WO2017038389A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2017038389A1
WO2017038389A1 PCT/JP2016/073244 JP2016073244W WO2017038389A1 WO 2017038389 A1 WO2017038389 A1 WO 2017038389A1 JP 2016073244 W JP2016073244 W JP 2016073244W WO 2017038389 A1 WO2017038389 A1 WO 2017038389A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
region
collector
igbt
collector layer
Prior art date
Application number
PCT/JP2016/073244
Other languages
English (en)
French (fr)
Inventor
河野 憲司
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201680049102.XA priority Critical patent/CN107924942B/zh
Priority to US15/740,573 priority patent/US10170607B2/en
Publication of WO2017038389A1 publication Critical patent/WO2017038389A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • H01L27/0652Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0664Vertical bipolar transistor in combination with diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/30Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface
    • H01L29/32Semiconductor bodies ; Multistep manufacturing processes therefor characterised by physical imperfections; having polished or roughened surface the imperfections being within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes

Definitions

  • IGBT Insulated Gate Bipolar Transistor
  • FWD Free Wheeling Diode
  • a base layer is formed on a surface layer portion of a semiconductor substrate constituting an N ⁇ type drift layer, and a trench gate structure is formed so as to penetrate the base layer.
  • a P-type collector layer and an N-type cathode layer are formed on the back side of the semiconductor substrate, and an N-type emitter region is formed in a portion of the base layer located on the collector layer.
  • an N-type field stop (hereinafter referred to as FS (Field Stop)) layer is formed at the boundary position between the collector layer and the emitter layer in the drift layer.
  • An upper electrode electrically connected to the base layer and the emitter region is formed on the front surface side of the semiconductor substrate, and a lower electrode electrically connected to the collector layer and the cathode layer is formed on the back surface side of the semiconductor substrate.
  • FS Field Stop
  • the region where the collector layer is formed on the back side of the semiconductor substrate is the IGBT region
  • the region where the cathode layer is formed is the diode region. That is, in the semiconductor device, the boundary between the collector layer and the cathode layer is the boundary between the IGBT region and the diode region.
  • the P-type collector layer has a relatively low concentration in consideration of the switching loss of the IGBT. For this reason, during the FWD recovery operation, holes are not sufficiently injected from the low-concentration collector layer formed in the IGBT region, the recovery waveform vibrates, and the surge voltage tends to increase.
  • the impurity concentration of the collector layer is increased, the amount of hole injection increases, the recovery waveform oscillation can be suppressed and the surge voltage can be suppressed, but the switching loss of the IGBT is increased. . That is, suppression of the surge voltage at the time of recovery and reduction of the switching loss of the IGBT are in a trade-off relationship, and it is difficult to achieve both.
  • the hole accumulation effect is high, so that the holes are likely to accumulate in the semiconductor substrate, and the impurity concentration of the collector layer on the back side is not impaired so that the switching loss is not impaired. It is necessary to lower. Thereby, the vibration of the recovery waveform of FWD becomes more prominent.
  • This disclosure is intended to provide a semiconductor device capable of achieving both suppression of surge voltage during recovery and reduction of switching loss of the IGBT.
  • the semiconductor device includes a first conductivity type drift layer, a second conductivity type base layer formed in a surface layer portion of the drift layer, and a base layer side of the drift layer. And a semiconductor substrate having a collector layer of the second conductivity type and a cathode layer of the first conductivity type formed on the opposite side.
  • a region that operates as an IGBT element in a semiconductor substrate is an IGBT region and a region that operates as a diode element is a diode region.
  • the IGBT region and the diode region are alternately and repeatedly formed.
  • the diode region is defined by the boundary between the collector layer and the cathode layer, and the first collector layer is used as the first collector layer, and the first collector layer and the cathode layer of the semiconductor substrate are formed on the first surface.
  • a second collector layer having a second conductivity type impurity concentration higher than that of the collector layer is provided.
  • the second collector layer having the second conductivity type impurity concentration higher than that of the first collector layer is provided. Thereby, it is possible to suppress the vibration of the recovery waveform, that is, the vibration voltage, and it is possible to suppress the surge voltage. Since only a part of the collector is used as the second collector layer, the switching loss can be suppressed.
  • the semiconductor device includes a first conductivity type drift layer, a second conductivity type base layer formed in a surface layer portion of the drift layer, and a base layer side of the drift layer.
  • FS layer formed on the opposite side of the drift layer and having a first conductivity type impurity concentration higher than that of the drift layer, and the second conductivity type collector layer and the first conductivity formed on the opposite side of the drift layer across the FS layer.
  • a region that operates as an IGBT element in a semiconductor substrate is an IGBT region and a region that operates as a diode element is a diode region.
  • the IGBT region and the diode region are alternately and repeatedly formed.
  • the diode region is defined by the boundary between the collector layer and the cathode layer, and at the position corresponding to the FS layer between the collector layer and the cathode layer, the position inside the IGBT region and the inside of the diode region from the position.
  • a low-concentration FS layer having a lower first-conductivity-type impurity concentration is provided.
  • the balance of the impurity concentration of the PN junction can be controlled so that the second conductivity type impurity is increased. Therefore, it is possible to suppress the switching loss while suppressing the surge voltage.
  • the semiconductor device includes a first conductivity type drift layer, a second conductivity type base layer formed in a surface layer portion of the drift layer, and a base layer side of the drift layer. And a semiconductor substrate having a second conductivity type collector layer and a first conductivity type cathode layer formed on the opposite side.
  • a region that operates as an IGBT element in a semiconductor substrate is an IGBT region and a region that operates as a diode element is a diode region.
  • the IGBT region and the diode region are alternately and repeatedly formed.
  • the diode region is defined by the boundary between the collector layer and the cathode layer, and the collector layer and the cathode layer are disposed between the collector layer and the cathode layer on the surface of the semiconductor substrate on which the collector layer and the cathode layer are formed.
  • a groove portion deeper than the layer is formed, and an insulating layer disposed in the groove portion is provided.
  • the recovery current flows in the drift layer having a relatively low concentration, and the amount of potential drop in the width of the insulating layer increases. For this reason, the carrier injection amount at the PN bias in the PN junction constituted by the collector layer and the drift layer increases. Therefore, it is possible to suppress the switching loss while suppressing the surge voltage.
  • FIG. 2 is a schematic plan view of a semiconductor device according to a first embodiment of the present disclosure.
  • FIG. FIG. 2 is a cross-sectional view taken along line II-II in FIG.
  • FIG. 6 is a diagram illustrating waveforms of a gate voltage Vg, a collector current Ic, a collector voltage Vc, an anode-cathode voltage Vak, and a recovery current Ir during a recovery operation. It is an enlarged view of the part enclosed with the dashed-dotted line in FIG. 3A. It is sectional drawing of the conventional semiconductor device used for simulation as a comparative example.
  • FIG. 6 is a diagram showing the relationship between the formation position of a high concentration collector layer, the oscillation voltage Vak-pp, and the diode forward voltage Vf.
  • FIG. 6 is a diagram showing a relationship between a concentration ratio and an oscillation voltage Vak-pp. It is sectional drawing of the semiconductor device concerning 2nd Embodiment of this indication.
  • FIG. 6 is a diagram illustrating waveforms of a gate voltage Vg, a collector current Ic, a collector voltage Vc, an anode-cathode voltage Vak, and a recovery current Ir during a recovery operation. It is sectional drawing of the semiconductor device concerning 3rd Embodiment of this indication.
  • FIG. 6 is a diagram illustrating waveforms of a gate voltage Vg, a collector current Ic, a collector voltage Vc, an anode-cathode voltage Vak, and a recovery current Ir during a recovery operation.
