WO2010140862A2 - 단일 또는 멀티 표적 유전자를 억제하는 멀티-시스트로닉 shRNA 발현 카세트 - Google Patents

단일 또는 멀티 표적 유전자를 억제하는 멀티-시스트로닉 shRNA 발현 카세트 Download PDF

Info

Publication number
WO2010140862A2
WO2010140862A2 PCT/KR2010/003599 KR2010003599W WO2010140862A2 WO 2010140862 A2 WO2010140862 A2 WO 2010140862A2 KR 2010003599 W KR2010003599 W KR 2010003599W WO 2010140862 A2 WO2010140862 A2 WO 2010140862A2
Authority
WO
WIPO (PCT)
Prior art keywords
shrna
cistronic
target gene
promoter
expression
Prior art date
Application number
PCT/KR2010/003599
Other languages
English (en)
French (fr)
Other versions
WO2010140862A3 (ko
Inventor
설대우
Original Assignee
Seol Dai-Wu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seol Dai-Wu filed Critical Seol Dai-Wu
Priority to EP10783611.6A priority Critical patent/EP2439274A4/en
Priority to US13/376,327 priority patent/US20120142764A1/en
Priority to JP2012513876A priority patent/JP2012528588A/ja
Priority to CN201080028461XA priority patent/CN102575248A/zh
Publication of WO2010140862A2 publication Critical patent/WO2010140862A2/ko
Publication of WO2010140862A3 publication Critical patent/WO2010140862A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3519Fusion with another nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/51Physical structure in polymeric form, e.g. multimers, concatemers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/531Stem-loop; Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/50Biochemical production, i.e. in a transformed host cell
    • C12N2330/51Specially adapted vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/20Vector systems having a special element relevant for transcription transcription of more than one cistron

Abstract

본 발명은 단일 또는 멀티 표적 유전자를 억제하기 위한 하나의 멀티-시스트로닉 shRNA에 관한 것으로, 더욱 상세하게는 멀티-시스트로닉 shRNA 발현 카세트, 상기 멀티-시스트로닉 shRNA 발현 카세트를 포함하는 발현 벡터, 상기 멀티-시스트로닉 shRNA 발현 벡터로 형질 도입된 세포, 상기 발현 벡터와 전달체의 복합체, 다양한 표적 유전자들을 억제하는 방법, 및 상기 발현 벡터를 포함하는 표적 유전자 억제용 조성물에 관한 것이다.

