ ID NO: 12 and 62 of WO2016065001), AAV CKd-N4 (SEQ ID NO: 13 and 63 of WO2016065001), AAV CKd-N9 (SEQ ID NO: 14 and 64 of WO2016065001), AAV CLv-L4 (SEQ ID NO: 15 and 65 of WO2016065001), AAV CLv-L5 (SEQ ID NO: 16 and 66 of WO2016065001), AAV CLv-L6 (SEQ ID NO: 17 and 67 of WO
- the AAV may be a serotype comprising at least one AAV capsid CD8+ T-cell epitope.
- the serotype may be AAVl, AAV2 or AAV8.
- the AAV may be a serotype selected from any of those found in Table 4.
- the AAV may comprise a sequence, fragment or variant thereof, of the sequences in Table 4.
- the AAV may be encoded by a sequence, fragment or variant as described in Table 4.
- AAV4 84 US20030138772 SEQ ID NO: 63, US20160017295 SEQ ID NO: 4,
- AAV5 120 US20160017295 SEQ ID NO 5, US7427396 SEQ ID NO: 2,
- AAV7 135 US20030138772 SEQ ID NO: 1, US20150315612 SEQ ID NO: 180
- AAV8 140 US20030138772 SEQ ID NO: 4, US20150315612 SEQ ID NO: 182
- AAV9 (AAVhu.14) 153 US7906111 SEQ ID NO: 3; WO2015038958 SEQ ID NO: 11
- AAV9 (AAVhu.14) 154 US7906111 SEQ ID NO: 123; WO2015038958 SEQ ID NO: 2
- AAV29.3 (AAVbb. l) 164 US20030138772 SEQ ID NO: 11
- AAVcy.2 (AAV13.3) 167 US20030138772 SEQ ID NO: 15
- AAVcy.3 (AAV24.1) 169 US20030138772 SEQ ID NO: 16
- AAVcy.4 (AAV27.3) 171 US20030138772 SEQ ID NO: 17
- AAVcy.5 (AAV7.2) 174 US20030138772 SEQ ID NO: 18
- AAVcy.6 (AAV16.3) 176 US20030138772 SEQ ID NO: 10
- AAVhu.lO (AAV16.8) 208 US20150315612 SEQ ID NO 56
- AAVhu.lO (AAV16.8) 209 US20150315612 SEQ ID NO 156
- AAVhu.l l (AAV16.12) 210 US20150315612 SEQ ID NO 57
- AAVhu.l l (AAV16.12) 211 US20150315612 SEQ ID NO 153
- AAVhu.15 (AAV33.4) 221 US20150315612 SEQ ID NO: 50
- AAVhu.l6 (AAV33.8) 224 US20150315612 SEQ ID NO 51
- AAVhu.l7 (AAV33.12) 226 US20150315612 SEQ ID NO 4
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Virology (AREA)
- Epidemiology (AREA)
- Psychiatry (AREA)
- Hospice & Palliative Care (AREA)
- Psychology (AREA)
- Immunology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Saccharide Compounds (AREA)
Priority Applications (22)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| RU2018140495A RU2758488C2 (ru) | 2016-05-18 | 2017-05-18 | Модулирующие полинуклеотиды |
| IL262784A IL262784B2 (en) | 2016-05-18 | 2017-05-18 | modulatory polynucleotides |
| KR1020187033494A KR102392236B1 (ko) | 2016-05-18 | 2017-05-18 | 조절성 폴리뉴클레오티드 |
| CN201780039098.3A CN110214187B (zh) | 2016-05-18 | 2017-05-18 | 调节性多核苷酸 |
| CN202410085898.0A CN117904112A (zh) | 2016-05-18 | 2017-05-18 | 调节性多核苷酸 |
| IL302748A IL302748B1 (en) | 2016-05-18 | 2017-05-18 | Modulatory polynucleotides |
| AU2017267665A AU2017267665C1 (en) | 2016-05-18 | 2017-05-18 | Modulatory polynucleotides |
| SG11201809699XA SG11201809699XA (en) | 2016-05-18 | 2017-05-18 | Modulatory polynucleotides |
| US16/302,146 US10584337B2 (en) | 2016-05-18 | 2017-05-18 | Modulatory polynucleotides |
| EP17800147.5A EP3458588B1 (en) | 2016-05-18 | 2017-05-18 | Modulatory polynucleotides |
| KR1020227013840A KR102652994B1 (ko) | 2016-05-18 | 2017-05-18 | 조절성 폴리뉴클레오티드 |
| MX2018014154A MX2018014154A (es) | 2016-05-18 | 2017-05-18 | Polinucleotidos moduladores. |
| BR112018073384-9A BR112018073384B1 (pt) | 2016-05-18 | 2017-05-18 | Polinucleotídeo modulador, vetor, genoma viral, vírus aav recombinante, seu método de produção, seus usos, e composição farmacêutica |
| KR1020247010174A KR20240056729A (ko) | 2016-05-18 | 2017-05-18 | 조절성 폴리뉴클레오티드 |
| CA3024448A CA3024448C (en) | 2016-05-18 | 2017-05-18 | MODULATING POLYNUCLEOTIDES |
| JP2018560625A JP7066635B2 (ja) | 2016-05-18 | 2017-05-18 | 調節性ポリヌクレオチド |
| ZA2018/07401A ZA201807401B (en) | 2016-05-18 | 2018-11-05 | Modulatory polynucleotides |
| US16/749,293 US11193129B2 (en) | 2016-05-18 | 2020-01-22 | Modulatory polynucleotides |
| US17/519,126 US12084659B2 (en) | 2016-05-18 | 2021-11-04 | Modulatory polynucleotides |
| JP2022072798A JP7374254B2 (ja) | 2016-05-18 | 2022-04-27 | 調節性ポリヌクレオチド |
| AU2023203585A AU2023203585B2 (en) | 2016-05-18 | 2023-06-08 | Modulatory polynucleotides |
| JP2023182415A JP2023182824A (ja) | 2016-05-18 | 2023-10-24 | 調節性ポリヌクレオチド |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201662338137P | 2016-05-18 | 2016-05-18 | |
| US62/338,137 | 2016-05-18 | ||
| US201762485050P | 2017-04-13 | 2017-04-13 | |
| US62/485,050 | 2017-04-13 |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/302,146 A-371-Of-International US10584337B2 (en) | 2016-05-18 | 2017-05-18 | Modulatory polynucleotides |
| US16/749,293 Continuation US11193129B2 (en) | 2016-05-18 | 2020-01-22 | Modulatory polynucleotides |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2017201248A1 true WO2017201248A1 (en) | 2017-11-23 |
Family
ID=60325551
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2017/033268 Ceased WO2017201248A1 (en) | 2016-05-18 | 2017-05-18 | Modulatory polynucleotides |
Country Status (13)
| Country | Link |
|---|---|
| US (3) | US10584337B2 (OSRAM) |
| EP (1) | EP3458588B1 (OSRAM) |
| JP (3) | JP7066635B2 (OSRAM) |
| KR (3) | KR102392236B1 (OSRAM) |
| CN (2) | CN117904112A (OSRAM) |
| AU (2) | AU2017267665C1 (OSRAM) |
| CA (2) | CA3024448C (OSRAM) |
| IL (2) | IL302748B1 (OSRAM) |
| MX (2) | MX2018014154A (OSRAM) |
| RU (1) | RU2758488C2 (OSRAM) |
| SG (1) | SG11201809699XA (OSRAM) |
| WO (1) | WO2017201248A1 (OSRAM) |
| ZA (1) | ZA201807401B (OSRAM) |
Cited By (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10414803B2 (en) | 2015-05-11 | 2019-09-17 | Ucl Business Plc | Capsid |
| WO2019195423A1 (en) * | 2018-04-03 | 2019-10-10 | Stridebio, Inc. | Virus vectors for targeting ophthalmic tissues |
| WO2019241486A1 (en) | 2018-06-13 | 2019-12-19 | Voyager Therapeutics, Inc. | Engineered 5' untranslated regions (5' utr) for aav production |
| WO2020023612A1 (en) | 2018-07-24 | 2020-01-30 | Voyager Therapeutics, Inc. | Systems and methods for producing gene therapy formulations |
| WO2020072844A1 (en) | 2018-10-05 | 2020-04-09 | Voyager Therapeutics, Inc. | Engineered nucleic acid constructs encoding aav production proteins |
| WO2020072849A1 (en) | 2018-10-04 | 2020-04-09 | Voyager Therapeutics, Inc. | Methods for measuring the titer and potency of viral vector particles |
| WO2020081490A1 (en) | 2018-10-15 | 2020-04-23 | Voyager Therapeutics, Inc. | EXPRESSION VECTORS FOR LARGE-SCALE PRODUCTION OF rAAV IN THE BACULOVIRUS/Sf9 SYSTEM |
| WO2020150556A1 (en) | 2019-01-18 | 2020-07-23 | Voyager Therapeutics, Inc. | Methods and systems for producing aav particles |
| US10745447B2 (en) | 2015-09-28 | 2020-08-18 | The University Of North Carolina At Chapel Hill | Methods and compositions for antibody-evading virus vectors |
| WO2020223274A1 (en) | 2019-04-29 | 2020-11-05 | Voyager Therapeutics, Inc. | SYSTEMS AND METHODS FOR PRODUCING BACULOVIRAL INFECTED INSECT CELLS (BIICs) IN BIOREACTORS |
| WO2020223231A1 (en) * | 2019-04-29 | 2020-11-05 | The Trustees Of The University Of Pennsylvania | Novel aav capsids and compositions containing same |
| WO2021023114A1 (en) * | 2019-08-02 | 2021-02-11 | The Hong Kong University Of Science And Technology | Method for controlling microrna expression |
| WO2021030125A1 (en) | 2019-08-09 | 2021-02-18 | Voyager Therapeutics, Inc. | Cell culture medium for use in producing gene therapy products in bioreactors |
| WO2021041485A1 (en) | 2019-08-26 | 2021-03-04 | Voyager Therapeutics, Inc. | Controlled expression of viral proteins |
| WO2022032153A1 (en) | 2020-08-06 | 2022-02-10 | Voyager Therapeutics, Inc. | Cell culture medium for use in producing gene therapy products in bioreactors |
| WO2022187473A2 (en) | 2021-03-03 | 2022-09-09 | Voyager Therapeutics, Inc. | Controlled expression of viral proteins |
| WO2022187548A1 (en) | 2021-03-03 | 2022-09-09 | Voyager Therapeutics, Inc. | Controlled expression of viral proteins |
| US11603542B2 (en) | 2017-05-05 | 2023-03-14 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
| US11752181B2 (en) | 2017-05-05 | 2023-09-12 | Voyager Therapeutics, Inc. | Compositions and methods of treating Huntington's disease |
| US11905523B2 (en) | 2019-10-17 | 2024-02-20 | Ginkgo Bioworks, Inc. | Adeno-associated viral vectors for treatment of Niemann-Pick Disease type-C |
| WO2024054983A1 (en) | 2022-09-08 | 2024-03-14 | Voyager Therapeutics, Inc. | Controlled expression of viral proteins |
| US11951121B2 (en) | 2016-05-18 | 2024-04-09 | Voyager Therapeutics, Inc. | Compositions and methods for treating Huntington's disease |
| US11976096B2 (en) | 2018-04-03 | 2024-05-07 | Ginkgo Bioworks, Inc. | Antibody-evading virus vectors |
| US11981914B2 (en) | 2019-03-21 | 2024-05-14 | Ginkgo Bioworks, Inc. | Recombinant adeno-associated virus vectors |
| WO2024145474A2 (en) | 2022-12-29 | 2024-07-04 | Voyager Therapeutics, Inc. | Compositions and methods for regulating mapt |
| US12060390B2 (en) | 2018-04-03 | 2024-08-13 | Ginkgo Bioworks, Inc. | Antibody-evading virus vectors |
| US12071625B2 (en) | 2014-11-14 | 2024-08-27 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
| US12084659B2 (en) | 2016-05-18 | 2024-09-10 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
| US12104163B2 (en) | 2020-08-19 | 2024-10-01 | Sarepta Therapeutics, Inc. | Adeno-associated virus vectors for treatment of Rett syndrome |
| US12116589B2 (en) | 2017-10-16 | 2024-10-15 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (ALS) |
| US12123002B2 (en) | 2014-11-14 | 2024-10-22 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
| WO2024226761A2 (en) | 2023-04-26 | 2024-10-31 | Voyager Therapeutics, Inc. | Compositions and methods for treating amyotrophic lateral sclerosis |
| WO2025122644A1 (en) | 2023-12-05 | 2025-06-12 | Voyager Therapeutics, Inc. | Compositions and methods for regulating mapt |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP4454654A3 (en) | 2017-10-16 | 2025-02-19 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (als) |
| KR20210130158A (ko) | 2019-01-31 | 2021-10-29 | 오레곤 헬스 앤드 사이언스 유니버시티 | Aav 캡시드의 전사 의존적 유도 진화를 사용하는 방법 |
| TW202108763A (zh) * | 2019-05-02 | 2021-03-01 | 德商百靈佳殷格翰國際股份有限公司 | 用於治療ipf及pf-ild之病毒載體及核酸 |
| WO2022174000A2 (en) | 2021-02-12 | 2022-08-18 | Alnylam Pharmaceuticals, Inc. | Superoxide dismutase 1 (sod1) irna compositions and methods of use thereof for treating or preventing superoxide dismutase 1- (sod1-) associated neurodegenerative diseases |
| US20250297253A1 (en) * | 2022-05-06 | 2025-09-25 | Josho Gakuen Educational Foundation | Artificial rna molecule |
| CN120082552A (zh) * | 2023-12-01 | 2025-06-03 | 艾码生物科技(南京)有限公司 | 初级-miRNA及其应用 |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5756283A (en) | 1995-06-05 | 1998-05-26 | The Trustees Of The University Of Pennsylvania | Method for improved production of recombinant adeno-associated viruses for gene therapy |
| US6258595B1 (en) | 1999-03-18 | 2001-07-10 | The Trustees Of The University Of Pennsylvania | Compositions and methods for helper-free production of recombinant adeno-associated viruses |
| US6261551B1 (en) | 1995-06-05 | 2001-07-17 | The Trustees Of The University Of Pennsylvania | Recombinant adenovirus and adeno-associated virus, cell lines, and methods of production and use thereof |
| US20130129668A1 (en) * | 2011-09-01 | 2013-05-23 | The Regents Of The University Of California | Diagnosis and treatment of arthritis using epigenetics |
| WO2013126605A1 (en) | 2012-02-21 | 2013-08-29 | The Johns Hopkins University | EXPRESSION CONSTRUCT FOR A LIN28-RESISTANT Let-7 PRECURSOR MICRORNA |
| US8524446B2 (en) | 2001-11-13 | 2013-09-03 | The Trustees Of The University Of Pennsylvania | Method for detecting adeno-associated virus |
| US8734809B2 (en) | 2009-05-28 | 2014-05-27 | University Of Massachusetts | AAV's and uses thereof |
| WO2015084254A1 (en) * | 2013-12-03 | 2015-06-11 | Agency For Science, Technology And Research | Tailed Mirtron Effectors For RNAi-Mediated Gene Silencing |
| US20150376612A1 (en) * | 2014-06-10 | 2015-12-31 | The General Hospital Corporation | CCCTC-Binding Factor (CTCF) RNA Interactome |
| WO2016049230A1 (en) | 2014-09-24 | 2016-03-31 | City Of Hope | Adeno-associated virus vector variants for high efficiency genome editing and methods thereof |
| WO2016077689A1 (en) * | 2014-11-14 | 2016-05-19 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