  • the semiconductor device according to the present embodiment is configured by an RC-IGBT structure in which a vertical IGBT and FWD that allow current to flow in the substrate thickness direction are provided on one substrate.
  • the semiconductor device is preferably used as a power switching element used in a power supply circuit such as an inverter or a DC / DC converter.
  • the semiconductor device according to the present embodiment is configured as follows.
  • the semiconductor device includes a cell region 1 and an outer peripheral region 2 surrounding the cell region 1.
  • the cell region 1 has an IGBT region 1a in which an IGBT element is formed and a diode region 1b in which a diode element is formed alternately.
  • both the IGBT region 1a and the diode region 1b are formed as one chip by being formed on an N ⁇ type semiconductor substrate 10 that functions as the drift layer 11, as shown in FIG.
  • the IGBT region 1a and the diode region 1b are extended along one direction (up and down direction in FIG. 1) of the one surface 10a of the semiconductor substrate 10, and are alternately formed in a direction orthogonal to the extending direction.
  • a P-type base layer 12 is formed on the drift layer 11, that is, on the one surface 10 a side of the semiconductor substrate 10.
  • a plurality of trenches 13 are formed so as to penetrate the base layer 12 and reach the drift layer 11, and the base layer 12 is separated into a plurality of trenches 13.
  • the plurality of trenches 13 are formed at equal intervals along one direction (that is, the depth direction on the paper surface in FIG. 2) of the surface directions of the one surface 10a of the semiconductor substrate 10. Further, one surface 10 a of the semiconductor substrate 10 is configured by one surface of the base layer 12 opposite to the drift layer 11.
  • the base layer 12 functions as a channel region in the IGBT region 1a.
  • An N + -type emitter region 14 and a P + -type body region 15 are formed between the emitter region 14 and the base layer 12 serving as a channel region, that is, the base layer 12 of the IGBT region 1a. Yes.
  • the emitter region 14 is configured to have a higher impurity concentration than the drift layer 11, is terminated in the base layer 12, and is in contact with the side surface of the trench 13.
  • the body region 15 has a higher impurity concentration than the base layer 12 and is formed so as to terminate in the base layer 12 like the emitter region 14.
  • the emitter region 14 extends in a rod shape so as to be in contact with the side surface of the trench 13 along the longitudinal direction of the trench 13 in the region between the trenches 13 and has a structure in which the emitter region 14 terminates inside the tip of the trench 13.
  • the body region 15 extends in a bar shape in the longitudinal direction of the trench 13, that is, along the emitter region 14 while being sandwiched between the two emitter regions 14. Note that the body region 15 of the present embodiment is formed deeper than the emitter region 14 with respect to the one surface 10 a of the semiconductor substrate 10.
  • Each trench 13 includes a gate insulating film 16 formed so as to cover the inner wall surface of each trench 13 and a gate electrode 17 made of polysilicon or the like formed on the gate insulating film 16. Embedded. Thereby, a trench gate structure is configured.
  • interlayer insulating film 18 made of BPSG or the like is formed on the base layer 12.
  • contact hole 18 a that exposes part of emitter region 14 and body region 15 is formed in IGBT region 1 a
  • contact hole 18 b that exposes base layer 12 is formed in diode region 1 b.
  • An upper electrode 19 is formed on the interlayer insulating film 18.
  • the upper electrode 19 is electrically connected to the emitter region 14 and the body region 15 through the contact hole 18a in the IGBT region 1a.
  • the upper electrode 19 is electrically connected to the base layer 12 through the contact hole 18b in the diode region 1b. That is, the upper electrode 19 functions as an emitter electrode in the IGBT region 1a and functions as an anode electrode in the diode region 1b.
  • An FS layer 20 having an N-type impurity concentration higher than that of the drift layer 11 is formed on the drift layer 11 opposite to the base layer 12 side, that is, on the other surface 10 b side of the semiconductor substrate 10.
  • this FS layer 20 is not necessarily required, it is possible to improve the breakdown voltage and steady loss performance by preventing the depletion layer from spreading, and to increase the injection amount of holes injected from the other surface 10b side of the semiconductor substrate 10. Be prepared to control.
  • the FS layer 20 has an N-type impurity concentration of 1 ⁇ 10 15 to 1 ⁇ 10 16 cm ⁇ 3 .
  • a P-type collector layer 21 corresponding to the first collector layer is formed on the opposite side of the drift layer 11 with the FS layer 20 interposed therebetween.
  • the drift with the FS layer 20 interposed therebetween is formed in the diode region 1b.
  • An N-type cathode layer 22 is formed on the side opposite to the layer 11. That is, the IGBT region 1 a and the diode region 1 b are partitioned depending on whether the layer formed on the other surface 10 b side of the semiconductor substrate 10 is the collector layer 21 or the cathode layer 22.
  • the collector layer 21 has a P-type impurity concentration of 1 ⁇ 10 17 to 1 ⁇ 10 18 cm ⁇ 3 and a width in the arrangement direction of the collector layer 21 and the cathode layer 22 of ⁇ 1500 ⁇ m.
  • the cathode layer 22 has an N-type impurity concentration of 1 ⁇ 10 19 cm ⁇ 3 and a width in the arrangement direction of the collector layer 21 and the cathode layer 22 of about 500 ⁇ m.
  • the formation period of the collector layer 21 and the cathode layer 22 is set to 500 ⁇ m to 2 mm.
  • a high concentration collector layer 21a corresponding to a second collector layer having an impurity concentration higher than that of the collector layer 21 is formed between the IGBT region 1a and the diode region 1b. Specifically, as shown by the broken line in FIG. 1, the high concentration collector layer 21a is formed along the longitudinal direction of the trench gate structure at the boundary position between the IGBT region 1a and the diode region 1b. In the present embodiment, both the tip positions in the longitudinal direction of the high concentration collector layer 21 a are formed so as to reach the outer peripheral region 2.
  • the high concentration collector layer 21a constitutes a collector in the IGBT together with the collector layer 21. By increasing the impurity concentration higher than that of the collector layer 21, a large number of holes can be injected during the FWD recovery operation. Yes.
  • the high-concentration collector layer 21a has a P-type impurity concentration that is twice or more that of the collector layer 21 and is preferably higher by one digit or more. In this embodiment, the concentration is 1 ⁇ 10 18 to 1 ⁇ 10 19 cm ⁇ 3. It is said that.
  • the high-concentration collector layer 21 a has a width in the arrangement direction of the collector layer 21 and the cathode layer 22 of ⁇ 100 ⁇ m, and is 10% or more of the width of the cathode layer 22 in the same direction.
  • the other surface 10b of the semiconductor substrate 10 is constituted by the collector and cathode layer 22 formed of the collector layer 21 and the high concentration collector layer 21a.
  • the collector layer 21 is formed on the opposite side of the base layer 12 on which the emitter region 14 and the body region 15 are formed with the FS layer 20 interposed therebetween.
  • the cathode layer 22 is formed on the opposite side of the base layer 12 where the emitter region 14 and the body region 15 are not formed with the FS layer 20 interposed therebetween.
  • the high concentration collector layer 21 a is disposed between the collector layer 21 and the cathode layer 22.
  • the boundary between the IGBT region 1a and the diode region 1b includes the base layer 12 in which the emitter region 14 and the body region 15 are formed, and the base layer in which the emitter region 14 and the body region 15 are not formed. 12 and the boundary.
  • a high concentration collector layer 21a is disposed at the boundary position.
  • the semiconductor substrate 10 has the base layer 12 formed on the one surface 10a side, and the collector layer 21 and the cathode layer 22 formed on the other surface 10b side.
  • the semiconductor substrate 10 may be configured by a stack of the collector layer 21, the cathode layer 22, the FS layer 20, the drift layer 11, and the base layer 12 in this order.
  • a lower electrode 23 is formed on the collector layer 21, the high concentration collector layer 21a, and the cathode layer 22 (the other surface 10b of the semiconductor substrate 10).
  • the lower electrode 23 functions as a collector electrode in the IGBT region 1a and functions as a cathode electrode in the diode region 1b.
  • an IGBT element having the base layer 12 as a base, the emitter region 14 as an emitter, and the collector layer 21 and the high-concentration collector layer 21a as a collector is configured.
  • a PN junction diode element is configured with the base layer 12 as an anode and the drift layer 11, the FS layer 20, and the cathode layer 22 as a cathode.