Description

단일 또는 멀티 표적 유전자를 억제하는 멀티-시스트로닉 shRNA 발현 카세트
본 발명은 단일 또는 멀티 표적 유전자를 억제하기 위한 하나의 멀티-시스트로닉 shRNA에 관한 것으로, 더욱 상세하게는 멀티-시스트로닉 shRNA 발현 카세트, 상기 멀티-시스트로닉 shRNA 발현 카세트를 포함하는 발현 벡터, 상기 멀티-시스트로닉 shRNA 발현 벡터로 형질 도입된 세포, 상기 발현 벡터와 전달체의 복합체, 다양한 표적 유전자들을 억제하는 방법, 및 상기 발현 벡터를 포함하는 표적 유전자 억제용 조성물에 관한 것이다.
RNA 간섭 (RNA interference, 이하, "RNAi"라 함)은 표적 유전자의 mRNA와 상동인 서열을 가지는 센스 RNA와 이것과 상보적인 서열을 가지는 안티센스 RNA로 구성되는 이중가닥 RNA (double-stranded RNA, dsRNA)를 세포 등에 도입하여 선택적으로 표적 유전자의 mRNA 분해를 유도하고 표적 유전자의 발현을 억제할 수 있는 현상이다. RNAi는 선택적으로 표적 유전자의 발현을 억제할 수 있기 때문에 종래의 비효율적인 상동 재조합에 의한 유전자 파괴법을 대신하는 간단한 유전자 넉다운(knock-down) 방법 또는 유전자치료의 방법으로서 상당한 관심을 모으고 있으며 유전자 발현을 억제하기 위해 널리 사용되고 있다. 화학적으로 합성된 짧은 RNA 간섭 (short interfering RNA, 이하, "siRNA"이라 함) 및 프로모터-의존적으로 발현하는 짧은 헤어핀 RNA (short hairpin RNA, 이하, "shRNA"이라 함)는 모두 생체 외 (in vitro) 및 생체 내 (in vivo)에서 강력한 유전자 억제 (silencing) 활성을 나타낸다. 그러나, 화학적으로 합성한 siRNA와 비교해 볼 때, 프로모터-의존적 shRNA는 세포 및 전체 유기체 내에서 안정적인 발현, 구성 또는 유도성 발현, 및 세포 유형-특이적 발현을 포함하여 여러 면에서 사용상의 이점을 갖고 있다. shRNA는 다음의 두 종류로 분류할 수 있다: 제1세대 및 제2세대의 shRNA (도 1). 제1세대 shRNA는 화학적으로 합성한 siRNA의 단순 모방체 (mimic)인 반면에, 제2세대 shRNA는 다양한 유기체에서 발현되는 자연상의 마이크로 RNA 유래로서, 보다 더 뛰어난 기능성을 보인다. 제2세대 shRNA의 구조적인 특징 (도 1)은 또한 프로모터 및 표적 shRNA 염기서열의 선택을 더 유연하게 할 수 있도록 해준다.
siRNA의 경우, 하나의 표적 유전자를 억제할 때 단일 위치에 작용하는 단독 siRNA 보다는 여러 위치에 작용하는 siRNA를 혼합한 혼합 siRNA 형태로 더 자주 사용된다. 이는 여러 위치에 작용하는 혼합 siRNA가 더 나은 억제 활성을 보이며, 여러 종류의 siRNA를 화학적 합성으로 쉽게 제조할 수 있기 때문이다. 또한 서로 다른 멀티 유전자들을 표적으로 하는 경우에도 여러 표적 유전자에 작용하는 혼합 siRNA를 사용함으로써 이들 다양한 유전자를 적절히 억제할 수 있다. 반면에 프로모터-의존적 shRNA는 기본적으로 모노-시스트론 (mono-cistron)으로 사용되며, 단지 하나의 표적 유전자를 억제할 수 있을 뿐이다. 결과적으로, 프로모터-의존적 shRNA를 이용하여 다양한 표적 유전자를 억제하기 위해서는 각 표적 유전자에 대응하는 shRNA 발현구조체(expression construct)를 표적 유전자 수만큼 사용하여야만 한다. 따라서, 단지 하나의 shRNA 발현구조체를 사용하여 다양한 표적 유전자를 억제할 수 있다면, 다양한 발현구조체를 사용함으로써 야기될 수 있는 동몰 (equimolar)의 shRNA 발현을 하지 못하는 문제, 동일한 프로모터가 반복하여 사용됨으로써 이들 반복 서열에서의 높은 재조합 빈도와 같은 문제, 특히 유전자치료제와 같은 치료제 형태로의 개발에 있어서의 shRNA 발현구조체의 품질 균질성 문제 등을 획기적으로 개선할 수 있을 것이다. 게다가, 이런 접근은 다양한 표적 유전자의 기능 분석을 쉽고 빠르게 할 수 있도록 한다.
본 발명자는 하나의 shRNA 발현구조체를 이용하여 단일 또는 멀티 표적 유전자를 억제할 목적으로 제2세대의 shRNA로서 구조 및 뉴클레아제 (nuclease) 절단 부위의 특징이 잘 알려져 있는 RNA인 mir-30 유래의 shRNA에 주목하였다. 본 발명자는 mir-30 마이크로 RNA의 구조적인 특징, 특히 가장 중요하게는 상기 마이크로 RNA의 리더 염기서열 (leader sequence)과 연관된 구조적인 유연성이 다양한 shRNA를 코딩하는 멀티-시스트론 (multi-cistron) 전사체를 발현할 수 있는 카세트 (cassette)를 생성할 수 있도록 할 것이라는 가설을 세웠고, 이에 대한 가설을 입증하기 위해 예의 노력을 경주한 결과, 본 발명을 완성하였다.
본 발명의 목적은 프로모터, 및 상기 프로모터에 작동가능하게 연결된 표적 유전자에 특이적인 shRNA (short hairpin RNA)를 인코딩하는 둘 이상의 폴리뉴클레오티드 서열을 포함하는 멀티-시스트로닉 shRNA 발현 카세트를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 발현 카세트를 포함하는 발현 벡터, 발현 벡터로 형질 도입된 세포, 및 상기 벡터와 전달체와의 복합체를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 발현 카세트를 이용하여 억제하고자 하는 다양한 표적 유전자를 억제하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 발현 벡터를 포함하는 표적 유전자 억제용 조성물을 제공하는 것이다.
안정적으로 발현하는 멀티-시스트로닉 shRNA 발현구조체는 다양한 표적 유전자를 억제하고, 또한 이는 다양한 표적 유전자를 억제함으로 인해 나온 결과를 분석하는 강력한 도구가 될 수 있다. 멀티-시스트로닉 shRNA를 발현시키는 세포 유형-특이적인 프로모터는 하나의 또는 다양한 표적 유전자를 세포 유형-특이적인 억제 효과 분석을 용이하게 할 수 있으며, 치료적 관점에서 멀티-시스트로닉 shRNA 발현구조체는 다양한 표적 유전자 억제를 필요로 하는 맞춤 치료 용도로 사용될 수 있다. 그러므로, 본 발명의 멀티-시스트로닉 shRNA 발현구조체는 다양한 적용분야에서 다용도의 도구를 제공하는 효과를 나타낼 것으로 기대된다.
도 1은 siRNA, 제1세대 shRNA 및 제2세대의 shRNA의 구조를 비교한 것이다. 화학적으로 합성한 siRNA 및 두 개의 다른 shRNA의 비교를 도식화한 것이며, 박스로 표시한 부분과 색깔이 반전된 박스로 표시한 부분의 뉴클레오티드 가닥은 각각 표적 유전자의 센스 및 안티센스 염기서열을 나타낸다. 제2세대 shRNA에서, 원으로 표현된 것은 상응하는 전사체 센스 가닥의 첫 번째 뉴클레오티드이다. 뉴클레아제 절단 부위는 Drosha로 표시한 선 및 Dicer로 표시한 선으로 표시하였다.
도 2는 개별적인 shRNA 발현 구조체 기능을 조사한 것이다.
A. mir-30 유래 shRNA 주형 염기서열을 나타낸다. 박스로 표시한 부분 및 색깔이 반전된 박스로 표시한 부분을 제외한 상기 염기서열은 모든 shRNA 발현 구조체의 제조를 위한 주형으로 통상적으로 사용된다.
B. 인간 XIAP, Akt 및 Bcl-2를 억제하기 위하여 고안된 shRNA 염기서열을 나낸다. 박스로 표시한 부분 및 색깔이 반전된 박스로 표시한 부분의 뉴클레오티드 가닥은 각각 표적 유전자의 센스 및 안티센스 염기서열을 표시한다.
C. 아데노바이러스 제조를 위해 셔틀 벡터에 클로닝하는 동족 (cognate)의 shRNA에 상응하는 삽입 DNA 염기서열을 도식화한 것이다.
D. 아데노바이러스의 제조를 도식화한 것으로 shRNA 발현 아데노바이러스를 Cre-lox 재조합에 의해 제조하였다.
E. 모노-시스트로닉 shRNA를 발현하는 아데노바이러스의 억제 활성을 조사한 것이다. HCT116 세포를 대조군인 Ad-empty 바이러스 또는 각각의 Ad-shRNA로 감염시킨 72시간 후에 용해한 다음, 웨스턴 블롯팅 분석을 수행하였다. β-actin의 단백질 수준을 대조군으로 사용하였다.
도 3은 멀티-시스트로닉 shRNA 발현 벡터에 의한 유전자 억제를 도식화한 것이다.
A. 다양한 shRNA를 포함하는 pAdlox (K) 셔틀 벡터를 도식화한 것이다.
B. 멀티-시스트로닉 shRNA 발현 아데노바이러스의 제조를 도식화한 것이다. Ad-multi_shRNA를 Cre-lox 재조합으로 제조하였다.
C. 멀티-시스트로닉 shRNA를 발현하는 아데노바이러스의 억제 활성을 조사한 것이다. HCT116 세포를 대조군인 Ad-empty 바이러스 또는 Ad-multi_shRNA로 감염시킨 72시간 후에 용해한 다음 웨스턴 블롯팅 분석을 수행하였다. β-actin의 단백질 수준을 대조군으로 사용하였다.
