WO2017026535A1 - 変速装置 - Google Patents

変速装置 Download PDF

Info

Publication number
WO2017026535A1
WO2017026535A1 PCT/JP2016/073680 JP2016073680W WO2017026535A1 WO 2017026535 A1 WO2017026535 A1 WO 2017026535A1 JP 2016073680 W JP2016073680 W JP 2016073680W WO 2017026535 A1 WO2017026535 A1 WO 2017026535A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
speed
gear
shift drum
gears
Prior art date
Application number
PCT/JP2016/073680
Other languages
English (en)
French (fr)
Inventor
善彦 竹内
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to EP16835232.6A priority Critical patent/EP3336391B1/en
Priority to BR112018000667-0A priority patent/BR112018000667B1/pt
Priority to CN201680046487.4A priority patent/CN107923528B/zh
Publication of WO2017026535A1 publication Critical patent/WO2017026535A1/ja
Priority to US15/893,620 priority patent/US11137049B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/089Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears all of the meshing gears being supported by a pair of parallel shafts, one being the input shaft and the other the output shaft, there being no countershaft involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • B62M11/06Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with spur gear wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D11/00Clutches in which the members have interengaging parts
    • F16D11/08Clutches in which the members have interengaging parts actuated by moving a non-rotating part axially
    • F16D11/10Clutches in which the members have interengaging parts actuated by moving a non-rotating part axially with clutching members movable only axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D11/00Clutches in which the members have interengaging parts
    • F16D11/14Clutches in which the members have interengaging parts with clutching members movable only axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/04Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways with a shaft carrying a number of rotatable transmission members, e.g. gears, each of which can be connected to the shaft by a clutching member or members between the shaft and the hub of the transmission member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • F16D23/14Clutch-actuating sleeves or bearings; Actuating members directly connected to clutch-actuating sleeves or bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/083Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with radially acting and axially controlled clutching members, e.g. sliding keys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/091Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/32Electric motors actuators or related electrical control means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/08Multiple final output mechanisms being moved by a single common final actuating mechanism
    • F16H63/16Multiple final output mechanisms being moved by a single common final actuating mechanism the final output mechanisms being successively actuated by progressive movement of the final actuating mechanism
    • F16H63/18Multiple final output mechanisms being moved by a single common final actuating mechanism the final output mechanisms being successively actuated by progressive movement of the final actuating mechanism the final actuating mechanism comprising cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/304Constructional features of the final output mechanisms the final output mechanisms comprising elements moved by electrical or magnetic force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/12Motorcycles, Trikes; Quads; Scooters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/08Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with two or more rows of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/527Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to vibration and noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/20Land vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/65Gear shifting, change speed gear, gear box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D23/00Details of mechanically-actuated clutches not specific for one distinct type
    • F16D23/12Mechanical clutch-actuating mechanisms arranged outside the clutch as such
    • F16D2023/123Clutch actuation by cams, ramps or ball-screw mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0474Smoothing ratio shift by smoothing engagement or release of positive clutches; Methods or means for shock free engagement of dog clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H2061/2869Cam or crank gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/304Constructional features of the final output mechanisms the final output mechanisms comprising elements moved by electrical or magnetic force
    • F16H2063/3056Constructional features of the final output mechanisms the final output mechanisms comprising elements moved by electrical or magnetic force using cam or crank gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H2063/3093Final output elements, i.e. the final elements to establish gear ratio, e.g. dog clutches or other means establishing coupling to shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/0013Transmissions for multiple ratios specially adapted for rear-wheel-driven vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0052Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising six forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/32Gear shift yokes, e.g. shift forks

