WO2018208111A1 - 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지 - Google Patents

음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지 Download PDF

Info

Publication number
WO2018208111A1
WO2018208111A1 PCT/KR2018/005407 KR2018005407W WO2018208111A1 WO 2018208111 A1 WO2018208111 A1 WO 2018208111A1 KR 2018005407 W KR2018005407 W KR 2018005407W WO 2018208111 A1 WO2018208111 A1 WO 2018208111A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
core
electrode active
coating layer
Prior art date
Application number
PCT/KR2018/005407
Other languages
English (en)
French (fr)
Inventor
최정현
이용주
김동혁
김은경
조래환
오일근
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/611,394 priority Critical patent/US11322734B2/en
Priority to EP18799252.4A priority patent/EP3609001A4/en
Priority to CN201880028838.8A priority patent/CN110582876B/zh
Publication of WO2018208111A1 publication Critical patent/WO2018208111A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention provides a negative electrode, which is a secondary particle comprising a core comprising SiO x (0 ⁇ x ⁇ 2), a primary particle comprising an intermediate layer covering at least a portion of the core surface and a carbon coating layer covering at least a portion of the intermediate layer.
  • the present invention relates to an active material, a negative electrode including the negative electrode active material, and a secondary battery including the negative electrode.
  • a representative example of an electrochemical device using such electrochemical energy is a secondary battery, and its use area is gradually increasing.
  • portable devices such as portable computers, portable telephones, cameras, and the like
  • secondary batteries high energy density, that is, high capacity lithium secondary batteries
  • a secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, and a separator.
  • the negative electrode includes a negative electrode active material for inserting and detaching lithium ions from the positive electrode, and silicon-based particles having a large discharge capacity may be used as the negative electrode active material.
  • silicon-based particles such as SiO x (0 ⁇ x ⁇ 2) have low initial efficiency and excessively change in volume during charge and discharge. Therefore, a problem occurs that the life of the battery is reduced.
  • Korean Patent Laid-Open No. 10-2016-0149862 discloses further controlling the volume change by further disposing a polymer composite on a carbon coating layer.
  • the problem to be solved by the present invention is to provide a negative electrode active material that can effectively control the volume change in the charge and discharge process of the secondary battery, can reduce the resistance of the negative electrode, increase the capacity retention of the battery.
  • Another object of the present invention is to provide a negative electrode including the negative electrode active material.
  • Another object of the present invention is to provide a secondary battery including the negative electrode.
  • the present invention to solve the above problems,
  • a core comprising SiO x (0 ⁇ x ⁇ 2);
  • An intermediate layer covering at least a portion of the surface of the core and comprising silicon nitride, silicon oxynitride or mixtures thereof;
  • the secondary particles including primary particles including a carbon coating layer including carbon doped with nitrogen.
  • the present invention provides a negative electrode comprising the negative electrode active material, in order to solve the other problem.
  • the present invention provides a secondary battery including the negative electrode in order to solve the another problem.
  • the negative electrode active material according to the present invention includes an intermediate layer including silicon nitride, silicon oxynitride, or a mixture thereof, and a carbon coating layer containing nitrogen-doped carbon,
  • the conductivity can be improved and the volume change of the core in the negative electrode active material can be effectively controlled, thereby improving the capacity retention of the battery.
  • the increase in temperature due to the heat may be delayed, and thus a chain exothermic reaction may be prevented.
  • the terms “comprise”, “comprise” or “have” are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
  • the negative electrode active material of the present invention is a secondary particle including a primary particle, the primary particle comprises a core containing SiO x (0 ⁇ x ⁇ 2); An intermediate layer covering at least a portion of the surface of the core and comprising silicon nitride, silicon oxynitride or mixtures thereof; And a carbon coating layer covering at least a portion of the intermediate layer and including carbon doped with nitrogen.
  • the core comprises SiO x (0 ⁇ x ⁇ 2).
  • the SiO x (0 ⁇ x ⁇ 2) may be in a form containing Si and SiO 2 . That is, x corresponds to the number ratio of O to Si contained in the SiO x (0 ⁇ x ⁇ 2).
  • the core includes SiO x (0 ⁇ x ⁇ 2), the discharge capacity of the secondary battery may be improved.
  • the average particle diameter (D 50 ) of the core may be 0.1 ⁇ m to 20 ⁇ m, and specifically 0.5 ⁇ m to 5 ⁇ m.
  • D 50 The average particle diameter of the core.
  • the average particle diameter (D 50 ) may be defined as a particle diameter based on 50% of the particle size distribution of the particles.
  • the average particle diameter D 50 may be measured using, for example, a laser diffraction method.
  • the laser diffraction method can measure the particle diameter of several mm from the submicron region, and high reproducibility and high resolution can be obtained.
  • the intermediate layer may cover at least a portion of the surface of the core and may cover all of the surface of the core.
  • the intermediate layer may include silicon nitride, silicon oxynitride, or a mixture thereof. Specifically, the intermediate layer may include at least one of silicon nitride and silicon oxynitride.
  • the silicon nitride may include Si 3 N 4 .
  • the silicon oxynitride may be a compound represented by SiO m N n (0 ⁇ m ⁇ 2, 0 ⁇ n ⁇ 4), and specifically, may be SiO 2 N 2 and / or SiN 3 O. Since the intermediate layer includes silicon nitride, silicon oxynitride, or a mixture thereof, lithium ions may be smoothly inserted by nitrogen of silicon nitride or silicon oxynitride.
  • the initial efficiency of the secondary battery can be improved. Furthermore, since at least one of silicon nitride and silicon oxynitride, which are stable at high temperatures, is present on the core surface, even if an exothermic reaction occurs due to a short circuit inside the battery, further exothermic reaction occurring in the core can be suppressed. In addition, since at least one of high hardness silicon nitride and silicon oxynitride is present on the surface of the core, excessive expansion of the volume of the core during charge and discharge of the battery can be effectively controlled. Through this, the capacity retention rate of the battery can be improved.
  • the thickness of the intermediate layer may be 1 nm to 100 nm, specifically 1 nm to 50 nm. When the thickness range is satisfied, volume change control of the core can be effectively performed, and further exothermic reaction of the core can be effectively prevented. In addition, the ratio of the cores can be properly maintained to prevent excessive reduction of the discharge capacity.
  • the intermediate layer may be formed through heat treatment of the core in N 2 and / or NH 3 atmosphere, or through chemical vapor deposition (CVD) based on silane gas and NH 3 gas, but is not limited thereto.
  • CVD chemical vapor deposition
  • the carbon coating layer may cover at least a portion of the intermediate layer and may cover all of the intermediate layer.
  • the carbon coating layer includes carbon doped with nitrogen. Since carbon included in the carbon coating layer is doped with nitrogen, the conductivity of the negative electrode active material may be further increased due to the nitrogen, and lithium ions may be smoothly inserted. When the carbon coating layer is included in the negative electrode active material together with the intermediate layer, the hardness of the surface of the negative electrode active material may further increase, and thus the volume change may be more effectively controlled during charging and discharging of the battery.
  • the nitrogen may be included in 0.05 wt% to 20 wt% based on the total weight of the carbon coating layer, specifically 0.1 wt% to 18 wt%.
  • the conductivity of the carbon coating layer may be increased to more effectively reduce the resistance of the electrode.
  • the carbon coating layer may have a thickness of 1 nm to 100 nm, and specifically 5 nm to 50 nm. When the above range is satisfied, the electrical conductivity of the battery can be improved while maintaining the conductive passage in the negative electrode active material.
  • the weight ratio of the intermediate layer and the carbon coating layer may be 1:99 to 20:80, specifically 5:95 to 15:85. When the weight ratio is satisfied, the volume change of the core may be more effectively controlled, and the conductivity of the negative electrode active material may be further improved.
  • the negative electrode active material of the present invention is secondary particles including the primary particles, and secondary particles formed by aggregation, bonding, or granulation of the primary particles.
  • initial particle refers to an original particle when another kind of particle is formed from a particle, and a plurality of primary particles are aggregated, bonded or granulated to form secondary particles. Particles can be formed.
  • second paricles in the context of the present invention refers to physically discernible large particles formed by the aggregation, bonding or granulation of individual primary particles.
  • the term "assembly" of the primary particles refers to a process in which a plurality of primary particles spontaneously or artificially aggregate or aggregate to form secondary aggregates by forming an aggregate composed of primary particles. It may be used interchangeably with the same meaning as terms, such as collection or combination.
  • Two or more primary particles may be collected to form secondary particles. Since the primary particles have a small particle size, the diffusion distance of Li ions may be shortened, and thus the Li ions may easily enter and exit, thereby exhibiting excellent output characteristics. On the other hand, in the case of the primary particles, the particle size is small, the specific surface area is large, there is a disadvantage that the side reaction with the electrolyte increases, but when the primary particles are gathered to form a secondary particle shape, the specific surface area is reduced, thereby reducing the side reaction You can. Since the negative electrode active material of the present invention is in the form of secondary particles including the primary particles, it is possible to exhibit both the advantages of the primary particles and the advantages of the secondary particles, showing excellent output characteristics and small side reactions with the electrolyte solution. Can exert.
  • the secondary particles are prepared by dispersing the primary particles, for example, in a solvent containing alcohol, specifically, a dispersing solvent in which alcohol and water are mixed, and spray-drying the secondary particles to prepare preliminary secondary particles.
  • a solvent containing alcohol specifically, a dispersing solvent in which alcohol and water are mixed
  • spray-drying the secondary particles to prepare preliminary secondary particles.
  • the secondary particles may be mixed with the primary particles with an adhesive binder to form secondary particles and heat treated. It may be prepared by a method of disintegrating it.
  • the adhesive binder may be positioned between the primary borrowings to provide an adhesive force between the primary borrowings so that they may be aggregated, bonded or assembled to form secondary particles. Therefore, the secondary particles may include an adhesive binder between the primary particles.
  • the adhesive binder may include, for example, one or more selected from petroleum pitch, coal pitch and mesoface pitch.
  • the heat treatment may be performed at 300 ° C. to 1,300 ° C., specifically 500 ° C. to 1,100 ° C.
  • the crystal size of Si included in the core may not be too large while appropriately forming secondary particles.
  • the average particle diameter (D 50 ) of the secondary particles may be 2 ⁇ m to 100 ⁇ m, specifically 2 ⁇ m to 50 ⁇ m.
  • the electrode may have an appropriate volume per volume by having an appropriate electrode density, and has an advantageous effect on the electrode manufacturing process.
  • the primary particles included in the secondary particles may be metal compound-doped primary particles in which at least one of the core, the intermediate layer, and the carbon coating layer includes a metal compound.
  • the metal compound doped primary particles may include a core including SiO x (0 ⁇ x ⁇ 2); An intermediate layer covering at least a portion of the surface of the core and comprising silicon nitride, silicon oxynitride or mixtures thereof; And a carbon coating layer covering at least a portion of the intermediate layer, the carbon doped with nitrogen, and any one or more of the core, the intermediate layer, and the carbon coating layer may include a metal compound.
  • the metal compound-doped primary particles further include a metal compound in the primary particles, the core including SiO x (0 ⁇ x ⁇ 2); An intermediate layer covering at least a portion of the surface of the core and comprising silicon nitride, silicon oxynitride or mixtures thereof; And particles doped with a metal compound in the primary particles covering at least a portion of the intermediate layer and including a carbon coating layer including carbon doped with nitrogen.
  • the secondary particles the core containing SiO x (0 ⁇ x ⁇ 2); An intermediate layer covering at least a portion of the surface of the core and comprising silicon nitride, silicon oxynitride or mixtures thereof; And at least one of the core, the intermediate layer, and the carbon coating layer, in addition to the primary particles covering at least a portion of the intermediate layer and including a carbon coating layer including carbon doped with nitrogen, wherein the metal compound doping 1 includes a metal compound.
  • Tea particles may further comprise. That is, the secondary particles are primary particles including the core, the intermediate layer and the carbon coating layer, and any one or more of the core, the intermediate layer and the carbon coating layer includes a metal compound-doped primary particles including a metal compound. Can be.
  • the secondary particles additionally include the metal compound-doped primary particles in addition to the primary particles
  • the primary particles and the metal compound-doped primary particles may have a weight ratio of 10:90 to 90:10, Specifically, the weight ratio may be 20:80 to 80:20.
  • the secondary particles contain the primary particles and the metal compound-doped primary particles together in the weight ratio, the advantages of the primary particles and the metal compound-doped primary particles are appropriately matched with each other to increase the capacity retention rate. While being able to do so, initial stage efficiency can be improved and an electrode thickness change rate can be made small.
  • the 2 when the primary particles and the metal compound-doped primary particles are included together in the weight ratio, the 2 when contacted with the electrolyte depending on the difference in the volume swelling ratio between the two primary particles to the electrolyte solution It is possible to form a passage through which the electrolyte can flow into the vehicle particles, thereby exhibiting an improved discharge rate characteristic.
  • the metal compound may be included in the core of the primary particles.
  • the metal compound is a metal capable of reducing the SiO x (0 ⁇ x ⁇ 2), specifically, a reducing force capable of reducing silicon dioxide (SiO 2 ) in the SiO x (0 ⁇ x ⁇ 2 ) to silicon. It may be formed by oxidizing the metal having.
  • the metal compound may include at least one of a metal oxide and a metal silicate.
  • the metal oxide may include one or two or more oxides selected from the group consisting of lithium (Li), magnesium (Mg), aluminum (Al), calcium (Ca), and titanium (Ti).
  • the metal oxide may be at least one of MgO, Li 2 O, and Al 2 O 3 .
  • the metal silicate may include one or two or more silicates selected from the group consisting of lithium (Li), magnesium (Mg), aluminum (Al), calcium (Ca), and titanium (Ti).
  • the metal silicate may be at least one of MgSiO 3 , Mg 2 SiO 4 , Li 2 SiO 3 , Li 4 SiO 4 , Li 2 Si 2 O 5 , Al 6 SiO 13, and Al 4 SiO 8 .
  • the metal compound may be formed by a metal doped into the core.
  • the SiO and / or SiO 2 matrix can be reduced and a metal compound can be formed. Accordingly, since the content of SiO 2 acting as the initial irreversible can be reduced, the initial efficiency of the battery can be improved.
  • the metal compound may be included in an amount of 1 wt% to 60 wt%, and specifically 2 wt% to 50 wt% with respect to the total weight of the core.
  • the present invention provides a negative electrode including the negative electrode active material.
  • the negative electrode may include a current collector and a negative electrode active material layer disposed on the current collector.
  • the negative electrode active material layer may include the negative electrode active material.
  • the negative electrode active material layer may further include a binder and / or a conductive material.
  • the current collector may be any conductive material without causing chemical change in the battery, and is not particularly limited.
  • the current collector may be copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or a surface treated with carbon, nickel, titanium, silver, or the like on the surface of aluminum or stainless steel.
  • a transition metal that adsorbs carbon such as copper and nickel can be used as the current collector.
  • the thickness of the current collector may be 6 ⁇ m to 20 ⁇ m, but the thickness of the current collector is not limited thereto.
  • the binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile, polymethylmethacrylate, polymethylmethacrylate, poly Vinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), liquor It may include at least one selected from the group consisting of fonned EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid, and a substance in which hydrogen thereof is replaced with Li, Na, or Ca. It may also include various copolymers thereof.