도 4는 하나의 멀티-시스트로닉 전사체에서 각각의 서로 다른 shRNA가 생성되는 과정에 대한 모델을 도식화한 것이다. 전사 및 shRNA 프로세싱 (processing)이 결합하여 일어나며 하나의 전사체 내에 존재하는 각각의 shRNA 단위체가 순차적으로 프로세싱된다. 첫번째 shRNA가 전사되면 독특한 구조를 형성하고, 상기 shRNA가 주로 핵내에 존재하는 뉴클레아제인 Drosha에 의해 절단된다. 이렇게 Drosha에 의해 절단된 shRNA는 세포질로 방출되고, 세포질 내의 뉴클레아제인 Dicer에 의해 추가로 절단된다. 상기 하나의 완전한 사이클이 연속적으로 반복하여 수행되어 멀티-시스트로닉 전사체에 코딩되어 있는 모든 shRNA가 생성된다.
도 5는 단일 표적 유전자를 억제하기 위해 멀티-시스트로닉 shRNA 발현 벡터를 구성하는 것을 도식화한 것이다.
A. 멀티-시스트로닉 shRNA 발현구조체 내 shRNA 각각이 표적 유전자의 서로 다른 위치를 작용점으로 하고 있는 것을 도식화한 것이다.
B. 멀티-시스트로닉 shRNA 발현 벡터 내 shRNA 각각이 표적 유전자의 서로 다른 위치를 작용점으로 하고 있는 것 (ABC 형), 또는 같은 위치를 작용점으로 하고 있는 것 (AAA, BBB, CCC 형)을 도식화한 것이다.
도 6은 단일 표적 유전자에 대해 멀티-시스트로닉 shRNA를 구성하는 것을 도식화한 것으로, 멀티-시스트로닉 쥐 Fas (mFas) shRNA 발현 벡터에 의한 유전자 억제를 도식화한 것이다.
A. mFas를 억제하기 위하여 고안된 각 shRNA 염기서열을 나타낸다. 박스로 표시한 부분 및 색깔이 반전된 박스로 표시한 부분의 뉴클레오티드 가닥은 각각 표적 유전자의 센스 및 안티센스 염기서열을 표시한다.
B. 멀티-시스트로닉 mFas shRNA 발현 아데노바이러스의 제조를 도식화한 것이다. Ad-multi_shRNA (O, M, Q, R 형)를 Cre-lox 재조합으로 제조하였다.
C. 멀티-시스트로닉 shRNA를 발현하는 아데노바이러스의 억제 활성을 조사한 것이다. Hepa1-6 세포를 대조군인 Ad-empty 바이러스 또는 Ad-multi_shRNA (O: mFas#1-#2-#3) 또는 Ad-multi_shRNA (M: mFas#1-#1-#1) 또는 Ad-multi_shRNA (Q: mFas#2-#2-#2) 또는 Ad-multi_shRNA (R: mFas#3-#3-#3)으로 감염시킨 72시간 후에 용해한 다음 웨스턴 블롯팅 분석을 수행하였다. β-actin의 단백질 수준을 대조군으로 사용하였다.
D. 모노-시스트로닉 shRNA를 발현하는 아데노바이러스와 멀티-시스트로닉 shRNA를 발현하는 아데노바이러스의 억제 활성을 비교한 것이다. Hepa1-6 세포를 대조군인 Ad-mFas #1 바이러스 또는 Ad-multi_shRNA (O: mFas#1-#2-#3) 또는 Ad-multi_shRNA (M: mFas#1-#1-#1)으로 감염시킨 72시간 후에 용해한 다음 웨스턴 블롯팅 분석을 수행하였다. β-actin의 단백질 수준을 대조군으로 사용하였다.
도 7은 단일 또는 멀티 표적 유전자를 억제하기 위해 멀티-시스트로닉 shRNA 발현 벡터를 구성하는 것을 도식화한 것이다.
A. 단일 표적 유전자를 억제하기 위해 멀티-시스트로닉 shRNA 발현 벡터를 구성하는 것을 도식화한 것이다. 표적 유전자 상에서 shRNA의 작용점 위치는 두 군데 이상 (A(N)으로 표시)이고, 각 작용점에 상응하는 shRNA는 동일한 것으로 2개 이상이다 (a1, a2 등으로 표시).
B. 멀티 표적 유전자를 동시에 억제하기 위해 멀티-시스트로닉 shRNA 발현 벡터를 구성하는 것을 도식화한 것이다. 각 표적 유전자 (Target(1), Target(2) 등으로 표시) 상에서 shRNA의 작용점 위치는 두 군데 이상 (A(N), B(N) 등으로 표시)이고, 각 작용점에 상응하는 shRNA는 동일한 것으로 2개 이상이다 (a1, a2 등으로 표시).
상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 프로모터, 및 상기 프로모터에 작동가능하게 연결된 표적 유전자에 특이적인 shRNA (short hairpin RNA)를 인코딩하는 둘 이상의 폴리뉴클레오티드 서열을 포함하는 멀티-시스트로닉 shRNA 발현 카세트에 관한 것이다.
본 발명에서 용어 "프로모터"란, RNA 중합효소에 대한 결합 부위를 포함하고 프로모터 다운스트림 (downstream) 유전자의 mRNA로의 전사 개시 활성을 가지는, 암호화 영역의 상위(upstream)의 비해독된 핵산 서열을 말한다. 본 발명의 발현 카세트에 있어서, 상기 프로모터는 shRNA의 발현을 개시할 수 있는 어떤 프로모터도 가능하다. 구체적으로, 본 발명의 프로모터로는 모든 시간대에 상시적으로 목적 유전자의 발현을 유도하는 프로모터 (constitutive promoter) 또는 특정한 위치, 시기에 목적 유전자의 발현을 유도하는 프로모터 (inducible promoter)를 사용할 수 있으며, 그 예로는 U6 프로모터, H1 프로모터, CMV (cytomegalovirus) 프로모터, SV40 프로모터, CAG 프로모터 (Hitoshi Niwa et al., Gene, 108:193-199, 1991), CaMV 35S 프로모터 (Odell et al.,Nature 313:810-812, 1985), Rsyn7 프로모터 (미국특허출원 제08/991,601호), 라이스 액틴 (rice actin) 프로모터 (McElroy et al., Plant Cell 2:163-171, 1990), 유비퀴틴 프로모터 (Christensen et al., Plant Mol. Biol. 12:619-632, 1989), ALS 프로모터(미국 특허출원 제08/409,297) 등이 있다. 이외에도 미국특허 제5,608,149; 제5,608,144호 제5,604,121호 제5,569,597호 제5,466,785호, 제5,399,680호 제5,268,463호 및 제5,608,142호 등에 개시된 프로모터 등 당업자에게 자명한 공지의 모든 프로모터를 사용할 수 있으며, 이에 제한되는 것은 아니다. 바람직하게는 본 발명의 프로모터는 U6 프로모터, HI 프로모터, CMV 프로모터일 수 있으며, 본 발명의 바람직한 일 구현예에 따르면 CMV 프로모터를 사용할 수 있다.
본 발명에서 용어 "표적 유전자"란 억제하고자 하는 유전자를 의미하며, 표적 유전자에 특이적인 shRNA를 발현시켜 그 표적 유전자를 억제할 수 있다. 본 발명에서 표적 유전자는 shRNA를 통해 그 기능을 억제할 수 있는 모든 유전자를 포함하나, 바람직하게는 XIAP (X-chromosme-linked inhibitor of apoptosis protein), Akt, Bcl-2 또는 Fas가 이용될 수 있다.
본 발명에서 용어 "shRNA"란 50 내지 100 뉴클레오티드의 길이를 가지는 단일가닥의 RNA가 세포 내에서 스템-루프 (stem-loop) 구조를 이루며, 5 내지 30 뉴클레오티드의 루프 (loop) 부위 양쪽으로 상보적으로 15 내지 50 뉴클레오티드의 긴 RNA가 염기쌍을 이루어 이중가닥의 스템 (stem)을 형성하며 스템 형성 가닥 각각의 이전과 이후에 1 내지 500 뉴클레오티드를 추가로 더 포함하는 전체 길이의 RNA를 말한다. shRNA는 일반적으로 세포 내에서 RNA 중합효소에 의해 전사되어 합성되며 이후 shRNA는 핵내의 Drosha에 의해 절단되고, 이렇게 절단된 shRNA는 핵으로부터 세포질로 방출되고, 세포질 내에서 Dicer에 의해 추가로 루프가 절단되고, siRNA처럼 표적 mRNA에 염기서열 특이적으로 결합하여 표적 mRNA를 자르고 파괴함으로써 표적 mRNA의 발현을 억제하는 작용을 한다. 본 발명의 shRNA를 인코딩하는 폴리뉴클레오티드는 마이크로 RNA 유래의 서열로부터 제조할 수 있으며, 이러한 마이크로 RNA는 종류에 제한 없이 사용할 수 있으나, 바람직하게는 마이크로 RNA의 한 종류인 mir-30 유래의 서열을 사용할 수 있다. 구체적으로 본 발명의 shRNA를 인코딩하는 폴리뉴클레오티드는 mir-30 유래의 리더 서열에 억제하고자 하는 표적 유전자의 센스 가닥을 연결하여 제조할 수 있다. 바람직하게는 본 발명의 XIAP의 발현 억제를 위한 shRNA는 서열번호 2의 센스 가닥을 가질 수 있으며, Akt의 발현 억제를 위한 shRNA는 서열번호 3의 센스 가닥을 가질 수 있으며, Bcl-2의 발현 억제를 위한 shRNA는 서열번호 4의 센스 가닥을 가질 수 있으며, mFas의 발현 억제를 위한 shRNA는 서열번호 5, 6 또는 7의 센스 가닥을 가질 수 있다. 본 발명의 멀티-시스트로닉 shRNA에 의한 XIAP, Akt, Bcl-2의 다중적 및 동시적 발현 억제는 실시예 3의 도 3C에서 확인하였다. 또한 본 발명의 멀티-시스트로닉 shRNA에 의한 mFas의 다중적 및 동시적 발현 억제는 실시예 3의 도 6C 및 6D에서 확인하였다.