Definitions

  • the present invention relates to a transmission.
  • a predetermined number of gears among the plurality of gears provided on the main shaft and the counter shaft are provided to be movable in the axial direction of the main shaft or the counter shaft.
  • the gear provided to be movable in the axial direction is referred to as a slide gear.
  • the slide gear is provided on the main shaft or the counter shaft so as not to be relatively rotatable.
  • the slide gear is provided with a dog (drive dog or driven dog).
  • a gear adjacent to the slide gear is provided on the main shaft or the counter shaft so as to be relatively rotatable.
  • the gear provided to be relatively rotatable is referred to as an idle gear.
  • the idle gear is provided so as not to move in the axial direction.
  • a slide gear provided on one of the main shaft and the countershaft is meshed with an idler gear provided on the other shaft.
  • the idle gear is provided with a dog that can mesh with a dog of a slide gear provided on the same shaft.
  • the shift mechanism includes, for example, a shift drum and a plurality of shift forks.
  • a plurality of guide grooves are formed on the outer peripheral surface of the shift drum.
  • One end of each shift fork is positioned in the guide groove of the shift drum.
  • the other end of each shift fork is connected to a slide gear.
  • a desired set of gears can be selected as a set of transmission gears by moving a predetermined slide gear in the axial direction. Thereby, rotation can be transmitted from the main shaft to the counter shaft at a desired gear ratio.
  • a gear set including a slide gear is also selected as a transmission gear set in accordance with the rotation angle of the shift drum. That is, the slide gear plays a role of selecting a set of transmission gears and a role of directly transmitting the rotation transmitted from one shaft to the gear provided on the other shaft.
  • Patent Document 1 discloses a transmission provided with an actuator for rotating a shift drum.
  • the shift drum can be quickly rotated by the actuator.
  • the responsiveness of the shifting operation can be improved.
  • the moving speed of the shift fork increases.
  • the moving speed of the slide gear connected to the shift fork is also increased. For this reason, the sound and impact which are generated when the dog of the slide gear and the dog of the idle gear which are moved by the shift fork are engaged with each other are increased.
  • the actuator is controlled based on the relative rotational positions of the driving dog and the driven dog.
  • this automatic transmission it is possible to reduce the time required for shifting while suppressing the generation of a loud sound and impact when the driving dog and the driven dog are engaged with each other.
  • according to the automatic transmission of Patent Document 1 it is possible to achieve both suppression of generation of sound and impact during shifting and improvement of response of shifting operation.
  • an object of the present invention is to provide a transmission device that performs a shift operation by rotating a shift drum by an actuator, and obtains a configuration that can achieve both suppression of generation of noise and impact during shift and improvement of response of the shift operation. .
  • the present inventor tried to change the relationship between the selector (shift fork) and a plurality of gears in the transmission having the same configuration as the automatic transmission described in Patent Document 1 while researching the transmission. It was.
  • the present inventor changed the configuration of the shift mechanism to a configuration in which the gear having the dog is not moved by the selector but the slider having the dog is moved by the selector. That is, apart from a plurality of gears for transmitting rotation from the main shaft to the counter shaft, a slider for selecting a specific gear set is provided.
  • a slider movable in the axial direction of the one shaft is disposed between a pair of idle gears provided on one of the main shaft and the counter shaft. The slider does not always mesh with the gear provided on the other shaft.
  • the slider mass can be reduced, it has been found that the slider can be moved with a smaller force than when the slide gear is moved. Further, it has been found that the frictional force generated between the selector and the shift drum can be reduced by reducing the mass of the slider. As a result, it was found that the load when rotating the shift drum can be reduced, so that the shift drum can be smoothly rotated with a small force. As a result, it was found that the responsiveness of the shifting operation can be improved.
  • one end of the selector (shift fork) is positioned in the guide groove of the shift drum. For this reason, when the slider moves according to the rotation of the shift drum, the shift drum receives a reaction force from the slider via the selector. In order to prevent the shift drum from moving even when this reaction force is received, the shift drum is configured to have a certain weight. For this reason, when the rotational speed of the shift drum is increased, it takes a long time to reach the desired rotational speed due to the large inertial mass of the shift drum. In this case, even if the rotational speed of the shift drum is increased, it is difficult to improve the responsiveness of the speed change operation. Further, when the rotation speed of the shift drum is increased, a large inertial force acts on the shift drum.
  • the present inventor has proceeded with a study on a configuration capable of improving the responsiveness of the shift operation without increasing the rotation speed of the shift drum.
  • a study it was considered to shorten the time required for the rotation of the shift drum by reducing the rotation angle of the shift drum (hereinafter referred to as the transmission rotation angle) when switching the gear stage to one stage.
  • the transmission rotation angle the rotation angle of the shift drum
  • the shift rotation angle when the shift rotation angle is reduced, the amount of movement of the selector in the axial direction of the shift drum with respect to the rotation angle of the shift drum must be increased.
  • the inclination angle of the guide groove with respect to the rotation direction of the shift drum must be increased.
  • the rotation angle of the shift drum when changing the gear stage to one stage is as large as possible.
  • the shift rotation angle is generally set to 60 degrees or more.
  • the present inventor has noticed the characteristic of the electric motor that it is easy to obtain a large torque in the extremely low speed region (immediately after the start of rotation).
  • the present inventor can smoothly rotate the shift drum by using the electric motor as the actuator even if the rotational load of the shift drum is increased by setting the shift rotation angle to be less than 60 degrees. I thought that.
  • the inventor has focused on the above-described effect that the rotational load of the shift drum can be reduced by using the slider. That is, since the present inventor can reduce the rotational load of the shift drum by using the slider, even if the rotational load of the shift drum is increased by making the shift rotation angle less than 60 degrees, the rotational load of the shift drum is reduced. Noticed that it was not much different from the conventional transmission.
  • the present inventor used a slider instead of a slide gear, and used an electric motor as an actuator, and dared to set the shift rotation angle of the shift drum to less than 60 degrees. As a result, it is possible to improve the responsiveness of the shifting operation without increasing the rotation speed of the shift drum, and to suppress the generation of noise and impact during shifting.
  • a transmission according to an embodiment of the present invention is a transmission that can be switched to a plurality of shift stages and that transmits rotation of a main shaft that is rotated by a power source to a countershaft at each shift stage. .
  • the transmission is provided on the main shaft, and is provided with the same number of first gears as the number of gears of the plurality of gears, and provided with the counter shaft, and constantly meshes with the first gears.
  • a plurality of gears including the same number of second gears as the plurality of first gears, and one of the main shaft and the counter shaft are provided to be movable in the axial direction of the one shaft,
  • the plurality of first gears are provided on the main shaft so that the main shaft cannot move in the axial direction.
  • the plurality of second gears are provided on the countershaft so that the countershaft cannot move in the axial direction.
  • a gear provided on the one shaft is provided with a second dog portion that can mesh with the first dog portion of the slider.
  • the gear provided with the second dog portion is provided on the one shaft so as to be relatively rotatable.
  • the slider provided on the one shaft is separate from the plurality of first gears and the plurality of second gears, and of the plurality of gears, the main shaft and the counter shaft.
  • the shift drum has a guide groove including a linear portion extending in the circumferential direction and an inclined portion inclined with respect to the linear portion on the outer peripheral surface thereof. .
  • One end of the selector is positioned in the guide groove, and the other end of the selector is connected to the slider.
  • the control unit controls the electric motor so that the shift rotation angle of the shift drum is less than 60 degrees when the shift speed is switched by one stage at all the shift speeds.
  • the shift drum rotates at the gear shift rotation angle of less than 60 degrees so that the selector has the plurality of first gears and the plurality of second gears.
  • the slider which is configured separately from the first gear and is not always meshed with the gear provided on the other shaft among the plurality of gears, is moved in the axial direction of the first shaft.
  • the slider which is configured separately from the plurality of first gears and the plurality of second gears and does not always mesh with a gear provided on the other shaft of the plurality of gears, rotates the shift drum. Accordingly, when the first dog portion meshes with the second dog portion by moving in the axial direction of the one shaft, the main shaft rotates through the first gear, the second gear, and the slider. Is transmitted to the countershaft.
  • FIG. 1 is a right side view showing a schematic configuration of a motorcycle equipped with a transmission according to an embodiment of the present invention.
  • 1A is a schematic diagram showing a power transmission path of a motorcycle
  • FIG. 1B is a schematic diagram showing a guide groove of a shift drum.
  • It is a schematic diagram showing a power transmission path of a motorcycle.
  • It is sectional drawing which shows schematic structure of a transmission.
  • It is a figure which shows the structure of a shift mechanism typically.
  • FIG. 2 is a view corresponding to FIG. 1 showing a schematic configuration of a motorcycle equipped with a transmission according to a reference example.
  • FIG. 4 is a view corresponding to FIG. 3 showing a power transmission path of a motorcycle according to a reference example.
  • FIG. 5 is a diagram corresponding to FIG.
  • FIG. 9 is a view corresponding to FIG. 8 illustrating guide grooves of a shift drum of a transmission according to a reference example.
  • FIGS. 1 A motorcycle 1 according to an embodiment will be described with reference to FIGS.
  • the scale is appropriately changed to make each member a recognizable size.
  • “left” and “right” respectively represent “left” and “right” as viewed from the driver who rides the motorcycle 1.
  • FIG. 1 shows the appearance of a motorcycle 1 when the motorcycle 1 equipped with a transmission 20 according to an embodiment of the present invention is viewed from the right side.
  • An arrow Fr indicates the forward direction of the motorcycle 1.
  • An arrow Rr indicates the backward direction of the motorcycle 1.
  • An arrow U indicates the upward direction of the motorcycle 1.
  • An arrow D indicates the downward direction of the motorcycle 1.
  • the motorcycle 1 includes a body frame 2, an engine 3 (power source), a front wheel 4, a rear wheel 5, and a handle 6.
  • the engine 3 is supported by the body frame 2.
  • the rear wheel 5 is driven by the power output from the engine 3.
  • the steering wheel 6 is provided with an operation unit 80 that allows the driver of the motorcycle 1 to perform an operation of switching the gear position of the transmission 20.
  • the operation unit 80 includes a shift-up button 81 that increases the gear position of the transmission 20 and a shift-down button 82 that decreases the gear position of the transmission 20 (see FIG. 3).
  • the operation unit 80 transmits a signal corresponding to the operation of the driver to a control unit 83 (see FIG. 3) described later.
  • FIG. 3 is a schematic diagram showing a power transmission path of the motorcycle 1.
  • the motorcycle 1 includes a clutch mechanism 10, a transmission 20, and a drive chain 14.
  • the transmission 20 includes a control unit 83 (an example of a control unit).
  • the control unit 83 generates a switching signal according to the signal transmitted from the operation unit 80 and transmits it to the transmission 20. That is, the control unit 83 switches the gear position of the transmission 20 by controlling an electric motor 58 described later in accordance with the signal transmitted from the operation unit 80.
  • the control unit 83 can switch the gear position of the transmission 20 without the driver performing a clutch operation.
  • the transmission 20 of the motorcycle 1 has six shift stages.
  • the transmission 20 can be shifted up in the order of neutral, 1st speed, 2nd speed, 3rd speed, 4th speed, 5th speed, 6th speed, 6th speed, 5th speed, 4th speed, 3rd speed, 2nd speed, 1st speed, Shift down is possible in the order of neutral.
  • the transmission 20 is switched to a neutral state or any one of the first to sixth gears by the electric motor 58 controlled by the control unit 83. Details will be described later.
  • the power generated in the engine 3 is transmitted to the rear wheel 5 via the clutch mechanism 10, the transmission 20 and the drive chain 14.
  • the clutch mechanism 10 is a wet multi-plate clutch.
  • the clutch mechanism 10 includes an outer plate 11 and an inner plate 12.
  • the outer plate 11 is connected to the crankshaft 13 of the engine 3 via a gear 13a.
  • the inner plate 12 is provided on a main shaft 21 described later of the transmission 20.
  • the outer plate 11 and the inner plate 12 are configured to be relatively movable in the axial direction of the main shaft 21.
  • the clutch mechanism 10 can be switched between a connected state in which the rotation of the crankshaft 13 is transmitted to the main shaft 21 and a disconnected state in which the rotation of the crankshaft 13 is not transmitted to the main shaft 21.
  • the outer plate 11 and the inner plate 12 are relatively moved in the axial direction, and the outer plate 11 and the inner plate 12 are brought into contact with each other, whereby the clutch mechanism 10 is switched to the connected state. be able to.
  • the clutch mechanism 10 can be switched to a disconnected state by relatively moving the outer plate 11 and the inner plate 12 in the axial direction to separate the outer plate 11 and the inner plate 12.
  • the transmission 20 includes a main shaft 21 and a counter shaft 22.
  • the main shaft 21 and the counter shaft 22 are arranged in parallel.
  • the main shaft 21 is connected to the crankshaft 13 of the engine 3 via the clutch mechanism 10.
  • the counter shaft 22 is connected to the main shaft 21 via a plurality of gears described later of the transmission 20.
  • the drive sprocket 7 is fixed to the counter shaft 22. That is, the drive sprocket 7 can rotate integrally with the counter shaft 22.
  • the drive chain 14 is stretched over the drive sprocket 7 and the driven sprocket 8 fixed to the axle shaft 9 of the rear wheel 5. As a result, power is transmitted from the engine 3 to the rear wheel 5.
  • the drive sprocket 7 is shown at the left end of the countershaft 22 in order to avoid making the drawing complicated, but as shown in FIG. 4 described later, in this embodiment, the drive sprocket 7 is shown. 7 is provided at the right end of the counter shaft 22, for example.
  • the extending direction of the main shaft 21 and the counter shaft 22 is defined as an “axial direction”. That is, that the main shaft 21 or the counter shaft 22 extends in the axial direction means that the main shaft 21 or the counter shaft 22 has a shape that is long in the axial direction.
  • FIG. 4 is a diagram showing a more detailed configuration of the transmission 20.
  • FIG. 4 is a view showing the transmission 20 in a cross section extending along the axial direction.
  • the transmission 20 includes a first speed drive gear 421, a second speed drive gear 422, a third speed drive gear 423, a fourth speed drive gear 424, a fifth speed drive gear 425, and a sixth speed drive gear. 426.
  • the first speed drive gear 421, the second speed drive gear 422, the third speed drive gear 423, the fourth speed drive gear 424, the fifth speed drive gear 425, and the sixth speed drive gear 426 are arranged on the main shaft 21 along the axial direction. ing.
  • a second speed driving gear 422 a fourth speed driving gear 424, A sixth speed drive gear 426, a fifth speed drive gear 425, a third speed drive gear 423, and a first speed drive gear 421 are arranged.
  • the transmission 20 includes a first speed driven gear 441, a second speed driven gear 442, a third speed driven gear 443, a fourth speed driven gear 444, a fifth speed driven gear 445, and a sixth speed driven gear 446. Yes.
  • the first-speed driven gear 441, the second-speed driven gear 442, the third-speed driven gear 443, the fourth-speed driven gear 444, the fifth-speed driven gear 445, and the sixth-speed driven gear 446 are arranged on the countershaft 22 with axes. They are arranged side by side.
  • the second-speed driven gear 422, the four-speed driven gear 422, and the four in order from the side corresponding to the input side of the main shaft 21 in the axial direction of the counter shaft 22 (right side in FIGS. 3 and 4).
  • a high speed driven gear 444, a six speed driven gear 446, a five speed driven gear 445, a three speed driven gear 443, and a first speed driven gear 441 are arranged.
  • the first speed driving gear 421, the second speed driving gear 422, the third speed driving gear 423, the fourth speed driving gear 424, the fifth speed driving gear 425, and the sixth speed driving gear 426 are examples of a plurality of first gears. It is.
  • the first-speed driven gear 441, the second-speed driven gear 442, the third-speed driven gear 443, the fourth-speed driven gear 444, the fifth-speed driven gear 445, and the sixth-speed driven gear 446 include a plurality of second-speed driven gears 443. It is an example of a gear.
  • the first speed driven gear 441 is always meshed with the first speed driven gear 421.
  • the state in which the first speed driven gear 441 and the first speed driven gear 421 transmit power from the main shaft 21 to the counter shaft 22 is the first gear.
  • the second speed driven gear 442 is always meshed with the second speed driven gear 422.
  • a state in which the second-speed driven gear 442 and the second-speed driving gear 422 transmit power from the main shaft 21 to the counter shaft 22 is the second-speed gear stage.
  • the third speed driven gear 443 always meshes with the third speed driven gear 423.
  • the state in which the third speed driven gear 443 and the third speed driven gear 423 transmit power from the main shaft 21 to the counter shaft 22 is the third gear.
  • the fourth speed driven gear 444 is always meshed with the fourth speed driven gear 424.
  • the state in which the four-speed driven gear 444 and the four-speed drive gear 424 transmit power from the main shaft 21 to the counter shaft 22 is the fourth gear.
  • the fifth speed driven gear 445 is always meshed with the fifth speed driven gear 425.
  • the state in which the fifth speed driven gear 445 and the fifth speed driven gear 425 transmit power from the main shaft 21 to the counter shaft 22 is the fifth speed gear stage.
  • the 6-speed driven gear 446 is always meshed with the 6-speed driven gear 426.
  • the state in which the six-speed driven gear 446 and the six-speed driving gear 426 transmit power from the main shaft 21 to the counter shaft 22 is the six-speed gear stage.
  • the first speed drive gear 421 cannot rotate with respect to the main shaft 21.
  • the first speed driven gear 441 is rotatable with respect to the counter shaft 22.
  • the second speed drive gear 422 cannot rotate with respect to the main shaft 21.
  • the second speed driven gear 442 is rotatable with respect to the counter shaft 22.
  • the third speed driving gear 423 is not rotatable with respect to the main shaft 21.
  • the third speed driven gear 443 is rotatable with respect to the counter shaft 22.
  • the fourth speed drive gear 424 is not rotatable with respect to the main shaft 21.
  • the four-speed driven gear 444 is rotatable with respect to the counter shaft 22.
  • the fifth speed driving gear 425 is rotatable with respect to the main shaft 21.
  • the fifth speed driven gear 445 is not rotatable with respect to the counter shaft 22.
  • the six-speed drive gear 426 is rotatable with respect to the main shaft 21.
  • the six-speed driven gear 446 cannot rotate with respect to the counter shaft 22.
  • the transmission 20 includes an annular first slider 451 as viewed from the axial direction.
  • the first slider 451 is disposed on the main shaft 21 between the fifth speed drive gear 425 (first gear) and the sixth speed drive gear 426 (first gear).
  • the first slider 451 is movable in the axial direction on the main shaft 21.
  • the first slider 451 is not rotatable with respect to the main shaft 21.
  • the transmission 20 includes an annular second slider 452 as viewed from the axial direction.
  • the second slider 452 is disposed on the counter shaft 22 between the first-speed driven gear 441 (second gear) and the third-speed driven gear 443 (second gear).
  • the second slider 452 is movable in the axial direction on the counter shaft 22.
  • the second slider 452 is not rotatable with respect to the counter shaft 22.
  • the transmission 20 includes an annular third slider 453 as viewed from the axial direction.
  • the third slider 453 is disposed on the counter shaft 22 between the second speed driven gear 442 (second gear) and the fourth speed driven gear 444 (second gear).
  • the third slider 453 is movable in the axial direction on the counter shaft 22. The third slider 453 cannot rotate with respect to the counter shaft 22.
  • the first slider 451 does not always mesh with the gear provided on the countershaft 22.