Family Cites Families (505)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2640638B1 (fr) | 1988-12-20 | 1991-02-15 | Commissariat Energie Atomique | Bioreacteur et dispositif pour la culture de cellules animales |
| AU7906691A (en) | 1990-05-23 | 1991-12-10 | United States of America, as represented by the Secretary, U.S. Department of Commerce, The | Adeno-associated virus (aav)-based eucaryotic vectors |
| US5173414A (en) | 1990-10-30 | 1992-12-22 | Applied Immune Sciences, Inc. | Production of recombinant adeno-associated virus vectors |
| US5252479A (en) | 1991-11-08 | 1993-10-12 | Research Corporation Technologies, Inc. | Safe vector for gene therapy |
| US5587308A (en) | 1992-06-02 | 1996-12-24 | The United States Of America As Represented By The Department Of Health & Human Services | Modified adeno-associated virus vector capable of expression from a novel promoter |
| US6268213B1 (en) | 1992-06-03 | 2001-07-31 | Richard Jude Samulski | Adeno-associated virus vector and cis-acting regulatory and promoter elements capable of expressing at least one gene and method of using same for gene therapy |
| US5693531A (en) | 1993-11-24 | 1997-12-02 | The United States Of America As Represented By The Department Of Health And Human Services | Vector systems for the generation of adeno-associated virus particles |
| EP0755454B1 (en) | 1994-04-13 | 2008-02-13 | The Rockefeller University | Aav-mediated delivery of dna to cells of the nervous system |
| US5658785A (en) | 1994-06-06 | 1997-08-19 | Children's Hospital, Inc. | Adeno-associated virus materials and methods |
| US20020159979A1 (en) | 1994-06-06 | 2002-10-31 | Children's Hospital, Inc. | Adeno-associated virus materials and methods |
| US6204059B1 (en) | 1994-06-30 | 2001-03-20 | University Of Pittsburgh | AAV capsid vehicles for molecular transfer |
| US5856152A (en) | 1994-10-28 | 1999-01-05 | The Trustees Of The University Of Pennsylvania | Hybrid adenovirus-AAV vector and methods of use therefor |
| US5625048A (en) | 1994-11-10 | 1997-04-29 | The Regents Of The University Of California | Modified green fluorescent proteins |
| EP0796339A1 (en) | 1994-12-06 | 1997-09-24 | Targeted Genetics Corporation | Packaging cell lines for generation of high titers of recombinant aav vectors |
| US5652224A (en) | 1995-02-24 | 1997-07-29 | The Trustees Of The University Of Pennsylvania | Methods and compositions for gene therapy for the treatment of defects in lipoprotein metabolism |
| US5741657A (en) | 1995-03-20 | 1998-04-21 | The Regents Of The University Of California | Fluorogenic substrates for β-lactamase and methods of use |
| US5688676A (en) | 1995-06-07 | 1997-11-18 | Research Foundation Of State University Of New York | In vitro packaging of adeno-associated virus DNA |
| US5741683A (en) | 1995-06-07 | 1998-04-21 | The Research Foundation Of State University Of New York | In vitro packaging of adeno-associated virus DNA |
| US6676935B2 (en) | 1995-06-27 | 2004-01-13 | Cell Genesys, Inc. | Tissue specific adenoviral vectors |
| US6197293B1 (en) | 1997-03-03 | 2001-03-06 | Calydon, Inc. | Adenovirus vectors specific for cells expressing androgen receptor and methods of use thereof |
| WO1997008298A1 (en) | 1995-08-30 | 1997-03-06 | Genzyme Corporation | Chromatographic purification of adenovirus and aav |
| US6265389B1 (en) | 1995-08-31 | 2001-07-24 | Alkermes Controlled Therapeutics, Inc. | Microencapsulation and sustained release of oligonucleotides |
| US5962313A (en) | 1996-01-18 | 1999-10-05 | Avigen, Inc. | Adeno-associated virus vectors comprising a gene encoding a lyosomal enzyme |
| US5858351A (en) | 1996-01-18 | 1999-01-12 | Avigen, Inc. | Methods for delivering DNA to muscle cells using recombinant adeno-associated virus vectors |
| US5846528A (en) | 1996-01-18 | 1998-12-08 | Avigen, Inc. | Treating anemia using recombinant adeno-associated virus virions comprising an EPO DNA sequence |
| US5952221A (en) | 1996-03-06 | 1999-09-14 | Avigen, Inc. | Adeno-associated virus vectors comprising a first and second nucleic acid sequence |
| US7026468B2 (en) | 1996-07-19 | 2006-04-11 | Valentis, Inc. | Process and equipment for plasmid purification |
| US20020037867A1 (en) | 1999-02-26 | 2002-03-28 | James M. Wilson | Method for recombinant adeno-associated virus-directed gene therapy |
| US5866552A (en) | 1996-09-06 | 1999-02-02 | The Trustees Of The University Of Pennsylvania | Method for expressing a gene in the absence of an immune response |
| WO1998009657A2 (en) | 1996-09-06 | 1998-03-12 | Trustees Of The University Of Pennsylvania | Method for recombinant adeno-associated virus-directed gene therapy |
| WO1998010087A1 (en) | 1996-09-06 | 1998-03-12 | Trustees Of The University Of Pennsylvania | Chimpanzee adenovirus vectors |
| CA2264499A1 (en) | 1996-09-06 | 1998-03-12 | The Trustees Of The University Of Pennsylvania | Methods using cre-lox for production of recombinant adeno-associated viruses |
| JP2001500015A (ja) | 1996-09-06 | 2001-01-09 | トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア | T7ポリメラーゼを利用する組換えアデノ随伴ウイルスの誘導可能な製造方法 |
| AU4645697A (en) | 1996-09-11 | 1998-04-02 | Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The | Aav4 vector and uses thereof |
| US7732129B1 (en) | 1998-12-01 | 2010-06-08 | Crucell Holland B.V. | Method for the production and purification of adenoviral vectors |
| JP4492826B2 (ja) | 1996-11-20 | 2010-06-30 | イントロジェン セラピューティクス,インコーポレイテッド | アデノウイルスベクターの産生および精製のための改良された方法 |
| CA2270285A1 (en) | 1996-12-18 | 1998-06-25 | Targeted Genetics Corporation | Aav split-packaging genes and cell lines comprising such genes for use in the production of recombinant aav vectors |
| US6156303A (en) | 1997-06-11 | 2000-12-05 | University Of Washington | Adeno-associated virus (AAV) isolates and AAV vectors derived therefrom |
| US6710036B2 (en) | 1997-07-25 | 2004-03-23 | Avigen, Inc. | Induction of immune response to antigens expressed by recombinant adeno-associated virus |
| US6251677B1 (en) | 1997-08-25 | 2001-06-26 | The Trustees Of The University Of Pennsylvania | Hybrid adenovirus-AAV virus and methods of use thereof |
| US6566118B1 (en) | 1997-09-05 | 2003-05-20 | Targeted Genetics Corporation | Methods for generating high titer helper-free preparations of released recombinant AAV vectors |
| US6995006B2 (en) | 1997-09-05 | 2006-02-07 | Targeted Genetics Corporation | Methods for generating high titer helper-free preparations of released recombinant AAV vectors |
| AU9774998A (en) | 1997-09-19 | 1999-04-12 | Trustees Of The University Of Pennsylvania, The | Method for gene transfer using bcl2 and compositions useful therein |
| EP1015619A1 (en) | 1997-09-19 | 2000-07-05 | The Trustees Of The University Of Pennsylvania | Methods and cell line useful for production of recombinant adeno-associated viruses |
| CA2303768C (en) | 1997-09-19 | 2009-11-24 | The Trustees Of The University Of Pennsylvania | Methods and vector constructs useful for production of recombinant aav |
| US6642051B1 (en) | 1997-10-21 | 2003-11-04 | Targeted Genetics Corporation | Amplifiable adeno-associated virus(AAV) packaging cassettes for the production of recombinant AAV vectors |
| IT1297074B1 (it) | 1997-11-21 | 1999-08-03 | Angeletti P Ist Richerche Bio | Forme ormone-dipendenti delle proteine rep del virus adeno-associato (aav-2), sequenze di dna codificanti per esse, vettori che le |
| NZ505325A (en) | 1997-12-23 | 2003-07-25 | Crucell Holland B | Adeno-associated virus and adenovirus chimeric recombinant viruses useful for the integration of foreign genetic information into the chromosomal dna of target cells |
| US6410300B1 (en) | 1998-01-12 | 2002-06-25 | The University Of North Carolina At Chapel Hill | Methods and formulations for mediating adeno-associated virus (AAV) attachment and infection and methods for purifying AAV |
| AU2882899A (en) | 1998-02-26 | 1999-09-15 | Trustees Of The University Of Pennsylvania, The | Stable protection from dystrophic sarcolemmal degeneration and restoration of the sarcoglycan complex |
| US6953690B1 (en) | 1998-03-20 | 2005-10-11 | The Trustees Of The University Of Pennsylvania | Compositions and methods for helper-free production of recombinant adeno-associated viruses |
| US6521426B1 (en) | 1998-04-08 | 2003-02-18 | Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. | Preparation of recombinant adenovirus carrying a rep gene of adeno-associated virus |
| FR2778413B1 (fr) | 1998-05-07 | 2000-08-04 | Immunotech Sa | Nouveaux reactifs et methode de lyse des erythrocytes |
| WO1999058700A1 (en) | 1998-05-11 | 1999-11-18 | Ariad Gene Therapeutics, Inc. | Multiviral compositions and uses thereof |
| EP1849872A1 (en) | 1998-05-20 | 2007-10-31 | University Of Iowa Research Foundation | Adeno-associated virus vectors and uses thereof |
| US6436392B1 (en) | 1998-05-20 | 2002-08-20 | University Of Iowa Research Foundation | Adeno-associated virus vectors |
| WO1999061643A1 (en) | 1998-05-27 | 1999-12-02 | University Of Florida | Method of preparing recombinant adeno-associated virus compositions by using an iodixananol gradient |
| EP1082445A2 (en) | 1998-05-27 | 2001-03-14 | Cell Genesys, Inc. | Adeno-associated viral vector-mediated expression of factor viii activity |
| WO1999061601A2 (en) | 1998-05-28 | 1999-12-02 | The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Aav5 vector and uses thereof |
| US6984517B1 (en) | 1998-05-28 | 2006-01-10 | The United States Of America As Represented By The Department Of Health And Human Services | AAV5 vector and uses thereof |
| GB2338236B (en) | 1998-06-13 | 2003-04-09 | Aea Technology Plc | Microbiological cell processing |
| US6900049B2 (en) | 1998-09-10 | 2005-05-31 | Cell Genesys, Inc. | Adenovirus vectors containing cell status-specific response elements and methods of use thereof |
| US6416992B1 (en) | 1998-10-13 | 2002-07-09 | Avigen, Inc. | Compositions and methods for producing recombinant adeno-associated virus |
| US6200560B1 (en) | 1998-10-20 | 2001-03-13 | Avigen, Inc. | Adeno-associated virus vectors for expression of factor VIII by target cells |
| EP1124976A1 (en) | 1998-10-27 | 2001-08-22 | Crucell Holland B.V. | Improved aav vector production |
| US6759237B1 (en) | 1998-11-05 | 2004-07-06 | The Trustees Of The University Of Pennsylvania | Adeno-associated virus serotype 1 nucleic acid sequences, vectors and host cells containing same |
| US6689600B1 (en) | 1998-11-16 | 2004-02-10 | Introgen Therapeutics, Inc. | Formulation of adenovirus for gene therapy |
| US6759050B1 (en) | 1998-12-03 | 2004-07-06 | Avigen, Inc. | Excipients for use in adeno-associated virus pharmaceutical formulations, and pharmaceutical formulations made therewith |
| US6225113B1 (en) | 1998-12-04 | 2001-05-01 | Genvec, Inc. | Use of trans-activation and cis-activation to modulate the persistence of expression of a transgene in an at least E4-deficient adenovirus |
| US6387368B1 (en) | 1999-02-08 | 2002-05-14 | The Trustees Of The University Of Pennsylvania | Hybrid adenovirus-AAV virus and methods of use thereof |
| DE19905501B4 (de) | 1999-02-10 | 2005-05-19 | MediGene AG, Gesellschaft für molekularbiologische Kardiologie und Onkologie | Verfahren zur Herstellung eines rekombinanten Adeno-assoziierten Virus, geeignete Mittel hierzu sowie Verwendung zur Herstellung eines Arzneimittels |
| US6509150B1 (en) | 1999-03-05 | 2003-01-21 | Universite De Nantes | Compositions and methods for recombinant Adeno-Associated Virus production |
| JP4693244B2 (ja) | 1999-03-18 | 2011-06-01 | ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア | 組換えアデノ随伴ウイルスのヘルパー無しの生産のための組成物および方法 |
| JP2002542805A (ja) | 1999-04-30 | 2002-12-17 | ユニバーシティ オブ フロリダ | アデノ随伴ウイルス送達リボザイム組成物および使用方法 |
| AU2409200A (en) | 1999-06-02 | 2000-12-28 | Trustees Of The University Of Pennsylvania, The | Compositions and methods useful for production of recombinant viruses which require helper viruses |
| JP4969002B2 (ja) | 1999-06-08 | 2012-07-04 | ユニバーシテイ・オブ・アイオワ・リサーチ・フアウンデーシヨン | rAAV形質導入を増加するための化合物および方法 |
| WO2001014539A2 (en) | 1999-08-20 | 2001-03-01 | Johns Hopkins University School Of Medicine | Methods and compositions for the construction and use of fusion libraries |
| EP1218035A2 (en) | 1999-09-29 | 2002-07-03 | The Trustees Of The University Of Pennsylvania | Rapid peg-modification of viral vectors |