상기 결과에서 넉다운을 시키기 위해 사용한 멀티-시스트로닉 shRNA 발현구조체 내 각 shRNA는 상응하는 표적 유전자의 mRNA에 작용한다.
본 발명에서 상기 표적 유전자의 mRNA에 작용하는 shRNA의 작용점 위치는 하나의 표적 유전자 경우에는 단일 부위 또는 서로 다른 부위일 수 있으며, 서로 다른 둘 이상의 표적 유전자 경우에는 각 표적 유전자 상에서 단일 부위 또는 서로 다른 부위일 수도 있다. 본 발명의 멀티-시스트로닉 shRNA 발현 카세트를 이용하여 표적 유전자를 효율적으로 억제하기 위해서는 바람직하게는 단일 표적 유전자인 경우 shRNA의 작용 위치가 서로 다르고, 그 수는 두 개 이상이며, 각 작용 위치에 상응하는 shRNA는 단일 종류로서 2개 이상일수록 효율적이다. 서로 다른 둘 이상의 (멀티) 표적 유전자인 경우에도 단일 표적 유전자에 대해 적용한 것을 각 표적 유전자에 동일하게 적용하면 효율적으로 억제할 수 있다.
본 발명에서 용어 "작동가능하게 연결된 (operably linked)"은, 하나의 핵산 단편이 다른 핵산 단편과 결합되면 통상적으로 이들 각각의 기능 또는 발현이 다른 핵산 단편의 영향을 받지만, 이들 핵산 단편의 여러 가능한 결합 조합 중에서 각 단편이 그 기능을 수행하는데 있어 검출할 만한 영향이 없는 상태의 결합을 의미한다. 아울러, 본 발명의 발현 카세트는 전사를 조절하기 위한 임의의 전사 시작 조절 서열 및 전사 종결 조절 서열을 추가로 포함할 수 있다. 작동가능한 연결은 당해 기술 분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용할 수 있다.
본 발명에서 용어 "멀티-시스트로닉 (multi-cistronic)"은, 하나의 프로모터에 다중의 시스트론, 즉 단위 유전자 또는 단위 shRNA 발현체가 여러 개 연결된 것을 의미한다.
본 발명에서 용어 "발현 카세트"란, 프로모터와 마이크로 RNA의 리더 염기서열에 표적 유전자의 센스 가닥 (sense strand)과 안티센스 가닥 (anti-sense strand)을 포함하고 있고, 그 사이에 루프를 형성할 수 있는 서열을 포함하고 있어서, shRNA를 발현시킬 수 있는 단위 카세트를 의미한다. 또한, 본 발명에서 발현 카세트는 발현구조체와 혼용될 수 있다. 바람직하게는 shRNA를 발현시킬 수 있는 카세트의 백본 (backbone)은 마이크로 RNA인 mir-30 유래의 서열번호 1의 shRNA를 주형으로 할 수 있다.
본 발명의 단일의 멀티-시스트로닉 shRNA 발현 카세트를 제작하기 위해, 본 발명자는 구체적 실시예에서, 먼저 각각의 shRNA의 기능을 조사하였다. 본 발명자는 서열번호 1로 정의된 mir-30 유래의 염기서열 (도 2A)을 선택하고, 이로부터 PCR을 통해 인간 XIAP (X-chromosome-linked inhibitor of apoptosis protein), Akt, 또는 Bcl-2 유전자를 표적으로 하는 shRNA의 DNA 염기서열을 제조하였다 (도 2B). 본 발명자는 이들 각각의 상기 DNA 염기서열을 CMV 프로모터-구동의 셔틀 벡터 (shuttle vector)로 클로닝한 후 (도 2C), 각각 Ad-shXIAP, Ad-shAkt 및 Ad-shBcl-2로 명명한 상응하는 아데노바이러스를 제조하였다 (도 2D). 본 발명자는 상기 제조한 아데노바이러스로 HCT116 세포를 감염시키고, XIAP, Akt, 및 Bcl-2 단백질의 발현 수준을 관찰하여 상기 아데노바이러스의 억제 활성을 평가하였다 (도 2E). 그 결과, Ad-shXIAP, Ad-shAkt 및 Ad-shBcl-2는 상응하는 단백질의 발현을 억제하였지만, 대조군인 Ad-empty는 억제하지 못하였고, 이를 통해 각각의 shRNA 염기서열이 표적 유전자의 억제에 적절하게 행동하였음을 확인하였다. Ad-shXIAP, Ad-shAkt 및 Ad-shBcl-2의 억제 활성을 평가하기 위해 사용된 다른 세포 (U-373MG)에서도 유사한 결과를 얻을 수 있었다 (데이터는 제시하지 않음).
기능적으로 검증된 상기 DNA 염기서열을 이용하여, 본 발명자는 멀티-시스트로닉 shRNA 발현 구조체를 제조하였다 (도 3A). 본 발명자는 다시 Ad-multi_shRNA로 명명한 아데노바이러스를 제조하고 (도 3B), 상응하는 표적 유전자의 억제 활성을 평가하였다. Ad-multi_shRNA는 효과적이면서 또한 동시에 관련 표적 유전자의 발현을 억제하였다 (도 3C). 반면에 대조군인 Ad-empty는 그렇지 못했다. 이러한 결과를 바탕으로 멀티-시스트로닉 shRNA를 코딩하는 하나의 발현 카세트의 전달이 다양한 표적 유전자를 억제시키는 데 충분하다는 것을 알아냈다.
상기 결과를 바탕으로 하나의 멀티-시스트로닉 전사체의 발현에 의해 다양한 표적 유전자의 억제를 위한 새로운 도구로서, 본 발명은 멀티-시스트로닉 shRNA 발현 카세트를 제공한다. 서열번호 1로 정의된 mir-30 유래 shRNA의 절단 부위 및 이들 부위에 작용하여 실제적인 절단작용을 한다고 알려져 있는 Drosha 및 Dicer 뉴클레아제의 세포 내 위치인 구조적인 특징을 바탕으로, 본 발명자는 하나의 멀티-시스트로닉 전사체로부터 만들어지는 서로 다른 shRNA를 제조할 수 있는 과정에 대한 모델을 완성하였다 (도 4). 본 발명의 모델이 제시하는 것은, RNA 중합효소가 첫 번째 shRNA (shXIAP) 부위를 전사하여 구조적으로 그에 상당하는 shRNA를 생성하고, 두 번째 shRNA가 전사되는 동안, 상기 첫 번째 shRNA가 핵 내의 Drosha에 의해 절단되는 것이다. Drosha에 의해 절단된 shRNA는 세포질로 방출되고, 세포질 내에서 Dicer에 의해 추가적으로 절단된다. 이러한 사이클은 마지막 shRNA (shBcl-2)에 이르기까지 반복적으로 수행된다. 이렇게 연속적이고 질서 있게 Drosha 및 Dicer 뉴클레아제에 의해 절단됨으로써 멀티-시스트로닉 shRNA를 포함하는 전사체는 엉기지 않고 순차적으로 shRNA를 만들어 낼 수 있게 된다. 본 발명자의 상기 모델에 의한 shRNA 발현 카세트는 이론적으로는 무제한적인 shRNA 단위체를 포함할 수 있다. 바람직하게는 2개 이상의 shRNA 단위체이며, 더 바람직하게는 4개 이상의 shRNA 단위체이고, 최대 발현 shRNA 단위체 수는 발현 벡터가 안정적으로 발현을 시킬 수 있는 최대 용량 및 사이즈에 상당하는 수 만큼이다.
일반적으로, 상당히 많은 유전자가 개체 간 차이에 따른 유전자 변이 형태 (polymorphism)로 존재한다. 특히, 암세포에서는 돌연변이를 억제하고 또 돌연변이가 발생했을 때 치유할 수 있는 능력이 심각히 약화되어 유전자의 돌연변이가 빈발하게 관찰된다. 표적 유전자의 염기서열에 이러한 변이가 생길 경우는, 넉다운을 위해 사용된 shRNA가 그 억제 기능을 상실할 수 있다. 이러한 shRNA의 기능 상실을 극복하기 위해서는, 하나의 표적 유전자에 대해 shRNA의 작용점으로서 단일 부위만을 대상으로 하기보다는 다중 부위를 대상으로 하는 것이 필요하다 (도 5A). 이럴 경우, 표적 유전자의 돌연변이로 인해 멀티-시스트로닉 shRNA 발현구조체 내 어떤 shRNA가 그 기능을 수행하지 못할 경우, 동일 발현구조체에서 발현되어 다른 부위에 작용하는 shRNA에 의해 그 표적 유전자는 효과적으로 억제될 수 있다. 또한, 하나의 표적 유전자를 멀티-시스트로닉 shRNA로 억제하는 경우, 각 shRNA가 어떻게 구성되는가 하는 것도 매우 중요할 수 있다. 가령, 하나의 표적 유전자를 억제할 목적으로 그 표적 유전자에 대해 세 개의 shRNA (A, B, C, 이하 "ABC"라 함)로 멀티-시스트로닉 shRNA 발현구조체를 구성하였을 경우 (도 5B), A에 의해 분해되고 억제되는 표적 유전자의 mRNA는 B와 C에 의해서도 동시에 분해되고 억제될 수 있기 때문에 실제적으로는 AAA 또는 BBB 또는 CCC 형이 억제 효율 측면에서 ABC 형보다 나을 수도 있다. 이것을 증명할 목적으로 본 발명자는 서열번호 1로 정의된 mir-30 유래의 염기서열 (도 2A)을 선택하고 PCR을 통해 서열번호 5, 서열번호 6, 서열번호 7을 포함하는 쥐 Fas (mFas)를 표적으로 하는 shRNA의 DNA 염기서열을 제조하였다 (도 6A). 