  • the second slider 452 and the third slider 453 do not always mesh with the gear provided on the main shaft 21. That is, each of the sliders 451 to 453 is provided on one of the main shaft 21 and the counter shaft 22 so as to be movable in the axial direction, and does not always mesh with a gear provided on the other shaft. Further, the sliders 451 to 453 are configured separately from the gears provided on the main shaft 21 and the counter shaft 22, respectively.
  • the transmission 20 includes a fifth speed dog convex portion 465 and a fifth speed dog concave portion 475.
  • the fifth speed dog convex portion 465 (first dog portion) is provided on the first slider 451. That is, the first slider 451 is provided with a plurality of five-speed dog convex portions 465 arranged in the circumferential direction of the first slider 451.
  • the 5-speed dog convex portion 465 is provided on the first slider 451 so as to protrude toward the 5-speed drive gear 425 along the axial direction of the main shaft 21.
  • the fifth speed dog recess 475 (second dog part) is provided in the fifth speed drive gear 425.
  • the fifth speed drive gear 425 is provided with a plurality of fifth speed dog recesses 475 arranged side by side in the circumferential direction of the fifth speed drive gear 425.
  • the 5-speed dog recess 475 is configured to be able to mesh with the 5-speed dog protrusion 465.
  • the transmission 20 includes a six-speed dog convex portion 466 and a six-speed dog concave portion 476.
  • the six-speed dog convex portion 466 (first dog portion) is provided on the first slider 451. That is, the first slider 451 is provided with a plurality of six-speed dog protrusions 466 arranged in the circumferential direction of the first slider 451.
  • the six-speed dog convex portion 466 is provided on the first slider 451 so as to protrude toward the six-speed drive gear 426 along the axial direction of the main shaft 21.
  • the 6-speed dog recess 476 (second dog portion) is provided in the 6-speed drive gear 426. That is, the six-speed drive gear 426 is provided with a plurality of six-speed dog recesses 476 arranged side by side in the circumferential direction of the six-speed drive gear 426.
  • the six-speed dog recess 476 is configured to be able to mesh with the six-speed dog protrusion 466.
  • the transmission 20 includes a first-speed dog convex portion 461 and a first-speed dog concave portion 471.
  • the first speed dog convex portion 461 (first dog portion) is provided on the second slider 452. That is, the second slider 452 is provided with a plurality of first-speed dog convex portions 461 aligned in the circumferential direction of the second slider 452.
  • the first speed dog protrusion 461 is provided on the second slider 452 so as to protrude toward the first speed driven gear 441 along the axial direction of the counter shaft 22.
  • the first-speed dog recess 471 (second dog portion) is provided in the first-speed driven gear 441. That is, the first-speed driven gear 441 is provided with a plurality of first-speed dog recesses 471 aligned in the circumferential direction of the first-speed driven gear 441.
  • the first-speed dog recess 471 is configured to be able to mesh with the first-speed dog protrusion 461.
  • the transmission 20 includes a third-speed dog convex portion 463 and a third-speed dog concave portion 473.
  • the third speed dog convex portion 463 (first dog portion) is provided on the second slider 452. That is, the second slider 452 is provided with a plurality of third-speed dog convex portions 463 arranged side by side in the circumferential direction of the second slider 452.
  • the third speed dog protrusion 463 is provided on the second slider 452 so as to protrude toward the third speed driven gear 443 along the axial direction of the counter shaft 22.
  • the third speed dog recess 473 (second dog part) is provided in the third speed driven gear 443.
  • the third-speed driven gear 443 is provided with a plurality of third-speed dog recesses 473 arranged side by side in the circumferential direction of the third-speed driven gear 443.
  • the third-speed dog recess 473 is configured to be able to mesh with the third-speed dog protrusion 463.
  • the transmission 20 includes a second-speed dog convex portion 462 and a second-speed dog concave portion 472.
  • the second speed dog convex portion 462 (first dog portion) is provided on the third slider 453. That is, the third slider 453 is provided with a plurality of second-speed dog protrusions 462 arranged in the circumferential direction of the third slider 453.
  • the second-speed dog convex portion 462 is provided on the third slider 453 so as to protrude toward the second-speed driven gear 442 along the axial direction of the counter shaft 22.
  • the second speed dog recess 472 (second dog part) is provided in the second speed driven gear 442. That is, the second-speed driven gear 442 is provided with a plurality of second-speed dog recesses 472 aligned in the circumferential direction of the second-speed driven gear 442. Second-speed dog recess 472 is configured to engage with second-speed dog protrusion 462.
  • the transmission 20 includes a four-speed dog convex portion 464 and a four-speed dog concave portion 474.
  • the fourth speed dog convex portion 464 (first dog portion) is provided on the third slider 453. That is, the third slider 453 is provided with a plurality of four-speed dog convex portions 464 arranged side by side in the circumferential direction of the third slider 453.
  • the four-speed dog convex portion 464 is provided on the third slider 453 so as to protrude toward the four-speed driven gear 444 along the axial direction of the counter shaft 22.
  • the 4-speed dog recess 474 (second dog portion) is provided in the 4-speed driven gear 444. That is, the four-speed driven gear 444 is provided with a plurality of four-speed dog recesses 474 aligned in the circumferential direction of the four-speed driven gear 444.
  • the four-speed dog recess 474 is configured to be able to mesh with the four-speed dog protrusion 464.
  • the dog convex portions 461 to 466 are examples of the first dog portion, and the dog concave portions 471 to 476 are examples of the second dog portion, respectively.
  • the transmission 20 includes a shift drum 50.
  • FIG. 5 shows a specific configuration of the shift drum 50.
  • the shift drum 50 is columnar or cylindrical.
  • the shift drum 50 is rotatable around a central axis extending in the axial direction.
  • the transmission 20 includes a shift mechanism 30 that moves the first slider 451, the second slider 452, and the third slider 453 in the axial direction.
  • the shift mechanism 30 moves the slider 451 in the axial direction of the main shaft 21.
  • the shift mechanism 30 moves the sliders 452 and 453 in the axial direction of the counter shaft 22. Accordingly, the engagement between the fifth speed dog convex portion 465 and the fifth speed dog concave portion 475, the engagement between the sixth speed dog convex portion 466 and the sixth speed dog concave portion 476, and the engagement between the first speed dog convex portion 461 and the first speed dog concave portion 471.
  • the shift mechanism 30 includes a shift drum 50, a stopper plate 51 (an example of a stopper member), a position holding lever 52, a shift arm 54, a hook plate 56, and an electric motor 58. ing.
  • the electric motor 58 is driven by the control unit 83 to drive the shift drum 50 as described later.
  • the shift drum 50 is disposed in parallel with the main shaft 21 and the counter shaft 22. That is, the shift drum 50 also extends in the axial direction like the main shaft 21 and the counter shaft 22.
  • the stopper plate 51 is fixed to the shift drum 50 coaxially with the shift drum 50.
  • the stopper plate 51 rotates with the shift drum 50.
  • the position holding lever 52 maintains the stopper plate 51 at a predetermined rotation angle.
  • the hook plate 56 is fixed to one end of the shift drum 50.
  • the shift arm 54 can contact the hook plate 56.
  • the electric motor 58 drives the shift arm 54 via a gear 54a (an example of a speed reduction mechanism) and rotates the shift drum 50.
  • a first guide groove 61, a second guide groove 62, and a third guide groove 63 are provided on the outer peripheral surface of the shift drum 50.
  • Each of the first guide groove 61, the second guide groove 62, and the third guide groove 63 has a straight portion 64 that extends in the circumferential direction of the shift drum 50, and an inclined portion 65 that is inclined with respect to the straight portion 64.
  • the first guide groove 61, the second guide groove 62, and the third guide groove 63 are schematically shown. Specific configurations of the first guide groove 61, the second guide groove 62, and the third guide groove 63 are shown in FIG.
  • the shift mechanism 30 includes a first shift fork 491, a second shift fork 492, and a third shift fork 493.
  • One end of the first shift fork 491 is positioned in the first guide groove 61 of the shift drum 50.
  • One end of the second shift fork 492 is positioned in the second guide groove 62 of the shift drum 50.
  • One end of the third shift fork 493 is positioned in the third guide groove 63 of the shift drum 50.
  • each of the shift forks 491 to 493 is an example of a selector.
  • the first slider 451 has a first fork receiving groove 451a.
  • the other end of the first shift fork 491 is positioned in the first fork receiving groove 451a of the first slider 451. That is, the other end of the first shift fork 491 is connected to the first slider 451.
  • the second slider 452 has a second fork receiving groove 452a.
  • the other end of the second shift fork 492 is positioned in the second fork receiving groove 452a of the second slider 452. That is, the other end of the second shift fork 492 is connected to the second slider 452.
  • the third slider 453 is formed with a third fork receiving groove 453a.
  • the other end of the third shift fork 493 is positioned in the third fork receiving groove 453 a of the third slider 453. That is, the other end of the third shift fork 493 is connected to the third slider 453.
  • Rotation of the shift drum 50 causes the second shift fork 492 to move in the axial direction of the shift drum 50 when one end of the second shift fork 492 passes through the inclined portion 65 of the second guide groove 62. Since the other end of the second shift fork 492 is connected to the second slider 452, when the second shift fork 492 moves in the axial direction as described above, the second slider 452 moves in the axial direction of the counter shaft 22. Move in line direction.
  • FIG. 6 is a diagram showing the configuration of the stopper plate 51 and the position holding lever 52 in the shift mechanism 30. 6 and later-described FIG. 7 schematically show the electric motor 58, the shift arm 54, and the like.
  • the outer peripheral surface of the stopper plate 51 has a plurality of convex portions 78, a number of shift recesses 70 corresponding to the number of shift stages (six in the illustrated example), and a neutral state. And a neutral recess 79 is provided.
  • the plurality of convex portions 78 and the plurality of speed change concave portions 70 are formed so as to be alternately arranged along the rotation direction of the stopper plate 51.
  • the position holding lever 52 is provided with a pressing portion 52 a that is pressed against the outer peripheral surface of the stopper plate 51.
  • the position holding lever 52 is provided so as to be swingable around the rotation center O1.
  • a spring 53 is attached to the position holding lever 52.
  • the spring 53 applies a force to the position holding lever 52 so as to press the pressing portion 52 a of the position holding lever 52 against the stopper plate 51 toward the rotation center of the stopper plate 51.
  • the speed change recess 70 of the stopper plate 51 has a shape capable of positioning the pressing portion 52 a of the position holding lever 52.
  • the plurality of shift recesses 70 of the stopper plate 51 are provided corresponding to the shift stages of the transmission 20. That is, the stopper plate 51 has a first-speed recess 71, a second-speed recess 72, a third-speed recess 73, a fourth-speed recess 74, and a fifth-speed recess corresponding to the first to sixth gears. 75 and a six-speed recess 76 are provided.
  • the second guide fork 492 of the shift drum 50 causes the second shift fork 492 to be close to the one-speed driven gear 441 of the counter shaft 22 in the axial direction of the shift drum 50. It is positioned in the direction toward the end, to the left of FIG. As a result, the second slider 452 is positioned on the one side of the shift drum 50. Therefore, the first-speed dog convex portion 461 of the second slider 452 meshes with the first-speed dog concave portion 471 of the first-speed driven gear 441.
  • the third shift fork 493 moves along the third guide groove 63 of the shift drum 50 to the one side of the shift drum 50 (left side in FIG. 5).
  • the third slider 453 moves on the counter shaft 22 toward the one side of the shift drum 50.
  • the pressing portion 52 a of the position holding lever 52 is pressed toward the rotation center of the stopper plate 51 by the spring 53. Therefore, when the pressing portion 52 a is positioned in the gear shift recess 70 or the neutral recess 79, the pressing portion 52 a is pressed against the outer peripheral surface of the stopper plate 51 by the spring 53 in the gear shift recess 70 or the neutral recess 79. . Accordingly, the rotation of the stopper plate 51 is suppressed in a state where the pressing portion 52a of the position holding lever 52 is positioned in the speed change recess 70 or the neutral recess 79 of the stopper plate 51.
  • FIG. 7 is a view showing the hook plate 56 and the shift arm 54 of the shift drum 50.
  • FIG. 7A shows the state of the hook plate 56 and the shift arm 54 when the position holding lever 52 maintains the shift drum 50 at a rotation angle corresponding to the fourth gear.
  • FIG. 7B shows the state of the hook plate 56 and the shift arm 54 when the gear position is switched from the fourth speed to the fifth speed.
  • one end of shift arm 54 is connected to output shaft 58a of electric motor 58 via fan-shaped gear 54a.
  • a claw 55 capable of holding the pin 57 of the hook plate 56 is provided.
  • the electric motor 58 rotates the shift arm 54 counterclockwise around the rotation center O ⁇ b> 1 when viewed from the motor 58. In this case, since the pin 57 is pulled by the claw 55, the stopper plate 51 and the shift drum 50 rotate counterclockwise.
  • the electric motor 58 has the pressing portion 52a of the position holding lever 52 over the convex portion 78 from the bottom 77 of the four-speed recess 74, and the fifth speed.
  • the shift arm 54 is rotated until it is positioned at the bottom 77 of the recess 75 for use.
  • an angle formed by the bottoms 77 of the adjacent shift recesses 70 around the rotation center O ⁇ b> 1 of the stopper plate 51 as viewed from the axial direction of the shift drum 50 is referred to as a shift rotation angle.
  • This shift rotation angle is the rotation angle of the shift drum 50 when the shift stage of the transmission 20 is switched.
  • the shift rotation angle when switching the shift speed by one step is set to less than 60 degrees.
  • the shift rotation angle of the shift drum 50 when changing the gear position from the first speed to the second speed, the second speed to the third speed, the third speed to the fourth speed, the fourth speed to the fifth speed, and the fifth speed to the sixth speed. are set to 45 degrees.
  • the shift rotation angle defined here is a concept that does not include the rotation angle when the electric motor 58 switches the shift stage of the transmission 20 from the first speed to the neutral.
  • the rotational position of the shift drum 50 when the transmission 20 is neutral is the position of the shift drum 50 when the transmission 20 is switched between the plurality of shift speeds (first speed to sixth speed). Out of rotation area. With such a configuration, the shift speed can be switched smoothly.
  • the output shaft 58a of the electric motor 58 rotates by 60 degrees or more.
  • the rotation of the output shaft 58a of 60 degrees or more is transmitted to the shift drum 50 through the speed reduction mechanism (gear 54a) as a rotation of a variable speed rotation angle of less than 60 degrees.
  • the electric motor 58 can drive the shift drum 50 with a small torque. Thereby, the shift drum 50 can be smoothly rotated without using a large-sized electric motor.
  • the main shaft 21 and the countershaft 22 are configured separately from the gears, and sliders 451 to 453 that do not always mesh with the gears provided on the other shaft. Is provided.
  • the mass and radius of the sliders 451 to 453 can be reduced as compared with the slide gear having the conventional dog portion. Therefore, the collision energy when the dog portions hit each other can be reduced, and the generation of noise and impact during shifting can be suppressed.
  • the sliders 451 to 453 can be moved with a smaller force than the slide gear. Furthermore, by reducing the mass of the sliders 451 to 453, the frictional force generated between the shift forks 491 to 493 and the shift drum 50 can be reduced. Thereby, since the load at the time of rotating the shift drum 50 can be made small, the shift drum 50 can be smoothly rotated with a small force. Therefore, the responsiveness of the speed change operation in the transmission 20 can be improved.
  • one end portions of the shift forks 491 to 493 are positioned in the guide grooves 61 to 63 of the shift drum 50. Therefore, when the sliders 451 to 453 move according to the rotation of the shift drum 50, the shift drum 50 receives a reaction force from the sliders 451 to 453 via the shift forks 491 to 493. In order to prevent the shift drum 50 from moving even when this reaction force is received, the shift drum 50 is configured to have a certain weight.
  • the rotation angle of the shift drum 50 (referred to as a shift rotation angle) when changing the gear position to one step is set to less than 60 degrees. Thereby, the time required for the rotation of the shift drum 50 is shortened.
  • the electric motor 58 is used as an actuator for rotating the shift drum 50.
  • the electric motor 58 has a characteristic that a large torque can be easily obtained in an extremely low speed region (immediately after the start of rotation). Therefore, even if the rotational load of the shift drum 50 is increased as described above by setting the shift rotation angle to be less than 60 degrees, the shift drum 50 can be smoothly rotated by using the electric motor 58.
  • the transmission 20 according to the present embodiment it is possible to achieve both the suppression of the generation of sound and impact during shifting and the improvement of responsiveness of shifting operation.
  • FIG. 8A is a schematic diagram showing the first guide groove 61 to the third guide groove 63 provided on the outer peripheral surface of the shift drum 50 of the transmission 20 according to the present embodiment.
  • all shift rotation angles are set to 45 degrees.
  • FIG. 8B shows guide grooves 61A to 63A of the shift drum in the transmission described in Patent Document 2.
  • all the shift rotation angles are set to 60 degrees.
  • the shift rotation angle (45 degrees) in the configuration of the present embodiment is the shift rotation angle in the comparative example. It is smaller than (60 degrees). Note that the shift rotation angle is represented as a distance in the vertical direction of the drawing in FIGS. 8A and 8B.
  • the distance that the shift forks 491 to 493 move in the axial direction of the shift drum is the same.
  • one end of the shift fork 492 is positioned at the straight line portion 641 when the transmission is in the first speed.
  • one end of the shift fork 492 is positioned at the linear portion 642.
  • the distance between the center position of the straight line portion 641 and the center position of the straight line portion 642 is the same as that of the transmission device 20 (FIG. 8A) according to the present embodiment and the transmission device of FIG. 8 (b)).
  • the force that the shift forks 491 to 493 receive from the shift drum when passing through the inclined portions 65 and 65A increases as the inclination angle of the inclined portions 65 and 65A with respect to the circumferential direction of the shift drum increases. That is, in the transmission using the shift drum 50 shown in FIG. 8A, the force required for the shifting operation becomes larger than in the transmission using the shift drum shown in FIG. . For this reason, as in Patent Document 2, the shift rotation angle of the shift drum is generally set to an angle of 60 degrees or more.
  • the electric motor 58 has a characteristic of outputting the largest torque at an extremely low speed (immediately after the start of rotation).
  • the shift rotation angle of the shift drum 50 is small, it is only necessary to rotate the stationary shift drum 50 by a small rotation angle with a large driving force during the shift operation. That is, the characteristics of the driving force required when the shift rotation angle of the shift drum 50 is made small coincide with the output characteristics of the electric motor 58.
  • the present inventor has realized that the shift drum 50 having a small shift rotation angle can be rotated without using the electric motor 58 having a large maximum output.
  • the speed change device 20 with high responsiveness to the speed change operation can be provided without increasing the size of the electric motor 58.
  • the transmission 20 according to the present embodiment includes a mechanism with improved responsiveness of a shift operation. For this reason, as described in Patent Document 1, the gear shifting operation can be further enhanced by devising a control method for controlling the electric motor 58 that drives the shift drum 50. At this time, since the transmission 20 according to the present embodiment can move the member quickly, it is easy to move the member at a target timing and can be suitably combined with a technique for devising a control method.
  • the position holding lever 52 is provided. After the pressing portion 52a of the position holding lever 52 moves from the bottom 77 of the speed change concave portion 70 to the convex portion 78, a spring force acting on the position holding lever 52 is used to move from the convex portion 78 to the adjacent speed change concave portion 70.
  • the shift drum 50 can be rotated toward the bottom 77 of the main body. Further, when the predetermined gear position is continuously maintained, the pressing portion 52a of the position holding lever 52 suppresses the rotation of the shift drum 50. Therefore, it is necessary to continue energizing the electric motor 58 in order to suppress the rotation of the shift drum 50. There is no.
  • FIG. 9 is a right side view of the motorcycle 100 equipped with the transmission 200 according to the reference example of the present invention.
  • the motorcycle 100 includes a body frame 2, an engine 3, a front wheel 4, a rear wheel 5, and a handle 6.
  • the engine 3 is supported by the body frame 2.
  • the rear wheel 5 is driven by the power output from the engine 3.