  • a damage region 24 is formed on the one surface 10a side and the other surface 10b side of the semiconductor substrate 10. Specifically, the damage region 24 on the one surface 10a side is formed in the diode region 1b and is formed from the diode region 1b to the IGBT region 1a. That is, the damage region 24 is formed in a portion on the boundary side of the diode region 1b and the IGBT region 1a with the diode region 1b. Further, the damage region 24 on the other surface 10b side is formed over the entire region of the diode region 1b and the IGBT region 1a.
  • the FWD recovery waveform vibrates and the surge voltage is likely to increase.
  • the gate voltage Vg, collector current Ic, collector voltage Vc, anode-cathode voltage Vak, and recovery current Ir during the recovery operation have waveforms as shown in FIGS. 3A and 3B. From these figures, it can be seen that the anode-cathode voltage Vak oscillates.
  • the FWD recovery operation when the carrier on the other surface 10b side is depleted, the oscillation of the anode-cathode voltage Vak occurs due to the parasitic capacitor and the parasitic inductor of the external circuit.
  • a high concentration collector layer 21a is formed on the other surface 10b side in addition to the collector layer 21, and the collector layer 21 has a low impurity concentration so that the switching loss is not impaired, and at the time of recovery through the high concentration collector layer 21a.
  • Hole injection is performed.
  • Such an effect can be obtained by forming a high concentration collector layer 21a having an impurity concentration partially higher than that of the collector layer 21 on the other surface 10b side.
  • the effect can be obtained more by disposing the high concentration collector layer 21a between the IGBT region 1a and the diode region 1b, that is, between the collector layer 21 and the cathode layer 22.
  • FIG. 5 is a diagram showing the results.
  • the formation position of the high-concentration collector layer 21a is represented by 0 for the boundary position between the IGBT region 1a and the diode region 1b, minus for movement toward the IGBT region 1a, and plus for movement toward the diode region 1b. It is.
  • the diode forward voltage Vf and the oscillating voltage Vak-pp in the structure a shown in FIG. 4A that is, the conventional structure without the high-concentration collector layer 21a are indicated by broken line arrows in the drawing.
  • the structures b to d shown in FIG. 5 show the corresponding states when the formation position of the high concentration collector layer 21a is shifted.
  • the structure b is the structure of the present embodiment shown in FIG. 2, that is, a structure in which the high concentration collector layer 21a is disposed between the IGBT region 1a and the diode region 1b.
  • the structure c is a structure in which the high concentration collector layer 21a is arranged at the center position of the diode region 1b.
  • the structure d is a structure in which the high-concentration collector layer 21a is disposed at the center position of the IGBT region 1b.
  • the simulation is performed by setting the width of the high-concentration collector layer 21a to half the width of the diode region 1b.
  • the impurity concentration the FS layer 20 is 1 ⁇ 10 15 to 1 ⁇ 10 16 cm ⁇ 3
  • the collector layer 21 is 1 ⁇ 10 17 to 1 ⁇ 10 18 cm ⁇ 3
  • the cathode layer 22 is 1 ⁇ 10 19 cm 3.
  • the high concentration collector layer 21a was set to an impurity concentration one digit higher than that of the collector layer 21.
  • the structure d is not much different from the structure a, which is the conventional structure, but is significantly different in the structures b and c. It was falling. In particular, for the structure b, the oscillating voltage Vak-pp could be reduced to about 40V.
  • the structure d is not much different from the structure a which is the conventional structure, but increases in the structures b and c.
  • the diode forward voltage Vf was about 2.5 V in the case of structures a and d, whereas it was about 2.8 V in the case of structure b and 3.1 V in the case of structure c. It was about.
  • the diode forward voltage Vf is increased as compared with the structures a and d, the high-concentration collector layer 21a is not formed over a wide area but is only partially formed.
  • the amount of increase in the forward voltage Vf was relatively small. Particularly, in the structure b, the increase amount of the diode forward voltage Vf is smaller than that in the structure c.
  • the high concentration collector layer 21a By providing the high concentration collector layer 21a, it is possible to suppress the recovery waveform oscillation, that is, the oscillation voltage Vak-pp, without increasing the diode forward voltage Vf, thereby suppressing the surge voltage. It becomes possible to do. Since only a part of the collector is made the high concentration collector layer 21a, the switching loss can be suppressed. In particular, the surge voltage can be further suppressed by selecting the formation position of the high concentration collector layer 21a, that is, by arranging the high concentration collector layer 21a between the IGBT region 1a and the diode region 1b.
  • the P-type impurity concentration of the high concentration collector layer 21 a is set to be twice or more that of the collector layer 21.
  • the oscillation voltage Vak-pp can be further reduced.
  • the oscillation voltage Vak-pp was examined by changing the ratio of the impurity concentration of the high concentration collector layer 21a and the collector layer 21. The result is shown in FIG.
  • the oscillating voltage Vak-pp decreased as the concentration ratio increased, and the oscillating voltage Vak-pp became almost constant when the concentration ratio was doubled or more. Therefore, the oscillation voltage Vak-pp can be effectively reduced by setting the P-type impurity concentration of the high-concentration collector layer 21a so that the concentration ratio becomes twice or more as in this embodiment. Become. Thereby, it becomes possible to suppress a surge voltage more.
  • the semiconductor device of the present embodiment can be basically manufactured by a manufacturing method similar to the conventional one.
  • the high concentration collector layer 21a needs to be formed by ion implantation using a mask different from the mask used when the collector layer 21 is formed.
  • the collector layer 21 is provided between the IGBT region 1a and the diode region 1b, but the high concentration collector layer 21a as in the first embodiment is not provided. Instead, at a position corresponding to the boundary position between the collector region 21 and the cathode layer 22 between the IGBT region 1a and the diode region 1b, the low concentration FS in which the impurity concentration of the FS layer 20 is lower than that of other regions.
  • the structure includes the layer 20a.
  • the N-type impurity concentration of the FS layer 20 other than the low-concentration FS layer 20a is 1 ⁇ 10 15 to 1 ⁇ 10 16 cm ⁇ 3
  • the N-type impurity concentration of the low-concentration FS layer 20a is The impurity concentration is 0.5 ⁇ 10 15 to 0.5 ⁇ 10 16 cm ⁇ 3 , which is half of the impurity concentration.
  • the balance of the impurity concentration of the PN junction can be controlled to increase the number of hole injections from the P-type impurities. Therefore, similarly to the first embodiment, it is possible to suppress the switching loss while suppressing the surge voltage.
  • the waveform of FIG. 8 is obtained. From this figure, the oscillation of the anode-cathode voltage Vak that causes the surge voltage is smaller than in the conventional structure shown in FIG. 3A. This also shows that the above effect can be obtained.
  • a groove portion 30 deeper than the collector layer 21 and the cathode layer 22 and preferably deeper than the FS layer 20 is formed at the boundary position between the IGBT region 1a and the diode region 1b.
  • An insulating layer 31 is disposed in the groove 30.
  • the width of the groove 30 in the arrangement direction of the IGBT region 1a and the diode region 1b, that is, the width of the insulating layer 31, is, for example, 5 ⁇ m
  • the depth of the groove 30, that is, the thickness of the insulating layer 31 is, for example, 2.5 ⁇ m.
  • the recovery current flows in the drift layer 11 having a relatively low concentration, and the potential drop amount corresponding to the width of the insulating layer 31. (See FIG. 9) becomes larger. For this reason, the amount of hole injection at the PN bias in the PN junction constituted by the collector layer 21, the FS layer 20, and the drift layer 11 increases. Therefore, similarly to the first embodiment, it is possible to suppress the switching loss while suppressing the surge voltage.
  • the collector current Ic, the collector voltage Vc, the anode-cathode voltage Vak, and the recovery current Ir at the time of the recovery operation are examined. From this figure, the oscillation of the anode-cathode voltage Vak that causes the surge voltage is smaller than in the conventional structure shown in FIG. 3A. This also shows that the above effect can be obtained.
  • a channel is formed between all the trench gate structures.
  • a thinned structure in which a channel is not formed by not forming the emitter region 14 at every predetermined interval may be used.
  • a hole barrier layer (HS: hole stopper layer) may be formed in the base layer 12 in a portion where a channel is not formed as a thinning structure.
  • an n-channel type IGBT in which the first conductivity type is n-type and the second conductivity type is p-type has been described as an example.
  • the present disclosure can also be applied to a channel type IGBT.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