본 발명자는 이들 각각의 상기 DNA 염기서열을 CMV 프로모터-구동의 셔틀 벡터 (shuttle vector)로 클로닝한 후, 각각 Ad-mFas #1, Ad-mFas #2 및 Ad-mFas #3로 명명한 상응하는 아데노바이러스를 제조하고, 이들 아데노바이러스로 Hepa1-6 세포를 감염시킨 후, mFas 단백질의 발현 수준을 관찰하여 상기 아데노바이러스의 억제 활성을 평가하였다. 그 결과, Ad-mFas #1, Ad-mFas #2 및 Ad-mFas #3은 상응하는 단백질의 발현을 억제하였지만, 대조군인 Ad-empty는 억제하지 못하였고, 이를 통해 각각의 shRNA 염기서열이 표적 유전자의 억제에 적절하게 행동하였음을 확인하였다 (데이터는 제시하지 않음). 이후, 기능적으로 검증된 상기 mFas DNA 염기서열을 CMV 프로모터-구동의 셔틀 벡터 (shuttle vector)로 클로닝한 후 (도 6B), Ad-multi_shRNA인 O, M, Q, R로 명명한 상응하는 아데노바이러스를 다시 제조하여 (도 6B) Hepa1-6 세포를 감염시키고, mFas 단백질의 발현 수준을 관찰하여 상기 아데노바이러스의 억제 활성을 평가하였다 (도 6C). 그 결과, M, Q, R은 O에 비해 상응하는 단백질의 발현을 더 잘 억제하였다. 이 결과는 하나의 표적 유전자를 멀티-시스트로닉 shRNA로 억제하는 경우, ABC 형을 이용하는 것 보다는 AAA 또는 BBB 또는 CCC 형 (도 5)을 이용하는 것이 더 나은 억제 효과를 얻을 수 있음을 명백히 보여주는 것이다. 게다가, Ad-mFas #1, Ad-mFas #2, Ad-mFas #3은 그 어떤 것도 Ad-multi_shRNA인 O, M, Q, R로 명명한 상응하는 아데노바이러스의 mFas 단백질 발현 억제력을 능가하지는 못했다 (도 6D). 이 결과는 단일 표적 유전자에 대해서 하나의 shRNA 보다는 작용점이 서로 다른 shRNA로 구성된 멀티-시스트로닉 shRNA를 사용하는 것이 더 나은 억제 효과를 얻을 수 있음을 보여주는 것이다.
이러한 결과를 모두 종합한 결과로서, 본 발명자는 멀티-시스트로닉 shRNA를 이용하여 표적 유전자 발현을 억제하기 위한 최적의 바람직한 조건을 찾아낼 수 있었다. 즉, 단일 표적 유전자인 경우 (도 7A)는 shRNA의 작용 위치가 서로 다르고 (A(1), A(2).....A(N)) 그 수는 2개 이상이어야 하며, 각 작용 위치에 상응하는 shRNA는 단일 종류 (a1, a2.....aN)로서 그 수가 2개 이상이어야 한다. 즉, 각 작용 위치에 상응하는 shRNA는 단일 종류로서 동일한 서열일 수 있다. 서로 다른 멀티 표적 유전자인 경우 (도 7B)에는 상기 단일 표적 유전자에 대해 적용한 것을 각 표적 유전자에 그대로 적용하면 된다.
프로모터-구동의 shRNA는 세포 및 전체 유기체 내에서 안정적으로 발현될 수 있다. 단일 표적 유전자를 억제한다고 할 경우, 단일 표적 유전자의 각기 다른 위치를 각 위치에 다중적으로 작용하는(도 7A) 멀티-시스트로닉 shRNA의 안정적인 발현은 모노-시스트로닉 shRNA 보다 그 표적 유전자를 훨씬 더 강력하게 억제할 것으로 기대된다. 따라서, 하나의 표적 유전자를 억제하도록 고안된 멀티-시스트로닉 shRNA의 전체 유기체 내에서의 안정적인 발현은 기능적으로 유전자 넉아웃 (knock-out)에 비견할만 할 것이다. 멀티 표적 유전자를 억제하는 경우, 멀티-시스트로닉 shRNA는 안정적으로 발현하여 이들 멀티 표적 유전자를 억제하고, 또한 이는 다양한 유전자를 억제함으로 인해 나온 결과를 분석하는 강력한 도구가 될 수 있다. 멀티-시스트로닉 shRNA를 발현시키는 세포 유형-특이적인 프로모터는 하나의 또는 다양한 표적 유전자에 대한 세포 유형-특이적 억제 효과 분석을 용이하게 할 것이다. 치료적 관점에서, 멀티-시스트로닉 shRNA는 다양한 표적 유전자를 억제시키는 것이 필요한 맞춤 치료 용도로 사용될 수 있을 것이다. 그러므로, 본 발명의 멀티-시스트로닉 shRNA는 다양한 적용분야에서 다용도의 도구를 제공한다.
또 하나의 양태로서, 본 발명은 프로모터, 및 상기 프로모터에 작동가능하게 연결된 표적 유전자에 특이적인 shRNA를 인코딩하는 둘 이상의 폴리뉴클레오티드 서열을 포함하는 멀티-시스트로닉 shRNA 발현 카세트를 포함하는 발현 벡터에 관한 것이다. 멀티-시스트로닉 shRNA 발현 카세트는 상기에서 설명한 바와 같다.
상기 멀티-시스트로닉 shRNA 발현구조체는 세포내로 도입될 수 있는데, 이를 위해 상기 멀티-시스트로닉 shRNA 발현구조체는 세포 내로의 효율적인 도입을 가능하게 하는 전달체 내에 포함된 형태일 수 있다. 상기 전달체는 바람직하게는 벡터이며, 벡터는 바이러스 벡터 또는 비바이러스 벡터 모두 사용 가능하다. 바이러스 벡터 (viral vector)로서 예를 들면, 렌티바이러스 (lentivirus), 레트로바이러스 (retrovirus), 아데노바이러스 (adenovirus), 아데도바이러스-관련 바이러스 (adeno-associated virus), 허피스바이러스 (herpes virus) 또는 아비폭스바이러스 (avipox virus) 벡터 등을 사용할 수 있으며, 바람직하게는 아데노바이러스이지만 이에 제한되는 것은 아니다. 비바이러스 벡터로서 예를 들면 플라스미드 형태를 들 수 있다. 본 발명의 바람직한 일 구현예에 따르면 셔틀벡터인 pAdlox (K)를 사용하였다.
상기 멀티-시스트로닉 shRNA 발현구조체는 또한 PEG (polyethylene glycol), PEI (polyethyleneimine), 키토산, PEG-키토산, DEAE-덱스트란, 핵 단백질, 지질, 펩타이드 등과 다양한 복합체 형태로 세포 내로 도입될 수 있는데, 이를 위해 상기 멀티-시스트로닉 shRNA 발현구조체는 세포 내로의 효율적인 도입을 가능하게 하는 이들 복합체의 주요 구성성분인 전달체 내에 포함된 형태일 수 있다.
또한, 상기 벡터는 선별마커를 추가로 포함하는 것이 바람직하다. 본 발명에서 용어 "선별마커(selection marker)"란 멀티-시스트로닉 shRNA 발현구조체가 도입되어 형질전환된 세포의 선별을 용이하게 하기 위한 것이다. 본 발명의 벡터에서 사용할 수 있는 선별마커로는 벡터의 도입 여부를 용이하게 검출 또는 측정할 수 있는 유전자라면, 특별히 한정되지 않으나, 대표적으로 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들, 예를 들어 GFP (녹색 형광 단백질), 퓨로마이신 (puromycin), 네오마이신 (Neomycin: Neo), 하이그로마이신 (hygromycin: Hyg), 히스티디놀 디하이드로게나제 (histidinol dehydrogenase gene: hisD) 또는 구아닌 포스포리보실트랜스퍼라제 (guanine phosphosribosyltransferase: Gpt) 등이 있으며, 바람직하게는 GFP(녹색 형광 단백질), 네오마이신 또는 퓨로마이신 마커를 사용할 수 있다.
또 하나의 양태로서, 본 발명은 상기 발현 벡터로 형질 도입된 세포에 관한 것이다.
본 발명에서 용어 "도입"은 형질감염 (transfection) 또는 형질도입 (transduction)에 의해 외래 DNA를 세포로 유입시키는 것을 의미한다. 형질감염은 칼슘 포스페이트-DNA 공침전법, DEAE-덱스트란-매개 형질감염법, 폴리브렌-매개 형질감염법, 전기충격법, 미세주사법, 리포좀 융합법, 리포펙타민 및 원형질체 융합법 등의 당 분야에 공지된 여러 방법에 의해 수행될 수 있다. 또한, 형질도입은 감염 (infection)을 수단으로 하여 바이러스 입자를 사용하여 목적물을 세포 내로 전달시키는 것을 의미한다. 바람직하게 형질 도입은 PEG, 키토산, PEG-키토산, DEAE-덱스트란, 핵 단백질, 지질 또는 펩타이드와의 복합체로 이루어진 전달체를 통해 이루어질 수 있다.
상기 발현 벡터를 세포 내로 도입시켜서 형질 도입된 세포는 치료적 관점에서는, 억제시키고자 하는 유전자를 선택적으로 억제시키는 멀티-시스트로닉 shRNA 발현구조체를 도입시켜서 개인별 맞춤 치료 요법으로 사용할 수 있게 된다.
또한, 세포 유형-특이적인 프로모터를 선택할 경우 하나 또는 다양한 표적 유전자의 세포 유형-특이적인 억제 효과 분석을 용이하게 하여, 상기 형질 도입된 세포를 세포-유형 특이적인 억제 효과 분석 모델로 이용할 수 있다.
또 하나의 양태로서, 본 발명은 상기 벡터를 세포 내로 도입하기 위한 PEG, PEI, 키토산, PEG-키토산, DEAE-덱스트란, 핵 단백질, 지질 및 펩타이드로 이루어진 군에서 선택된 이들 전달체와의 복합체에 관한 것이다.
또 하나의 양태로서, 본 발명은 (a) 상기 멀티-시스트로닉 shRNA 발현 카세트를 포함하는 발현 벡터를 제조하는 단계; 및 (b) 상기 제조된 벡터를 세포에 도입하는 단계를 포함하는 다양한 표적 유전자들을 억제하는 방법에 관한 것이다.
