WO2015065046A1 - 양극 활물질의 제조방법, 및 이에 의해 제조된 리튬 이차전지용 양극 활물질 - Google Patents

양극 활물질의 제조방법, 및 이에 의해 제조된 리튬 이차전지용 양극 활물질 Download PDF

Info

Publication number
WO2015065046A1
WO2015065046A1 PCT/KR2014/010257 KR2014010257W WO2015065046A1 WO 2015065046 A1 WO2015065046 A1 WO 2015065046A1 KR 2014010257 W KR2014010257 W KR 2014010257W WO 2015065046 A1 WO2015065046 A1 WO 2015065046A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
lithium
positive electrode
boron
transition metal
Prior art date
Application number
PCT/KR2014/010257
Other languages
English (en)
French (fr)
Inventor
오현진
신호석
임진형
이동훈
진주홍
정왕모
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201480002930.9A priority Critical patent/CN104781960B/zh
Priority to US14/437,079 priority patent/US10056605B2/en
Priority to EP14854871.2A priority patent/EP3065207B1/en
Priority to JP2015545401A priority patent/JP6284542B2/ja
Publication of WO2015065046A1 publication Critical patent/WO2015065046A1/ko
Priority to US16/058,594 priority patent/US10529985B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • H01M4/0497Chemical precipitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a cathode active material, and a cathode active material for a lithium secondary battery produced thereby.
  • Lithium secondary batteries have been widely used as power sources for portable devices since they emerged in 1991 as small, light and large capacity batteries. Recently, with the rapid development of electronics, telecommunications, and computer industry, camcorders, mobile phones, notebook PCs, etc. have emerged and are developing remarkably, and the demand for lithium secondary battery is increasing day by day as a power source to drive these portable electronic information communication devices. Doing.
  • Lithium secondary batteries have a problem in that their lifespan drops rapidly as they are repeatedly charged and discharged. In particular, this problem is more serious at high temperatures. This is due to the phenomenon that the electrolyte is decomposed or the active material is deteriorated due to moisture or other effects in the battery, and the internal resistance of the battery is increased.
  • the first technical problem to be solved of the present invention is to provide a method for producing a positive electrode active material that can convert the lithium impurities present on the lithium transition metal oxide to structurally stable boron lithium oxide by heat treatment using a boron-containing compound.
  • the second technical problem to be solved of the present invention is to provide a cathode active material including a coating layer containing boron lithium oxide on the surface of the lithium transition metal oxide by the method of manufacturing the cathode active material.
  • the third technical problem to be solved of the present invention is to provide a positive electrode and a lithium secondary battery including the positive electrode active material.
  • the present invention provides a method for producing a positive electrode active material comprising the step of dry mixing and heat treatment of the lithium transition metal oxide and boron-containing compounds to coat the lithium transition metal oxide surface with boron lithium oxide.
  • the present invention is a lithium transition metal oxide; And it provides a cathode active material comprising a coating layer comprising a boron lithium oxide on the surface of the lithium transition metal oxide.
  • the present invention provides a positive electrode including the positive electrode active material.
  • the present invention provides a lithium secondary battery including the positive electrode.
  • lithium impurities present on the lithium transition metal oxide can be easily converted into structurally stable boron lithium oxide.
  • a coating layer in which boron lithium oxide is uniformly coated on the surface of the lithium transition metal oxide may be formed in an amount proportional to the amount of the boron-containing compound used.
  • FIG. 1 is a schematic view of a method of manufacturing a positive electrode active material according to an embodiment of the present invention.
  • Figure 2 is a graph showing the pH titration (titration) results for determining the amount of lithium impurities of the positive electrode active material prepared in Example 1, and Comparative Examples 1 and 2 of the present invention.
  • FIG. 3 is a graph showing results of measuring capacity characteristics after high temperature storage (60 ° C.) of the lithium secondary batteries of Example 5 and Comparative Example 4, according to Experimental Example 3.
  • FIG. 3 is a graph showing results of measuring capacity characteristics after high temperature storage (60 ° C.) of the lithium secondary batteries of Example 5 and Comparative Example 4, according to Experimental Example 3.
  • FIG. 4 is a graph showing results of measuring high temperature (45 ° C) cycle characteristics of the lithium secondary batteries of Example 5 and Comparative Example 4 according to Experimental Example 4.
  • FIG. 4 is a graph showing results of measuring high temperature (45 ° C) cycle characteristics of the lithium secondary batteries of Example 5 and Comparative Example 4 according to Experimental Example 4.
  • a method of manufacturing a cathode active material dry mixing and heat treating a lithium transition metal oxide and a boron-containing compound to coat the lithium transition metal oxide surface with boron lithium oxide. It may include.
  • a lithium transition metal oxide and a boron-containing compound are dry mixed and heat-treated, in particular, in the vicinity of the melting point of the boron-containing compound, thereby being present on the lithium transition metal oxide.
  • the lithium impurity can be easily converted into structurally stable boron lithium oxide.
  • a coating layer in which boron lithium oxide is uniformly coated on the surface of the lithium transition metal oxide may be formed in an amount proportional to the amount of the boron-containing compound used.
  • the boron-containing compound is H 3 BO 3 , B 2 O 3 , C 6 H 5 B (OH) 2 , (C 6 H 5 O) 3 B , [CH 3 (CH 2 ) 3 O] 3 B, C 13 H 19 BO 3 , C 3 H 9 B 3 O 6 and (C 3 H 7 O) 3 B, or any one selected from the group 2 It may be a mixture of species or more.
  • the method of forming a coating layer on the surface of the lithium transition metal oxide generally includes a dry mixing method and a wet mixing method.
  • a dry mixing method In the case of using the wet mixing method, there is an advantage that the coating layer formed on the surface of the lithium transition metal oxide can be more uniformly obtained.
  • the boron-containing compound should be used in an aqueous solution, in which case the damage may occur to the lithium transition metal oxide due to the aqueous solution.
  • the boron-containing compound is dry mixed with a lithium transition metal to perform a heat treatment near the melting point of the boron-containing compound, thereby melting the boron-containing compound
  • the advantages of the wet mixing method that is, a uniform coating layer, without causing damage to the lithium transition metal oxide, which is a problem of the wet mixing method.
  • H 3 BO 3 begins to melt while softening at a low temperature, for example, a temperature range of about 130 °C to 160 °C.
  • the boron-containing compound is melted and flows by the heat treatment to react with at least some of the lithium impurities present on the lithium transition metal oxide, thereby easily converting the boron-containing compound into boron lithium oxide and coating the lithium metal oxide surface.
  • the lithium impurities present in the lithium transition metal oxide may be reduced by the conversion of the lithium impurities into the boron lithium oxide.
  • the heat treatment is performed at 130 ° C. to 300 ° C., preferably 130 ° C. to 200 ° C., which is near the melting point of the boron-containing compound. May be performed for a time.
  • the heat treatment temperature is less than 130 ° C.
  • the boron-containing compound is not sufficiently melted, and thus, the boron-containing compound remains on the lithium transition metal oxide, or even when converted to boron lithium oxide, a uniform coating layer cannot be formed and exceeds 300 ° C. Due to the high temperature, the reaction is too fast to form a uniform coating layer on the surface of the lithium transition metal oxide.
  • a coating layer in which the boron lithium oxide is uniformly coated on the surface of the lithium transition metal oxide in an amount proportional to the amount of the boron-containing compound can be formed.
  • the dry mixing method may be performed using a mortar grinder mixing method and a mixing method using a mechanical milling method, and preferably a mechanical milling method. It may be desirable to use a uniform coating layer formation.
  • the lithium transition metal oxide and the boron-containing compound may be uniformly mixed using mortar, and then heat-treated at the heat treatment temperature range.
  • the mechanical milling method is, for example, roll mill (ball-mill), ball mill (ball-mill), high energy ball mill (high energy ball mill), planetary mill (planetary mill), stirred ball mill (stirred ball mill, Using a vibrating mill or a jet-mill, the lithium transition metal oxide and the boron-containing compound may be mixed by mechanical friction, for example, by rotating at a rotational speed of 100 rpm to 1500 rpm Compressive stress can be applied.
  • the mixture may be heat treated at the temperature range, or the mixing and heat treatment are simultaneously performed in the milling apparatus. can do.
  • the amount of the boron-containing compound is 0.05 to 1% by weight, preferably 0.1 to 0.8% by weight based on the total weight of the lithium transition metal oxide. It may be the amount of.
  • the content of element B included in the coating layer of the positive electrode active material may increase.
  • some element B of the boron lithium oxide is doped into the lithium transition metal oxide, and the content of B decreases from the surface of the lithium transition metal oxide toward the inside. It can have a concentration gradient.
  • the present invention is a lithium transition metal oxide; And it provides a positive electrode active material comprising a coating layer containing a boron lithium oxide on the surface of the lithium transition metal oxide.
  • the coating layer may contain element B in an amount of 100 ppm to 2000 ppm, preferably 250 ppm to 1100 ppm.
  • the boron lithium oxide contained in the coating layer is an amount of 0.05% to 1% by weight, preferably 0.1% to 0.8% by weight relative to the total weight of the positive electrode active material. It may be included as.
  • the coating layer formed on the surface of the lithium transition metal oxide becomes thin, the effect of suppressing side reactions between the electrolyte during charging and discharging may be insignificant, and when it exceeds 1% by weight, lithium boron Due to the excessive content of the oxide, the thickness of the coating layer is thickened, thereby increasing resistance, which may cause deterioration of the electrochemical properties of the lithium secondary battery.
  • the boron lithium oxide may be LiBO 2 , Li 2 B 4 O 7 , or a mixture thereof.
  • the thickness of the coating layer may be 10 nm to 1000 nm.
  • the lithium transition metal oxide may be a lithium transition metal oxide that is commonly used, for example lithium-cobalt oxide, lithium-manganese oxide, lithium- It may be any one selected from the group consisting of nickel-manganese oxide, lithium-manganese-cobalt oxide and lithium-nickel-manganese-cobalt oxide, or a mixture of two or more thereof.
  • a lithium transition metal oxide having a layered structure having high capacity characteristics is preferable, and may be represented by the following Chemical Formula 1:
  • M is any one selected from the group consisting of Al, Zr, Zn, Ti, Mg, Ga and In, or two or more elements thereof;
  • the lithium impurity that may be present on the surface of the lithium transition metal oxide may include at least one of LiOH and Li 2 CO 3 .
  • the lithium impurity may be included in the lithium transition metal oxide, for example, in the form of Formula 2:
  • the lithium impurities present on the lithium transition metal oxide may be 0.1 wt% to 0.6 wt% based on the total weight of the lithium transition metal oxide.
  • At least some of the lithium impurities on the lithium transition metal oxide react and are converted to the boron lithium oxide so that the amount of lithium impurities is about 30% to 70% compared to before the conversion to the boron lithium oxide, preferably Preferably 40% to 70%.