| US6365394B1 (en) | 1999-09-29 | 2002-04-02 | The Trustees Of The University Of Pennsylvania | Cell lines and constructs useful in production of E1-deleted adenoviruses in absence of replication competent adenovirus |
| WO2001025465A1 (en) | 1999-10-07 | 2001-04-12 | University Of Iowa Research Foundation | Adeno-associated viruses and uses thereof |
| US7241447B1 (en) | 1999-10-07 | 2007-07-10 | University Of Iowa Research Foundation | Adeno-associated virus vectors and uses thereof |
| WO2001032711A2 (en) | 1999-10-21 | 2001-05-10 | Board Of Trustees Of The University Of Arkansas | Adeno-associated virus aav rep78 major regulatory protein, mutants thereof and uses thereof |
| WO2001036623A2 (en) | 1999-11-05 | 2001-05-25 | Avigen, Inc. | Ecdysone-inducible adeno-associated virus expression vectors |
| WO2001036603A2 (en) | 1999-11-17 | 2001-05-25 | Avigen, Inc. | Recombinant adeno-associated virus virions for the treatment of lysosomal disorders |
| EP1240345A2 (en) | 1999-12-10 | 2002-09-18 | Ariad Gene Therapeutics, Inc. | Methods for expression of genes in primates |
| US7638120B2 (en) | 2000-03-14 | 2009-12-29 | Thomas Jefferson University | High transgene expression of a pseudotyped adeno-associated virus type |
| WO2001068888A2 (en) | 2000-03-14 | 2001-09-20 | Neurologix, Inc. | Production of chimeric capsid vectors |
| US6855314B1 (en) | 2000-03-22 | 2005-02-15 | The United States Of America As Represented By The Department Of Health And Human Services | AAV5 vector for transducing brain cells and lung cells |
| US6468524B1 (en) | 2000-03-22 | 2002-10-22 | The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services | AAV4 vector and uses thereof |
| US7048920B2 (en) | 2000-03-24 | 2006-05-23 | Cell Genesys, Inc. | Recombinant oncolytic adenovirus for human melanoma |
| KR20080023768A (ko) | 2000-03-30 | 2008-03-14 | 화이트헤드 인스티튜트 포 바이오메디칼 리서치 | Rna 간섭의 rna 서열 특이적인 매개체 |
| GB0009887D0 (en) | 2000-04-20 | 2000-06-07 | Btg Int Ltd | Cytotoxic agents |
| US20030013189A1 (en) | 2000-04-28 | 2003-01-16 | Wilson James M. | Compositions and methods useful for non-invasive delivery of therapeutic molecules to the bloodstream |
| WO2001083692A2 (en) | 2000-04-28 | 2001-11-08 | The Trustees Of The University Of Pennsylvania | Recombinant aav vectors with aav5 capsids and aav5 vectors pseudotyped in heterologous capsids |
| US7125705B2 (en) | 2000-04-28 | 2006-10-24 | Genzyme Corporation | Polynucleotides for use in recombinant adeno-associated virus virion production |
| US20020106381A1 (en) | 2000-06-13 | 2002-08-08 | High Katherine A. | Methods for administering recombinant adeno-associated virus virions to humans previously exposed to adeno-associated virus |
| US7045299B2 (en) | 2000-07-18 | 2006-05-16 | Takeda Pharmaceutical Company Limited | Physiologically active peptide and use thereof |
| US6329181B1 (en) | 2000-08-07 | 2001-12-11 | Neurologix, Inc. | Helper functions for recombinant vector production |
| US6593123B1 (en) | 2000-08-07 | 2003-07-15 | Avigen, Inc. | Large-scale recombinant adeno-associated virus (rAAV) production and purification |
| WO2002014487A2 (en) | 2000-08-17 | 2002-02-21 | Keiya Ozawa | Adeno-associated virus-mediated delivery of angiogenic factors |
| DE10066104A1 (de) | 2000-09-08 | 2003-01-09 | Medigene Ag | Wirtszellen zur Verpackung von rekombinantem Adeno-assoziiertem Virus (rAAV), Verfahren zu ihrer Herstellung und deren Verwendung |
| FR2813891B1 (fr) | 2000-09-14 | 2005-01-14 | Immunotech Sa | Reactif multifonctionnel pour erythrocytes mettant en jeu des carbamates et applications |
| GB0024550D0 (OSRAM) | 2000-10-06 | 2000-11-22 | Oxford Biomedica Ltd | |
| JP2002153278A (ja) | 2000-11-22 | 2002-05-28 | Hisamitsu Pharmaceut Co Inc | ウイルスベクターの製造に用いられる細胞、その製法およびその細胞を用いたウイルスベクターの製造方法 |
| WO2002070719A2 (en) | 2001-01-19 | 2002-09-12 | Trustees Of The University Of Pennsylvania | Regulatable gene expression system |
| FR2821624B1 (fr) | 2001-03-01 | 2004-01-02 | Sod Conseils Rech Applic | Nouveau polynucleotide utilisable pour moduler la proliferation des cellules cancereuses |
| CA2441454A1 (en) | 2001-03-14 | 2002-09-19 | Avigen, Inc. | Recombinant adeno-associated virus-mediated gene transfer via retroductal infusion of virions |
| WO2002086076A2 (en) * | 2001-04-19 | 2002-10-31 | Bristol-Myers Squibb Company | Polynucleotides and polypeptides associated with the nf-kb pathway |
| JP4399255B2 (ja) | 2001-06-22 | 2010-01-13 | ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア | 細菌の形質転換体を迅速に選別する方法および新規なサルアデノウイルス蛋白質 |
| US20040136963A1 (en) | 2001-06-22 | 2004-07-15 | The Trustees Of The University Of Pennsylvania | Simian adenovirus vectors and methods of use |
| EP1900815B1 (en) | 2001-07-12 | 2016-09-07 | University of Massachusetts | In vivo production of small interfering RNAs that mediate gene silencing |
| ES2606290T3 (es) | 2001-07-12 | 2017-03-23 | University Of Massachusetts | Producción in vivo de ARN de interferencia pequeños que median el silenciamiento génico |
| US8241622B2 (en) | 2001-07-13 | 2012-08-14 | University Of Iowa Research Foundation | Adeno-associated virus vectors with intravector heterologous terminal palindromic sequences |
| EP1279740A1 (en) | 2001-07-26 | 2003-01-29 | Vrije Universiteit Brussel | Recombinant vector derived from adeno-associated virus for gene therapy |
| ES2564553T3 (es) | 2001-08-08 | 2016-03-23 | The Trustees Of The University Of Pennsylvania | Procedimiento para purificar vectores víricos que tienen proteínas que se unen a ácido siálico |
| US20030092161A1 (en) | 2001-09-19 | 2003-05-15 | The Trustees Of The University Of Pennsylvania | Compositions and methods for production of recombinant viruses, and uses therefor |
| IL161100A0 (en) | 2001-09-28 | 2004-08-31 | Max Planck Gesellschaft | Identification of novel genes coding for small temporal rnas |
| US6723551B2 (en) | 2001-11-09 | 2004-04-20 | The United States Of America As Represented By The Department Of Health And Human Services | Production of adeno-associated virus in insect cells |
| EP1572893B1 (en) | 2001-11-09 | 2009-01-07 | THE GOVERNMENT OF THE UNITED STATES OF AMERICA as represented by THE SECRETARY of the DEPARTMENT OF HEALTH AND HUMAN SERVICES | Production of adeno-associated virus in insect cells |
| HU230364B1 (hu) | 2001-11-21 | 2016-03-29 | The Trustees Of The University Of Pennsylvania | Simian adenovírus nukleinsav és aminosav-szekvencia, azt tartalmazó vektorok, és eljárások annak alkalmazására |
| EP1944043A1 (en) | 2001-11-21 | 2008-07-16 | The Trustees of the University of Pennsylvania | Simian adenovirus nucleic acid and amino acid sequences, vectors containing same, and methods of use |
| JP4550421B2 (ja) | 2001-12-12 | 2010-09-22 | メイン・ファ−マ・インタ−ナショナル・プロプライエタリ−・リミテッド | ウイルスの保存のための組成物 |
| ES2526341T3 (es) | 2001-12-17 | 2015-01-09 | The Trustees Of The University Of Pennsylvania | Secuencias de serotipo 9 de virus adeno-asociado (AAV), vectores que las contienen, y usos de las mismas |
| JP4810062B2 (ja) | 2001-12-17 | 2011-11-09 | ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア | アデノ随伴ウイルス(aav)血清型8の配列 |
| AU2002359786A1 (en) | 2001-12-19 | 2003-07-09 | Hiroaki Mizukami | Adeno-associated virus-mediated delivery of gdnf to skeletal muscles |
| AU2003202026A1 (en) | 2002-01-16 | 2003-09-02 | Dynal Biotech Asa | Method for isolating nucleic acids and protein from a single sample |
| JP4598398B2 (ja) | 2002-02-01 | 2010-12-15 | オックスフォード バイオメディカ (ユーケー) リミテッド | ウイルスベクター |
| US20030180756A1 (en) | 2002-03-21 | 2003-09-25 | Yang Shi | Compositions and methods for suppressing eukaryotic gene expression |
| GB0208390D0 (en) | 2002-04-11 | 2002-05-22 | Univ London | Adeno-associated virus producer system |
| US20030198620A1 (en) | 2002-04-16 | 2003-10-23 | Keiya Ozawa | Method of treating amino acid metabolic disorders using recombinant adeno-associated virus virions |
| EP1359217B1 (en) | 2002-04-29 | 2006-12-13 | The Trustees of The University of Pennsylvania | Method for direct rescue and amplification of integrated viruses from cellular DNA of tissues |
| NZ535944A (en) | 2002-04-30 | 2007-11-30 | Oncolytics Biotech Inc | Viral purification method comprising a simple extraction step in which a detergent is directly added to the cell culture, thereafter, cell debris is removed from the extraction mixture by filtration or centrifugation |
| AU2003295312B2 (en) | 2002-05-01 | 2008-08-14 | University Of Florida Research Foundation, Inc. | Improved rAAV expression systems for genetic modification of specific capsid proteins |
| DK1504126T3 (da) | 2002-05-03 | 2014-06-10 | Univ Duke | Fremgangsmåde til regulering af genekspression |
| US7326555B2 (en) | 2002-05-14 | 2008-02-05 | Merck & Co., Inc. | Methods of adenovirus purification |
| US7419817B2 (en) | 2002-05-17 | 2008-09-02 | The United States Of America As Represented By The Secretary Department Of Health And Human Services, Nih. | Scalable purification of AAV2, AAV4 or AAV5 using ion-exchange chromatography |
| US20070015238A1 (en) | 2002-06-05 | 2007-01-18 | Snyder Richard O | Production of pseudotyped recombinant AAV virions |
| US20040241854A1 (en) | 2002-08-05 | 2004-12-02 | Davidson Beverly L. | siRNA-mediated gene silencing |
| US20080274989A1 (en) | 2002-08-05 | 2008-11-06 | University Of Iowa Research Foundation | Rna Interference Suppression of Neurodegenerative Diseases and Methods of Use Thereof |
| JP2006515162A (ja) | 2002-08-29 | 2006-05-25 | ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ | 環状核酸ベクター、ならびに同ベクターの作製法および使用法 |
| US20040137471A1 (en) | 2002-09-18 | 2004-07-15 | Timothy Vickers | Efficient reduction of target RNA's by single-and double-stranded oligomeric compounds |
| EP1418185A1 (en) | 2002-11-11 | 2004-05-12 | Aventis Pharma Deutschland GmbH | Use of EDG2 receptor in an animal model of heart failure |
| US7169612B2 (en) | 2002-11-11 | 2007-01-30 | Sanofi-Aventis Deutschland Gmbh | Use of EDG2 receptor in an animal model of heart failure |
| WO2006006948A2 (en) | 2002-11-14 | 2006-01-19 | Dharmacon, Inc. | METHODS AND COMPOSITIONS FOR SELECTING siRNA OF IMPROVED FUNCTIONALITY |
| US7618948B2 (en) | 2002-11-26 | 2009-11-17 | Medtronic, Inc. | Devices, systems and methods for improving and/or cognitive function through brain delivery of siRNA |
| US20080318210A1 (en) | 2003-08-27 | 2008-12-25 | Rosetta Genomics | Bioinformatically detectable group of novel regulatory viral and viral associated oligonucleotides and uses thereof |
| EP1611231A4 (en) | 2003-02-21 | 2008-08-13 | Penn State Res Found | RNA-INTERFERING COMPOSITIONS AND METHODS THEREOF |
| WO2004075861A2 (en) | 2003-02-26 | 2004-09-10 | Children's Hospital, Inc. | Recombinant adeno-associated virus production |
| US20070172460A1 (en) | 2003-03-19 | 2007-07-26 | Jurgen Kleinschmidt | Random peptide library displayed on aav vectors |
| WO2004108922A2 (en) | 2003-04-25 | 2004-12-16 | The Trustees Of The University Of Pennsylvania | Use of aav comprising a capsid protein from aav7 or aav8 for the delivery of genes encoding apoprotein a or e genes to the liver |
| US7589189B2 (en) | 2003-05-14 | 2009-09-15 | Japan Science And Technology Agency | Inhibition of the expression of huntingtin gene |
| US8927269B2 (en) | 2003-05-19 | 2015-01-06 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Avian adenoassociated virus and uses thereof |
| JP4559429B2 (ja) | 2003-05-21 | 2010-10-06 | ジェンザイム・コーポレーション | 空キャプシドを実質的に含まない組換えaavビリオン調製物を生成するための方法 |
| EP1486567A1 (en) | 2003-06-11 | 2004-12-15 | Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts | Improved adeno-associated virus (AAV) vector for gene therapy |
| JP4888876B2 (ja) | 2003-06-13 | 2012-02-29 | 田平 武 | アルツハイマー病の治療のための組換えアデノ随伴ウィルスベクター |
| PL2357189T3 (pl) | 2003-06-19 | 2017-08-31 | Genzyme Corporation | Wiriony AAV o zmniejszonej immunoreaktywności i ich zastosowanie |
| EP1636370B1 (en) | 2003-06-20 | 2014-04-16 | The Trustees of The University of Pennsylvania | Methods of generating chimeric adenoviruses and uses for such chimeric adenoviruses |
| US7291498B2 (en) | 2003-06-20 | 2007-11-06 | The Trustees Of The University Of Pennsylvania | Methods of generating chimeric adenoviruses and uses for such chimeric adenoviruses |