또 하나의 양태로서, 본 발명은 상기에서 설명한 프로모터, 및 상기 프로모터에 작동가능하게 연결된 둘 이상의 폴리뉴클레오티드 서열을 포함하는 멀티-시스트로닉 shRNA 발현 벡터를 포함하는 표적 유전자 억제용 조성물에 관한 것이다.
상기 표적 유전자 억제용 조성물은 약학적으로 허용가능한 담체를 추가로 포함할 수 있으며, 담체와 함께 제제화될 수 있다. 본 발명에서 용어, "약학적으로 허용가능한 담체"란 생물체를 자극하지 않고 투여 화합물의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 말한다. 액상 용액으로 제제화되는 조성물에 있어서 허용되는 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주사용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다.
본 발명의 상기 발현 벡터 및 약학적으로 허용가능한 담체를 포함하는 표적 유전자 억제용 조성물은 이를 유효성분으로 포함하는 어떠한 제형으로도 적용가능하며, 경구용 또는 비경구용 제형으로 제조할 수 있다. 본 발명의 약학적 제형은 구강(oral), 직장(rectal), 비강(nasal), 국소(topical; 볼 및 혀 밑을 포함), 피하, 질(vaginal) 또는 비경구(parenteral; 근육내, 피하 및 정맥내를 포함) 투여에 적당한 것 또는 흡입(inhalation) 또는 주입(insufflation)에 의한 투여에 적당한 형태를 포함한다.
본 발명의 조성물을 유효성분으로 포함하는 경구 투여용 제형으로는, 예를 들어 정제, 트로키제, 로렌지, 수용성 또는 유성현탁액, 조제분말 또는 과립, 에멀젼, 하드 또는 소프트 캡슐, 시럽 또는 엘릭시르제로 제제화할 수 있다. 정제 및 캡슐 등의 제형으로 제제화하기 위해, 락토오스, 사카로오스, 솔비톨, 만니톨, 전분, 아밀로펙틴, 셀룰로오스 또는 젤라틴과 같은 결합제, 디칼슘 포스페이트와 같은 부형제, 옥수수 전분 또는 고구마 전분과 같은 붕괴제, 스테아르산 마스네슘, 스테아르산 칼슘, 스테아릴푸마르산 나트륨 또는 폴리에틸렌글리콜 왁스와 같은 윤활유를 포함할 수 있으며, 캡슐제형의 경우 상기 언급한 물질 외에도 지방유와 같은 액체 담체를 더 함유할 수 있다.
본 발명의 조성물을 유효성분으로 포함하는 비경구 투여용 제형으로는, 피하주사, 정맥주사 또는 근육내 주사 등의 주사용 형태, 좌제 주입방식 또는 호흡기를 통하여 흡입이 가능하도록 하는 에어로졸제 등 스프레이용으로 제제화할 수 있다. 주사용 제형으로 제제화하기 위해서는 본 발명의 조성물을 안정제 또는 완충제와 함께 물에서 혼합하여 용액 또는 현탁액으로 제조하고, 이를 앰플 또는 바이알의 단위 투여용으로 제제화할 수 있다. 좌제로 주입하기 위해서는, 코코아버터 또는 다른 글리세라이드 등 통상의 좌약 베이스를 포함하는 좌약 또는 체료 관장제와 같은 직장투여용 조성물로 제제화할 수 있다. 에어로졸제 등의 스프레이용으로 제형화하는 경우, 수분산된 농축물 또는 습윤 분말이 분산되도록 추진제 등이 첨가제와 함께 배합될 수 있다.
본 발명의 표적 유전자 억제용 조성물, 즉 멀티-시스트로닉 shRNA 발현 벡터는 상기 발현 벡터를 발현하는 세포일 수 있다. 상기 세포는 상기 표적 유전자 억제용 멀티-시스트로닉 shRNA 발현 벡터를 일시적 (transient) 또는 안정적으로 (stable) 발현하는 것일 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.
실시예 1: shRNA 발현 구조체의 제조 및 이에 상응하는 아데노바이러스의 제조
인간 XIAP, Akt, Bcl-2 및 쥐 Fas (mFas)에 대한 shRNA에 각각 상응하는 DNA 염기서열을 오버랩핑-PCR (overlapping-PCR)로 제조하였다. 센스 또는 안티센스 shRNA 염기서열을 포함하는 DNA 주형을 화학적으로 합성하였고, 다른 제한 효소 부위를 포함하는 통상의 프라이머 셋트를 이용하여 PCR로 증폭하였다. PCR 생성물을 제한 효소로 절단하였고, 아데노바이러스 생산을 위한 셔틀벡터인 pAdlox (K)의 상응하는 부위로 클로닝을 하였다. 삽입한 염기서열은 뉴클레오티드 서열 분석으로 확인하였다.
E1/E3-중복 결실 복제-부전의 아데노바이러스 (E1/E3-doubly deleted replication-incompetent adenovirus)를 Jeong, M. et al. PLoS ONE 4, E4545 (2009)에 개시된 방법에 따라 Cre-lox 재조합으로 제조하였다. 아데노바이러스를 아데노바이러스 정제 키트인 Ad Ez-Prep (Genememed, Seoul, Korea)을 이용하여 정제하였다.
그 결과, 서열번호 1의 mir-30 유래의 염기서열 (도 2A)을 기반으로 한 인간 XIAP, Akt, Bcl-2 (도 2B) 또는 mFas 유전자를 억제하는 shRNA의 DNA 염기서열을 제조하였다 (도 6A). 본 발명자는 이들 각각의 상기 DNA 염기서열을 CMV 프로모터-구동의 셔틀 벡터 (shuttle vector)로 클로닝한 후 (XIAP, Akt, Bcl-2인 경우: 도 2C, mFas인 경우 데이터 제시하지 않음), 각각 Ad-shXIAP, Ad-shAkt 및 Ad-shBcl-2로 명명한 상응하는 아데노바이러스를 제조하였다 (도 2D).
또한, 기능적으로 검증된 상기 DNA 염기서열을 이용하여, 멀티-시스트로닉 shRNA 발현 구조체를 제조하였다 (도 3A, 도 6A). 이를 이용하여 본 발명자는 다시 Ad-multi_shRNA로 명명한 아데노바이러스를 제조하였다 (도 3B, 도 6B).
실시예 2: 세포 배양
HCT116, U373-MG 또는 Hepa1-6 세포를 ATCC (American Type Culture Collection) (Rockville, MD)에서 구매하여 각각 McCoy's 5A (HCT116) 및 DMEM (U373-MG 및 Hepa1-6) 배지를 이용하여 배양하였다.
실시예 3: 웨스턴 블롯팅 분석 및 표적 유전자 억제 확인
각각의 shRNA 및 멀티-시스트로닉 shRNA 발현 구조체의 발현 억제능을 확인하기 위해서 본 발명자는 HCT116, U373-MG 또는 Hepa1-6 세포를 상기 실시예 1에서 제조한 아데노바이러스로 감염시킨 후, 각각의 표적 유전자 발현 양상을 관찰하였다.
HCT116, U373-MG 또는 Hepa1-6 세포를 아데노바이러스와 함께 4시간 동안 배양하였다. 신선한 배양 배지로 교체한 후, 세포를 72시간 동안 더 배양하였다. 세포들을 수득하여, RIPA 완충용액으로 용해시킨 후, 웨스턴 블롯팅을 수행하였다. 이를 위해 XIAP 검출용 항체 (#2045, Cell signalling Technology), Akt 검출용 항체 (LF-PA0166, Ab Frontier), Bcl-2 검출용 항체 (sc-492, Santa Cruz Biotechnology), mFas 검출용 항체 (610197, BD Pharmingen) 및 β-actin 검출용 항체 (LF-PA0066, Ab Frontier)를 사용하였다.
그 결과, Ad-shXIAP, Ad-shAkt, Ad-shBcl-2, Ad-mFas #1, Ad-mFas #2 및 Ad-mFas #3은 상응하는 단백질의 발현을 억제하였지만 (도 2E, Ad-mFas는 데이터를 제시하지 않음), 대조군인 Ad-empty는 억제하지 못하였고, 이를 통해 각각의 shRNA 염기서열이 표적 유전자의 억제에 적절하게 행동하였음을 확인하였다.
또한, Ad-multi_shRNA는 효과적이면서 또한 동시에 상응하는 표적 유전자의 발현을 억제하였다 (도 3C, 도 6C). 반면에 대조군인 Ad-empty는 그렇지 못했다. 본 발명자들의 상기 결과들은 명백히 멀티-시스트로닉 shRNA를 코딩하는 하나의 발현 카세트의 전달이 다양한 표적 유전자를 억제시키는 데 충분하다는 것을 입증한다.
아울러, 단일 표적 유전자를 억제하도록 제작된 mFas 억제용 Ad-multi_shRNA의 경우, 상기 표적 유전자 내의 서로 다른 부위를 억제하도록 제작한 Ad-multi_shRNA (O: mFas#1-#2-#3)의 경우보다, 동일한 부위를 억제하는 동일한 서열이 3개 포함된 Ad-multi_shRNA (M: mFas#1-#1-#1), Ad-multi_shRNA (Q: mFas#2-#2-#2) 및 Ad-multi_shRNA (R: mFas#3-#3-#3)의 경우 mFas를 보다 더 효율적으로 억제하는 결과를 나타냈으며 (도 6C), Ad-mFas #1과 비교시 더욱 뚜렷한 억제능을 나타냈다 (도 6D).
상기와 같은 결과는 하나의 멀티-시스트로닉 shRNA 내에 동일한 부위에 작용하는 동일한 서열을 가지는 shRNA를 여러 개 포함하는 본 발명의 방법을 사용할 경우 훨씬 효과적으로 표적 유전자 발현을 억제할 수 있음을 입증하는 결과이다.