半導体装置は、第1導電型のドリフト層(11)と、ドリフト層の表層部に形成された第2導電型のベース層(12)と、ドリフト層のうちのベース層側と反対側に形成された第2導電型のコレクタ層(21)および第1導電型のカソード層(22)と、を有する半導体基板(10)を備える。半導体基板のうちのIGBT素子として動作する領域をIGBT領域(1a)とすると共にダイオード素子として動作する領域をダイオード領域(1b)として、IGBT領域とダイオード領域とが交互に繰り返し形成されている。IGBT領域とダイオード領域とは、コレクタ層とカソード層との境界によって区画されている。コレクタ層を第1コレクタ層として、半導体装置は、半導体基板のうちの第1コレクタ層およびカソード層が形成された側の面に、第1コレクタ層よりも第2導電型不純物濃度が高くされた第2コレクタ層を備える。

Description

半導体装置 関連出願の相互参照
 本出願は、2015年8月28日に出願された日本出願番号2015-169396号に基づくもので、ここにその記載内容を援用する。
 本開示は、絶縁ゲート型電界効果トランジスタ(以下、IGBT(Insulated Gate Bipolar Transistor)という)が形成されたIGBT領域と還流ダイオード(以下、FWD(Free Wheeling Diode)という)が形成されたダイオード領域とを有する半導体装置に関する。
 従来より、例えば、インバータ等に使用されるスイッチング素子として、IGBTと共にFWDを1チップに備えたRC-IGBT(逆導通IGBT(Reverse-Conducting IGBT)の略称)構造を有する半導体装置が提案されている(例えば、特許文献1参照)。
 この半導体装置では、N-型のドリフト層を構成する半導体基板の表層部にベース層が形成され、ベース層を貫通するようにトレンチゲート構造が形成されている。また、半導体基板の裏面側には、P型のコレクタ層およびN型のカソード層が形成されており、ベース層のうちのコレクタ層上に位置する部分にはN型のエミッタ領域が形成されている。また、ドリフト層のうちコレクタ層とエミッタ層との境界位置には、N型のフィールドストップ(以下、FS(Field Stop)という)層が形成されている。そして、半導体基板の表面側にはベース層およびエミッタ領域と電気的に接続される上部電極が形成され、半導体基板の裏面側にはコレクタ層およびカソード層と電気的に接続される下部電極が形成されている。
 このような構成において、半導体基板の裏面側にコレクタ層が形成されている領域がIGBT領域とされ、カソード層が形成されている領域がダイオード領域とされている。つまり、上記半導体装置は、コレクタ層とカソード層との境界がIGBT領域とダイオード領域との境界とされている。
特開2011-181886号公報
 しかしながら、IGBT領域とFWD領域を1チップに備える構造では、IGBTのスイッチング損失を考慮してP型のコレクタ層が比較的低濃度とされる。このため、FWDのリカバリ動作時に、IGBT領域に形成された低濃度なコレクタ層から十分にホールが注入されず、リカバリ波形が振動し、サージ電圧が増加し易くなる。
 これに対して、コレクタ層の不純物濃度を高くすれば、ホール注入量が増え、リカバリ波形の振動を抑制できると共に、サージ電圧を抑制することができるが、IGBTのスイッチング損失を増加させることになる。すなわち、リカバリ時におけるサージ電圧の抑制とIGBTのスイッチング損失の低減はトレードオフの関係にあり、両立を図ることは困難であった。特に、近年のトレンチゲート構造の間隔を狭めた微細セル構造では、ホールの蓄積効果が高いため、ホールが半導体基板内に溜まり易く、スイッチング損失を損なわないように、裏面側のコレクタ層の不純物濃度を下げる必要がある。これにより、FWDのリカバリ波形の振動がより顕著になっている。
 本開示は、リカバリ時におけるサージ電圧の抑制とIGBTのスイッチング損失の低減の両立を図ることが可能な半導体装置を提供することを目的とする。
 本開示の第一の態様によれば、半導体装置は、第1導電型のドリフト層と、ドリフト層の表層部に形成された第2導電型のベース層と、ドリフト層のうちのベース層側と反対側に形成された第2導電型のコレクタ層および第1導電型のカソード層と、を有する半導体基板を備える。半導体装置において、半導体基板のうちのIGBT素子として動作する領域をIGBT領域とすると共にダイオード素子として動作する領域をダイオード領域として、IGBT領域とダイオード領域とが交互に繰り返し形成されており、IGBT領域とダイオード領域とは、コレクタ層とカソード層との境界によって区画され、前記コレクタ層を第1コレクタ層として、半導体基板のうちの第1コレクタ層およびカソード層が形成された側の面に、第1コレクタ層よりも第2導電型不純物濃度が高くされた第2コレクタ層が備えられている。
 このように、第1コレクタ層よりも第2導電型不純物濃度が高くされた第2コレクタ層を備えている。これにより、リカバリ波形の振動、つまり振動電圧を抑制することが可能となり、サージ電圧を抑制することが可能となる。そして、コレクタの一部のみしか第2コレクタ層にしていないことから、スイッチング損失についても抑制できる。
 本開示の第二の態様によれば、半導体装置は、第1導電型のドリフト層と、ドリフト層の表層部に形成された第2導電型のベース層と、ドリフト層のうちのベース層側と反対側に形成され、ドリフト層よりも第1導電型不純物濃度が高くされたFS層と、FS層を挟んでドリフト層と反対側に形成された第2導電型のコレクタ層および第1導電型のカソード層とを有する半導体基板を備える。半導体装置において、半導体基板のうちのIGBT素子として動作する領域をIGBT領域とすると共にダイオード素子として動作する領域をダイオード領域として、IGBT領域とダイオード領域とが交互に繰り返し形成されており、IGBT領域とダイオード領域とは、コレクタ層とカソード層との境界によって区画され、FS層に、コレクタ層とカソード層との間と対応する位置において、当該位置よりもIGBT領域の内側およびダイオード領域の内側の位置と比較して第1導電型不純物濃度が低くされた低濃度FS層が備えられている。
 このように、低濃度FS層を備えた構造とする場合、PN接合の不純物濃度のバランスを制御して、第2導電型不純物の方が多くなる状態にできる。したがって、サージ電圧を抑制しつつ、スイッチング損失を抑制することが可能となる。
 本開示の第三の態様によれば、半導体装置は、第1導電型のドリフト層と、ドリフト層の表層部に形成された第2導電型のベース層と、ドリフト層のうちのベース層側と反対側に形成された第2導電型のコレクタ層および第1導電型のカソード層とを有する半導体基板を備える。半導体装置において、半導体基板のうちのIGBT素子として動作する領域をIGBT領域とすると共にダイオード素子として動作する領域をダイオード領域として、IGBT領域とダイオード領域とが交互に繰り返し形成されており、IGBT領域とダイオード領域とは、コレクタ層とカソード層との境界によって区画され、半導体基板のうちコレクタ層およびカソード層が形成された側の面に、コレクタ層とカソード層との間において、該コレクタ層およびカソード層よりも深い溝部が形成されていると共に、該溝部内に配置された絶縁層が備えられている。
 このように、IGBT領域とダイオード領域との間に絶縁層を備えた構造では、リカバリ電流が比較的低濃度のドリフト層内を流れ、絶縁層の幅分での電位降下量が大きくなる。このため、コレクタ層およびドリフト層によって構成されるPN接合におけるPNバイアスでのキャリア注入量が増加する。したがって、サージ電圧を抑制しつつ、スイッチング損失を抑制することが可能となる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。図面において、
本開示の第1実施形態における半導体装置の平面模式図である。 図1中のII-II線に沿った断面図である。 リカバリ動作時におけるゲート電圧Vg、コレクタ電流Ic、コレクタ電圧Vc、アノード-カソード間電圧Vak、リカバリー電流Irの波形を示した図である。 図3A中の一点鎖線で囲んだ部分の拡大図である。 比較例としてシミュレーションに用いた従来の半導体装置の断面図である。 シミュレーションに用いた高濃度コレクタ層をダイオード領域内に配置したときの半導体装置の断面図である。 シミュレーションに用いた高濃度コレクタ層をIGBT領域内に配置したときの半導体装置の断面図である。 高濃度コレクタ層の形成位置と振動電圧Vak-ppおよびダイオード順方向電圧Vfの関係を示した図である。 濃度比と振動電圧Vak-ppの関係を示した図である。 本開示の第2実施形態にかかる半導体装置の断面図である。 リカバリ動作時におけるゲート電圧Vg、コレクタ電流Ic、コレクタ電圧Vc、アノード-カソード間電圧Vak、リカバリー電流Irの波形を示した図である。 本開示の第3実施形態にかかる半導体装置の断面図である。 リカバリ動作時におけるゲート電圧Vg、コレクタ電流Ic、コレクタ電圧Vc、アノード-カソード間電圧Vak、リカバリー電流Irの波形を示した図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 本開示の第1実施形態にかかる半導体装置について説明する。本実施形態にかかる半導体装置は、基板厚み方向に電流を流す縦型のIGBTとFWDとが1つの基板に備えられたRC-IGBT構造により構成されている。この半導体装置は、例えば、インバータ、DC/DCコンバータ等の電源回路に使用されるパワースイッチング素子として利用されると好適である。具体的には、本実施形態にかかる半導体装置は、以下のように構成されている。