  • PVDF-co-HFP polyvinylidene fluoride-hexafluoro
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the present invention provides a secondary battery including the negative electrode.
  • the secondary battery may include a separator interposed between the negative electrode, the positive electrode, the negative electrode and the positive electrode, and an electrolyte. Since the cathode has been described above, a detailed description thereof will be omitted.
  • the positive electrode may be formed on the positive electrode current collector and the positive electrode current collector, and may include a positive electrode active material layer including the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it is conductive without causing chemical change in the battery.
  • the positive electrode current collector is made of stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. Surface treated with nickel, titanium, silver, or the like may be used.
  • the positive electrode current collector may have a thickness of typically 3 ⁇ m to 500 ⁇ m, and may form fine irregularities on the surface of the current collector to increase adhesion of the positive electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the cathode active material may be a cathode active material that is commonly used.
  • the cathode active material layer may include a cathode conductive material and a cathode binder together with the cathode active material described above.
  • the cathode conductive material is used to impart conductivity to the electrode, and in the battery constituted, the cathode conductive material may be used without particular limitation as long as it has electron conductivity without causing chemical change.
  • Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and the like, or a mixture of two or more kinds thereof may be used.
  • the positive electrode binder serves to improve adhesion between the positive electrode active material particles and the positive electrode active material and the positive electrode current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC).
  • the separator separates the negative electrode from the positive electrode and provides a passage for lithium ions, and can be used without particular limitation as long as the separator is used as a separator in a secondary battery. In particular, it has a low resistance to ion migration of the electrolyte and an excellent ability to hydrate the electrolyte. It is preferable.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator including a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • the electrolyte may include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery, but are not limited thereto.
  • the electrolyte may include a non-aqueous organic solvent and a metal salt.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, 1,2-dime Methoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxoron, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, pyrion
  • An aprotic organic solvent such as methyl acid or ethyl
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, may be preferably used as high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate.
  • high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate.
  • an electrolyte having a high electrical conductivity can be made, and thus it can be more preferably used.
  • the metal salt may be a lithium salt
  • the lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, is in the lithium salt anion F -, Cl -, I - , NO 3 -, N (CN ) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF - , (CF 3) 6 P - , CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2 ) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included.
  • a battery module including the secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the secondary battery having high capacity, high rate characteristics, and cycle characteristics, a medium-large device selected from the group consisting of an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage system It can be used as a power source.
  • a solution containing the primary particles and ethanol / water (volume ratio 1: 9) in a volume ratio of 1:10 was stirred at 10,000 rpm for 30 minutes with a mechanical homogenizer to prepare a dispersion solution for spray drying.
  • the dispersion solution was subjected to the inlet temperature of the mini spray dryer (manufacturer: Buchi, model name: B-290 mini spray dryer), 180 ° C, aspirator 95%, feeding rate 12 conditions.
  • Preparative secondary particles were prepared by spray drying under, and then transferred to an alumina boat. Secondary particles were prepared by raising the temperature of a tube furnace equipped with a quartz tube having a length of 80 cm and an inner diameter of 4.8 cm to 600 ° C. at a rate of 10 ° C./min and firing while maintaining the temperature for 2 hours. .
  • the average particle diameter (D 50 ) of the prepared secondary particles was 5 ⁇ m.
  • 0.2 g of a mixture was prepared by mixing the negative active material, fine graphite as a conductive material, and polyacrylonitrile as a binder in a weight ratio of 7: 2: 1.
  • a negative electrode mixture slurry was prepared by adding 3.1 g of solvent N-methyl-2-pyrrolidone (NMP) to the mixture.
  • NMP solvent N-methyl-2-pyrrolidone
  • the negative electrode mixture slurry was applied and dried on a copper (Cu) metal thin film, which is a negative electrode current collector having a thickness of 20 ⁇ m. At this time, the temperature of the air circulated was 80 °C. Then, a roll (roll press) and dried in a vacuum oven at 130 °C for 12 hours to prepare a negative electrode.
  • the prepared negative electrode was cut into a circle of 1.4875 cm 2 to be a negative electrode, and a lithium (Li) metal thin film cut into a circular shape of 1.7671 cm 2 was used as a positive electrode.
  • a lithium (Li) metal thin film cut into a circular shape of 1.7671 cm 2 was used as a positive electrode.
  • EMC methyl ethyl carbonate
  • EC ethylene carbonate
  • An intermediate layer was formed in the core in the same manner as in Example 1. Thereafter, methane gas (CH 4 ) and ammonia gas were added at a ratio of 1: 2 to conduct CVD, and a carbon coating layer (thickness: 20 nm) containing nitrogen was formed on the intermediate layer to prepare preliminary particles. As measured by the ONH component analyzer, the nitrogen content contained in the carbon coating layer was found to be 3.2% by weight.
  • a solution containing the primary particles and ethanol / water (volume ratio 1: 9) in a volume ratio of 1:10 was stirred at 10,000 rpm for 30 minutes with a mechanical homogenizer to prepare a dispersion solution for spray drying.
  • the dispersion solution was subjected to the inlet temperature of the mini spray dryer (manufacturer: Buchi, model name: B-290 mini spray dryer), 180 ° C, aspirator 95%, feeding rate 12 conditions.
  • Preparative secondary particles were prepared by spray drying under, and then transferred to an alumina boat. Secondary particles were prepared by raising the temperature of a tube furnace equipped with a quartz tube having a length of 80 cm and an inner diameter of 4.8 cm to 600 ° C. at a rate of 10 ° C./min and firing while maintaining the temperature for 2 hours. .
  • the average particle diameter (D 50 ) of the prepared secondary particles was 5 ⁇ m.
  • Example 1 Using the negative electrode active material, a negative electrode and a secondary battery were manufactured in the same manner as in Example 1.
  • An intermediate layer was formed in the core in the same manner as in Example 1. Thereafter, methane gas (CH 4 ) and ammonia gas were added at a ratio of 1: 2, and CVD was performed. Then, a carbon coating layer (thickness: 20 nm) containing nitrogen was formed on the intermediate layer to prepare preliminary particles. As measured by the ONH component analyzer, the nitrogen content contained in the carbon coating layer was found to be 3.2% by weight.
  • the dispersion solution was subjected to the inlet temperature of the mini spray dryer (manufacturer: Buchi, model name: B-290 mini spray dryer), 180 ° C, aspirator 95%, feeding rate 12 conditions.
  • Preparative secondary particles were prepared by spray drying under, and then transferred to an alumina boat. Secondary particles were prepared by raising the temperature of a tube furnace equipped with a quartz tube having a length of 80 cm and an inner diameter of 4.8 cm to 600 ° C. at a rate of 10 ° C./min and firing while maintaining the temperature for 2 hours. .
  • the average particle diameter (D 50 ) of the prepared secondary particles was 5 ⁇ m.
  • Example 1 Using the negative electrode active material, a negative electrode and a secondary battery were manufactured in the same manner as in Example 1.
  • the primary particles prepared in Example 1 and the primary particles prepared in Example 2 were mixed in a 1: 1 ratio.
  • the dispersion solution was subjected to the inlet temperature of the mini spray dryer (manufacturer: Buchi, model name: B-290 mini spray dryer), 180 ° C, aspirator 95%, feeding rate 12 conditions.
  • Preparative secondary particles were prepared by spray drying under, and then transferred to an alumina boat.
  • Secondary particles were prepared by raising the temperature of a tube furnace equipped with a quartz tube having a length of 80 cm and an inner diameter of 4.8 cm to 600 ° C. at a rate of 10 ° C./min and firing while maintaining the temperature for 2 hours. .
  • the average particle diameter (D 50 ) of the prepared secondary particles was 5 ⁇ m.
  • Example 1 Using the negative electrode active material, a negative electrode and a secondary battery were manufactured in the same manner as in Example 1.
  • the primary particles prepared in Example 1 and the primary particles prepared in Example 3 were mixed in a 1: 1 ratio.
  • the dispersion solution was subjected to the inlet temperature of the mini spray dryer (manufacturer: Buchi, model name: B-290 mini spray dryer), 180 ° C, aspirator 95%, feeding rate 12 conditions.
  • Preparative secondary particles were prepared by spray drying under, and then transferred to an alumina boat.
  • Secondary particles were prepared by raising the temperature of a tube furnace equipped with a quartz tube having a length of 80 cm and an inner diameter of 4.8 cm to 600 ° C. at a rate of 10 ° C./min and firing while maintaining the temperature for 2 hours. .
  • the average particle diameter (D 50 ) of the prepared secondary particles was 5 ⁇ m.
  • Example 1 Using the negative electrode active material, a negative electrode and a secondary battery were manufactured in the same manner as in Example 1.
  • Example 2 After preparing a core having an intermediate layer in the same manner as in Example 1, CVD was performed using methane gas as a source. Through this, primary particles including a carbon coating layer (thickness: 5 nm) not containing nitrogen were prepared.
  • the dispersion solution was subjected to the inlet temperature of the mini spray dryer (manufacturer: Buchi, model name: B-290 mini spray dryer), 180 ° C, aspirator 95%, feeding rate 12 conditions.
  • Preparative secondary particles were prepared by spray drying under, and then transferred to an alumina boat. Secondary particles were prepared by raising the temperature of a tube furnace equipped with a quartz tube having a length of 80 cm and an inner diameter of 4.8 cm to 600 ° C. at a rate of 10 ° C./min and firing while maintaining the temperature for 2 hours. .
  • the average particle diameter (D 50 ) of the prepared secondary particles was 5 ⁇ m.
  • Example 1 Using the negative electrode active material, a negative electrode and a secondary battery were manufactured in the same manner as in Example 1.
  • CVD was performed with methane gas (CH 4 ) and ammonia gas in a ratio of 1: 2 to 10 g of SiO having an average particle diameter (D 50 ) of 1 ⁇ m.
  • a carbon coating layer (thickness: 5 nm) containing nitrogen was formed on SiO to prepare primary particles.
  • the nitrogen content was 3.1% by weight.
  • a solution containing the primary particles and ethanol / water (volume ratio 1: 9) in a volume ratio of 1:10 was stirred at 10,000 rpm for 30 minutes with a mechanical homogenizer to prepare a dispersion solution for spray drying.
  • the dispersion solution was subjected to the inlet temperature of the mini spray dryer (manufacturer: Buchi, model name: B-290 mini spray dryer), 180 ° C, aspirator 95%, feeding rate 12 conditions.
  • Preparative secondary particles were prepared by spray drying under, and then transferred to an alumina boat. Secondary particles were prepared by raising the temperature of a tube furnace equipped with a quartz tube having a length of 80 cm and an inner diameter of 4.8 cm to 600 ° C. at a rate of 10 ° C./min and firing while maintaining the temperature for 2 hours. .
  • the average particle diameter (D 50 ) of the prepared secondary particles was 5 ⁇ m.
  • Example 1 Using the negative electrode active material, a negative electrode and a secondary battery were manufactured in the same manner as in Example 1.
  • a solution containing the primary particles and ethanol / water (volume ratio 1: 9) in a volume ratio of 1:10 was stirred at 10,000 rpm for 30 minutes with a mechanical homogenizer to prepare a dispersion solution for spray drying.
  • the dispersion solution was subjected to the inlet temperature of the mini spray dryer (manufacturer: Buchi, model name: B-290 mini spray dryer), 180 ° C, aspirator 95%, feeding rate 12 conditions.
  • Preparative secondary particles were prepared by spray drying under, and then transferred to an alumina boat. Secondary particles were prepared by raising the temperature of a tube furnace equipped with a quartz tube having a length of 80 cm and an inner diameter of 4.8 cm to 600 ° C. at a rate of 10 ° C./min and firing while maintaining the temperature for 2 hours. .
  • the average particle diameter (D 50 ) of the prepared secondary particles was 5 ⁇ m.
  • Example 1 Using the negative electrode active material, a negative electrode and a secondary battery were manufactured in the same manner as in Example 1.
  • one cycle and two cycles were charged and discharged at 0.1C, and charging and discharging were performed at 0.5C from 3 cycles to 49 cycles.
  • the 50 cycles were terminated in the state of charging (lithium in the negative electrode), the battery was disassembled, the thickness was measured, and the electrode thickness change rate was calculated.
  • Discharge capacity (mAh / g) and initial efficiency (%) were derived through the result at the time of single charge / discharge. Specifically, the initial efficiency (%) was derived by the following calculation.
  • the capacity retention rate and the electrode thickness change rate were respectively derived by the following calculations.
  • Capacity retention rate (%) (49 discharge capacity / 1 discharge capacity) ⁇ 100
  • Comparative Example 1 since the carbon coating layer of the primary particles did not contain nitrogen, the electrical conductivity of the primary particles was lowered, the irreversible capacity was increased compared to Example 1, the discharge capacity was small, and the initial efficiency and the capacity retention rate were low. You can see that. In addition, due to the low electrical conductivity, the degradation due to the increase of the cycle is accelerated to increase the swelling, the rate of change of the electrode thickness showed a relatively large value.
  • Comparative Example 2 since the intermediate layer (silicon nitride layer) is not included in the primary particles, it shows a significantly larger electrode thickness change rate as compared with Example 1, and the capacity retention rate is also poor.
  • One cycle was fully charged to 0.1 C, the coin cell was disassembled in a dry room and only the negative electrode was taken.
  • the collected negative electrode was placed in an HP-DSC pan, 20 ⁇ l of an electrolyte solution was measured, and measured using an HP-DSC (EQC-0277, Setaram) while raising the temperature from 35 ° C. to 600 ° C. at a temperature rising condition of 10 ° C./min. .
  • the onset temperature of the embodiments is higher than the comparative examples. This means that in the case of a battery using the negative electrode active material of the present invention, when an exothermic reaction occurs due to an internal short circuit or impact on the battery, the exothermic reaction can be prevented by delaying the temperature increase due to the heat. Also in the calorific value compared to the negative electrode active material, it can be seen that the embodiments are lower than the comparative examples.
  • Discharge rate characteristics were evaluated for the batteries of Examples 1 to 5 and Comparative Examples 1 to 3, which are described in Table 3 below.
  • the charge rate was fixed at 0.2 C, and the discharge capacity (%) was decreased while changing the discharge rate to 0.2 C, 1.0 C, 3.0 C, 5.0 C. At this time, the discharge capacity at the 0.2 C discharge rate was set to 100%.
  • Example 1 100 97.43 90.77 81.37
  • Example 2 100 97.50 90.81 81.48
  • Example 3 100 97.47 91.14 81.83
  • Example 4 100 99.01 92.25 83.58
  • Example 5 100 99.02 92.27 83.65
  • Comparative Example 1 100 96.84 84.59 75.30
  • Comparative Example 2 100 97.10 84.62 75.32 Comparative Example 3 100 95.21 81.83 72.26
  • the metal may be less than the secondary particle negative active material including any one of the primary particles which are not doped with the metal and the primary particles doped with the metal compound in at least one of the core, the intermediate layer, and the carbon coating layer. It is confirmed that the secondary particle negative active material including the undoped primary particles and the primary particles doped with a metal compound in at least one of the core, the intermediate layer, and the carbon coating layer is more effective in improving the discharge rate characteristics of the battery.
  • the secondary particle negative active material including the undoped primary particles and the primary particles doped with a metal compound in at least one of the core, the intermediate layer, and the carbon coating layer is more effective in improving the discharge rate characteristics of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 SiOx(0≤x<2)를 포함하는 코어; 상기 코어의 표면의 적어도 일부를 덮으며, 실리콘 나이트라이드(silicon nitride), 실리콘 옥시나이트라이드(silicon oxynitride) 또는 이들의 혼합물을 포함하는 중간층; 및 상기 중간층의 적어도 일부를 덮으며, 질소가 도핑된 탄소를 포함하는 탄소 코팅층을 포함하는 1차 입자를 포함하는 2차 입자인, 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지에 관한 것이다.