Claims (14)

  1. 프로모터, 및 상기 프로모터에 작동가능하게 연결된 표적 유전자에 특이적인 shRNA (short hairpin RNA)를 인코딩하는 둘 이상의 폴리뉴클레오티드 서열을 포함하는 멀티-시스트로닉 shRNA 발현 카세트.
  2. 제1항에 있어서, 상기 둘 이상의 폴리뉴클레오티드는 하나의 표적 유전자의 단일 부위 또는 서로 다른 부위에 특이적인 shRNA를 인코딩하는 폴리뉴클레오티드인 멀티-시스트로닉 shRNA 발현 카세트.
  3. 제1항에 있어서, 상기 둘 이상의 폴리뉴클레오티드는 표적 유전자가 서로 다른 둘 이상인 경우 각 표적 유전자에서 단일 부위 또는 서로 다른 부위에 특이적인 shRNA를 인코딩하는 폴리뉴클레오티드인 멀티-시스트로닉 shRNA 발현 카세트.
  4. 제1항에 있어서, 상기 둘 이상의 폴리뉴클레오티드는 동일한 서열인 것인 멀티-시스트로닉 shRNA 발현 카세트.
  5. 제1항에 있어서, 상기 프로모터는 U6 프로모터, H1 프로모터 및 CMV 프로모터로 이루어진 군에서 선택된 것인 멀티-시스트로닉 shRNA 발현 카세트.
  6. 제1항에 있어서, 상기 표적 유전자는 XIAP, Akt, Bcl-2 및 Fas로 이루어진 군에서 선택된 것인 멀티-시스트로닉 shRNA 발현 카세트.
  7. 제1항에 있어서, 상기 shRNA는 서열번호 1의 마이크로 RNA mir-30 유래인 멀티-시스트로닉 shRNA 발현 카세트.
  8. 제1항 내지 제7항 중 어느 한 항의 멀티-시스트로닉 shRNA 발현 카세트를 포함하는 발현 벡터.
  9. 제8항에 있어서, 상기 발현 벡터는 플라스미드인 발현 벡터.
  10. 제8항에 있어서, 상기 발현 벡터는 렌티바이러스 (lentivirus), 레트로바이러스 (retrovirus), 아데노바이러스 (adenovirus), 아데노-관련 바이러스 (adeno-associated virus), 허피스바이러스 (herpes virus) 및 아비폭스바이러스 (avipox virus)로 이루어진 군에서 선택된 발현 벡터.
  11. 제8항의 발현 벡터로 형질 도입된 세포.
  12. 제8항의 벡터가 세포로 도입되기 위해 상기 벡터, 및 PEG (polyethylene glycol), PEI (polyethyleneimine), 키토산, PEG-키토산, DEAE-덱스트란, 핵 단백질, 지질 및 펩타이드로 이루어진 군에서 선택된 이들 전달체와의 복합체.
  13. (a) 제8항의 발현 벡터를 제조하는 단계; 및
    (b) 상기 제조된 벡터를 세포에 도입하는 단계를 포함하는, 상기 세포에서 다양한 표적 유전자를 억제하는 방법.
  14. 제8항의 발현 벡터를 포함하는 표적 유전자 억제용 조성물.
PCT/KR2010/003599 2009-06-05 2010-06-04 단일 또는 멀티 표적 유전자를 억제하는 멀티-시스트로닉 shRNA 발현 카세트 WO2010140862A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10783611.6A EP2439274A4 (en) 2009-06-05 2010-06-04 MULTI-CISTRONIC shARN EXPRESSION CASSETTE FOR DELETING ONE OR MORE TARGET GENES
US13/376,327 US20120142764A1 (en) 2009-06-05 2010-06-04 Multi-Cistronic shRNA Expression Cassette for Suppressing Single or Multiple Target Genes
JP2012513876A JP2012528588A (ja) 2009-06-05 2010-06-04 単一またはマルチ標的遺伝子を抑制するマルチ−シストロンshRNA発現カセット
CN201080028461XA CN102575248A (zh) 2009-06-05 2010-06-04 用于抑制单或多靶基因的多顺反子shRNA表达盒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20090049920 2009-06-05
KR10-2009-0049920 2009-06-05