 図1に示されるように、半導体装置は、セル領域1と、このセル領域1を囲む外周領域2とを備えている。
 セル領域1は、図1および図2に示されるように、IGBT素子が形成されたIGBT領域1aおよびダイオード素子が形成されたダイオード領域1bが交互に形成された構成とされている。
 具体的には、これらIGBT領域1aおよびダイオード領域1bは、共に、図2に示すように、ドリフト層11として機能するN-型の半導体基板10に形成されることで1チップとされている。IGBT領域1aおよびダイオード領域1bは、半導体基板10の一面10aの一方向(図1中紙面上下方向)に沿って延設され、延設方向と直交する方向に交互に形成されている。
 ドリフト層11の上、つまり半導体基板10の一面10a側には、P型のベース層12が形成されている。そして、ベース層12を貫通してドリフト層11に達するように複数個のトレンチ13が形成され、このトレンチ13によってベース層12が複数個に分離されている。
 なお、本実施形態では、複数のトレンチ13は、半導体基板10の一面10aの面方向のうちの一方向(つまり、図2中紙面奥行き方向)に沿って等間隔に形成されている。また、半導体基板10の一面10aは、ベース層12のうちのドリフト層11と反対側の一面にて構成されている。
 ベース層12は、IGBT領域1aでは、チャネル領域として機能する。そして、チャネル領域としてのベース層12、すなわちIGBT領域1aのベース層12には、N+型のエミッタ領域14と、エミッタ領域14に挟まれるようにP+型のボディ領域15とが形成されている。
 エミッタ領域14は、ドリフト層11よりも高不純物濃度で構成され、ベース層12内において終端し、かつ、トレンチ13の側面に接するように形成されている。一方、ボディ領域15は、ベース層12よりも高不純物濃度で構成され、エミッタ領域14と同様に、ベース層12内において終端するように形成されている。
 より詳しくは、エミッタ領域14は、トレンチ13間の領域において、トレンチ13の長手方向に沿ってトレンチ13の側面に接するように棒状に延設され、トレンチ13の先端よりも内側で終端した構造とされている。また、ボディ領域15は、2つのエミッタ領域14に挟まれつつトレンチ13の長手方向に、つまりエミッタ領域14に沿って棒状に延設されている。なお、本実施形態のボディ領域15は、半導体基板10の一面10aを基準としてエミッタ領域14よりも深く形成されている。
 また、各トレンチ13内は、各トレンチ13の内壁表面を覆うように形成されたゲート絶縁膜16と、このゲート絶縁膜16の上に形成されたポリシリコン等により構成されるゲート電極17とにより埋め込まれている。これにより、トレンチゲート構造が構成されている。
 半導体基板10の一面10a側において、ベース層12の上にはBPSG等で構成される層間絶縁膜18が形成されている。そして、層間絶縁膜18には、IGBT領域1aにおいて、エミッタ領域14の一部およびボディ領域15を露出させるコンタクトホール18aが形成され、ダイオード領域1bにおいて、ベース層12を露出させるコンタクトホール18bが形成されている。
 層間絶縁膜18上には上部電極19が形成されている。この上部電極19は、IGBT領域1aにおいて、コンタクトホール18aを介してエミッタ領域14およびボディ領域15と電気的に接続されている。また、上部電極19は、ダイオード領域1bにおいて、コンタクトホール18bを介してベース層12と電気的に接続されている。つまり、上部電極19は、IGBT領域1aにおいてはエミッタ電極として機能し、ダイオード領域1bにおいてアノード電極として機能するものである。
 また、ドリフト層11のうちのベース層12側と反対側、つまり半導体基板10の他面10b側には、N型不純物濃度がドリフト層11よりも高くされたFS層20が形成されている。このFS層20は、必ずしも必要なものではないが、空乏層の広がりを防ぐことで耐圧と定常損失の性能向上を図ると共に、半導体基板10の他面10b側から注入されるホールの注入量を制御するために備えてある。例えば、FS層20は、N型不純物濃度が1×1015~1×1016cm-3とされている。
 そして、IGBT領域1aでは、FS層20を挟んでドリフト層11と反対側に、第1コレクタ層に相当するP型のコレクタ層21が形成され、ダイオード領域1bでは、FS層20を挟んでドリフト層11と反対側にN型のカソード層22が形成されている。つまり、IGBT領域1aとダイオード領域1bとは、半導体基板10の他面10b側に形成される層がコレクタ層21であるかカソード層22であるかによって区画されている。例えば、コレクタ層21は、P型不純物濃度が1×1017~1×1018cm-3とされ、コレクタ層21とカソード層22の配列方向における幅が~1500μmとされている。また、カソード層22は、N型不純物濃度が1×1019cm-3とされ、コレクタ層21とカソード層22の配列方向における幅が~500μmとされている。概ね、コレクタ層21およびカソード層22の形成周期は、500μm~2mmとされている。
 さらに、IGBT領域1aとダイオード領域1bとの間において、コレクタ層21よりも不純物濃度が高くされた第2コレクタ層に相当する高濃度コレクタ層21aが形成されている。具体的には、図1中に破線で示したように、高濃度コレクタ層21aは、IGBT領域1aとダイオード領域1bとの境界位置において、トレンチゲート構造の長手方向に沿って形成されている。本実施形態では高濃度コレクタ層21aの長手方向の両先端位置が外周領域2に至るように形成してある。
 高濃度コレクタ層21aは、コレクタ層21と共にIGBTにおけるコレクタを構成するものであるが、コレクタ層21よりも不純物濃度が高くされることによって、FWDのリカバリ動作時に多くのホールを注入できるようになっている。例えば、高濃度コレクタ層21aは、P型不純物濃度がコレクタ層21の2倍以上とされており、好ましくは1桁以上高くされ、本実施形態では1×1018~1×1019cm-3とされている。また、高濃度コレクタ層21aは、コレクタ層21とカソード層22の配列方向における幅が~100μmとされており、カソード層22の同方向の幅の10%以上とされている。
 なお、本実施形態では、半導体基板10の他面10bは、コレクタ層21と高濃度コレクタ層21aとによるコレクタおよびカソード層22によって構成されている。また、本実施形態では、コレクタ層21は、FS層20を挟んでエミッタ領域14およびボディ領域15が形成されているベース層12と反対側に形成されている。そして、カソード層22は、FS層20を挟んでエミッタ領域14およびボディ領域15が形成されていないベース層12と反対側に形成されている。また、高濃度コレクタ層21aは、コレクタ層21とカソード層22の間に配置されている。
 つまり、本実施形態では、IGBT領域1aとダイオード領域1bとの境界は、エミッタ領域14およびボディ領域15が形成されているベース層12と、エミッタ領域14およびボディ領域15が形成されていないベース層12との境界とされている。そして、その境界位置に、高濃度コレクタ層21aが配置されている。
 また、上記のように、半導体基板10には、一面10a側にベース層12が形成され、他面10b側にコレクタ層21およびカソード層22が形成されている。このため、半導体基板10は、コレクタ層21およびカソード層22、FS層20、ドリフト層11、ベース層12が順に積層されたものによって構成されていても良い。
 コレクタ層21や高濃度コレクタ層21aおよびカソード層22上(半導体基板10の他面10b)には下部電極23が形成されている。この下部電極23は、IGBT領域1aにおいてはコレクタ電極として機能し、ダイオード領域1bにおいてはカソード電極として機能するものである。
 そして、上記のように構成されていることにより、IGBT領域1aにおいては、ベース層12をベース、エミッタ領域14をエミッタ、コレクタ層21および高濃度コレクタ層21aをコレクタとするIGBT素子が構成される。また、ダイオード領域1bにおいては、ベース層12をアノードとし、ドリフト層11、FS層20、カソード層22をカソードとしてPN接合されたダイオード素子が構成される。
 また、半導体基板10の一面10a側および他面10b側には、ダメージ領域24が形成されている。具体的には、一面10a側のダメージ領域24は、ダイオード領域1bに形成されていると共に、当該ダイオード領域1bからIGBT領域1aに渡って形成されている。つまり、ダメージ領域24は、ダイオード領域1bおよびIGBT領域1aのうちのダイオード領域1bとの境界側の部分に形成されている。また、他面10b側のダメージ領域24は、ダイオード領域1bとIGBT領域1aの全域にわたって形成されている。
 このようなダメージ領域24を備えることにより、IGBT領域1aにおけるドリフト層11のホール(つまり過剰キャリア)がIGBT領域1aに形成されたダメージ領域24と再結合して消滅する。このため、IGBT領域1aからダイオード領域1bにホールが注入されることを抑制できる。
 ここで、上記のように構成された高濃度コレクタ層21aの機能などについて説明する。