Description

음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
[관련출원과의 상호 인용]
본 출원은 2017년 05월 12일자 한국 특허 출원 제10-2017-0059577호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 SiOx(0≤x<2)를 포함하는 코어, 상기 코어 표면의 적어도 일부를 덮는 중간층 및 상기 중간층의 적어도 일부를 덮는 탄소 코팅층을 포함하는 1차 입자를 포함하는 2차 입자인 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지에 관한 것이다.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학 반응을 이용한 발전, 축전 분야이다.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차 전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다. 최근에는 휴대용 컴퓨터, 휴대용 전화기, 카메라 등의 휴대용 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차 전지 중 높은 에너지 밀도, 즉 고용량의 리튬 이차전지에 대해 많은 연구가 행해져 왔고, 또한 상용화되어 널리 사용되고 있다.
일반적으로 이차 전지는 양극, 음극, 전해질, 및 분리막으로 구성된다. 음극은 양극으로부터 나온 리튬 이온을 삽입하고 탈리시키는 음극 활물질을 포함하며, 상기 음극 활물질로는 방전 용량이 큰 실리콘계 입자가 사용될 수 있다. 다만, SiOx(0≤x<2) 등의 실리콘계 입자는 초기 효율이 낮으며, 충방전 과정에서 부피가 지나치게 변화한다. 따라서, 전지의 수명이 저하되는 문제가 발생한다.
종래에는 이러한 문제를 해결하기 위해, 실리콘계 입자 표면에 SiO2 층을 형성시키거나, 탄소 코팅층을 형성시켰다. 그러나 상기 방법에 의해더라도 전지의 충방전 사이클이 지속될수록 부피 제어가 원활하지 않아 효율이 낮아지는 문제가 있다. 대한민국 공개특허공보 제10-2016-0149862호의 경우, 탄소 코팅층 상에 고분자 복합체를 추가로 배치하여 부피 변화를 더욱 제어하는 것을 개시하고 있다.
그러나 고분자 복합체 사용에 따르더라도 부피 변화의 제어가 용이하지 않으며, 활물질의 도전성이 저하되어 저항이 증가하고 전지의 용량 유지율이 저하되는 문제가 발생한다. 또한, 실리콘계 입자가 지나치게 피복되어 있어서 리튬 이온의 흡수가 용이하지 않아 용량이 저하되는 문제가 발생한다.
따라서, 이차 전지의 충방전 과정에서 부피 변화가 효과적으로 제어될 수 있으며, 음극의 저항을 감소시킬 수 있고, 전지의 용량 유지율을 증가시킬 수 있는 음극 활물질의 개발이 요구되고 있다.
본 발명이 해결하고자 하는 과제는 이차 전지의 충방전 과정에서 부피 변화가 효과적으로 제어될 수 있으며, 음극의 저항을 감소시킬 수 있고, 전지의 용량 유지율을 증가시킬 수 있는 음극 활물질을 제공하는 것이다.
본 발명의 다른 해결하고자 하는 과제는 상기 음극 활물질을 포함하는 음극을 제공하는 것이다.
본 발명의 또 다른 해결하고자 하는 과제는 상기 음극을 포함하는 이차전지를 제공하는 것이다.
본 발명은 상기 과제를 해결하기 위하여,
SiOx(0≤x<2)를 포함하는 코어; 상기 코어의 표면의 적어도 일부를 덮으며, 실리콘 나이트라이드(silicon nitride), 실리콘 옥시나이트라이드(silicon oxynitride) 또는 이들의 혼합물을 포함하는 중간층; 및 상기 중간층의 적어도 일부를 덮으며, 질소가 도핑된 탄소를 포함하는 탄소 코팅층을 포함하는 1차 입자를 포함하는 2차 입자인, 음극 활물질을 제공한다.
본 발명은 상기 다른 과제를 해결하기 위하여, 상기 음극 활물질을 포함하는 음극을 제공한다.
본 발명은 상기 또 다른 과제를 해결하기 위하여, 상기 음극을 포함하는 이차전지를 제공한다.
본 발명에 따른 음극 활물질은 실리콘 나이트라이드(silicon nitride), 실리콘 옥시나이트라이드(silicon oxynitride) 또는 이들의 혼합물을 포함하는 중간층, 및 질소가 도핑된 탄소를 포함하는 탄소 코팅층을 포함하므로, 음극 활물질의 도전성이 개선되고 음극 활물질 내 코어의 부피 변화가 효과적으로 제어될 수 있으며, 이를 통해 전지의 용량 유지율이 개선될 수 있다. 또한, 전지 내 단락 등의 이유로 열이 지나치게 발생하는 경우, 상기 열에 따른 온도 증가가 늦춰질 수 있어서, 연쇄적인 발열 반응이 저지될 수 있다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명의 음극 활물질은 1차 입자를 포함하는 2차 입자이며, 상기 1차 입자는 SiOx(0≤x<2)를 포함하는 코어; 상기 코어의 표면의 적어도 일부를 덮으며, 실리콘 나이트라이드(silicon nitride), 실리콘 옥시나이트라이드(silicon oxynitride) 또는 이들의 혼합물을 포함하는 중간층; 및 상기 중간층의 적어도 일부를 덮으며, 질소가 도핑된 탄소를 포함하는 탄소 코팅층을 포함하는 것이다.
<1차 입자>
상기 코어는 SiOx(0≤x<2)를 포함한다. 상기 SiOx(0≤x<2)는 Si 및 SiO2가 포함된 형태일 수 있다. 즉, 상기 x는 상기 SiOx(0≤x<2) 내에 포함된 Si에 대한 O의 개수비에 해당한다. 상기 코어가 SiOx(0≤x<2)를 포함하는 경우, 이차 전지의 방전 용량이 개선될 수 있다.
상기 코어의 평균 입경(D50)은 0.1 ㎛ 내지 20 ㎛일 수 있으며, 구체적으로 0.5 ㎛ 내지 5 ㎛일 수 있다. 상기 코어가 상기한 평균 입경 범위를 만족하는 경우, 전해액과의 부반응이 억제되고, 상기 코어의 산화가 제어되어 초기 효율 저하가 방지될 수 있다. 또한, 상기 1차 입자가 집합하여 2차 입자를 형성할 때, 1차 입자 간의 접촉이 균일하여 2차 입자의 강도가 증가할 수 있고, 상기 2차 입자가 적절히 입자 형상을 나타낼 수 있다.
본 명세서에서 평균 입경(D50)은 입자의 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
상기 중간층은 상기 코어의 표면의 적어도 일부를 덮으며, 상기 코어의 표면의 전부를 덮을 수 있다. 상기 중간층에 의하여, 전지의 충방전 과정에서 코어의 부피가 지나치게 팽창되는 것이 효과적으로 제어될 수 있다.
상기 중간층은 실리콘 나이트라이드(silicon nitride), 실리콘 옥시나이트라이드(silicon oxynitride) 또는 이들의 혼합물을 포함하며, 구체적으로 상기 중간층은 실리콘 나이트라이드 및 실리콘 옥시나이트라이드 중 적어도 어느 하나로 이루어질 수 있다. 상기 실리콘 나이트라이드는 Si3N4를 포함할 수 있다. 상기 실리콘 옥시나이트라이드는 SiOmNn(0<m≤2, 0<n≤4)으로 표현되는 화합물일 수 있으며, 구체적으로 SiO2N2 및/또는 SiN3O일 수 있다. 상기 중간층은 실리콘 나이트라이드, 실리콘 옥시나이트라이드 또는 이들의 혼합물을 포함하므로, 실리콘 나이트라이드 또는 실리콘 옥시나이트라이드의 질소에 의해 리튬 이온의 삽입이 원활하게 이루어질 수 있다. 그에 따라, 이차 전지의 초기 효율이 개선될 수 있다. 나아가, 고온에서 안정한 실리콘 나이트라이드 및 실리콘 옥시나이트라이드 중 적어도 어느 하나가 코어 표면에 존재하므로, 전지 내부 단락에 의한 발열 반응이 발생하는 경우에도, 코어에서 일어나는 추가 발열 반응이 억제될 수 있다. 또한, 경도가 높은 실리콘 나이트라이드 및 실리콘 옥시나이트라이드 중 적어도 어느 하나가 코어 표면에 존재하므로, 전지의 충방전 과정에서 코어의 부피가 지나치게 팽창되는 것이 효과적으로 제어될 수 있다. 이를 통해, 전지의 용량 유지율이 개선될 수 있다.
상기 중간층의 두께는 1 nm 내지 100 nm일 수 있으며, 구체적으로 1 nm 내지 50 nm일 수 있다. 상기 두께 범위를 만족하는 경우, 코어의 부피 변화 제어가 효과적으로 이루어질 수 있으며, 코어의 추가 발열 반응이 효과적으로 방지될 수 있다. 또한, 코어의 비율이 적절히 유지되어 방전 용량의 지나친 감소를 막을 수 있다.
상기 중간층은 N2 및/또는 NH3 분위기에서 상기 코어를 열처리하거나, 실란(silane) 가스와 NH3 가스를 소스로 한 화학적 기상 증착법(CVD)을 통해 형성될 수 있지만, 이에 한정되는 것은 아니다.
상기 탄소 코팅층은 상기 중간층의 적어도 일부를 덮으며, 상기 중간층의 전부를 덮을 수 있다. 상기 탄소 코팅층에 의하여, 전지의 충방전 과정에서 코어의 부피가 지나치게 팽창되는 것이 더욱 효과적으로 제어될 수 있으며, 활물질의 전도성이 증가하여 음극의 저항이 감소할 수 있다.
상기 탄소 코팅층은 질소가 도핑된 탄소를 포함한다. 상기 탄소 코팅층이 포함하는 탄소는 질소가 도핑된 것이므로, 상기 질소로 인해 상기 음극 활물질의 도전성이 더욱 증가할 수 있으며, 리튬 이온의 삽입이 원활하게 이루어질 수 있다. 상기 탄소 코팅층이 상기 중간층과 함께 음극 활물질에 포함되는 경우, 음극 활물질의 표면의 경도(hardness)가 더욱 증가할 수 있어서 전지의 충방전 시 부피 변화의 제어가 더욱 효과적으로 이루어질 수 있다.
상기 탄소 코팅층 내에서, 상기 질소는 상기 탄소 코팅층 전체 중량을 기준으로 0.05 중량% 내지 20 중량%로 포함될 수 있으며, 구체적으로 0.1 중량% 내지 18 중량%로 포함될 수 있다. 상기 범위를 만족하는 경우, 탄소 코팅층의 도전성을 증가시켜 전극의 저항을 더욱 효과적으로 감소시킬 수 있다.
상기 탄소 코팅층의 두께는 1 nm 내지 100 nm일 수 있으며, 구체적으로 5 nm 내지 50 nm일 수 있다. 상기 범위를 만족하는 경우, 음극 활물질 내 도전 통로를 유지시키면서, 전지의 전기 전도도를 향상시킬 수 있다.
상기 중간층과 상기 탄소 코팅층의 중량비는 1:99 내지 20:80일 수 있으며, 구체적으로 5:95 내지 15:85일 수 있다. 상기 중량비를 만족하는 경우, 코어의 부피 변화를 더욱 효과적으로 제어할 수 있으며, 음극 활물질의 도전성이 더욱 개선될 수 있다.
<2차 입자>
본 발명의 음극 활물질은 상기 1차 입자를 포함하는 2차 입자로서, 상기 1차 입자가 집합, 결합 또는 조립화하여 형성된 2차 입자이다.
본 발명의 명세서에서 상기 용어 "1차 입자(initial particle)"는 어떤 입자로부터 다른 종류의 입자가 형성될 때 원래의 입자를 의미하며, 복수의 1차 입자가 집합, 결합 또는 조립화하여 2차 입자를 형성할 수 있다.
본 발명의 명세서에서 상기 용어 "2차 입자(secondary paricles)"는 개개의 1차 입자가 집합, 결합 또는 조립화하여 형성된, 물리적으로 분별할 수 있는 큰 입자를 의미한다.
본 발명의 명세서에서 상기 용어 1차 입자의 "조립화"는 1차 입자들 복수개가 자발적으로 또는 인위적으로 응집하거나 뭉치어 1차 입자로 이루어진 집합체를 이룸으로써 2차 입자화 되는 과정을 의미하는 것으로, 집합 또는 결합 등의 용어와 동일한 의미로 혼용될 수 있다.