| US9441244B2 (en) | 2003-06-30 | 2016-09-13 | The Regents Of The University Of California | Mutant adeno-associated virus virions and methods of use thereof |
| WO2005012537A2 (en) | 2003-07-25 | 2005-02-10 | Genvec, Inc. | Adenoviral vector-based vaccines |
| EP1648914A4 (en) | 2003-07-31 | 2009-12-16 | Regulus Therapeutics Inc | OLIGOMERIC COMPOUNDS AND COMPOSITIONS USEFUL FOR MODULATING SMALL NON-CODING RNA |
| ES2969371T3 (es) | 2003-09-12 | 2024-05-17 | Univ Massachusetts | Interferencia por ARN para el tratamiento de trastornos de ganancia de función |
| US20050064489A1 (en) | 2003-09-24 | 2005-03-24 | Zhang Fang Liang | Engineered U6 and H1 promoters |
| EP3910063A1 (en) | 2003-09-30 | 2021-11-17 | The Trustees of The University of Pennsylvania | Adeno-associated virus (aav) clades, sequences, vectors containing same, and uses therefor |
| JP4790619B2 (ja) | 2003-10-27 | 2011-10-12 | ロゼッタ インファーマティクス エルエルシー | 遺伝子サイレンシングのためのsiRNAを設計する方法 |
| KR101246862B1 (ko) | 2004-03-05 | 2013-03-27 | 베니텍 리미티드 | RNAi 제제의 동시 전달을 위한 다중 프로모터 발현카세트 |
| ES2361000T3 (es) | 2004-04-28 | 2011-06-13 | The Trustees Of The University Of Pennsylvania | Suministro secuencial de moléculas inmunogénicas mediante administraciones de un adenovirus y de un virus adeno-asociado. |
| HUE060433T2 (hu) | 2004-06-01 | 2023-03-28 | Genzyme Corp | Készítmények és eljárások AAV vektor aggregációjának megelõzésére |
| CA2581714C (en) | 2004-10-05 | 2017-09-12 | Avigen, Inc. | Stepped cannula |
| US7901921B2 (en) | 2004-10-22 | 2011-03-08 | Oncolytics Biotech Inc. | Viral purification methods |
| AU2005307737C1 (en) | 2004-11-18 | 2013-08-29 | The Board Of Trustees Of The University Of Illinois | Multicistronic siRNA constructs to inhibit tumors |
| CN1286981C (zh) | 2004-11-30 | 2006-11-29 | 华中科技大学同济医学院附属同济医院 | 表达人类cyp2j2反义基因的重组腺相关病毒及其制备方法 |
| WO2006066203A2 (en) | 2004-12-16 | 2006-06-22 | Alsgen, Llc | Small interfering rna (sirna) molecules for modulating superoxide dismutase (sod) |
| AU2006210443B2 (en) | 2005-02-03 | 2011-01-27 | Benitec, Inc. | RNAi expression constructs |
| US8614101B2 (en) | 2008-05-20 | 2013-12-24 | Rapid Pathogen Screening, Inc. | In situ lysis of cells in lateral flow immunoassays |
| US7625570B1 (en) | 2005-03-10 | 2009-12-01 | The Regents Of The University Of California | Methods for purifying adeno-associated virus |
| US8999943B2 (en) | 2005-03-14 | 2015-04-07 | Board Of Regents, The University Of Texas System | Antigene oligomers inhibit transcription |
| WO2006102072A2 (en) | 2005-03-23 | 2006-09-28 | The Trustees Of The University Of Pennsylvania | Use of a pa131 polypeptide in treatment of atherosclerosis |
| EP3409296A1 (en) | 2005-04-07 | 2018-12-05 | The Trustees of the University of Pennsylvania | Method of increasing the function of an aav vector |
| WO2006119432A2 (en) | 2005-04-29 | 2006-11-09 | The Government Of The U.S.A., As Rep. By The Sec., Dept. Of Health & Human Services | Isolation, cloning and characterization of new adeno-associated virus (aav) serotypes |
| BRPI0611379A2 (pt) | 2005-05-02 | 2010-08-31 | Genzyme Corp | terapia genética para distúrbios neurometabólicos |
| CA2619534A1 (en) | 2005-08-18 | 2007-02-22 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for treating neurological disease |
| US9089667B2 (en) | 2005-08-23 | 2015-07-28 | The Regents Of The University Of California | Reflux resistant cannula and system for chronic delivery of therapeutic agents using convection-enhanced delivery |
| EP1857552A1 (en) | 2006-05-20 | 2007-11-21 | Cargill Incorporated | Thermostable xylose isomerase enzyme |
| PL1945779T3 (pl) | 2005-10-20 | 2013-08-30 | Uniqure Ip Bv | Ulepszone wektory AAV produkowane w komórkach owadzich |
| RU2448974C2 (ru) * | 2005-11-01 | 2012-04-27 | Элнилэм Фармасьютикалз, Инк. | РНКи-ИНГИБИРОВАНИЕ РЕПЛИКАЦИИ ВИРУСА ГРИППА |
| JP5066095B2 (ja) | 2005-11-17 | 2012-11-07 | ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム | 染色体dnaに標的化されるオリゴマーによる遺伝子発現の調節 |
| US20070259827A1 (en) * | 2006-01-25 | 2007-11-08 | University Of Massachusetts | Compositions and methods for enhancing discriminatory RNA interference |
| WO2008016391A2 (en) | 2006-01-31 | 2008-02-07 | The Board Of Trustees Of The Leland Stanford Junior University | Self-complementary parvoviral vectors, and methods for making and using the same |
| EP2007795B1 (en) | 2006-03-30 | 2016-11-16 | The Board Of Trustees Of The Leland Stanford Junior University | Aav capsid proteins |
| MX2008012219A (es) | 2006-04-03 | 2008-10-02 | Santaris Pharma As | Composicion farmaceutica que comprende oligonucleotidos antisentido anti-miarn. |
| JP5268890B2 (ja) | 2006-04-28 | 2013-08-21 | ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア | Aavの規模適応性の製造方法 |
| CN101495624A (zh) | 2006-04-28 | 2009-07-29 | 宾夕法尼亚州立大学托管会 | 衣壳免疫原性降低的经修饰aav载体及其用途 |
| ATE455558T1 (de) | 2006-04-28 | 2010-02-15 | Univ Pennsylvania | Modifiziertes adenovirus-hexon-protein und anwendungen davon |
| WO2007130519A2 (en) | 2006-05-02 | 2007-11-15 | Government Of The Usa, As Represented By The Secretary, Department Of Health And Human Services | Viral nucleic acid microarray and method of use |
| WO2007139982A2 (en) | 2006-05-25 | 2007-12-06 | Sangamo Biosciences, Inc. | Methods and compositions for gene inactivation |
| CA2655957C (en) | 2006-06-21 | 2016-05-03 | Amsterdam Molecular Therapeutics (Amt) B.V. | Vectors with modified initiation codon for the translation of aav-rep78 useful for production of aav in insect cells |
| ES2428067T3 (es) | 2006-07-21 | 2013-11-05 | California Institute Of Technology | Introducción selectiva de genes para la vacunación con células dendríticas |
| EP2061891B1 (en) | 2006-08-24 | 2012-04-11 | Virovek, Inc. | Expression in insect cells of genes with overlapping open reading frames, methods and compositions therefor |
| EP3632472A1 (en) | 2006-10-03 | 2020-04-08 | Genzyme Corporation | Gene therapy for amyotrophic lateral sclerosis and other spinal cord disorders |
| EP2089520B1 (en) | 2006-11-29 | 2014-01-08 | University of Iowa Research Foundation | Alternative export pathways for vector expressed RNA interference |
| CA2693178C (en) | 2006-11-29 | 2018-12-04 | Nationwide Children's Hospital, Inc. | Myostatin inhibition for enhancing muscle and/or improving muscle function |
| US8071752B2 (en) | 2007-01-29 | 2011-12-06 | City Of Hope | Multi-targeting short interfering RNAs |
| SG178744A1 (en) | 2007-02-02 | 2012-03-29 | Biogen Idec Inc | Use of semaphorin 6a for promoting myelination and oligodendrocyte differentiation |
| US9611302B2 (en) | 2007-04-09 | 2017-04-04 | University Of Florida Research Foundation, Inc. | High-transduction-efficiency RAAV vectors, compositions, and methods of use |
| US9725485B2 (en) | 2012-05-15 | 2017-08-08 | University Of Florida Research Foundation, Inc. | AAV vectors with high transduction efficiency and uses thereof for gene therapy |
| EP3492596A1 (en) | 2007-04-09 | 2019-06-05 | University of Florida Research Foundation, Inc. | Raav vector compositions having tyrosine-modified capsid proteins and methods for use |
| WO2008128251A1 (en) | 2007-04-17 | 2008-10-23 | The Children's Hospital Of Philadelphia | Humanized viral vectors and methods of use thereof |
| EP2152874A2 (en) | 2007-04-26 | 2010-02-17 | University of Iowa Research Foundation | Rna interference suppression of neurodegenerative diseases and methods of use thereof |
| ES2602610T3 (es) | 2007-05-31 | 2017-02-21 | Medigene Ag | Proteína estructural mutada de un parvovirus |
| EP2012122A1 (en) | 2007-07-06 | 2009-01-07 | Medigene AG | Mutated parvovirus structural proteins as vaccines |
| ES2549122T3 (es) | 2007-05-31 | 2015-10-23 | University Of Iowa Research Foundation | Reducción de toxicidad por interferencia de ARN desviada de su diana |
| AU2008266014B2 (en) | 2007-06-15 | 2013-06-06 | The Ohio State University Research Foundation | Oncogenic ALL-1 fusion proteins for targeting drosha-mediated microRNA processing |
| US8841437B2 (en) * | 2008-06-20 | 2014-09-23 | The Board Of Trustees Of The Leland Stanford Junior University | Precursor miRNA loop-modulated target regulation |
| RU2491344C2 (ru) | 2007-06-29 | 2013-08-27 | Ф.Хоффманн-Ля Рош Аг | Промотор |
| CN107129957A (zh) | 2007-06-29 | 2017-09-05 | 北京强新生物科技有限公司 | 促使长dsRNA可用于哺乳动物和其他所选动物细胞中的基因寻靶 |
| EP2176283B1 (en) | 2007-07-14 | 2016-11-02 | University of Iowa Research Foundation | Methods and compositions for treating brain diseases |
| EP2019143A1 (en) | 2007-07-23 | 2009-01-28 | Genethon | CNS gene delivery using peripheral administration of AAV vectors |
| PT2173888T (pt) | 2007-07-26 | 2016-11-17 | Uniqure Ip Bv | Resumo |
| CN105018492B (zh) | 2007-08-27 | 2018-08-24 | 北京强新生物科技有限公司 | 不对称干扰rna的组合物及其用途 |
| CA2698011C (en) | 2007-09-04 | 2015-12-29 | Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Health | Porcine adeno-associated viruses |
| JP2010538675A (ja) | 2007-09-19 | 2010-12-16 | アムステルダム モレキュラー セラピューティクス ビー.ブイ. | タンパク質産生の改善のためのaav複製機構の使用 |
| WO2009046397A2 (en) | 2007-10-04 | 2009-04-09 | Board Of Regents, The University Of Texas System | Modulating gene expression with agrna and gapmers targeting antisense transcripts |
| EP2186283A4 (en) | 2007-10-18 | 2011-03-09 | Lg Electronics Inc | METHOD AND SYSTEM FOR TRANSMITTING AND RECEIVING SIGNALS |
| KR101614369B1 (ko) | 2007-11-28 | 2016-04-21 | 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 | 유인원 아과 c 아데노바이러스 sadv-40, -31, 및 -34 및 그것의 사용 |
| AU2008331905B2 (en) | 2007-11-28 | 2014-09-18 | The Trustees Of The University Of Pennsylvania | Simian subfamily B adenovirus SAdV-28 and uses thereof |
| CA2706258C (en) | 2007-11-28 | 2017-06-06 | The Trustees Of The University Of Pennsylvania | Simian subfamily e adenoviruses sadv-39, -25.2, -26, -30, -37, and -38 and uses thereof |
| JP2011507554A (ja) * | 2007-12-28 | 2011-03-10 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 遺伝子発現を増加させるための方法および組成物 |
| US8133488B2 (en) | 2008-01-18 | 2012-03-13 | Genentech, Inc. | Methods and compositions for targeting polyubiquitin |
| AU2009209408B2 (en) | 2008-01-29 | 2015-06-11 | Beacon Therapeutics Limited | Recombinant virus production using mammalian cells in suspension |
| CN104975020B (zh) | 2008-02-11 | 2020-01-17 | 菲奥医药公司 | 经修饰的RNAi多核苷酸及其用途 |
| CN102007209B (zh) | 2008-02-19 | 2013-11-13 | 阿姆斯特丹分子治疗(Amt)股份有限公司 | 细小病毒rep和cap蛋白在昆虫细胞中的表达优化 |
| JP5661476B2 (ja) | 2008-03-04 | 2015-01-28 | ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア | サルアデノウイルスSAdV−36、−42.1、−42.2および−44ならびにそれらの用途 |
| US8632764B2 (en) | 2008-04-30 | 2014-01-21 | University Of North Carolina At Chapel Hill | Directed evolution and in vivo panning of virus vectors |
| WO2009134681A2 (en) | 2008-04-30 | 2009-11-05 | The Trustees Of The University Of Pennsylvania | Aav7 viral vectors for targeted delivery of rpe cells |
| EP2910637A1 (en) | 2008-05-20 | 2015-08-26 | University of Florida Research Foundation, Inc. | Vectors for delivery of light-sensitive proteins and methods of use |
| WO2009146301A1 (en) | 2008-05-27 | 2009-12-03 | Yale University | TARGETING TGF-β AS A THERAPY FOR ALZHEIMER'S DISEASE |
| US9217155B2 (en) | 2008-05-28 | 2015-12-22 | University Of Massachusetts | Isolation of novel AAV'S and uses thereof |
| EP2297322A1 (en) | 2008-06-04 | 2011-03-23 | The Board of Regents of The University of Texas System | Modulation of gene expression through endogenous small rna targeting of gene promoters |
| US8951979B2 (en) | 2008-06-13 | 2015-02-10 | Cornell University | Pain treatment using ERK2 inhibitors |
| US20110171262A1 (en) | 2008-06-17 | 2011-07-14 | Andrew Christian Bakker | Parvoviral capsid with incorporated gly-ala repeat region |
| US8945885B2 (en) | 2008-07-03 | 2015-02-03 | The Board Of Trustees Of The Leland Stanford Junior University | Minicircle DNA vector preparations and methods of making and using the same |
| WO2010014857A2 (en) | 2008-07-30 | 2010-02-04 | University Of Massachusetts | Chromosome therapy |
| EA201170506A1 (ru) | 2008-09-29 | 2011-12-30 | Амстердам Молекьюлар Терапьютикс (Амт) Б.В. | Генная терапия порфобилиногендезаминазой |
| AU2009308293B2 (en) | 2008-10-22 | 2015-02-05 | Genentech, Inc. | Modulation of axon degeneration |
| US8940290B2 (en) | 2008-10-31 | 2015-01-27 | The Trustees Of The University Of Pennsylvania | Simian adenoviruses SAdV-43, -45, -46, -47, -48, -49, and -50 and uses thereof |