 従来のように、高濃度コレクタ層21aが無い構造においては、上記した通り、FWDのリカバリ波形が振動し、サージ電圧が増加し易くなる。具体的には、リカバリ動作時におけるゲート電圧Vg、コレクタ電流Ic、コレクタ電圧Vc、アノード-カソード間電圧Vak、リカバリー電流Irは、図3Aおよび図3Bのような波形となる。これらの図から、アノード-カソード間電圧Vakが振動していることが判る。FWDのリカバリ動作時に、他面10b側のキャリアが枯渇すると寄生キャパシタと外部回路の寄生インダクタが要因となってアノード-カソード間電圧Vakの振動が発生するのである。
 したがって、他面10b側にコレクタ層21に加えて高濃度コレクタ層21aを形成し、コレクタ層21を低不純物濃度とすることでスイッチング損失を損なわないようにしつつ、リカバリ時に高濃度コレクタ層21aを通じてホール注入が行われるようにする。このような構造とすることで、FWDのリカバリ動作時に他面10b側のキャリアが枯渇することが抑制され、アノード-カソード間電圧Vakの振動を抑制することが可能になる。このような効果は、他面10b側に部分的にコレクタ層21よりも不純物濃度が高くされた高濃度コレクタ層21aを形成することにより得られる。そして、特に、IGBT領域1aとダイオード領域1bとの間、つまりコレクタ層21とカソード層22との間に高濃度コレクタ層21aを配置することで、よりその効果が得られることが確認された。
 具体的には、高濃度コレクタ層21aの形成位置を変化させて、ダイオード順方向電圧Vfとアノード-カソード間電圧Vakの極大値と極小値の差で表される振動電圧Vak-ppを求めた。図5は、その結果を示した図である。本図において、高濃度コレクタ層21aの形成位置は、IGBT領域1aとダイオード領域1bとの境界位置を0として、IGBT領域1a側への移動をマイナス、ダイオード領域1b側への移動をプラスで表してある。また、参考として、図4Aに示す構造a、つまり高濃度コレクタ層21aを備えない従来構造でのダイオード順方向電圧Vfと振動電圧Vak-ppを図中に破線矢印で示してある。
 なお、図5中に示した構造b~dは、高濃度コレクタ層21aの形成位置をずらしたときに該当する状態を示している。構造bは、図2に示す本実施形態の構造、つまり高濃度コレクタ層21aをIGBT領域1aとダイオード領域1bの間に配置した構造である。構造cは、図4Bに示すように、高濃度コレクタ層21aをダイオード領域1bの中央位置に配置した構造である。構造dは、図4Cに示すように、高濃度コレクタ層21aをIGBT領域1bの中央位置に配置した構造である。ここでは、高濃度コレクタ層21aの幅をダイオード領域1bの半分の幅に設定してシミュレーションを行っている。また、不純物濃度については、FS層20を1×1015~1×1016cm-3、コレクタ層21を1×1017~1×1018cm-3、カソード層22を1×1019cm-3に設定した。高濃度コレクタ層21aについては、コレクタ層21よりも1桁高い不純物濃度に設定した。
 図5中に示された振動電圧Vak-ppを見てみると、従来構造である構造aと比較して、構造dの場合はあまり変わらなかったが、構造b、cの場合には大幅に低下していた。特に、構造bについては、振動電圧Vak-ppを40V程度まで低下させることができた。
 一方、図5中に示されたダイオード順方向電圧Vfを見てみると、従来構造である構造aと比較して構造dの場合はあまり変わらなかったが、構造b、cの場合には増加していた。具体的には、ダイオード順方向電圧Vfが構造a、dの場合に2.5V程度であったのに対して、構造bの場合には2.8V程度、構造cの場合には3.1V程度であった。構造b、cの両方とも、構造a、dよりもダイオード順方向電圧Vfが増加していたものの、高濃度コレクタ層21aを広範囲に形成するのではなく部分的にしか形成していないため、ダイオード順方向電圧Vfの増加量は比較的小さかった。特に、構造bについては、構造cよりもダイオード順方向電圧Vfの増加量が小さかった。
 以上説明したように、高濃度コレクタ層21aを備えることにより、ダイオード順方向電圧Vfを増加させることなく、リカバリ波形の振動、つまり振動電圧Vak-ppを抑制することが可能となり、サージ電圧を抑制することが可能となる。そして、コレクタの一部のみしか高濃度コレクタ層21aにしていないことから、スイッチング損失についても抑制できる。特に、高濃度コレクタ層21aの形成位置を選択すること、すなわちIGBT領域1aとダイオード領域1bの間に配置することで、サージ電圧を更に抑制することが可能となる。
 また、本実施形態では、高濃度コレクタ層21aのP型不純物濃度をコレクタ層21の2倍以上に設定している。これにより、より振動電圧Vak-ppを小さくすることが可能になる。これについて、本実施形態の構造において、高濃度コレクタ層21aとコレクタ層21の不純物濃度の比を変えて振動電圧Vak-ppを調べた。その結果を図6に示す。
 図6に示すように、濃度比が高くなるほど振動電圧Vak-ppが低下し、2倍以上になるとほぼ振動電圧Vak-ppが一定となった。したがって、本実施形態のように、濃度比が2倍以上になるように高濃度コレクタ層21aのP型不純物濃度を設定することで、振動電圧Vak-ppを効果的に低減することが可能となる。これにより、よりサージ電圧を抑制することが可能となる。
 なお、本実施形態の半導体装置については、基本的には従来と同様の製造方法によって製造可能である。ただし、高濃度コレクタ層21aについては、コレクタ層21を形成する際に用いるマスクとは異なるマスクを用いたイオン注入などによって形成することが必要になる。
 (第2実施形態)
 本開示の第2実施形態について説明する。本実施形態は、第1実施形態に対して半導体基板10の他面10bの構造を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図7に示すように、本実施形態では、IGBT領域1aとダイオード領域1bとの間においてコレクタ層21を備えているが、第1実施形態のような高濃度コレクタ層21aについては備えていない。その代わりに、IGBT領域1aとダイオード領域1bとの間、つまりコレクタ層21とカソード層22との境界位置と対応する位置において、FS層20の不純物濃度を他の領域よりも低くした低濃度FS層20aを備えた構造としている。例えば、FS層20のうち低濃度FS層20a以外の部分のN型不純物濃度が1×1015~1×1016cm-3とされているのに対して、低濃度FS層20aのN型不純物濃度がその半分の0.5×1015~0.5×1016cm-3とされている。
 このように、低濃度FS層20aを備えた構造とする場合、PN接合の不純物濃度のバランスを制御して、P型不純物からのホール注入が多くなる状態にできる。したがって、第1実施形態と同様に、サージ電圧を抑制しつつ、スイッチング損失を抑制することが可能となる。
 具体的に、本実施形態の構造について、リカバリ動作時におけるコレクタ電流Ic、コレクタ電圧Vc、アノード-カソード間電圧Vak、リカバリー電流Irを調べた結果、図8のような波形となる。この図より、サージ電圧の原因となるアノード-カソード間電圧Vakの振動が図3Aに示した従来の構造の場合よりも小さくなっている。このことからも、上記効果が得られることが判る。
 (第3実施形態)
 本開示の第3実施形態について説明する。本実施形態も、第1実施形態に対して半導体基板10の他面10bの構造を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図9に示すように、本実施形態では、IGBT領域1aとダイオード領域1bとの境界位置において、コレクタ層21およびカソード層22よりも深く、好ましくはFS層20よりも深い溝部30を形成し、溝部30内に絶縁層31を配置している。IGBT領域1aとダイオード領域1bの配列方向における溝部30の幅、つまり絶縁層31の幅は例えば5μmとされ、溝部30の深さ、つまり絶縁層31の厚みは例えば2.5μmとされている。
 このように、IGBT領域1aとダイオード領域1bとの間に絶縁層31を備えた構造では、リカバリ電流が比較的低濃度のドリフト層11内を流れ、絶縁層31の幅分での電位降下量(図9参照)が大きくなる。このため、コレクタ層21とFS層20およびドリフト層11によって構成されるPN接合におけるPNバイアスでのホール注入量が増加する。したがって、第1実施形態と同様に、サージ電圧を抑制しつつ、スイッチング損失を抑制することが可能となる。
 具体的に、本実施形態の構造について、リカバリ動作時におけるコレクタ電流Ic、コレクタ電圧Vc、アノード-カソード間電圧Vak、リカバリー電流Irを調べた結果、図10のような波形となる。この図より、サージ電圧の原因となるアノード-カソード間電圧Vakの振動が図3Aに示した従来の構造の場合よりも小さくなっている。このことからも、上記効果が得られることが判る。
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、例えば、下記のように適宜変更が可能である。
 例えば、IGBT領域1bにおいて、各トレンチゲート構造の間のすべてにチャネルが形成される構造としたが、例えば所定間隔毎にエミッタ領域14を形成しないことでチャネルを形成しない間引き構造としても良い。また、間引き構造としてチャネルを形成していない部分において、ベース層12にホールバリア層(HS:ホールストッパー層)を形成しても良い。
 また、上記各実施形態では、第1導電型をn型、第2導電型をp型としたnチャネルタイプのIGBTを例に挙げて説明したが、各構成要素の導電型を反転させたpチャネルタイプのIGBTに対しても本開示を適用することができる。
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