  • the amount of lithium impurities present in the cathode active material according to the present invention is preferably present in less than 0.3% by weight relative to the total weight of the cathode active material.
  • Lithium impurities such as LiOH or Li 2 CO 3 have a high reactivity with the electrolyte, so when the amount of lithium impurities present on the surface of the lithium transition metal oxide is 0.3% by weight or more, excessive swelling may occur. Because there is.
  • some elements B of the boron lithium oxide may be further doped into the lithium transition metal oxide.
  • the lithium transition metal oxide is represented by the following Chemical Formula 3,
  • M is any one selected from the group consisting of Al, Zr, Zn, Ti, Mg, Ga and In, or two or more elements thereof;
  • w may have a concentration gradient that decreases toward the inside from the surface of the lithium transition metal oxide.
  • the present invention provides a cathode including the cathode active material.
  • the present invention provides a cathode including the cathode active material.
  • the positive electrode can be prepared by conventional methods known in the art.
  • a positive electrode may be prepared by mixing and stirring a solvent, a binder, a conductive agent, and a dispersant in a positive electrode active material, if necessary, and then applying the coating (coating) to a current collector of a metal material, compressing it, and drying the same. have.
  • the current collector of the metal material is a metal having high conductivity, and any metal can be used as long as the slurry of the positive electrode active material is a metal that can be easily adhered.
  • Non-limiting examples of the positive electrode current collector include a foil made of aluminum, nickel, or a combination thereof.
  • the solvent for forming the positive electrode includes an organic solvent such as NMP (N-methyl pyrrolidone), DMF (dimethyl formamide), acetone, dimethyl acetamide or water, and these solvents alone or in combination of two or more. Can be mixed and used. The amount of the solvent used is sufficient to dissolve and disperse the positive electrode active material, the binder, and the conductive agent in consideration of the coating thickness of the slurry and the production yield.
  • NMP N-methyl pyrrolidone
  • DMF dimethyl formamide
  • acetone dimethyl acetamide or water
  • the binder may be polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile, polymethylmethacrylate, Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), Sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid and polymers in which hydrogen thereof is replaced with Li, Na or Ca, or the like, or Various kinds of binder polymers such as various copolymers can be used.
  • PVDF-co-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • the conductive agent is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive agent include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the present invention provides a lithium secondary battery including a separator interposed between the positive electrode, the negative electrode, the positive electrode and the negative electrode.
  • a carbon material, lithium metal, silicon, tin, or the like, in which lithium ions may be occluded and released may be used.
  • the negative electrode current collector is generally made to a thickness of 3 ⁇ m to 500 ⁇ m.
  • a negative electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • the surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy, and the like can be used.
  • the binder and the conductive agent used in the negative electrode can be used as can be commonly used in the art as the positive electrode.
  • the negative electrode may prepare a negative electrode by mixing and stirring the negative electrode active material and the additives to prepare a negative electrode active material composition, and then applying the same to a current collector and compressing the negative electrode.
  • the separator is interposed between the cathode and the anode, and an insulating thin film having high ion permeability and mechanical strength may be used, and since it is known in the art, a detailed description thereof will be omitted herein.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be cylindrical, square, pouch type, or coin type using a can.
  • the lithium secondary battery according to the present invention may not only be used in a battery cell used as a power source for a small device, but also preferably used as a unit battery in a medium-large battery module including a plurality of battery cells.
  • Preferred examples of the medium-to-large device include, but are not limited to, electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and electric power storage systems.
  • MOOH Ni 0.78 Mn 0.11 Co 0.11
  • Li 2 CO 3 Li 2 CO 3
  • LiNi 0.78 Mn 0.11 Co 0.11 O 2 and H 3 BO 3 were quantified in a weight ratio of 100: 0.17, and mixed with a dry mixer (CYCLOMIX, HOSOKAWA Micron Coorporation) to obtain a mixed powder.
  • the obtained powder was heat-treated at 150 ° C. for 5 hours in an oxygen atmosphere.
  • the positive electrode active material containing LiBO 2 and Li 2 B 4 O 7 on the surface of LiNi 0.78 Mn 0.11 Co 0.11 O 2 was obtained by the above method.
  • the thickness of the coating layer was 150 nm.
  • a positive electrode active material was manufactured in the same manner as in Example 1, except that LiNi 0.78 Mn 0.11 Co 0.11 O 2 and H 3 BO 3 were used in a weight ratio of 100: 0.34.
  • the thickness of the coating layer was 230 nm.
  • a positive electrode active material was manufactured in the same manner as in Example 1, except that LiNi 0.78 Mn 0.11 Co 0.11 O 2 and H 3 BO 3 were used in a weight ratio of 100: 0.68.
  • the thickness of the coating layer was 300 nm.
  • a positive electrode active material was manufactured in the same manner as in Example 1, except that LiNi 0.78 Mn 0.11 Co 0.11 O 2 and H 3 BO 3 were used in a weight ratio of 100: 0.09, and the heat treatment was not performed.
  • the thickness of the coating layer was 100 nm.
  • a positive electrode active material was manufactured in the same manner as in Comparative Example 1, except that LiNi 0.78 Mn 0.11 Co 0.11 O 2 and H 3 BO 3 were used in a weight ratio of 100: 0.17.
  • the thickness of the coating layer was 150 nm.
  • a positive electrode active material was manufactured in the same manner as in Comparative Example 1, except that LiNi 0.78 Mn 0.11 Co 0.11 O 2 and H 3 BO 3 were used in a weight ratio of 100: 0.34.
  • the thickness of the coating layer was 160 nm.
  • a cathode active material including a coating layer containing LiBO 2 and Li 2 B 4 O 7 on the surface of LiNi 0.78 Mn 0.11 Co 0.11 O 2 prepared in Example 1 was used.
  • a positive electrode mixture slurry was prepared.
  • the positive electrode mixture slurry was applied to a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 ⁇ m, dried to prepare a positive electrode, and then subjected to roll press to prepare a positive electrode.
  • Al aluminum
  • a negative electrode active material slurry 96.3% by weight of carbon powder as a negative electrode active material, 1.0% by weight of super-p as a conductive material, and 1.5% by weight and 1.2% by weight of styrene butadiene rubber (SBR) and carboxymethylcellulose (CMC) as a binder were added to NMP as a solvent.
  • SBR styrene butadiene rubber
  • CMC carboxymethylcellulose
  • LiPF 6 was added to a nonaqueous electrolyte solvent prepared by mixing ethylene carbonate and diethyl carbonate in a volume ratio of 30:70 as an electrolyte to prepare a 1 M LiPF 6 nonaqueous electrolyte.
  • the positive electrode and the negative electrode thus prepared were interposed with a mixed separator of polyethylene and polypropylene, followed by fabrication of a polymer battery in a conventional manner, followed by pouring the prepared non-aqueous electrolyte to complete the production of a lithium secondary battery.
  • a lithium secondary battery was manufactured in the same manner as in Example 4, except that each cathode active material prepared in Examples 2 and 3 was used.
  • a lithium secondary battery was manufactured in the same manner as in Example 4, except that each cathode active material prepared in Comparative Examples 1 to 3 was used.
  • ICPAES Inductively Coupled Plasma-Atomic Emission Spectroscometer
  • ICP-AES (ICP 5300DV, Perkinelemer) was operated under the following conditions: Forward Power 1300 W; Torch Height 15 mm; Plasma gas flow 15.00 L / min; Sample gas flow 0.8 L / min; Assist gas flow 0.20 L / min and pump speed 1.5 mL / min.
  • Forward Power 1300 W
  • Torch Height 15 mm
  • Plasma gas flow 15.00 L / min
  • Sample gas flow 0.8 L / min
  • Assist gas flow 0.20 L / min
  • pump speed 1.5 mL / min the content of the element B included in the coating layer of the positive electrode active material prepared in Examples 1 to 3, and Comparative Examples 1 to 3 is shown in Table 1 below.
  • the amount of H 3 BO 3 the positive electrode active material according to the use of the 0.17% to 0.68% by weight
  • the content of element B included also increased from 275 ppm to 1110 ppm similarly to the theoretical value.
  • PH titration was performed to determine the amount of lithium impurities for the positive electrode active materials prepared in Example 1 and Comparative Examples 1 and 2, and the results are shown in FIG. 2.
  • a pH meter metrohm 794 was used and the pH was recorded by titration of 0.02 ml.
  • FIG. 2 is a graph comparing the amount of reduction of the lithium impurities with respect to each of the positive electrode active materials of Example 1 and Comparative Examples 1 and 2.
  • FIG. 2 is a graph comparing the amount of reduction of the lithium impurities with respect to each of the positive electrode active materials of Example 1 and Comparative Examples 1 and 2.
  • Example 1 is about 11.6 ml
  • Comparative Example 1 is 15ml
  • Comparative Example 2 is about 14.2 ml
  • Example 1 is reduced by about 20% or more compared to Comparative Examples 1 and 2.
  • FIG. 3 is a graph showing results of measuring capacity characteristics after high temperature storage (60 ° C.) of the lithium secondary batteries of Example 5 and Comparative Example 4, according to Experimental Example 3.
  • FIG. 3 is a graph showing results of measuring capacity characteristics after high temperature storage (60 ° C.) of the lithium secondary batteries of Example 5 and Comparative Example 4, according to Experimental Example 3.
  • Example 5 the positive electrode active material of Example 2
  • Comparative Example 4 the positive electrode active material of Comparative Example 1
  • the slope of the capacity retention rate of the lithium secondary battery of Example 5 of the present invention was slower than that of the lithium secondary battery of Comparative Example 4 until the storage period of 4 weeks. Specifically, it can be seen that the lithium secondary battery of Example 5 of the present invention is increased by about 3% in 4 weeks of storage period compared to the lithium secondary battery of Comparative Example 4.
  • the lithium secondary battery of Example 5 is about 25% reduced compared to the lithium secondary battery of Comparative Example 4. It can be seen that the decrease in storage growth rate of about 25% may also affect the output characteristics. That is, it can be seen that excellent output characteristics can be exhibited as the resistance increase rate of the lithium secondary battery of Example 5 decreases.
  • Example 5 The lithium secondary batteries of Example 5 and Comparative Example 4 were charged at 1C to 4.15V / 30mA at constant current / constant voltage (CC / CV) conditions at 45 ° C, and then discharged at 2C to 2.5V under constant current (CC) conditions, The discharge capacity was measured. This was repeated 1 to 400 cycles, the measured discharge capacity is shown in FIG.
  • the slope of the capacity retention rate of the lithium secondary battery of Example 5 of the present invention was similar to that of the lithium secondary battery of Comparative Example 4 until 400 cycles.
  • the lithium secondary battery of Example 5 is reduced by about 7% in 400 cycles compared to the lithium secondary battery of Comparative Example 4. It can be seen that the decrease in storage growth rate can also affect the output characteristics. That is, it can be seen that excellent output characteristics can be exhibited as the resistance increase rate of the lithium secondary battery of Example 5 decreases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