상기 1차 입자는 2개 이상이 모여 2차 입자를 형성할 수 있다. 상기 1차 입자는 입경 크기가 작으므로 Li 이온의 확산(diffusion) 거리가 짧아져 Li 이온 출입이 용이해져 우수한 출력특성을 나타낼 수 있다. 한편, 1차 입자의 경우, 입경 크기가 작아 비표면적이 커서 전해액과의 부반응이 커진다는 단점이 있으나, 상기 1차 입자가 모여 2차 입자 형태를 형성할 경우 비표면적이 줄어들게 되므로 상기 부반응을 감소시킬 수 있다. 본 발명의 음극 활물질은 상기 1차 입자를 포함하는 2차 입자 형태이므로, 상기 1차 입자의 장점 및 2차 입자의 장점을 함께 발휘할 수 있어, 우수한 출력 특성을 나타내면서도 전해액과의 부반응이 작은 효과를 발휘할 수 있다.
상기 2차 입자는 상기 1차 입자를 예컨대 알코올을 포함하는 용매, 구체적으로 알코올과 물이 혼합된 분산 용매에 분산시키고, 이를 분무 건조하여 예비 2차 입자를 제조한 다음, 이를 열처리하는 방법으로 제조될 수 있다.
또한, 다르게는 상기 2차 입자는 상기 1차 입자를 접착바인더와 혼합하여 2차 입자를 형성하고 열처리한 다음. 이를 해쇄하는 방법으로 제조될 수도 있다.
상기 접착바인더는 1차입차 사이에 위치하여 상기 1차입차간에 접착력을 제공하여 이들이 집합, 결합 또는 조립화하여 2차 입자를 형성할 수 있도록 할 수 있다. 따라서, 상기 2차 입자는 상기 1차 입자들 사이에 접착바인더를 포함할 수 있다. 상기 접착바인더는, 예컨대 석유계 피치, 석탄계 피치 및 메조페이스 피치로부터 선택된 1종 이상을 포함할 수 있다.
상기 열처리 과정은 예컨대 300℃ 내지 1,300℃, 구체적으로 500℃ 내지 1,100℃에서 이루어질 수 있다. 상기 열처리 과정이 상기 온도 범위에서 이루어질 경우, 적절히 2차 입자를 형성할 수 있으면서도 상기 코어에 포함된 Si의 결정 크기가 지나치게 커지지 않을 수 있다
상기 2차 입자의 평균 입경(D50)은 2 ㎛ 내지 100 ㎛일 수 있으며, 구체적으로 2 ㎛ 내지 50 ㎛일 수 있다. 상기 2차 입자가 상기한 평균 입경 범위를 만족하는 경우, 전해액과의 부반응이 억제되고, 적절한 전극 밀도를 가지도록 하여 전극이 적절한 부피당 용량을 가질 수 있으며, 전극 제조 공정에 유리한 효과가 있다.
<금속 화합물 도핑 1차 입자>
상기 2차 입자가 포함하는 상기 1차 입자는 상기 코어, 중간층 및 탄소 코팅층 중 어느 하나 이상이 금속 화합물을 포함하는 금속 화합물 도핑 1차 입자일 수 있다.
상기 금속 화합물 도핑 1차 입자는 SiOx(0≤x<2)를 포함하는 코어; 상기 코어의 표면의 적어도 일부를 덮으며, 실리콘 나이트라이드(silicon nitride), 실리콘 옥시나이트라이드(silicon oxynitride) 또는 이들의 혼합물을 포함하는 중간층; 및 상기 중간층의 적어도 일부를 덮으며, 질소가 도핑된 탄소를 포함하는 탄소 코팅층을 포함하고, 상기 코어, 중간층 및 탄소 코팅층 중 어느 하나 이상이 금속 화합물을 포함하는 것일 수 있다.
즉, 상기 금속 화합물 도핑 1차 입자는 상기 1차 입자 내에 금속 화합물이 추가로 포함된 것으로, SiOx(0≤x<2)를 포함하는 코어; 상기 코어의 표면의 적어도 일부를 덮으며, 실리콘 나이트라이드(silicon nitride), 실리콘 옥시나이트라이드(silicon oxynitride) 또는 이들의 혼합물을 포함하는 중간층; 및 상기 중간층의 적어도 일부를 덮으며, 질소가 도핑된 탄소를 포함하는 탄소 코팅층을 포함하는 1차 입자에 금속 화합물이 도핑된 입자를 의미한다.
또한, 상기 2차 입자는, SiOx(0≤x<2)를 포함하는 코어; 상기 코어의 표면의 적어도 일부를 덮으며, 실리콘 나이트라이드(silicon nitride), 실리콘 옥시나이트라이드(silicon oxynitride) 또는 이들의 혼합물을 포함하는 중간층; 및 상기 중간층의 적어도 일부를 덮으며, 질소가 도핑된 탄소를 포함하는 탄소 코팅층을 포함하는 1차 입자 외에, 추가적으로 상기 코어, 중간층 및 탄소 코팅층 중 어느 하나 이상이 금속 화합물을 포함하는 금속 화합물 도핑 1차 입자를 더 포함할 수 있다. 즉, 상기 2차 입자는 상기 코어, 중간층 및 탄소 코팅층을 포함하는 1차 입자와, 상기 코어, 중간층 및 탄소 코팅층 중 어느 하나 이상이 금속 화합물을 포함하는 금속 화합물 도핑 1차 입자를 함께 포함하는 것일 수 있다.
상기 2차 입자가 상기 1차 입자 외에 추가적으로 상기 금속 화합물 도핑 1차 입자를 함께 포함할 경우, 상기 1차 입자 및 상기 금속 화합물 도핑 1차 입자는 10:90 내지 90:10의 중량비일 수 있고, 구체적으로 20:80 내지 80:20 중량비일 수 있다. 상기 2차 입자가 상기 1차 입자와 상기 금속 화합물 도핑 1차 입자를 상기 중량비로 함께 포함할 경우, 상기 1차 입자와 상기 금속 화합물 도핑 1차 입자 각각의 장점을 적절히 조화시켜, 용량 유지율을 높게 할 수 있으면서도 초기 효율을 향상시킬 수 있으며, 전극 두께 변화율을 작게 할 수 있다.
또한, 상기 1차 입자와 상기 금속 화합물 도핑 1차 입자를 상기 중량비로 함께 포함할 경우, 전해액에 대한 상기 2종의 1차 입자간의 부피 팽창율(swelling ratio) 차이에 따라, 전해액과 접촉시 상기 2차 입자 내부에 전해액이 유입될 수 있는 통로를 형성하게 되고, 이에 따라 향상된 방전 속도 특성을 발휘할 수 있다.
본 발명의 일례에 있어서, 상기 금속 화합물은 상기 1차 입자의 코어에 포함될 수 있다. 상기 금속 화합물은 상기 SiOx(0≤x<2)를 환원시킬 수 있는 금속, 구체적으로는 상기 SiOx(0≤x<2) 내 이산화규소(SiO2)를 규소로 환원시킬 수 있는 환원력을 가진 금속이 산화되어 형성된 것일 수 있다. 상기 금속 화합물은 금속 산화물 및 금속 실리케이트 중 적어도 어느 하나를 포함할 수 있다.
상기 금속 산화물은 리튬(Li), 마그네슘(Mg), 알루미늄(Al), 칼슘(Ca), 티타늄(Ti)으로 이루어진 군에서 선택되는 1종 또는 2종 이상의 산화물을 포함할 수 있다. 구체적으로 상기 금속 산화물은 MgO, Li2O, 및 Al2O3 중 적어도 어느 하나일 수 있다.
상기 금속 실리케이트는 리튬(Li), 마그네슘(Mg), 알루미늄(Al), 칼슘(Ca) 및 티타늄(Ti)으로 이루어진 군에서 선택되는 1종 또는 2종 이상의 실리케이트를 포함할 수 있다. 구체적으로 상기 금속 실리케이트는 MgSiO3, Mg2SiO4, Li2SiO3, Li4SiO4, Li2Si2O5, Al6SiO13 및 Al4SiO8 중 적어도 어느 하나일 수 있다.
상기 금속 화합물은 코어에 도핑되는 금속에 의해 형성된 것일 수 있다. 상기 금속이 코어에 도핑됨으로써, SiO 및/또는 SiO2 매트릭스가 환원될 수 있으며, 금속 화합물이 형성될 수 있다. 이에 따라, 초기 비가역으로 작용하는 SiO2의 함량이 줄어들 수 있으므로, 전지의 초기 효율이 향상될 수 있다.
상기 금속 화합물은 상기 코어의 총 중량에 대하여, 1 중량% 내지 60 중량% 포함될 수 있으며, 구체적으로 2 중량% 내지 50 중량%일 수 있다. 상기 범위를 만족할 시, 전지의 초기 효율이 더욱 개선될 수 있고, 코어 내 Si 결정의 크기가 지나치게 증가하는 것을 방지할 수 있다.
또한, 본 발명은 상기 음극 활물질을 포함하는 음극을 제공한다. 상기 음극은 집전체 및 상기 집전체 상에 배치된 음극 활물질층을 포함할 수 있다. 상기 음극 활물질층은 상기 음극 활물질을 포함할 수 있다. 나아가, 상기 음극 활물질층은 바인더 및/또는 도전재를 더 포함할 수 있다.
상기 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 되고, 특별히 제한되는 것은 아니다. 예를 들어, 상기 집전체로는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 구체적으로는, 구리, 니켈과 같은 탄소를 잘 흡착하는 전이 금속을 집전체로 사용할 수 있다. 상기 집전체의 두께는 6㎛ 내지 20㎛일 수 있으나, 상기 집전체의 두께가 이에 제한되는 것은 아니다.
상기 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
또한, 본 발명은 상기 음극을 포함하는 이차전지를 제공한다. 상기 이차전지는, 상기 음극, 양극, 상기 음극과 양극 사이에 개재된 분리막, 및 전해질을 포함할 수 있다. 상기 음극에 대해서는 상술하였으므로, 구체적인 설명은 생략한다.
상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성되며, 상기 양극활물질을 포함하는 양극활물질층을 포함할 수 있다.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 ㎛ 내지 500 ㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질은 통상적으로 사용되는 양극 활물질일 수 있다. 구체적으로, 상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2), Li[NixCoyMnzMv]O2(상기 식에서, M은 Al, Ga 및 In으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 원소이고; 0.3≤x<1.0, 0≤y, z≤0.5, 0≤v≤0.1, x+y+z+v=1이다), Li(LiaMb-a-b'M'b')O2-cAc(상기 식에서, 0≤a≤0.2, 0.6≤b≤1, 0≤b'≤0.2, 0≤c≤0.2이고; M은 Mn과, Ni, Co, Fe, Cr, V, Cu, Zn 및 Ti로 이루어진 군에서 선택되는 1종 이상을 포함하며; M'는 Al, Mg 및 B로 이루어진 군에서 선택되는 1종 이상이고, A는 P, F, S 및 N로 이루어진 군에서 선택되는 1종 이상이다) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+yMn2-yO4 (여기서, y는 0 내지 0.33임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1 - yMyO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga이고, y는 0.01 내지 0.3임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2 - yMyO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta이고, y는 0.01 내지 0.1임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. 상기 양극은 Li-metal일 수도 있다.
상기 양극 활물질층은 앞서 설명한 양극 활물질과 함께, 양극 도전재 및 양극 바인더를 포함할 수 있다.
이때, 상기 양극 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
또, 상기 양극 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