 

Claims (5)

  1.  第1導電型のドリフト層(11)と、
     前記ドリフト層の表層部に形成された第2導電型のベース層(12)と、
     前記ドリフト層のうちの前記ベース層側と反対側に形成された第2導電型のコレクタ層(21)および第1導電型のカソード層(22)と、を有する半導体基板(10)を備え、
     前記半導体基板のうちのIGBT素子として動作する領域をIGBT領域(1a)とすると共にダイオード素子として動作する領域をダイオード領域(1b)として、前記IGBT領域と前記ダイオード領域とが交互に繰り返し形成されており、
     前記IGBT領域と前記ダイオード領域とは、前記コレクタ層と前記カソード層との境界によって区画され、
     前記コレクタ層を第1コレクタ層として、前記半導体基板のうちの前記第1コレクタ層および前記カソード層が形成された側の面に、前記第1コレクタ層よりも第2導電型不純物濃度が高くされた第2コレクタ層(21a)が備えられている半導体装置。
  2.  前記第2コレクタ層が前記半導体基板のうちの前記第1コレクタ層と前記カソード層との間に備えられている請求項1に記載の半導体装置。
  3.  前記第2コレクタ層の第2導電型不純物濃度が前記第1コレクタ層の2倍以上とされている請求項1または2に記載の半導体装置。
  4.  第1導電型のドリフト層(11)と、
     前記ドリフト層の表層部に形成された第2導電型のベース層(12)と、
     前記ドリフト層のうちの前記ベース層側と反対側に形成され、前記ドリフト層よりも第1導電型不純物濃度が高くされたフィールドストップ層(20)と、前記フィールドストップ層を挟んで前記ドリフト層と反対側に形成された第2導電型のコレクタ層(21)および第1導電型のカソード層(22)とを有する半導体基板(10)を備え、
     前記半導体基板のうちのIGBT素子として動作する領域をIGBT領域(1a)とすると共にダイオード素子として動作する領域をダイオード領域(1b)として、前記IGBT領域と前記ダイオード領域とが交互に繰り返し形成されており、
     前記IGBT領域と前記ダイオード領域とは、前記コレクタ層と前記カソード層との境界によって区画され、
     前記フィールドストップ層に、前記コレクタ層と前記カソード層との間と対応する位置において、当該位置よりも前記IGBT領域の内側および前記ダイオード領域の内側の位置と比較して第1導電型不純物濃度が低くされた低濃度フィールドストップ層(20a)が備えられている半導体装置。
  5.  第1導電型のドリフト層(11)と、
     前記ドリフト層の表層部に形成された第2導電型のベース層(12)と、
     前記ドリフト層のうちの前記ベース層側と反対側に形成された第2導電型のコレクタ層(21)および第1導電型のカソード層(22)と、を有する半導体基板(10)を備え、
     前記半導体基板のうちのIGBT素子として動作する領域をIGBT領域(1a)とすると共にダイオード素子として動作する領域をダイオード領域(1b)として、前記IGBT領域と前記ダイオード領域とが交互に繰り返し形成されており、
     前記IGBT領域と前記ダイオード領域とは、前記コレクタ層と前記カソード層との境界によって区画され、
     前記半導体基板のうち前記コレクタ層および前記カソード層が形成された側の面に、前記コレクタ層と前記カソード層との間において、該コレクタ層および前記カソード層よりも深い溝部(30)が形成されていると共に、該溝部内に配置された絶縁層(31)が備えられている半導体装置。