리튬 전이금속 산화물 및 보론 함유 화합물을 건식 혼합하고 열처리하여 리튬 전이금속 산화물 표면을 붕소 리튬 산화물로 코팅하는 단계를 포함하는 양극 활물질의 제조방법 및 이에 의해 제조된 양극 활물질에 관한 것이다. 본 발명의 일 실시예에 따른 양극 활물질의 제조방법은 보론 함유 화합물의 녹는점 부근에서 열처리 함으로써, 리튬 전이금속 산화물 상에 존재하는 리튬 불순물을 구조적으로 안정한 붕소 리튬 산화물로 용이하게 전환시킬 수 있다. 또한, 낮은 열처리 온도에서도 보론 함유 화합물의 사용량에 비례하는 양으로 붕소 리튬 산화물이 균일하게 도포된 코팅층을 형성할 수 있다.

Description

양극 활물질의 제조방법, 및 이에 의해 제조된 리튬 이차전지용 양극 활물질
본 발명은 양극 활물질의 제조방법, 및 이에 의해 제조된 리튬 이차전지용 양극 활물질에 관한 것이다.
리튬 이차전지는 소형, 경량, 대용량 전지로서 1991년에 등장한 이래, 휴대기기의 전원으로서 널리 사용되었다. 최근 들어 전자, 통신, 컴퓨터 산업의 급속한 발전에 따라 캠코더, 휴대폰, 노트북 PC등이 출현하여 눈부신 발전을 거듭하고 있으며, 이들 휴대용 전자정보통신기기들을 구동할 동력원으로서 리튬 이차전지에 대한 수요가 나날이 증가하고 있다.
리튬 이차전지는 충방전을 거듭함에 따라서 수명이 급속하게 떨어지는 문제점이 있다. 특히, 고온에서는 이러한 문제가 더욱 심각하다. 이러한 이유는 전지내부의 수분이나 기타 다른 영향으로 인해 전해질이 분해 되거나 활물질이 열화되고, 또한 전지의 내부저항이 증가되어 생기는 현상 때문이다.
이러한 문제점을 해결하기 위해 양극 활물질의 표면에 Mg, Al, Co, K, Na, Ca 등의 금속산화물을 열처리를 통해서 코팅하는 기술이 개발되었다. 또한, LiCoO2 활물질에 TiO2를 첨가하여 에너지 밀도와 고율 특성을 개선하는 연구가 이루어졌다.
그러나, 아직까지 수명열화의 문제나 충방전 중에 전해질 등의 분해로 인한 가스발생의 문제를 완전히 해결한 것은 아니다.
한편, 리튬 이차전지의 전극 제조 공정 중 양극 활물질의 표면에 불순물이 존재하는 경우, 리튬 이차전지의 전극 제조 공정 중 전극 슬러리의 제조 단계에서 경시 변화에 영향을 줄 수 있을 뿐만 아니라, 리튬 이차전지에 주입된 전해액과 반응함으로써 리튬 이차전지에서 스웰링(swelling) 현상을 발생시킬 수 있다.
이러한 문제를 해결하기 위해, H3BO3를 사용하여 양극 활물질 표면을 코팅하는 방법이 개발되었다.
이러한 방법으로, 양극 활물질을 H3BO3와 쉐이커를 이용하여 수회 흔들어 혼합함으로써 양극 활물질 표면을 코팅하는 방법이 있다. 그러나, 이 경우, 양극 활물질 표면에 H3BO3 입자가 그대로 뭉쳐서 형성되는 문제가 있다.
또 다른 방법으로, 기계적 복합화 장치로, 예를 들어 노빌타(Nobilta) 장비를 이용하여 양극 활물질과 H3BO3를 혼합하여 코팅하는 방법이 있다. 이 경우 H3BO3를 일정 함량 이상 첨가할 경우 양극 활물질에 포함되는 코팅층의 함량이 증가하지 않아, 공정 반응에 한계가 있는 문제가 있을 수 있다.
따라서, 상기 문제를 해결하면서 리튬 이차전지의 성능을 향상시킬 수 있는 양극 활물질의 제조방법이 절실히 요구되고 있는 실정이다.
[선행기술문헌]
[특허문헌]
일본공개특허공보 제 2009-152214 호
본 발명의 해결하고자 하는 제1 기술적 과제는 보론 함유 화합물을 이용하여 열처리함으로써, 리튬 전이금속 산화물 상에 존재하는 리튬 불순물을 구조적으로 안정한 붕소 리튬 산화물로 전환시킬 수 있는 양극 활물질의 제조방법을 제공하는 것이다.
본 발명의 해결하고자 하는 제2 기술적 과제는 상기 양극 활물질의 제조방법에 의해 리튬 전이금속 산화물 표면에 붕소 리튬 산화물을 함유하는 코팅층을 포함하는 양극 활물질을 제공하는 것이다.
본 발명의 해결하고자 하는 제3 기술적 과제는 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지를 제공하는 것이다.
상기 과제를 해결하기 위하여, 본 발명은 리튬 전이금속 산화물 및 보론 함유 화합물을 건식 혼합하고 열처리하여 리튬 전이금속 산화물 표면을 붕소 리튬 산화물로 코팅하는 단계를 포함하는 양극 활물질의 제조방법을 제공한다.
또한, 본 발명은 리튬 전이금속 산화물; 및 상기 리튬 전이금속 산화물의 표면에 붕소 리튬 산화물을 포함하는 코팅층을 포함하는 것을 특징으로 하는 양극 활물질을 제공한다.
아울러, 본 발명은 상기 양극 활물질을 포함하는 양극을 제공한다.
나아가, 본 발명은 상기 양극을 포함하는 리튬 이차전지를 제공한다.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법은 보론 함유 화합물의 녹는점 부근에서 열처리 함으로써, 리튬 전이금속 산화물 상에 존재하는 리튬 불순물을 구조적으로 안정한 붕소 리튬 산화물로 용이하게 전환시킬 수 있다.
또한, 낮은 열처리 온도에서도 보론 함유 화합물의 사용량에 비례하는 양으로 리튬 전이금속 산화물의 표면에 붕소 리튬 산화물이 균일하게 도포된 코팅층을 형성할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 양극 활물질의 제조방법의 모식도이다.
도 2는 본 발명의 실시예 1, 및 비교예 1과 2에서 제조된 양극 활물질의 리튬 불순물의 양을 알아보기 위한 pH 적정(titration) 결과를 나타낸 그래프이다.
도 3은 실험예 3에 따라, 실시예 5 및 비교예 4의 리튬 이차 전지의 고온 저장(60℃) 후 용량 특성을 측정한 결과를 나타내는 그래프이다.
도 4는 실험예 4에 따라, 실시예 5 및 비교예 4의 리튬 이차 전지의 고온(45℃) 사이클 특성을 측정한 결과를 나타내는 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법은, 도 1에 나타낸 바와 같이, 리튬 전이금속 산화물 및 보론 함유 화합물을 건식 혼합하고 열처리하여 리튬 전이금속 산화물 표면을 붕소 리튬 산화물로 코팅하는 단계를 포함할 수 있다.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법은 리튬 전이금속 산화물 및 보론 함유 화합물을 건식 혼합하고, 열처리, 특히 보론 함유 화합물의 녹는점 부근에서 열처리를 수행함으로써, 리튬 전이금속 산화물 상에 존재하는 리튬 불순물을 구조적으로 안정한 붕소 리튬 산화물로 용이하게 전환시킬 수 있다. 또한, 낮은 열처리 온도에서도 보론 함유 화합물의 사용량에 비례하는 양으로 리튬 전이금속 산화물의 표면에 붕소 리튬 산화물이 균일하게 도포된 코팅층을 형성할 수 있다.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 있어서, 상기 보론 함유 화합물은 H3BO3, B2O3, C6H5B(OH)2, (C6H5O)3B, [CH3(CH2)3O]3B, C13H19BO3, C3H9B3O6 및 (C3H7O)3B로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.
리튬 전이금속 산화물의 표면에 코팅층을 형성하는 방법은 일반적으로 건식 혼합법 및 습식 혼합법을 들 수 있다. 습식 혼합법을 사용하는 경우, 리튬 전이금속 산화물의 표면에 형성되는 코팅층을 좀더 균일하게 얻을 수 있는 장점이 있다. 그러나, 습식 혼합법의 경우 보론 함유 화합물을 수용액 상태로 사용해야 하는데, 이 경우 수용액으로 인해 리튬 전이금속 산화물에 데미지(damage)가 발생할 가능성이 있다.
이에, 본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 따르면, 상기 보론 함유 화합물을 리튬 전이금속과 건식 혼합하여 상기 보론 함유 화합물의 녹는점 부근에서 열처리를 수행함으로써, 보론 함유 화합물을 용융시켜 흐르게 함으로써, 습식 혼합법의 문제인 리튬 전이금속 산화물에 데미지 발생 없이, 습식 혼합법의 장점, 즉 균일한 코팅층을 구현할 수 있는 것이다.
구체적으로 살펴보면, 상기 보론 함유 화합물, 예를 들어 H3BO3의 경우 낮은 온도, 예를 들어 약 130℃ 내지 160℃의 온도 범위에서 연화되면서 녹기 시작한다.
상기 열처리에 의해 보론 함유 화합물이 용융되어 흐르면서 리튬 전이금속 산화물 상에 존재하는 리튬 불순물 중 적어도 일부와 반응하여 보론 함유 화합물이 붕소 리튬 산화물로 용이하게 전환되어 리튬 금속 산화물 표면에 코팅될 수 있다. 이와 같이, 상기 리튬 불순물이 붕소 리튬 산화물로의 전환에 의해 리튬 전이금속 산화물 상에 존재하는 리튬 불순물을 감소시킬 수 있다.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 따르면, 상기 열처리는 상기 보론 함유 화합물의 녹는점 부근인 130 ℃ 내지 300 ℃, 바람직하게는 130 ℃ 내지 200 ℃에서 예를 들어 3시간 내지 10시간 동안 수행될 수 있다.
열처리 온도가 130℃ 미만인 경우 보론 함유 화합물이 충분히 용융되지 않으므로 리튬 전이금속 산화물 상에 보론 함유 화합물이 그대로 남아 있거나, 붕소 리튬 산화물로 전환되더라도 균일한 코팅층을 형성할 수 없고, 300℃를 초과하는 경우 높은 온도로 인해 반응이 너무 빨리 이루어져 리튬 전이금속 산화물의 표면에 균일한 코팅층을 형성할 수 없는 문제점이 있다.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 따르면, 상기 특정한 온도에서 열처리 함으로써, 보론 함유 화합물의 사용량에 비례하는 양으로 리튬 전이금속 산화물의 표면에 붕소 리튬 산화물이 균일하게 도포된 코팅층을 형성할 수 있다.
본 발명의 일 실시예에 따른 제조방법에 있어서, 상기 건식 혼합 방법은 몰타르 그라인더 혼합(mortar grinder mixing)법 및 기계적 밀링법을 이용한 혼합법을 이용하여 수행할 수 있으며, 바람직하게는 기계적 밀링법을 이용하는 것이 균일한 코팅층 형성에 있어서 바람직할 수 있다.
구체적으로 살펴보면, 상기 몰타르 그라인더 혼합법은 리튬 전이금속 산화물과 보론 함유 화합물을 몰타르를 이용하여 균일하게 혼합한 후, 상기 열처리 온도 범위에서 열처리할 수 있다.