| US9415121B2 (en) | 2008-12-19 | 2016-08-16 | Nationwide Children's Hospital | Delivery of MECP2 polynucleotide using recombinant AAV9 |
| WO2010093784A2 (en) | 2009-02-11 | 2010-08-19 | The University Of North Carolina At Chapel Hill | Modified virus vectors and methods of making and using the same |
| EP2403867B1 (en) | 2009-03-04 | 2019-05-22 | Deutsches Krebsforschungszentrum | Assembly activating protein (aap) and its use for the manufacture of parvovirus particles essential consisting of vp3 |
| US20120093775A1 (en) | 2009-03-27 | 2012-04-19 | Proyecto De Biomedicina Cima, S.L. | Methods and compositions for the treatment of cirrhosis and liver fibrosis |
| ES2724122T3 (es) | 2009-04-30 | 2019-09-06 | Univ Pennsylvania | Composiciones para dirigir células de las vías respiratorias de conducción que comprenden construcciones de virus adenoasociado |
| EP2435575A2 (en) | 2009-05-28 | 2012-04-04 | Deutsches Krebsforschungszentrum | Modified aav capsid polypeptides |
| CN102575232B (zh) | 2009-05-29 | 2015-07-22 | 宾夕法尼亚大学托管会 | 猿腺病毒41及其应用 |
| WO2010140862A2 (ko) | 2009-06-05 | 2010-12-09 | Seol Dai-Wu | 단일 또는 멀티 표적 유전자를 억제하는 멀티-시스트로닉 shRNA 발현 카세트 |
| SMT201800554T1 (it) | 2009-06-16 | 2018-11-09 | Genzyme Corp | Metodi migliorati per la purificazione di vettori di aav ricombinanti |
| US20140004565A1 (en) | 2009-07-06 | 2014-01-02 | Alnylam Pharmaceuticals, Inc. | Cell-based bioprocessing |
| EP2451823A4 (en) | 2009-07-06 | 2013-07-03 | Alnylam Pharmaceuticals Inc | COMPOSITIONS AND METHODS FOR ENHANCING THE PRODUCTION OF A BIOLOGICAL PRODUCT |
| JP5828838B2 (ja) | 2009-07-15 | 2015-12-09 | カリミューン, インコーポレーティッド | ヒト免疫不全ウイルス阻害のための二重ベクター |
| EP2292781A1 (en) | 2009-08-17 | 2011-03-09 | Genethon | Baculovirus-based production of biopharmaceuticals free of contaminating baculoviral virions |
| WO2011038187A1 (en) | 2009-09-25 | 2011-03-31 | The Trustees Of The University Of Pennsylvania | Controlled adeno-associated virus (aav) diversification and libraries prepared therefrom |
| US20120309816A1 (en) | 2009-11-09 | 2012-12-06 | Genepod Therapeutics Ab | Novel viral vector construct for neuron specific optimized continuous DOPA synthesis in vivo |
| CN102741405B (zh) | 2009-11-19 | 2015-03-04 | 国立大学法人冈山大学 | 提高基因表达的系统和保持有该系统的载体 |
| WO2011069529A1 (en) | 2009-12-09 | 2011-06-16 | Curevac Gmbh | Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids |
| ES2683695T3 (es) | 2010-01-12 | 2018-09-27 | The University Of North Carolina At Chapel Hill | Repeticiones terminales invertidas restrictivas para vectores virales |
| ES2628889T3 (es) | 2010-02-05 | 2017-08-04 | The University Of North Carolina At Chapel Hill | Composiciones y métodos para la transducción mejorada del parvovirus |
| US9163261B2 (en) | 2010-02-22 | 2015-10-20 | Koteswara Rao KOLLIPARA | Adeno-associated virus 2/8—micro RNA-101 therapy for liver cancer |
| US9228174B2 (en) | 2010-03-11 | 2016-01-05 | Uniqure Ip B.V. | Mutated rep encoding sequences for use in AAV production |
| WO2011117258A2 (en) | 2010-03-22 | 2011-09-29 | Association Institut De Myologie | Methods of increasing efficiency of vector penetration of target tissue |
| WO2011126808A2 (en) | 2010-03-29 | 2011-10-13 | The Trustees Of The University Of Pennsylvania | Pharmacologically induced transgene ablation system |
| US9315825B2 (en) | 2010-03-29 | 2016-04-19 | The Trustees Of The University Of Pennsylvania | Pharmacologically induced transgene ablation system |
| WO2011122950A1 (en) | 2010-04-01 | 2011-10-06 | Amsterdam Molecular Therapeutics (Amt) Ip B.V. | Monomeric duplex aav vectors |
| US9272053B2 (en) | 2010-04-23 | 2016-03-01 | University Of Massachusetts | AAV-based treatment of cholesterol-related disorders |
| CA2833905C (en) | 2010-04-23 | 2019-09-10 | University Of Massachusetts | Multicistronic expression constructs |
| EP3540055A1 (en) | 2010-04-23 | 2019-09-18 | University of Massachusetts | Cns targeting aav vectors and methods of use thereof |
| US8927514B2 (en) | 2010-04-30 | 2015-01-06 | City Of Hope | Recombinant adeno-associated vectors for targeted treatment |
| US9839696B2 (en) | 2010-04-30 | 2017-12-12 | City Of Hope | Recombinant adeno-associated vectors for targeted treatment |
| CN103068980B (zh) | 2010-08-02 | 2017-04-05 | 瑟纳治疗公司 | 使用短干扰核酸(siNA)的RNA干扰介导的联蛋白(钙粘蛋白关联蛋白质),β1(CTNNB1)基因表达的抑制 |
| US8808684B2 (en) | 2010-09-10 | 2014-08-19 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Epidermal growth factor receptor (EGFR) and methods of use in adenoviral-associated virus type 6 (AAV6) transduction |
| CN101972476B (zh) | 2010-09-14 | 2012-12-19 | 中国人民解放军第二军医大学 | 利用MicroRNA-155的核酸疫苗佐剂及其构建方法 |
| JP5010760B2 (ja) | 2010-10-05 | 2012-08-29 | タカラバイオ株式会社 | ウイルスベクターの製造方法 |
| US8663624B2 (en) | 2010-10-06 | 2014-03-04 | The Regents Of The University Of California | Adeno-associated virus virions with variant capsid and methods of use thereof |
| EP2634253B1 (en) | 2010-10-27 | 2016-05-11 | Jichi Medical University | Adeno-associated virus virions for transferring genes into neural cells |
| EP2637702A4 (en) | 2010-11-11 | 2014-11-26 | Univ Miami | METHODS, COMPOSITIONS, CELLS AND KITS FOR TREATING ISCHEMIC INJURIES |
| EP2643465B1 (en) | 2010-11-23 | 2016-05-11 | The Trustees Of The University Of Pennsylvania | Subfamily e simian adenovirus a1321 and uses thereof |
| EP2673286B1 (en) | 2011-02-12 | 2019-07-03 | University of Iowa Research Foundation | Therapeutic compounds |
| SG10202007803QA (en) | 2011-02-17 | 2020-09-29 | Univ Pennsylvania | Compositions and methods for altering tissue specificity and improving aav9-mediated gene transfer |
| GB201103062D0 (en) | 2011-02-22 | 2011-04-06 | Isis Innovation | Method |
| EP2500434A1 (en) | 2011-03-12 | 2012-09-19 | Association Institut de Myologie | Capsid-free AAV vectors, compositions, and methods for vector production and gene delivery |
| EP2700399B1 (en) | 2011-04-18 | 2017-05-31 | National Center of Neurology and Psychiatry | Drug delivery particles and method for producing same |
| EP2699688A1 (en) | 2011-04-20 | 2014-02-26 | The Trustees Of The University Of Pennsylvania | Regimens and compositions for aav-mediated passive immunization of airborne pathogens |
| US9226976B2 (en) | 2011-04-21 | 2016-01-05 | University Of Massachusetts | RAAV-based compositions and methods for treating alpha-1 anti-trypsin deficiencies |
| LT3254703T (lt) | 2011-04-22 | 2020-05-25 | The Regents Of The University Of California | Adenoasocijuoto viruso virionai su variantine kapside ir jų panaudojimo būdai |
| WO2012149646A1 (en) | 2011-05-05 | 2012-11-08 | Sunnybrook Research Institute | Mirna inhibitors and their uses |
| US9249425B2 (en) | 2011-05-16 | 2016-02-02 | The Trustees Of The University Of Pennslyvania | Proviral plasmids and production of recombinant adeno-associated virus |
| US9598468B2 (en) | 2011-05-18 | 2017-03-21 | University Of Florida Research Foundation, Incorporated | Polypeptides and vectors for targeting HER2/neu expressing cells and uses thereof |
| CN103518132B (zh) | 2011-06-06 | 2015-11-25 | 拜奥卡蒂斯股份有限公司 | 通过离子型表面活性剂选择性裂解细胞 |
| CA3106285A1 (en) | 2011-07-25 | 2013-01-31 | Nationwide Children's Hospital, Inc. | Recombinant virus products and methods for inhibition of expression of dux4 |
| BR112014001863A2 (pt) | 2011-07-27 | 2017-02-21 | Genethon | sistemas de expressão baculovírus melhorados |
| US8852911B2 (en) | 2011-08-04 | 2014-10-07 | The Regents Of The University Of California | Method of producing dicer |
| EP2990477B8 (en) | 2011-09-08 | 2018-10-31 | uniQure IP B.V. | Removal of contaminating viruses from aav preparations |
| US9464322B2 (en) | 2011-09-09 | 2016-10-11 | University Of Kentucky Research Foundation | Methods for diagnosing and treating alzheimer's disease (AD) using the molecules that stabilize intracellular calcium (Ca2+) release |
| WO2013036889A1 (en) | 2011-09-09 | 2013-03-14 | University Of Washington | Retrograde transport peptide and use of same for delivery to central nervous system |
| BR112014006376B1 (pt) | 2011-09-19 | 2021-07-27 | Axon Neuroscience Se | Anticorpo isolado que se liga a um ou mais epítopos tau, ácido nucleico, vetor, composição farmacêutica, artigo de fabricação, dispositivo médico, método in vitro para diagnosticar ou triar um indivíduo quanto à presença de doença de alzheimer ou de uma tauopatia relacionada e usos do referido anticorpo |
| ES2609860T3 (es) | 2011-10-28 | 2017-04-24 | The University Of North Carolina At Chapel Hill | Línea celular para la producción de virus adenoasociado |
| US10640785B2 (en) | 2011-11-22 | 2020-05-05 | The Children's Hospital Of Philadelphia | Virus vectors for highly efficient transgene delivery |
| WO2013078199A2 (en) | 2011-11-23 | 2013-05-30 | Children's Medical Center Corporation | Methods for enhanced in vivo delivery of synthetic, modified rnas |
| WO2013103896A1 (en) | 2012-01-06 | 2013-07-11 | Mayo Foundation For Medical Education And Research | Treating cardiovascular or renal diseases |
| US20150301068A1 (en) | 2012-01-30 | 2015-10-22 | Vib Vzw | Means and method for diagnosis and treatment of alzheimer's disease |
| KR102107482B1 (ko) | 2012-02-14 | 2020-05-08 | 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 | 심혈관 질환 및 다른 증상에 대한 파라크린 유전자의 전신 전달 및 조절 발현 |
| WO2013122605A1 (en) | 2012-02-17 | 2013-08-22 | Evernote Corporation | Site memory processing |
| CN104520428B (zh) | 2012-02-17 | 2018-09-21 | 费城儿童医院 | 将基因转移到细胞、器官和组织的aav载体组合物和方法 |
| MX374399B (es) | 2012-02-29 | 2025-03-06 | Sangamo Biosciences Inc | Composiciones y sus usos para tratar y prevenir la enfermedad de huntington. |
| CA2870736C (en) | 2012-04-18 | 2021-11-02 | The Children's Hospital Of Philadelphia | Composition and methods for highly efficient gene transfer using aav capsid variants |
| US20140162319A2 (en) | 2012-05-02 | 2014-06-12 | Sangeetha Hareendran | Nucleotide sequences, methods, kit and a recombinant cell thereof |
| US9163259B2 (en) | 2012-05-04 | 2015-10-20 | Novartis Ag | Viral vectors for the treatment of retinal dystrophy |
| CA2871920C (en) | 2012-05-08 | 2021-03-09 | Merck Sharp & Dohme Corp. | Permeable glycosidase inhibitors and uses thereof |
| JP6385920B2 (ja) | 2012-05-09 | 2018-09-05 | オレゴン ヘルス アンド サイエンス ユニバーシティー | アデノ随伴ウイルスプラスミド及びベクター |
| US10294281B2 (en) | 2012-05-15 | 2019-05-21 | University Of Florida Research Foundation, Incorporated | High-transduction-efficiency rAAV vectors, compositions, and methods of use |
| TWI775096B (zh) | 2012-05-15 | 2022-08-21 | 澳大利亞商艾佛蘭屈澳洲私營有限公司 | 使用腺相關病毒(aav)sflt-1治療老年性黃斑部退化(amd) |
| KR20150014505A (ko) | 2012-05-18 | 2015-02-06 | 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 | 아과 e 원숭이 아데노바이러스 a1302, a1320, a1331 및 a1337 및 이것들의 사용 |
| IN2014KN02672A (OSRAM) | 2012-05-18 | 2015-05-08 | Univ Iowa Res Found | |
| EP2852388A4 (en) | 2012-05-23 | 2016-01-13 | Univ Johns Hopkins | COMPOUNDS AND METHOD FOR USE THEREOF FOR THE TREATMENT OF NEURODEEGENERATIVE DISEASES |
| RU2679843C2 (ru) | 2012-07-06 | 2019-02-13 | Юниверсити Оф Айова Рисерч Фаундейшн | Векторные композиции с модифицированным аденоассоциированным вирусом |
| WO2014007120A1 (ja) | 2012-07-06 | 2014-01-09 | タカラバイオ株式会社 | アデノ随伴ウイルスベクターの産生細胞 |
| CA2879514C (en) * | 2012-07-17 | 2020-04-14 | Universite De Geneve | Nucleic acids for down-regulation of gene expression |
| PT2879719T (pt) | 2012-08-01 | 2018-10-08 | Ohio State Innovation Foundation | Administração intratecal do vírus adeno-associado 9 recombinante |
| AU2013315007A1 (en) | 2012-09-17 | 2015-04-09 | The Research Institute At Nationwide Children's Hospital | Compositions and methods for treating amyotrophic lateral sclerosis |
| EP3738974A1 (en) | 2012-09-28 | 2020-11-18 | The University of North Carolina at Chapel Hill | Aav vectors targeted to oligodendrocytes |
| AU2013204200B2 (en) | 2012-10-11 | 2016-10-20 | Brandeis University | Treatment of amyotrophic lateral sclerosis |
| WO2014071042A1 (en) | 2012-10-31 | 2014-05-08 | The Trustees Of Columbia University In The City Of New York | Methods for identifying candidates for the treatment of neurodegenerative diseases |
| BR112015013784A2 (pt) | 2012-12-12 | 2017-07-11 | Massachusetts Inst Technology | aplicação, manipulação e otimização de sistemas, métodos e composições para manipulação de sequência e aplicações terapêuticas |