  • An operation unit 80 is provided on the handle 6 for the driver of the motorcycle 100 to perform an operation of switching the gear position.
  • FIG. 10 is a schematic diagram showing a power transmission path of the motorcycle 100.
  • the operation unit 80 includes a shift-up button 81 that increases the gear position of the transmission 200 and a shift-down button 82 that decreases the gear position of the transmission 200.
  • the operation unit 80 transmits a signal corresponding to the driver's operation to the control unit 83.
  • the control unit 83 switches the gear position of the transmission 200 by transmitting a switching signal corresponding to the signal to the transmission 200. That is, when the driver operates the operation unit 80, the control unit 83 switches the gear position of the transmission 200. Thereby, the control unit 83 can switch the gear position of the transmission 200 without the driver performing a clutch operation.
  • the transmission 200 of the motorcycle 100 has six shift stages.
  • the transmission 200 can be shifted up in the order of neutral, 1st speed, 2nd speed, 3rd speed, 4th speed, 5th speed, 6th speed, 6th speed, 5th speed, 4th speed, 3rd speed, 2nd speed, 1st speed, Shift down is possible in the order of neutral.
  • the power generated in the engine 3 is transmitted to the rear wheel 5 via the clutch mechanism 10, the transmission 200, and the drive chain 14.
  • the clutch mechanism 10 is a wet multi-plate clutch.
  • the clutch mechanism 10 includes an outer plate 11 and an inner plate 12.
  • the outer plate 11 is connected to the crankshaft 13 of the engine 3 via a gear 13a.
  • the inner plate 12 is provided on the main shaft 21 of the transmission 200 described later.
  • the clutch mechanism 10 can be switched between the connected state and the disconnected state by relatively moving the outer plate 11 and the inner plate 12 in the axial direction.
  • the transmission 200 includes a main shaft 21 and a counter shaft 22.
  • the main shaft 21 is connected to the crankshaft 13 of the engine 3 via the clutch mechanism 10.
  • the counter shaft 22 is connected to the main shaft 21 via gears A, B, C, D, E, F of the first gear train 23 and gears a, b, c, d, e, f of the second gear train 24. Has been.
  • the drive sprocket 7 is fixed to the counter shaft 22. That is, the drive sprocket 7 can rotate integrally with the counter shaft 22.
  • the drive chain 14 is stretched over the drive sprocket 7 and the driven sprocket 8 fixed to the axle shaft 9 of the rear wheel 5. As a result, power is transmitted from the engine 3 to the rear wheel 5.
  • the transmission 200 can be switched between a neutral state and six shift stages from the first speed to the sixth speed.
  • the transmission 200 includes a first gear train 23 including six gears A to F provided on the main shaft 21 and a second gear train 24 including six gears a to f provided on the counter shaft 22. ing.
  • gears A to F are arranged in order from the input side where the clutch mechanism 10 is connected to the main shaft 21.
  • gears a to f are sequentially arranged from the side corresponding to the input side of the main shaft 21 in the axial direction of the counter shaft 22.
  • the gear A of the first gear train 23 is always in mesh with the gear a of the second gear train 24.
  • a state in which the gear A and the gear a transmit power from the main shaft 21 to the counter shaft 22 is a first gear.
  • the gear B of the first gear train 23 is always meshed with the gear b of the second gear train 24.
  • the state in which the gear B and the gear b transmit power from the main shaft 21 to the counter shaft 22 is the fifth gear.
  • the gear C of the first gear train 23 is always in mesh with the gear c of the second gear train 24.
  • the state in which the gear C and the gear c transmit power from the main shaft 21 to the counter shaft 22 is the third gear.
  • the gear D of the first gear train 23 is always meshed with the gear d of the second gear train 24.
  • the state in which the gear D and the gear d transmit power from the main shaft 21 to the counter shaft 22 is the fourth gear.
  • the gear E of the first gear train 23 is always meshed with the gear e of the second gear train 24.
  • a state in which the gear E and the gear e transmit power from the main shaft 21 to the counter shaft 22 is the sixth speed.
  • the gear F of the first gear train 23 is always meshed with the gear f of the second gear train 24.
  • the state in which the gear F and the gear f transmit power from the main shaft 21 to the counter shaft 22 is the second gear.
  • the control unit 83 controls the transmission 200 according to the signal from the operation unit 80 and transmits the power of the main shaft 21 to the counter shaft 22 and the gears A to F of the first gear train 23 and the gear a of the second gear train 24. Switch the group of ⁇ f.
  • FIG. 11 is a diagram showing a schematic configuration of the transmission 200. 11 shows the first gear train 23, the second gear train 24, and the shift mechanism 30 in a state where the first gear train 23 and the second gear train 24 are separated from each other. Actually, the first gear train 23 and the second gear train 24 are arranged in mesh with each other.
  • the gear A and the gear F cannot move in the axial direction with respect to the main shaft 21 and cannot rotate.
  • the gear C and the gear D are provided on the first slider 31.
  • the first slider 31 can move in the axial direction with respect to the main shaft 21 and cannot rotate.
  • the gear B and the gear E are not movable and rotatable in the axial direction with respect to the main shaft 21.
  • the gear a, gear c, gear d and gear f are immovable and rotatable in the axial direction with respect to the counter shaft 22.
  • the gear b is provided on the second slider 32.
  • the second slider 32 can move in the axial direction with respect to the counter shaft 22 and cannot rotate.
  • the gear e is provided on the third slider 33.
  • the third slider 33 can move in the axial direction with respect to the counter shaft 22 and cannot rotate.
  • the first slider 31 is movable in the axial direction on the main shaft 21 by a first shift fork 47 that is displaced in the axial direction of the shift drum 50A according to the rotation of the shift drum 50A.
  • the first slider 31 is integrally provided with a gear C, a gear D, a convex five-speed dog convex portion 45a, and a convex six-speed dog convex portion 46a.
  • the fifth speed dog convex portion 45 a protrudes toward the gear B along the axial direction of the main shaft 21.
  • a concave fifth-speed dog recess 45b that can mesh with the fifth-speed dog protrusion 45a is provided.
  • the six-speed dog convex portion 46 a protrudes toward the gear E along the axial direction of the main shaft 21.
  • a concave six-speed dog recess 46b that can mesh with the six-speed dog protrusion 46a is provided.
  • the second slider 32 is movable on the counter shaft 22 in the axial direction by a second shift fork 48 that is displaced in the axial direction of the shift drum 50A in accordance with the rotation of the shift drum 50A.
  • the second slider 32 is integrally provided with a gear b, a convex first speed dog convex portion 41a, and a convex third speed dog convex portion 43a.
  • the first-speed dog protrusion 41 a protrudes toward the gear a along the axial direction of the countershaft 22.
  • a concave first-speed dog concave portion 41b that can mesh with the first-speed dog convex portion 41a is provided.
  • the third-speed dog convex portion 43 a protrudes toward the gear c along the axial direction of the counter shaft 22.
  • a concave third-speed dog recess 43b that can mesh with the third-speed dog protrusion 43a is provided.
  • the third slider 33 is movable in the axial direction on the counter shaft 22 by a third shift fork 49 that is displaced in the axial direction of the shift drum 50A in accordance with the rotation of the shift drum 50A.
  • the third slider 33 is integrally provided with a gear e, a convex fourth-speed dog convex portion 44a, and a convex second-speed dog convex portion 42a.
  • the four-speed dog convex portion 44 a protrudes toward the gear d along the axial direction of the counter shaft 22.
  • a concave four-speed dog recess 44b that can mesh with the four-speed dog protrusion 44a is provided.
  • the second-speed dog convex portion 42 a protrudes toward the gear f along the axial direction of the counter shaft 22.
  • a concave second-speed dog concave portion 42b that can mesh with the second-speed dog convex portion 42a is provided.
  • the first speed dog convex portion 41a, the second speed dog convex portion 42a, the third speed dog convex portion 43a, and the fourth speed dog convex portion 44a rotate in synchronization with the counter shaft 22 at all times. Further, the fifth-speed dog convex portion 45a and the sixth-speed dog convex portion 46a rotate in synchronization with the main shaft 21 at all times.
  • the first-speed dog recess 41b to the sixth-speed dog recess 46b are engaged with the first-speed dog protrusion 41a to the sixth-speed dog protrusion 46a, respectively, so that the gears A to F of the first gear train 23 and the gears of the second gear train 24 are engaged. Power is transmitted between a and f.
  • the first-speed dog convex portion 41a to the sixth-speed dog convex portion 46a are moved toward and away from the corresponding first-speed dog concave portion 41b to the sixth-speed dog concave portion 46b. Thereby, the first-speed dog convex portion 41a to the sixth-speed dog convex portion 46a and the corresponding first-speed dog concave portion 41b to the sixth-speed dog concave portion 46b are engaged with each other or released from the engagement. As a result, the gear set for transmitting the power of the main shaft 21 to the counter shaft 22 is switched.
  • the second slider 32 is located on the other side (right side in the figure) of the counter shaft 22 in the axial direction.
  • the first-speed dog convex portion 41a meshes with the first-speed dog concave portion 41b.
  • the rotation of the main shaft 21 is transmitted to the gear a meshed with the gear A through the gear A fixed to the main shaft 21 so as not to rotate.
  • the rotation of the gear a is transmitted to the second slider 32 via the first speed dog concave portion 41 b of the gear a and the first speed dog convex portion 41 a of the second slider 32.
  • the rotation transmitted to the second slider 32 is transmitted to the counter shaft 22.
  • the gear set other than the set of gears A and a is idle with respect to the main shaft 21 or the counter shaft 22 with the gear belonging to one of the gear trains 23 and 24. ing. Specifically, the gear B and the gear E are idle with respect to the main shaft 21, and the gear c, the gear d, and the gear f are idle with respect to the counter shaft 22. For this reason, when the first speed is selected in the operation unit 80, power is not transmitted from the main shaft 21 to the counter shaft 22 via the set of gears B to F and gears b to f.
  • the first-speed dog convex portion 41a to the sixth-speed dog convex portion 46a are not engaged with the corresponding first-speed dog concave portion 41b to the sixth-speed dog concave portion 46b, respectively.
  • the gears A to F of the first gear train 23 are engaged with the gears a to f of the second gear train 24, respectively, but power is transmitted between the main shaft 21 and the counter shaft 22. Absent.
  • the transmission 200 includes a shift mechanism 30 that moves the first slider 31, the second slider 32, and the third slider 33 in the axial direction of the main shaft 21 and the counter shaft 22, respectively.
  • the shift mechanism 30 moves the sliders 31 to 33 to move the first speed dog convex portion 41a to the sixth speed dog convex portion 46a closer to and away from the first speed dog concave portion 41b to the sixth speed dog concave portion 46b.
  • the first-speed dog convex portion 41a to the sixth-speed dog convex portion 46a and the first-speed dog concave portion 41b to the sixth-speed dog concave portion 46b are engaged with each other or released from the engagement.
  • the shift mechanism 30 has a configuration similar to that of the above-described embodiment. Therefore, it demonstrates using the above-mentioned FIGS. 5-7.
  • the shift mechanism 30 includes a shift drum 50 ⁇ / b> A, a stopper plate 51, a position holding lever 52, a shift arm 54, a hook plate 56, and an electric motor 58.
  • the shift drum 50 ⁇ / b> A is disposed in parallel with the main shaft 21 and the counter shaft 22.
  • the stopper plate 51 is fixed to the shift drum 50A.
  • the stopper plate 51 rotates together with the shift drum 50A.
  • the position holding lever 52 maintains the stopper plate 51 at a predetermined rotation angle.
  • the hook plate 56 is fixed to one end of the shift drum 50A.
  • the shift arm 54 can lock the hook plate 56.
  • the electric motor 58 rotates the shift drum 50A by driving the shift arm 54 via the gear 54a.
  • a first guide groove 611, a second guide groove 612, and a third guide groove 613 are provided on the outer peripheral surface of the shift drum 50A.
  • Each of the first guide groove 611, the second guide groove 612, and the third guide groove 613 includes a linear portion 64 that extends in the circumferential direction of the shift drum 50A, and an inclined portion 65 that is inclined with respect to the linear portion 64. Yes.
  • the first shift fork 47 moves in the axial direction of the shift drum 50A.
  • the other end of the first shift fork 47 is connected to the first slider 31 by being positioned in the first fork receiving groove 34 of the first slider 31.
  • the second shift fork 48 moves in the axial direction of the shift drum 50A.
  • the other end of the second shift fork 48 is connected to the second slider 32 by being positioned in the second fork receiving groove 34 of the second slider 32.
  • the second slider 32 moves in the axial direction of the counter shaft 22.
  • the third shift fork 49 moves in the axial direction of the shift drum 50A.
  • the other end of the third shift fork 49 is connected to the third slider 33 by being positioned in the third fork receiving groove 34 of the third slider 33.
  • the third slider 33 moves in the axial direction of the counter shaft 22.
  • the position holding lever 52 is provided with a pressing portion 52a that can come into contact with the outer peripheral edge of the stopper plate 51.
  • the position holding lever 52 is provided so as to be swingable around the rotation center O1.
  • a spring 53 is attached to the position holding lever 52.
  • the spring 53 applies a force to the position holding lever 52 so as to press the pressing portion 52a of the position holding lever 52 against the stopper plate 51 toward the rotation center O1 of the stopper plate 51.
  • the speed change recess 70 of the stopper plate 51 has a shape capable of positioning the pressing portion 52 a of the position holding lever 52.
  • the recess 70 for shifting of the stopper plate 51 is provided corresponding to the gear position. That is, the stopper plate 51 has a first-speed recess 71, a second-speed recess 72, a third-speed recess 73, a fourth-speed recess 74, and a fifth-speed recess corresponding to the first to sixth gears. 75 and a six-speed recess 76 are provided.
  • the second shift fork 48 is moved to the other side of the shift drum 50 by the second guide groove 612 of the shift drum 50A in FIG. It is positioned on the right side of FIG. Thereby, the second slider 32 moves on the counter shaft 22 to the other side (the right side in FIG. 11). Therefore, the first-speed dog convex portion 41a of the second slider 32 meshes with the first-speed dog concave portion 41b of the gear a.
  • the third shift fork 49 moves to the one side of the shift drum 50A along the third guide groove 613 of the shift drum 50A, thereby moving the third slider 33 to one side of the counter shaft 22.
  • the upshift is performed from the first speed to the second speed.
  • One end of the shift arm 54 is connected to the output shaft 58a of the electric motor 58 via a sector gear 54a.
  • a claw 55 capable of holding the pin 57 of the hook plate 56 is provided. With the claw 55 holding the pin 57, the pin 57 is pulled by the claw 55 by rotating the shift arm 54 counterclockwise around the rotation center O ⁇ b> 1 by the electric motor 58. Accordingly, the stopper plate 51 and the shift drum 50A rotate counterclockwise.
  • the electric motor 58 has the pressing portion 52 a of the position holding lever 52 that moves over the convex portion 78 from the bottom portion 77 of the four-speed concave portion 74.
  • the shift arm 54 is rotated until it is positioned at the bottom 77 of the speed recess 75.
  • an angle formed by the bottom portions 77 of the adjacent shift recesses 70 around the rotation center O1 of the stopper plate 51 as viewed from the axial direction of the shift drum 50A is referred to as a shift rotation angle.
  • This shift rotation angle is the rotation angle of the shift drum 50A when the shift stage of the transmission 200 is switched.
  • the shift rotation angle of the shift drum 50A when changing the gear stage from the first speed to the second speed, the second speed to the third speed, the third speed to the fourth speed, the fourth speed to the fifth speed, and the fifth speed to the sixth speed. are set to 45 degrees.
  • the shift rotation angle defined here is a concept that does not include the rotation angle when switching from the first speed to the neutral.
  • the shift drum 50 moves the one end of the shift forks 47 to 49 along the guide grooves 611 to 613, so that the dog convex portion is formed at the other end of the shift forks 47 to 49.
  • the sliders 31 to 33 including 41a to 46a are displaced. Therefore, when the sliders 31 to 33 are moved, the shift drum 50A receives a reaction force. In order to prevent the shift forks 47 to 49 and the shift drum 50A from moving even when this reaction force is received, the shift drum 50A needs a certain amount of weight. For this reason, the inertial mass of the shift drum 50A is large.
  • the present inventor does not increase the rotation speed of the shift drum 50A, but reduces the rotation angle of the shift drum 50A to shorten the time for moving the shift drum 50A, thereby improving the response of the speed change operation. investigated.
  • FIG. 12A is a schematic diagram showing the first guide groove 611 to the third guide groove 613 provided on the outer peripheral surface of the shift drum 50A.
  • all the shift rotation angles are set to 45 degrees.
  • FIG. 12B shows the guide grooves 61A to 63A of the shift drum in the transmission described in Patent Document 2. In the configuration of the comparative example shown in FIG. 12B, all the shift rotation angles are set to 60 degrees.
  • the shift rotation angle (45 degrees) in the configuration of the reference example is the shift rotation angle (45 degrees) in the comparative example ( Smaller than 60 degrees). Note that the shift rotation angle is represented as a distance in the vertical direction of the drawing in FIGS. 12 (a) and 12 (b).
  • the shift forks 47 to 49 move in the same axial direction of the shift drum when the shift stage is switched by one step between the transmission 200 according to the reference example and the transmission of Patent Document 2.
  • one end of the shift fork 49 is positioned at the straight line portion 641 when the transmission is in the first speed.
  • one end portion of the shift fork 49 is positioned at the linear portion 642.
  • the distance between the center position of the straight portion 641 and the center position of the straight portion 642 is the same as that of the transmission 200 according to the reference example (FIG. (B)) is the same.
  • the force that the shift forks 47 to 49 receive from the shift drum when passing through the inclined portions 65 and 65A increases as the inclination angle of the inclined portions 65 and 65A with respect to the circumferential direction of the shift drum increases. That is, in the transmission using the shift drum 50A shown in FIG. 12 (a), the force required for the shifting operation becomes larger than in the transmission using the shift drum shown in FIG. 12 (b). .
  • the shift rotation angle of the shift drum is generally set to an angle of 60 degrees or more.
  • the electric motor 58 has a characteristic of outputting the largest torque at an extremely low speed (immediately after the start of rotation).
  • the shift drum 50A that has been stationary may be rotated by a small rotation angle with a large driving force during the shift operation. That is, the characteristics of the driving force required when the shift rotation angle of the shift drum 50A is made small match the output characteristics of the electric motor 58.
  • the present inventor has noticed that the shift drum 50A having a small shift rotation angle can be rotated without using the electric motor 58 having a large maximum output.
  • the speed change device 200 with high responsiveness to the speed change operation can be provided without increasing the size of the electric motor 58.
  • the transmission 200 according to the reference example is provided with a mechanism in which the responsiveness of the shift operation is enhanced. For this reason, as described in Patent Document 1, a gear shifting operation can be further enhanced by devising a control method for controlling the electric motor 58 that drives the shift drum 50A. At this time, since the speed change device 200 according to the reference example can move the member quickly, it is easy to move the member at a target timing, and can be suitably combined with a technique for devising a control method.
  • the position holding lever 52 is provided. After the pressing portion 52a of the position holding lever 52 moves from the bottom 77 of the speed change concave portion 70 to the convex portion 78, a spring force acting on the position holding lever 52 is used to move from the convex portion 78 to the adjacent speed change concave portion 70.
  • the shift drum 50 ⁇ / b> A can be rotated toward the bottom 77. Further, when the predetermined gear position is continuously maintained, the pressing portion 52a of the position holding lever 52 suppresses the rotation of the shift drum 50A. Therefore, it is necessary to continue energizing the electric motor 58 in order to suppress the rotation of the shift drum 50A. There is no.
  • the transmission having six shift stages has been described.
  • the present invention is applied to a transmission having seven shift stages, eight shift stages, or nine or more shift stages. May be.
  • the shift rotation angle is set to 50 degrees, for example.
  • the shift rotation angle is set to 45 degrees, for example.
  • the example in which the shift fork is used as the selector has been described.
  • a member having a non-fork shape such as a rod shape may be used as the selector.
  • an example using three shift forks has been described.
  • four or more selectors may be used.
  • the dog is provided with the dog convex portion
  • the gear is provided with the dog concave portion.
  • the dog concave portion (first dog portion) may be provided on the slider
  • the dog convex portion (second dog portion) may be provided on the gear.