분리막으로는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기 전해질은 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 비수계 유기용매와 금속염을 포함할 수 있다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해액에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다.
본 발명의 다른 실시예에 따르면, 상기 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 이차 전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.
실시예
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 상기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
실시예 1: 전극의 제조
(1) 음극 활물질의 제조
평균 입경(D50)이 1 ㎛인 SiO를 10 g 준비하여 실란 가스(SiH4)와 암모니아 가스(NH3)를 투입한 뒤, 800℃에서 CVD 처리하여 상기 SiO 상에 중간층(실리콘 나이트라이드층)을 형성하였다. XPS depth profile(etching rate:1 nm/10초, etching time: 10초) 측정 시, 형성된 중간층의 두께는 약 1 nm였다. 또한, ONH 성분 분석기를 이용하여 측정한 결과, 상기 중간층에 포함된 질소 함량은 0.5 중량%였다. 이후, 메탄 가스(CH4)와 암모니아 가스를 1:2 비율로 투입하여 CVD를 진행하여, 질소가 포함된 탄소 코팅층(두께: 5 nm)을 상기 중간층 상에 형성하였다. 이상의 과정을 통해, 1차 입자를 제조하였다. ONH 성분 분석기를 이용하여 측정한 결과, 상기 1차 입자에 포함된 질소 함량은 3.7 중량%였으며, 상기 중간층에 포함된 질소 함량인 0.5 중량%를 제외하면, 상기 탄소 코팅층에 포함된 질소 함량은 3.2 중량%로 확인되었다.
상기 1차 입자와 에탄올/물(부피비= 1:9)이 1:10의 부피비로 포함된 용액을 기계적 균질기(mechanical homogenizer)로 30분간 10,000 rpm으로 교반하여 분무 건조용 분산용액을 제조하였다. 상기 분산용액을 미니 스프레이-드라이어(제조사: Buchi, 모델명: B-290 미니 스프레이-드라이어)의 입구 온도(Inlet temperature) 180℃, 아스피레이터(aspirator) 95%, 피딩 비율(feeding rate) 12 조건 하에서 분무 건조하여 예비 2차 입자를 제조한 후, 알루미나 보트에 옮겼다. 길이 80㎝, 내경이 4.8㎝인 석영관이 설치된 튜브 퍼니스(tube furnace)의 온도를 10℃/min의 속도로 600℃로 상승시킨 후 2시간 동안 온도를 유지하면서 소성함으로써 2차 입자를 제조하였다. 제조된 2차 입자의 평균 입경(D50)은 5㎛였다.
(2) 음극의 제조
상기 음극 활물질과 도전재인 미립 흑연, 바인더인 폴리아크리로니트릴을 7:2:1의 중량비로 혼합하여 혼합물 0.2g을 제조하였다. 상기 혼합물에 용매인 N-메틸-2-피롤리돈(NMP) 3.1g을 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 20㎛인 음극 집전체인 구리(Cu) 금속 박막에 도포, 건조하였다. 이때 순환되는 공기의 온도는 80℃였다. 이어서, 압연(roll press)하고 130℃의 진공 오븐에서 12시간 동안 건조하여 음극을 제조하였다.
(3) 이차 전지의 제조
제조된 음극을 1.4875㎠의 원형으로 절단하여 이를 음극으로 하고, 1.7671㎠의 원형으로 절단한 리튬(Li) 금속 박막을 양극으로 하였다. 상기 양극과 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하고, 메틸에틸카보네이트(EMC)와 에틸렌카보네이트(EC)의 혼합 부피비가 7:3인 혼합 용액에 0.5 중량%로 용해된 비닐렌 카보네이트를 용해시키고, 1M 농도의 LiPF6가 용해된 전해액을 주입하여, 리튬 코인 하프 셀(coin half-cell)을 제조하였다.
실시예 2: 전지의 제조
(1)음극 활물질의 제조
실시예 1과 동일한 방법으로 코어에 중간층을 형성하였다. 이 후, 메탄 가스(CH4)와 암모니아 가스를 1:2 비율로 투입하여 CVD를 진행한 뒤, 질소가 포함된 탄소 코팅층(두께: 20nm)을 상기 중간층 상에 형성하여 예비 입자를 제조하였다. ONH 성분 분석기를 이용하여 측정한 결과, 상기 탄소 코팅층에 포함된 질소 함량은 3.2 중량%로 확인되었다.
이 후, 상기 예비 입자 10 g과 Mg 파우더 0.8 g을 Ar 분위기 하에서 혼합하여 혼합 파우더를 준비하였다. 상기 혼합 파우더를 튜브 반응로(tube furnace)에 넣고, Ar 가스 분위기 하에서 950℃까지 5℃/min으로 승온한 뒤, 2시간 동안 열처리하였다. 이 후, 상온까지 반응로의 온도를 낮추고, 열처리된 혼합 파우더를 꺼내어 1M HCl에 1시간 동안 교반시켜서 세척하였다. 세척된 혼합 파우더를 필터링하면서, 증류수로 세척한 뒤, 60℃의 오븐에서 8시간 건조시켰다. 이를 통해, MgO, Mg2SiO4, MgSiO3를 포함하는 금속 화합물이 포함된 코어를 포함하는 1차 입자를 제조하였다. XRD 정량분석을 통해 측정한 결과, 상기 금속 화합물은 상기 코어 총 중량을 기준으로 30 중량%로 코어에 포함된 것을 확인하였다.
상기 1차 입자와 에탄올/물(부피비= 1:9)이 1:10의 부피비로 포함하는 용액을 기계적 균질기(mechanical homogenizer)로 30분간 10,000rpm으로 교반하여 분무 건조용 분산용액을 제조하였다. 상기 분산용액을 미니 스프레이-드라이어(제조사: Buchi, 모델명: B-290 미니 스프레이-드라이어)의 입구 온도(Inlet temperature) 180℃, 아스피레이터(aspirator) 95%, 피딩 비율(feeding rate) 12 조건 하에서 분무 건조하여 예비 2차 입자를 제조한 후, 알루미나 보트에 옮겼다. 길이 80㎝, 내경이 4.8㎝인 석영관이 설치된 튜브 퍼니스(tube furnace)의 온도를 10℃/min의 속도로 600℃로 상승시킨 후 2시간 동안 온도를 유지하면서 소성함으로써 2차 입자를 제조하였다. 제조된 2차 입자의 평균 입경(D50)은 5㎛였다.
(2) 음극 및 이차 전지의 제조
상기 음극 활물질을 사용하여, 실시예 1과 동일한 방법으로 음극 및 이차 전지를 제조하였다.
실시예 3: 전지의 제조
(1)음극 활물질의 제조
실시예 1과 동일한 방법으로 코어에 중간층을 형성하였다. 이후, 메탄 가스(CH4)와 암모니아 가스를 1:2 비율로 투입하여 CVD를 진행한 뒤, 질소가 포함된 탄소 코팅층(두께: 20nm)을 상기 중간층 상에 형성하여 예비 입자를 제조하였다. ONH 성분 분석기를 이용하여 측정한 결과, 상기 탄소 코팅층에 포함된 질소 함량은 3.2중량%로 확인되었다.
이 후, 상기 예비 입자 10g과 Li 파우더 0.8g을 Ar 분위기 하에서 혼합하여 혼합 파우더를 준비하였다. 상기 혼합 파우더를 튜브 반응로(tube furnace)에 넣고, Ar 가스 분위기 하에서 950℃까지 5℃/min으로 승온한 뒤, 2시간 동안 열처리하였다. 이 후, 상온까지 반응로의 온도를 낮추고, 열처리된 혼합 파우더를 꺼내었다. 이를 통해, Li2SiO3, Li4SiO4, Li2Si2O5를 포함하는 금속 화합물이 포함된 코어를 포함하는 1차 입자를 제조하였다. XRD 정량분석을 통해 측정한 결과, 상기 금속 화합물은 상기 코어 총 중량을 기준으로 40중량%로 코어에 포함된 것을 확인하였다.
상기 1차 입자와 에탄올/물(부피비=1:9)이 1:10의 부피비로 포함된 용액을 기계적 균질기(mechanical homogenizer)로 30분간 10,000 rpm으로 교반하여 분무 건조용 분산용액을 제조하였다. 상기 분산용액을 미니 스프레이-드라이어(제조사: Buchi, 모델명: B-290 미니 스프레이-드라이어)의 입구 온도(Inlet temperature) 180℃, 아스피레이터(aspirator) 95%, 피딩 비율(feeding rate) 12 조건 하에서 분무 건조하여 예비 2차 입자를 제조한 후, 알루미나 보트에 옮겼다. 길이 80㎝, 내경이 4.8㎝인 석영관이 설치된 튜브 퍼니스(tube furnace)의 온도를 10℃/min의 속도로 600℃로 상승시킨 후 2시간 동안 온도를 유지하면서 소성함으로써 2차 입자를 제조하였다. 제조된 2차 입자의 평균 입경(D50)은 5㎛였다.
(2) 음극 및 이차 전지의 제조
상기 음극 활물질을 사용하여, 실시예 1과 동일한 방법으로 음극 및 이차 전지를 제조하였다.
실시예 4: 전지의 제조
(1)음극 활물질의 제조
상기 실시예 1에서 제조된 1차 입자 및 상기 실시예 2에서 제조된 1차 입자를 1:1 비율로 혼합하였다. 상기 혼합한 1차 입자와 에탄올/물(부피비=1:9)이 1:10의 부피비로 포함된 용액을 기계적 균질기(mechanical homogenizer)로 30분간 10,000rpm으로 교반하여 분무 건조용 분산용액을 제조하였다. 상기 분산용액을 미니 스프레이-드라이어(제조사: Buchi, 모델명: B-290 미니 스프레이-드라이어)의 입구 온도(Inlet temperature) 180℃, 아스피레이터(aspirator) 95%, 피딩 비율(feeding rate) 12 조건 하에서 분무 건조하여 예비 2차 입자를 제조한 후, 알루미나 보트에 옮겼다. 길이 80㎝, 내경이 4.8㎝인 석영관이 설치된 튜브 퍼니스(tube furnace)의 온도를 10℃/min의 속도로 600℃로 상승시킨 후 2시간 동안 온도를 유지하면서 소성함으로써 2차 입자를 제조하였다. 제조된 2차 입자의 평균 입경(D50)은 5 ㎛였다.
(2) 음극 및 이차 전지의 제조
상기 음극 활물질을 사용하여, 실시예 1과 동일한 방법으로 음극 및 이차 전지를 제조하였다.
실시예 5: 전지의 제조
(1)음극 활물질의 제조
상기 실시예 1에서 제조된 1차 입자 및 상기 실시예 3에서 제조된 1차 입자를 1:1 비율로 혼합하였다. 상기 혼합한 1차 입자와 에탄올/물(부피비=1:9)이 1:10의 부피비로 포함된 용액을 기계적 균질기(mechanical homogenizer)로 30분간 10,000rpm으로 교반하여 분무 건조용 분산용액을 제조하였다. 상기 분산용액을 미니 스프레이-드라이어(제조사: Buchi, 모델명: B-290 미니 스프레이-드라이어)의 입구 온도(Inlet temperature) 180℃, 아스피레이터(aspirator) 95%, 피딩 비율(feeding rate) 12 조건 하에서 분무 건조하여 예비 2차 입자를 제조한 후, 알루미나 보트에 옮겼다. 길이 80㎝, 내경이 4.8㎝인 석영관이 설치된 튜브 퍼니스(tube furnace)의 온도를 10℃/min의 속도로 600℃로 상승시킨 후 2시간 동안 온도를 유지하면서 소성함으로써 2차 입자를 제조하였다. 제조된 2차 입자의 평균 입경(D50)은 5 ㎛였다.