| JP6363958B2 (ja) | 2012-12-25 | 2018-07-25 | タカラバイオ株式会社 | Aav変異体 |
| BR122020002822B1 (pt) | 2013-01-08 | 2023-04-18 | Genzyme Corporation | Método para cultivar um vetor de hsv-1 d27.1 |
| SG11201505272QA (en) | 2013-01-08 | 2015-08-28 | Benitec Biopharma Ltd | Age-related macular degeneration treatment |
| US9066966B2 (en) | 2013-02-01 | 2015-06-30 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Methods and pharmaceutical compositions for the treatment of cardiomyopathy due to friedreich ataxia |
| DK2954051T3 (da) | 2013-02-08 | 2019-07-08 | Univ Pennsylvania | Modificeret kapsid til genoverførsel til behandling af nethinden |
| CA2905952A1 (en) | 2013-03-13 | 2014-10-02 | The Children's Hospital Of Philadelphia | Adeno-associated virus vectors and methods of use thereof |
| HK1220488A1 (zh) | 2013-03-15 | 2017-05-05 | The Children's Hospital Of Philadelphia | 含有填充者/填充物多核苷酸序列的载体及其使用方法 |
| US9447433B2 (en) | 2013-03-15 | 2016-09-20 | The University Of North Carolina At Chapel Hill | Synthetic adeno-associated virus inverted terminal repeats |
| WO2014144844A1 (en) | 2013-03-15 | 2014-09-18 | The Board Of Trustees Of The Leland Stanford Junior University | tRNA DERIVED SMALL RNAs (tsRNAs) INVOLVED IN CELL VIABILITY |
| AU2014251099B2 (en) | 2013-04-08 | 2019-01-17 | The University Of Kansas | Chimeric adeno-associated virus/ bocavirus parvovirus vector |
| EP2792742A1 (en) | 2013-04-17 | 2014-10-22 | Universitätsklinikum Hamburg-Eppendorf (UKE) | Gene-therapy vectors for treating cardiomyopathy |
| EP2986635B1 (en) | 2013-04-18 | 2018-10-03 | Fondazione Telethon | Effective delivery of large genes by dual aav vectors |
| CN109652385A (zh) | 2013-04-20 | 2019-04-19 | 全国儿童医院研究所 | 外显子2靶向U7snRNA多核苷酸构建体的重组腺相关病毒递送 |
| US9719106B2 (en) | 2013-04-29 | 2017-08-01 | The Trustees Of The University Of Pennsylvania | Tissue preferential codon modified expression cassettes, vectors containing same, and uses thereof |
| CA2912678C (en) | 2013-05-15 | 2023-10-10 | Regents Of The University Of Minnesota | Adeno-associated virus mediated gene transfer to the central nervous system |
| US10006049B2 (en) | 2013-05-16 | 2018-06-26 | University Of Florida Research Foundation, Incorporated | Hairpin mRNA elements and methods for the regulation of protein translation |
| US10633453B2 (en) * | 2013-05-28 | 2020-04-28 | Kaohsiung Medical University | Antibody locker for the inactivation of protein drug |
| WO2014194132A1 (en) | 2013-05-31 | 2014-12-04 | The Regents Of The University Of California | Adeno-associated virus variants and methods of use thereof |
| WO2014201308A1 (en) | 2013-06-12 | 2014-12-18 | Washington University | Endothelial-targeted adenoviral vectors, methods and uses therefor |
| US20160122727A1 (en) | 2013-06-13 | 2016-05-05 | Shire Human Genetic Therapies, Inc. | Messenger rna based viral production |
| ES2905257T3 (es) * | 2013-07-03 | 2022-04-07 | Dicerna Pharmaceuticals Inc | Métodos y composiciones para la inhibición específica de alfa-1 antitripsina mediante ARN bicatenario |
| PH12016500162B1 (en) | 2013-07-22 | 2024-02-21 | Childrens Hospital Philadelphia | Variant aav and compositions, methods and uses for gene trnsfer to cells, organs, and tissues |
| RU2018128780A (ru) | 2013-07-26 | 2018-12-05 | Юниверсити Оф Айова Рисерч Фаундейшн | Способы и композиции для лечения болезней мозга |
| ITTO20130669A1 (it) | 2013-08-05 | 2015-02-06 | Consiglio Nazionale Ricerche | Vettore adeno-associato ricombinante muscolo-specifico e suo impiego nel trattamento di patologie muscolari |
| HRP20200862T1 (hr) | 2013-08-27 | 2020-08-21 | Research Institute At Nationwide Children's Hospital | Proizvodi i metode liječenja amiotrofične lateralne skleroze |
| US11078464B2 (en) | 2013-08-30 | 2021-08-03 | Amgen Inc. | High titer recombinant AAV vector production in adherent and suspension cells |
| EP3564379A1 (en) | 2013-09-13 | 2019-11-06 | California Institute of Technology | Selective recovery |
| US20160354489A1 (en) | 2013-09-26 | 2016-12-08 | Universitat Autònome de Barcelona | Gene therapy compositions for use in the prevention and/or treatment of non-alcoholic fatty liver disease |
| EP3633041A3 (en) | 2013-09-26 | 2020-07-29 | University of Florida Research Foundation, Inc. | Synthetic combinatorial aav capsid library for targeted gene therapy |
| NZ758025A (en) | 2013-10-11 | 2022-07-01 | Massachusetts Eye & Ear Infirmary | Methods of predicting ancestral virus sequences and uses thereof |
| WO2015060722A1 (en) | 2013-10-24 | 2015-04-30 | Uniqure Ip B.V. | Aav-5 pseudotyped vector for gene therapy for neurological diseases |
| JP2016538276A (ja) | 2013-11-05 | 2016-12-08 | ザ・リサーチ・インスティテュート・アット・ネイションワイド・チルドレンズ・ホスピタルThe Research Institute At Nationwide Children’S Hospital | 筋萎縮性側索硬化症の処置のためのNF−κBおよびSOD−1を阻害する組成物および方法 |
| US20160272687A1 (en) | 2013-11-08 | 2016-09-22 | The Board Of Trustees Of The University Of Arkansas | Adeno-associated virus "x" oncogene |
| EP3068905A4 (en) | 2013-11-11 | 2017-07-05 | Sangamo BioSciences, Inc. | Methods and compositions for treating huntington's disease |
| WO2015081101A1 (en) | 2013-11-26 | 2015-06-04 | The United States Of America, As Represented By The Secretary Department Of Health And Human Services | Adeno-associated virus vectors for treatment of glycogen storage disease |
| KR102245861B1 (ko) | 2013-11-29 | 2021-04-28 | 다카라 바이오 가부시키가이샤 | 아데노 수반 바이러스의 정량 방법 |
| EP3080269B1 (en) | 2013-12-09 | 2019-05-22 | Baylor College of Medicine | Hippo and dystrophin complex signaling in cardiomyocyte renewal |
| WO2015089351A1 (en) | 2013-12-12 | 2015-06-18 | The Broad Institute Inc. | Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders |
| GB201322798D0 (en) | 2013-12-20 | 2014-02-05 | Oxford Biomedica Ltd | Production system |
| WO2015106273A2 (en) | 2014-01-13 | 2015-07-16 | Trustees Of Boston University | Methods and assays relating to huntingtons disease and parkinson's disease |
| GB201401707D0 (en) | 2014-01-31 | 2014-03-19 | Sec Dep For Health The | Adeno-associated viral vectors |
| GB201403684D0 (en) | 2014-03-03 | 2014-04-16 | King S College London | Vector |
| WO2015127128A2 (en) | 2014-02-19 | 2015-08-27 | University Of Massachusetts | Recombinant aavs having useful transcytosis properties |
| RU2016136989A (ru) | 2014-02-19 | 2018-03-22 | Ф.Хоффманн-Ля Рош Аг | Шаттл для гематоэнцефалического барьера |
| WO2015124546A1 (en) | 2014-02-19 | 2015-08-27 | Fundación Centro Nacional De Investigaciones Cardiovasculares Carlos Iii- Cnic | Aav vectors for the treatment of ischemic and non-ischemic heart disease |
| US20170007720A1 (en) | 2014-02-21 | 2017-01-12 | University Of Florida Research Foundation, Inc. | Methods and compositions for gene delivery to on bipolar cells |
| EP3450571B1 (en) | 2014-02-24 | 2023-04-05 | Celgene Corporation | Methods of using an activator of cereblon for neural cell expansion and the treatment of central nervous system disorders |
| EP3113787B1 (en) | 2014-03-04 | 2019-12-04 | University of Florida Research Foundation, Inc. | Improved raav vectors and methods for transduction of photoreceptors and rpe cells |
| EP3119415A4 (en) | 2014-03-07 | 2017-11-29 | The Arizona Board of Regents on behalf of the University of Arizona | Non-narcotic crmp2 peptides targeting sodium channels for chronic pain |
| ES2990174T3 (es) | 2014-03-10 | 2024-11-29 | Uniqure Ip Bv | Vectores de AAV mejorados producidos en células de insecto |
| JP6756700B2 (ja) | 2014-03-18 | 2020-09-16 | ユニバーシティ オブ マサチューセッツ | 筋萎縮性側索硬化症を処置するためのrAAVベースの組成物および方法 |
| SI3126499T1 (sl) | 2014-04-01 | 2020-09-30 | Biogen Ma Inc. | Sestave za moduliranje izražanja SOD-1 |
| WO2015157070A2 (en) | 2014-04-09 | 2015-10-15 | Editas Medicine, Inc. | Crispr/cas-related methods and compositions for treating cystic fibrosis |
| EP2933335A1 (en) | 2014-04-18 | 2015-10-21 | Genethon | A method of treating peripheral neuropathies and motor neuron diseases |
| EP3134522B1 (en) | 2014-04-25 | 2021-10-06 | University of Massachusetts | Recombinant aav vectors useful for reducing immunity against transgene products |
| WO2015164778A1 (en) | 2014-04-25 | 2015-10-29 | The Trustees Of The University Of Pennysylvania | Ldlr variants and their use in compositions for reducing cholesterol levels |
| AU2015255877B2 (en) | 2014-05-08 | 2020-03-26 | Chdi Foundation, Inc. | Methods and compositions for treating huntington's disease |
| EP3142706A1 (en) | 2014-05-16 | 2017-03-22 | Vrije Universiteit Brussel | Genetic correction of myotonic dystrophy type 1 |
| RU2711147C2 (ru) | 2014-05-20 | 2020-01-15 | Юниверсити Оф Айова Рисерч Фаундейшн | Терапевтические соединения для лечения болезни хантингтона |
| EP3160980B1 (en) | 2014-05-28 | 2020-05-20 | The Regents of the University of California | HYBRID tRNA/pre-miRNA MOLECULES AND METHODS OF USE |
| EP3151866B1 (en) | 2014-06-09 | 2023-03-08 | Voyager Therapeutics, Inc. | Chimeric capsids |
| WO2015192063A1 (en) | 2014-06-13 | 2015-12-17 | Yasuhiro Ikeda | Methods and materials for increasing viral vector infectivity |
| US10781459B2 (en) | 2014-06-20 | 2020-09-22 | University Of Florida Research Foundation, Incorporated | Methods of packaging multiple adeno-associated virus vectors |
| WO2016004319A1 (en) | 2014-07-02 | 2016-01-07 | University Of Florida Research Foundation, Inc. | Compositions and methods for purifying recombinant adeno-associated virus |
| US10023846B2 (en) | 2014-07-10 | 2018-07-17 | Takara Bio Inc. | Production method for non-enveloped virus particles |
| WO2016019144A2 (en) | 2014-07-30 | 2016-02-04 | Sangamo Biosciences, Inc. | Gene correction of scid-related genes in hematopoietic stem and progenitor cells |
| US10590420B2 (en) | 2014-07-31 | 2020-03-17 | Association Institut De Myologie | Treatment of amyotrophic lateral sclerosis |
| WO2016019364A1 (en) | 2014-08-01 | 2016-02-04 | The Trustees Of The University Of Pennsylvania | Compositions and methods for self-regulated inducible gene expression |
| WO2016040347A2 (en) | 2014-09-08 | 2016-03-17 | University Of Iowa Research Foundation | Microrna inhibitor system and methods of use thereof |
| JP6842410B2 (ja) | 2014-10-03 | 2021-03-17 | ユニバーシティ オブ マサチューセッツ | 新規の高効率ライブラリーにより同定されるaavベクター |
| WO2016054554A1 (en) | 2014-10-03 | 2016-04-07 | University Of Massachusetts | Heterologous targeting peptide grafted aavs |
| WO2016057975A2 (en) | 2014-10-10 | 2016-04-14 | Research Institute At Nationwide Children's Hospital | Guided injections for aav gene transfer to muscle |
| RU2738421C2 (ru) | 2014-10-21 | 2020-12-14 | Юниверсити Оф Массачусетс | Варианты рекомбинантных aav и их применения |
| AU2015342997B2 (en) | 2014-11-05 | 2021-11-18 | Research Institute At Nationwide Children's Hospital | Methods and materials for producing recombinant viruses in eukaryotic microalgae |
| KR20170096998A (ko) | 2014-11-05 | 2017-08-25 | 보이저 테라퓨틱스, 인크. | 파킨슨병의 치료를 위한 aadc 폴리뉴클레오티드 |
| WO2016077687A1 (en) | 2014-11-14 | 2016-05-19 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (als) |
| AU2015349759B2 (en) | 2014-11-21 | 2022-01-06 | The University Of North Carolina At Chapel Hill | Aav vectors targeted to the central nervous system |
| WO2016081927A2 (en) | 2014-11-21 | 2016-05-26 | University Of Florida Research Foundation, Inc. | Genome-modified recombinant adeno-associated virus vectors |
| DK3224376T4 (da) | 2014-11-28 | 2023-05-30 | Uniqure Ip Bv | DNA-forureninger i en sammensætning omfattende en parvoviral virion |
| WO2016094783A1 (en) | 2014-12-12 | 2016-06-16 | Voyager Therapeutics, Inc. | Compositions and methods for the production of scaav |
| EA037696B1 (ru) | 2014-12-24 | 2021-05-12 | ЮНИКЕР АйПи Б.В. | Супрессия гена гентингтина, индуцированная рнк-интерференцией |
| AU2015374043B2 (en) | 2014-12-30 | 2021-05-13 | University Of Iowa Research Foundation | Methods and compositions for treating brain diseases |
| US10907176B2 (en) | 2015-01-14 | 2021-02-02 | The University Of North Carolina At Chapel Hill | Methods and compositions for targeted gene transfer |
| MX2017009336A (es) | 2015-01-16 | 2017-11-15 | Voyager Therapeutics Inc | Polinucleótidos dirigidos al sistema nervioso central. |
| US20180008727A1 (en) | 2015-01-30 | 2018-01-11 | The Regents Of The University Of California | Spinal subpial gene delivery system |