Abstract

変速装置20は、歯車421~426,441~446、スライダ451~453、電動モータ58、シフトドラム50、シフトフォーク491~493、およびコントロールユニット83を有する。スライダ451~453は歯車421~426,441~446とは別体である。シフトドラム50は直線部64と傾斜部65とを含むガイド溝61~63を有する。シフトフォーク491~493の一端はガイド溝61~63内に位置付けられる。コントロールユニット83は電動モータ58を制御して、変速回転角度が60度未満になるようにシフトドラム50を回転させる。シフトドラム50が変速回転角度、回転することによって、シフトフォーク491~493がスライダ451~453をシャフト21,22の軸線方向に移動させる。これにより、スライダ451~453のドグ部が歯車441~446のドグ部と噛み合い、シャフト21の回転がシャフト22に伝達される。

Description

変速装置
 本発明は、変速装置に関する。
 従来、エンジンおよびモータなどの動力源に、クラッチを介して接続されたメインシャフトの回転を、カウンタシャフトに変速して伝達する変速装置が知られている。このような従来の変速装置では、メインシャフトおよびカウンタシャフトにはそれぞれ、変速段の数(ニュートラルを除くギアポジションの数)と同数の歯車が設けられている。メインシャフトに設けられた複数の歯車と、カウンタシャフトに設けられた複数の歯車とは、それぞれ互いに噛み合っている。これにより、変速段と同数の歯車の組が形成されている。メインシャフトの回転は、複数の歯車の組の中から変速装置のシフト機構により選択された一つの歯車の組を介して、所定の変速比でカウンタシャフトへ伝達される。以下、メインシャフトからカウンタシャフトへ回転を伝達する歯車の組を、伝達歯車の組という。
 メインシャフトおよびカウンタシャフトに設けられた複数の歯車のうち、所定数の歯車が、メインシャフトまたはカウンタシャフトの軸線方向に移動可能に設けられる。以下、上記軸線方向に移動可能に設けられる歯車を、スライド歯車という。スライド歯車は、メインシャフトまたはカウンタシャフトに相対回転不能に設けられる。スライド歯車には、ドグ(駆動ドグまたは被駆動ドグ)が設けられる。
 上記複数の歯車のうち、スライド歯車に隣り合う歯車は、メインシャフトまたはカウンタシャフトに相対回転可能に設けられる。以下、上記相対回転可能に設けられる歯車を、遊転歯車という。遊転歯車は、上記軸線方向に移動不能に設けられる。メインシャフトおよびカウンタシャフトのうちの一方のシャフトに設けられたスライド歯車は、他方のシャフトに設けられた遊転歯車に噛み合っている。遊転歯車には、同じシャフトに設けられたスライド歯車のドグに噛み合い可能なドグが設けられる。
 上記シフト機構は、例えば、シフトドラムと、複数のシフトフォークとを含む。シフトドラムの外周面には、複数のガイド溝が形成されている。各シフトフォークの一端部は、シフトドラムのガイド溝内に位置付けられている。各シフトフォークの他端部は、スライド歯車に接続されている。
 伝達歯車の組が選択される際には、シフトドラムが回転することによって、複数のシフトフォークの一端部がガイド溝内を移動する。これにより、所定のシフトフォークがシフトドラムの軸線方向に移動する。その結果、上記所定のシフトフォークに接続されたスライド歯車が、上記軸線方向に移動する。上記軸線方向に移動したスライド歯車のドグは、そのスライド歯車に隣り合う遊転歯車のドグに噛み合う。この場合、ドグを介して上記スライド歯車に接続された遊転歯車と、この遊転歯車が設けられたシャフトとは異なるシャフトに設けられかつこの遊転歯車に噛み合う歯車とが、上記伝達歯車の組である。このように、従来の変速装置では、所定のスライド歯車を上記軸線方向に移動させることによって、所望の歯車の組を伝達歯車の組として選択することができる。これにより、所望の変速比で、メインシャフトからカウンタシャフトに回転を伝達することができる。なお、シフトドラムの回転角度に応じて、スライド歯車を含む歯車の組も、伝達歯車の組として選択される。すなわち、スライド歯車は、伝達歯車の組を選択する役割と、一方のシャフトから伝達された回転を他方のシャフトに設けられた歯車に直接伝達する役割とを担う。
特開2014-206233号公報 特開2009-197823号公報
 ところで、特許文献1などにより、シフトドラムを回転させるためのアクチュエータを備えた変速装置が開示されている。このような変速装置では、アクチュエータによってシフトドラムを速やかに回転させることができる。これにより、変速操作の応答性を向上させることができる。しかしながら、シフトドラムの回転速度が大きくなると、シフトフォークの移動速度も大きくなる。これにより、シフトフォークに接続されたスライド歯車の移動速度も大きくなる。このため、シフトフォークによって移動されるスライド歯車のドグと遊転歯車のドグとが噛み合う際に生じる音および衝撃が大きくなる。
 上記のような音および衝撃の発生を抑制する手段としては、シフトドラムの回転速度を小さくすることが考えられる。しかしながら、この場合には、変速に要する時間が長くなり、変速操作の応答性が低下する。特に、変速段を2段階以上連続的に切り替える場合(例えば、三速→五速)には、シフトドラムの回転角度が大きくなる。このため、シフトドラムの回転速度を小さくすると、変速に要する時間が一層長くなり、変速操作の応答性が一層低下する。
 そこで、例えば、特許文献1に開示された自動変速機では、駆動ドグおよび被駆動ドグの相対回転位置に基づいて、アクチュエータが制御される。この自動変速機では、駆動ドグと被駆動ドグとが噛み合う際に大きな音および衝撃が発生することを抑制しつつ、変速に要する時間を短くすることができる。このように、特許文献1の自動変速機によれば、変速時の音および衝撃の発生抑制と、変速操作の応答性向上とを両立させることができる。
 一方、本発明者が変速装置について研究を進める中で、特許文献1に開示された制御とは別の手段によっても、変速時の音および衝撃の発生抑制と、変速操作の応答性向上とを両立させたいという要望が生じた。
 そこで本発明は、アクチュエータによってシフトドラムを回転させて変速操作を行う変速装置において、変速時の音および衝撃の発生抑制と、変速操作の応答性向上とを両立できる構成を得ることを目的とする。
 本発明者は、変速装置の研究を進める中で、上記特許文献1の自動変速機と同様の構成を有する変速装置において、セレクタ(シフトフォーク)と複数の歯車との関係を変更することを試みた。試行錯誤の中で、本発明者は、シフト機構の構成を、ドグを有する歯車をセレクタによって移動させるのではなく、ドグを有するスライダをセレクタによって移動させる構成に変更した。すなわち、メインシャフトからカウンタシャフトに回転を伝達するための複数の歯車とは別に、特定の歯車の組を選択するためのスライダを設けた。具体的には、メインシャフトおよびカウンタシャフトのうちの一方のシャフトに設けられた一対の遊転歯車の間に、上記一方のシャフトの軸線方向に移動可能なスライダを配置した。スライダは、他方のシャフトに設けられた歯車に、常時噛み合っていない。
 本発明者の検討の結果、上記の構成によれば、従来のスライド歯車に比べて、スライダの質量および半径を小さくすることができることが分かった。その結果、従来のスライド歯車に比べて、スライダの慣性モーメントを低減できることも分かった。衝突に関与する部材の慣性モーメントが小さければ、ドグ同士が当たる際の衝突エネルギーを低減できる。このため、スライダを移動させて変速を行う上記の構成によれば、スライド歯車を移動させて変速を行う場合に比べて、変速時の音および衝撃の発生を抑制できる。
 また、上記のように、スライダの質量を小さくすることができるので、スライド歯車を移動させる場合に比べて、小さな力でスライダを移動させることが可能であることが分かった。さらに、スライダの質量を小さくすることによって、セレクタとシフトドラムとの間に生じる摩擦力を軽減できることも分かった。これらの結果、シフトドラムを回転させる際の負荷を小さくできるので、小さな力でシフトドラムを円滑に回転させることが可能になることが分かった。その結果、変速操作の応答性を高めることができることが分かった。
 本発明者がさらに検討を進める中で、変速操作の応答性をさらに高めたいという要望が生じた。そのための手段としては、例えば、シフトドラムの回転速度を大きくすることが考えられる。しかしながら、本発明者は、シフトドラムの回転速度を大きくすることは、以下の理由により好ましくないことに気付いた。
 上述したように、シフトドラムのガイド溝には、セレクタ(シフトフォーク)の一端部が位置付けられている。このため、シフトドラムの回転に応じてスライダが移動する際に、シフトドラムは、セレクタを介してスライダから反力を受ける。この反力を受けてもシフトドラムが動かないようにするために、シフトドラムは、ある程度大きな重量で構成されている。そのため、シフトドラムの回転速度を大きくしようとすると、シフトドラムの大きな慣性質量により、所望の回転速度に達するまでに長い時間を要する。この場合、シフトドラムの回転速度を大きくしたとしても、変速操作の応答性を向上することは難しい。また、シフトドラムの回転速度を大きくした場合、シフトドラムに大きな慣性力が作用する。このため、所望の回転角度でシフトドラムの回転を止めるために、制動時間が長くなったり、大きな制動力が必要になったりする。この場合も、変速操作の応答性を向上することは難しい。なお、大型のアクチュエータを用いてシフトドラムを駆動することも考えられる。しかしながら、変速装置が大型化し、重量が大きくなるので、望ましくない。
 そこで、本発明者は、シフトドラムの回転速度を大きくすることなく、変速操作の応答性を高めることができる構成について検討を進めた。その検討の中で、変速段を1段階切り替える際のシフトドラムの回転角度(以下、変速回転角度という。)を小さくして、シフトドラムの回転に要する時間を短くすることを考えた。具体的には、シフトドラムの回転角度を60度未満に設定して、変速操作の応答性を高めることを検討した。
 しかしながら、変速回転角度を小さくした場合、シフトドラムの回転角度に対する、セレクタのシフトドラムの軸線方向への移動量を増やさなければならない。そのためには、シフトドラムの回転方向に対する、ガイド溝の傾斜角度を大きくしなければならない。この場合、シフトドラムの回転に応じてセレクタの一端部がガイド溝内を移動する際に、セレクタの一端部とシフトドラムとの間に生じる摩擦力が大きくなる。これにより、セレクタをスムーズに移動させることができなくなるおそれがある。また、上記の摩擦力が大きくなることによって、シフトドラムを円滑に回転させることができなくなるおそれがある。この場合、シフトドラムを回転させる際の負荷が大きくなるため、シフトドラムを回転させるための力を大きくしなければならない。このような理由により、従来、変速段を1段階切り替える際のシフトドラムの回転角度は、できるだけ大きくしたいと考えられている。このため、従来、変速回転角度は60度以上に設定することが一般的である。
 上記のような状況で試行錯誤する中、本発明者は、極低速域(回転開始直後)において大きなトルクを得やすいという電動モータの特性に気付いた。そして、本発明者は、変速回転角度を60度未満にすることによってシフトドラムの回転負荷が大きくなったとしても、アクチュエータとして電動モータを用いることによって、シフトドラムを円滑に回転させることができるのではないかと考えた。また、本発明者は、スライダを用いることによってシフトドラムの回転負荷を小さくできるという、上述の効果に着目した。すなわち、本発明者は、スライダを用いることによってシフトドラムの回転負荷を小さくできるので、変速回転角度を60度未満にすることによってシフトドラムの回転負荷が大きくなったとしても、シフトドラムの回転負荷は、従来の変速装置と大きく変わらないことに気付いた。
 以上の点に基づいて、本発明者は、スライド歯車の代わりにスライダを用い、かつ、アクチュエータとして電動モータを用いるとともに、敢えて、シフトドラムの変速回転角度を60度未満に設定した。その結果、シフトドラムの回転速度を大きくすることなく変速操作の応答性を向上させることができるとともに、変速時の音および衝撃の発生も抑制することができた。
本発明の一実施形態に係る変速装置は、複数の変速段に切替可能で、かつ、各変速段のときに、動力源によって回転されるメインシャフトの回転をカウンタシャフトに伝達する変速装置である。
 前記変速装置は、前記メインシャフトに設けられ、かつ、前記複数の変速段の段数と同数の複数の第一歯車、および前記カウンタシャフトに設けられ、かつ、前記複数の第一歯車に常時噛み合う、前記複数の第一歯車と同数の第二歯車、を含む複数の歯車と、前記メインシャフトまたは前記カウンタシャフトのいずれか一方のシャフトにおいて、前記一方のシャフトの軸線方向に移動可能に設けられ、第一ドグ部を有し、かつ、前記一方のシャフトと常時同期して回転するスライダと、電動モータと、円筒状または円柱状に形成され、前記電動モータに機械的に連結され、かつ前記電動モータによって回転されるシフトドラムと、前記シフトドラムの回転に応じて、前記スライダを前記一方のシャフトの軸線方向に移動させるセレクタと、前記電動モータを制御する制御部と、を備える。
 前記複数の第一歯車は、前記メインシャフトの軸線方向における移動が不能に前記メインシャフトに設けられる。前記複数の第二歯車は、前記カウンタシャフトの軸線方向における移動が不能に前記カウンタシャフトに設けられる。前記複数の第一歯車および前記複数の第二歯車のうち、前記一方のシャフトに設けられた歯車に、前記スライダの前記第一ドグ部に噛み合い可能な第二ドグ部が設けられる。前記第二ドグ部が設けられた前記歯車は、前記一方のシャフトに相対回転可能に設けられる。前記一方のシャフトに設けられた前記スライダは、前記複数の第一歯車および前記複数の第二歯車とは別体であり、かつ、前記複数の歯車のうち、前記メインシャフトおよび前記カウンタシャフトのうちの他方のシャフトに設けられた歯車に常時噛み合っておらず、前記シフトドラムは、その外周面に、周方向に延びる直線部と前記直線部に対して傾斜した傾斜部とを含むガイド溝を有する。前記セレクタの一端部は、前記ガイド溝内に位置付けられ、前記セレクタの他端部は、前記スライダに接続されている。前記制御部は、全ての変速段において、変速段を1段階切り替える際の前記シフトドラムの変速回転角度が60度未満になるように、前記電動モータを制御する。任意の変速段から異なる変速段に切り替えられる際に、前記シフトドラムが、60度未満の前記変速回転角度で回転することによって、前記セレクタが、前記複数の第一歯車および前記複数の第二歯車とは別体に構成されかつ前記複数の歯車のうち前記他方のシャフトに設けられた歯車に常時噛み合っていない前記スライダを、前記一方のシャフトの軸線方向に移動させる。前記複数の第一歯車および前記複数の第二歯車とは別体に構成されかつ前記複数の歯車のうち前記他方のシャフトに設けられた歯車に常時噛み合っていない前記スライダが、前記シフトドラムの回転に応じて前記一方のシャフトの軸線方向に移動して前記第一ドグ部が前記第二ドグ部と噛み合うことによって、前記第一歯車、前記第二歯車および前記スライダを介して前記メインシャフトの回転が前記カウンタシャフトに伝達される。
 アクチュエータによってシフトドラムを回転させて変速操作を行う変速装置において、変速時の音および衝撃の発生抑制と、変速操作の応答性向上とを両立できる。
本発明の一実施形態に係る変速装置が搭載された自動二輪車の概略構成を示す右側面図である。 (A)自動二輪車の動力伝達経路を示す概略図、(B)シフトドラムのガイド溝を示す模式図である。 自動二輪車の動力伝達経路を示す概略図である。 変速装置の概略構成を示す断面図である。 シフト機構の構成を模式的に示す図である。 ストッパープレートおよび位置保持レバーの概略構成を示す図である。 フックプレートおよびシフトアームの動作を示す図である。(a)は、四速の変速段となる回転角度でシフトドラムが維持される状態、(b)は、四速から五速へ変速段を切り替えた様子を、それぞれ示す図である。 シフトドラムのガイド溝を示す模式図である。(a)は、本実施形態のシフトドラムに設けられたガイド溝、(b)は、特許文献2に開示されたガイド溝を、それぞれ示す図である。 参考例に係る変速装置が搭載された自動二輪車の概略構成を示す図1相当図である。 参考例に係る自動二輪車の動力伝達経路を示す図3相当図である。 参考例に係る変速装置の概略構成を示す図4相当図である。 参考例に係る変速装置のシフトドラムのガイド溝を示す図8相当図である。
 図1から図8を参照しつつ、一実施形態に係る自動二輪車1について説明する。以下の説明に用いる各図面では、各部材を認識可能な大きさとするために縮尺を適宜変更している。以下の説明における「左」と「右」は、それぞれ、自動二輪車1に乗車した運転者から見た「左」と「右」を表している。
 図1は、本発明の一実施形態に係る変速装置20が搭載された自動二輪車1を右方から見た場合における自動二輪車1の外観を示している。矢印Frは、自動二輪車1の前方向を示している。矢印Rrは、自動二輪車1の後方向を示している。矢印Uは、自動二輪車1の上方向を示している。矢印Dは、自動二輪車1の下方向を示している。
 本実施形態において、自動二輪車1は、車体フレーム2と、エンジン3(動力源)と、前輪4と、後輪5と、ハンドル6とを備えている。エンジン3は、車体フレーム2に支持されている。エンジン3から出力される動力によって、後輪5が駆動される。
 ハンドル6には、自動二輪車1の運転者が変速装置20の変速段を切り替える操作を行う操作部80が設けられている。操作部80は、変速装置20の変速段を上げるシフトアップボタン81と、変速装置20の変速段を下げるシフトダウンボタン82とを備えている(図3参照)。操作部80は、運転者の操作に応じた信号を後述のコントロールユニット83(図3参照)に送信する。
 図3は、自動二輪車1の動力伝達経路を示す概略図である。自動二輪車1は、クラッチ機構10と、変速装置20と、駆動チェーン14とを備える。変速装置20は、コントロールユニット83(制御部の一例)を有する。コントロールユニット83は、操作部80から送信された前記信号に応じて切替信号を生成し、変速装置20に送信する。すなわち、コントロールユニット83は、操作部80から送信された前記信号に応じて、後述する電動モータ58を制御することにより、変速装置20の変速段を切り替える。これにより、運転者が操作部80を操作することにより、運転者がクラッチ操作を行うことなく、コントロールユニット83が変速装置20の変速段を切り替えることができる。
 なお、本実施形態では、自動二輪車1の変速装置20は、六段の変速段を有する。変速装置20は、ニュートラル、一速、二速、三速、四速、五速、六速の順にシフトアップ可能であり、六速、五速、四速、三速、二速、一速、ニュートラルの順にシフトダウン可能である。本実施形態では、コントロールユニット83に制御された電動モータ58によって、変速装置20が、ニュートラルおよび一速~六速の変速段のいずれかの状態に切り換えられる。詳細は後述する。
 図3に示すように、エンジン3で生じた動力は、クラッチ機構10、変速装置20および駆動チェーン14を介して後輪5に伝達される。
 クラッチ機構10は、湿式多板式のクラッチである。クラッチ機構10は、アウタプレート11と、インナプレート12とを備えている。アウタプレート11は、エンジン3のクランクシャフト13に歯車13aを介して接続されている。インナプレート12は、変速装置20の後述するメインシャフト21に設けられている。
 アウタプレート11とインナプレート12とは、メインシャフト21の軸線方向に相対移動可能に構成されている。クラッチ機構10は、クランクシャフト13の回転がメインシャフト21に伝達される接続状態と、クランクシャフト13の回転がメインシャフト21に伝達されない切断状態と、に切り替えることができる。具体的には、本実施形態では、アウタプレート11とインナプレート12とを前記軸線方向に相対移動させて、アウタプレート11とインナプレート12とを接触させることにより、クラッチ機構10を接続状態に切り替えることができる。また、アウタプレート11とインナプレート12とを前記軸線方向に相対移動させて、アウタプレート11とインナプレート12とを離間させることにより、クラッチ機構10を切断状態に切り替えることができる。
 変速装置20は、メインシャフト21と、カウンタシャフト22とを備えている。メインシャフト21及びカウンタシャフト22は、平行に配置されている。メインシャフト21は、クラッチ機構10を介してエンジン3のクランクシャフト13に接続されている。カウンタシャフト22は、変速装置20の後述する複数の歯車を介してメインシャフト21と接続されている。
 カウンタシャフト22には、駆動スプロケット7が固定されている。すなわち、駆動スプロケット7は、カウンタシャフト22と一体で回転可能である。駆動チェーン14は、駆動スプロケット7と、後輪5のアクスルシャフト9に固定された被駆動スプロケット8とに架け渡されている。これにより、エンジン3から後輪5へ動力が伝達される。なお、図3においては、図面が煩雑になることを避けるために、カウンタシャフト22の左端部に駆動スプロケット7を示しているが、後述の図4に示すように、本実施形態では、駆動スプロケット7は、例えば、カウンタシャフト22の右端部に設けられる。
 なお、以下の説明において、メインシャフト21およびカウンタシャフト22の延びている方向を「軸線方向」と定義する。すなわち、メインシャフト21またはカウンタシャフト22が軸線方向に延びているとは、メインシャフト21またはカウンタシャフト22が軸線方向に長い形状であることを意味する。
 図4は、変速装置20のより詳細な構成を示す図である。この図4は、変速装置20を、前記軸線方向に沿って延びる断面で示す図である。
 図3および図4に示すように、変速装置20は、一速駆動歯車421、二速駆動歯車422、三速駆動歯車423、四速駆動歯車424、五速駆動歯車425、および六速駆動歯車426を備えている。一速駆動歯車421、二速駆動歯車422、三速駆動歯車423、四速駆動歯車424、五速駆動歯車425、および六速駆動歯車426は、メインシャフト21上に軸線方向に並んで配置されている。
 具体的には、メインシャフト21上には、メインシャフト21がクラッチ機構10と接続される入力側(図3,4における右方)から、順に、二速駆動歯車422、四速駆動歯車424、六速駆動歯車426、五速駆動歯車425、三速駆動歯車423、および一速駆動歯車421が配置されている。
 変速装置20は、一速被駆動歯車441、二速被駆動歯車442、三速被駆動歯車443、四速被駆動歯車444、五速被駆動歯車445、および六速被駆動歯車446を備えている。一速被駆動歯車441、二速被駆動歯車442、三速被駆動歯車443、四速被駆動歯車444、五速被駆動歯車445、および六速被駆動歯車446は、カウンタシャフト22上に軸線方向に並んで配置されている。
 具体的には、カウンタシャフト22上には、カウンタシャフト22の軸線方向においてメインシャフト21の入力側に対応する側(図3,4における右方)から、順に、二速被駆動歯車422、四速被駆動歯車444、六速被駆動歯車446、五速被駆動歯車445、三速被駆動歯車443、および一速被駆動歯車441が配置されている。
 本実施形態では、一速駆動歯車421、二速駆動歯車422、三速駆動歯車423、四速駆動歯車424、五速駆動歯車425、および六速駆動歯車426が、複数の第一歯車の例である。また、一速被駆動歯車441、二速被駆動歯車442、三速被駆動歯車443、四速被駆動歯車444、五速被駆動歯車445、および六速被駆動歯車446が、複数の第二歯車の例である。
 一速被駆動歯車441は、一速駆動歯車421と常時噛み合っている。一速被駆動歯車441と一速駆動歯車421とが、メインシャフト21からカウンタシャフト22へ動力を伝達している状態が、一速の変速段である。
 二速被駆動歯車442は、二速駆動歯車422と常時噛み合っている。二速被駆動歯車442と二速駆動歯車422とが、メインシャフト21からカウンタシャフト22へ動力を伝達している状態が、二速の変速段である。
 三速被駆動歯車443は、三速駆動歯車423と常時噛み合っている。三速被駆動歯車443と三速駆動歯車423とが、メインシャフト21からカウンタシャフト22へ動力を伝達している状態が、三速の変速段である。
 四速被駆動歯車444は、四速駆動歯車424と常時噛み合っている。四速被駆動歯車444と四速駆動歯車424とが、メインシャフト21からカウンタシャフト22へ動力を伝達している状態が、四速の変速段である。
 五速被駆動歯車445は、五速駆動歯車425と常時噛み合っている。五速被駆動歯車445と五速駆動歯車425とが、メインシャフト21からカウンタシャフト22へ動力を伝達している状態が、五速の変速段である。
 六速被駆動歯車446は、六速駆動歯車426と常時噛み合っている。六速被駆動歯車446と六速駆動歯車426とが、メインシャフト21からカウンタシャフト22へ動力を伝達している状態が、六速の変速段である。
 一速駆動歯車421は、メインシャフト21に対して回転不能である。一速被駆動歯車441は、カウンタシャフト22に対して回転可能である。
 二速駆動歯車422は、メインシャフト21に対して回転不能である。二速被駆動歯車442は、カウンタシャフト22に対して回転可能である。
 三速駆動歯車423は、メインシャフト21に対して回転不能である。三速被駆動歯車443は、カウンタシャフト22に対して回転可能である。
 四速駆動歯車424は、メインシャフト21に対して回転不能である。四速被駆動歯車444は、カウンタシャフト22に対して回転可能である。
 五速駆動歯車425は、メインシャフト21に対して回転可能である。五速被駆動歯車445は、カウンタシャフト22に対して回転不能である。
 六速駆動歯車426は、メインシャフト21に対して回転可能である。六速被駆動歯車446は、カウンタシャフト22に対して回転不能である。
 変速装置20は、前記軸線方向から見て環状の第一スライダ451を備えている。第一スライダ451は、メインシャフト21上において、五速駆動歯車425(第一歯車)と六速駆動歯車426(第一歯車)との間に配置されている。第一スライダ451は、メインシャフト21上を軸線方向に移動可能である。第一スライダ451は、メインシャフト21に対して回転不能である。