또한, 상기 기계적 밀링법은 예를 들어, 롤밀 (roll-mill), 볼밀 (ball-mill), 고에너지 볼밀(high energy ball mill), 유성 밀(planetary mill), 교반 볼밀(stirred ball mill), 진동밀(vibrating mill) 또는 제트 밀 (jet-mill)을 이용하여, 리튬 전이금속 산화물과 보론 함유 화합물을 기계적 마찰에 의해 혼합을 수행할 수 있으며, 예를 들어 회전수 100rpm 내지 1500rpm으로 회전시켜 기계적으로 압축응력을 가할 수 있다.
상기 기계적 밀링법을 이용하는 경우, 리튬 전이금속 산화물과 보론 함유 화합물을 상기 기계적 밀링법에 의해 혼합한 후, 혼합물을 상기 온도 범위에서 열처리할 수 있거나, 또는 상기 밀링 장치 내에서 혼합과 열처리를 동시에 수행할 수 있다. 본 발명의 일 실시예에 따르면, 균일한 코팅층을 형성하기 위해 몰타르 그라인더 혼합법 보다 기계적 밀링법을 이용하는 것이 바람직할 수 있다.
본 발명의 일 실시예에 따른 양극 활물질의 제조방법에 있어서, 상기 보론 함유 화합물의 사용량은 상기 리튬 전이금속 산화물 총 중량에 대해 0.05 중량% 내지 1 중량%, 바람직하게는 0.1 중량% 내지 0.8 중량%의 양일 수 있다.
본 발명의 일 실시예에 따르면, 상기 보론 함유 화합물의 사용량이 상기 범위 내에서 증가할수록, 양극 활물질의 코팅층에 포함되는 원소 B의 함량이 증가할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 열처리에 의해 붕소 리튬 산화물 중 일부 원소 B가 리튬 전이금속 산화물의 내부에 도핑되고, 상기 B의 함량은 상기 리튬 전이금속 산화물의 표면에서 내부로 갈수록 감소하는 농도구배를 가질 수 있다.
또한 본 발명은 리튬 전이금속 산화물; 및 상기 리튬 전이금속 산화물의 표면에 붕소 리튬 산화물을 포함하는 코팅층을 포함하는 양극 활물질을 제공한다.
상기 코팅층은 원소 B를 100 ppm 내지 2000 ppm, 바람직하게는 250 ppm 내지 1100 ppm의 양으로 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 양극 활물질에 있어서, 상기 코팅층에 포함되는 붕소 리튬 산화물은 양극 활물질 총 중량에 대해 0.05 중량% 내지 1 중량%, 바람직하게는 0.1 중량% 내지 0.8 중량%의 양으로 포함될 수 있다.
상기 붕소 리튬 산화물이 0.05 중량% 미만인 경우, 리튬 전이금속 산화물의 표면에 형성되는 코팅층이 얇아져 충방전시 전해액간의 부반응을 억제할 수 있는 효과가 미미할 수 있고, 1 중량%를 초과하는 경우, 붕소 리튬 산화물의 과량 함유로 인해 코팅층의 두께가 두꺼워져, 이로 인한 저항 증가로 리튬 이차전지의 전기 화학적 특성의 저하를 야기시킬 수 있었다.
상기 붕소 리튬 산화물은 LiBO2, Li2B4O7, 또는 이들의 혼합물일 수 있다.
또한, 상기 코팅층의 두께는 10 nm 내지 1000 nm일 수 있다.
본 발명의 일 실시예에 따른 상기 양극 활물질에 있어서, 상기 리튬 전이금속 산화물은 통상적으로 사용되는 리튬 전이금속 산화물을 사용할 수 있으며, 예를 들어 리튬-코발트계 산화물, 리튬-망간계 산화물, 리튬-니켈-망간계 산화물, 리튬-망간-코발트계 산화물 및 리튬-니켈-망간-코발트계 산화물로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물이 될 수 있다. 특히, 고용량 특성을 갖는 층상 구조의 리튬 전이금속 산화물이 바람직하며, 하기 화학식 1로 표시될 수 있다:
<화학식 1>
Li1+a[NixMnyCozMv]O2-cAc
상기 식에서, M은 Al, Zr, Zn, Ti, Mg, Ga 및 In으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 원소이고; A는 P, F, S 및 N로 이루어진 군에서 선택되는 1종 이상이며, 0≤x≤1.0, 0≤y<0.6, 0≤z<0.6, 0≤v≤0.1, 0≤a<0.3, 0≤c≤0.2, a+x+y+z+v=1이다.
상기 리튬 전이금속 산화물의 표면에 존재할 수 있는 리튬 불순물은, LiOH 및 Li2CO3 중 적어도 어느 하나를 포함할 수 있다.
상기 리튬 불순물은 예를 들어, 하기 화학식 2의 형태로 리튬 전이금속 산화물에 포함될 수 있다:
<화학식 2>
(1-s-t)[Li(LiaMn(1-a-x-z)NixCOz)O2]ㆍs[Li2CO3]ㆍt[LiOH]
상기 식에서, 0≤a<0.3, 0≤x<0.9, 0≤z<0.6, 0<s<0.05, 및 0<t<0.05.
상기 리튬 전이금속 산화물 상에 존재하는 리튬 불순물은 리튬 전이금속 산화물 총 중량 대비 0.1 중량% 내지 0.6 중량%일 수 있다.
본 발명의 일 실시예에 따라, 리튬 전이금속 산화물 상의 리튬 불순물 중 적어도 일부가 반응하여 상기 붕소 리튬 산화물로 전환됨으로써 리튬 불순물의 양을 붕소 리튬 산화물로 전환되기 전 대비 약 30% 내지 70%, 바람직하게는 40% 내지 70% 정도로 감소시킬 수 있다.
더욱 구체적으로 본 발명에 따른 양극 활물질에 존재하는 리튬 불순물의 양은 양극 활물질의 총 중량에 대해 0.3 중량% 미만으로 존재하는 것이 바람직하다. LiOH, 또는 Li2CO3 등의 리튬 불순물은 전해액에 대해 높은 반응성을 가지므로 리튬 전이금속 산화물의 표면에 존재하는 리튬 불순물의 양이 0.3 중량% 이상인 경우 과도한 스웰링 현상이 발생하는 등의 문제점이 있기 때문이다.
또한, 본 발명의 일 실시예에 따르면 상기 리튬 전이금속 산화물의 내부에 붕소 리튬 산화물 중 일부 원소 B가 미량으로 도핑되어 더 포함될 수 있다.
상기 리튬 전이금속 산화물의 내부에 붕소 리튬 산화물 중 일부 원소 B가 도핑되는 경우, 예를 들어, 상기 리튬 전이금속 산화물은 하기 화학식 3으로 표시되고,
<화학식 3>
Li1+a[NixMnyCozBwMv]O2-cAc
상기 식에서, M은 Al, Zr, Zn, Ti, Mg, Ga 및 In으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 원소이고; A는 P, F, S 및 N로 이루어진 군에서 선택되는 1종 이상이며, 0≤x≤1.0, 0≤y<0.6, 0≤z<0.6, 0≤v≤0.1, 0≤a<0.3, 0≤c≤0.2, a+x+y+z+v=1, 0≤w≤0.1이다.
이때, 상기 w는 리튬 전이금속 산화물의 표면에서 내부로 갈수록 감소하는 농도구배를 가질 수 있다.
본 발명은 상기 양극 활물질을 포함하는 양극을 제공한다.
또한, 본 발명은 상기 양극 활물질을 포함하는 양극을 제공한다.
상기 양극은 당 분야에 알려져 있는 통상적인 방법으로 제조할 수 있다. 예를 들면, 양극 활물질에 용매, 필요에 따라 바인더, 도전제, 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 양극을 제조할 수 있다.
금속 재료의 집전체는 전도성이 높은 금속으로, 상기 양극 활물질의 슬러리가 용이하게 접착할 수 있는 금속으로 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.
상기 양극을 형성하기 위한 용매로는 NMP(N-메틸 피롤리돈), DMF(디메틸 포름아미드), 아세톤, 디메틸 아세트아미드 등의 유기 용매 또는 물 등이 있으며, 이들 용매는 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 바인더, 도전제를 용해 및 분산시킬 수 있는 정도이면 충분하다.
상기 바인더로는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 고분자, 또는 다양한 공중합체 등의 다양한 종류의 바인더 고분자가 사용될 수 있다.
상기 도전제는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
또한, 본 발명은 상기 양극, 음극, 상기 양극과 음극 사이에 개재된 세퍼레이터를 포함하는 리튬 이차전지를 제공한다.
본 발명의 일 실시예에 따른 상기 음극에 사용되는 음극 활물질로는 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소재, 리튬 금속, 규소 또는 주석 등을 사용할 수 있다.
또한, 음극 집전체는 일반적으로 3 ㎛ 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 음극에 사용되는 바인더 및 도전제는 양극과 마찬가지로 당 분야에 통상적으로 사용될 수 있는 것을 사용할 수 있다. 음극은 음극 활물질 및 상기 첨가제들을 혼합 및 교반하여 음극 활물질 조성물을 제조한 후, 이를 집전체에 도포하고 압축하여 음극을 제조할 수 있다.
상기 세퍼레이터는 음극과 양극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용될 수 있으며, 당업계에 공지되어 있으므로, 그에 대한 자세한 설명은 본 명세서에서 생략한다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치 (pouch)형 또는 코인 (coin)형 등이 될 수 있다.
본 발명에 따른 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.
상기 중대형 디바이스의 바람직한 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템 등을 들 수 있지만, 이들 만으로 한정되는 것은 아니다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
이하 실시예 및 실험예를 들어 더욱 설명하나, 본 발명이 이들 실시예 및 실험예에 의해 제한되는 것은 아니다.
<양극 활물질의 제조>
실시예 1
혼합 전이금속 전구체로서 MOOH (M=Ni0.78Mn0.11Co0.11)을 사용하였고, 상기 혼합 전이금속 전구체와 Li2CO3를 화학양론적 비율(Li:M = 1.00:1)로 혼합하고, 이 혼합물을 공기중에서 약 800 ℃ 내지 900 ℃에서 10시간 동안 소성하여 LiNi0.78Mn0.11Co0.11O2를 제조하였다.