| US20180030096A1 (en) | 2015-02-03 | 2018-02-01 | University Of Florida Research Foundation, Inc. | Recombinant aav1, aav5, and aav6 capsid mutants and uses thereof |
| MA40819B1 (fr) | 2015-02-10 | 2020-04-30 | Genzyme Corp | Variant d'arni |
| CR20170407A (es) | 2015-02-10 | 2017-11-14 | Genzyme Corp | Mejora del suministro de partículas virales al cuerpo estriado y al córtex |
| US20180245073A1 (en) | 2015-02-23 | 2018-08-30 | Voyager Therapeutics, Inc. | Regulatable expression using adeno-associated virus (aav) |
| AU2016235421A1 (en) | 2015-03-20 | 2017-10-12 | Bluebird Bio, Inc. | Vector formulations |
| WO2016154344A1 (en) | 2015-03-24 | 2016-09-29 | The Regents Of The University Of California | Adeno-associated virus variants and methods of use thereof |
| PL3277814T3 (pl) | 2015-04-03 | 2020-11-30 | University Of Massachusetts | Związki oligonukleotydowe ukierunkowane na mrna huntingtyny |
| JP6892433B2 (ja) | 2015-04-03 | 2021-06-23 | ユニバーシティ・オブ・マサチューセッツUniversity Of Massachusetts | 十分に安定化された非対称sirna |
| US10081659B2 (en) | 2015-04-06 | 2018-09-25 | The United States Of America, As Represented By The Secretary, Dept. Of Health And Human Services | Adeno-associated vectors for enhanced transduction and reduced immunogenicity |
| TWI707951B (zh) | 2015-04-08 | 2020-10-21 | 美商健臻公司 | 過大腺相關載體之製造 |
| CN115094062A (zh) | 2015-04-16 | 2022-09-23 | 埃默里大学 | 用于肝脏中蛋白质表达的重组启动子和载体及其用途 |
| US11020443B2 (en) | 2015-04-23 | 2021-06-01 | University Of Massachusetts | Modulation of AAV vector transgene expression |
| US11046955B2 (en) | 2015-04-24 | 2021-06-29 | University Of Massachusetts | Modified AAV constructs and uses thereof |
| WO2016179038A1 (en) | 2015-05-01 | 2016-11-10 | Spark Therapeutics, Inc. | ADENO-ASSOCIATED VIRUS-MEDIATED CRISPR-Cas9 TREATMENT OF OCULAR DISEASE |
| AU2016256894B2 (en) | 2015-05-07 | 2020-11-26 | Massachusetts Eye And Ear Infirmary | Methods of delivering an agent to the eye |
| EP3294398A4 (en) | 2015-05-11 | 2019-01-09 | Alcyone Lifesciences, Inc. | SYSTEM AND METHOD FOR THE ADMINISTRATION OF MEDICAMENTS |
| CA2985786A1 (en) | 2015-05-12 | 2016-11-17 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Aav isolate and fusion protein comprising nerve growth factor signal peptide and parathyroid hormone |
| US20170067028A1 (en) | 2015-05-15 | 2017-03-09 | Douglas J. Ballon | Radiolabeling of adeno associated virus |
| US10729790B2 (en) | 2015-05-26 | 2020-08-04 | Salk Institute For Biological Studies | Motor neuron-specific expression vectors |
| KR20240108531A (ko) | 2015-05-29 | 2024-07-09 | 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 | 잘못 접혀진 단백질의 분해를 위한 조성물 및 방법 |
| WO2016196507A1 (en) | 2015-05-29 | 2016-12-08 | University Of Iowa Research Foundation | Methods of delivery of transgenes for treating brain diseases |
| US11266748B2 (en) | 2015-07-02 | 2022-03-08 | University Of Florida Research Foundation, Incorporated | Recombinant adeno-associated virus vectors to target medullary thyroid carcinoma |
| ES2895652T3 (es) | 2015-07-07 | 2022-02-22 | Inst Nat Sante Rech Med | Métodos y composiciones farmacéuticas para expresar un polinucleótido de interés en el sistema nervioso periférico de un sujeto |
| US20170007669A1 (en) | 2015-07-07 | 2017-01-12 | Mayo Foundation For Medical Education And Research | Peptide-mediated delivery of active agents across the blood-brain barrier |
| US20180216133A1 (en) | 2015-07-17 | 2018-08-02 | The Trustees Of The University Of Pennsylvania | Compositions and methods for achieving high levels of transduction in human liver cells |
| US20180214576A1 (en) | 2015-07-28 | 2018-08-02 | University Of Massachusetts | Transgenic expression of dnasei in vivo delivered by an adeno-associated virus vector |
| CA2994160C (en) | 2015-07-30 | 2021-08-10 | Massachusetts Eye And Ear Infirmary | Ancestral virus sequences and uses thereof |
| WO2017023724A1 (en) | 2015-07-31 | 2017-02-09 | Voyager Therapeutics, Inc. | Compositions and methods for the treatment of aadc deficiency |
| US20180201937A1 (en) | 2015-08-04 | 2018-07-19 | The University Of Chicago | Inhibitors of cacna1a/alpha1a subunit internal ribosomal entry site (ires) and methods of treating spinocerebellar ataxia type 6 |
| US10047377B2 (en) | 2015-09-22 | 2018-08-14 | Loyola University Of Chicago | Methods for modulating KLHL1 levels, methods for modulating current activity in T-type calcium channels, molecules therefor, and methods for identifying molecules therefor |
| US10435441B2 (en) | 2015-09-23 | 2019-10-08 | Sangamo Therapeutics, Inc. | HTT repressors and uses thereof |
| PT3356390T (pt) | 2015-09-28 | 2021-04-21 | Univ Florida | Métodos e composições para vetores virais que se evadem a anticorpos |
| EP4530350A3 (en) | 2015-10-09 | 2025-06-25 | Genzyme Corporation | Improved flare (flow cytometry attenuated reporter expression) technology for rapid bulk sorting |
| WO2017062983A1 (en) | 2015-10-09 | 2017-04-13 | The Children's Hospital Of Philadelphia | Compositions and methods for treating huntington's disease and related disorders |
| US10123969B2 (en) | 2015-10-15 | 2018-11-13 | Wisconsin Alumni Research Foundation | Osmotic enhancement of drug/therapeutic delivery to the brain following infusion or injection into the cerebrospinal fluid |
| DK3364997T5 (da) | 2015-10-22 | 2024-09-30 | Univ Massachusetts | Aspartoacylase genterapi til behandling af canavans sygdom |
| WO2017070516A1 (en) | 2015-10-22 | 2017-04-27 | University Of Massachusetts | Prostate-targeting adeno-associated virus serotype vectors |
| US12188037B2 (en) | 2015-10-22 | 2025-01-07 | University Of Florida Research Foundation, Incorporated | Synthetic combinatorial AAV3 capsid library |
| SG11201803218PA (en) | 2015-10-23 | 2018-05-30 | Univ Iowa Res Found | Methods for treating neurodegenerative diseases using gene therapy to delay disease onset and progression while providing cognitive protection |
| EP3368054A4 (en) | 2015-10-28 | 2019-07-03 | Voyager Therapeutics, Inc. | REGULATORY EXPRESSION USING THE ADENO-ASSOCIATED VIRUS (AAV) |
| EP3368563A1 (en) | 2015-10-28 | 2018-09-05 | The Trustees Of The University Of Pennsylvania | Intrathecal administration of adeno-associated-viral vectors for gene therapy |
| EP3371217B1 (en) | 2015-11-08 | 2025-06-11 | F. Hoffmann-La Roche AG | Methods of screening for multispecific antibodies |
| US10633662B2 (en) | 2015-11-10 | 2020-04-28 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and compositions for modulating AAV infection |
| US20170151416A1 (en) | 2015-12-01 | 2017-06-01 | Invivo Therapeutics Corporation | Methods and Systems for Delivery of a Trail of a Therapeutic Substance into an Anatomical Space |
| MX2018006682A (es) | 2015-12-01 | 2018-09-26 | Spark Therapeutics Inc | Metodos escalables para producir vector viral adenoasociado (aav) recombinante en un sistema de cultivo celular en suspension libre de suero adecuado para su uso clinico. |
| US10406244B2 (en) | 2015-12-02 | 2019-09-10 | The Board Of Trustees Of The Leland Stanford Junior University | AAV vectors with expanded packaging capacity |
| WO2017096164A1 (en) | 2015-12-02 | 2017-06-08 | The Board Of Trustees Of The Leland Stanford Junior University | Novel recombinant adeno-associated virus capsids with enhanced human skeletal muscle tropism |
| WO2017093330A1 (en) | 2015-12-03 | 2017-06-08 | Genethon | Compositions and methods for improving viral vector efficiency |
| EP3387138B1 (en) | 2015-12-11 | 2022-01-26 | The Trustees Of The University Of Pennsylvania | Scalable purification method for aav9 |
| EP3387117B1 (en) | 2015-12-11 | 2022-11-23 | The Trustees Of The University Of Pennsylvania | Scalable purification method for aav8 |
| ES2918998T3 (es) | 2015-12-11 | 2022-07-21 | Univ Pennsylvania | Método de purificación escalable para AAVrh10 |
| WO2017100671A1 (en) | 2015-12-11 | 2017-06-15 | California Institute Of Technology | TARGETING PEPTIDES FOR DIRECTING ADENO-ASSOCIATED VIRUSES (AAVs) |
| WO2017100674A1 (en) | 2015-12-11 | 2017-06-15 | The Trustees Of The University Of Pennsylvania | Scalable purification method for aav1 |
| CN116478254A (zh) | 2015-12-14 | 2023-07-25 | 北卡罗来纳大学教堂山分校 | 增强细小病毒载体递送的修饰衣壳蛋白 |
| US11208630B2 (en) | 2015-12-24 | 2021-12-28 | University Of Florida Research Foundation, Incorporated | AAV production using suspension adapted cells |
| EP3403675B1 (en) | 2016-01-15 | 2021-04-21 | Jichi Medical University | Adeno-associated virus virion for use in treatment of epilepsy |
| EP3411059A4 (en) | 2016-02-02 | 2019-10-16 | University Of Massachusetts | METHOD FOR INCREASING THE EFFECTIVENESS OF THE SYSTEMIC DELIVERY OF AVV GENES TO THE CENTRAL NERVOUS SYSTEM |
| HRP20231451T1 (hr) | 2016-02-05 | 2024-03-01 | Emory University | Ubrizgavanje jednolančanog ili samo-komplementarnog adeno-povezanog virusa 9 u cerebrospinalnu tekućinu |
| US11702672B2 (en) | 2016-02-08 | 2023-07-18 | University Of Iowa Research Foundation | Methods to produce chimeric adeno-associated virus/bocavirus parvovirus |
| US10179176B2 (en) | 2016-02-16 | 2019-01-15 | The Board Of Trustees Of The Leland Stanford Junior University | Recombinant adeno-associated virus capsids resistant to pre-existing human neutralizing antibodies |
| US20190071681A1 (en) | 2016-02-26 | 2019-03-07 | University Of Florida Research Foundation, Incorporated | Aav heparin mutants that display significantly improved eye and brain transduction |
| CN115287301A (zh) | 2016-03-03 | 2022-11-04 | 马萨诸塞大学 | 用于非病毒基因转移的末端封闭型线性双链体dna |
| EP3426787A1 (en) | 2016-03-07 | 2019-01-16 | University of Iowa Research Foundation | Aav-mediated expression using a synthetic promoter and enhancer |
| US11155817B2 (en) | 2016-03-18 | 2021-10-26 | The Children's Hospital Of Philadelphia | Therapeutic for treatment of diseases including the central nervous system |
| WO2017165859A1 (en) | 2016-03-24 | 2017-09-28 | Research Institute At Nationwide Children's Hospital | Modified viral capsid proteins |
| DK3436593T3 (da) | 2016-03-28 | 2023-02-20 | Ultragenyx Pharmaceutical Inc | Fremgangsmåder til varmeinaktivering af adenovirus |
| CN109563153B (zh) | 2016-03-28 | 2022-09-02 | 加利福尼亚大学董事会 | 抗-ryk抗体及使用其的方法 |
| CA3019126A1 (en) | 2016-03-30 | 2017-10-05 | Spark Therapeutics, Inc. | Cell line for recombinant protein and/or viral vector production |
| BR112018070256A2 (pt) | 2016-03-31 | 2019-01-29 | Spark Therapeutics Inc | processo de fabricação de raav totalmente escalável à base de colunas |
| US11091776B2 (en) | 2016-04-15 | 2021-08-17 | The Trustees Of The University Of Pennsylvania | AAV8 mutant capsids and compositions containing same |
| AU2017248840B2 (en) | 2016-04-16 | 2022-07-28 | University Of Florida Research Foundation, Incorporated | Methods of enhancing biological potency of baculovirus system-produced recombinant adeno-associated virus |
| JP7496667B2 (ja) | 2016-04-21 | 2024-06-07 | ビロベク,インコーポレイテッド | 昆虫細胞中でのaav生成、方法およびその組成物 |
| EP3235516B1 (en) | 2016-04-22 | 2019-06-26 | Georg-August-Universität Göttingen Stiftung Öffentlichen Rechts Universitätsmedizin | Regulatable adeno-associated virus (aav) vector |
| EP3449250B1 (en) | 2016-04-28 | 2020-11-04 | Indiana University Research & Technology Corporation | Methods and compositions for resolving components of a virus preparation |
| US20190224339A1 (en) | 2016-04-29 | 2019-07-25 | Voyager Therapeutics, Inc. | Compositions for the treatment of disease |
| EP3452495B1 (en) | 2016-05-03 | 2021-06-23 | Children's Medical Research Institute | Adeno-associated virus polynucleotides, polypeptides and virions |
| WO2017192750A1 (en) | 2016-05-04 | 2017-11-09 | Oregon Health & Science University | Recombinant adeno-associated viral vectors |
| BR112018073472A2 (pt) | 2016-05-18 | 2019-08-27 | Voyager Therapeutics Inc | composições e métodos de tratamento da doença de huntington |
| CA3024448C (en) | 2016-05-18 | 2025-09-09 | Voyager Therapeutics, Inc. | MODULATING POLYNUCLEOTIDES |
| CA3059891A1 (en) | 2017-04-14 | 2018-10-18 | National Taiwan University | Gene therapy for aadc deficiency |
| WO2018204786A1 (en) | 2017-05-05 | 2018-11-08 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (als) |
| SG11201909777YA (en) | 2017-05-05 | 2019-11-28 | Voyager Therapeutics Inc | Modulatory polynucleotides |