(2) 음극 및 이차 전지의 제조
상기 음극 활물질을 사용하여, 실시예 1과 동일한 방법으로 음극 및 이차 전지를 제조하였다.
비교예 1: 전지의 제조
(1) 음극 활물질의 제조
실시예 1과 동일한 방법으로 중간층이 형성된 코어를 제조한 뒤, 메탄 가스를 소스로 하여 CVD를 진행하였다. 이를 통해, 질소를 포함하지 않은 탄소 코팅층(두께: 5 nm)을 포함하는 1차 입자를 제조하였다.
상기 1차 입자와 에탄올/물(부피비=1:9)이 1:10의 부피비로 포함된 용액을 기계적 균질기(mechanical homogenizer)로 30분간 10,000rpm으로 교반하여 분무 건조용 분산용액을 제조하였다. 상기 분산용액을 미니 스프레이-드라이어(제조사: Buchi, 모델명: B-290 미니 스프레이-드라이어)의 입구 온도(Inlet temperature) 180℃, 아스피레이터(aspirator) 95%, 피딩 비율(feeding rate) 12 조건 하에서 분무 건조하여 예비 2차 입자를 제조한 후, 알루미나 보트에 옮겼다. 길이 80㎝, 내경이 4.8㎝인 석영관이 설치된 튜브 퍼니스(tube furnace)의 온도를 10℃/min의 속도로 600℃로 상승시킨 후 2시간 동안 온도를 유지하면서 소성함으로써 2차 입자를 제조하였다. 제조된 2차 입자의 평균 입경(D50)은 5 ㎛였다.
(2) 음극 및 이차 전지의 제조
상기 음극 활물질을 사용하여, 실시예 1과 동일한 방법으로 음극 및 이차 전지를 제조하였다.
비교예 2: 전지의 제조
(1) 음극 활물질의 제조
평균 입경(D50)이 1㎛인 SiO 10g에 메탄 가스(CH4)와 암모니아 가스를 1:2 비율로 하여 CVD를 진행하였다. 이를 통해, 질소가 포함된 탄소 코팅층(두께: 5 nm)을 SiO 상에 형성하여 1차 입자를 제조하였다. 형성된 탄소 코팅층에 있어서, 질소 함량은 3.1중량%였다.
상기 1차 입자와 에탄올/물(부피비= 1:9)이 1:10의 부피비로 포함된 용액을 기계적 균질기(mechanical homogenizer)로 30분간 10,000rpm으로 교반하여 분무 건조용 분산용액을 제조하였다. 상기 분산용액을 미니 스프레이-드라이어(제조사: Buchi, 모델명: B-290 미니 스프레이-드라이어)의 입구 온도(Inlet temperature) 180℃, 아스피레이터(aspirator) 95%, 피딩 비율(feeding rate) 12 조건 하에서 분무 건조하여 예비 2차 입자를 제조한 후, 알루미나 보트에 옮겼다. 길이 80㎝, 내경이 4.8㎝인 석영관이 설치된 튜브 퍼니스(tube furnace)의 온도를 10℃/min의 속도로 600℃로 상승시킨 후 2시간 동안 온도를 유지하면서 소성함으로써 2차 입자를 제조하였다. 제조된 2차 입자의 평균 입경(D50)은 5㎛였다.
(2) 음극 및 이차 전지의 제조
상기 음극 활물질을 사용하여, 실시예 1과 동일한 방법으로 음극 및 이차 전지를 제조하였다.
비교예 3: 전지의 제조
(1) 음극 활물질의 제조
평균 입경(D50)이 1 ㎛인 SiO 10g을 준비하여, 자외선-오존 세정기를 통해 상압의 수분을 차단한 오존의 조건으로 자외선을 노출 시켰다. 이를 통해, 상기 SiO 표면을 산화시켜 산화막층을 형성하였다. 이 후, 메탄 가스(CH4)와 암모니아 가스를 1:2 비율로 투입하여 CVD를 진행하여 질소가 포함된 탄소 코팅층(두께: 20nm)을 상기 산화막층(중간층) 상에 형성하여 1차 입자를 제조하였다. 형성된 탄소 코팅층에 있어서, 질소 함량은 3.5중량%였다.
상기 1차 입자와 에탄올/물(부피비= 1:9)이 1:10의 부피비로 포함하는 용액을 기계적 균질기(mechanical homogenizer)로 30분간 10,000rpm으로 교반하여 분무 건조용 분산용액을 제조하였다. 상기 분산용액을 미니 스프레이-드라이어(제조사: Buchi, 모델명: B-290 미니 스프레이-드라이어)의 입구 온도(Inlet temperature) 180℃, 아스피레이터(aspirator) 95%, 피딩 비율(feeding rate) 12 조건 하에서 분무 건조하여 예비 2차 입자를 제조한 후, 알루미나 보트에 옮겼다. 길이 80㎝, 내경이 4.8㎝인 석영관이 설치된 튜브 퍼니스(tube furnace)의 온도를 10℃/min의 속도로 600℃로 상승시킨 후 2시간 동안 온도를 유지하면서 소성함으로써 2차 입자를 제조하였다. 제조된 2차 입자의 평균 입경(D50)은 5㎛였다.
(2) 음극 및 이차 전지의 제조
상기 음극 활물질을 사용하여, 실시예 1과 동일한 방법으로 음극 및 이차 전지를 제조하였다.
실험예 1: 방전 용량, 초기 효율, 용량 유지율 및 전극 두께 변화율의 평가
실시예 1 내지 5 및 비교예 1 내지 3의 전지에 대해 충·방전을 수행하여, 방전 용량, 초기 효율, 용량 유지율 및 전극 두께 변화율을 평가하였고, 이를 하기 표 1에 기재하였다.
한편, 1회 사이클과 2회 사이클은 0.1C로 충·방전하였고, 3회 사이클부터 49회 싸이클까지는 0.5C로 충·방전을 수행하였다. 50회 사이클은 충전(리튬이 음극에 들어있는 상태)상태에서 종료하고, 전지를 분해하여 두께를 측정한 후, 전극 두께 변화율을 계산하였다.
충전 조건: CC(정전류)/CV(정전압)(5mV/0.005C current cut-off)
방전 조건: CC(정전류) 조건 1.5V
1회 충방전 시의 결과를 통해, 방전 용량(mAh/g) 및 초기 효율(%)을 도출하였다. 구체적으로 초기 효율(%)은 다음과 같은 계산에 의해 도출되었다.
초기 효율(%) = (1회 방전 후 방전 용량 / 1회 충전 용량)×100
용량 유지율과 전극 두께 변화율은 각각 다음과 같은 계산에 의해 도출되었다.
용량 유지율(%) = (49회 방전 용량 / 1회 방전 용량)×100
전극 두께 변화울(%) = (최종 전극 두께 변화량 / 최초 전극 두께)×100
전지 방전 용량(mAh/g) 초기 효율(%) 용량 유지율(%) 전극 두께 변화율(%)
실시예 1 1570 74.0 80 105
실시예 2 1410 81.5 63 117
실시예 3 1286 87.1 62 115
실시예 4 1480 77.6 71 110
실시예 5 1437 79.4 71 112
비교예 1 1495 73.1 55 124
비교예 2 1510 73.5 20 145
비교예 3 1250 70.2 59 120
상기 표 1을 참조하면, 중간층(실리콘 나이트라이드층)과 질소를 포함하는 탄소 코팅층을 모두 포함하는 1차 입자를 포함하는 실시예 1 내지 5의 경우, 비교예 1 내지 3의 경우에 비해, 초기 효율과 용량 유지율이 우수하며, 전극 두께 변화가 적은 것을 알 수 있다.
비교예 1의 경우 1차 입자의 탄소 코팅층이 질소를 포함하지 않아, 실시예 1에 비해 1차 입자의 전기 전도성이 저하되고, 비가역 용량이 증가하여 방전 용량이 작고, 초기 효율 및 용량 유지율이 낮은 것을 확인할 수 있다. 또한, 낮은 전기 전도성으로 인해 사이클 증가에 따른 퇴화가 가속화되어 스웰링이 증가되므로, 전극 두께 변화율이 상대적으로 큰 값을 나타내었다.
비교예 2의 경우, 1차 입자에 중간층(실리콘 나이트라이드층)이 포함되어 있지 않아 실시예 1에 비해 현저히 큰 전극 두께 변화율을 나타내고, 용량 유지율 역시 좋지 않음을 확인할 수 있다.
비교예 3의 경우, 실리콘 나이트라이드층 대신 산화막층을 도입한 1차 입자를 포함하므로, 코어의 표면이 산화되어 있어 비가역 용량이 증가하여 방전용량이 낮고, 1차 입자의 전기 전도성이 저하되어 초기 효율이 낮은 것을 확인할 수 있다.
실험예 2: 열 안정성 평가
실시예 1 내지 5 및 비교예 1 내지 3의 전지에 대해 1회 만충 충전을 수행하여, HP-DSC(High Pressure Differential Scanning Calorimetry)를 진행하였다. 이를 통해 열 안정성을 평가하여, 하기 표 2에 나타내었다.
충전 조건: CC(정전류)/CV(정전압) (5mV/0.005C current cut off)
1회 사이클을 0.1C로 만충 충전하였고, dry room에서 코인 셀을 분해한 다음 음극만을 채취하였다. 채취한 음극을 HP-DSC pan에 넣고, 전해액을 20㎕ 투여한 다음, HP-DSC (EQC-0277, Setaram)을 사용하여, 승온 조건 10℃/min으로 35℃부터 600℃까지 승온 시키면서 측정하였다.
전지 Onset 온도(℃) Main peak(℃) 음극 활물질 대비 발열량(kJ/g)
실시예 1 250 285 10.5
실시예 2 242 286 12.1
실시예 3 240 285 12.3
실시예 4 243 284 11.6
실시예 5 243 285 11.7
비교예 1 217 284 13.5
비교예 2 214 286 14.7
비교예 3 230 285 13.2
상기 표 2를 참조하면, 실시예들의 onset 온도가 비교예들에 비해 높은 것을 알 수 있다. 이는 본 발명의 음극 활물질을 사용한 전지의 경우, 전지에 내부 단락이나 충격에 따른 발열 반응이 발생할 시, 상기 열에 따른 온도 증가를 늦춰서 연쇄적인 발열 반응을 저지할 수 있음을 의미한다. 음극 활물질 대비 발열량에 있어서도, 비교예들에 비해 실시예들이 낮은 것을 확인할 수 있다.
실험예 3: 방전 속도 특성 평가
실시예 1 내지 5 및 비교예 1 내지 3의 전지에 대해 방전 속도 특성을 평가하여, 이를 하기 표 3에 기재하였다.
충전 속도를 0.2 C로 고정시키고, 방전 속도를 0.2 C, 1.0 C, 3.0 C, 5.0 C로 변경하면서 줄어드는 방전 용량(%)을 확인하였다. 이때, 0.2 C 방전 속도에서의 방전 용량을 100%로 설정하였다.
방전 속도
0.2 C(%) 1.0 C(%) 3.0 C(%) 5.0 C(%)
실시예 1 100 97.43 90.77 81.37
실시예 2 100 97.50 90.81 81.48
실시예 3 100 97.47 91.14 81.83
실시예 4 100 99.01 92.25 83.58
실시예 5 100 99.02 92.27 83.65
비교예 1 100 96.84 84.59 75.30
비교예 2 100 97.10 84.62 75.32
비교예 3 100 95.21 81.83 72.26
상기 표 3을 참조하면, 방전 속도를 0.2 C, 1.0 C, 3.0 C, 5.0 C로 점차적으로 증가시킬수록 전지들의 방전 용량이 감소함을 확인할 수 있는데, 실시예 1 내지 5의 전지는 비교예 1 내지 3의 전지에 비해 방전 속도의 감소 정도가 적어, 방전 속도 특성이 보다 우수함을 확인할 수 있었다.
한편, 실시예들 간에는 실시예 1 내지 3의 전지에 비해 실시예 4 및 5의 전지가 더욱 우수한 방전 속도 특성을 나타냈음을 확인할 수 있었다. 이를 통해, 금속이 도핑되어 있지 않은 1차 입자, 및 코어, 중간층 및 탄소 코팅층 중 어느 하나 이상에 금속 화합물이 도핑되어 있는 1차 입자 중 어느 한가지만을 포함하는 2차 입자 음극 활물질에 비해, 금속이 도핑되어 있지 않은 1차 입자와, 코어, 중간층 및 탄소 코팅층 중 어느 하나 이상에 금속 화합물이 도핑되어 있는 1차 입자를 함께 포함하는 2차 입자 음극 활물질이 전지의 방전 속도 특성 향상에 더욱 효과적임을 확인할 수 있었다.