 変速装置20は、前記軸線方向から見て環状の第二スライダ452を備えている。第二スライダ452は、カウンタシャフト22上において、一速被駆動歯車441(第二歯車)と三速被駆動歯車443(第二歯車)との間に配置されている。第二スライダ452は、カウンタシャフト22上を軸線方向に移動可能である。第二スライダ452は、カウンタシャフト22に対して回転不能である。
 変速装置20は、前記軸線方向から見て環状の第三スライダ453を備えている。第三スライダ453は、カウンタシャフト22上において、二速被駆動歯車442(第二歯車)と四速被駆動歯車444(第二歯車)との間に配置されている。第三スライダ453は、カウンタシャフト22上を軸線方向に移動可能である。第三スライダ453は、カウンタシャフト22に対して回転不能である。
 第一スライダ451は、カウンタシャフト22に設けられた歯車に、常時噛み合っていない。第二スライダ452および第三スライダ453は、メインシャフト21に設けられた歯車に、常時噛み合っていない。すなわち、スライダ451~453はそれぞれ、メインシャフト21およびカウンタシャフト22のうち、一方のシャフトに軸線方向に移動可能に設けられているとともに、他方のシャフトに設けられた歯車に、常時噛み合っていない。また、スライダ451~453はそれぞれ、メインシャフト21およびカウンタシャフト22に設けられた歯車とは別体に構成されている。
 図4に示されるように、変速装置20は、五速ドグ凸部465と、五速ドグ凹部475とを備えている。五速ドグ凸部465(第一ドグ部)は、第一スライダ451に設けられている。すなわち、第一スライダ451には、複数の五速ドグ凸部465が、第一スライダ451の周方向に並んで設けられている。五速ドグ凸部465は、第一スライダ451に、メインシャフト21の軸線方向に沿って、五速駆動歯車425に向かって突出するように設けられている。
 五速ドグ凹部475(第二ドグ部)は、五速駆動歯車425に設けられている。すなわち、五速駆動歯車425には、複数の五速ドグ凹部475が、五速駆動歯車425の周方向に並んで設けられている。五速ドグ凹部475は、五速ドグ凸部465に噛み合い可能に構成されている。
 図4に示されるように、変速装置20は、六速ドグ凸部466と、六速ドグ凹部476とを備えている。六速ドグ凸部466(第一ドグ部)は、第一スライダ451に設けられている。すなわち、第一スライダ451には、複数の六速ドグ凸部466が、第一スライダ451の周方向に並んで設けられている。六速ドグ凸部466は、第一スライダ451に、メインシャフト21の軸線方向に沿って、六速駆動歯車426に向かって突出するように設けられている。
 六速ドグ凹部476(第二ドグ部)は、六速駆動歯車426に設けられている。すなわち、六速駆動歯車426には、複数の六速ドグ凹部476が、六速駆動歯車426の周方向に並んで設けられている。六速ドグ凹部476は、六速ドグ凸部466に噛み合い可能に構成されている。
 図4に示されるように、変速装置20は、一速ドグ凸部461と、一速ドグ凹部471とを備えている。一速ドグ凸部461(第一ドグ部)は、第二スライダ452に設けられている。すなわち、第二スライダ452には、複数の一速ドグ凸部461が、第二スライダ452の周方向に並んで設けられている。一速ドグ凸部461は、第二スライダ452に、カウンタシャフト22の軸線方向に沿って、一速被駆動歯車441に向かって突出するように設けられている。
 一速ドグ凹部471(第二ドグ部)は、一速被駆動歯車441に設けられている。すなわち、一速被駆動歯車441には、複数の一速ドグ凹部471が、一速被駆動歯車441の周方向に並んで設けられている。一速ドグ凹部471は、一速ドグ凸部461に噛み合い可能に構成されている。
 図4に示されるように、変速装置20は、三速ドグ凸部463と、三速ドグ凹部473とを備えている。三速ドグ凸部463(第一ドグ部)は、第二スライダ452に設けられている。すなわち、第二スライダ452には、複数の三速ドグ凸部463が、第二スライダ452の周方向に並んで設けられている。三速ドグ凸部463は、第二スライダ452に、カウンタシャフト22の軸線方向に沿って、三速被駆動歯車443に向かって突出するように設けられている。
 三速ドグ凹部473(第二ドグ部)は、三速被駆動歯車443に設けられている。すなわち、三速被駆動歯車443には、複数の三速ドグ凹部473が、三速被駆動歯車443の周方向に並んで設けられている。三速ドグ凹部473は、三速ドグ凸部463に噛み合い可能に構成されている。
 図4に示されるように、変速装置20は、二速ドグ凸部462と、二速ドグ凹部472とを備えている。二速ドグ凸部462(第一ドグ部)は、第三スライダ453に設けられている。すなわち、第三スライダ453には、複数の二速ドグ凸部462が、第三スライダ453の周方向に並んで設けられている。二速ドグ凸部462は、第三スライダ453に、カウンタシャフト22の軸線方向に沿って、二速被駆動歯車442に向かって突出するように設けられている。
 二速ドグ凹部472(第二ドグ部)は、二速被駆動歯車442に設けられている。すなわち、二速被駆動歯車442には、複数の二速ドグ凹部472が、二速被駆動歯車442の周方向に並んで設けられている。二速ドグ凹部472は、二速ドグ凸部462に噛み合い可能に構成されている。
 図4に示されるように、変速装置20は、四速ドグ凸部464と、四速ドグ凹部474とを備えている。四速ドグ凸部464(第一ドグ部)は、第三スライダ453に設けられている。すなわち、第三スライダ453には、複数の四速ドグ凸部464が、第三スライダ453の周方向に並んで設けられている。四速ドグ凸部464は、第三スライダ453に、カウンタシャフト22の軸線方向に沿って、四速被駆動歯車444に向かって突出するように設けられている。
 四速ドグ凹部474(第二ドグ部)は、四速被駆動歯車444に設けられている。すなわち、四速被駆動歯車444には、複数の四速ドグ凹部474が、四速被駆動歯車444の周方向に並んで設けられている。四速ドグ凹部474は、四速ドグ凸部464に噛み合い可能に構成されている。
 本実施形態では、ドグ凸部461~466がそれぞれ第一ドグ部の例であり、ドグ凹部471~476がそれぞれ第二ドグ部の例である。
 図3に示されるように、変速装置20は、シフトドラム50を備えている。図5は、シフトドラム50の具体的な構成を示している。シフトドラム50は、円柱状または円筒状である。シフトドラム50は、軸線方向に延びる中心軸を中心として回転可能である。
 変速装置20は、第一スライダ451、第二スライダ452、第三スライダ453を軸線方向に移動させるシフト機構30を有している。シフト機構30は、スライダ451を、メインシャフト21の軸線方向に移動させる。また、シフト機構30は、スライダ452,453を、カウンタシャフト22の軸線方向に移動させる。これにより、五速ドグ凸部465と五速ドグ凹部475との噛み合い、六速ドグ凸部466と六速ドグ凹部476との噛み合い、一速ドグ凸部461と一速ドグ凹部471との噛み合い、三速ドグ凸部463と三速ドグ凹部473との噛み合い、二速ドグ凸部462と二速ドグ凹部472との噛み合い、四速ドグ凸部464と四速ドグ凹部474との噛み合いのいずれかが実現される。
 図5に示すように、シフト機構30は、シフトドラム50と、ストッパープレート51(ストッパー部材の一例)と、位置保持レバー52と、シフトアーム54と、フックプレート56と、電動モータ58とを備えている。電動モータ58は、コントロールユニット83に制御されることによって、後述するようにシフトドラム50を駆動する。シフトドラム50は、メインシャフト21およびカウンタシャフト22と平行に配置されている。すなわち、シフトドラム50も、メインシャフト21及びカウンタシャフト22と同様、軸線方向に延びている。
 ストッパープレート51は、シフトドラム50と同軸上に、シフトドラム50に固定されている。ストッパープレート51は、シフトドラム50とともに回転する。位置保持レバー52は、ストッパープレート51を所定の回転角度に維持する。フックプレート56は、シフトドラム50の一方の端部に固定されている。シフトアーム54は、フックプレート56に接触可能である。電動モータ58はギヤ54a(減速機構の一例)を介してシフトアーム54を駆動し、シフトドラム50を回転させる。
 図5に示すように、シフトドラム50の外周面には、第一ガイド溝61、第二ガイド溝62、および第三ガイド溝63が設けられている。第一ガイド溝61、第二ガイド溝62、および第三ガイド溝63は、それぞれ、シフトドラム50の周方向に延びる直線部64と、直線部64に対して傾斜した傾斜部65とを有している。なお、図5においては、第一ガイド溝61、第二ガイド溝62、および第三ガイド溝63を模式的に示している。第一ガイド溝61、第二ガイド溝62、および第三ガイド溝63の具体的な構成は、後述の図8(a)に示す。
 図5に示すように、シフト機構30は、第一シフトフォーク491、第二シフトフォーク492、および第三シフトフォーク493を備えている。第一シフトフォーク491の一方の端部は、シフトドラム50の第一ガイド溝61内に位置付けられている。第二シフトフォーク492の一方の端部は、シフトドラム50の第二ガイド溝62内に位置付けられている。第三シフトフォーク493の一方の端部は、シフトドラム50の第三ガイド溝63内に位置付けられている。本実施形態では、シフトフォーク491~493がそれぞれ、セレクタの一例である。
 図4に示されるように、第一スライダ451には、第一フォーク受け溝451aが形成されている。第一シフトフォーク491の他方の端部は、第一スライダ451の第一フォーク受け溝451a内に位置付けられる。すなわち、第一シフトフォーク491の他方の端部は、第一スライダ451に接続されている。
 第二スライダ452には、第二フォーク受け溝452aが形成されている。第二シフトフォーク492の他方の端部は、第二スライダ452の第二フォーク受け溝452a内に位置付けられる。すなわち、第二シフトフォーク492の他方の端部は、第二スライダ452に接続されている。
 第三スライダ453には、第三フォーク受け溝453aが形成されている。第三シフトフォーク493の他方の端部は、第三スライダ453の第三フォーク受け溝453a内に位置付けられる。すなわち、第三シフトフォーク493の他方の端部は、第三スライダ453に接続されている。
 シフトドラム50が回転することにより、第一シフトフォーク491の一方の端部が第一ガイド溝61の傾斜部65を通過すると、第一シフトフォーク491がシフトドラム50の軸線方向に移動する。第一シフトフォーク491の他方の端部は第一スライダ451に接続されているため、上述のように第一シフトフォーク491が前記軸線方向に移動すると、第一スライダ451がメインシャフト21の軸線方向に移動する。
 シフトドラム50が回転することにより、第二シフトフォーク492の一方の端部が第二ガイド溝62の傾斜部65を通過すると、第二シフトフォーク492がシフトドラム50の軸線方向に移動する。第二シフトフォーク492の他方の端部は第二スライダ452に接続されているため、上述のように第二シフトフォーク492が前記軸線方向に移動すると、第二スライダ452がカウンタシャフト22の軸方線向に移動する。
 シフトドラム50が回転することにより、第三シフトフォーク493の一方の端部が第三ガイド溝63の傾斜部65を通過すると、第三シフトフォーク493がシフトドラム50の軸線方向に移動する。第三シフトフォーク493の他方の端部は第三スライダ453に接続されているため、上述のように第三シフトフォーク493が前記軸線方向に移動すると、第三スライダ453がカウンタシャフト22の軸線方向に移動する。
 図6は、シフト機構30におけるストッパープレート51および位置保持レバー52の構成を示す図である。なお、図6および後述の図7においては、電動モータ58およびシフトアーム54等を模式的に示している。図6に示すように、ストッパープレート51の外周面には、複数の凸部78と、変速段の段数に応じた数(図示の例では6個)の変速用凹部70と、ニュートラル状態に対応するニュートラル用凹部79とが設けられている。複数の凸部78と、複数の変速用凹部70とは、ストッパープレート51の回転方向に沿って交互に並ぶように形成されている。
 位置保持レバー52には、ストッパープレート51の外周面に押し付けられる押し付け部52aが設けられている。位置保持レバー52は、回転中心O1回りに揺動可能に設けられている。位置保持レバー52には、バネ53が取り付けられている。バネ53は、位置保持レバー52の押し付け部52aを、ストッパープレート51に対してストッパープレート51の回転中心に向かって押し付けるように、位置保持レバー52に力を加えている。ストッパープレート51の変速用凹部70は、位置保持レバー52の押し付け部52aを位置付け可能な形状を有する。
 ストッパープレート51の複数の変速用凹部70は、変速装置20の変速段に対応して設けられている。すなわち、ストッパープレート51には、一速から六速の変速段にそれぞれ対応して、一速用凹部71、二速用凹部72、三速用凹部73、四速用凹部74、五速用凹部75及び六速用凹部76が設けられている。
 例えば、位置保持レバー52の押し付け部52aが一速用凹部71に押し付けられている状態について説明する。この場合、図5において、シフトドラム50の第二ガイド溝62によって、第二シフトフォーク492がシフトドラム50の一方(シフトドラム50の軸線方向において、カウンタシャフト22の一速被駆動歯車441に近い端部に向かう方向、図5の左方)に位置付けられる。これによって、第二スライダ452がシフトドラム50の前記一方に位置付けられる。よって、第二スライダ452の一速ドグ凸部461が一速被駆動歯車441の一速用ドグ凹部471と噛み合う。
 シフトドラム50をモータ58側から見て(図6に示す状態で)、ストッパープレート51とともにシフトドラム50を反時計回りに45度回転させると、位置保持レバー52の押し付け部52aが一速用凹部71から二速用凹部72に移動する。このとき、図5において、シフトドラム50の第二ガイド溝62に沿って第二シフトフォーク492がシフトドラム50の他方(図5の右方)に移動する。これにより、第二スライダ452が、シフトドラム50の他方に向かって、カウンタシャフト22上を移動する。第二スライダ452のこのような動きによって、一速ドグ凸部461と一速被駆動歯車441の一速ドグ凹部471との噛み合いが解除される。
 また、上述のようなシフトドラム50の回転により、シフトドラム50の第三ガイド溝63に沿って第三シフトフォーク493がシフトドラム50の前記一方(図5の左方)に移動する。これにより、第三スライダ453が、シフトドラム50の前記一方に向かって、カウンタシャフト22上を移動する。第三スライダ453のこのような動きによって、二速ドグ凸部462と二速ドグ凹部472とが噛み合う。これにより、変速装置20の変速段が一速から二速にシフトアップされる。
 上述したように、位置保持レバー52の押し付け部52aは、バネ53によって、ストッパープレート51の回転中心に向かって押し付けられている。したがって、押し付け部52aが、変速用凹部70またはニュートラル用凹部79に位置付けられると、押し付け部52aは、バネ53によって、変速用凹部70またはニュートラル用凹部79において、ストッパープレート51の外周面に押し付けられる。これにより、ストッパープレート51の変速用凹部70またはニュートラル用凹部79内に、位置保持レバー52の押し付け部52aが位置付けられた状態で、ストッパープレート51の回転が抑制される。
 図7は、シフトドラム50のフックプレート56およびシフトアーム54を示す図である。図7(a)は、位置保持レバー52が四速の変速段に対応する回転角度でシフトドラム50を維持した場合のフックプレート56およびシフトアーム54の状態を示している。図7(b)は、四速から五速へ変速段を切り替えた場合のフックプレート56およびシフトアーム54の状態を示している。
 図5および図7を参照して、シフトアーム54の一方の端部は、電動モータ58の出力軸58aに、扇形のギヤ54aを介して連結されている。シフトアーム54の他方の端部には、フックプレート56のピン57を保持可能な爪55が設けられている。図7に示す例では、爪55がピン57を保持した状態で、電動モータ58によって、シフトアーム54をモータ58から見て回転中心O1回りに反時計回りに回転させる。この場合、ピン57が爪55に引っ張られるため、ストッパープレート51およびシフトドラム50が反時計回りに回転する。例えば、変速装置20において変速段が四速から五速に切り替えられる場合、電動モータ58は、位置保持レバー52の押し付け部52aが四速用凹部74の底部77から凸部78を乗り越えて五速用凹部75の底部77に位置するまで、シフトアーム54を回転させる。
 図示された変速装置20において、シフトドラム50の軸線方向から見て、ストッパープレート51の回転中心O1を中心として、隣り合う変速用凹部70の底部77同士がなす角度を、変速回転角度と呼ぶ。この変速回転角度は、変速装置20の変速段が切り替えられる際におけるシフトドラム50の回転角度である。本実施形態では、全ての変速段において、変速段を1段階切り替える際の変速回転角度が、60度未満に設定される。図7に示す例では、一速から二速、二速から三速、三速から四速、四速から五速、五速から六速に変速段を変える際のシフトドラム50の変速回転角度が、それぞれ、45度に設定されている。なお、ここで定義した変速回転角度とは、電動モータ58が、変速装置20の変速段を、一速からニュートラルに切り替える際の回転角度は含まない概念である。
 なお、本実施形態では、変速装置20がニュートラルのときのシフトドラム50の回転位置は、変速装置20が上記複数の変速段(一速~六速)の間で切り替えられる際のシフトドラム50の回転領域から外れている。このような構成により、変速段の切り換えを円滑に行うことができる。
 また、本実施形態では、例えば、変速装置20の変速段が1段階切り替えられる際に、電動モータ58の出力軸58aは60度以上回転する。前記出力軸58aの60度以上の回転は、減速機構(ギア54a)を介して、60度未満の変速回転角度の回転として、シフトドラム50に伝達される。この場合、電動モータ58は、小さなトルクで、シフトドラム50を駆動することができる。これにより、大型の電動モータを用いることなく、シフトドラム50を円滑に回転させることができる。
 本実施形態に係る変速装置20によれば、メインシャフト21およびカウンタシャフト22に、歯車とは別体に構成され、かつ、他方のシャフトに設けられた歯車に常時噛み合わないようなスライダ451~453が設けられる。これにより、従来のドグ部を有するスライド歯車に比べて、スライダ451~453の質量および半径を小さくすることができる。そのため、ドグ部同士が当たる際の衝突エネルギーを低減することができ、変速時の音および衝撃の発生を抑制できる。
 しかも、上述のように、スライダ451~453の質量を小さくすることにより、スライド歯車に比べて、小さな力でスライダ451~453を移動させることができる。さらに、スライダ451~453の質量を小さくすることによって、シフトフォーク491~493とシフトドラム50との間に生じる摩擦力を軽減することができる。これにより、シフトドラム50を回転させる際の負荷を小さくできるので、小さな力でシフトドラム50を円滑に回転させることができる。したがって、変速装置20において変速操作の応答性を高めることができる。
 なお、上述したように、シフトドラム50のガイド溝61~63には、シフトフォーク491~493の一端部が位置付けられている。このため、シフトドラム50の回転に応じてスライダ451~453が移動する際に、シフトドラム50は、シフトフォーク491~493を介してスライダ451~453から反力を受ける。この反力を受けてもシフトドラム50が動かないようにするために、シフトドラム50は、ある程度大きな重量で構成されている。
 そのため、変速操作の応答性を高めるために、シフトドラム50の回転速度を大きくしようとすると、シフトドラム50の大きな慣性質量により、所望の回転速度に達するまでに長い時間を要する。この場合、シフトドラム50の回転速度を大きくしたとしても、変速操作の応答性を向上することは難しい。また、シフトドラム50の回転速度を大きくした場合、シフトドラム50に大きな慣性力が作用する。このため、所望の回転角度でシフトドラム50の回転を止めるために、制動時間が長くなったり、大きな制動力が必要になったりする。この場合も、変速操作の応答性を向上することは難しい。
 そこで、本実施形態では、上述のように、変速段を1段階切り替える際のシフトドラム50の回転角度(変速回転角度という。)を、60度未満に設定している。これにより、シフトドラム50の回転に要する時間を短くしている。
 なお、変速回転角度を小さくした場合、シフトドラム50の回転角度に対する、シフトフォーク491~493のシフトドラム50の軸線方向への移動量を増やさなければならない。そのためには、詳細を後述するように、ガイド溝61~63において、直線部64に対する傾斜部65の傾斜角度を大きくしなければならない。この場合、シフトドラム50の回転に応じてシフトフォーク491~493の一端部が傾斜部65内を移動する際に、シフトフォーク491~493とシフトドラム50との間に生じる摩擦力が大きくなる。これにより、シフトドラム50を回転させる際の負荷が大きくなる。この点に関して、本実施形態では、シフトドラム50を回転させるためのアクチュエータとして、電動モータ58を用いている。電動モータ58は、極低速域(回転開始直後)において大きなトルクを得やすいという特性を有している。したがって、変速回転角度を60度未満にすることによってシフトドラム50の回転負荷が上記のように大きくなったとしても、電動モータ58を用いることによって、シフトドラム50を円滑に回転させることができる。
 以上の結果、本実施形態に係る変速装置20によれば、変速時の音および衝撃の発生抑制と、変速操作の応答性向上とを両立できる。
 以下、本実施形態に係る変速機構20のシフトドラム50と、特許文献2に開示された従来の変速装置のシフトドラムとを比較しつつ、ガイド溝61~63の傾斜部65の傾斜角度について説明する。
 図8(a)は、本実施形態に係る変速装置20のシフトドラム50の外周面に設けられた第一ガイド溝61~第三ガイド溝63を示す模式図である。図8(a)に示されている構成では、図6および図7で説明したように、全ての変速回転角度が45度に設定されている。図8(b)は、特許文献2に記載の変速装置におけるシフトドラムのガイド溝61A~63Aを示す。図8(b)に示す比較例の構成では、全ての変速回転角度が60度に設定されている。
 図8(a)と図8(b)とを比較すると、例えば、一速から二速へ変速する際には、本実施形態の構成における変速回転角度(45度)が比較例における変速回転角度(60度)よりも小さい。なお、前記変速回転角度は、図8(a),(b)では、紙面上下方向の距離として表されている。
 本実施形態に係る変速装置20と特許文献2の変速装置とで、変速段が1段階切り替えられる際に、シフトドラムの軸線方向において、シフトフォーク491~493が移動する距離は同一とする。例えば、図8(a),(b)において、変速装置が一速の変速段の状態のときには、シフトフォーク492の一端部は、直線部641に位置付けられる。また、変速装置が二速の変速段の状態のときは、シフトフォーク492の一端部は、直線部642に位置付けられる。シフトドラムの軸線方向において、直線部641の中心位置と、直線部642の中心位置との距離は、本実施形態に係る変速装置20(図8(a))と特許文献2の変速装置(図8(b))とで同一である。
 図8(a)の傾斜部65は、図8(b)の傾斜部65Aに比べて、小さい変速回転角度で、直線部641と直線部642とを接続している。上述したように、シフトドラムの軸線方向において、直線部641と直線部642との距離は、図8(a)と図8(b)とで等しい。このため、図8(a)の傾斜部65が、直線部641,642に対してなす角度は、図8(b)の傾斜部65Aが直線部641,642に対してなす角度よりも大きい。言い換えると、図8(a)の傾斜部65が、シフトドラム50の周方向に対してなす角度は、図8(b)の傾斜部65Aが、シフトドラムの周方向に対してなす角度よりも大きい。
 シフトフォーク491~493が、傾斜部65,65Aを通過する際にシフトドラムから受ける力は、シフトドラムの周方向に対する傾斜部65,65Aの傾斜角度が大きいほど、大きくなる。つまり、図8(a)に示したシフトドラム50を用いた変速装置においては、図8(b)に示したシフトドラムを用いた変速装置に比べて、変速操作に要する力が大きくなってしまう。このため、特許文献2のように、シフトドラムの変速回転角度は60度以上の角度とすることが一般的である。
 しかし、本発明者は、上述したように、電動モータ58の出力特性に着目した。電動モータ58は、極低速(回転開始直後)のときに、最も大きなトルクを出力するという特性を有する。シフトドラム50の変速回転角度が小さい場合には、変速操作の際に、静止していたシフトドラム50を大きな駆動力によって、小さな回転角度だけ回転させればよい。つまり、シフトドラム50の変速回転角度を小さくした場合に要求される駆動力の特性と、電動モータ58の出力特性とが一致している。このため、最大出力の大きな電動モータ58を用いなくても、変速回転角度の小さなシフトドラム50を回転させることができることに、本発明者は気が付いた。これにより、電動モータ58を大型化させなくても、変速操作の応答性の高い変速装置20が提供される。
 本実施形態に係る変速装置20は、変速操作の応答性が高められた機構を備えている。このため、特許文献1に記載のように、シフトドラム50を駆動する電動モータ58を制御する制御方法を工夫することにより、さらに変速操作を高めることができる。この際、本実施形態に係る変速装置20は、部材を迅速に動かすことができるので、狙ったタイミングで部材を動かしやすく、制御方法を工夫する技術と好適に組み合わせることができる。