LiNi0.78Mn0.11Co0.11O2 및 H3BO3를 100:0.17 중량비로 정량하여 건식 혼합기(CYCLOMIX, HOSOKAWA Micron Coorporation)로 혼합하여, 혼합 분말을 얻었다. 얻어진 분말을 산소 분위기 중에 150 ℃에서 5 시간 동안 열처리를 수행하였다. 상기 방법에 의해 LiNi0.78Mn0.11Co0.11O2 표면에 LiBO2 및 Li2B4O7을 포함하는 양극 활물질을 얻었다. 상기 코팅층의 두께는 150nm 였다.
실시예 2
LiNi0.78Mn0.11Co0.11O2 및 H3BO3를 100:0.34 중량비로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
상기 양극 활물질에 있어서, 상기 코팅층의 두께는 230nm 였다.
실시예 3
LiNi0.78Mn0.11Co0.11O2 및 H3BO3를 100:0.68 중량비로 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
상기 양극 활물질에 있어서, 상기 코팅층의 두께는 300nm 였다.
비교예 1
LiNi0.78Mn0.11Co0.11O2 및 H3BO3를 100:0.09 중량비로 사용하고, 열처리를 하지 않은 것을 한 것을 제외하고는, 실시예 1과 동일한 방법으로 양극 활물질을 제조하였다.
상기 양극 활물질에 있어서, 상기 코팅층의 두께는 100nm 였다.
비교예 2
LiNi0.78Mn0.11Co0.11O2 및 H3BO3를 100:0.17 중량비로 사용한 것을 제외하고는, 비교예 1과 동일한 방법으로 양극 활물질을 제조하였다.
상기 양극 활물질에 있어서, 상기 코팅층의 두께는 150nm 였다.
비교예 3
LiNi0.78Mn0.11Co0.11O2 및 H3BO3를 100:0.34 중량비로 사용한 것을 제외하고는, 비교예 1과 동일한 방법으로 양극 활물질을 제조하였다.
상기 양극 활물질에 있어서, 상기 코팅층의 두께는 160nm 였다.
<리튬 이차전지의 제조>
실시예 4
양극 제조
상기 실시예 1에서 제조된 LiNi0.78Mn0.11Co0.11O2 표면에 LiBO2 및 Li2B4O7를 함유하는 코팅층을 포함하는 양극 활물질을 사용하였다.
상기 양극 활물질 94 중량%, 도전제로 카본 블랙(carbon black) 3 중량%, 바인더로 폴리비닐리덴 플루오라이드(PVdF) 3 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 제조
음극 활물질로 탄소 분말 96.3 중량%, 도전재로 super-p 1.0 중량% 및 바인더로 스티렌 부타디엔 고무(SBR) 및 카르복시메틸셀룰로오스(CMC)를 1.5 중량%와 1.2 중량%를 혼합하여 용매인 NMP에 첨가하여 음극 활물질 슬러리를 제조하였다. 상기 음극 활물질 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
비수성 전해액 제조
한편, 전해질로서 에틸렌카보네이트 및 디에틸카보네이트를 30:70의 부피비로 혼합하여 제조된 비수전해액 용매에 LiPF6를 첨가하여 1M의 LiPF6 비수성 전해액을 제조하였다.
리튬 이차전지 제조
이와 같이 제조된 양극과 음극을 폴리에틸렌과 폴리프로필렌의 혼합 세퍼레이터를 개재시킨 후 통상적인 방법으로 폴리머형 전지 제작 후, 제조된 상기 비수성 전해액을 주액하여 리튬 이차전지의 제조를 완성하였다.
실시예 5 및 6
상기 실시예 2 및 3에서 제조된 각각의 양극 활물질을 사용한 것을 제외하고는, 실시예 4와 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 4 내지 6
상기 비교예 1 내지 3에서 제조된 각각의 양극 활물질을 사용한 것을 제외하고는, 실시예 4와 동일한 방법으로 리튬 이차전지를 제조하였다.
실험예 1 : ICP 질량 분석(ICP mass analysis)
실시예 1 내지 3, 및 비교예 1 내지 3에서 제조된 양극 활물질의 코팅층에 포함되는 원소 B의 함량을 알아 보기 위해, ICP-AES법(Inductively Coupled Plasma-Atomic Emission Spectroscophy)으로 분석하였다.
구체적으로, 측정하고자 하는 실시예 1 내지 3, 및 비교예 1 내지 3에서 제조된 양극 활물질을 각각 0.1g씩 취하고 여기에 증류수 2㎖와 진한 질산 3㎖를 첨가하여 뚜껑을 닫고 시료를 용해시켰다. 그 후, 시료가 완전히 용해되면, 초순수 50 ㎖를 첨가하여 희석하였다. 그 후, 상기 희석된 용액을 다시 10배 희석한 다음에 ICPAES(Inductively Coupled Plasma-Atomic Emission Spectroscometer)로 분석하였다. ICP-AES(ICP 5300DV,Perkinelemer)은 다음과 같은 조건으로 운전하였다: 순방향 전력(Forward Power) 1300 W; 토치 높이(Torch Height) 15㎜; 플라즈마 가스 흐름 15.00 L/min; 시료 가스 흐름 0.8 L/min; 보조가스 흐름 0.20 L/min 및 펌프 속도 1.5 ㎖/min. 그 결과, 상기 실시예 1 내지 3, 및 비교예 1 내지 3에서 제조된 양극 활물질의 코팅층에 포함되는 원소 B의 함량을 하기 표 1에 나타내었다.
표 1
H3BO3 사용량(중량%) B 함량(ICP)
B(실험치, ppm) B(이론치, ppm)
실시예 1 0.17 275 290
실시예 2 0.34 575 585
실시예 3 0.68 1110 1170
비교예 1 0.09 145 145
비교예 2 0.17 290 290
비교예 3 0.34 290 585
상기 표 1에서 알 수 있는 바와 같이, 동일한 양의 H3BO3를 사용하더라도, 150℃에서 열처리를 한 실시예와 열처리를 하지 않은 비교예에 포함되는 원소 B의 함량은 차이가 있었다.
구체적으로 살펴보면, H3BO3의 녹는점 부근인 150 ℃에서 열처리를 수행한 실시예 1 내지 3의 경우, H3BO3의 사용량을 0.17 중량% 내지 0.68 중량%를 사용함에 따라, 양극 활물질에 포함되는 원소 B의 함량도 이론치와 유사하게 275 ppm 내지 1110 ppm으로 증가하였다.
그러나, 열처리를 수행하지 않은 비교예 1 내지 3의 경우, H3BO3의 사용량을 0.09, 0.17 및 0.34로 변화시킨 결과 H3BO3의 사용량이 0.09 및 0.17인 경우 양극 활물질에 포함되는 원소 B의 함량이 이론치와 유사하게 증가하였으나, H3BO3의 사용량이 0.34 중량%인 경우에는 0.17 중량%를 사용한 경우와 동일한 원소 B의 함량을 얻었다.
비교예와 같이 열처리를 수행하지 않은 경우, H3BO3를 일정함량 이상 첨가할 경우 양극 활물질에 포함되는 원소 B의 함량은 증가하지 않음을 알 수 있다.
이에 반해, 실시예 1 내지 3과 같이 열처리를 수행한 경우 사용한 H3BO3의 양 만큼 양극 활물질에 원소 B가 검출됨을 알 수 있다.
실험예 2 : 리튬 불순물의 양을 알아보기 위한 pH 적정(titration) 실험
실시예 1, 및 비교예 1과 2에서 제조된 양극 활물에 대한 리튬 불순물의 양을 알아보기 위해 pH 적정(titration)을 수행하였고, 그 결과를 도 2에 나타내었다. pH meter는 metrohm 794를 이용하였으며 0.02 ml 씩 적정하여 pH를 기록하였다.
도 2는 실시예 1, 및 비교예 1과 2의 양극 활물질 각각에 대해 리튬 불순물의 양의 감소량을 비교한 그래프이다.
즉, 10 g 양극 활물질에 대한 0.1 M의 HCl의 양을 비교해 본 결과, 도 2를 참조하여 염산 적정에 사용된 염산의 양을 비교해 보면, 실시예 1은 약 11.6 ml, 비교예 1은 15ml, 비교예 2는 약 14.2 ml로, 실시예 1은 비교예 1 및 2 대비 약 20% 이상 정도 감소함을 알 수 있다.
실험예 3 : 고온 저장 후 용량 특성 및 저항 증가율 평가 실험>
도 3은 실험예 3에 따라, 실시예 5 및 비교예 4의 리튬 이차 전지의 고온 저장(60℃) 후 용량 특성을 측정한 결과를 나타내는 그래프이다.
실시예 5(실시예 2의 양극 활물질) 및 비교예 4(비교예 1의 양극 활물질)의 리튬 이차 전지를 60℃에서 저장 후 정전류/정전압(CC/CV) 조건에서 4.15V/30mA까지 1C로 충전한 다음, 정전류(CC) 조건에서 2.5V까지 1C로 방전하고, 그 방전 용량을 측정하였다. 그 결과를 도 3에 나타낸다.
도 3을 참조하면, 본 발명의 실시예 5의 리튬 이차 전지는 저장 기간 4주까지 용량 보유율의 기울기가 비교예 4의 리튬 이차 전지에 비해 완만하였다. 구체적으로, 본 발명의 실시예 5의 리튬 이차 전지는 비교예 4의 리튬 이차 전지에 비해 저장 기간 4주에는 약 3% 정도 증가함을 알 수 있다.
또한, 저항 증가율의 경우 실시예 5의 리튬 이차 전지는 비교예 4의 리튬 이차 전지에 비해 약 25% 정도 감소함을 알 수 있다. 이와 같이 저장 증가율이 약 25% 정도 까지의 감소는 출력 특성에도 영향을 미칠 수 있음을 알 수 있다. 즉 실시예 5의 리튬 이차 전지의 저항 증가율의 감소에 따라 우수한 출력 특성을 나타낼 수 있음을 알 수 있다.
실험예 4 : 고온(45℃) 사이클 특성성 및 저항 증가율 평가 실험>
실시예 5 및 비교예 4의 리튬 이차 전지를 45℃에서 정전류/정전압(CC/CV) 조건에서 4.15V/30mA까지 1C로 충전한 다음, 정전류(CC) 조건에서 2.5V까지 2C로 방전하고, 그 방전 용량을 측정하였다. 이를 1 내지 400 사이클로 반복 실시하였고, 측정한 방전 용량을 도 4에 나타내었다.
도 4를 참조하면, 본 발명의 실시예 5의 리튬 이차 전지는 400회 사이클까지 용량 보유율의 기울기가 비교예 4의 리튬 이차 전지와 유사하게 나타났다.
그러나, 저항 증가율의 경우 실시예 5의 리튬 이차 전지는 비교예 4의 리튬 이차 전지에 비해 400회 사이클에서 약 7% 정도 감소함을 알 수 있다. 이와 같이 저장 증가율의 감소는 출력 특성에도 영향을 미칠 수 있음을 알 수 있다. 즉, 실시예 5의 리튬 이차 전지의 저항 증가율의 감소에 따라 우수한 출력 특성을 나타낼 수 있음을 알 수 있다.