Claims (15)

  1. SiOx(0≤x<2)를 포함하는 코어; 상기 코어의 표면의 적어도 일부를 덮으며, 실리콘 나이트라이드(silicon nitride), 실리콘 옥시나이트라이드(silicon oxynitride) 또는 이들의 혼합물을 포함하는 중간층; 및 상기 중간층의 적어도 일부를 덮으며, 질소가 도핑된 탄소를 포함하는 탄소 코팅층을 포함하는 1차 입자를 포함하는 2차 입자인, 음극 활물질.
  2. 제 1 항에 있어서,
    상기 1차 입자는 상기 코어, 중간층 및 탄소 코팅층 중 어느 하나 이상이 금속 화합물을 포함하는 것인, 음극 활물질.
  3. 제 1 항에 있어서,
    상기 2차 입자가 추가적으로, SiOx(0≤x<2)를 포함하는 코어; 상기 코어의 표면의 적어도 일부를 덮으며, 실리콘 나이트라이드(silicon nitride), 실리콘 옥시나이트라이드(silicon oxynitride) 또는 이들의 혼합물을 포함하는 중간층; 및 상기 중간층의 적어도 일부를 덮으며, 질소가 도핑된 탄소를 포함하는 탄소 코팅층을 포함하고, 상기 코어, 중간층 및 탄소 코팅층 중 어느 하나 이상이 금속 화합물을 포함하는 금속 화합물 도핑 1차 입자를 더 포함하는, 음극 활물질.
  4. 제 3 항에 있어서,
    상기 2차 입자가 상기 1차 입자 및 상기 금속 화합물 도핑 1차 입자를 10:90 내지 90:10의 중량비로 포함하는, 음극 활물질.
  5. 제 2 항 또는 제 3 항에 있어서,
    상기 금속 화합물은 금속 산화물 및 금속 실리케이트 중 적어도 어느 하나를 포함하는 음극 활물질.
  6. 제 5 항에 있어서,
    상기 금속 산화물은 Li, Mg, Al, Ca 및 Ti으로 이루어진 군에서 선택되는 1종 또는 2종 이상의 산화물을 포함하는 음극 활물질.
  7. 제 5 항에 있어서,
    상기 금속 실리케이트는 Li, Mg, Al, Ca 및 Ti으로 이루어진 군에서 선택되는 1종 또는 2종 이상의 실리케이트를 포함하는 음극 활물질.
  8. 제 2 항 또는 제 3 항에 있어서,
    상기 금속 화합물은 상기 코어의 총 중량에 대하여 1중량% 내지 60중량%로 포함되는 음극 활물질.
  9. 제 1 항 또는 제 3 항에 있어서,
    상기 코어의 평균 입경(D50)은 0.1 ㎛ 내지 100 ㎛인 음극 활물질.
  10. 제 1 항 또는 제 3 항에 있어서,
    상기 중간층의 두께는 1 nm 내지 100 nm 인 음극 활물질.
  11. 제 1 항 또는 제 3 항에 있어서,
    상기 탄소 코팅층의 두께는 1nm 내지 100nm 인 음극 활물질.
  12. 제 1 항 또는 제 3 항에 있어서,
    상기 탄소 코팅층 내에서, 상기 탄소 코팅층 전체 중량을 기준으로 상기 질소를 0.05 중량% 내지 20 중량%의 양으로 포함하는 음극 활물질.
  13. 제 1 항 또는 제 3 항에 있어서,
    상기 중간층과 상기 탄소 코팅층의 중량비는 1:99 내지 20:80인 음극 활물질.
  14. 제 1 항에 따른 음극 활물질을 포함하는 음극.
  15. 제 14 항의 음극;
    양극;
    상기 양극과 상기 음극 사이에 개재된 분리막; 및
    전해질을 포함하는 이차 전지.
PCT/KR2018/005407 2017-05-12 2018-05-10 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지 WO2018208111A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/611,394 US11322734B2 (en) 2017-05-12 2018-05-10 Negative electrode active material, negative electrode comprising the negative electrode active material, and secondary battery comprising the negative electrode
EP18799252.4A EP3609001A4 (en) 2017-05-12 2018-05-10 NEGATIVE ELECTRODE ACTIVE MATERIAL, NEGATIVE ELECTRODE, INCLUDING A NEGATIVE ELECTRODE ACTIVE MATERIAL, AND SECONDARY BATTERY, INCLUDING NEGATIVE ELECTRODE
CN201880028838.8A CN110582876B (zh) 2017-05-12 2018-05-10 负极活性材料、包含所述负极活性材料的负极、和包含所述负极的二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170059577 2017-05-12
KR10-2017-0059577 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018208111A1 true WO2018208111A1 (ko) 2018-11-15