Publications (2)

Publication Number Publication Date
WO2010140862A2 true WO2010140862A2 (ko) 2010-12-09
WO2010140862A3 WO2010140862A3 (ko) 2011-04-14

Family

ID=43298340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/003599 WO2010140862A2 (ko) 2009-06-05 2010-06-04 단일 또는 멀티 표적 유전자를 억제하는 멀티-시스트로닉 shRNA 발현 카세트

Country Status (6)

Country Link
US (1) US20120142764A1 (ko)
EP (1) EP2439274A4 (ko)
JP (1) JP2012528588A (ko)
KR (1) KR101324390B1 (ko)
CN (1) CN102575248A (ko)
WO (1) WO2010140862A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507129A (ja) * 2010-12-23 2014-03-27 ジェネンテック, インコーポレイテッド 腫瘍の治療のためのオートファジー誘導剤及び阻害剤の併用療法
RU2525935C2 (ru) * 2012-03-01 2014-08-20 Федеральное Государственное Бюджетное Учреждение Науки Институт Молекулярной Биологии Им. В.А. Энгельгардта Российской Академии Наук (Имб Ран) Способ получения кассетных генетических конструкций, экспрессирующих несколько рнк-шпилек

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9273283B2 (en) * 2009-10-29 2016-03-01 The Trustees Of Dartmouth College Method of producing T cell receptor-deficient T cells expressing a chimeric receptor
CA2946407A1 (en) * 2014-04-25 2015-10-29 Strike Bio, Inc. Multiple targeted rnai for the treatment of cancers
US11078496B2 (en) 2016-04-12 2021-08-03 Icahn School Of Medicine At Mount Sinai System for F-box hormone receptor regulated protein expression in mammalian cells
KR102358280B1 (ko) * 2016-05-05 2022-02-07 베니텍 바이오파마 리미티드 B형 간염 바이러스(hbv) 감염 처리용 시약 및 그 용도
EP3619310A4 (en) * 2017-05-05 2021-01-27 Voyager Therapeutics, Inc. MODULATORY POLYNUCLEOTIDES
JP7284833B2 (ja) 2019-05-13 2023-05-31 ディーエヌエー ツーポイントオー インク. 特性を変えるための人工マイクロrnaを用いた哺乳類細胞の改変及びその生産物の組成物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268463A (en) 1986-11-11 1993-12-07 Jefferson Richard A Plant promoter α-glucuronidase gene construct
US5399680A (en) 1991-05-22 1995-03-21 The Salk Institute For Biological Studies Rice chitinase promoter
US5466785A (en) 1990-04-12 1995-11-14 Ciba-Geigy Corporation Tissue-preferential promoters
US5569597A (en) 1985-05-13 1996-10-29 Ciba Geigy Corp. Methods of inserting viral DNA into plant material
US5604121A (en) 1991-08-27 1997-02-18 Agricultural Genetics Company Limited Proteins with insecticidal properties against homopteran insects and their use in plant protection
US5608149A (en) 1990-06-18 1997-03-04 Monsanto Company Enhanced starch biosynthesis in tomatoes
US5608142A (en) 1986-12-03 1997-03-04 Agracetus, Inc. Insecticidal cotton plants
US5608144A (en) 1994-08-12 1997-03-04 Dna Plant Technology Corp. Plant group 2 promoters and uses thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20012110A1 (it) * 2001-10-12 2003-04-12 Keryos Spa Vettori multi-cistronici utilizzabili in protocolli di trsferimento genico
CA2587854C (en) * 2004-11-18 2014-01-21 The Board Of Trustees Of The University Of Illinois Multicistronic sirna constructs to inhibit tumors
WO2008148068A1 (en) * 2007-05-23 2008-12-04 Mannkind Corporation Multicistronic vectors and methods for their design

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5569597A (en) 1985-05-13 1996-10-29 Ciba Geigy Corp. Methods of inserting viral DNA into plant material
US5268463A (en) 1986-11-11 1993-12-07 Jefferson Richard A Plant promoter α-glucuronidase gene construct
US5608142A (en) 1986-12-03 1997-03-04 Agracetus, Inc. Insecticidal cotton plants
US5466785A (en) 1990-04-12 1995-11-14 Ciba-Geigy Corporation Tissue-preferential promoters
US5608149A (en) 1990-06-18 1997-03-04 Monsanto Company Enhanced starch biosynthesis in tomatoes
US5399680A (en) 1991-05-22 1995-03-21 The Salk Institute For Biological Studies Rice chitinase promoter
US5604121A (en) 1991-08-27 1997-02-18 Agricultural Genetics Company Limited Proteins with insecticidal properties against homopteran insects and their use in plant protection
US5608144A (en) 1994-08-12 1997-03-04 Dna Plant Technology Corp. Plant group 2 promoters and uses thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHRISTENSEN ET AL., PLANT MOL. BIOL., vol. 12, 1989, pages 619 - 632
HITOSHI NIWA ET AL., GENE, vol. 108, 1991, pages 193 - 199
JEONG, M. ET AL., PLOS ONE, vol. 4, 2009, pages E4545
MCELROY ET AL., PLANT CELL, vol. 2, 1990, pages 163 - 171
ODELL ET AL., NATURE, vol. 313, 1985, pages 810 - 812
See also references of EP2439274A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507129A (ja) * 2010-12-23 2014-03-27 ジェネンテック, インコーポレイテッド 腫瘍の治療のためのオートファジー誘導剤及び阻害剤の併用療法
RU2525935C2 (ru) * 2012-03-01 2014-08-20 Федеральное Государственное Бюджетное Учреждение Науки Институт Молекулярной Биологии Им. В.А. Энгельгардта Российской Академии Наук (Имб Ран) Способ получения кассетных генетических конструкций, экспрессирующих несколько рнк-шпилек

Also Published As

Publication number Publication date
KR20100131386A (ko) 2010-12-15
JP2012528588A (ja) 2012-11-15
EP2439274A4 (en) 2013-11-06
US20120142764A1 (en) 2012-06-07
CN102575248A (zh) 2012-07-11
KR101324390B1 (ko) 2013-11-01
WO2010140862A3 (ko) 2011-04-14
EP2439274A2 (en) 2012-04-11
EP2439274A9 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
WO2010140862A2 (ko) 단일 또는 멀티 표적 유전자를 억제하는 멀티-시스트로닉 shRNA 발현 카세트
US11111506B2 (en) Compositions and methods of engineered CRISPR-Cas9 systems using split-nexus Cas9-associated polynucleotides
JP2022127638A (ja) 最適化機能CRISPR-Cas系による配列操作のための系、方法および組成物
Hutter et al. SAFB2 enables the processing of suboptimal stem-loop structures in clustered primary miRNA transcripts
EP3230451A1 (en) Protected guide rnas (pgrnas)
EP1462525B1 (en) siRNA EXPRESSION SYSTEM AND PROCESS FOR PRODUCING FUNCTIONAL GENE KNOCKDOWN CELL OR THE LIKE USING THE SAME
WO2016094872A9 (en) Dead guides for crispr transcription factors
EP3515506B1 (en) Silencing of dux4 by recombinant gene editing complexes
CN113840925A (zh) 修饰非编码rna分子对于在真核细胞中的沉默基因的特异性
US11160823B2 (en) Therapeutic targets for facioscapulohumeral muscular dystrophy
US20120301449A1 (en) Rna interference target for treating aids
EP2543738A2 (en) Random RNAi libraries, methods of generating same, and screening methods utilizing same
US11767529B2 (en) Short hairpin RNA compositions, methods of making and applications thereof
AU2014202015B2 (en) Random RNAi libraries, methods of generating same, and screening methods utilizing same
US11371041B2 (en) Random RNA libraries, methods of generating same, and screening methods utilizing same
US20230183705A1 (en) Products for suppressing or reducing the expression or activity of a snorna and uses thereof in the treatment of cancer
Hutcheson The Quest to Identify Cellular Mutations That Compensate for Epstein-Barr Virus during Burkitt Lymphomagenesis
WO2024092217A1 (en) Systems and methods for gene insertions
CN116179546A (zh) 一种敲降HS3ST5基因的sgRNA及其敲降载体和应用
WO2018170754A1 (zh) 重组 Ad-29a-152-424-Tud 腺病毒及其构建和应用
van den Berg et al. RNAi-Based Gene Expression Strategies to Combat HIV

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080028461.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783611

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012513876

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010783611

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13376327

Country of ref document: US