     
PCT/JP2016/073244 2015-08-28 2016-08-08 半導体装置 WO2017038389A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680049102.XA CN107924942B (zh) 2015-08-28 2016-08-08 半导体装置
US15/740,573 US10170607B2 (en) 2015-08-28 2016-08-08 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-169396 2015-08-28
JP2015169396A JP6443267B2 (ja) 2015-08-28 2015-08-28 半導体装置

Publications (1)

Publication Number Publication Date
WO2017038389A1 true WO2017038389A1 (ja) 2017-03-09

Family

ID=58188735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073244 WO2017038389A1 (ja) 2015-08-28 2016-08-08 半導体装置

Country Status (4)

Country Link
US (1) US10170607B2 (ja)
JP (1) JP6443267B2 (ja)
CN (1) CN107924942B (ja)
WO (1) WO2017038389A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6589817B2 (ja) * 2016-10-26 2019-10-16 株式会社デンソー 半導体装置
WO2018164269A1 (ja) 2017-03-10 2018-09-13 株式会社小糸製作所 照明装置
JP7013668B2 (ja) * 2017-04-06 2022-02-01 富士電機株式会社 半導体装置
WO2019013286A1 (ja) * 2017-07-14 2019-01-17 富士電機株式会社 半導体装置
US10141300B1 (en) 2017-10-19 2018-11-27 Alpha And Omega Semiconductor (Cayman) Ltd. Low capacitance transient voltage suppressor
CN110546767B (zh) 2017-11-15 2022-07-29 富士电机株式会社 半导体装置
JP6784337B2 (ja) 2017-11-16 2020-11-11 富士電機株式会社 半導体装置
JP6992476B2 (ja) * 2017-12-14 2022-01-13 富士電機株式会社 半導体装置
CN109979935A (zh) * 2017-12-28 2019-07-05 富士电机株式会社 半导体装置及半导体装置的制造方法
JP7187787B2 (ja) 2018-03-15 2022-12-13 富士電機株式会社 半導体装置
JP7102808B2 (ja) 2018-03-15 2022-07-20 富士電機株式会社 半導体装置
JP7131003B2 (ja) 2018-03-16 2022-09-06 富士電機株式会社 半導体装置
JP7010184B2 (ja) * 2018-09-13 2022-01-26 株式会社デンソー 半導体装置
JP7230434B2 (ja) 2018-10-30 2023-03-01 富士電機株式会社 半導体装置の製造方法
CN112470288A (zh) 2019-02-27 2021-03-09 富士电机株式会社 半导体装置
JP7404702B2 (ja) * 2019-08-09 2023-12-26 富士電機株式会社 半導体装置
CN110797404B (zh) * 2019-10-18 2023-11-28 上海睿驱微电子科技有限公司 一种rc-igbt半导体器件
CN113990927B (zh) * 2021-10-26 2023-11-28 电子科技大学 一种减小米勒电容的新型rc-igbt结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184486A (ja) * 2006-01-10 2007-07-19 Denso Corp 半導体装置
WO2011125156A1 (ja) * 2010-04-02 2011-10-13 トヨタ自動車株式会社 ダイオード領域とigbt領域を有する半導体基板を備える半導体装置
JP2012069579A (ja) * 2010-09-21 2012-04-05 Toshiba Corp 逆通電型の絶縁ゲート型バイポーラトランジスタ
WO2015068203A1 (ja) * 2013-11-05 2015-05-14 トヨタ自動車株式会社 半導体装置
JP2015154000A (ja) * 2014-02-18 2015-08-24 トヨタ自動車株式会社 半導体装置および半導体装置の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2050694B (en) 1979-05-07 1983-09-28 Nippon Telegraph & Telephone Electrode structure for a semiconductor device
US4969028A (en) 1980-12-02 1990-11-06 General Electric Company Gate enhanced rectifier
JPH0266977A (ja) 1988-09-01 1990-03-07 Fuji Electric Co Ltd 半導体ダイオード
US6204717B1 (en) 1995-05-22 2001-03-20 Hitachi, Ltd. Semiconductor circuit and semiconductor device for use in equipment such as a power converting apparatus
JP2001196606A (ja) 2000-01-11 2001-07-19 Mitsubishi Electric Corp ダイオード
CN100521207C (zh) * 2006-01-10 2009-07-29 株式会社电装 具有igbt和二极管的半导体器件
JP2008192737A (ja) * 2007-02-02 2008-08-21 Denso Corp 半導体装置
JP5045733B2 (ja) * 2008-12-24 2012-10-10 株式会社デンソー 半導体装置
JP4957840B2 (ja) 2010-02-05 2012-06-20 株式会社デンソー 絶縁ゲート型半導体装置
JP5190485B2 (ja) * 2010-04-02 2013-04-24 株式会社豊田中央研究所 半導体装置
US8564097B2 (en) * 2010-04-15 2013-10-22 Sinopower Semiconductor, Inc. Reverse conducting IGBT
JP5321669B2 (ja) 2010-11-25 2013-10-23 株式会社デンソー 半導体装置
JP5737102B2 (ja) * 2011-09-19 2015-06-17 株式会社デンソー 半導体装置
JP2014103376A (ja) * 2012-09-24 2014-06-05 Toshiba Corp 半導体装置
JP6119593B2 (ja) * 2013-12-17 2017-04-26 トヨタ自動車株式会社 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184486A (ja) * 2006-01-10 2007-07-19 Denso Corp 半導体装置
WO2011125156A1 (ja) * 2010-04-02 2011-10-13 トヨタ自動車株式会社 ダイオード領域とigbt領域を有する半導体基板を備える半導体装置
JP2012069579A (ja) * 2010-09-21 2012-04-05 Toshiba Corp 逆通電型の絶縁ゲート型バイポーラトランジスタ
WO2015068203A1 (ja) * 2013-11-05 2015-05-14 トヨタ自動車株式会社 半導体装置
JP2015154000A (ja) * 2014-02-18 2015-08-24 トヨタ自動車株式会社 半導体装置および半導体装置の製造方法

Also Published As

Publication number Publication date
CN107924942A (zh) 2018-04-17
US10170607B2 (en) 2019-01-01
US20180197977A1 (en) 2018-07-12
JP6443267B2 (ja) 2018-12-26
CN107924942B (zh) 2021-04-20
JP2017045949A (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
WO2017038389A1 (ja) 半導体装置
JP6589817B2 (ja) 半導体装置
JP6676988B2 (ja) 半導体装置
CN110364435B (zh) 半导体装置的制造方法
JP5103830B2 (ja) 絶縁ゲート型半導体装置
JP5605073B2 (ja) 半導体装置
WO2015145929A1 (ja) 半導体装置
JP6780777B2 (ja) 半導体装置
JP6641983B2 (ja) 半導体装置
WO2016009616A1 (ja) 半導体装置
CN109155334B (zh) 半导体装置
JP2015103697A (ja) 半導体装置
JP2012043890A (ja) 半導体装置
JP5537359B2 (ja) 半導体装置
WO2016114131A1 (ja) 半導体装置
JP6293688B2 (ja) ダイオード及びそのダイオードを内蔵する逆導通igbt
TW201611274A (zh) 半導體裝置
JP6869791B2 (ja) 半導体スイッチング素子及びその製造方法
WO2018198575A1 (ja) 半導体装置
JP6992476B2 (ja) 半導体装置
JP2016207829A (ja) 絶縁ゲート型スイッチング素子
JP4830732B2 (ja) 半導体装置
JP6954333B2 (ja) 半導体装置
JP7352437B2 (ja) 半導体装置
JP2018125490A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841421

Country of ref document: EP

Kind code of ref document: A1