Claims (22)

  1. 리튬 전이금속 산화물 및 보론 함유 화합물을 건식 혼합하고 열처리하여 리튬 전이금속 산화물 표면을 붕소 리튬 산화물로 코팅하는 단계를 포함하는 양극 활물질의 제조방법.
  2. 제 1 항에 있어서,
    상기 열처리는 130 ℃ 내지 300 ℃의 온도 범위에서 수행되는 것을 특징으로 하는 양극 활물질의 제조방법.
  3. 제 2 항에 있어서,
    상기 열처리는 130 ℃ 내지 200 ℃의 온도 범위에서 수행되는 것을 특징으로 하는 양극 활물질의 제조방법.
  4. 제 2 항에 있어서,
    상기 열처리에 의해 보론 함유 화합물이 상기 리튬 전이금속 산화물 상의 리튬 불순물 중 적어도 일부와 반응하여 붕소 리튬 산화물로 전환되는 것을 특징으로 하는 양극 활물질의 제조방법.
  5. 제 2 항에 있어서,
    상기 열처리에 의해 붕소 리튬 산화물 중 일부 원소 B가 리튬 전이금속 산화물의 내부에 도핑되고, 상기 B의 함량은 상기 리튬 전이금속 산화물의 표면에서 내부로 갈수록 감소하는 농도구배를 갖는 것을 특징으로 하는 양극 활물질의 제조방법.
  6. 제 4 항에 있어서,
    상기 리튬 불순물은 LiOH, Li2CO3 또는 이들의 혼합물인 것을 특징으로 하는 양극 활물질의 제조방법.
  7. 제 1 항에 있어서,
    상기 혼합은 몰타르 그라인더 혼합(mortar grinder mixing)법 또는 기계적 밀링법에 의해 수행되는 것을 특징으로 하는 양극 활물질의 제조방법.
  8. 제 7 항에 있어서,
    상기 기계적 밀링법에 의한 혼합은 롤밀 (roll-mill), 볼밀 (ball-mill), 고에너지 볼밀(high energy ball mill), 유성 밀(planetary mill), 교반 볼밀(stirred ball mill), 진동밀(vibrating mill) 또는 제트 밀 (jet-mill)을 이용하여 수행되는 것을 특징으로 하는 양극 활물질의 제조방법.
  9. 제 1 항에 있어서,
    상기 보론 함유 화합물은 H3BO3, B2O3, C6H5B(OH)2, (C6H5O)3B, [CH3(CH2)3O]3B, C13H19BO3, C3H9B3O6 및 (C3H7O)3B로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 양극 활물질의 제조방법.
  10. 제 1 항에 있어서,
    상기 보론 함유 화합물은 상기 리튬 전이금속 산화물 총 중량에 대해 0.05 중량% 내지 1 중량%의 양으로 사용되는 것을 특징으로 하는 양극 활물질의 제조방법.
  11. 제 1 항에 있어서,
    상기 붕소 리튬 산화물은 LiBO2, Li2B4O7, 또는 이들의 혼합물인 것을 특징으로 하는 양극 활물질의 제조방법.
  12. 제 1 항에 있어서,
    리튬 전이금속 산화물은 하기 화학식 1로 표시되는 것을 특징으로 하는 양극 활물질의 제조방법:
    <화학식 1>
    Li1+a[NixMnyCozMv]O2-cAc
    상기 식에서, M은 Al, Zr, Zn, Ti, Mg, Ga 및 In으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 원소이고; A는 P, F, S 및 N로 이루어진 군에서 선택되는 1종 이상이며, 0≤x≤1.0, 0≤y<0.6, 0≤z<0.6, 0≤v≤0.1, 0≤a<0.3, 0≤c≤0.2, a+x+y+z+v=1이다.
  13. 리튬 전이금속 산화물; 및
    상기 리튬 전이금속 산화물의 표면에 붕소 리튬 산화물을 포함하는 코팅층을 포함하는 것을 특징으로 하는 양극 활물질.
  14. 제 13 항에 있어서,
    상기 코팅층은 원소 B를 100 ppm 내지 2000 ppm의 양으로 포함하는 것을 특징으로 하는 양극 활물질.
  15. 제 13 항에 있어서,
    상기 코팅층은 원소 B를 250 ppm 내지 1100 ppm의 양으로 포함하는 것을 특징으로 하는 양극 활물질.
  16. 제 13 항에 있어서,
    상기 코팅층의 두께는 10 nm 내지 1000 nm인 것을 특징으로 하는 양극 활물질.
  17. 제 13 항에 있어서,
    상기 리튬 전이금속 산화물의 내부에 붕소 리튬 산화물의 일부 원소 B가 더 포함되는 것을 특징으로 하는 양극 활물질.
  18. 제 17 항에 있어서,
    상기 리튬 전이금속 산화물은 하기 화학식 3으로 표시되고, 하기 화학식 3에서 w는 리튬 전이금속 산화물의 표면에서 내부로 갈수록 감소하는 농도구배를 갖는 것을 특징으로 하는 양극 활물질:
    <화학식 3>
    Li1+a[NixMnyCozBwMv]O2-cAc
    상기 식에서, M은 Al, Zr, Zn, Ti, Mg, Ga 및 In으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 원소이고; A는 P, F, S 및 N로 이루어진 군에서 선택되는 1종 이상이며, 0≤x≤1.0, 0≤y<0.6, 0≤z<0.6, 0≤v≤0.1, 0≤a<0.3, 0≤c≤0.2, a+x+y+z+v=1, 0≤w≤0.1이다.
  19. 제 13 항에 있어서,
    상기 양극 활물질은 리튬 불순물을 양극 활물질 총 중량 대비 0.3 중량% 미만으로 포함하는 것을 특징으로 하는 양극 활물질.
  20. 제 13 항에 있어서,
    상기 붕소 리튬 산화물은 LiBO2, Li2B4O7, 또는 이들의 혼합물인 것을 특징으로 하는 양극 활물질.
  21. 제 13 항의 양극 활물질을 포함하는 것을 특징으로 하는 양극.
  22. 제 21 항의 양극을 포함하는 것을 특징으로 하는 리튬 이차전지.
PCT/KR2014/010257 2013-10-29 2014-10-29 양극 활물질의 제조방법, 및 이에 의해 제조된 리튬 이차전지용 양극 활물질 WO2015065046A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480002930.9A CN104781960B (zh) 2013-10-29 2014-10-29 正极活性物质的制备方法及由该方法制备的锂二次电池用正极活性物质
US14/437,079 US10056605B2 (en) 2013-10-29 2014-10-29 Manufacturing method of cathode active material, and cathode active material for lithium secondary battery manufactured thereby
EP14854871.2A EP3065207B1 (en) 2013-10-29 2014-10-29 Manufacturing method of cathode active material, and cathode active material for lithium secondary battery manufactured thereby
JP2015545401A JP6284542B2 (ja) 2013-10-29 2014-10-29 正極活物質の製造方法、及びこれによって製造されたリチウム二次電池用正極活物質
US16/058,594 US10529985B2 (en) 2013-10-29 2018-08-08 Cathode active material for lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0129617 2013-10-29
KR20130129617 2013-10-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/437,079 A-371-Of-International US10056605B2 (en) 2013-10-29 2014-10-29 Manufacturing method of cathode active material, and cathode active material for lithium secondary battery manufactured thereby
US16/058,594 Division US10529985B2 (en) 2013-10-29 2018-08-08 Cathode active material for lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2015065046A1 true WO2015065046A1 (ko) 2015-05-07