| SG11201909868YA (en) | 2017-05-05 | 2019-11-28 | Voyager Therapeutics Inc | Compositions and methods of treating huntington's disease |
| WO2018220211A1 (en) | 2017-06-02 | 2018-12-06 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Viral vector combining gene therapy and genome editing approaches for gene therapy of genetic disorders |
| GB201714027D0 (en) | 2017-09-01 | 2017-10-18 | Proqr Therapeutics Ii Bv | Antisense oligonucleotides for the treatment of huntington's disease |
| EP4454654A3 (en) | 2017-10-16 | 2025-02-19 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (als) |
| WO2019079240A1 (en) | 2017-10-16 | 2019-04-25 | Voyager Therapeutics, Inc. | TREATMENT OF AMYOTROPHIC LATERAL SCLEROSIS (ALS) |
| JP7565218B2 (ja) | 2018-07-02 | 2024-10-10 | ボイジャー セラピューティクス インコーポレイテッド | 筋萎縮性側索硬化症および脊髄に関連する障害の治療 |
| EP3847279B1 (en) * | 2018-09-05 | 2024-03-06 | Amoneta Diagnostics SAS | Long non-coding rnas (lncrnas) for the diagnosis and therapeutics of brain disorders, in particular cognitive disorders |
-
2017
- 2017-05-18 CA CA3024448A patent/CA3024448C/en active Active
- 2017-05-18 RU RU2018140495A patent/RU2758488C2/ru active
- 2017-05-18 IL IL302748A patent/IL302748B1/en unknown
- 2017-05-18 CN CN202410085898.0A patent/CN117904112A/zh active Pending
- 2017-05-18 CA CA3252099A patent/CA3252099A1/en active Pending
- 2017-05-18 WO PCT/US2017/033268 patent/WO2017201248A1/en not_active Ceased
- 2017-05-18 EP EP17800147.5A patent/EP3458588B1/en active Active
- 2017-05-18 US US16/302,146 patent/US10584337B2/en active Active
- 2017-05-18 KR KR1020187033494A patent/KR102392236B1/ko active Active
- 2017-05-18 MX MX2018014154A patent/MX2018014154A/es unknown
- 2017-05-18 KR KR1020227013840A patent/KR102652994B1/ko active Active
- 2017-05-18 AU AU2017267665A patent/AU2017267665C1/en active Active
- 2017-05-18 SG SG11201809699XA patent/SG11201809699XA/en unknown
- 2017-05-18 CN CN201780039098.3A patent/CN110214187B/zh active Active
- 2017-05-18 IL IL262784A patent/IL262784B2/en unknown
- 2017-05-18 KR KR1020247010174A patent/KR20240056729A/ko active Pending
- 2017-05-18 JP JP2018560625A patent/JP7066635B2/ja active Active
-
2018
- 2018-11-05 ZA ZA2018/07401A patent/ZA201807401B/en unknown
- 2018-11-16 MX MX2023010042A patent/MX2023010042A/es unknown
-
2020
- 2020-01-22 US US16/749,293 patent/US11193129B2/en active Active
-
2021
- 2021-11-04 US US17/519,126 patent/US12084659B2/en active Active
-
2022
- 2022-04-27 JP JP2022072798A patent/JP7374254B2/ja active Active
-
2023
- 2023-06-08 AU AU2023203585A patent/AU2023203585B2/en active Active
- 2023-10-24 JP JP2023182415A patent/JP2023182824A/ja active Pending
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5756283A (en) | 1995-06-05 | 1998-05-26 | The Trustees Of The University Of Pennsylvania | Method for improved production of recombinant adeno-associated viruses for gene therapy |
| US6261551B1 (en) | 1995-06-05 | 2001-07-17 | The Trustees Of The University Of Pennsylvania | Recombinant adenovirus and adeno-associated virus, cell lines, and methods of production and use thereof |
| US6258595B1 (en) | 1999-03-18 | 2001-07-10 | The Trustees Of The University Of Pennsylvania | Compositions and methods for helper-free production of recombinant adeno-associated viruses |
| US8524446B2 (en) | 2001-11-13 | 2013-09-03 | The Trustees Of The University Of Pennsylvania | Method for detecting adeno-associated virus |
| US8734809B2 (en) | 2009-05-28 | 2014-05-27 | University Of Massachusetts | AAV's and uses thereof |
| US20130129668A1 (en) * | 2011-09-01 | 2013-05-23 | The Regents Of The University Of California | Diagnosis and treatment of arthritis using epigenetics |
| WO2013126605A1 (en) | 2012-02-21 | 2013-08-29 | The Johns Hopkins University | EXPRESSION CONSTRUCT FOR A LIN28-RESISTANT Let-7 PRECURSOR MICRORNA |
| WO2015084254A1 (en) * | 2013-12-03 | 2015-06-11 | Agency For Science, Technology And Research | Tailed Mirtron Effectors For RNAi-Mediated Gene Silencing |
| US20150376612A1 (en) * | 2014-06-10 | 2015-12-31 | The General Hospital Corporation | CCCTC-Binding Factor (CTCF) RNA Interactome |
| WO2016049230A1 (en) | 2014-09-24 | 2016-03-31 | City Of Hope | Adeno-associated virus vector variants for high efficiency genome editing and methods thereof |
| WO2016077689A1 (en) * | 2014-11-14 | 2016-05-19 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
Non-Patent Citations (4)
| Title |
|---|
| BOFILL-DE ROS ET AL., METHODS, vol. 103, 2016, pages 157 - 166 |
| DATABASE GenBank 11 March 2009 (2009-03-11), "Bombyx mori non-coding RNA, ovarian small RNA-23939, complete sequence", XP055440480, Database accession no. AB410129.1 * |
| GROSSL ET AL., PLOS ONE, vol. 9, no. 3, 2014, pages e92188 |
| HA ET AL.: "Regulation of microRNA biogenesis", NAT REV MOL CELL BIOL, vol. 15, no. 8, August 2014 (2014-08-01), pages 509 - 524, XP055440474 * |
Cited By (43)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12071625B2 (en) | 2014-11-14 | 2024-08-27 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
| US12123002B2 (en) | 2014-11-14 | 2024-10-22 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
| US12138318B2 (en) | 2015-05-11 | 2024-11-12 | Ucl Business Ltd | Capsid |
| US10414803B2 (en) | 2015-05-11 | 2019-09-17 | Ucl Business Plc | Capsid |
| US11840555B2 (en) | 2015-09-28 | 2023-12-12 | The University Of North Carolina At Chapel Hill | Methods and compositions for antibody-evading virus vectors |
| US11208438B2 (en) | 2015-09-28 | 2021-12-28 | The University Of North Carolina At Chapel Hill | Methods and compositions for antibody-evading virus vectors |
| US10745447B2 (en) | 2015-09-28 | 2020-08-18 | The University Of North Carolina At Chapel Hill | Methods and compositions for antibody-evading virus vectors |
| US11951121B2 (en) | 2016-05-18 | 2024-04-09 | Voyager Therapeutics, Inc. | Compositions and methods for treating Huntington's disease |
| US12084659B2 (en) | 2016-05-18 | 2024-09-10 | Voyager Therapeutics, Inc. | Modulatory polynucleotides |
| US11752181B2 (en) | 2017-05-05 | 2023-09-12 | Voyager Therapeutics, Inc. | Compositions and methods of treating Huntington's disease |
| US11603542B2 (en) | 2017-05-05 | 2023-03-14 | Voyager Therapeutics, Inc. | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) |
| US12116589B2 (en) | 2017-10-16 | 2024-10-15 | Voyager Therapeutics, Inc. | Treatment of amyotrophic lateral sclerosis (ALS) |
| US12116384B2 (en) | 2018-04-03 | 2024-10-15 | Ginkgo Bioworks, Inc. | Virus vectors for targeting ophthalmic tissues |
| WO2019195423A1 (en) * | 2018-04-03 | 2019-10-10 | Stridebio, Inc. | Virus vectors for targeting ophthalmic tissues |
| CN112533644A (zh) * | 2018-04-03 | 2021-03-19 | 斯特里迪比奥公司 | 靶向眼组织的病毒载体 |
| JP2021519583A (ja) * | 2018-04-03 | 2021-08-12 | ストライドバイオ,インコーポレイテッド | 眼組織を標的とするウイルスベクター |
| US11976096B2 (en) | 2018-04-03 | 2024-05-07 | Ginkgo Bioworks, Inc. | Antibody-evading virus vectors |
| US12091435B2 (en) | 2018-04-03 | 2024-09-17 | Ginkgo Bioworks, Inc. | Antibody-evading virus vectors |
| JP7425738B2 (ja) | 2018-04-03 | 2024-01-31 | ギンコ バイオワークス インコーポレイテッド | 眼組織を標的とするウイルスベクター |
| US12060390B2 (en) | 2018-04-03 | 2024-08-13 | Ginkgo Bioworks, Inc. | Antibody-evading virus vectors |
| WO2019241486A1 (en) | 2018-06-13 | 2019-12-19 | Voyager Therapeutics, Inc. | Engineered 5' untranslated regions (5' utr) for aav production |
| WO2020023612A1 (en) | 2018-07-24 | 2020-01-30 | Voyager Therapeutics, Inc. | Systems and methods for producing gene therapy formulations |
| WO2020072849A1 (en) | 2018-10-04 | 2020-04-09 | Voyager Therapeutics, Inc. | Methods for measuring the titer and potency of viral vector particles |
| WO2020072844A1 (en) | 2018-10-05 | 2020-04-09 | Voyager Therapeutics, Inc. | Engineered nucleic acid constructs encoding aav production proteins |
| WO2020081490A1 (en) | 2018-10-15 | 2020-04-23 | Voyager Therapeutics, Inc. | EXPRESSION VECTORS FOR LARGE-SCALE PRODUCTION OF rAAV IN THE BACULOVIRUS/Sf9 SYSTEM |
| WO2020150556A1 (en) | 2019-01-18 | 2020-07-23 | Voyager Therapeutics, Inc. | Methods and systems for producing aav particles |
| US11981914B2 (en) | 2019-03-21 | 2024-05-14 | Ginkgo Bioworks, Inc. | Recombinant adeno-associated virus vectors |
| WO2020223231A1 (en) * | 2019-04-29 | 2020-11-05 | The Trustees Of The University Of Pennsylvania | Novel aav capsids and compositions containing same |
| WO2020223274A1 (en) | 2019-04-29 | 2020-11-05 | Voyager Therapeutics, Inc. | SYSTEMS AND METHODS FOR PRODUCING BACULOVIRAL INFECTED INSECT CELLS (BIICs) IN BIOREACTORS |
| CN114072500A (zh) * | 2019-08-02 | 2022-02-18 | 香港科技大学 | 控制microRNA表达的方法 |
| CN114072500B (zh) * | 2019-08-02 | 2024-05-10 | 香港科技大学 | 控制microRNA表达的方法 |
| WO2021023114A1 (en) * | 2019-08-02 | 2021-02-11 | The Hong Kong University Of Science And Technology | Method for controlling microrna expression |
| WO2021030125A1 (en) | 2019-08-09 | 2021-02-18 | Voyager Therapeutics, Inc. | Cell culture medium for use in producing gene therapy products in bioreactors |
| WO2021041485A1 (en) | 2019-08-26 | 2021-03-04 | Voyager Therapeutics, Inc. | Controlled expression of viral proteins |
| US11905523B2 (en) | 2019-10-17 | 2024-02-20 | Ginkgo Bioworks, Inc. | Adeno-associated viral vectors for treatment of Niemann-Pick Disease type-C |
| WO2022032153A1 (en) | 2020-08-06 | 2022-02-10 | Voyager Therapeutics, Inc. | Cell culture medium for use in producing gene therapy products in bioreactors |
| US12104163B2 (en) | 2020-08-19 | 2024-10-01 | Sarepta Therapeutics, Inc. | Adeno-associated virus vectors for treatment of Rett syndrome |
| WO2022187473A2 (en) | 2021-03-03 | 2022-09-09 | Voyager Therapeutics, Inc. | Controlled expression of viral proteins |
| WO2022187548A1 (en) | 2021-03-03 | 2022-09-09 | Voyager Therapeutics, Inc. | Controlled expression of viral proteins |
| WO2024054983A1 (en) | 2022-09-08 | 2024-03-14 | Voyager Therapeutics, Inc. | Controlled expression of viral proteins |
| WO2024145474A2 (en) | 2022-12-29 | 2024-07-04 | Voyager Therapeutics, Inc. | Compositions and methods for regulating mapt |
| WO2024226761A2 (en) | 2023-04-26 | 2024-10-31 | Voyager Therapeutics, Inc. | Compositions and methods for treating amyotrophic lateral sclerosis |
| WO2025122644A1 (en) | 2023-12-05 | 2025-06-12 | Voyager Therapeutics, Inc. | Compositions and methods for regulating mapt |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12084659B2 (en) | Modulatory polynucleotides | |
| US11752181B2 (en) | Compositions and methods of treating Huntington's disease | |
| US11603542B2 (en) | Compositions and methods of treating amyotrophic lateral sclerosis (ALS) | |
| US11951121B2 (en) | Compositions and methods for treating Huntington's disease | |
| EP3907287A1 (en) | Modulatory polynucleotides | |
| US20230399642A1 (en) | Compositions and methods of treating huntington's disease | |
| BR112018073384B1 (pt) | Polinucleotídeo modulador, vetor, genoma viral, vírus aav recombinante, seu método de produção, seus usos, e composição farmacêutica | |
| HK40062715A (en) | Modulatory polynucleotides | |
| BR122024015196A2 (pt) | Polinucleotídeo modulador, vetor, genoma viral, vírus aav recombinante, seu método de produção, seus usos, bem como composição farmacêutica compreendendo o mesmo |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| ENP | Entry into the national phase |
Ref document number: 3024448 Country of ref document: CA |
|
| ENP | Entry into the national phase |
Ref document number: 2018560625 Country of ref document: JP Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 20187033494 Country of ref document: KR Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112018073384 Country of ref document: BR |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17800147 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2017267665 Country of ref document: AU Date of ref document: 20170518 Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2017800147 Country of ref document: EP Effective date: 20181218 |
|
| ENP | Entry into the national phase |
Ref document number: 112018073384 Country of ref document: BR Kind code of ref document: A2 Effective date: 20181113 |
|
| WWG | Wipo information: grant in national office |
Ref document number: 2017800147 Country of ref document: EP |