 また、上述した実施形態においては、位置保持レバー52を備えている。位置保持レバー52の押し付け部52aが変速用凹部70の底部77から凸部78へ移動した後は、位置保持レバー52に作用しているバネ力を使って凸部78から隣の変速用凹部70の底部77に向かってシフトドラム50を回転させることができる。また、所定の変速段を維持し続ける場合に、位置保持レバー52の押し付け部52aがシフトドラム50の回転を抑制するので、シフトドラム50の回転を抑制するために電動モータ58に通電し続ける必要がない。
 <参考例>
 図9から図12の図面を参照しつつ、本発明の参考例について、以下詳細に説明する。この参考例では、スライド歯車が設けられた変速装置に、上述の変速回転角度でシフトドラムを回転させる構成を適用した場合について説明する。なお、以下の説明において、上述の実施形態と同一の構成は同一の符号を付す。
 図9は、本発明の参考例に係る変速装置200が搭載された自動二輪車100の右側面図である。図9に示すように、自動二輪車100は、車体フレーム2と、エンジン3と、前輪4と、後輪5と、ハンドル6とを備えている。エンジン3は、車体フレーム2に支持されている。エンジン3から出力される動力によって後輪5が駆動される。自動二輪車100の運転者が変速段を切り替える操作を行う操作部80がハンドル6に設けられている。
 図10は、自動二輪車100の動力伝達経路を示す概略図である。図示の例では、操作部80は、変速装置200の変速段を上げるシフトアップボタン81と、変速装置200の変速段を下げるシフトダウンボタン82とを備えている。操作部80は、運転者の操作に応じた信号をコントロールユニット83に送信する。コントロールユニット83は、前記信号に応じた切替信号を変速装置200に送信することにより、変速装置200の変速段を切り替える。すなわち、運転者が操作部80を操作することにより、コントロールユニット83が変速装置200の変速段を切り替える。これにより、運転者がクラッチ操作を行うことなく、コントロールユニット83が変速装置200の変速段を切り替えることができる。
 自動二輪車100の変速装置200は、6段の変速段を有する。変速装置200は、ニュートラル、一速、二速、三速、四速、五速、六速の順にシフトアップ可能であり、六速、五速、四速、三速、二速、一速、ニュートラルの順にシフトダウン可能である。
 図10に示すように、エンジン3で生じた動力は、クラッチ機構10、変速装置200および駆動チェーン14を介して後輪5に伝達される。
 クラッチ機構10は、湿式多板式のクラッチである。クラッチ機構10は、アウタプレート11と、インナプレート12とを備えている。アウタプレート11は、エンジン3のクランクシャフト13に歯車13aを介して接続されている。インナプレート12は、後述する変速装置200のメインシャフト21に設けられている。
 クラッチ機構10は、上述したように、アウタプレート11とインナプレート12とを前記軸線方向に相対移動させることにより、接続状態と、切断状態と、に切り替えることができる。
 変速装置200は、メインシャフト21と、カウンタシャフト22とを備えている。メインシャフト21は、クラッチ機構10を介してエンジン3のクランクシャフト13に接続されている。カウンタシャフト22は、第一歯車列23の歯車A,B,C,D,E,Fおよび第二歯車列24の歯車a,b,c,d,e,fを介してメインシャフト21と接続されている。
 カウンタシャフト22には駆動スプロケット7が固定されている。すなわち、駆動スプロケット7は、カウンタシャフト22と一体で回転可能である。駆動チェーン14は、駆動スプロケット7と、後輪5のアクスルシャフト9に固定された被駆動スプロケット8とに架け渡されている。これにより、エンジン3から後輪5へ動力が伝達される。
 変速装置200は、ニュートラル状態と、一速から六速までの6段の変速段とに切り替えることができる。
 変速装置200は、メインシャフト21に設けられた6つの歯車A~Fからなる第一歯車列23と、カウンタシャフト22に設けられた6つの歯車a~fからなる第二歯車列24とを備えている。メインシャフト21上には、メインシャフト21にクラッチ機構10が接続される入力側から、順に、歯車A~Fが配置されている。カウンタシャフト22上には、カウンタシャフト22の軸線方向においてメインシャフト21の入力側に対応する側から、順に、歯車a~fが配置されている。
 第一歯車列23の歯車Aは、常時、第二歯車列24の歯車aと噛み合っている。歯車Aと歯車aとがメインシャフト21からカウンタシャフト22へ動力を伝達している状態が、一速の変速段である。
 第一歯車列23の歯車Bは、常時、第二歯車列24の歯車bと噛み合っている。歯車Bと歯車bとがメインシャフト21からカウンタシャフト22へ動力を伝達している状態が、五速の変速段である。
 第一歯車列23の歯車Cは、常時、第二歯車列24の歯車cと噛み合っている。歯車Cと歯車cとがメインシャフト21からカウンタシャフト22へ動力を伝達している状態が、三速の変速段である。
 第一歯車列23の歯車Dは、常時、第二歯車列24の歯車dと噛み合っている。歯車Dと歯車dとがメインシャフト21からカウンタシャフト22へ動力を伝達している状態が、四速の変速段である。
 第一歯車列23の歯車Eは、常時、第二歯車列24の歯車eと噛み合っている。歯車Eと歯車eとがメインシャフト21からカウンタシャフト22へ動力を伝達している状態が、六速の変速段である。
 第一歯車列23の歯車Fは、常時、第二歯車列24の歯車fと噛み合っている。歯車Fと歯車fとがメインシャフト21からカウンタシャフト22へ動力を伝達している状態が、二速の変速段である。
 操作部80の信号に応じてコントロールユニット83が変速装置200を制御し、メインシャフト21の動力をカウンタシャフト22へ伝達する第一歯車列23の歯車A~Fと第二歯車列24の歯車a~fの組を切り換える。
 図11は、変速装置200の概略構成を示す図である。なお、図11は、第一歯車列23、第二歯車列24、シフト機構30を示すために、第一歯車列23と第二歯車列24とを離した状態で示している。実際には、第一歯車列23と第二歯車列24とが互いに噛み合う状態で配置されている。
 図11に示すように、第一歯車列23において、歯車Aおよび歯車Fは、メインシャフト21に対して軸線方向に移動不可能かつ回転不可能である。歯車Cおよび歯車Dは、第一スライダ31に設けられている。第一スライダ31は、メインシャフト21に対して軸線方向に移動可能かつ回転不可能である。歯車Bおよび歯車Eは、メインシャフト21に対して軸線方向に移動不可能かつ回転可能である。
 第二歯車列24において、歯車a、歯車c、歯車dおよび歯車fは、カウンタシャフト22に対して軸線方向に移動不可能かつ回転可能である。歯車bは、第二スライダ32に設けられている。第二スライダ32は、カウンタシャフト22に対して軸線方向に移動可能かつ回転不可能である。歯車eは、第三スライダ33に設けられている。第三スライダ33は、カウンタシャフト22に対して軸線方向に移動可能かつ回転不可能である。
 第一スライダ31は、シフトドラム50Aの回転に応じてシフトドラム50Aの軸線方向に変位する第一シフトフォーク47によって、メインシャフト21上を前記軸線方向に移動可能である。
 第一スライダ31は、歯車Cと、歯車Dと、凸状の五速ドグ凸部45aと、凸状の六速ドグ凸部46aとを一体に備えている。五速ドグ凸部45aは、メインシャフト21の軸線方向に沿って、歯車Bに向かって突出している。歯車Bの側面には、五速ドグ凸部45aに噛み合い可能な凹形状の五速ドグ凹部45bが設けられている。六速ドグ凸部46aは、メインシャフト21の軸線方向に沿って、歯車Eに向かって突出している。歯車Eの側面には、六速ドグ凸部46aに噛み合い可能な凹形状の六速ドグ凹部46bが設けられている。
 第二スライダ32は、シフトドラム50Aの回転に応じてシフトドラム50Aの軸線方向に変位する第二シフトフォーク48によって、カウンタシャフト22上を前記軸線方向に移動可能である。
 第二スライダ32は、歯車bと、凸状の一速ドグ凸部41aと、凸状の三速ドグ凸部43aとを一体に備えている。一速ドグ凸部41aは、カウンタシャフト22の軸線方向に沿って、歯車aに向かって突出している。歯車aの側面には、一速ドグ凸部41aに噛み合い可能な凹形状の一速ドグ凹部41bが設けられている。三速ドグ凸部43aは、カウンタシャフト22の軸線方向に沿って、歯車cに向かって突出している。歯車cの側面には、三速ドグ凸部43aに噛み合い可能な凹形状の三速ドグ凹部43bが設けられている。
 第三スライダ33は、シフトドラム50Aの回転に応じてシフトドラム50Aの軸線方向に変位する第三シフトフォーク49によって、カウンタシャフト22上を前記軸線方向に移動可能である。
 第三スライダ33は、歯車eと、凸状の四速ドグ凸部44aと、凸状の二速ドグ凸部42aとを一体に備えている。四速ドグ凸部44aは、カウンタシャフト22の軸線方向に沿って、歯車dに向かって突出している。歯車dの側面には、四速ドグ凸部44aに噛み合い可能な凹形状の四速ドグ凹部44bが設けられている。二速ドグ凸部42aは、カウンタシャフト22の軸線方向に沿って、歯車fに向かって突出している。歯車fの側面には、二速ドグ凸部42aに噛み合い可能な凹形状の二速ドグ凹部42bが設けられている。
 一速ドグ凸部41a、二速ドグ凸部42a、三速ドグ凸部43aおよび四速ドグ凸部44aは、カウンタシャフト22と常時同期して回転している。また、五速ドグ凸部45aおよび六速ドグ凸部46aは、メインシャフト21と常時同期して回転している。一速ドグ凹部41b~六速ドグ凹部46bは、それぞれ一速ドグ凸部41a~六速ドグ凸部46aと噛み合うことにより、第一歯車列23の歯車A~Fと第二歯車列24の歯車a~fとの間で動力を伝達する。
 本参考例では、一速ドグ凸部41a~六速ドグ凸部46aを、対応する一速ドグ凹部41b~六速ドグ凹部46bへ接近および離隔させる。これにより、一速ドグ凸部41a~六速ドグ凸部46aと対応する一速ドグ凹部41b~六速ドグ凹部46bとを、それぞれ、噛み合わせる、または、噛み合いを解除させる。その結果、メインシャフト21の動力をカウンタシャフト22へ伝達する歯車の組が切り換えられる。
 図11において、例えば、操作部80において一速が選択されたときには、第二スライダ32は、カウンタシャフト22の軸線方向の他方(図中の右方)に位置している。このとき、一速ドグ凸部41aが一速ドグ凹部41bに噛み合っている。この状態において、メインシャフト21の回転は、メインシャフト21に回転不可能に固定された歯車Aを介して、歯車Aに噛み合った歯車aに伝達される。さらに、歯車aの回転は、歯車aの一速ドグ凹部41bと第二スライダ32の一速ドグ凸部41aとを介して、第二スライダ32に伝達される。第二スライダ32に伝達された回転は、カウンタシャフト22に伝達される。
 操作部80において一速が選択されたときには、歯車A,aの組以外の歯車の組は、歯車列23,24のいずれか一方に属する歯車がメインシャフト21またはカウンタシャフト22に対して空転している。具体的には、歯車B、歯車Eがメインシャフト21に対して空転し、歯車c、歯車d、歯車fがカウンタシャフト22に対して空転している。このため、操作部80において一速が選択されたときには、歯車B~Fおよび歯車b~fの組を介して、メインシャフト21からカウンタシャフト22に動力が伝達されない。
 操作部80においてニュートラルが選択されているときには、一速ドグ凸部41a~六速ドグ凸部46aは、それぞれ、対応する一速ドグ凹部41b~六速ドグ凹部46bと噛み合っていない。この状態において、第一歯車列23の歯車A~Fは、それぞれ、第二歯車列24の歯車a~fと噛み合っているが、メインシャフト21からカウンタシャフト22との間では動力は伝達されていない。
 変速装置200は、第一スライダ31、第二スライダ32および第三スライダ33を、それぞれ、メインシャフト21およびカウンタシャフト22の軸線方向に移動させるシフト機構30を有している。シフト機構30は、スライダ31~33を移動させることにより、一速ドグ凸部41a~六速ドグ凸部46aを一速ドグ凹部41b~六速ドグ凹部46bへ接近および離隔させる。これにより、一速ドグ凸部41a~六速ドグ凸部46aと一速ドグ凹部41b~六速ドグ凹部46bとを、それぞれ、噛み合わせる、または、噛み合せを解除させる。
 シフト機構30は上述の実施形態と類似の構成である。そのため、上述の図5から図7を用いて説明する。シフト機構30は、シフトドラム50Aと、ストッパープレート51と、位置保持レバー52と、シフトアーム54と、フックプレート56と、電動モータ58とを備えている。シフトドラム50Aは、メインシャフト21およびカウンタシャフト22と平行に配置されている。
 ストッパープレート51は、シフトドラム50Aに固定されている。ストッパープレート51は、シフトドラム50Aとともに回転する。位置保持レバー52は、ストッパープレート51を所定の回転角度に維持する。フックプレート56は、シフトドラム50Aの一方の端部に固定されている。シフトアーム54は、フックプレート56を係止可能である。電動モータ58は、ギヤ54aを介してシフトアーム54を駆動させることにより、シフトドラム50Aを回転させる。
 シフトドラム50Aの外周面には、第一ガイド溝611、第二ガイド溝612、第三ガイド溝613が設けられている。第一ガイド溝611、第二ガイド溝612、第三ガイド溝613は、それぞれ、シフトドラム50Aの周方向に延びる直線部64と、直線部64に対して傾斜した傾斜部65とを有している。
 シフトドラム50Aが回転することにより、第一シフトフォーク47の端部が第一ガイド溝611の傾斜部65を通過すると、第一シフトフォーク47がシフトドラム50Aの軸線方向に移動する。第一シフトフォーク47の他方の端部は、第一スライダ31の第一フォーク受け溝34内に位置することにより、第一スライダ31と接続されている。これにより、第一シフトフォーク47が前記軸線方向に移動すると、第一スライダ31がメインシャフト21の軸線方向に移動する。
 シフトドラム50Aが回転することにより、第二シフトフォーク48の端部が第二ガイド溝612の傾斜部65を通過すると、第二シフトフォーク48がシフトドラム50Aの軸線方向に移動する。第二シフトフォーク48の他方の端部は、第二スライダ32の第二フォーク受け溝34内に位置することにより、第二スライダ32と接続されている。これにより、第二シフトフォーク48が前記軸線方向に移動すると、第二スライダ32がカウンタシャフト22の軸線方向に移動する。
 シフトドラム50Aが回転することにより、第三シフトフォーク49の端部が第三ガイド溝63の傾斜部65を通過すると、第三シフトフォーク49がシフトドラム50Aの軸線方向に移動する。第三シフトフォーク49の他方の端部は、第三スライダ33の第三フォーク受け溝34内に位置することにより、第三スライダ33と接続されている。これにより、第三シフトフォーク49が前記軸線方向に移動すると、第三スライダ33がカウンタシャフト22の軸線方向に移動する。
 図6に示すように、ストッパープレート51の外周縁には、変速段の段数に応じた数(図示の例では6個)の変速用凹部70と、ニュートラル状態に対応するニュートラル用凹部79とが設けられている。
 位置保持レバー52には、ストッパープレート51の外周縁に当接可能な押し付け部52aが設けられている。位置保持レバー52は、回転中心O1回りに揺動可能に設けられている。位置保持レバー52には、バネ53が取り付けられている。バネ53は、位置保持レバー52の押し付け部52aをストッパープレート51に対してストッパープレート51の回転中心O1に向かって押し付けるように、位置保持レバー52に力を加えている。ストッパープレート51の変速用凹部70は、位置保持レバー52の押し付け部52aを位置付け可能な形状を有する。
 ストッパープレート51の変速用凹部70は、変速段に対応して設けられている。すなわち、ストッパープレート51には、一速から六速の変速段にそれぞれ対応して、一速用凹部71、二速用凹部72、三速用凹部73、四速用凹部74、五速用凹部75及び六速用凹部76が設けられている。
 例えば、位置保持レバー52の押し付け部52aが一速用凹部71に当接している状態では、図11において、シフトドラム50Aの第二ガイド溝612によって第二シフトフォーク48がシフトドラム50の他方(図11の右方)に位置付けられる。これによって、第二スライダ32は、カウンタシャフト22上を他方(図11の右方)に移動する。よって、第二スライダ32の一速ドグ凸部41aが歯車aの一速ドグ凹部41bに噛み合う。
 ストッパープレート51とともにシフトドラム50Aが反時計回りに45度回転することにより、位置保持レバー52の押し付け部52aが一速用凹部71から二速用凹部72に移る。これにより、シフトドラム50Aの第二ガイド溝612に沿って第二シフトフォーク48がシフトドラム50Aの一方(図11において左方)に移動する。よって、第二スライダ32がカウンタシャフト22の前記一方に移動する。したがって、第二スライダ32の一速ドグ凸部41aと歯車aの一速ドグ凹部41bとの噛み合いが解除される。また、シフトドラム50Aの第三ガイド溝613に沿って第三シフトフォーク49がシフトドラム50Aの前記一方に移動することによって、第三スライダ33をカウンタシャフト22の一方に移動させる。これにより、第三スライダ33の二速ドグ凸部42aと歯車fの二速ドグ凹部42bとが噛み合う。以上により、一速から二速へシフトアップがなされる。
 位置保持レバー52の押し付け部52aが変速用凹部70またはニュートラル用凹部79内に位置付けられると、位置保持レバー52の押し付け部52aがバネ53により変速用凹部70またはニュートラル用凹部79に押し付けられる。これにより、ストッパープレート51の回転が抑制される。
 シフトアーム54の一方の端部は、電動モータ58の出力軸58aに、扇形のギヤ54aを介して連結されている。シフトアーム54の他方の端部には、フックプレート56のピン57を保持可能な爪55が設けられている。爪55がピン57を保持した状態で、電動モータ58によって、シフトアーム54を回転中心O1回りに反時計回りに回転させることにより、ピン57が爪55に引っ張られる。これにより、ストッパープレート51およびシフトドラム50Aが反時計回りに回転する。例えば、変速装置200において変速段が四速から五速に変速される場合、電動モータ58は、位置保持レバー52の押し付け部52aが四速用凹部74の底部77から凸部78を乗り越えて五速用凹部75の底部77に位置するまで、シフトアーム54を回転させる。
 変速装置200において、シフトドラム50Aの軸線方向から見て、ストッパープレート51の回転中心O1を中心として、隣り合う変速用凹部70の底部77同士がなす角度を、変速回転角度と呼ぶ。この変速回転角度は、変速装置200の変速段が切り替えられる際におけるシフトドラム50Aの回転角度である。変速装置200では、例えば、一速から二速、二速から三速、三速から四速、四速から五速、五速から六速に変速段を変える際のシフトドラム50Aの変速回転角度が、それぞれ、45度に設定されている。なお、ここで定義した変速回転角度とは、一速からニュートラルに切り替える際の回転角度は含まない概念である。
 変速装置200によれば、シフトドラム50は、ガイド溝611~613に沿ってシフトフォーク47~49の一方の端部を移動させることにより、シフトフォーク47~49の他方の端部でドグ凸部41a~46aを含むスライダ31~33を変位させる。このため、スライダ31~33を移動させる際に、シフトドラム50Aは反力を受ける。この反力を受けてもシフトフォーク47~49およびシフトドラム50Aが動かないようにするために、シフトドラム50Aにはある程度の重量が必要となっている。このため、シフトドラム50Aの慣性質量は大きい。
 そのため、シフトドラム50Aの回転速度を上げようとすると、シフトドラム50Aの大きな慣性質量により、シフトドラム50Aの長い駆動時間が必要になる。あるいは、シフトドラム50Aを速く回転させているときにはシフトドラム50Aに大きな慣性力が作用している。このため、所望の回転角度でシフトドラム50Aの回転を止めるために、長い制動時間が必要となったり、大きな制動力が必要になったりする。このように、シフトドラム50Aを素早く回転させるだけでは、変速時間を短くし、変速操作の応答性を高めることが難しいことに、本発明者は気が付いた。
 そこで、本発明者は、シフトドラム50Aの回転速度を上げるのではなく、シフトドラム50Aの回転角度を小さくしてシフトドラム50Aを動かす時間を短くすることにより、変速操作の応答性を高めることを検討した。
 図12(a)は、シフトドラム50Aの外周面に設けられた第一ガイド溝611~第三ガイド溝613を示す模式図である。図12(a)は図6および図7で説明したように全ての変速回転角度が45度に設定されている。図12(b)は、特許文献2に記載の変速装置におけるシフトドラムのガイド溝61A~63Aを示す。図12(b)に示す比較例の構成では、全ての変速回転角度が60度に設定されている。
 図12(a)と図12(b)とを比較すると、例えば、一速から二速へ変速する際には、参考例の構成における変速回転角度(45度)が比較例における変速回転角度(60度)よりも小さい。なお、前記変速回転角度は、図12(a),(b)では、紙面上下方向の距離として表されている。
 参考例に係る変速装置200と特許文献2の変速装置とで、変速段が1段階切り替えられる際に、シフトドラムの軸線方向において、シフトフォーク47~49が移動する距離は同一とする。例えば、図12(a),(b)において、変速装置が一速の変速段の状態のときには、シフトフォーク49の一端部は、直線部641に位置付けられる。また、変速装置が二速の変速段の状態のときは、シフトフォーク49の一端部は、直線部642に位置付けられる。シフトドラムの軸線方向において、直線部641の中心位置と、直線部642の中心位置との距離は、参考例に係る変速装置200(図12(a))と特許文献2の変速装置(図12(b))とで同一である。
 図12(a)の傾斜部65は、図12(b)の傾斜部65Aに比べて、小さい変速回転角度で、直線部641と直線部642とを接続している。上述したように、シフトドラムの軸線方向において、直線部641と直線部642との距離は、図12(a)と図12(b)とで等しい。このため、図12(a)の傾斜部65が、直線部641および直線部642に対してなす角度は、図12(b)の傾斜部65Aが直線部641および直線部642に対してなす角度よりも大きい。
 シフトフォーク47~49が、傾斜部65,65Aを通過する際にシフトドラムから受ける力は、シフトドラムの周方向に対する傾斜部65,65Aの傾斜角度が大きいほど、大きくなる。つまり、図12(a)に示したシフトドラム50Aを用いた変速装置においては、図12(b)に示したシフトドラムを用いた変速装置に比べて、変速操作に要する力が大きくなってしまう。このため、特許文献2のように、シフトドラムの変速回転角度は60度以上の角度とすることが一般的である。
 しかし、本発明者は、上述したように、電動モータ58の出力特性に着目した。電動モータ58は、極低速(回転開始直後)のときに、最も大きなトルクを出力するという特性を有する。シフトドラム50Aの変速回転角度が小さい場合には、変速操作の際に、静止していたシフトドラム50Aを大きな駆動力によって、小さな回転角度だけ回転させればよい。つまり、シフトドラム50Aの変速回転角度を小さくした場合に要求される駆動力の特性と、電動モータ58の出力特性とが一致している。このため、最大出力の大きな電動モータ58を用いなくても、変速回転角度の小さなシフトドラム50Aを回転させることができることに、本発明者は気が付いた。これにより、電動モータ58を大型化させなくても、変速操作の応答性の高い変速装置200が提供される。
 参考例に係る変速装置200は、変速操作の応答性が高められた機構を備えている。このため、特許文献1に記載のように、シフトドラム50Aを駆動する電動モータ58を制御する制御方法を工夫することにより、さらに変速操作を高めることができる。この際、参考例に係る変速装置200は、部材を迅速に動かすことができるので、狙ったタイミングで部材を動かしやすく、制御方法を工夫する技術と好適に組み合わせることができる。
 また、上述した参考例においては、位置保持レバー52を備えている。位置保持レバー52の押し付け部52aが変速用凹部70の底部77から凸部78へ移動した後は、位置保持レバー52に作用しているバネ力を使って凸部78から隣の変速用凹部70の底部77に向かってシフトドラム50Aを回転させることができる。また、所定の変速段を維持し続ける場合に、位置保持レバー52の押し付け部52aがシフトドラム50Aの回転を抑制するので、シフトドラム50Aの回転を抑制するために電動モータ58に通電し続ける必要がない。
(他の実施形態)
 上述した実施形態においては、複数の変速回転角度が全て互いに等しい場合を説明したが、本発明はこれに限らない。例えば、特定の変速段に対応する変速回転角度が他の変速回転角度と異なり、かつ、他の変速回転角度が互いに等しくもよい。あるいは、全ての変速回転角度が互いに異なっていてもよい。
 上述の実施形態においては、6段の変速段を有する変速装置について説明したが、7段の変速段、8段の変速段、または9段以上の変速段を有する変速装置に本発明を適用してもよい。変速装置が、7段の変速段を有する場合には、変速回転角度は、例えば、50度に設定される。変速装置が、8段の変速段を有する場合には、変速回転角度は、例えば、45度に設定される。
 上述の実施形態においては、セレクタとしてシフトフォークを用いた例を説明したが、セレクタとして、例えば棒状などフォーク形状ではない部材を用いてもよい。また、上述の実施形態では3本のシフトフォークを用いた例を説明したが、4本以上のセレクタを用いてもよい。
 上述の実施形態においては、スライダにドグ凸部が設けられているとともに、歯車にドグ凹部が設けられている。しかしながら、スライダにドグ凹部(第一ドグ部)を設けるとともに、歯車にドグ凸部(第二ドグ部)を設けてもよい。