Family

ID=64105389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005407 WO2018208111A1 (ko) 2017-05-12 2018-05-10 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지

Country Status (5)

Country Link
US (1) US11322734B2 (ko)
EP (1) EP3609001A4 (ko)
KR (1) KR102223723B1 (ko)
CN (1) CN110582876B (ko)
WO (1) WO2018208111A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111082013A (zh) * 2019-12-18 2020-04-28 惠州亿纬创能电池有限公司 碳包覆氮镁掺杂多孔硅基复合材料的制备方法及锂离子电池
CN112421002A (zh) * 2020-11-10 2021-02-26 成都爱敏特新能源技术有限公司 一种高容量的硅碳材料及其制备方法
NO20200176A1 (en) * 2020-02-12 2021-08-13 Inst Energiteknik Electrode and Energy Storage Device
EP3965187A4 (en) * 2019-04-29 2023-02-15 Daejoo Electronic Materials Co., Ltd. SILICON OXIDE COMPOSITE FOR LITHIUM SECONDARY BATTERY ANODE MATERIAL AND METHOD OF MAKING IT

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467135A (zh) * 2020-09-09 2021-03-09 珠海中科兆盈丰新材料科技有限公司 一种硅碳复合材料、制备方法及其锂离子电池
CN113066970A (zh) * 2021-03-29 2021-07-02 宁德新能源科技有限公司 硅碳负极材料、电化学装置和电子装置
EP4379860A1 (en) * 2021-07-30 2024-06-05 Panasonic Intellectual Property Management Co., Ltd. Negative electrode active material for secondary batteries, and secondary battery
KR20240055042A (ko) * 2021-09-08 2024-04-26 더 리젠츠 오브 더 유니버시티 오브 미시건 탄소열 환원을 제어하기 위해 나노구조의 탄화규소, 질화규소, 산화질화규소 나노 복합체 형성하는 왕겨 회분(rha) 부산물의 탄소 및 실리카 함량을 조정하는 방법
CN117546314A (zh) * 2021-11-11 2024-02-09 株式会社Lg新能源 负极组合物、包含其的锂二次电池用负极、包含负极的锂二次电池以及制备负极组合物的方法
CN113948692A (zh) * 2021-12-20 2022-01-18 常州硅源新能材料有限公司 一种用于锂离子二次电池的含有惰性涂层包覆的硅氧化物复合材料及其制备
CN114864886B (zh) * 2022-04-02 2024-02-27 万华化学集团股份有限公司 一种正极材料及其制备方法
CN117461167A (zh) * 2022-05-24 2024-01-26 宁德时代新能源科技股份有限公司 正极活性材料、正极极片、二次电池、电池模块、电池包和用电装置
WO2024101952A1 (ko) * 2022-11-11 2024-05-16 주식회사 엘지에너지솔루션 음극 활물질, 이를 포함하는 음극, 이를 포함하는 이차전지 및 음극 활물질의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060147797A1 (en) * 2004-12-31 2006-07-06 Industrial Technology Research Institute Anode materials of lithium secondary battery and method of fabricating the same
KR20140107926A (ko) * 2013-02-28 2014-09-05 한국과학기술원 질소 도핑된 탄소 코팅을 포함하는 실리콘계 음극활물질의 제조방법 및 이를 포함하는 리튬이차전지
US20150221950A1 (en) * 2012-09-27 2015-08-06 Sanyo Electric Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery using negative electrode active material
KR20160115270A (ko) * 2015-03-26 2016-10-06 (주)오렌지파워 실리콘계 음극 활물질 및 이의 제조 방법
KR20160149862A (ko) 2015-06-19 2016-12-28 주식회사 엘지화학 실리콘 산화물-탄소-고분자 복합체, 및 이를 포함하는 음극 활물질
KR20170004673A (ko) * 2015-07-03 2017-01-11 삼성에스디아이 주식회사 음극 활물질, 이를 채용한 리튬 전지 및 이의 제조 방법
KR20170059577A (ko) 2015-11-21 2017-05-31 양수민 휴대용 화장품 아이스 파우치

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4533822B2 (ja) * 2005-08-24 2010-09-01 株式会社東芝 非水電解質電池および負極活物質
CN101533907B (zh) * 2009-04-14 2010-10-27 北京科技大学 一种锂离子电池硅基负极复合材料的制备方法
JP2013197069A (ja) * 2012-03-22 2013-09-30 National Institute Of Advanced Industrial & Technology リチウム二次電池用負極材料及びその製造方法、リチウム二次電池用負極及びその製造方法、リチウム二次電池及びこれを用いた電気機器
KR101558044B1 (ko) * 2012-07-13 2015-10-07 주식회사 엘지화학 바이모달 타입의 음극 활물질 및 이를 포함하는 리튬 이차전지
US9590240B2 (en) 2013-05-14 2017-03-07 Nano And Advanced Materials Institute Limited Metal/non-metal co-doped lithium titanate spheres with hierarchical micro/nano architectures for high rate lithium ion batteries
JP6115780B2 (ja) * 2013-12-25 2017-04-19 株式会社豊田自動織機 複合負極活物質体、非水電解質二次電池用負極および非水電解質二次電池
US20160336586A1 (en) * 2014-01-28 2016-11-17 Sanyo Electric Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries
CN105047870A (zh) * 2015-06-17 2015-11-11 南京航空航天大学 一种掺氮碳包覆硅复合材料及其制备方法
EP3144277A1 (en) * 2015-09-17 2017-03-22 Korea Institute of Energy Research Method of carbon coating on nanoparticle and carbon coated nanoparticle produced by the same
KR101775539B1 (ko) * 2016-10-27 2017-09-06 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 및 이를 포함하는 음극 및 리튬 이차 전지
TWI593158B (zh) * 2016-12-16 2017-07-21 矽力能股份有限公司 導電複合材料及其製備之負極材料與二次電池
KR102157183B1 (ko) * 2017-03-07 2020-09-18 주식회사 엘지화학 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060147797A1 (en) * 2004-12-31 2006-07-06 Industrial Technology Research Institute Anode materials of lithium secondary battery and method of fabricating the same
US20150221950A1 (en) * 2012-09-27 2015-08-06 Sanyo Electric Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery using negative electrode active material
KR20140107926A (ko) * 2013-02-28 2014-09-05 한국과학기술원 질소 도핑된 탄소 코팅을 포함하는 실리콘계 음극활물질의 제조방법 및 이를 포함하는 리튬이차전지
KR20160115270A (ko) * 2015-03-26 2016-10-06 (주)오렌지파워 실리콘계 음극 활물질 및 이의 제조 방법
KR20160149862A (ko) 2015-06-19 2016-12-28 주식회사 엘지화학 실리콘 산화물-탄소-고분자 복합체, 및 이를 포함하는 음극 활물질
KR20170004673A (ko) * 2015-07-03 2017-01-11 삼성에스디아이 주식회사 음극 활물질, 이를 채용한 리튬 전지 및 이의 제조 방법
KR20170059577A (ko) 2015-11-21 2017-05-31 양수민 휴대용 화장품 아이스 파우치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3609001A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3965187A4 (en) * 2019-04-29 2023-02-15 Daejoo Electronic Materials Co., Ltd. SILICON OXIDE COMPOSITE FOR LITHIUM SECONDARY BATTERY ANODE MATERIAL AND METHOD OF MAKING IT
CN111082013A (zh) * 2019-12-18 2020-04-28 惠州亿纬创能电池有限公司 碳包覆氮镁掺杂多孔硅基复合材料的制备方法及锂离子电池
CN111082013B (zh) * 2019-12-18 2021-05-25 惠州亿纬创能电池有限公司 碳包覆氮镁掺杂多孔硅基复合材料的制备方法及锂离子电池
NO20200176A1 (en) * 2020-02-12 2021-08-13 Inst Energiteknik Electrode and Energy Storage Device
WO2021160833A1 (en) 2020-02-12 2021-08-19 Institutt For Energiteknikk Electrode, energy storage device and method
NO346770B1 (en) * 2020-02-12 2022-12-27 Inst Energiteknik Electrode, Energy Storage Device and Method
CN112421002A (zh) * 2020-11-10 2021-02-26 成都爱敏特新能源技术有限公司 一种高容量的硅碳材料及其制备方法
CN112421002B (zh) * 2020-11-10 2022-03-29 成都爱敏特新能源技术有限公司 一种高容量的硅碳材料及其制备方法

Also Published As

Publication number Publication date
KR20180124769A (ko) 2018-11-21
EP3609001A1 (en) 2020-02-12
EP3609001A4 (en) 2020-03-25
CN110582876B (zh) 2022-06-24
US11322734B2 (en) 2022-05-03
US20200168890A1 (en) 2020-05-28
KR102223723B1 (ko) 2021-03-05
CN110582876A (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
WO2018208111A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2018164405A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019151774A1 (ko) 음극 활물질, 상기 음극 활물질의 제조 방법, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2016032240A1 (ko) 이중 코팅층을 갖는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2018221827A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019093820A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2020122602A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2019103499A1 (ko) 리튬 이차전지용 음극 활물질, 및 이의 제조방법
WO2019093830A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2020149681A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2019083332A2 (ko) 실리콘-탄소 복합체 및 이를 포함하는 리튬 이차전지
WO2022055309A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2022045852A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2019050216A2 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2018226070A1 (ko) 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극의 제조 방법
WO2022010225A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2019093825A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2021125825A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2021125827A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2022255665A1 (ko) 양극활물질과 비가역 첨가제를 포함하는 마스터 배치 및 이를 함유하는 리튬 이차전지용 양극 슬러리
WO2019143214A1 (ko) 양극 및 상기 양극을 포함하는 이차 전지
WO2019088808A2 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극 활물질의 제조 방법
WO2023121257A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
WO2023249443A1 (ko) 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2023167449A1 (ko) 리튬 이차 전지의 제조 방법 및 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018799252

Country of ref document: EP

Effective date: 20191105