Family

ID=53004559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010257 WO2015065046A1 (ko) 2013-10-29 2014-10-29 양극 활물질의 제조방법, 및 이에 의해 제조된 리튬 이차전지용 양극 활물질

Country Status (7)

Country Link
US (2) US10056605B2 (ko)
EP (1) EP3065207B1 (ko)
JP (1) JP6284542B2 (ko)
KR (1) KR101651338B1 (ko)
CN (1) CN104781960B (ko)
TW (1) TWI609519B (ko)
WO (1) WO2015065046A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056364A1 (ja) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質
CN108886146A (zh) * 2016-03-30 2018-11-23 松下知识产权经营株式会社 非水电解质二次电池用正极活性物质、非水电解质二次电池用正极活性物质的制造方法和非水电解质二次电池
CN112154558A (zh) * 2018-06-20 2020-12-29 株式会社Lg化学 锂二次电池用正极活性材料和锂二次电池
DE112021001189T5 (de) 2020-02-21 2022-12-15 Gs Yuasa International Ltd. Nichtwässriger-elektrolyt-energiespeichervorrichtung und verfahren zum herstellen einer nichtwässriger-elektrolyt-energiespeichervorrichtung

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6187655B2 (ja) * 2015-08-25 2017-08-30 日亜化学工業株式会社 非水電解液二次電池用正極活物質及びその製造方法
KR101928683B1 (ko) * 2015-11-13 2018-12-12 히타치 긴조쿠 가부시키가이샤 리튬 이온 이차 전지용 정극 재료 및 그 제조 방법, 그리고 리튬 이온 이차 전지
KR102004457B1 (ko) 2015-11-30 2019-07-29 주식회사 엘지화학 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2017150522A1 (ja) * 2016-02-29 2017-09-08 三井金属鉱業株式会社 リチウム二次電池用正極活物質
WO2017150506A1 (ja) * 2016-02-29 2017-09-08 三井金属鉱業株式会社 リチウム二次電池用正極活物質
KR101980103B1 (ko) 2016-03-03 2019-05-21 주식회사 엘지화학 리튬 이차전지용 양극활물질 및 이의 제조 방법
KR101908222B1 (ko) * 2016-03-22 2018-10-15 주식회사 엘지화학 이차전지용 음극활물질 및 이를 포함하는 이차전지
KR102066266B1 (ko) * 2016-03-31 2020-01-14 주식회사 엘지화학 리튬 코발트 산화물을 포함하는 코어 및 붕소와 불소를 포함하는 코팅층을 포함하는 양극 활물질 입자 및 이의 제조 방법
KR102665406B1 (ko) * 2016-04-15 2024-05-09 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR102665407B1 (ko) * 2016-04-15 2024-05-09 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR102665408B1 (ko) * 2016-04-15 2024-05-09 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
US11024836B2 (en) * 2016-05-16 2021-06-01 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery and method for manufacturing the same, positive electrode mixed material paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR102072221B1 (ko) * 2016-06-17 2020-03-02 주식회사 엘지화학 도펀트의 농도 구배가 있는 리튬 이차전지용 양극 활물질
JP6642710B2 (ja) * 2016-06-30 2020-02-12 日立金属株式会社 リチウム二次電池用正極材料、それを用いたリチウム二次電池用正極及びリチウム二次電池
JP7103222B2 (ja) * 2016-08-29 2022-07-20 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池
KR101886514B1 (ko) * 2016-10-17 2018-08-07 현대자동차주식회사 전고체 전지용 코어-쉘 구조의 전극 활물질의 제조방법
KR101919531B1 (ko) * 2016-12-22 2018-11-16 주식회사 포스코 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN108336331B (zh) * 2017-01-17 2022-12-20 三星电子株式会社 电极活性材料、包含该电极活性材料的锂二次电池和制备该电极活性材料的方法
US10892488B2 (en) * 2017-01-17 2021-01-12 Samsung Electronics Co., Ltd. Electrode active material, lithium secondary battery containing the electrode active material, and method of preparing the electrode active material
EP3486979B1 (en) * 2017-02-02 2020-10-14 LG Chem, Ltd. Cathode active material for secondary battery, and preparation method therefor
KR102237951B1 (ko) * 2017-03-21 2021-04-08 주식회사 엘지화학 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 이차 전지
KR102207523B1 (ko) * 2017-06-21 2021-01-25 주식회사 엘지화학 리튬 이차전지
WO2019040533A1 (en) * 2017-08-22 2019-02-28 A123 Systems Llc GLASS COATING OF LITHIUM TETRABORATE ON CATHODE MATERIALS TO IMPROVE CYCLING SAFETY AND STABILITY
WO2019039567A1 (ja) * 2017-08-25 2019-02-28 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池
US11862793B2 (en) 2017-08-25 2024-01-02 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery and method for producing the same
WO2019059653A1 (ko) * 2017-09-19 2019-03-28 주식회사 엘지화학 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
CN110268560B (zh) * 2017-09-19 2022-04-26 株式会社Lg化学 二次电池用正极活性材料以及包含其的锂二次电池
KR102213174B1 (ko) * 2017-10-12 2021-02-05 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019074305A2 (ko) * 2017-10-12 2019-04-18 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102298293B1 (ko) 2017-10-20 2021-09-07 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
KR102132878B1 (ko) 2017-10-20 2020-07-10 주식회사 엘지화학 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
CN111213265B (zh) * 2017-10-20 2022-05-27 株式会社Lg化学 锂二次电池用正极活性材料、其制备方法以及包含其的锂二次电池用正极和锂二次电池
KR102177798B1 (ko) * 2017-11-16 2020-11-12 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
JP7049551B2 (ja) * 2017-11-21 2022-04-07 エルジー エナジー ソリューション リミテッド 二次電池用正極材及びこれを含むリチウム二次電池
KR102345015B1 (ko) * 2017-11-22 2021-12-28 주식회사 엘지에너지솔루션 리튬 이차전지용 양극재에 포함되는 비가역 첨가제, 이의 제조방법, 및 이 및 포함하는 양극재
KR102424398B1 (ko) 2020-09-24 2022-07-21 삼성에스디아이 주식회사 리튬 이차 전지용 양극, 그 제조 방법, 및 이를 포함한 리튬 이차 전지
US11522189B2 (en) 2017-12-04 2022-12-06 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, preparing method thereof, and rechargeable lithium battery comprising positive electrode
US11670754B2 (en) 2017-12-04 2023-06-06 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US11777075B2 (en) 2017-12-04 2023-10-03 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
US10847781B2 (en) 2017-12-04 2020-11-24 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
KR102010929B1 (ko) * 2017-12-26 2019-08-16 주식회사 포스코 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
JP7048860B2 (ja) * 2018-01-24 2022-04-06 エルジー エナジー ソリューション リミテッド 二次電池用正極活物質、その製造方法及びそれを含むリチウム二次電池
KR102288290B1 (ko) 2018-02-23 2021-08-10 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
HUE056700T2 (hu) * 2018-02-26 2022-03-28 Umicore Nv Pozitív elektródazagy Li-ion akkumulátorokhoz
KR102231062B1 (ko) 2018-03-09 2021-03-23 주식회사 엘지화학 양극 활물질, 그 제조 방법, 이를 포함하는 양극 및 이차전지
KR102288293B1 (ko) * 2018-06-20 2021-08-10 주식회사 엘지화학 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지
KR102290959B1 (ko) * 2018-06-20 2021-08-19 주식회사 엘지화학 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지
KR101964716B1 (ko) * 2018-06-26 2019-04-02 에스케이이노베이션 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
PL3836259T3 (pl) * 2018-09-28 2022-09-19 Lg Chem, Ltd. Materiał czynny elektrody dodatniej dla akumulatora, sposób jego wytwarzania i zawierający go akumulator litowy
US10777843B2 (en) 2018-10-31 2020-09-15 Nissan North America, Inc. Regenerated lithium-ion cathode materials having modified surfaces
KR102658763B1 (ko) 2018-11-30 2024-04-19 주식회사 엘지에너지솔루션 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지
KR102217302B1 (ko) * 2018-11-30 2021-02-18 주식회사 포스코 리튬 이차 전지용 양극 첨가제, 이의 제조방법, 이를 포함하는 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
KR102640161B1 (ko) * 2018-12-10 2024-02-26 주식회사 엘지에너지솔루션 이차전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
WO2020122511A1 (ko) * 2018-12-10 2020-06-18 주식회사 엘지화학 이차전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
WO2020197197A1 (ko) * 2019-03-22 2020-10-01 주식회사 엘지화학 황화물계 전고체 전지용 양극 활물질 입자
US11575116B2 (en) 2019-03-22 2023-02-07 Lg Energy Solution, Ltd. Positive electrode active material particle for sulfide-based all-solid-state batteries
JP6630865B1 (ja) * 2019-04-12 2020-01-15 住友化学株式会社 リチウム複合金属酸化物粉末及びリチウム二次電池用正極活物質
JP6630863B1 (ja) * 2019-04-12 2020-01-15 住友化学株式会社 リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質
JP6659893B1 (ja) 2019-04-12 2020-03-04 住友化学株式会社 リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質
WO2021025370A1 (ko) * 2019-08-06 2021-02-11 주식회사 엘 앤 에프 리튬 이차전지용 양극 활물질
KR20210030044A (ko) * 2019-09-09 2021-03-17 에스케이이노베이션 주식회사 리튬 이차 전지용 양극 활물질 및 이의 제조방법
KR102292889B1 (ko) * 2019-10-10 2021-08-24 주식회사 에코프로비엠 리튬 복합 산화물 및 이를 포함하는 리튬 이차전지
JP7399538B2 (ja) * 2019-11-28 2023-12-18 エルジー・ケム・リミテッド リチウム二次電池用正極活物質の製造方法および前記方法により製造されたリチウム二次電池用正極活物質
JP7371957B2 (ja) * 2020-03-20 2023-10-31 エルジー・ケム・リミテッド 二次電池用正極活物質及びこれを含むリチウム二次電池
CN115413380A (zh) * 2020-03-27 2022-11-29 株式会社村田制作所 二次电池
KR20210154748A (ko) 2020-06-12 2021-12-21 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지
KR102397756B1 (ko) 2020-09-02 2022-05-13 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지
EP4071853A4 (en) * 2020-09-10 2023-05-10 Contemporary Amperex Technology Co., Limited ACTIVE ELECTRODE MATERIAL AND METHOD FOR PREPARING IT, ELECTRODE, BATTERY AND DEVICE
KR20220055678A (ko) * 2020-10-27 2022-05-04 주식회사 에코프로비엠 양극 활물질 및 이를 포함하는 리튬 이차전지
KR20230110521A (ko) 2020-11-18 2023-07-24 닛산 가가쿠 가부시키가이샤 이차 전지 전극용 첨가제
EP4002510A1 (en) * 2020-11-23 2022-05-25 Samsung SDI Co., Ltd. Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery comprising positive electrode including positive active material
JP2024508074A (ja) * 2020-12-08 2024-02-22 アプライド マテリアルズ インコーポレイテッド プレリチウム化及びリチウム金属を含まないアノードコーティング
US20230324304A1 (en) * 2020-12-22 2023-10-12 Lg Chem, Ltd. Method for Analyzing Content and Distribution of Boron Introduced Into Positive Electrode Active Material
CN112897544B (zh) * 2021-01-29 2022-07-12 格尔木藏格锂业有限公司 盐湖碳酸锂生产中排放的含硼废水生产高纯度硼砂的方法
KR20230084077A (ko) * 2021-12-03 2023-06-12 주식회사 엘지화학 양극 활물질 및 이의 제조방법
JP2023096784A (ja) 2021-12-27 2023-07-07 エルジー エナジー ソリューション リミテッド 正極活物質、正極活物質スラリー、正極、リチウムイオン二次電池、及び正極活物質の製造方法
CN115000384A (zh) * 2022-07-01 2022-09-02 湖南顺隆新能源科技有限公司 一种富锂锰基正极材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050000353A (ko) * 2003-06-23 2005-01-03 주식회사 엘지화학 표면 개질된 물질의 제조방법
JP2009152214A (ja) 2000-09-25 2009-07-09 Samsung Sdi Co Ltd リチウム二次電池用正極活物質及びその製造方法
KR20100075418A (ko) * 2007-10-23 2010-07-02 미쓰이 긴조꾸 고교 가부시키가이샤 스피넬형 리튬 전이 금속 산화물
US20110200880A1 (en) * 2010-02-18 2011-08-18 Sanyo Electric Co., Ltd. Positive electrode active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery using the same
KR20120046041A (ko) * 2010-10-29 2012-05-09 가부시키가이샤 히타치세이사쿠쇼 리튬 이온 이차 전지
KR20130108717A (ko) * 2012-03-26 2013-10-07 한국세라믹기술원 리튬이차전지용 양극 활물질 및 그 제조방법