Claims (4)

  1.  複数の変速段に切替可能で、かつ、各変速段のときに、動力源によって回転されるメインシャフトの回転をカウンタシャフトに伝達する変速装置であって、
     前記メインシャフトに設けられ、かつ、前記複数の変速段の段数と同数の複数の第一歯車、および前記カウンタシャフトに設けられ、かつ、前記複数の第一歯車に常時噛み合う、前記複数の第一歯車と同数の第二歯車、を含む複数の歯車と、
     前記メインシャフトまたは前記カウンタシャフトのいずれか一方のシャフトにおいて、前記一方のシャフトの軸線方向に移動可能に設けられ、第一ドグ部を有し、かつ、前記一方のシャフトと常時同期して回転するスライダと、
     電動モータと、
     円筒状または円柱状に形成され、前記電動モータに機械的に連結され、かつ前記電動モータによって回転されるシフトドラムと、
     前記シフトドラムの回転に応じて、前記スライダを前記一方のシャフトの軸線方向に移動させるセレクタと、
     前記電動モータを制御する制御部と、を備え、
     前記複数の第一歯車は、前記メインシャフトの軸線方向における移動が不能に前記メインシャフトに設けられ、
     前記複数の第二歯車は、前記カウンタシャフトの軸線方向における移動が不能に前記カウンタシャフトに設けられ、
     前記複数の第一歯車および前記複数の第二歯車のうち、前記一方のシャフトに設けられた歯車に、前記スライダの前記第一ドグ部に噛み合い可能な第二ドグ部が設けられ、
     前記第二ドグ部が設けられた前記歯車は、前記一方のシャフトに相対回転可能に設けられ、
     前記一方のシャフトに設けられた前記スライダは、前記複数の第一歯車および前記複数の第二歯車とは別体であり、かつ、前記複数の歯車のうち、前記メインシャフトおよび前記カウンタシャフトのうちの他方のシャフトに設けられた歯車に常時噛み合っておらず、
     前記シフトドラムは、その外周面に、周方向に延びる直線部と前記直線部に対して傾斜した傾斜部とを含むガイド溝を有し、
     前記セレクタの一端部は、前記ガイド溝内に位置付けられ、前記セレクタの他端部は、前記スライダに接続されており、
     前記制御部は、全ての変速段において、変速段を1段階切り替える際の前記シフトドラムの変速回転角度が60度未満になるように、前記電動モータを制御し、
     任意の変速段から異なる変速段に切り替えられる際に、前記シフトドラムが、60度未満の前記変速回転角度で回転することによって、前記セレクタが、前記複数の第一歯車および前記複数の第二歯車とは別体に構成されかつ前記複数の歯車のうち前記他方のシャフトに設けられた歯車に常時噛み合っていない前記スライダを、前記一方のシャフトの軸線方向に移動させ、
     前記複数の第一歯車および前記複数の第二歯車とは別体に構成されかつ前記複数の歯車のうち前記他方のシャフトに設けられた歯車に常時噛み合っていない前記スライダが、前記シフトドラムの回転に応じて前記一方のシャフトの軸線方向に移動して前記第一ドグ部が前記第二ドグ部と噛み合うことによって、前記第一歯車、前記第二歯車および前記スライダを介して前記メインシャフトの回転が前記カウンタシャフトに伝達される、
    変速装置。
  2.  前記変速装置は、さらに、前記メインシャフトから前記カウンタシャフトに回転を伝達しないニュートラルに切替可能であり、
     前記制御部は、前記電動モータを制御して前記シフトドラムを回転させることによって前記変速装置を前記ニュートラルおよび前記複数の変速段のいずれかに切り替え、
     前記変速装置が前記ニュートラルのときの前記シフトドラムの回転位置は、前記変速装置が前記複数の変速段の間で切り替えられる際の前記シフトドラムの回転領域から外れている、
    請求項1に記載の変速装置。
  3.  前記シフトドラムに同期して回転可能に、かつ、前記シフトドラムと同軸上に前記シフトドラムに固定された板状のストッパー部材と、
     前記ストッパー部材の外周面に押しつけられる押し付け部と、をさらに備え、
     前記ストッパー部材の前記外周面には、前記ストッパー部材の軸線方向から見て、前記ストッパー部材の回転方向に沿って複数の凸部と複数の凹部とが交互に並ぶように形成され、
     前記複数の凹部のうち、前記複数の変速段の数と同数の凹部がそれぞれ、変速用凹部に設定され、
     前記複数の変速用凹部は、前記ストッパー部材の回転方向に沿って、60度未満の前記変速回転角度ごとに設けられ、
     前記変速装置が前記複数の変速段のうちの所定の変速段の状態の場合に、前記押し付け部は、前記所定の変速段に対応する前記変速用凹部に押し付けられる、
    請求項1または2に記載の変速装置。
  4.  前記電動モータが発生した動力を前記シフトドラムに伝達する減速機構をさらに備え、
     前記電動モータは、出力軸を有し、
     前記変速装置の変速段が1段階切り替えられる際に、前記電動モータの前記出力軸は60度以上回転し、前記減速機構は、前記出力軸の60度以上の回転を、60度未満である前記変速回転角度の回転として、前記シフトドラムに伝達する、
    請求項1から3のいずれかに記載の変速装置。 
PCT/JP2016/073680 2015-08-10 2016-08-10 変速装置 WO2017026535A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16835232.6A EP3336391B1 (en) 2015-08-10 2016-08-10 Transmission
BR112018000667-0A BR112018000667B1 (pt) 2015-08-10 2016-08-10 Transmissão
CN201680046487.4A CN107923528B (zh) 2015-08-10 2016-08-10 变速装置
US15/893,620 US11137049B2 (en) 2015-08-10 2018-02-10 Transmission

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015158324 2015-08-10
JP2015-158327 2015-08-10
JP2015-158324 2015-08-10
JP2015158325 2015-08-10
JP2015-158326 2015-08-10
JP2015-158325 2015-08-10
JP2015158326 2015-08-10
JP2015158327 2015-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/893,620 Continuation-In-Part US11137049B2 (en) 2015-08-10 2018-02-10 Transmission

Publications (1)

Publication Number Publication Date
WO2017026535A1 true WO2017026535A1 (ja) 2017-02-16

Family

ID=57983594

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/JP2016/073681 WO2017026536A1 (ja) 2015-08-10 2016-08-10 変速装置および車両
PCT/JP2016/073680 WO2017026535A1 (ja) 2015-08-10 2016-08-10 変速装置
PCT/JP2016/073679 WO2017026534A1 (ja) 2015-08-10 2016-08-10 変速装置
PCT/JP2016/073682 WO2017026537A1 (ja) 2015-08-10 2016-08-10 変速装置および車両

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073681 WO2017026536A1 (ja) 2015-08-10 2016-08-10 変速装置および車両

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/073679 WO2017026534A1 (ja) 2015-08-10 2016-08-10 変速装置
PCT/JP2016/073682 WO2017026537A1 (ja) 2015-08-10 2016-08-10 変速装置および車両

Country Status (6)

Country Link
US (3) US11111986B2 (ja)
EP (4) EP3336392A4 (ja)
JP (4) JP6807842B2 (ja)
CN (2) CN107923529B (ja)
BR (1) BR112018000667B1 (ja)
WO (4) WO2017026536A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108612813A (zh) * 2018-05-31 2018-10-02 厦门理工学院 一种电动车专用的变速器和减速器组合装置
CN108730512A (zh) * 2018-06-15 2018-11-02 山东理工大学 汽车变速器换挡轴三角形滑槽设计方法
CN109606530B (zh) * 2018-11-15 2024-01-23 八方电气(苏州)股份有限公司 自行车变速机构和自行车
CN111981116B (zh) * 2019-05-21 2022-02-01 上海汽车集团股份有限公司 一种汽车及其电驱换挡执行装置
JP2020190291A (ja) * 2019-05-22 2020-11-26 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 変速システム及び変速システムの制御方法
KR102470739B1 (ko) * 2019-08-14 2022-11-29 오토딘시스 주식회사 엑셀 및 브레이크 페달과 연동된 클러치 시스템
JP2021042845A (ja) * 2019-09-13 2021-03-18 ヤマハ発動機株式会社 変速装置および車両
JP2021042846A (ja) * 2019-09-13 2021-03-18 ヤマハ発動機株式会社 変速装置および車両
KR102360572B1 (ko) * 2019-10-16 2022-02-10 오토딘시스 주식회사 신규한 구조의 회전축 어셈블리
EP3916259B1 (en) * 2019-10-16 2023-10-25 Autodyn Sys Inc. Rotary shaft assembly having novel structure
JP2021099146A (ja) * 2019-12-23 2021-07-01 ヤマハ発動機株式会社 変速装置および車両
CN110920799B (zh) * 2019-12-25 2020-10-09 台州春来机电有限公司 一种电动车动力装置
US11692626B2 (en) 2020-08-03 2023-07-04 Dana Heavy Vehicle Systems Group, Llc Methods and systems for a transmission shift assembly
CN113090753B (zh) * 2021-03-31 2022-07-22 华为数字能源技术有限公司 换档机构、两档换档系统及车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197823A (ja) * 2008-02-19 2009-09-03 Yamaha Motor Co Ltd 電子制御式変速装置およびそれを備えた鞍乗型車両
JP2014059002A (ja) * 2012-09-14 2014-04-03 Yamaha Motor Co Ltd 変速装置及び車両
JP2014206233A (ja) * 2013-04-12 2014-10-30 ヤマハ発動機株式会社 自動変速機
JP2015117798A (ja) * 2013-12-19 2015-06-25 ヤマハ発動機株式会社 変速装置、シフト機構及びこれを備える車輌

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938835Y1 (ja) 1970-06-17 1974-10-24
JPS4844373Y1 (ja) 1970-10-16 1973-12-20
JPS4865961U (ja) * 1971-11-29 1973-08-21
JPS5628346A (en) 1979-08-10 1981-03-19 Yamaha Motor Co Ltd Shift mechanism for speed change gear
JPS5666544A (en) * 1979-11-05 1981-06-05 Toyota Motor Corp Speed change gear for vehicle
JPS59140127A (ja) * 1983-01-31 1984-08-11 Yamaha Motor Co Ltd 自動三輪車等の変速装置
JPH0121229Y2 (ja) * 1984-10-01 1989-06-26
JPH085378Y2 (ja) * 1987-05-26 1996-02-14 本田技研工業株式会社 トランスミッションのシフターギヤ
JPH03148391A (ja) * 1990-04-30 1991-06-25 Honda Motor Co Ltd 鞍乗型車両
JPH06123355A (ja) * 1992-10-12 1994-05-06 Suzuki Motor Corp 自動二輪車の変速装置
US5368145A (en) * 1993-02-16 1994-11-29 Eaton Corporation Nonsynchronized positive clutch structure
DE19624774C2 (de) 1996-06-21 2000-06-08 Blw Praezisionsschmiede Gmbh Kupplungsverzahnung in einem Schaltgetriebe
US6095004A (en) 1997-09-13 2000-08-01 Honda Giken Kogyo Kabushiki Kaisha Shift control method for an electric-power-assist transmission
JPH11303991A (ja) * 1998-04-20 1999-11-02 Yamaha Motor Co Ltd 車両のパーキングブレーキ装置
JP4165779B2 (ja) 1998-07-10 2008-10-15 本田技研工業株式会社 電動式変速装置における変速軸のニュートラル位置決定方法
JP4170534B2 (ja) * 1999-09-03 2008-10-22 本田技研工業株式会社 変速機
JP2005042910A (ja) 2003-07-10 2005-02-17 Yamaha Motor Co Ltd クラッチ断続装置及び車両
US6880420B2 (en) * 2003-08-22 2005-04-19 Yen-Hsing Shen Automatic control device for a motorized vehicle gearbox
JP4346483B2 (ja) * 2004-03-25 2009-10-21 本田技研工業株式会社 ツインクラッチ式変速機
US20060027434A1 (en) 2004-08-04 2006-02-09 Capito Russell T Positive clutch with staggered teeth height
JP4602026B2 (ja) * 2004-08-10 2010-12-22 本田技研工業株式会社 車両用自動変速機を備えるエンジン
US20060090584A1 (en) * 2004-11-04 2006-05-04 Kwang Yang Motor Co., Ltd. Gear shift assembly for all-terrain vehicles
FR2887604B1 (fr) * 2005-06-23 2007-07-27 Renault Sas Agencement a clabots pour boite de vitesses a clabots
JP4698367B2 (ja) 2005-09-30 2011-06-08 本田技研工業株式会社 変速機
JP4762705B2 (ja) * 2005-12-13 2011-08-31 ヤマハ発動機株式会社 変速機構およびその変速機構を備える車両
JP5121159B2 (ja) * 2006-04-18 2013-01-16 ヤマハ発動機株式会社 自動変速制御装置および車両
JP5164337B2 (ja) * 2006-04-18 2013-03-21 ヤマハ発動機株式会社 自動変速制御装置および鞍乗型車両
JP4832204B2 (ja) * 2006-08-01 2011-12-07 本田技研工業株式会社 車両用変速装置のシフトドラム駆動装置
JP4890186B2 (ja) * 2006-09-29 2012-03-07 本田技研工業株式会社 車両用変速機
JP4963058B2 (ja) 2006-10-27 2012-06-27 ヤマハ発動機株式会社 変速制御装置および車両
US8096202B2 (en) * 2006-11-22 2012-01-17 Kyoto University Transmission and gear changing method
EP1961994A3 (en) 2007-01-23 2010-08-25 Kanzaki Kokyukoki Mfg. Co., Ltd. Working-vehicle transmission system
US7752936B2 (en) 2007-03-06 2010-07-13 Honda Motor Co., Ltd. Automatic transmission assembly for a vehicle, and vehicle incorporating same
JP2009024790A (ja) * 2007-07-20 2009-02-05 Yamaha Motor Co Ltd 変速操作装置
JP4998728B2 (ja) * 2007-09-28 2012-08-15 本田技研工業株式会社 ツインクラッチ式変速装置
EP2080884A3 (en) 2008-01-16 2013-11-20 Yamaha Hatsudoki Kabushiki Kaisha Control system and saddle-straddling type vehicle including the same
JP5161644B2 (ja) 2008-04-25 2013-03-13 ヤマハ発動機株式会社 変速制御装置、鞍乗型車両、及び変速制御方法
US8328686B2 (en) 2008-09-29 2012-12-11 Honda Motor Co., Ltd. Shift controller
JP2010096190A (ja) 2008-10-14 2010-04-30 Daihatsu Motor Co Ltd かみ合い式クラッチ装置
JP5340106B2 (ja) 2009-10-07 2013-11-13 川崎重工業株式会社 自動二輪車用動力伝達装置
JP5557567B2 (ja) * 2010-03-23 2014-07-23 本田技研工業株式会社 内燃機関の変速装置
JP5658068B2 (ja) * 2011-03-25 2015-01-21 富士重工業株式会社 変速装置
JP2012215230A (ja) * 2011-03-31 2012-11-08 Honda Motor Co Ltd ドグクラッチ式変速装置
JP5197791B2 (ja) * 2011-04-20 2013-05-15 ヤマハ発動機株式会社 変速装置及び鞍乗型車両
CN202195025U (zh) * 2011-07-02 2012-04-18 王德刚 双齿轮滑动齿
KR20130061788A (ko) * 2011-12-02 2013-06-12 현대자동차주식회사 자동화 수동변속기
JP2013217491A (ja) 2012-03-14 2013-10-24 Aisin Seiki Co Ltd 自動変速機用ドグクラッチ
JP2014035063A (ja) 2012-08-10 2014-02-24 Yamaha Motor Co Ltd 自動変速装置およびそれを備えた鞍乗型車両
JP6212893B2 (ja) * 2013-03-26 2017-10-18 アイシン精機株式会社 自動変速機用ドグクラッチ制御装置
JP6255980B2 (ja) * 2013-12-20 2018-01-10 スズキ株式会社 変速装置
JP5840670B2 (ja) 2013-12-27 2016-01-06 本田技研工業株式会社 変速制御装置
JP6578833B2 (ja) 2015-09-08 2019-09-25 スズキ株式会社 エンジンユニットを有する車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009197823A (ja) * 2008-02-19 2009-09-03 Yamaha Motor Co Ltd 電子制御式変速装置およびそれを備えた鞍乗型車両
JP2014059002A (ja) * 2012-09-14 2014-04-03 Yamaha Motor Co Ltd 変速装置及び車両
JP2014206233A (ja) * 2013-04-12 2014-10-30 ヤマハ発動機株式会社 自動変速機
JP2015117798A (ja) * 2013-12-19 2015-06-25 ヤマハ発動機株式会社 変速装置、シフト機構及びこれを備える車輌

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3336391A4 *

Also Published As

Publication number Publication date
CN107923529A (zh) 2018-04-17
WO2017026536A1 (ja) 2017-02-16
WO2017026534A1 (ja) 2017-02-16
EP3336392A4 (en) 2018-07-25
US20180187755A1 (en) 2018-07-05
US11137049B2 (en) 2021-10-05
CN107923529B (zh) 2019-09-03
EP3336391B1 (en) 2021-12-22
JP6587687B2 (ja) 2019-10-09
WO2017026537A1 (ja) 2017-02-16
EP3336393A1 (en) 2018-06-20
EP3336391A1 (en) 2018-06-20
JPWO2017026536A1 (ja) 2018-05-31
CN107923528A (zh) 2018-04-17
JP6807842B2 (ja) 2021-01-06
US11187305B2 (en) 2021-11-30
EP4296539A3 (en) 2024-03-20
BR112018000667A2 (ja) 2018-09-18
US20180119749A1 (en) 2018-05-03
JP6426291B2 (ja) 2018-11-21
JP2019215089A (ja) 2019-12-19
BR112018000667B1 (pt) 2023-03-07
JPWO2017026537A1 (ja) 2018-05-31
US20180187756A1 (en) 2018-07-05
US11111986B2 (en) 2021-09-07
EP3336392A1 (en) 2018-06-20
EP4296539A2 (en) 2023-12-27
EP3336393B1 (en) 2019-10-02
EP3336391A4 (en) 2018-09-26
JPWO2017026534A1 (ja) 2018-04-26
EP3336393A4 (en) 2018-07-25
CN107923528B (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2017026535A1 (ja) 変速装置
JP5707119B2 (ja) トランスミッション
JP4809843B2 (ja) ツインクラッチ変速機用のセレクタドラム付きアクチュエータ構造体
JP2012127471A5 (ja)
JP4501986B2 (ja) 手動変速機のギヤ鳴り防止装置
JP2003314635A (ja) 自動変速機
JP5545778B2 (ja) 変速機
JP2016070355A (ja) 内燃機関の変速駆動機構
JP6251585B2 (ja) トランスミッション
JP5658068B2 (ja) 変速装置
JP2007120549A (ja) 自動変速機
JP2015135174A (ja) 変速機
JP5439555B2 (ja) 変速機
JP6068866B2 (ja) 変速機
JP5658069B2 (ja) 変速装置
JP6550820B2 (ja) 車両の動力伝達制御装置
JP6756260B2 (ja) ドグクラッチ機構
JP2005133877A (ja) 車両用自動変速機
JP6178745B2 (ja) 動力伝達装置
JP6018457B2 (ja) 変速機
JP2003307257A (ja) 車両用自動変速機
JP2019032083A (ja) トランスミッション
JP2015187485A (ja) 動力伝達装置
JP2003307256A (ja) 車両用自動変速機
JP2010107011A (ja) 変速機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16835232

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016835232

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018000667

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: JP

ENP Entry into the national phase

Ref document number: 112018000667

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180112