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3195175B2 (ja) * 1994-11-11 2001-08-06 株式会社東芝 非水溶媒二次電池
JP3723444B2 (ja) 2000-12-07 2005-12-07 三洋電機株式会社 リチウム二次電池用正極及びその製造方法並びにリチウム二次電池
US20020119375A1 (en) * 2001-02-28 2002-08-29 Meijie Zhang Use of lithium borate in non-aqueous rechargeable lithium batteries
US20020119372A1 (en) 2001-02-28 2002-08-29 Meijie Zhang Use of lithium borate in non-aqueous rechargeable lithium batteries
US7241532B2 (en) * 2002-03-28 2007-07-10 Mitsubishi Chemical Corporation Positive-electrode material for lithium secondary battery, secondary battery employing the same, and process for producing positive-electrode material for lithium secondary battery
US7294435B2 (en) * 2003-05-15 2007-11-13 Nichia Corporation Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN100429812C (zh) 2003-12-05 2008-10-29 日产自动车株式会社 非水电解质锂离子电池的正极材料及采用它的电池
US20100047691A1 (en) * 2006-10-25 2010-02-25 Sumitomo Chemical Company, Limited Lithium secondary battery
EP2337125A1 (en) * 2006-12-26 2011-06-22 Mitsubishi Chemical Corporation Lithium transition metal based compound powder and method for manufacturing the same
KR100923442B1 (ko) * 2007-08-01 2009-10-27 주식회사 엘 앤 에프 신규 양극 활물질
KR100999109B1 (ko) * 2008-06-05 2010-12-07 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지
WO2010090185A1 (ja) 2009-02-05 2010-08-12 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極活物質用の表面修飾リチウム含有複合酸化物及びその製造方法
KR101264333B1 (ko) * 2011-01-12 2013-05-14 삼성에스디아이 주식회사 양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
WO2012111116A1 (ja) 2011-02-16 2012-08-23 トヨタ自動車株式会社 リチウムイオン二次電池及びその製造方法
JP5002824B1 (ja) 2011-03-02 2012-08-15 独立行政法人産業技術総合研究所 リチウム二次電池用負極材料及びその製造方法、並びにリチウム二次電池用負極及びリチウム二次電池
JP5578280B2 (ja) * 2011-05-26 2014-08-27 トヨタ自動車株式会社 被覆活物質およびリチウム固体電池
WO2012164760A1 (ja) * 2011-06-01 2012-12-06 トヨタ自動車株式会社 電極活物質の製造方法及び電極活物質
KR101979970B1 (ko) * 2011-08-05 2019-05-17 스미또모 가가꾸 가부시끼가이샤 리튬 이온 이차 전지용 정극 활물질
JP6286855B2 (ja) 2012-04-18 2018-03-07 日亜化学工業株式会社 非水電解液二次電池用正極組成物
CN102723459B (zh) 2012-06-20 2014-08-27 东莞新能源科技有限公司 一种锂离子二次电池及其正极片

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152214A (ja) 2000-09-25 2009-07-09 Samsung Sdi Co Ltd リチウム二次電池用正極活物質及びその製造方法
KR20050000353A (ko) * 2003-06-23 2005-01-03 주식회사 엘지화학 표면 개질된 물질의 제조방법
KR20100075418A (ko) * 2007-10-23 2010-07-02 미쓰이 긴조꾸 고교 가부시키가이샤 스피넬형 리튬 전이 금속 산화물
US20110200880A1 (en) * 2010-02-18 2011-08-18 Sanyo Electric Co., Ltd. Positive electrode active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery using the same
KR20120046041A (ko) * 2010-10-29 2012-05-09 가부시키가이샤 히타치세이사쿠쇼 리튬 이온 이차 전지
KR20130108717A (ko) * 2012-03-26 2013-10-07 한국세라믹기술원 리튬이차전지용 양극 활물질 및 그 제조방법

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056364A1 (ja) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質
JPWO2017056364A1 (ja) * 2015-09-30 2018-07-19 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質
US10553878B2 (en) 2015-09-30 2020-02-04 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary batteries
CN108886146A (zh) * 2016-03-30 2018-11-23 松下知识产权经营株式会社 非水电解质二次电池用正极活性物质、非水电解质二次电池用正极活性物质的制造方法和非水电解质二次电池
CN108886146B (zh) * 2016-03-30 2023-02-17 松下知识产权经营株式会社 非水电解质二次电池用正极活性物质及其制造方法、和非水电解质二次电池
CN112154558A (zh) * 2018-06-20 2020-12-29 株式会社Lg化学 锂二次电池用正极活性材料和锂二次电池
DE112021001189T5 (de) 2020-02-21 2022-12-15 Gs Yuasa International Ltd. Nichtwässriger-elektrolyt-energiespeichervorrichtung und verfahren zum herstellen einer nichtwässriger-elektrolyt-energiespeichervorrichtung

Also Published As

Publication number Publication date
CN104781960B (zh) 2018-03-06
TWI609519B (zh) 2017-12-21
US10529985B2 (en) 2020-01-07
US20160013476A1 (en) 2016-01-14
US10056605B2 (en) 2018-08-21
JP6284542B2 (ja) 2018-02-28
TW201539846A (zh) 2015-10-16
KR20150050458A (ko) 2015-05-08
US20180351169A1 (en) 2018-12-06
EP3065207B1 (en) 2017-08-30
CN104781960A (zh) 2015-07-15
EP3065207A4 (en) 2016-10-26
EP3065207A1 (en) 2016-09-07
JP2015536558A (ja) 2015-12-21
KR101651338B1 (ko) 2016-08-25

Similar Documents

Publication Publication Date Title
WO2015065046A1 (ko) 양극 활물질의 제조방법, 및 이에 의해 제조된 리튬 이차전지용 양극 활물질
WO2015030402A1 (ko) 리튬 전이금속 복합 입자, 이의 제조방법, 및 이를 포함하는 양극 활물질
WO2020111580A1 (ko) 리튬 이차 전지용 양극 첨가제, 이의 제조방법, 이를 포함하는 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2014084679A1 (ko) 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법
WO2016175597A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2016108384A1 (ko) 리튬이온 이차전지용 양극 활물질, 그의 제조방법 및 이것을 포함하는 리튬이온 이차전지
WO2018208111A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2015065102A1 (ko) 리튬 이차전지
WO2019074306A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2018164405A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2016148441A1 (ko) 리튬 금속 산화물 및 이를 포함하는 리튬 이차전지용 음극 활물질, 및 이의 제조방법
WO2016072649A1 (ko) 도전재의 제조방법, 이로부터 제조된 도전재 및 이를 포함하는 리튬 이차전지
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019017643A9 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020162708A1 (ko) 음극 및 이를 포함하는 리튬 이차전지
WO2022055308A1 (ko) 음극재, 이를 포함하는 음극 및 이차전지
WO2019078688A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2014027869A2 (ko) 양극 활물질, 이의 제조 방법 및 이를 포함하는 이차 전지
WO2018062883A2 (ko) 메쉬 형태의 절연층을 포함하는 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2022060138A1 (ko) 음극 및 이를 포함하는 이차전지
WO2019078626A1 (ko) 이차전지용 양극활물질의 제조방법 및 이를 이용하는 이차전지
WO2021025464A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2020145638A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조방법에 의해 제조된 양극 활물질
WO2020149686A1 (ko) 이차전지용 음극의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14437079

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014854871

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014854871

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015545401

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE